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Abstract

This work addresses the problem of fitting a geometrical primitive to a point
cloud as a numerical optimisation problem. Intelligent Optimisation Techniques
like Evolutionary Algorithms and the Bees Algorithm were here adapted to select
the most fit primitive out of a population of solutions, and the results compared.

The necessity of understanding the dynamics of the Bees Algorithm to improve
its performances and applicability led to an in-depth analysis of its key parts. A
new mathematical definition of the algorithm led to the discovery and formalisation
of several properties, many of which provided a mathematical answer to behaviours
so far only observed in empirical tests. The implications of heuristics commonly
used in the Bees Algorithm, like site abandonment and neighbourhood shrinking,
were statistically analysed. The probability of a premature stalling of the local
search at a site has been quantified under certain conditions. The effect of the
choice of shape for the local neighbourhood on the exploitative search of the Bees
Algorithm was analysed. The study revealed that this commonly overlooked aspect
has profound consequences on the effectiveness of the local search, and practical
applications have been suggested to address specific search problems.

The results of the primitive fitting study, and the analysis of the Bees Al-
gorithm, inspired the creation of a new algorithm for problems where multiple
solutions are sought (multi-solution optimisation). This new algorithm is an ex-
tension of the Bees Algorithm to multi-solution optimisation. It uses topological
information on the search space gathered during the cycles of local search at a site,
which is normally discarded, to alter the fitness function. The function is altered
to discourage further search in already explored regions of the fitness landscape,
and force the algorithm to discover new optima.

This new algorithm found immediate application on the multi-shape variant of

the primitive fitting problem. In a series of experimental tests, the new algorithm

obtained promising results, showing its ability to find many shapes in a point

cloud. It also showed its suitability as a general technique for the multi-solution

optimisation problem.
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Chapter 1

Introduction

The Primitive Fitting (PF) problem consists of finding the geometrical prim-
itive (e.g. a sphere or a box) that best fits a Point Cloud (PC) (i.e. an un-
ordered set of points in a Carthesian space). PCs are typically generated by
3D range scanners in machine vision applications. Several techniques have
been developed to tackle specifically this problem. These techniques are very
successful, but also work under specific assumptions on the nature of the PC
(e.g. the level of noise).

The first research question addressed in this thesis is whether it is pos-
sible to solve this problem with a general technique that doesn’t make any
ad-hoc assumption. To answer this question, the PF problem was tackled
as a numerical optimisation problem. In the proposed approach, a primitive
is identified by a number of parameters describing its position (i.e. centre),
rotation (when applicable) and size (e.g. radius, height, etc..). These pa-
rameters are encoded as an array of real numbers. The fit of a candidate
solution is checked via a fitness function that takes into account two aspects:
a) the distance of the points contained in the PC from the primitive, and
b) the orientation of the normals to the points in the cloud respect to the
normal to the closest surface of the primitive.

Several datasets containing PCs representing spheres, boxes and cylinders
with different size, rotation and different levels of point-perturbations have
been generated. The datasets have been used to test the capability of the
Bees Algorithm (BA) to tackle this optimisation problem, and the results
were compared with an implementation of the Evolutionary Algorithm (EA)
and a RANdom SAmple Consensus (RANSAC) approach.

To better understand the dynamics of the BA, the algorithm was re-
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2 CHAPTER 1. INTRODUCTION

defined under a rigorous mathematical framework, and a thorough statistical
analysis of its search mechanism was performed. In the analysis, the local
search stalling probability (i.e. the probability that local search stagnates
until site abandonment is triggered) was studied for implementations of the
BA where the neighbourhood shrinking procedure is used or not. Given lim-
ited sampling opportunities for the local search, there is a trade-off between
how many candidate solutions to sample at every BA cycle (i.e. how many
foragers are employed per cycle at a site), and how many cycles of stagna-
tion to allow before the site is abandoned. This study revealed the statistical
motivation behind many empirical observations in the literature on how to
address best this trade-off.

The above analysis revealed also the implications on the local search of the
choice of neighbourhood shape, in particular for high dimensional problems.

The analysis on the BA allowed also further observation that not only
the forager that landed on the fittest solution, but also the other foragers
generated during one cycle of local search can provide useful information on
the topology of the search space. This latter information, normally discarded
in the BA, is the basis for a new algorithm designed to find multiple local
optima in multimodal functions. That is, whilst the sequence of the best
solutions found at each BA cycle forms a path towards the best solution
found by local search at a site (i.e. in a flower patch), the sequence of
worst solutions provides a good indication of the radius of the local optimum
attraction basin. The Local Optimum Region Radius Estimator (LORRE)
algorithm use this information to alter the fitness surface, discouraging future
search in that region. The chances of finding other (better) local optima are
increased as a result. The presentation of LORRE includes also suggestions
on how to prune the set of found local optima from spurious or duplicate
candidate solutions.

The LORRE algorithm found immediate application to the PF problem,
when multiple shapes are present in one PC. In this new case, LORRE was
used to find every shape included in the PC. Preliminary results on a selected
number of test cases show that LORRE outperforms the BA on general
multimodal benchmarks as well as the PF problem.



1.1. BACKGROUND 3

1.1 Background

In this section the different key parts of this thesis will be illustrated in a
more extensive way.

1.1.1 Primitive Fitting as a Numerical Optimisation
Problem

Point Clouds are widely used in machine vision and robotics to represent
3D scenes and objects sensed through laser scanning devices. Understanding
PC models, and extracting concise and meaningful high level descriptions
such as the shape and properties of objects, is necessary for many industrial
applications like robotic grasping and pick-and place (Bjorkman et al., 2013;
Mavrakis et al., 2016). This ability is naturally acquired by humans and
animals, but difficult to reliably automate (Spiers et al., 2016), particularly
in real-time applications where time and hardware limitations require very
efficient procedures.

One of the applications of the work undertaken in this thesis is con-
cerned with the identification of the shape of objects in 3D PCs for robot
manipulation. In many industrial applications, man-made artefacts can be
associated with good approximation to a set of geometrical primitive shapes
like spheres, boxes, and cylinders. The problem becomes then to fit these
primitive shapes to clusters of points in PC models (i.e. PF problem). Since
PCs are composed of a very large number of points, the efficiency of the
identification algorithms is of primary importance. At the same time, for the
sake of generality problem-specific assumptions should be limited.

The primitive fitting problem is well known in the literature, and many
of the solutions are based on two popular and very successful algorithms:
the Hough Transform (Levine and Levine, 1985) and RANSAC (Bolles and
Fischler, 1981). Given a 3D scene, the Hough Transform looks for param-
eterisations of primitive shapes that fit the largest number of data points.
To increase the efficiency of the HT, the space of the parameterisations may
be quantised, and in that case the granularity of the quantisation becomes
an important parameter (Mukhopadhyay and Chaudhuri, 2015). RANSAC
randomly picks from the PC a minimal sets of points that are used to param-
eterise candidate primitive shapes. RANSAC verifies the candidate shapes
against the remaining points in the scene, and picks the instance that fits the
largest number of points. An approximation tolerance is usually set to decide
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whether a point is an inlier or outlier to a given shape. The main limitations
of the Hough Transform and RANSAC are their computational complexity,
and the sensitivity of the results to the algorithm parameterisation (the quan-
tisation of parameters in the Hough Transform, the approximation tolerance
in RANSAC).

The approach proposed in this work is to tackle primitive fitting as a pa-
rameter optimisation problem. Similarly to the Hough Transform approach,
the goal of the procedure is to manipulate the parameters of a given type
of primitive to maximise its fit to the point data. The fit is measured by
a primitive-specific fitness function which is used to guide the optimisation
process. The BA (Pham and Castellani, 2009) will be used as the parameter
optimisation routine, and the results compared with those achieved using an
EA (Fogel, 2006) and RANSAC.

The main advantage of metaheuristics like swarm (BA) and EA over stan-
dard primitive fitting techniques is the generality of the approach, which does
not require prior scene knowledge (e.g. the noise level to set the approxima-
tion tolerance in RANSAC). These metaheuristics can be used to fit any kind
of shape, as long as its goodness of fit can be defined via a fitness function.
In addition to their intelligent sampling of the solution space, swarm and
evolutionary algorithms are also computationally efficient.

1.1.2 Bees Algorithm: Towards a Formal Definition

The BA (Pham et al., 2006) is a nature-inspired intelligent technique that has
found application in a wide range of complex optimisation problems (Pham
et al., 2014; Pham et al., 2018). The main idea motivating this algorithm is
to model the foraging behaviour of honey bees to address the exploration vs
exploitation trade-off. According to that model, agents simulating scout bees
randomly explore the solution space looking for areas of high fitness. The
scouts that found the most promising solutions recruit (through performing
a waggle dance, Frisch 1968) other agents (forager bees) for local exploitative
search. Local search is conducted in parallel at different sites, that is, within
neighbourhoods centred on the solutions marked by the scouts.

Despite the initial idea being to maintain a clear separation between the
global explorative and local exploitative search efforts, it soon became clear
(Pham and Castellani, 2009) that other factors such as the number of parallel
local searches influence the exploration vs. exploitation balance. A number
of empirical studies (Pham and Castellani, 2014; Pham and Castellani, 2015)
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tried to shed light on the properties of the Bees Algorithm and related opti-
misation techniques, and how their parameterisation affects the nature of the
search effort. However, to the best of the author’s knowledge, a theoretical
analysis of the Bees Algorithm behaviour has never been published.

This work addresses the above gap in the literature. Understanding in
detail the dynamic behaviour of a population-based optimisation algorithm
on arbitrarily complex fitness landscapes is extremely complex. For this
reason, the literature on nature-inspired algorithms overwhelmingly relies
on qualitative biological analogies and empirical comparisons. However, by
investigating well-defined cases under a theoretical framework, important
insights on the algorithm behaviour can be gained (Auger and Doerr, 2011).
This study focuses on the local search procedure of the Bees Algorithm, using
the clearly delimited boundaries of the site neighbourhood to infer important
properties.

The proposed study is timely, as a large number of variants in operators
and parameterisations have been developed for this popular optimisation
algorithm (Hussein et al., 2017). In the light of the No Free Lunch Theorem
(Wolpert and Macready, 1997), it is essential to unravel the implications of
these different choices of operators and parameters.

1.1.3 LORRE: A new Approach to the Multi-Modal
Problems

In contrast with single-solution optimisation techniques, that are designed to
find a good approximation of the global optimum, multi-solution techniques
aim to find all the best (i.e. with highest fitness score) local optima. In many
cases, especially in presence of a single strong attractive basin in the search
space, many optimisation techniques tend to rapidly converge to the same
local optimum. A rapid convergence and consistent convergence is certainly
a desirable property for a single solution optimisation technique, although it
can pose problems if the optimum is not the global best. If many (all the)
local optima are sought, the algorithm must be able to always search new
areas of the solution space.

A solution to the problem is to build a mechanism in the search procedure
that avoids further search in the area around already found optima, similar
to the tabu regions in Tabu Search (Glover and Laguna, 1998). This general
approach entails the solution of a number of sub-problems. That is, the
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following elements need to be defined:

(i) a method to find a good approximation of one (or more) local opti-
mum(a);

(ii) a way to estimate the local optima attraction basins;

(iii) a method to exclude those sub-regions in future searches;

The first sub-problem of locating the fitness peaks is solved using the search
mechanism of the standard BA. The second and third sub-problems are
solved using an innovative method created by the author. The combina-
tion of standard BA search and routines to diversify the search constitutes
the LORRE algorithm, which can be regarded as a BA variant.

LORRE is specifically designed to address multi-solution problems, and
dynamically modifies the fitness landscape once local BA search at a site
reaches a peak and is exhausted. The fitness landscape is modified via a
derating function, which removes the attraction basin around the optimum
(addressing thus the third sub-problem). The action of the derating func-
tion can be visualised as (partly) ’filling up’ a hole in the fitness landscape
(minimisation problems), or (partly or completely) flattening a peak (max-
imisation problems). By actually removing one attractor basin, the derating
function prevents further local search in the area. The two key aspects of this
technique are the smoothness of the derating functions, which can be tuned
by a parameter, and the dynamic estimation of the fields radius. The latter
aspect is achieved analysing the distribution of the worst solutions found
during the local search at a site. This addresses the second sub-problem.

1.2 Aims of the Thesis

The aims of the thesis can be described as follows:

• to devise a novel approach to tackle PF as a numerical optimisation
problem;

• to investigate the use of metaheuristics, and in particular the BA, for
the solution of the PF problem, initially focusing on single-shape fitting
(single-solution optimisation problems).
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• to perform an experimental comparison of the performance of the meta-
heuristics approach with the state-of-the-art on the PF problem;

• to focus on the best performing metaheuristics, and carry out an ana-
lytical study with the aim of better understanding it mechanisms and
improve its performances;

• to use the results and knowledge so far acquired to extend the meta-
heuristics approach to the solution of multi-shape fitting (multi-solution
optimisation) problems;

• to experimentally compare the performance of the novel metaheuristics
approach with the state-of-the-art in multi-solution optimisation on
standard benchmarks and the PF problem;

1.3 Outline of this Thesis

The remaining chapters of the thesis are organised as follows:

• Chapter 2 contains the literature review of the known PF techniques,
relevant variants of the BA and multi-solution techniques for multi-
modal problems;

• Chapter 3 illustrates the proposed BA solution for the PF problem,
along with the comparative results with the EA and RANSAC tech-
niques;

• Chapter 4 presents the statistical analysis of the BA, with a focus on
the stalling probability of a site. In this chapter, formal proofs of key
propositions are also coupled with empirical tests;

• Chapter 5 describe the new technique designed to find the best local
optima of a multimodal function. The algorithm will be validated on
benchmark functions as well as a multi-shape variant of the PF prob-
lem;
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Chapter 2

Literature Review

This chapter reviews the literature related to the topics of this thesis. The
first section is centred on the PF problem, with particular focus on RANSAC
variants. It also includes the literature on approaches tackling PF as a nu-
merical optimisation problem, and using global search techniques such as
EA as solvers. The second section analyses the main variants of the BA,
particularly those relevant to the analysis of Chapter 4. Two optimisation
techniques that share close similarities with the BA local search are reviewed
in detail. Finally, the last section of this chapter reviews the literature on
approaches to the multi-solution optimisation problem, discussing the main
techniques and how the LORRE algorithm compares to the state-of-the-art.

2.1 Primitive Fitting

The Hough Transform aims to fit primitive shapes to sets of points in the
scene. Primitive fitting is regarded as a search problem in the space of the
shape parameters, and sequential search algorithms are typically used to find
the instances that include the largest number of points. The Hough Trans-
form is widely used in machine vision (Ballard, 1981), but is computation-
ally demanding and becomes rapidly inefficient as the number of parameters
needed to define the shape increases. As a consequence, the Hough Trans-
form has been mainly used to fit elementary shapes such as lines and circles
(Dalitz et al., 2017). Only a few implementations of the Hough Transform
were proposed for 3D primitive shape recognition, either based on parameter
search heuristics (Khoshelham, 2007), or customising the search to detect one

9
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particular instance of shape (Rabbani and Van Den Heuvel, 2005). Alterna-
tive methods to the Hough Transform (Roth and Levine, 1993) have been
developed to fit geometric primitives to point data, often based on robust
statistical estimation of the shape parameters.

The RANSAC algorithm randomly picks from the scene minimal sets of
points that uniquely define a given type of geometric primitive. Candidate
shapes are tested against all points, and the shape that approximates the
largest number of points is extracted. The procedure is then sequentially
repeated on the remaining data. The algorithm steps will be discussed in
greater details in Section 3.1.5. Different RANSAC approaches have shown
promising results for 3D scenes in terms of accuracy and efficiency (Sveier,
2016; Schnabel et al., 2007), and have been shown able to fit candidate
primitives in environments of 90% noise with little error (Schnabel et al.,
2007). Advanced subroutines can be applied to preemptively terminate bad
hypotheses (Raguram et al., 2008). Much effort has been dedicated to opti-
mise RANSAC sampling and shape evaluation efficiency: in the former case,
Optimal RANSAC has shown “substantial speedup for highly contaminated
sets” with as much as 96% noise (Hast et al., 2013), whilst in the latter case
Optimal Randomized RANSAC has been shown to run 2–10 times faster
than standard RANSAC (Chum and Matas, 2008). By combing these opti-
misation strategies, some forms of RANSAC were able to fit primitive shapes
to a field of millions of points in less than one minute (Schnabel et al., 2007).

The success of RANSAC greatly depends on the trade-off between ac-
curacy and computational complexity, namely, by the number of candidate
shapes evaluated. The results obtained using RANSAC are also sensitive to
the setting for the tolerance threshold used to judge whether a data point is
an inlier or an outlier to a given candidate shape. Some RANSAC implemen-
tations do not utilise tolerance threshold and score candidate shapes based
on histogram analysis (Liu and Wu, 2014). However, these implementations
were usually tested only on PCs of varying levels of background noise (hence-
forth called noise, Figure 2.1) instead of the more deceptive case of local error
(henceforth called error, Figure 2.1) which may arise from granularity or low
precision of sensors.

Some examples of EA methods for primitive fitting have been proposed.
Lutton and Martinez (1994) and Roth and Levine (1994) used a population
of many possible shapes. Each individual (candidate solution) in the pop-
ulation represents the minimal set of points that uniquely define the prim-
itive, whilst the fitness function counts the number of points inside a fixed
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Figure 2.1: (Left) clean point cloud, no noise or error. (Middle) point cloud
with error, no noise. (Right) point cloud with noise, no error. Image taken
from (Alston, 2019).

boundary around the primitive. Similarly, Gotardo et al. (2003) used an EA
for tackling a sub-task of the surface extraction problem. In this case the
population of candidate solutions is composed uniquely of planes, and each
individual represents the minimum set of points (three) needed to define a
plane, sampled in a sub-region of the cloud. The optimisation strategy of the
above EA approaches is clearly based on the RANSAC procedure, and still
needs a careful setting of the approximation tolerance. Ugolotti et al. (2014)
tested one instance of swarm algorithm (Eberhart and Kennedy, 1995) and
one instance of evolutionary algorithm (Storn and Price, 1997) for object
fitting. Each candidate solution encoded the six parameters defining a rigid
transformation (rotation+translation) of a template point cloud shape. The
fitness function evaluated the difference between the rotated and translated
template and the target shape. The main drawback of this approach is the
computational complexity, which required the implementation on Graphics
Processing Units (GPU).

2.2 The Bees Algorithm

This thesis is centred on the BA which will be briefly described in this section
to provide the reader an introduction to the algorithm.

The BA is a popular intelligent optimisation technique that found wide
application in optimisation problems (Pham et al., 2018). Inspired by the
honeybees foraging behaviour, it performs multiple simultaneous local searches
at different sites of the solution space. The BA considers candidate solutions
as food sources, and employs artificial bees to evaluate their quality (fitness)
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and exploit the most promising regions of the search space. The algorithm
begins sending ns artificial scout bees to randomly sampled locations (can-
didate solutions) in the search space. The scout bees evaluate the quality
of the food sources where they landed using Equation (3.1). Each visited
solution becomes the centre of a neighbourhood delimited by a hypercube
of side ngh = 2δI . The algorithm then enters the main loop, which consists
of a number of steps. The first step is called waggle dance, in analogy with
the waggle dance behaviour of honey bees where foragers are recruited for
harvesting the richest food sources. In this step, the neighbourhoods around
the fittest nb solutions visited by the scouts are selected for local search.

The second step is where the simultaneous exploitative searches are per-
formed, that is the neighbourhoods are harvested (local search). Namely, nre
forager bees are sent to exploit the neighbourhood of the very best ne ≤ nb
visited solutions, and nrb ≤ nre foragers are sent to the remaining nb − ne
sites. Each forager lands on a food source in the assigned neighbourhood,
and evaluates its quality. The landing site of the foragers is determined using
the procedure described in Section 3.1.3. That is, in the local search step the
BA concurrently samples the neighbourhoods around the most promising so-
lutions. The forager that visited the fittest solution within a neighbourhood
becomes the new scout, and the centre of the neighbourhood is moved to
that solution.

If no forager finds a solution that is fitter than the centre of the neighbour-
hood, the scout remains unchanged, and the local search is said to stagnate.
In this case, the size of the neighbourhood is reduced (neighbourhood shrink-
ing procedure). After stlim consecutive stagnation cycles the neighbourhood
is abandoned and the scout is re-initialised at a new randomly picked location
in the search space (site abandonment procedure).

Global explorative search (third step) is performed by the remaining ns−
nb scouts, which keep on randomly sampling the solution space looking for
new promising regions. At the end of one cycle of the main loop, nb scouts
mark the neighbourhoods resulting from local search, and ns−nb scouts mark
the neighbourhoods found through global search. The algorithm terminates
after a given number of iterations returning the best solution found.

For more details on the BA and its capabilities, the reader is referred to
(Pham and Castellani, 2009; Pham and Castellani, 2014; Pham and Castel-
lani, 2015).
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2.2.1 Main Variants of the Bees Algorithm

Besides the standard procedure described in Section 4.1, many different vari-
ants of the Bees Algorithm exist. A recent survey (Hussein et al., 2017)
separated three main branches of the Bees Algorithm, namely the Basic BA,
the Shrinking-based BA, and the Standard BA.

The Basic BA refers to the basic form of the Bees Algorithm, which is
mentioned in several articles (Pham et al., 2008; Packianather et al., 2009;
Pham and Castellani, 2009; Yuce et al., 2013) and performs parallel local
searches using fixed neighbourhoods (i.e. no neighbourhood shrinking).

The Shrinking-based BA (Pham et al., 2006) includes the neighbourhood
shrinking procedure. The heuristics behind the neighbourhood shrinking
procedure is to intensify the exploitation effort as the local search progresses,
focusing the sampling on increasingly smaller regions of the solution space.

Finally the Standard BA, so termed in numerous articles (Pham and
Castellani, 2009; Castellani et al., 2012; Pham et al., 2012), includes the
neighbourhood shrinking and site abandonment procedures. The heuristics
behind site abandonment is to abandon a site once the local search stagnates,
to avoid being trapped into local fitness peaks.

Many recruitment, neighbourhood alteration, and site abandonment heuris-
tics were proposed in the literature.

Ghanbarzadeh (2007) proposed two methods for setting the number of re-
cruited foragers proportionally to a) the fitness or b) the location of the sites.
Other authors proposed recruitment schemes where the number of foragers
was proportional to the fitness of the site, and decreased it progressively by a
fixed amount (Packianather et al., 2009), or according to a fuzzy logic policy
(Pham and Darwish, 2008). Pham and Darwish (2010) used Kalman filtering
to allocate number of bees to the sites selected for local search. This strat-
egy was used to train a Radial Basis Function neural network, and improved
the learning accuracy and speed of the neural network. Finally, Imanguliyev
(2013) proposed a recruitment scheme where the number of foragers for a
site was computed on the efficiency rate of the site, rather than its fitness
score.

In its basic instance (Ghanbarzadeh, 2007), the search scope of a site is
changed (reduced) when local search fails to improve. Ahmad (2012) pro-
posed two different methods to change dynamically the neighbourhood of a
site: a) BA-NE where the search scope is increased if a better solution is
found and kept invariant otherwise, and b) BA-AN, where the neighbour-
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hood is asymmetrically increased along the direction that led to the last
improvement and decreased otherwise.

When a site is abandoned, the best-so-far local solution is usually kept in
memory (Pham and Castellani, 2009). However, in some cases (Packianather
et al., 2009; Pham and Koç, 2010) all the local solutions found before aban-
doning a site are retained for later use. In Hierarchical Site Abandonment
(Pham and Darwish, 2008) when a site s is abandoned, all the other sites
with fitness lesser or equal to s are abandoned too.

2.3 Related Techniques

Variable Neighbourhood Search (VNS) (Mladenović and Hansen, 1997) and
LJ Search (Luus and Jaakola, 1973) have important similarities with the
local search strategy of the Bees Algorithm, and will be discussed in detail
in this section.

2.3.1 Variable Neighbourhood Search

Variable Neighbourhood Search iterates cycles of local search around a seed
solution using neighbourhoods of different size. This idea has been success-
fully used (Hansen and Mladenović, 2003) in numerous applications, like the
Traveling Salesman (Mladenović and Hansen, 1997) and the Vehicle Routing
(Rousseau et al., 1999; Bräysy, 2001) problems. The main steps of the VNS
algorithm are:
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Variable Neighbourhood Search: Main Steps

1. Initialise k neighbourhoods S1, . . . , Sk of variable size around a
randomly generated centre x, initialise i = 1;

2. Take neighbourhood Si:

(a) sample a solution v uniformly inside the neighbourhood
Si;

(b) apply a local search procedure using v as seed to find a
new solution v′;

i. if v′ is fitter that x, set x = v′ and i = 1;

ii. else set i = i+ 1;

3. If i > k, terminate the algorithm and return the best found
solution, otherwise iterate from step 2;

VNS is akin to local neighbourhood search at a BA site. A variant of this
approach, called Reduced Variable Neighbourhood Search (Whitaker, 1983;
Mladenović et al., 2003), skips the local search at step 2b, to keep v′ = v.
Reduced Variable Neighbourhood Search is equivalent to a Basic BA where
nb = 1, nr = 1, and ns = 0 (no global search). Parallel Variable Neighbour-
hood Search (Garcia-López et al., 2002; Djenić et al., 2016) resembles more
closely the BA, since it performs a number of concomitant local VNS search
procedures.

The main difference between VNS and the BA is that the former uses a
randomly generated sequence of neighbourhood sizes for local search, whilst
the latter uses a fixed (Basic BA) or deterministically shrunk (Shrinking-
based BA) neighbourhood size. In addition, VNS uses a fixed number of
foragers per optimisation cycle, whilst the number of foragers is determined
by the quality of the neighbourhood in the BA.

2.3.2 LJ Search

The LJ Search Method was successfully used to optimise feedback control
in nonlinear systems (Luus, 1974b), as well as time-optimal (Luus, 1974a)
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and time-delay (Oh and Luus, 1976; Nair, 1979) systems. Given an N -
dimensional minimisation problem, the LJ Search Method pseudocode is:

LJ Search: Main Steps

1. Let se1 be the N-dimensional vector of the spans (max − min
value) of the interval of definition of the N decision variables,
s1 the seed solution, and t = 1 an index;

2. Sample nr solutions v1, . . . , vnr as follows:

vi = st + u · set i ∈ {1, . . . , nr}

where u is a vector of N real values independently sampled with
uniform distribution in [−0.5, 0.5];

3. Compute the next solution as:

st+1 = arg min
v
{F (v) | v ∈ {st, v1, . . . , vnr}}

4. Reduce the ranges of a given factor α:

set+1 = αset

and increment the counter t = t+ 1;

5. check if the stop criterion is met. If so return st, otherwise go
back to step 2;

Except for the initialisation of the neighbourhood, the LJ Search algorithm
closely resembles the BA local search procedure at one site with neighbour-
hood shrinking. That is, the Shrinking-based BA can be described as a
multi-LJ Search method. Surprisingly, to the best of the authors’ knowl-
edge, the similarity between LJ Search and the Bees Algorithm has so far
been overlooked in the literature.

A mathematical analysis of the properties of the LJ Search method was
published by Gopalakrishnan Nair (1979). In particular, Gopalakrishnan
Nair proved that the succession of solutions s1, . . . , sn converges to a local
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optimum. Unfortunately, the proof of convergence is only valid for an infinite
number of iterations. Moreover, in his analysis Gopalakrishnan Nair took in
consideration hyperspherical neighbourhoods instead of the hypercubic ones
that are actually used in the LJ Search algorithm. As will be shown in
Section 4.4, the use of different neighbourhoods has important consequences
on the properties of the search.

2.4 LORRE: a Comparison with Similar Tech-

niques

The idea of avoiding already explored regions to increase the chances of find-
ing better solutions in different areas of the search space is not an innovative
aspect of the LORRE algorithm. The literature on the topic includes differ-
ent techniques that will be reviewed in this section. Many of these techniques
were introduced in the context of single-solution problems, where only the
global optimum is sought, in order to increase the exploration capability
of the main search algorithm. In other cases, some of the techniques here
reviewed were developed to solve multi-solution problems.

A widely known meta-heuristic designed to avoid already explored re-
gions, in single-solution problems, is the Tabu Search algorithm (Glover and
Laguna, 1998). Tabu Search memorises the visited solutions in a tabu list.
Solutions in the tabu list are not considered in future local searches, unless
all other reachable solutions are included in that list.

The Tabu Search algorithm has been used to boost the exploration capa-
bility of other meta-heuristics and algorithms, such as Ant Colony Optimisa-
tion (Dorigo and Blum, 2005) or the Scatter Search algorithm (Glover, 1977).
Both algorithms use Tabu Search to memorise and avoid already sampled
solutions in the context of single-solution search. In other cases, the dynam-
ically updated list of visited solutions (sometimes only the local optima) is
used to dynamically shift the balance between exploration and exploitation.
These techniques are grouped under the umbrella term of Adaptive Memory
Programming by some authors (Taillard et al., 2001). The general Adaptive
Memory Programming approach was summarised as follows: (i) to sample a
new solution s taking into account the history of solutions sampled, (ii) to
find a better solution s′ than s performing some kind of local search, and
(iii) to update the list of sampled solutions adding s′.
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The common problem with Adaptive Memory Programming approaches
is that they often work under the assumption of dealing with a discrete
solutions space. In a continuous solutions space, techniques like Tabu Search
are difficult to apply.

The BA can be regarded as an Adaptive Memory Programming technique
since it stores in memory the best site centres, and performs local searches
around these centres. The main difference is that the Bees Algorithm keeps
in memory only the currently sampled local peaks, without any memory of
past searches. The LORRE algorithm is closer to Adaptive Memory Pro-
gramming since it also takes into account information on past local search
results. Notably, this extra information is not taken into account until the
search has been exhausted at a site, and is shared globally by all new local
searches (i.e all scouts generated after the site has stalled).

In the context of BA applications to single-solution optimisation prob-
lems, (Shatnawi et al., 2013) used local and global memories of the visited
regions of the search space. The local memories were used by the single bees
to avoid sampling the same location twice, whilst the global memories were
used to drive local search away from already explored regions.

Another BA variant (Imanguliyev, 2013) uses shift operators to identify
planar sub-regions in the space, and includes these regions in a tabu list,
similarly to the Tabu Search approach. In this case, a planar sub-region
is identified when the solutions sampled inside differ in fitness score by less
than a fixed, user-defined, threshold. Unfortunately, the paper analyses only
one-dimensional problems, and the authors did not mention how to expand
the approach to higher dimensional cases. Imanguliyev (2013) also did not
mention any solution to prevent the tabu list from becoming unmanageably
large as the search progresses.

In the context of EA-based multi-solution optimisation (Shir, 2012) two
well-known diversification techniques are fitness sharing and crowding. Fit-
ness sharing (John, 1992) reduces the fitness score of an individual propor-
tionately to its distance to other members of the population. This mechanism
aims to promote niching dynamics, where individuals fall into the attraction
basin of different local optima. This technique is usually complemented with
some (Sareni and Krahenbuhl, 1998) heuristics, and uses a niching radius
that defines the maximum distance of interaction between the fitness of dif-
ferent individuals.

The crowding method (De Jong, 1975) is a variant of the EA where, for
each child generated, a sub-population of cf individuals, where cf is the
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crowding factor defined by the user, are selected from the parent population.
The child replaces the most similar individual, according a certain metric, of
this sub-population if its fitness score is greater. Following studies (Thomsen,
2004; Wong et al., 2012) incorporated this principle to tackle multi-solution
problems, using the population size as crowding factor and the Euclidean
distance as metric, with competitive performances compared with the state-
of-the-art (Wong et al., 2012).

A meta-heuristic for the multi-solution problem is Sequential Niching
(SN) (Beasley et al., 1993). This approach adopts a simple, yet effective,
strategy to find the multiple local optima of a function. SN makes use of a
single-solution optimiser, which is repeatedly run on a progressively modified
objective function. At first, the optimiser is run on the original objective
function until a stopping criterion is reached, and the fittest found solution
o (i.e. the best approximation of the global optimum) is saved. Then the
objective function is modified using a derating function, that locally decreases
the score of the objective function, centred in o and with a pre-fixed radius.
A new instance of the optimiser is ran using the modified objective function,
and another local optimum is found. The process is iterated, progressively
modifying the objective function with further derating functions. The process
stops when a sufficient number of local optima are found.

The LORRE algorithm borrows the idea of modifying the objective func-
tion using several derating functions from the SN technique. Both SN and
the EA with fitness sharing use the feature of locally reducing the objec-
tive function score, as well as the problem of setting the optimal radius for
such reduction. In contrast, the LORRE algorithm estimates the borders of
the local basins of attraction, to adaptively set the radius of the derating
functions.
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Chapter 3

Bees Algorithm Applied to
Primitive Fitting Problem

In this chapter the approach that considered the PF as an optimisation prob-
lem will be illustrated in detail. In the Section 3.1, the representation scheme,
fitness function, and local search heuristics used in the BA and EA will be
presented first. The EA and the RANSAC implementation used in this study
will be then described. In Section 3.2 the dataset used in the tests is described
and the validation function used to assess the solutions is defined.

3.1 Primitive Fitting Methods

In this work the PF is tackled as an optimisation problem, and solved using
the BA a biologically inspired technique. The results obtained using the BA
will be compared to those obtained using a standard RANSAC procedure,
and another popular metaheuristics, namely an EA. This section describes
the three algorithms in detail. These algorithms will be tasked to recognise
instances of three types of shape primitives in point clouds: spheres, boxes,
and cylinders. The BA and EA encode a primitive using the same represen-
tation scheme, and use the same fitness evaluation function to assess how a
candidate solution fits the data points. Therefore, it can be said that they
operate in the same fitness landscape. The BA and EA also share the same
local search operator. They differ in the kind of metaheuristics they employ,
which determines the way the results of the local search (the heuristics) are
used.

21
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3.1.1 Representation Scheme

A primitive in a 3D scene is unequivocally described by a finite set of parame-
ters that determine its position (the geometric centre, or centroid, henceforth
simply referred to as centre), rotation and other geometrical properties. A
solution I is thus naturally encoded as a vector of real values representing
the primitive parameters. The size of the vector is shape-specific:

Sphere 4 parameters: 3 to locate the centre, and one to represent the radius;

Box 10 parameters: 3 to locate the centre, 4 to describe the orientation 1

and 3 parameters to encode the width, depth and height;

Cylinder 9 parameters: 3 to locate the centre, 4 to describe the orientation
and 2 parameters to encode the radius and height;

For the sake of clarity, henceforth a distinction will be made between pose
parameters which include the position and, when applicable, the orientation,
and the size parameters, namely: the radius of the sphere; the width, depth
and height of the box; and the radius and height of the cylinder.

3.1.2 Fitness Function

The term ’fitness function’ is adopted from the EA terminology, and is widely
used in the wider metaheuristics literature. In the proposed application, the
fitness function quantifies the goodness of fit of a primitive shape I to a
given point cloud PC = {p1, . . . , pN} of N elements. The evaluation criterion
for the goodness of fit takes into account two factors: the distance δ(pi, I)
between each of the individual points pi ∈ PC and the surface of the primitive
I; and the concordance NC(pi, I) of the normals calculated at each point
pi ∈ PC and its projection π(pi, I) on the closest surface of the primitive:

F (I,PC) =
1

N

N∑
i=1

NC(pi, I)

1 + δ(pi,I)
δmax

2 (3.1)

where the normalisation factor δmax is the distance between the centroid and
the outmost element of the point cloud. Given a point pi ∈ PC, the projection
π(pi, I) is the closest part of the candidate primitive surface to the point

1Rotations are described using quaternions.



3.1. PRIMITIVE FITTING METHODS 23

pi. The calculation of NC(pi, I) necessitates of a method to calculate the
normals to the elements of a PC. If the normals are not known, the reader is
referred to the literature (Mitra and Nguyen, 2003; Boulch and Marlet, 2012)
for a suitable extraction method. The function in Equation (3.1) is the same
for each type of primitive, whilst the concordance of normals NC(pi, I) and
distance δ(pi, I) are type-specific.

For a given sphere S, the distance δ(pi, S) between an arbitrary point pi
and I = S is computed as:

δ(pi, S) = |d(pi, Sc)− Sr| (3.2)

where the function d(A,B) measures the Euclidean distance between points
A and B, and Sc and Sr are respectively the centre and radius of S. For the
box and cylinder, δ(pi, I) is computed as the distance between point pi ∈ PC

and its projection π(pi, I):

δ(pi, I) = |d(pi, π(pi, I))| (3.3)

The concordance of normals NC(pi, I) is computed using the cosine similar-
ity between the normal N(pi) to point pi ∈ PC and the normal N(π(pi, I))
of its projection on the candidate primitive surface:

NC(pi, I) = max

(
N(pi) ·N(π(pi, I))

‖N(pi)‖ ‖N(π(pi, I))‖
, 0

)
(3.4)

where · denotes the dot product between two vectors. Using Equation (3.4),
only normals that agree in direction contribute to the calculation of the
goodness of fit.

From Equation (3.1), it is easy to see that δ(pi,I)
δmax

2
is minimum and equal

to zero when the shape fits perfectly the data. In this case, the denominator
of Equation (3.1) is minimum and equal to 1. The numerator is maximum
and equal to 1 when the shape fits perfectly the data, and all the normals
concord. Hence, the parameter fitting problem consists of maximising the
output of F (I,PC).

3.1.3 Local Search Operator

Mutation in the EA and the local search in the BA are performed using the
same shape modification operator. Each of the parameters gIi describing a
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candidate primitive shape I may be modified in the following way:

gIi = gIi + 0.1(ui − li)ρ (3.5)

where
ρ ∼ U(−δI , δI) (3.6)

is a random sample drawn with uniform probability in the [−δI , δI ] range,
ui and li are respectively the upper and lower bound of the i-th parameter,
and i = {1, ..., n}. The number n of parameters is equal to four if I is a
sphere, ten if it is a box, and nine if it is a cylinder (Section 3.1.1). Should
one parameter gIi be modified to a value outside the [ui, li] interval, it will be
placed on the closest extreme.

The shape modification procedure works as follows. The first step is to
establish which features (centre, orientation, or size) of the shape are to be
modified. If the sought primitive is a sphere, all the features (centre and
size) are modified with probability pf . If it is a cylinder or a box, only one
feature is changed: either the centre, or the orientation, or the size. The
probabilities of changing each of the features is given in the left-hand side of
Table 3.1.

Once it has been established which features to change, the second step of
the procedure is to determine which parameters (the gIi ) are to be changed.
Each parameter gIi is modified with a probability pp. For each parameter, the
mutation probability is given in the right-hand side of Table 3.1. For example,
if the centre of a box is to be changed, each of its X, Y, and Z coordinates will
be changed with probability pp = 0.7. If a change of orientation is drawn,
the four values describing the orientation are all modified with probability pp.
Since orientation is expressed in the form of a unit quaternion, the modified
quaternion vector is then normalised.

Preliminary tests have shown that in many cases the optimisation process
tended first to fit some surfaces of the candidate primitive to the PC (e.g. the
four lateral faces of a box), and then to adjust the remaining ones (e.g. the
top and bottom faces). This often led the algorithm to become stuck in shape
configurations (i.e. local fitness optima) that could not be further optimised
with one single modification event. For example, a box of width λ that fits a
box-shaped PC of width λ+δ perfectly on five faces, is short on the sixth face.
One single change of width would very unlikely fit the sixth face to the data,
and at the same time would certainly destroy the alignment of the opposite
face to the data (if the width modification is applied symmetrically respect
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Feature
pf

gIi
pp

Sphere Box Cylinder Sphere Box Cylinder

Centre 1 0.3∗ 0.33∗
X 1 0.7 0.7
Y 1 0.7 0.7
Z 1 0.7 0.7

Rotation - 0.3∗ 0.33∗

w1i - 0.7 0.7
w2j - 0.7 0.7
w3k - 0.7 0.7
w4 - 0.7 0.7

Size 1 0.4∗ 0.33∗

height - 0.33∗ 0.7
width - 0.33∗ -
depth - 0.33∗ -
radius 1 - 0.7

Table 3.1: Shape modification probabilities. Probabilities marked with an
asterisk are mutually exclusive (e.g. either the centre, or the orientation, or
the size of a cylinder is changed)

to the centre). To avoid this problem the modification procedure keeps one
face of the shape fixed. For example, the height of a box or cylinder may be
changed keeping the bottom or top face fixed, and modifying the height.

The differences in the way the shape modification procedure is applied to
the different shapes reflect the different levels of disruptiveness the procedure
has on said shapes.

3.1.4 Evolutionary Algorithm

EAs are global search techniques modelled on the process of natural selection
of species as described by Darwin, and on the laws of inheritance of traits
postulated by Mendel and Wilson (Wilson, 1900; Ayala and Kiger, 1984). In
analogy with biology, in EA terminology the vectors encoding the solutions
(Section 3.1.1) are called chromosomes, and their elements (the parameters)
are called genes.

The optimisation process, illustrated in Figure 3.1, is started randomly
initialising a population of p candidate solutions. The algorithm then enters
the main loop, which consists of a number of steps. In the first step, the fit-
ness of the population is evaluated using Equation (3.1). In the second step
(selection scheme), the population is ranked in decreasing order of fitness,
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Figure 3.1: Flowchart of the EA used for the PF problem. Notably, in this
implementation a crossover operator is not used.

and sampled with replacement to select p − 1 seeds (parents). Population
sampling is done allocating selection probabilities proportionally to the po-
sition in the ranking (Fogel, 2006). In the third step (mutation), the p − 1
selected parents are used to generate p−1 offspring using Equation (3.5). The
mutation procedure employs the parameter modification operator described
in Section 3.1.3. The main difference between the EA and the BA in the use
of the parameter modification operator is that the former encodes the neigh-
bourhood size (δI) in one extra chromosome, and lets it undergo evolution.
The EA thus adapts the scope of the local search using the same evolutionary
process used to evolve the solutions. The BA progressively shrinks δI via the
neighbourhood shrinking procedure.

A new population is formed from the p− 1 offspring and the fittest indi-
vidual of the current population, according to the generational replacement
with elitism procedure (Fogel, 2006).

The EA used in this study iterates gen cycles (generations) of evaluation,
selection, and mutation. Genetic crossover (Fogel, 2006) is not implemented;
for this reason, and the fact that the mutation width δI undergoes evolution,
the EA is close to the Evolutionary Programming approach (Fogel, 2006).
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3.1.5 RANSAC

As seen in Section 2.1, a number of RANSAC implementations were proposed
in the literature. The main variations over the standard procedure concerned
the use of heuristics for faster execution, rather than changes in the search
procedure. Often, the precise algorithmic details of these RANSAC variants
were not fully reported, and for this reason the standard procedure was im-
plemented in this study (Bolles and Fischler, 1981). RANSAC is an iterative
process, where one new candidate shape is created and scored every cycle.
Each iteration comprises of three primary subroutines.

The first RANSAC subroutine creates a minimal subset Pms of points,
where Pms ⊂ PC = {p1, . . . , pN} and ms < N . The subset Pms contains the
minimum number of points needed to fully define a candidate shape. Namely,
four points are needed to define a sphere, five to define a cylinder and six to
define a box (Figure 3.2).

For the sphere, all four points are randomly sampled at once, and resam-
pled if they are coplanar. For the cylinder and box, one point is picked from
the PC at a time, and a set of tests are performed to determine if the newly
sampled point is on the same or a different shape face to the points already
populating Pms (i.e. all normals must be perpendicular or of opposite direc-
tion to each other). The newly sampled point is added if it lies on a different
face respect to all points in Pms, otherwise is discarded. In the case of the
box, the goal of the sampling procedure is to have a point on every face. In
the case of the cylinder, the goal is to have three points on the cylindrical
outer surface, and one point on each of the end faces.

The second RANSAC subroutine defines a candidate primitive shape from
Pms. The parameters required to fully define a shape are similar to those de-
fined in Section 3.1.1, with the sole difference of the use of Euler’s angles (i.e.
roll, pitch, yaw) instead of quaternions to define orientation. For spherical
primitives, the parameters were found using Schmitt’s technique (Alston,
2019). For cylinders and boxes, the orientation of the shape is found us-
ing the normals to two of the points in Pms (once the orientation of two
perpendicular faces is found, the third dimension can be retrieved from the
right-hand rule). After the orientation of the candidate shape is found, the
size is determined from the whole set of points in Pms (pairs of points in Pms
on opposite faces delimit the boundaries of the candidate shape). Finally,
the centre is calculated from the reconstructed shape.

The third and final step is to score the candidate primitive shape. The
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Figure 3.2: Four non coplanar points are used to define a sphere (see left).
Five points are used to define a cylinder, with one on each end face and three
on the outer cylindrical surface (see top right). Six points are used to define
a box, one point for each side (see bottom right). Note that the cylinder and
box require estimated surface normals to the PC to validate the minimal set
of points. Image taken from (Alston, 2019).

score is calculated as follows:

Score(I) =
N∑
i=1

min{dist(pi, I), ε} (3.7)

where N is the number of points in the PC, δ(pi, I) is the shortest distance
between pi and the surface of the candidate shape I, and ε is the approxima-
tion tolerance. In the RANSAC implementation used in this chapter ε = 0.3.
A perfectly fitting shape scores zero.

3.2 Experimental Method

The performance of the Bees Algorithm, the EA, and RANSAC was evaluated
on three data sets, using a purpose-built error function. This function is
different from the goodness of fit function used in the individual algorithms,
and this guarantees an unbiased evaluation of the results. For each data set,
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forty independent runs of each algorithm were performed, and the results
statistically analysed.

3.2.1 Data Sets Used

Each data set comprised of 591 3D models of 103 data points each. Each
model represented one primitive shape (sphere, box, or cylinder) of different
proportions and orientation. Namely, each data set was composed of:

• 181 individual models of spheres. where the radius was varied from 1
to 10 units in steps of 0.05;

• 220 individual models of boxes, where the width, height and depth
were varied from 1 to 10 units in steps of 1, and took all possible
combinations of these levels (full factorial design). The orientation was
randomly determined;

• 190 individual models of cylinders, where the radius was varied from
0.5 to 5 units in increments of 0.25, the height from 1 to 10 units in
steps of 1, and radius and height took all possible combinations of these
levels (full factorial design). The orientation was randomly determined;

The centre of the shapes was set at the origin. Each PC was created first
forming and rotating the primitive shape, and then uniformly sampling 103

data points from its surface. The three data sets differed for the amount of
noise (error, see Figure 2.1) in the sampling of the points. Namely:

• Clean set: there is no error, the data points lie exactly on the surface
of the primitive shape;

• Error set: the position of each point was randomly perturbed with
uniform probability within a 0.1 unit radius;

• Double Error : the position of each point was randomly perturbed with
uniform probability within a 0.2 unit radius;

In the tests, it is assumed that the type of sought shape is known, and
the goal is to find the shape size and orientation. That is, each algorithm is
run three times on each data set, each time to fit one specific kind of shape.
Each time an algorithm is run on one data set, it is shown only the subset
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Figure 3.3: The found shape F is compared to the real shape I projecting
its height, depth, and width onto the height, depth, and width of the real
shape.

of shapes that needs to be fitted: for example, if the algorithm is required
to find the size and orientation of cylinders in the clean data set, only the
subset of 190 cylinder models will be used.

3.2.2 Error Evaluation Function

The best scoring solution F found by an algorithm in a point cloud (i.e. the
found shape) is compared with the real shape I, namely the reference shape
used to generate said point cloud.

A fair evaluation of the solutions needs to take into account several issues.
First, it involves the comparison of parameters of mixed units (angle degrees
for orientation, linear units for size and position), and thus standard metrics
(e.g Euclidean distance) would not be appropriate. Second, differences in the
centre or orientation have a larger impact on the matching of the two shapes
(and hence on robotic manipulation) than a comparable offset in the size
parameters. Finally, the data sets include shapes with differences in size up
to one order of magnitude, and the evaluation function should be invariant
to size.

The error evaluation function considers the match and alignment of the
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(a) Axes Comparison

(b) Different Cases

Figure 3.4: Projection of the ith segment of F (F i) onto the jth segment of
I (Ij). That is, the intersection of the projections of F i and Ij onto the jth

Cartesian axis. The green part of the segment marks the match (intersection)
of the two projections, the red parts the mismatch. In case of perfect match,
the green part will be equal to the length of Ij, and there will be no red
parts. There are six possible cases of partial or no match between the two
axes.

three segments corresponding to the height, width, and depth of the F and I
shapes. Each of the three segments is placed along one of the principal axes
of symmetry of the shape (Figure 3.3). In the case of the box, the lengths of
the three segments correspond to the three size parameters of the solution, in
case of the cylinder the length of one segment corresponds to the height and
the other two to the diameter of the circular section, in case of the sphere
they are all equal to the diameter. If the principal axes are not unique (e.g.
the three axes of the sphere), they are aligned with the Cartesian axes of the
reference frame.

The error is measured from the overlap between the projection of each
segment of F onto the three segments of I. In case of perfect matching and
alignment, each segment of F (e.g. the height of a box) will project exactly
onto the corresponding segment of I, and on a point (i.e. zero overlapping)
onto the other two segments (the width and depth) of I. In case of mis-
alignment or incorrect dimensions of F , the projection of one segment (e.g.
the height of a box) will not cover exactly the corresponding segment (the
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height) of I (Figure 3.4a), and will be non-zero on the other two segments
(the width and depth).

Given a solution F , let us denote as F 1, F 2 and F 3 its three segments (the
width, depth, and height respectively), sorted in decreasing order of length,
and as F̂ i

j the projection of the ith segment of F on the jth Cartesian axis,
where j = 1 denotes the X axis, j = 2 denotes the Y axis, and j = 3 denotes
the Z axis. Likewise, for the three axes of I. Finally, let us denote henceforth
as |A| the length of a given segment A.

To simplify the calculations, a rigid transformation is applied to express
F and I in a new Cartesian frame that corresponds to the three principal
axes of I. Note that now |Î ii | = |I i| and |Î ik| = 0 ∀k 6= i The error Err(F, I)
in the alignment and match of F to I is calculated as follows:

Err(F, I) = min
i={1,2,3}

 min
k={1,2,3}

k 6=i

{
M(F i, I i)− E(F i, Ik)

}
M(F i, I i) denotes the matching and alignment of F i with the correspond-

ing segment I i, and is calculated as the length of the intersection F̂ i
i ∩ Î ii

(green sub-segment in Figure 3.4a), minus the sum of the lengths of the
non-intersecting parts of F̂ i

i and Î ii (red sub-segments in Figure 3.4a).

M(F i, I i) =
|F̂ i
i ∩ Î ii | −

[
|F̂ i
i | − |F̂ i

i ∩ Î ii |
]
−
[
|Î ii | − |F̂ i

i ∩ Î ii |
]

|Î ii |
(3.8)

Note that if the found shape F matches perfectly I, |F̂ i
i ∩ Î ii | = |Î ii | (F i

is aligned with I i), all the other terms are equal to zero, and M(F i, I i) = 1.

In case of total mismatch, |F̂ i
i ∩ Î ii | = 0 and M(F i, I i) = − |F̂

i
i |+|Îii |
|Îii |

< −1.

E(F i, Ik) denotes the mismatch and misalignment of F i, and is measured
as the length of the intersection of its projection with the non-corresponding
axes Ik of I. That is:

E(F i, Ik) = max
k={1,2,3}

k 6=i

{
|F̂ i
k ∩ Îkk |
|Îkk |

}
(3.9)

Note that if the found shape F corresponds perfectly to I, |F̂ i
k ∩ Îkk | = 0

for all i 6= k (F i is aligned with I i), and E(F i, Ik) = 0. In case F i is
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perpendicular to I i (total mismatch), F i will be aligned with one of the Ik

and E(F i, Ik) = 1.
Equation (3.8) is equal to zero in case F corresponds to I (M(F i, I i) = 1

and E(F i, Ik) = 0), is greater than zero otherwise, and is maximum in case
of total mismatch (M(F i, I i) < −1 and E(F i, Ik) = 1). The max and
min operations are meant to penalise the main mismatches in length and
alignment, whilst being more forgiving on minor discrepancies.

3.2.3 Parameters Used

The parameterization of the two metaheuristics has been optimised via ex-
tensive trial and error, and is shown in Table 3.2. It is different for each
shape type, but the same across the three data sets (noisy, error, double
error, Section 3.2.1). The two metaheuristics have been parameterized so as
they sample the same number of solutions in one complete optimisation trial.

Evolutionary Algorithm
Parameter Sphere Box Cylinder

# Individuals 10 10 25
# Parents 3 3 8
Mutation Rate (pf ) 1 1 1
# Iterations 390 900 672
Sampling Coverage 5% 25% 25%

Bees Algorithm
Parameter Sphere Box Cylinder

Scout bees (ns) 2 3 4
Elite sites (ne) 1 1 1
Best sites (nb) 2 3 4
Recruited elite (nre) 9 10 10
Recruited best (nrb) 4 4 6
Stagnation limit (stlim) 20 30 25
Initial patch neighbourhood (ngh) 0.15 0.5 1
# Iterations 300 500 600
Sampling Coverage 5% 25% 25%

Table 3.2: Parameterization of the Bees Algorithm and Evolutionary Algo-
rithm. These parameters are formalised in the traditional way. In Section 4.1
will be presented as an alternative formalisation for the BA parameters.
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3.3 Results

The five number summary of the primitive fitting tests is shown for each
algorithm in Table 3.3 for the clean, error, and double error data sets.

In terms of accuracy (median value), the Bees Algorithm performed par-
ticularly well on spheres and boxes, where it obtained errors that were smaller
than or comparable to the errors obtained by the EA and RANSAC. On cylin-
ders, although the performances of the Bees Algorithm and RANSAC were
close, the latter obtained the best results.

In terms of consistency (first and third quartiles), RANSAC and the Bees
Algorithm performed comparably on boxes and spheres, whilst RANSAC was
clearly superior in the fitting of cylinders.

Overall, the EA was the least accurate and consistent of the three algo-
rithms on all data sets and shapes. All the three algorithms proved robust to
error, as their performances on the clean data set are indistinguishable from
those obtained on the error and double error data sets.
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3.4 Discussion

The state-of-the-art RANSAC algorithm is widely used because of its ability
to precisely fit shapes to PC models. The performance of RANSAC in terms
of accuracy and speed strongly depends on a number of ad hoc assumptions
like the tolerance threshold. The results presented in Section 3.3 proved that
the Bees Algorithm is able to obtain results of quality comparable to those
obtained using RANSAC, without the need of assumptions. Compared to
another state-of-the-art metaheuristics (EA), the Bees Algorithm was able
to fit primitive shapes to PC scenes with greater accuracy and consistency.

Although the Bees Algorithm had been optimised for speed, single shape
fitting times were in the order of fractions of a second, and thus fully com-
patible with real-time operations. If needed, optimisation and parallelisation
would boost the efficiency of the Bees Algorithm.

The Bees Algorithm showed also considerable robustness to error, which
simulated imprecision in laser scanning devices. Overall, the tests presented
in this chapter offer a first indication of the capability of the Bees Algorithm
to solve effectively and efficiently the primitive fitting problem, with perfor-
mances comparable or better than the state-of-the-art. The strength of the
Bees Algorithm is that it does not need any assumption to be made on the
model.

It should also be noted that in the comparison of Section 3.3 RANSAC
was advantaged by the initialisation subroutine. Candidate shapes were in
fact initialised with points sampled from the PC, making sure that these
points lied on opposite sides of the shape in Figure 3.2. It is arguable that
a similar seeding of the candidate solutions could boost the performance of
the Bees Algorithm and the EA.

3.5 Conclusions

In this work the ability of the Bees Algorithm to solve the primitive fitting
problem was evaluated. The performance of the Bees Algorithm was tested
on the recognition of three kinds of primitive shapes from artificially gen-
erated data sets, and compared to the performance of the state-of-the-art
RANSAC algorithm and the EA metaheuristics.

The tests showed that the Bees Algorithm is more precise and consistent
than the EA, and performs with comparable accuracy to and consistently
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as RANSAC. Although not optimised for speed, the efficiency of the Bees
Algorithm was compatible with real-time applications. Like the other two
algorithms, the Bees Algorithms showed considerable robustness to error in
the PC models. This result indicates the suitability of the Bees Algorithm
to handle data from noisy and imprecise sensors.

The main advantage of the Bees Algorithm over techniques like RANSAC
is that it doesn’t need ad hoc assumptions to be made on the models. In
particular, RANSAC is sensitive to the choice of the error tolerance threshold,
which usually requires careful optimisation for top performance. RANSAC
needs also a seeding procedure to generate the candidate shape, which is then
scored on its fit to the rest of the PC model. In its present implementation,
the Bees Algorithm does not need any seeding of the candidate solutions.

The tests performed in this work featured only PCs representing single
objects. Further tests will be carried out to investigate the ability of the Bees
Algorithm to recognise multiple and possibly different shapes in a scene. One
possible scheme would be to carry out parallel searches for different shapes,
for example one kind of shape for each neighbourhood. At the end, the best
fitting shapes for each region of the scene would be retained. The perfor-
mance of the Bees Algorithm on partial shapes needs also to be evaluated,
in order to assess its suitability to cluttered environments.

Finally, the current implementation of the Bees Algorithm is also extend-
able to other kinds of shapes, as long as a measure of the distance of the
points from the candidate shape can be expressed, and the concordance of
the normals can be evaluated.
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Chapter 4

Bees Algorithm: A Theoretical
Analysis

This chapter is dedicated to a formal analysis of the Bees Algorithm. In
Section 4.1 the Bees Algorithm is formalised using a rigorous mathematical
description, beyond the qualitative biological metaphor. Section 4.2 analyses
the properties of the local search performed by a single site, providing a
mathematical definition and a discussion on the site reach and expected
progress. In Section 4.3 the effect of the site abandonment procedure is
discussed, and the stalling probability is computed under mild assumptions
and in presence and absence of the neighbourhood shrinking procedure. In
the same section, the implications of choosing a large stagnation limit stlim
or a high nr are discussed. Finally, Section 4.4 focuses on the neighbourhood
shape, and the implications of using an isotropic neighbourhood instead of
the standard anisotropic hypercube, has in high dimensional space.

4.1 Formal Definition of the Bees Algorithm

The Bees Algorithm iteratively looks for better solutions to a specified op-
timisation problem. The algorithm is terminated when a given stopping
criterion is met (e.g. a pre-set number of optimisation cycles has elapsed, a
solution of satisfactory quality is found). Despite minor differences, the no-
tation concerning the main parameters and operators of the Bees Algorithm
is consistent in the literature. With some minor changes, it is also used in
this chapter:

39
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• ns number of scout bees used only in the global search;

• nb number of sites where local search is performed;

• nr number of recruited forager bees for each of the nb sites;

• stlim number of cycles of local stagnation before a site is abandoned;

• ngh initial neighbourhood size of the nb sites;

• α neighbourhood shrinking parameter (0 < α < 1);

In the standard Bees Algorithm, the parameter ns describes the total number
of scouts used for random exploration (here ns) plus the number of scouts
(nb) marking the neighbourhoods (sites) selected for local search. That is,
nsstandard = ns + nb. Also, it is customary to allocate a larger number of
foragers (nre) to the very best ne < nb (elite) sites, and less (nrb < nre) to
the remaining nb − ne best sites. This distinction is not necessary for the
analysis proposed in this chapter, and for the sake of compactness is dropped.
Henceforth, the parameter nr will refer likewise to nre or nrb.

In this study only continuous optimisation is considered, and each solu-
tion is represented by an N -dimensional vector of real-valued decision vari-
ables sg = {sg[1], ..., sg[N ]} ∈ Rn. The solutions are evaluated by a fitness
function F specific to the problem domain, which the algorithm aims to
maximise. The analysis of this chapter is equally valid for a minimisation
problem (min{F (·)} ≡ max{−F (·)}).

In this chapter, each of the s ∈ {s(1), . . . , s(nb)} nb sites selected for local
search is denoted by a centre sg and two additional variables: the time-to-live
integer variable sttl, and the local search edge se. The time-to-live variable
sttl is a counter that indicates the number of remaining cycles of stagnation
before the site is abandoned. The edge se defines the current spatial extent
(henceforth called search scope) of the local search.

For the sake of simplicity, unless otherwise stated, all the decision vari-
ables will be henceforth defined in the same interval. Accordingly, se and
ngh are scalars, and the search scope at a given site s is delimited by a hy-
percube C of edge se centred in the solution sg. Hereafter, this region will
be indicated as C(sg, se). Local search is performed uniformly sampling nr
solutions inside C(sg, se). In the general case that the interval of definition is
not equal for all parameters, se and ngh will be defined as vectors of size N .
In this case, local search is performed inside a box (i.e. an N-orthotope) of
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edges se = {se[1], . . . , se[N ]} centred in sg. When relevant, the consequences
of using box sampling rather than cubic sampling will be discussed.

The algorithm steps are described in box 4.1. Except for minor changes
(i.e. no elite sites), the procedure described in box 4.1 can be regarded as
the Standard BA (Pham and Castellani, 2009). The initialisation and site
abandonment procedures are designed to keep constant at each generation
the sampling rate of the solution space1.

Local search aims to find the fitness optimum within a neighbourhood
centred on a promising solution. Because the centre of the neighbourhood
is updated as better solutions are found (step 3), the scope of local search
dynamically changes, and eventually includes the local attractor point in
the search space (i.e. a local optimum). It should be noted that, like any
stochastic optimisation procedure, local search is not guaranteed to stop at
the local optimum. In particular, local search may be prematurely abandoned
when (i) it stagnates for stlim iterations (e.g. stops on a flat surface) or (ii)
global search finds more promising regions (fitter solutions) elsewhere in the
search space (step 2).

Global random search aims to find previously unexplored regions of high
fitness in the search space. Global search can also be used to increase adapta-
tion to changes in dynamic fitness landscapes. The solutions found via local
(i.e. the centres of the nb neighbourhoods) and global search are ranked at
the end of every optimisation cycle, and the fittest nb solutions are kept as
seeds (centres) for the next optimisation cycle. As the local exploitation of
one given site progresses, the probability that this site is abandoned because
random search found a fitter solution decreases. For this reason, some au-
thors do not use global search (Pham and Castellani, 2009), or give randomly
generated solutions (young bees) time to ’grow up’ (Castellani et al., 2012).

1This is particularly useful when the BA performances are compared with other tech-
niques.

2If the interval of definition of the parameters is not the same for all variables, the i-th
component of the vector se is initialised as sei = ngh · (Mi−mi) where Mi and mi are the
maximum and minimum value of the interval of definition of the i-th parameter.
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Bees Algorithm: Main Steps

1. (Initialisation) The initial population P is created sampling ns + nr ·
nb solutions at random across the N -dimensional solution space. Each
solution sg marks the centre of a neighbourhood (site) s of edge se (i.e.
a search scope C(sg, se)). The two variables sttl and se are initialised for
each site as follows: sttl = stlim and se = ngh · (M −m), where M and
m are respectively the upper and lower limit of the interval of definition
of the variables;

2. (Selection) The best nb sites s(1), . . . , s(nb) centred on the solutions of
highest fitness are selected from P for local search (Waggle Dance), the
others are removed from the population;

3. (Local Search) For each of the nb sites s ∈ {s(1), . . . , s(nb)} in P selected
for local search, the following steps are performed:

(a) If sttl = 0 the site is abandoned (Site Abandonment), and nr new
solutions are randomly sampled across the search space. The best v
of these nr solutions is used as the centre for a new site s, which is
initialiased with sttl = stlim and se = ngh · (M −m);

(b) (Foraging) If sttl > 0, nr solutions v1, . . . , vnr are randomly sam-
pled with uniform distribution within C(sg, se). The solution v of
highest fitness is selected, whilst the other solutions are discarded:

i. if F (v) > F (sg), v replaces sg as the site centre (sg = v). The
time to live is set to sttl = stlim and the edge is kept unchanged
(se);

ii. If F (v) ≤ F (sg), the local search is said to stagnate. The
edge is reduced of a fixed factor1 se = αse (Neighbourhood
Shrinking), and the time to live is reduced to sttl = sttl − 1;

4. (Global Search) ns new (scout) solutions v1, . . . , vns are uniformly sam-
pled in the search space. They become the centres of ns new sites, each
initialised with sttl = stlim and se = ngh · (M −m).

5. (Population Update) The nb scouts marking the centres of the sites
evolved via local search (3) and the ns scouts created by global search (4)
make up the new population P ;

6. (Stopping Criterion) if the stopping criterion is not met go back to step
2, otherwise return the solution of highest fitness found;

Algorithm 4.1: The Bees Algorithm
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(a) 1 cycle (b) 5 cycles (c) 10 cycles

(d) 80 cycles (e) 170 cycles

(f) 200 cycles (g) F function

Figure 4.1: Example of space explored by the BA using only one site, displayed at
different cycle numbers. As it is possible to observe, in the first cycles (Figures 4.1a
to 4.1c) the site explore only the right-bottom part of the function. When the site stall,
another region of the function with a strong optimum is explored (Figure 4.1d). Overtime,
even with just one site, the BA is able to explore the most important (Figures 4.1e and 4.1f)
local optima regions.
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4.2 Analysis of Local Search Properties

This section clarifies the properties of the local search procedure of the Stan-
dard BA, such as its average step size and speed of convergence. These
properties are estimated from an a-posteriori analysis on the ’lifetime’ of
a generic site s, from its discovery by a scout to abandonment when local
search stalls (i.e. it fails to progress for stlim iterations). The case that
the site is replaced by a more promising site found via global search is not
included. If needed, the results of the below analysis are applicable to de-
scribe the behaviour of local search from any point in time, not necessarily
the discovery of the site, until abandonment. In this context the site is anal-
ysed both in terms of local search and the effect of the sequence of local
searches performed during its lifetime. Importantly, in contrast with a single
local search, bounded by design, the sequence of local searches performed
by a single site can cover the whole search space. This is illustrated with
the example in Figure 4.1, where the explored space (i.e. all the sampled
solutions) is shown in the case of a BA with a single site, using the following
parameters: ns = 0, ne = 0, nb = 1, nrb = 15, stlim = 10 and ngh = 1; ap-
plied to minimise the Schwefel (Schwefel, 1981) fitness function. Moreover,
it is worth noting that the final solution may not be the local optimum, that
is, the sequence of local searches may only provide an approximation of the
local optimum.

4.2.1 Local Search: Introduction and Definitions

The following nomenclature will be used:

• s is the site, described at any iteration (cycle) t by a triple st =
{sgt , set , sttlt }: the centre sgt , the edge set and the time to live sttlt ;

• n is the number of local search cycles from discovery to abandonment
of the site;

• sg1 is the starting point (site centre) of the local search procedure;

• sgt with 1 < t < n is the site centre after t local search cycles;

• sgn is the final result of the local search, namely, the neighbourhood
centre at the last local search cycle, before the site is abandoned (i.e.
sttln = 0);
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Figure 4.2: Example of sequence of solutions S found by a site. The squares
represent the local search boundaries and the marks represent the forager
bees sampled in the local searches.

• S is the series of solutions found by local search at site s:

S = {sg1, . . . , sgn} (4.1)

The solution found in the tth local search cycle Lnr(s
g
t ) can be formalised as

the result of the following endomorphic function (maximisation problem):

Lnr(s
g
t ) = arg max

v
{F (v) | v ∈ {sgt , v1, . . . , vnr}, vi ∼ C(sgt , s

e
t )} (4.2)

where vi ∼ C(sgt , s
e
t ) is a uniform sampling of a solution vi in the hypercube

centred in sgt with edge set . This sampling will be further discussed in Sec-
tion 4.4. Since this is an a posteriori analysis, it will be assumed that every
set of candidate solutions sampled at each cycle is known.
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A local maximum Lopt is defined as:

Lopt is a local maximum ⇔ ∃ε > 0 | F (Lopt) ≥ F (v) ∀v ∈ C(Lopt, ε)
(4.3)

If Lopt is the optimum of the subregion C(sgt , s
e
t ), the operator Lnr provides a

stochastic approximation of the local optimum within C(sgt , s
e
t ). The expected

quality of this approximation increases monotonically with the number nr of
candidate solutions sampled.

Lopt = lim
nr→∞

Lnr(s) = arg max
v
{F (v) | v ∈ C(sgt , s

e
t )} (4.4)

The series of solutions S defined in Equation (4.1) and visible in the exam-
ple in Figure 4.2 shares the same convergence properties of the LJ Search
proved in (Gopalakrishnan Nair, 1979). Namely, without site abandonment,
a number of steps n exists such that the series of solutions S will eventually
converge to a local optimum.

Lemma 1 (F (si) series). The series of fitness scores F (si) for i = 1, . . . , n
is monotonic increasing:

F (si) ≥ F (sj)⇔ i ≥ j ∀i, j ∈ {1, . . . , n} (4.5)

with
F (si) = F (sj)⇔ si = sj ∀i, j ∈ {1, . . . , n} (4.6)

and ordering the solutions by their fitness score is equivalent to ordering them
by discovery, namely:

6 ∃sk | F (si) ≤ F (sk) ≤ F (si+1) ∀i ∈ {1, . . . , n−1} i, i+1 6= k (4.7)

Proof. Equations (4.5) and (4.6) can be proved directly by the definition in
Equation (4.2). Let’s assume that a solution sk from Equation (4.7) exists,
then we have either k < i with F (si) ≤ F (sk) or k > i + 1 with F (sk) ≤
F (si+1). Both cases are equally impossible due to the monotonously of the
F series.

Due to the monotonically increasing nature of the series F (sg1), . . . ,F (sgn),
sgn is the best solution found in the n iterations of local search at site s.

It is important to notice that whilst the higher an index i ∈ {1, . . . , n} is,
the closer the fitness score F (si) is to the final score F (sn), the same can’t
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Figure 4.3: Example of neighborhood shrinking and how it affects the local
search boundaries in a site. In this example the visible local part of the
fitness function is an hypersphere.

be said about the distance to the final solution d(si, sn). That is, even in a
concave function like F (x) = −x[0]2 − x[1] with optimum in sgn = [0, 0], we
can have a situation with sgn−1 = [1, 5] and sgn−2 = [3, 1] where F (sn−1) =
−6 > −10 = F (sn−2) and with d(sn−1, sn) ≈ 5.1 > 3.16 ≈ d(sn−2, sn).

The standard neighbourhood shrinking heuristic can be formally defined
for a hypercube as follows (0 < α < 1):

set+1 =

{
set Lnr(s

g
t ) 6= sgt

αset Lnr(s
g
t ) = sgt

(4.8)

Neighbourhood shrinking (illustraded in Figure 4.3) can be similarly defined
in the more general case of box sampling, where the interval of definition
is not the same for all the N variables. In this latter case, set is the N -
dimensional vector of search scope edges, and each edge is reduced of the
same fixed factor α. It also holds for isotropic (hyperspherical) sampling.
The standard site abandonment heuristic is applied when:

sgn = sgn−1 = · · · = sgn−stlim (4.9)
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In other terms, the local search is terminated when stlim consecutive fix
points2 of Lnr are found. It is also true that:

sgt = sgt+k ⇔ sgt = sgt+1 = · · · = sgt+k (4.10)

for any positive index k ∈ N.
The above definitions and properties are shared by most BA techniques,

or can be easily modified to include other BA variants.

Proposition 1 (Search scope Intersection: Successive Solutions). Given two
consecutive solutions sgt and sgt+1, sgt is included in the search scope of sgt+1

sgt ∈ C(sgt+1, s
e
t+1) (4.11)

Proof. The proof is trivial: if local search stagnates at cycle t, sgt+1 = sgt and
set+1 < set (neighbourhood shrinking). Then sgt ∈ C(sgt+1, s

e
t+1) = C(sgt , s

e
t+1).

If local search progresses at cycle t, sgt+1 6= sgt and set+1 = set (no neigh-
bourhood shrinking). Remembering that sgt+1 ∈ C(sgt , s

e
t ), it follows that

sgt ∈ C(sgt+1, s
e
t ) = C(sgt+1, s

e
t+1).

This property also holds in case of box and hyperspherical sampling is
used.

4.2.2 Bounds on Reach

Hereafter, the distance in the solution space that local search is able to cover
at a given site in a given number of cycles will be indicated as the reach of
local search. That is, the reach is the distance between the starting point of
local search (s1) and the best approximation of the local optimum after n
cycles (sn), namely d(s1, sn). The upper and lower boundaries of the reach
are defined as follows:

Proposition 2 (Reach). The reach of local search in n learning cycles at a

given site s centred on solution sg1 is bounded within the
[
0, n

se1
√
N

2

]
interval,

where se1 is the site edge at the start of the search.

Proof. Minimum reach occurs when local search stalls since the very begin-
ning, namely sgt = sgt+1 ∀t ∈ {1, . . . , n = stlim}, and thus sg1 = sgn.

2A fix point x of a function f is a point such as f(x) = x
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At cycle t, local search is bounded within the hypercube C centred in sgt ,
where the farthest solutions lie at the four vertexes of C. To attain maximum
reach, local search must progress at each cycle, so as the initial site edge se1
is not reduced (i.e. no neighbourhood shrinking). The maximum step size
per cycle is bounded by the distance between the centre and a vertex of the
N -dimensional hypercube C, that is dv = set

√
N/2. The upper bound of the

reach at a given site is therefore n times dv.

Proposition 2 gives the boundaries of ’how far’ local search can travel in n
learning cycles. The maximum step size is achievable only when the segment
that joins sg1 to sgn is parallel to the diagonal of the hypercube C, and every
pair of subsequent solutions sgt and sgt+1 (1 ≤ t < n) are distant d(sgt , s

g
t+1) =

set
√
N/2. For example, this would be the case of a fitness landscape consisting

of a sloped hyperplane aligned with the diagonal of the hypercube C, or a
hypersphere of centre c lying in the direction of one of the diagonals of the
hypercube centred in sg1.

The reach is related to the convergence speed (i.e. the number of itera-
tions used to reach the local attractor) of local search at a given site. If the
distance between the centre of the site s1 and the optimum Lopt is d(sg1, Lopt),
according to Proposition 2 the minimum number of iterations nmin required
to reach Lopt are:

nmin
se1
√
N

2
= d(sg1, Lopt)⇒ nmin =

2d(sg1, Lopt)

se1
√
N

(4.12)

This is the upper bound on the convergence speed, and can be used to eval-
uate the efficiency of local search on different fitness landscapes.

In the more general case of asymmetric boundaries (i.e. box sampling),
the maximum reach can be computed as follows:

maxreach =
n

2

√√√√N−1∑
i=0

se1[i]
2 (4.13)

where se1[i] is the i-th component of vector se1. Finally, it is worth mentioning
that most - if not all - BA variants use a hypercube to define the scope of
local search. Consequently, the foragers are sampled inside an anisotropic
region, and the maximum reach depends on the orientation of the segment
that joins sg1 to Lopt respect to the diagonal of the hypercube.
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4.2.3 Expected Progress

To understand the behaviour of local search, it is useful to calculate the
expected step size of one iteration of the procedure under certain assumptions
on the fitness surface.

Proposition 3 (Expected Step Size). Given a strict monotonic increasing
one-dimensional fitness landscape in [0, `] ∈ R (e.g. a straight line), and a
site centred in sgt = /̀2 with edge set = `, the expected step size of one local
search iteration (i.e. the average distance between sgt and sgt+1) is:

d(sgt , s
g
t+1) = `

0.5nr+1 + nr

nr + 1
− `

2
(4.14)

Proof. The goal is to calculate the expected output of the stochastic local
search operator sgt+1 = Lnr(s

g
t ) defined in Equation (4.2), with the search

scope within [0, `]. This output can be expressed as the following continuous
random variable:

X = arg max
xi
{F (sgt ),F (x1), . . . ,F (xnr)} =

= arg max
xi
{φ(x1), . . . , φ(xnr)}

(4.15)

where:
xi ∼ U(0, `) and φ(xi) = max{F (sgt ),F (xi)} (4.16)

The expected value E of a continuous random variable X defined in the
interval [a, b] is computed (Ross, 2014) as:

E[X] =

∫ b

a

x · PDFX(x)dx (4.17)

where PDFX(x) is the probability density function of X. The probabil-
ity density function of a random variable is equal to the derivative of the
cumulative distribution function CDFX(x). In this case:

CDFX(x) =
nr∏
i=1

P (φ(xi) ≤ x) = CDFφ(x)(x)nr (4.18)

where P (φ(xi) ≤ x) is the probability that one random sample xi of the
search scope is less or equal to x. Differentiating CDFX(x) and plugging the
derivative into Equation (4.17):

E[X] =

∫ l

0

φ(x) · nr · CDFφ(x)(x)nr−1PDFφ(x)(x)dx (4.19)
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Using the Law of the Unconscious Statistician (Ross, 2014) is possible to
make the following substitution:

E[X] =

∫ `

0

φ(x) · nr · CDFφ(x)(x)nr−1PDFφ(x)(x)dx

=

∫ `

0

φ(x) · nr · CDFx(x)nr−1PDFx(x)dx

(4.20)

The cumulative distribution function and the probability density function of
a random variable X sampled with uniform probability in U(0, `) are:

CDFU(x) =


0 x < 0
x
`

0 ≤ x < `

1 y ≥ `

PDFU(x) =

{
1
`

0 ≤ x ≤ `

0 elsewhere
(4.21)

From Equation (4.15) it is known that x ∼ U(0, `), also F is assumed to be
monotonic3, therefore:

E[X] =

∫ `

0

max{x, sgt} · nr · CDFU(x)nr−1PDFU(x)dx =

=

∫ /̀2

0

/̀2 · nr ·
(x
`

)nr−1 1

`
dx+

∫ `

/̀2

x · nr ·
(x
`

)nr−1 1

`
dx =

=
nr · xnr

2nr(`nr−1)

∣∣∣∣ /̀2
0

+
nr · xnr+1

`nr(nr + 1)

∣∣∣∣l
/̀2

=

= 0.5nr+1`+
nr · `(1− 0.5nr+1)

nr + 1
=

=
nr0.5nr+1`+ 0.5nr+1`+ nr · `− nr0.5nr+1`

nr + 1
= `

0.5nr+1 + nr

nr + 1
(4.22)

Therefore the average step size is:

d(sgt , s
g
t+1) = |sgt+1 − s

g
t | = `

0.5nr+1 + nr

nr + 1
− `

2
(4.23)

3In the proof the case of monotonic increasing fitness is considered. This is not a loss
of generality since only the expected step size is considered, not the direction.
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The result of Proposition 3 is valid for any locally monotonic fitness slope,
as long as C is fully in the monotonic region. Its validity extends also to multi-
dimensional surfaces such as regions of hyperplanes or hyperspheres. For
this to happen, the search scope must be isotropic (i.e. a hypersphere), the
fitness landscape must be strictly monotonic along the straight line joining
the centre of C to the local fitness maximum, and the fitness landscape inside
the search scope must be symmetric respect to said straight line. If these
conditions are verified, the expected step size will be given by Equation (4.14)
for the direction where the slope is monotonic, and zero (no bias) in the other
directions. The above conditions apply in the common case where local search
is climbing one side of a fairly regular hill or slope, but C does not include
the fitness maximum yet.

Expected Step Size: Experimental Verification

The theoretical result of Proposition 3 was verified numerically (figure 4.4)
on three 2D cases: on an inclined plane (leftmost column), near the top of
a spherical hill (the hill top is at the border of the search scope, middle col-
umn), and far from the top of the spherical hill (rightmost column). The
neighbourhood is a circle of radius 0.5 centred in {0.5, 0.5}. In all cases,
the fitness surface is monotonically increasing along the horizontal diameter
line, and symmetric with respect to that line. The number of foragers was
varied (nr = 1, 10, 20). The plots show that the average (red triangle) of 103

independent local search trials is always in good agreement with the theo-
retical expectation (at the bottom of each sub-figure) along the horizontal
diameter line (where the fitness landscape is monotonic), and aligned to the
centre of the search scope in the vertical direction (i.e. no bias in the vertical
direction).

Far from the peak, where the curvature of the sphere is small, the spread of
the solutions on the fitness landscape is large, and indistinguishable from the
spread on the planar surface. Near the hill top, where the curvature is large,
the solutions are tightly clustered near the fitness maximum. This behaviour
suggests that local search becomes increasingly focused and exploitative as
it approaches the local fitness maximum.

Figure 4.4 also shows little difference between the spread of the solutions
obtained using 10 and 20 foragers. Indeed, the expected step size grows in
sublinear fashion with the number of foragers (eq: 4.14). Figure 4.5 shows
how the average step size of 104 independent local search trials varies with the
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number of foragers (nr). Also in this case, the search trials were performed
in a circle of radius 0.5 centred in {0.5, 0.5}, and the plot shows the result
of local search (st+1) along the direction of the slope of an inclined plane.
The numerical averages (blue dot) are in good agreement with the theoretical
expectations of Equation (4.14) (red line). The plot highlights how the result
of local search quickly reaches the borders of the neighbourhood, that is
the asymptotic value of 1. In general, it can be said that the size of the
neighbourhood determines more than the number of foragers the ability of
local search to quickly climb (descend) a fitness slope.
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Figure 4.4: Search results (st+1) of 103 independent local search trials in
three 2D fitness landscapes: a plane sloped in the horizontal direction (left
column), a hypersphere with centre in x = 10, y = 0.5 (middle column), and
a hypershpere centred in x = 1, y = 0.5 (right column). An isotropic circular
search scope of centre sgt = [0.5, 0.5] (green square) and radius srt = 0.5 was
used. The number of foragers nr was set to 1 (top row), 10 (middle row), and
20 (bottom row). The blue dots represent the solutions found in the local
search trials, and their arithmetic average is marked by the red triangle.
The maximum is always on the border of the search scope, at the right-end
extreme of the horizontal diameter line. At the bottom of each panel, the
expected step size (4.14) in the direction of the maximum is shown.
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Figure 4.5: Result of local search using an isotropic search scope of radius
srt = 0.5 and centred in sgt = {0.5, 0.5} on a sloped planar fitness surface. The
predicted value (red line) along the direction of the slope was calcuated from
Equation (4.14), and closely matches the average values of 104 independent
local search runs (blue dots).
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4.3 Site Abandonment: Local Search Stalling

Probability

Figure 4.6: Example of GRst (in green) and LRst (in red) regions, as described
on Equation (4.24), of a solution st (the blue dot) assuming set = (M −m)
and minimisation problem on the Schwefel (Schwefel, 1981) function.

This section analyses the probability that a site may be abandoned due
to lack of progress of local search.

4.3.1 Site Abandonment: Definitions and Properties

Let sgt be the centre of site s at the tth local search cycle and C(sgt , s
e
t ) the

search scope. Let LRst and GRst be the subregions of C including solutions
of respectively lower or equal, and higher fitness. Explicitly:

LRst ⊆ C(sgt , s
e
t ) v ∈ LRst ⇔ F (v) ≤ F (sgt )

GRst ⊂ C(sgt , s
e
t ) v ∈ GRst ⇔ F (v) > F (sgt )

(4.24)

where
LRst ∪ GRst = C(sgt , s

e
t ) (4.25)

According to the above definitions, it can be said that local search progresses
if the output of the endomorphism Lnr belongs to GRst :[

Lnr(s
g
t ) = sgt+1 6= sgt

]
⇔ sgt+1 ∈ GRst (4.26)

In general, LRst and GRst may include non-contiguous subregions, since the
region covered by C may contain several local optima.
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Hereafter, the volume of an N -dimensional region A will be indicated
as V(A). To analyse the likelihood that local search stalls and the site is
abandoned, it is useful to define the following two ratios:

|LRst | =
V(LRst)

V (C(sgt , s
e
t ))

|GRst | =
V(GRst)

V (C(sgt , s
e
t ))

(4.27)

within the local search scope C(sgt , s
e
t ), |LRst | and |GRst | represent the frac-

tion of space where solutions of respectively lower and higher fitness lie. That
is, they represent the relative coverage of C of the two regions LRst and GRst .
In particular, |GRst | represents the probability that one random sample of the
search scope yields a solution of higher fitness than s. From Equation (4.27),
the following properties hold:

0 < |LRst | ≤ 1 0 ≤ |GRst | < 1 |LRst|+ |GRst| = 1 (4.28)

Also, from Equation (4.27) it follows that a solution sgt is the global optimum
of the subregion C(sgt , s

e
t ) if and only if:

F (sgt ) ≥ F (v) ∀v ∈ C(sgt , s
e
t ) ⇔ |LRst | = 1 ∧ |GRst| = 0

The local exploitative search of the BA aims to locate Lopt, inside the search
scope C(sgt , s

e
t ). If the GRst region is significantly smaller than the search

scope, the probability of finding a better solution than sg is small, and
progress may be slow or stop. The neighbourhood shrinking procedure may
mitigate this problem, progressively reducing the search scope and increasing
the probability that a forager is generated inside GRst . For this to happen,
neighbourhood shrinking needs to keep GRst inside the search scope. Unless
it is a local optimum, it can be shown that the site centre sg is at least
contiguous to GRst . That is:

Proposition 4. A solution sg is either a local optimum of the fitness function
F , or lies on the border GR−st of GRst.

Proof. This can be proven by contradiction:

sg 6∈ GR−st ⇔ ∃ε > 0 | v ∈ LRst ∀v ∈ B(sg, ε) (4.29)

where B(sg, ε) is an N -dimensional ball of radius ε and centred in sg. How-
ever:

v ∈ LRst ⇔ F (v) ≤ F (sg) (4.30)

so sg is either a local optimum or is inside GR−st .
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This property holds for virtually any BA variant. An important direct
consequence is that, if sg is not already a local optimum, there’s no neigh-
bourhood reduction that completely excludes GRst from the search scope.
Accordingly, neighbourhood shrinking does not affect the ability of local
search to converge to a local optimum. However, it affects the upper bound
of the convergence speed towards the optimum (eq. 4.12), and the likelihood
that the search may remain trapped into a secondary peak. Thus, it can be
said that neighbourhood shrinking is most beneficial in the latest iterations
of the local search at a site, when a good local optimum - or the global opti-
mum - has been approximately located and the search focus is shifted from
convergence speed to the accuracy of the solution. In many cases, it can be
argued that local search is indeed more likely to stall (and hence neighbour-
hood shrinking to be performed) once local search approaches the local peak,
and GRst becomes increasingly small.

4.3.2 Stalling Probability Without Neighbourhood Shrink-
ing

Let us consider a site s centred on sgt at cycle t. The probability that lo-
cal search without neighbourhood shrinking stalls at s will be henceforth
indicated as P (sgt = sg

t+sttlt
). It is computed as follows:

Proposition 5 (Stalling Probability Without Shrinking). Given site s cen-
tred on sgt at cycle t, the probability that local search without neighbourhood
shrinking stalls is:

P (sgt = sg
t+sttlt

) = |LRst |nr·s
ttl
t (4.31)

Proof. The site stalls if the search stagnates for the next sttlt cycles, that is,
if all the nr candidate solutions generated during sttlt local search cycles lie
in LRsk . When local search stagnates, the centre of the site is unchanged,
and if the search scope is not changed (no neighbourhood shrinking), |LRst|
is constant:

|LRst| = |LRsk | ∀k ∈ N | t ≤ k < t+ sttlt (4.32)

The joint probability that all the solutions sampled during one given cycle
k of local search belong to LRsk is indicated as:

P (v ∈ LRsk) ∀v ∈ {v1, . . . , vnr} vi ∼ C(sgk, s
e
k) (4.33)
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Due to the uniform sampling, the probability that one solution is picked from
LRsk corresponds to |LRsk |. Remembering Equation (4.32), it follows that:

P (v ∈ LRsk) = |LRsk |nr = |LRst |nr (4.34)

The stalling probability can then be computed as the joint probability of sttlt
consecutive stagnations of local search cycles:

P (st = st+sttlt
) =

t+sttlt −1∏
k=t

|LRsk |nr = |LRst |nr·s
ttl
t (4.35)

One important aspect of the stalling probability is that, since local search
is random, it is not affected by the slope of the fitness surface. Proposition 5
is valid regardless whether sttlt = stlim, that is, local search has not begun to
stagnate yet, or sttlt < stlim and local search has already begun to stagnate.

Variants that use a dynamic assignment of foragers, like (Packianather et
al., 2009; Pham and Darwish, 2010; Pham and Darwish, 2008), yield a more
complex behaviour that leads to a different stalling probability formulation.
Some ideas on how to deal with these variants will be discussed later in this
section. If neighbourhood shrinking is used, the progressive reduction of the
search scope needs to be taken into account. In this case, it is possible that
if local search is trapped in a secondary peak, the GRst region may be lost
as the search scope is reduced.

4.3.3 Stalling Probability With Neighbourhood Shrink-
ing

Let us consider the case where after t cycles, local search stagnates for k
cycles at sgt inside the basin of attraction of a local optimum Lopt (sgt 6= Lopt
and GRst is one unique region). In this case, Proposition 4 stipulates that
sgt lies on the border of GRst . The most likely cause for repeated stalling of
local search is that GRst is small compared to C(sgt , s

e
t ). However, if GRst

is small in comparison with C(sgt , s
e
t ), and sgt is on the border of GRst , the

distance d between sgt and Lopt is likely to be small compared to the search
edge (d(sgt , Lopt) � set ). That is, GRst is likely to be far from the border
of the search scope, and is not going to be changed by the neighbourhood
shrinking procedure.
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If the GRst region at time t is unchanged after k successive applications of
the neighbourhood shrinking procedure, it is possible to compute the relative
coverages (eq. 4.27) of LRst+k

and GRst+k
as follows:

Lemma 2 (Coverage Reduction with constant GRst). Let sgt be the centre
of site s at cycle t in the N-dimensional solution space. If local search stag-
nates for k cycles (sgt = sgt+k), and the region GRst 6= ∅ is not changed by
neighbourhood shrinking, the relative coverages of LRst+k

and GRst+k
become:

|LRst+k
| = 1

αkN
(|LRst | − 1) + 1 = 1− 1

αkN
|GRst | (4.36)

|GRst+k
| = 1

αkN
|GRst | (4.37)

Proof. Since GRst is not changed, GRst = GRst+j
and V(GRst) = V(GRst+j

)
∀j = 1, . . . , k. Also, remembering Equation (4.25):

LRst ∪ GRst = C(sgt , s
e
t )⇒ V(LRst) + V(GRst) = V(C(sgt , s

e
t )) (4.38)

However, neighbourhood shrinking reduces the local search edge of a factor
α (Section 4.1 and eq. 4.8). That is, set+1 = αset and after k successive
repetitions of neighbourhood shrinking set+k = αkset . The volume of the
search scope is reduced accordingly:

V(C(sgt+k, s
e
t+k)) = V(C(sgt , α

kset )) = αkNV(C(sgt , s
e
t )) (4.39)

Since GRst is not reduced, the reduction LRst will be equal to the reduction
of C(sgt , s

e
t )). That is:

V(LRst+k
) = V(LRst)−

(
V(C(sgt , s

e
t ))− V(C(sgt+k, s

e
t+k))

)
(4.40)

From the definition of the relative coverage (Equations (4.27) and (4.39)):

|LRst+k
| =

V(LRst+k
)

V(C(sgt+k, s
e
t+k))

=
V(LRst+k

)

αkNV(C(sgt , s
e
t ))

(4.41)
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And from Equation (4.40):

V(LRst+k
)

αkNV(C(sgt , s
e
t ))

=
1

αkN
·
V(LRst)− (V(C(sgt , s

e
t ))− V(C(sgt+k, s

e
t+k)))

V(C(sgt , s
e
t ))

=

=
1

αkN
· V(LRst)− (V(C(sgt , s

e
t ))− αkNV(C(sgt , s

e
t )))

V(C(sgt , s
e
t ))

=

=
1

αkN
· V(LRst)

V(C(sgt , s
e
t ))
− (1− αkN )

αkN
· V(C(sgt , s

e
t ))

V(C(sgt , s
e
t ))

=

=
1

αkN
· |LRst | −

(1− αkN )

αkN

(4.42)

Equation (4.36) is obtained rearranging the final line of Equation (4.42).
Remembering Equation (4.28), it is also straightforward to show that:

|LRst+k
| = 1

αkN
(|LRst| − 1) + 1 =

1

αkN
(1− |GRst | − 1) + 1 =

= 1− 1

αkN
|GRst |

(4.43)

Finally, Equation (4.37) is obtained from Equation (4.36) and Equation (4.28)

|GRst+k
| = 1− |LRst+k

| = 1−
(

1− 1

αkN
|GRst|

)
=

1

αkN
|GRst | (4.44)

In the above analysis it is important to remember that 1
αkN |GRst | < 1,

otherwise GRst would be larger than C(sgt , s
e
t ), which is impossible by defini-

tion.
Lemma 2 is of quite general validity, as long as GRst is small respect

to C(sgt , s
e
t ), and located relatively far from the borders of C(sgt , s

e
t ). Even

when a portion of GRst is close to the border of C(sgt , s
e
t ), neighbourhood

shrinking reduces mostly the largest area (LRst), and GRst+1
' GRst . Equa-

tion (4.37) shows that the relative coverage of GRst , and hence the likelihood
of sampling a fitter solution than sgt , grows (1/α > 1) exponentially. Neigh-
bourhood shrinking is therefore a powerful heuristics to foster progress in
the the local search procedure. Neighbourhood shrinking introduces also a
trade-off between reducing the reach of local search, and hence slowing down
the convergence to the local optimum (see eq. 4.12), and making local search
progress more likely, thus avoiding several cycles of stalling. The probability
of a complete stalling of local search (i.e. site abandonment) can be calcu-
lated from Equation (4.37) as follows:
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Proposition 6 (Stalling Probability With Neighbourhood Shrinking and
Constant GRst). Let sgt be the centre of site s at cycle t in the N-dimensional
solution space. The probability that local search stagnates for k cycles if GRst

is not changed by neighbourhood shrinking is:

P (sgt = sgt+k) =
k∏

h=1

(
1− 1

αhN
|GRst |

)nr
(4.45)

Proof. After h cycles of stalling, the probability Pnr=1(s
g
h = sgh+1) of not

sampling a single solution fitter than sgt in C(sgt , s
e
t+h) is determined by the

relative coverage of LRst+h
, which is defined in Equation (4.36):

Pnr=1(s
g
h = sgh+1) = |LRst+h

| = 1− 1

αkN
|GRst | (4.46)

The probability of stalling at any cycle h is equal to the probability of not
picking a fitter solution than sgt in nr independent samples of C(sgt , s

e
t+h):

P (sgh = sgh+1) = Pnr=1(s
g
h = sgh+1)

nr (4.47)

The probability of k consecutive cycles of stalling is calculated from Equa-
tions (4.46) and (4.47):

P (sgt = sgt+k) =
k−1∏
h=1

P (sgh = sgh+1) =
k−1∏
h=1

(
1− 1

αhN
|GRst|

)nr
(4.48)

This result is valid as long as the number of recruited bees is constant
for the k cycles monitored. If the number of bees changes at every iteration,
for example as in Packianather et al. (2009), nr in Equation (4.45) should
be replaced by a variable number nrk.

The stalling probability can never be 0, since LRst 6= ∅ for any st. It
should also be noted that the results of Propositions 5 and 6 are independent
of the neighbourhood shape. The implications of using hyperspherical instead
of hypercubic neighbourhoods will be discussed in Section 4.4.
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4.3.4 A large stlim or nr?

Proposition 6 is important to understand the behaviour of the Bees Algorithm
when neighbourhood shrinking does not change GRst , or at least does not
change it significantly. As discussed in Section 4.3.3, this occurrence is most
likely when neighbourhood search is near the local optimum, that is, GRst

is small and near the centre of C. In this case, the probability that local
search stagnates is large (|GRst | is small), and the site may be abandoned
after stlim cycles of stalling before the local optimum is found (local search
stalls).

The probability that local search stalls depends on the number nr of
solutions that are sampled in one local search cycle, the stalling limit stlim,
and the size of the search scope. The larger nr and stlim are, the more
likely is to pick at least one solution within GRst , and thus the smaller is
the likelihood that local search stalls. However, the effect of nr and stlim
on the stalling probability is not the same, due to the nonlinear reduction
of the search scope by neighbourhood shrinking. Given a fixed number of
sampling opportunities (equal to nr · stlim), the question is whether it is
more beneficial to sample thoroughly C for lesser iterations (large nr), or
sample less intensely C for longer times (large stlim).

In this section, it is assumed that nr and stlim can be increased by an
integer factor q > 1, and the local search stalling probability will be indicated
as Pnr(st = st+stlim), where the index nr accounts for the number of candidate
solutions sampled in C in one local search cycle.

Lemma 3. Let sgt be the centre of site s at cycle t in the N-dimensional
solution space. Assuming that GRst is not changed by neighbourhood shrink-
ing, an increase in the stalling limit by an integer factor q > 1 modifies the
stalling probability of local search as follows:

Pnr(s
g
t = sgt+q·stlim) = Pnr(s

g
t = sgt+stlim)

q·stlim∏
k=stlim+1

(
1− 1

αkN
|GRst|

)nr
(4.49)
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Proof. From Proposition 6:

Pnr(s
g
t = sgt+q·stlim) =

q·stlim∏
k=1

(
1− 1

αkN
|GRst |

)nr
=

=

stlim∏
k=1

(
1− 1

αkN
|GRst |

)nr
·

q·stlim∏
k=stlim+1

(
1− 1

αkN
|GRst |

)nr
=

= Pnr(st = st+stlim)

q·stlim∏
k=stlim+1

(
1− 1

αkN
|GRst |

)nr
(4.50)

Lemma 4. Let st be the centre of site s at cycle t in the N-dimensional so-
lution space. Assuming that GRst is not changed by neighbourhood shrinking,
an increase in the number of foragers by an integer factor q > 1 modifies the
stalling probability of local search as follows:

Pq·nr(s
g
t = sgt+stlim) = Pnr(s

g
t = sgt+stlim)q (4.51)

Proof. The proof is straightforward:

Pq·nr(s
g
t = sgt+stlim) =

stlim∏
k=1

(
1− βk|GRst |

)q·nr
=

=

(
stlim∏
k=1

(
1− βk|GRst|

)nr)q

=

= Pnr(s
g
t = sgt+stlim)q

(4.52)

The next remark will prove that if GRst is not changed by neighbourhood
shrinking, increasing the stalling limit of an integer factor q > 1 has more
effect on decreasing the stalling probability than increasing the number of
foragers by the same factor.

Proposition 7 (stlim vs. nr). Let st be the centre of site s at cycle t in
the N-dimensional solution space. Assuming that GRst is not changed by
neighbourhood shrinking, an increase in the stalling limit by an integer factor
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q > 1 reduces the stalling probability more than an equal increase in the
number of foragers.

Pnr(s
g
t = sgt+q·stlim) < Pq·nr(s

g
t = sgt+stlim) (4.53)

Proof. Remembering Lemmas 3 and 4, Equation (4.53) can be re-written as:

Pnr(s
g
t = sgt+stlim)

q·stlim∏
k=stlim+1

(
1− 1

αkN
|GRst|

)nr
< Pnr(s

g
t = sgt+stlim)q (4.54)

with Pnr(s
g
t = sgt+stlim) a non-null probability, and hence a positive real num-

ber. Equation (4.54) can thus be rewritten as:

q·stlim∏
k=stlim+1

(
1− 1

αkN
|GRst |

)nr
< Pnr(s

g
t = sgt+stlim)q−1 (4.55)

Remembering Proposition 6:

Pnr(s
g
t = sgt+stlim)q−1 =

(
stlim∏
k=1

(
1− 1

αkN
|GRst|

)nr)q−1

(4.56)

Equation (4.55) becomes:

q·stlim∏
k=stlim+1

(
1− 1

αkN
|GRst|

)nr
<

stlim∏
k=1

(
1− 1

αkN
|GRst|

)(q−1)·nr

(4.57)

The two terms inside the brackets on the right and left hand sides of 4.57
express the relative coverage of LRst at time k. That is, they represent the
probability of picking a solution of lower fitness than st inside C at time k.
They become smaller as k increases (α < 1), and thus:

1− 1

αstlim·N
|GRst | ≤ 1− 1

αkN
|GRst | ∀k ∈ {1, stlim} (4.58)

Likewise:

1− 1

αkN
|GRst | ≤ 1− 1

αstlim·N
|GRst| ∀k ∈ {stlim+ 1, q · stlim} (4.59)
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Accordingly:

X =
stlim∏
k=1

(
1− 1

αstlim·N
|GRst |

)(q−1)·nr
<

stlim∏
k=1

(
1− 1

αkN
|GRst |

)(q−1)·nr
= Y

(4.60)
and

W =

q·stlim∏
k=stlim+1

(
1− 1

αkN
|GRst |

)nr
<

q·stlim∏
k=stlim+1

(
1− 1

αstlim·N
|GRst |

)nr
= Z

(4.61)

Equation (4.57) (W < Y ) is certainly true if W < Z ≤ X < Y , that is, if:

q·stlim∏
k=stlim+1

(
1− 1

αstlim·N
|GRst|

)nr
≤

stlim∏
k=1

(
1− 1

αstlim·N
|GRst|

)(q−1)·nr

(4.62)

Setting A =
(
1− 1

αstlim·N |GRst |
)
, Equation (4.62) can be rewritten as:

q·stlim∏
k=stlim+1

(A)nr ≤
stlim∏
k=1

(A)(q−1)·nr (4.63)

Developing the sequence of products:

(A)nr·q·stlim ≤ (A)(q−1)·nr·stlim (4.64)

Given that A is a stalling probability, and hence 0 < A ≤ 1, the inequality
Equation (4.64) is true because the left hand side is raised to a higher power
than the right hand side of the inequality.

Proposition 7 can also be proven considering a fixed number of avail-
able sampling opportunities T = (q · nr) · stlim = nr · (q · stlim) of the
search scope. If the choice is to increase the number of foragers, C will
be sampled q · nr times for at most stlim cycles of stalling before being
abandoned. If GRst is unchanged by neighbourhood shrinking, all candidate
solutions will be sampled inside LRst , . . . ,LRst+stlim

with a stalling proba-
bility πnr ≥ A =

(
1− 1

αstlim·N |GRst|
)

(eq. 4.58). If instead the choice is to
increase the stalling limit, C will be sampled nr times for q · stlim cycles,
and (q · stlim− stlim) · nr of these samples will have a stalling probability
πstlim ≤ A =

(
1− 1

αstlim·N |GRst|
)

(eq. 4.59).
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As long as GRst is not disjoint multimodal, Proposition 7 gives the prac-
titioner a useful guideline to parameterize the Bees Algorithm. This case is
not uncommon as the scope of the local search has narrowed down on the
attraction basin of one peak of performance. If GRst contain several peaks,
there is the risk that repeated applications of the neighbourhood shrinking
procedure may cut the main peak out of GRst . In this latter case, a high nr
ensures that many sampling attempts are made before the main peak is lost.
Unfortunately, the actual fitness landscape is not known, and trial-and-error
is usually needed to address the nr vs. stlim trade-off. However, several
empirical studies (Pham and Castellani, 2009; Pham and Castellani, 2014;
Pham and Castellani, 2015) obtained the best performances over a large set
of varied benchmarks using large stlim values, suggesting a wide applicability
of Proposition 7.

4.4 Local Search Scope Shape

Among the numerous variants of the BA, the shape of the search scope
is one of the least researched features in the literature. In the standard
formulation of the Bees Algorithm (Section 4.1), the search scope C(sgt , s

e
t )

of a site s at the cycle t, is defined as a hypercube of side set centred in
sgt . A new candidate solution v ∈ C(sgt , s

e
t ) is generated uniformly sampling

the hypercube C(sgt , s
e
t ). The main limitation of this hypercubic sampling is

the anisotropic character of the search, which has the shortest extent in the
direction of the coordinate axes, and the longest aligned with the diagonals
of the C(sgt , s

e
t ) hypercube. This anisotropy introduces a bias in the local

search.
Moreover, as the dimensionality of the solution space increases, the vol-

ume of the C(sgt , s
e
t ) hypercube exponentially increases, making the sampling

more sparse (curse of dimensionality, Bellman, 2015).

4.4.1 Isotropic Local Search

An isotropic search scope can be implemented using a hypersphere (ball) B

centred in sgt of radius srt . The reader is referred to (Cook, 1957) and (Muller,
1959) for the algorithmic details of how to achieve a uniformly distributed
spherical sampling.

Cubic sampling can be replaced by spherical sampling keeping the rest of
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the Bees Algorithm unchanged. Neighbourhood shrinking in this case shrinks
the hypersphere radius instead of the hypercube edge.

However, replacing cubic with spherical sampling does change the prop-
erties of the search. For instance, the maximum reach of local search (Propo-

sition 2) in one cycle changes from the diagonal of the hypercube
set
√
N

2
to

the radius of the hypersphere srt , and does not scale any more with the di-
mensionality of the search space. Moreover, if cubic sampling is used, the
volume of the search scope grows with the number of dimensions:

V(C(sgt , s
e
t )) = (set )

N (4.65)

whilst the volume of the hypersphere initially grows and then decreases with
the number of dimensions (Stibor et al., 2006):

V(C(sgt , s
r
t )) = VN · (srt )N =

πN/2

Γ (N/2 + 1)
(srt )

N (4.66)

where Γ is gamma function. More precisely, keeping the radius srt fixed, the
volume increases for the first N∗ dimensions, where

N∗ = {N | DN−1 < srt ≤ DN} DN =
Γ (N/2 + 3/2)√
πΓ (N/2 + 1)

(4.67)

and sharply decreases afterwards, approaching zero for large N values. As
mentioned in Section 4.3, replacing cubic with spherical sampling does not
alter the validity of Propositions 5 and 6.

Proposition 8 (Scope Variation Invariance). Let C(sgt , s
e
t ) and B(sgt , s

r) be
the local search scope using respectively cubic and spherical sampling, and
|GRst|C and |GRst |S be the relative coverage of the GRst region using re-
spectively cubic and spherical sampling. If neighbourhood shrinking does not
change the GRst region, shrinking the edge/radius of the search scope of a
factor α leads to the same change in the respective coverages:

C(sgt , αs
e
t )⇒

1

αN
|GRst|C

B(sgt , αs
r
t )⇒

1

αN
|GRst|S

(4.68)

Proof. This can be directly proven as follows:

V(GRst)

V(C(sgt , αs
e
t ))

=
V(GRst)

(αset )
N

=
1

αN
· V(GRst)

(set )
N

=
1

αN
· V(GRst)

V(C(sgt , s
e
t ))

(4.69)
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Parameter Value
N 4
nr 15
set 10
sttlt 8
sgt [1, 0, 0, 0]

GRst center [0, 0, 0, 0]
GRst radius 1

Table 4.1: Parameters setting used in the tests.

V(GRst)

V(B(sgt , αs
r
t ))

=
V(GRst)

VN · (αsrt )N
=

1

αN
· V(GRst)

VN · (srt )N
=

1

αN
· V(GRst)

V(B(sgt , s
r
t ))

(4.70)

The consequence of Proposition 8 is that the stagnation probability is
computed in the same way (Proposition 6) regardless of the kind of sampling
used. However, the different behaviour of the search scope volume in the two
cases has important implications for high dimensional spaces.

A possible enhancement of the current algorithm would be to switch the
shape of the search scope opportunistically to foster the exploratory (cubic
sampling) or exploitative (spherical sampling) goal of local search.

4.4.2 Stalling Probability: Experimental Verification

To verify and visualise the theoretical predictions of Section 4.3, and how the
stalling probability varies with the shape of the neighbourhood, the following
experimental tests were carried out. The situation where local search has con-
verged inside a large basin of attraction was mimicked. A four-dimensional
fitness landscape of hyperspherical shape was considered. The hyperspher-
ical basin had unitary radius, and was centred in the origin of the Carte-
sian space. In this landscape, local search was performed using a hypecubic
neighbourhood of edge set = 10, time to live sttlt = 8, and initially centred in
sgt = [1, 0, 0, 0]. Fifteen forager bees were used to search the neighbourhood.
The parameters of the example are summarised in Table 4.1.

In this case, the GRst � C(sgt , s
e
t ) region is a hypersphere centred in the

origin with unitary radius4. As per Proposition 4, sgt lies on the (open)

4The actual radius of GRst is 1− since sgt 6∈ GRst .
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surface of the hypersphere GRst . It can be shown that the following variables
take the values:

V(C(sgt , s
e
t )) = 104 V(GRst) ≈ 4.9348 |GRst| ≈ 4.9348 · 10−4 (4.71)

and, by complementarity:

V(LRst) ≈ 9995.0652 |LRst | ≈ 0.9995 (4.72)

When no neighbourhood shrinking is used (case 1), the stalling probability
is given by Proposition 5:

P (sgt = sg
t+sttl

) = 0.999515·8 ≈ 0.9425 (4.73)

When neighbourhood shrinking is used (case 2, shrinking factor α = 0.9),
the GRst region is unchanged, therefore its volume is the same. Local search
stalls after sttlt = 8 consecutive cycles of stagnation. For each of these cycles
of stagnation, neighbourhood shrinking is applied. The volumes of the initial
and final search scope are:

V(C(sgt , s
e
t )) = 104 V(C(sg

t+sttlt
, set+sttlt

)) = 343.3684 (4.74)

where se
t+sttlt

≈ 4.3047. The initial and final relative coverage of the GR

regions are:

|GRst| ≈ 4.9348 · 10−4 |GRs
t+sttlt

| ≈ 1.4372 · 10−2 (4.75)

According to Proposition 6 the stalling probability is now equal to:

P (sgt = sg
t+sttl

) =

sttlt∏
k=1

(
1− 1

αkN
|GRst |

)nr
=

=
8∏

k=1

(
1− 1

0.9k·4
(4.9348 · 10−4)

)15

≈ 0.67144

(4.76)

When a hyperspherical (isotropic) neighbourhood of radius sr = 5 (equiv-
alent to a cubic sampling with edge set = 10) is used (case 3), the search scope
volume V(B(sgt , s

r
t )) and the relative coverage of GRs are:

V(B(sgt , s
r
t )) ≈ 3084.2514 |GRst| ≈ 1.6 · 10−3 |LRst| ≈ 0.9984 (4.77)
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Sampling Type
Cubic Spheric

Predicted Experimental Predicted Experimental
Without NS 0.9425 0.9429 0.8252 0.8249
With NS 0.6714 0.67137 0.2725 0.2716

Table 4.2: Predicted stalling probability and experimental frequency of
stalling events for the four cases described in Section 4.4.2.

If neighbourhood shrinking is not used, the predicted stalling probability is
(Proposition 5):

P (sgt = sg
t+sttlt

) = 0.998415·8 ≈ 0.8252 (4.78)

If neighbourhood shrinking is performed (case 4), the volumes of the
initial and final (after sttlt = 8 consecutive cycles of stagnation) search scope
are:

V(B(sgt , s
r
t )) ≈ 3084.2514 V(B(sg

t+sttlt
, srt+sttlt

)) ≈ 105.9034 (4.79)

and the initial and final GRs relative coverages are:

|GRst | ≈ 1.6 · 10−3 |GRs
t+sttl
| ≈ 4.6597 · 10−2 (4.80)

The predicted stalling probability is (Proposition 6):

P (st = st+sttl) =
8∏

k=1

(
1− 1

0.9k·4
(1.6 · 10−3)

)15

≈ 0.2725 (4.81)

The theoretical predictions were numerically tested, performing 106 indepen-
dent optimisation runs for each of the above four cases. The results of the
tests are summarised in Table 4.2

The empirical results prove the validity of the theoretical predictions. In
particular, it is apparent that neighbourhood shrinking increases the proba-
bility of progress in local search, thus reducing the stalling probability. At
the same time, the empirical examples show the significance of the conse-
quences associated to the choice of neighbourhood shape. In general, the
analysis of this section points out that the standard practice of using cubic
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Figure 4.7: Stalling probability using different sampling methods, with and
without the neighbourhood shrinking. All the parameters are kept fixed
except the number of dimensions of the problem.

sampling should be reevaluated in term of the search bias introduced, and
the evolution of the stalling probabilities with repeated iterations of neigh-
bourhood shrinking. In detail, a hypersphere of diameter 2srt has a smaller
hypervolume than a hypercube of edge set = 2srt , and determines a more
exploitative search with higher probability of finding solutions in GRst .

The tests for the four cases were also repeated varying the dimensionality
of the fitness landscape from 2 to 10. The experimental results are shown
in Figure 4.7 and confirm that neighbourhood shrinking and hyperspherical
sampling are effective policies against premature stalling.

4.5 Discussion

There is a marked imbalance in the Swarm Intelligence literature, with a
prevalence of experimental over theoretical studies. Despite the large success
in applications, mathematical analysis of the algorithms is still limited, leav-
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ing several open questions on the behaviour, parameterization, complexity,
and nature of the various algorithms. Explanation of the metaheuristics is
often limited to the biological metaphor, which may prevent the reader from
gaining a full understanding of the search mechanisms (Camacho-Villalón
et al., 2018). The scarcity of analytical foundations in Swarm Intelligence
research has been pointed out by several authors (Yang, 2012; Swan et al.,
2015; Piotrowski, 2018).

In this thesis, the properties and main features of the Bees Algorithm were
formalised and analysed. Despite a number of experimental studies (Pham
and Castellani, 2009; Pham and Castellani, 2014; Pham and Castellani, 2015;
Hussein et al., 2017) benchmarked the capabilities of the Bees Algorithm, an
analytical investigation of its behaviour and operators had never been carried
out. The results of the proposed study clarify and support the previous
experimental findings, as well as reveal so far overlooked properties. The
main findings are summarised below.

The similarities and differences between the Bees Algorithm and standard
optimisation methods were discussed. In particular, the Bees Algorithm
can be regarded as a parallel version of the LJ Search and VNS methods,
where the sampling of the neighbourhood is adaptively allocated (waggle
dance) according to the fitness of the seed solution. In terms of local search,
the main difference with the two aforementioned methods is in the way the
neighbourhood is varied: the Bees Algorithm uses neighbourhood shrinking,
whilst VNS tries a number of randomly generated shapes, and standard LJ
shrinks the neighbourhood regardless of the progress of local search. Also,
the Bees Algorithm terminates the local search after stlim stagnation cycles,
whilst LJ Search customarily terminates the search after a fixed number of
iterations regardless of the progress. In terms of overall metaheuristic, the
Bees Algorithm performs several local searches in parallel, adaptively shifting
the sampling effort at each generation according to the progress of the search.
Neighbourhoods can be abandoned due to lack of progress, or replaced with
more promising ones found via global search. For a comparison between
the Bees Algorithm and akin swarm optimisation techniques (Kennedy and
Eberhart, 1995; Karaboga and Basturk, 2007) the reader is referred to (Pham
and Castellani, 2009).

The theoretical analysis of the properties of local search showed that the
expected step size quickly approaches the maximum value as the number of
forager bees is increased. If local search is desired to quickly climb (descend)
the fitness slope, a large neighbourhood size is more beneficial than a large
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number of foragers. Analysis of the stalling probability also found limited
benefits in increasing the number of local foragers. That is, neighbourhood
shrinking and a large stagnation limit are the most effective policies against
premature stagnation of local search. This latter result is in good agreement
with the indications of several experimental studies (Pham and Castellani,
2009; Pham and Castellani, 2014; Pham and Castellani, 2015), where the best
performances were obtained using the largest allowed value for the stagnation
limit stlim.

One of the main contributions of this theoretical analysis regards the
shape of the local neighbourhood. For ease of implementation, nearly all
versions of the Bees Algorithm used hypercubic local neighbourhoods. As
demonstrated, hypercubic sampling biases the search along the directions
of the diagonal, and has poor exploitation capabilities in high dimensional
spaces due to the curse of dimensionality. That is, the volume of hypercubic
neighbourhoods is a power function of the search scope edge se. As suggested
in Section 4.4, the neighbourhood shape might be varied during the search to
switch from explorative (cubic sampling) to exploitative (spherical sampling)
search strategies.

4.6 Conclusions

The Bees Algorithm is a popular optimisation method inspired by the for-
aging behaviour of honey bees. Despite several experimental investigations,
the properties of the Bees Algorithm has never been analysed formally. This
chapter covers this gap, focusing particularly on the properties of local search.

The main indications are that the local search capabilities of the Bees
Algorithm are mainly determined by the size and shape of the neighbour-
hood, and the number of allowed stagnation cycles. A large neighbourhood
enables a quicker progress on the fitness landscape. Conversely, reducing
the neighbourhood size helps avoiding premature stagnation of local search.
The effect of increasing forager recruitment on the expected search step size
(Section 4.2) and stagnation probability (Section 4.3) grows sublinearly with
the number of bees.

The shape of the neighbourhood function has been so far largely over-
looked in the Bees Algorithm literature. However, it was shown in Section 4.4
that the customary choice of hypercubic sampling creates large neighbour-
hoods in high-dimensional spaces due to the curse of dimensionality. On the
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other hand, hyperspherical sampling creates neighbourhoods of sizes that
vary according to the gamma function, and tend to become small in high-
dimensional spaces (zero for infinitely high-dimensional spaces). Thus, the
exploitation capability of local search is highly influenced by the choice of
neighbourhood shape.

Overall, the Bees Algorithm can be seen as a parallel adaptive version
of the LJ Search and VNS algorithms (Section 2.3), in which the modifica-
tion of the neighbourhood size and allocation of sampling opportunities are
dynamically adjusted according to the fitness of the neighbourhood centres
and the local progress of the search. Differently from LJ Search and VNS,
the Bees Algorithm also keeps on searching the fitness landscape for new
promising neighbourhoods via the global search procedure.

Throughout the chapter, the Bees Algorithm was presented in a rigor-
ously mathematical and algorithmic format, beyond the customary qualita-
tive description based on the biological metaphor. It is hoped that this new
formalism improves the understanding of the Bees Algorithm, and spurs new
analytical studies on its properties, and its similarities to and differences with
other Swarm Intelligence metaheuristics.
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Chapter 5

Local Optimum Region Radius
Estimator for Multi-Shape
Primitive Fitting

In this chapter the Local Optimum Region Radius Estimator (LORRE) al-
gorithm is described in detail, and its performance is demonstrated through
a number of experimental tests.

The results of the tests presented in Chapter 3 demonstrated the ability of
the Bees Algorithm to solve the primitive PF problem in PC scenes including
one shape only. However, many vision problems entail the recognition of
multiple instances of shapes in the same scene. As discussed in Section 5.2,
this case entails the location of multiple local optima corresponding to the
various shapes present in the scene. Furthermore, as shown later in the
chapter, a number of additional local optima are created by the combination
of groups of shapes. These additional optima do not correspond to a valid
solution, but create large spurious basins of attraction.

LORRE was created to prevent the BA from falling multiple times in the
same basin of attraction. That is, to force the algorithm to explore new areas
of the search space. The algorithm was inspired by the results of the analysis
of the BA dynamics presented in Chapter 4.

The approach used in LORRE is to couple the BA search with real-time
modification of the fitness topology, in order to discourage further searches
in already explored local optima regions. When local search is terminated at
a site (i.e. the site abandonment procedure is triggered), LORRE memorises
the local optimum and estimates the radius of a convex spherical region

77
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around it. This region could correspond to the entire basin of attraction
of the local optimum, or its largest spherical sub-region in case of a convex
or oblongated basin. The estimation of the radius is done using information
from the history of local search steps that brought to the optimum. Once the
radius is estimated, the region is ’filled’ to prevent new searches from falling
again inside. At the end of the search, the set of memorised local optima
is retrieved, pruned of the weakest solutions (poor local optima or solutions
found due to premature convergence), and returned. If only one optimum is
needed, only the best solution is returned.

The multi-shape problem is discussed in Section 5.2. In Section 5.3 the
key components and steps of LORRE are illustrated. Section 5.4 discusses
possible strategies for solution pruning. A brief discussion on the algorithm
behaviour and parameterisation is provided in Section 5.5, whilst Sections 5.6
and 5.7 report the results of two sets of experimental tests. In the first set
of experiments (Section 5.6), the algorithm is evaluated against benchmark
functions selected for their specific topological properties. In the second
set (Section 5.7), the algorithm is applied to an example of multi-shape PF
problem.

5.1 Introduction

In contrast with single-solution optimisation problems, where the location
of the global optimum (or a solution of comparable fitness) is sought, multi-
solution problems require the location of a set of n best (i.e. fittest) local
optima. In the first case, the search algorithm is required to converge consis-
tently to the global optimum. If randomly re-initialised, it should converge
again to the same solution, that is, to the optimum. In the second case, the
algorithm is required to converge to different local optima. If re-started, it
should converge to a previously not visited local optimum.

Many of the most popular optimisation metaheuristics are designed for
single-solution problems. Particularly in presence of one (a few) large attrac-
tion basin(s) in the search space, they tend to converge to the same (few)
solutions. This consistency is certainly a hindrance when looking for multi-
ple solutions, and may even be detrimental to single-solution problems if the
global fitness optimum has a narrow basin of attraction.

The BA (Pham and Castellani, 2009) is a biologically inspired search
metaheuristics originally designed for single-solution optimisation problems.
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The BA performs in parallel independent locally bounded searches on the
fitness landscape. Every time one of these local searches converges to a
peak, the site abandonment procedure re-starts it to a new random solution.
These features increase the exploration capability of the BA, and make it a
good candidate for multi-solution optimisation problems. Indeed, Pham et
al. (2007) used the BA for finding multiple solutions in a preliminary design
optimisation problem. However, the standard Bees Algorithm still lacks a
mechanism to avoid falling repeatedly into large basins of attraction.

In this work, a novel version of the BA was created to address the multi-
solution problem, and in particular to find as many different fitness optima
as possible. The proposed algorithm dynamically modifies the search space
once local search is exhausted at a site, ’plugging up’ the basin of attraction
of the found optimum with a filler, in case of minimisation problems, or
’levelling’ the local peak, in case of maximisation problems.

The two key aspects of LORRE are the smoothness of the region covered
by the filler, which can be tuned by a parameter, and the dynamic estimation
of the radius of the filled region. The first aspect is achieved by adding der-
ating functions to the original cost function. The second aspect is obtained
by analysing the geometric distribution of the worst solutions found in the
various iterations of the local search.

If the basin of attraction is not spherical, LORRE will plug up only a
sub-region of it. However, for reasonably smooth functions, this sub-region
will include the solutions of highest fitness, and the remaining region of the
basin of attraction won’t be attractive anymore to scout bees. In extreme
cases (e.g. a narrow valley), it may take more than one derating function
(i.e. more than one local searches) to fill the basin of attraction.

The idea of using a derating function to modify the search space and
fill up visited basins of attraction is taken from the SN technique (Beasley
et al., 1993). The main shortcoming of SN is that the radius of the derating
function is fixed for all basins of attraction and needs to be tuned manually
by the user. In the proposed algorithm the radius of the derating function
is automatically calculated from the distribution of the worst solutions, and
individually fitted to the estimated radius of each visited basin of attraction.

The idea of avoiding already explored sub-regions has been already con-
sidered in the BA literature in the context of single-solution problems. Shat-
nawi et al. (2013) modified the basic BA adding local and global memories
of the visited regions. Whilst the local memory is used by the individual
bees to avoid landing on the same solution twice, the global memory is used
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by the local search to avoid already explored regions. Another BA variant
(Imanguliyev, 2013) uses shift operators to identify planar sub-regions in the
search space, and includes them in a tabu list. The algorithm identifies a
planar sub-region when all the solutions sampled inside have a fitness score
within a fixed range. Unfortunately, Imanguliyev defined the shift opera-
tors only for one-dimensional problems, and it is not clear how to apply the
algorithm to most of practical problems which are multi-dimensional.

To address multi-solution optimisation problems, the proposed algorithm
uses information gathered from foragers that landed on solutions of low fit-
ness. As it will be shown in the following sections of this chapter, these
solutions provide useful information about the search space topology. This
information is discarded in the common BA practice, where in a local search
step all the solutions but the fittest are removed. To the best of the author’s
knowledge, the hybrid BA developed by Abdullah and Alzaqebah (2013) is
the only instance of BA where information from suboptimal solutions is used,
in that case to increase the exploratory ability of the algorithm.

5.2 Multiple Shapes in the Scene

As shown in Chapter 3 the Bees Algorithm is able to recognise primitive
shapes in a PC with accuracy comparable to the state-of-the-art. The tests
were carried out in scenes containing only one primitive shape (single-solution
problem). However, many practical applications involve the presence of mul-
tiple shapes in the same scene, of which the parameters need to be estimated.
In this case the BA, being a single-solution algorithm, is ill-suited to solve
a multi-solution problem. Pham et al. (2007) approached the multi-solution
problem keeping all the local optima found by the BA (i.e. all the centres of
the abandoned sites) as potential solutions. This approach will be discussed
more in detail in Section 5.7 and used as a baseline to benchmark the pro-
posed LORRE algorithm. For the sake of simplicity, in this study only scenes
containing multiple shapes of the same type will be considered. Shapes of
different types would give basins of attraction of different form, but wouldn’t
change the nature of the multiple shape problem.

Before presenting the LORRE, it is worthwhile to check if the fitness
function used for the single-shape problems in Chapter 3 is suitable to the
multi-shape case. Preliminary tests indicated that this was not the case.

To visualise the problem, a PC containing 2 spheres of unitary radius,
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respectively centred in (−2, 0, 0) and (2, 0, 0) was used (Figure 5.1a). A
certain number of co-planar candidate solutions (primitive spheres) of fixed
radius were generated in a grid, keeping the z-component of the centre fixed
at 0 and varying in steps the x and y coordinates on the z = 0 plane.
The fitness of each candidate solution was assessed using Equation (3.1).
Figure 5.1 shows how the fitness F topology varies in two cases: a population
of spheres of radius r = 1, and a population of spheres of radius of r = 2.

In Figure 5.1b, the maximum fitness score (best fitting primitives) is cor-
rectly located near the two centres [−2, 0] and [2, 0]. However, in Figure 5.1c,
where solutions of r = 2 were tested, the global optimum is close to the ori-
gin [0, 0]. Although in the case shown in Figure 5.1c no solution is correct
(the candidate solutions have radius r = 2 whilst the two primitives have
radius r = 1), the best solutions have a higher fitness score (0.8) than the
two perfectly matching solutions (of fitness 0.56) in Figure 5.1b.

This problem is probably due to the fact that the fitness function F is
invariant to the candidate shape size. This was not an issue related to the
single-shape problems because the normalising δmax term in Equation (3.1)
depends on the size of the PC, and can be considered an approximation of
the optimal shape size. In multi-shape problems, each single shape covers
only a fraction of the size of the whole PC. Consequently, the δmax term
fails to effectively normalise the fitness score of a candidate primitive. That
is, large candidate primitives (as in Figure 5.1c) yield a higher fitness score
than smaller primitives as in Figure 5.1b. To remediate this problem, a new
fitness function FMS that includes the size of the shape was devised:

FMS(I,PC) =
N∑
i=1

NC(pi, I)

(
1−min

(
1,
|δ(pi, I)|

λ

))
(5.1)

where λ is a shape-specific reduction factor defined as follows:

λ =


r sphere√
h2 + w2 + d2 box√
h2 + r2 cylinder

(5.2)

where r, h, w and d are the radius, height, width and depth, respectively.
As shown in Figure 5.2, the new fitness function correctly identifies the

centres of the two spheres as the regions of maximum fitness in both Fig-
ure 5.2a and Figure 5.2b. It is thus suitable to the multi-shape problem.



82 CHAPTER 5. LOCAL OPTIMUM REGION RADIUS ESTIMATOR

(a) Point Cloud containing two co-
planar identical spheres, viewed from
a direction perpendicular to the X-Y
plane

(b) F Landscape with r = 1 (c) F Landscape with r = 2

Figure 5.1: Point cloud containing two co-planar identical spheres of r = 1
and centre of (−2, 0, 0) and (2, 0, 0), respectively. The solutions are tested
with the fitness function F described in Equation (3.1). The fitness is
mapped where a candidate solution is centred.
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(a) FMS Landscape with r = 1

(b) FMS Landscape with r = 2

Figure 5.2: Point cloud containing 2 identical spheres of r = 1 and centred
at (−2, 0, 0) and (2, 0, 0), respectively. Candidate solutions are tested with
the fitness function FMS described in Equation (5.1). The fitness is mapped
where a candidate solution is centred.
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5.3 Description

The LORRE algorithm can be broken down into a number of basic parts. The
exploratory part aims to find the global optimum of a modified version of the
fitness function (Equation (5.8) in Algorithm 5.1). For this part the standard
version of the BA is used, with the only differences that a) every cycle of
the algorithm, the worst solution sampled during local search at each site
is memorised, and b) the solutions are evaluated on a dynamically modified
fitness function M instead of the original fitness function F (Equation (5.8)).

The fitness modification part is executed when the abandonment proce-
dure is triggered at a site. When this happens, the best found solution is
stored in the solution set, and the fitness function changed to avoid searching
again in the same region. The radius of the region is estimated analysing
the set of worst solutions sampled at each step of the local search at the site
(Section 5.3.1).

Finally the pruning part takes place when the main loop of the algorithm
is terminated (i.e. the stopping criterion has been met). In the pruning
part, the solution set is pruned of the least fit elements (Section 5.4), and
the remaining solutions are returned as the set of local optima found by the
algorithm.

The power of the LORRE algorithm comes from its ability to estimate
the extent of the heights in the fitness landscape. That is, given a found
optimum o, LORRE finds the largest sub-region of the solution space where
o is included, and where the F landscape is convex in case of minimisation
problems or concave for maximisation problems. This region may coincide
with the entire basin of attraction of o, or a subregion of it where (some of)
the solutions of highest fitness lie. Without loss of generality, unless otherwise
indicated, maximisation problems will be considered in this chapter.

Initially, the algorithm operates exactly as the standard BA, where in-
dependent local searches are performed in parallel at multiple sites in the
solution space. When at a step t the search at a site has stagnated for
stlim consecutive cycles, it is assumed that local optimum has been found.
The centre o and radius or of a region around this optimum is estimated
as described in Section 5.3.1. The optimum o is added to the set of found
local optima O and the fitness function is modified using a derating function
that lowers (or increases, in case of minimisation problems) the score of the
sub-region around o. The modified fitness function is then used by all sites
generated after step t. This process is repeated until the stopping criterion
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for the BA is met. When the algorithm is terminated, the set O contains
the list of all potential local optima of the fitness surface. This list will be
pruned (Section 5.4) of duplicate and weak solutions.

By dynamically estimating the radius of regions surrounding the local
optima, and discouraging further search in these regions via derating func-
tions, LORRE effectively addresses the multi-solution problem. Moreover,
since each local optimum radius is estimated individually, this method can
handle the presence of heterogeneous attraction basins (i.e. attraction basins
of different shapes and radius) on the fitness surface.

5.3.1 Local Optimum Region Centre and Radius Esti-
mation

In the BA the local optimum at a site is approached through a series of
local search steps (see Equation (4.1)). At each step, nr foragers sample
the search space in a neighbourhood centred on the best-so-far, and if one
of the forages lands on a better solution than the current best, it becomes
the new scout (i.e. the new centre of the neighbourhood). The remaining
nr − 1 scouts are discarded, together with the information they gathered
on the neighbourhood. It should be noted that the evaluation of the fitness
function F is usually the single most expensive operation, in computational
terms, in an optimisation technique (Castellani, 2018). Therefore, retrieving
and making use also of the information from the discarded foragers would
greatly improve the efficiency of the algorithm.

The key assumption of the LORRE is that at a late stage in a site lifetime,
the centre is likely to be close to the local optimum o. Once the optimum is
approximately located, local search may still yield a few iterations of minimal
progress (where the optimum is approximated with increasing precision), and
then stalls, shrinking the neighbourhood for stlim iterations until the site
abandonment procedure is triggered.

As discussed in Chapter 4, the solution sn marked by the scout in the
final stlim iterations is the best approximation of a local optimum sn ≈ o,
and thus will be used as the centre of the region that is excluded from future
searches (henceforth called the tabu region). The fitness landscape in the
tabu region is assumed to be convex and isotropic (symmetric) about the
optimum (e.g. a hypersphere or a paraboloid of revolution). The radius of
the tabu region needs then to be estimated.
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When the basin of attraction is not symmetric around the optimum,
LORRE is designed to define the tabu region in its largest convex and sym-
metric sub-region. This is done using the specific radius selection criteria
described in Section 5.3.1.

As local search progresses at a site, and the centre is located with increas-
ing precision, the shrinking procedure progressively reduces the edge ngh of
the neighbourhood. At a certain step k, the local search neighbourhood will
approximate the largest convex region around the optimum. That is, it ap-
proximates the region that will be set as tabu when the local search at the
site is exhausted. Starting from step k, there will be a direct relationship
between the proximity of a solution to the centre of the neighbourhood, and
its fitness. Consequently, the worst found solutions wt at each subsequent
step t = k, . . . , n will be near the border of the neighbourhood, and far from
o. Figure 5.3 shows this property for a one-dimensional fitness maximisation
problem.

Given a site s, the radius r ≈ or of the tabu region can be approximated
as follows:

1. collect all the worst solutions Sw = {w1, . . . , wn} sampled in all the n
local search steps performed in s.

2. select a border solution w∗ ∈ Sw according a given criterion;

3. compute the radius approximation r according the position of the bor-
der solution w∗;

Figure 5.4 shows in a minimisation problem how the contour of a local
optimum region can be inferred from the set of worst solutions Sw (in red),
and how this region can be plugged up using a derating function to discourage
further local searches. Some criteria for selecting w∗ are proposed in the next
subsection.

Radius Selection Criteria

The simplest criterion to select the border solution w∗ ∈ Sw would be to take
the solution wm of median distance to o. This idea exploits the fact that many
of the solutions wt ∈ Sw often lie at the boundary of the tabu region (see
Figure 5.3), and thus the element of median distance to the centre is likely
to be close to this border. With this approach the radius approximation r



5.3. DESCRIPTION 87

can be computed as the distance between w∗ and the best solution found in
site s, namely:

r = d(w∗, sn) (5.3)

Although simple, this criterion was empirically proven inaccurate when the
tabu region is small, relatively to the neighbourhood reduction stepsize (de-
fined by the stlim and α parameters). In this case the solution w∗ tends to
be located outside the tabu region border. Conversely, when the tabu region
is large, relatively to the neighbourhood reduction stepsize, the solution w∗

tends to be located inside the tabu region border. Both cases result in a poor
estimation of the radius r.

An alternative selection criterion that better exploits the topological in-
formation gathered by the site can be defined using the set of best solutions
S and the set of worst solutions Sw found.

This criterion looks for the topologically closest best solution s∗ to sn such
as there exist at least one worst solution w∗ topologically closer to sn with
worst fitness score than s∗. If such solution s∗ exists, this is likely situated
beyond the tabu region border. Both s∗ and w∗ can be formally defined as
follows:

s∗ = arg min
s∈S
{d(s, sn)|Ŵs,sn 6= ∅} (5.4)

where Ŵs,sn is the subset of worst solutions Sw defined as follows:

w ∈ Ŵs,sn ⇔ w ∈ Sw ∧ d(w, sn) < d(s, sn) ∧F (w) < F (s) (5.5)

If such s∗ exists, the radius can be estimated as:

r = d(w∗, sn) w∗ = arg min
w∈Ŵ
{F (w)} (5.6)

If such s∗ doesn’t exists, all the S solutions are likely being sampled inside
the same tabu region, so the radius can be estimated as:

r = d(s1, sn) (5.7)

5.3.2 The LORRE Algorithm Step by Step

The LORRE algorithm is based on the BA, therefore it is possible to de-
scribe its steps as a modification of the BA described in Algorithm 4.1. The
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most notable differences are the inclusion of a level variable sl associated to
every site, that is s = {sg, se, sttl, sl}, the adaptive fitness function M that
is initialised as F and is progressively modified by the addition of derat-
ing functions, and the estimation of the local optimum centre and radius,
computed every time a site stalls and stored in an ordered set O.

Each time a new scout is generated, it is evaluated on the latest modified
fitness function. If the scout finds a site which is chosen for local search, this
fitness function will be used to evaluate all the candidate solutions found
within the site by the foragers. In other words, the fitness function used to
evaluate the scout becomes associated to the site, and will be used until the
site is abandoned. The purpose of the level variable sl is to identify which
version of the modified fitness is used at the site. In practical terms, sl is a
counter that keeps track of how many sites had been abandoned at the time
local search was started at the site, and thus records how many derating
functions are used in the modified fitness function M . These modifications
to the BA are summarised in Algorithm 5.1.

The action of the derating functions on the fitness landscape is shown in
Figure 5.5 for one sample run of the LORRE algorithm.

The G function present in Equation (5.8) in Algorithm, 5.1 is a derating
function, which locally diminish the fitness score. Some examples of derating
functions are:

• proportional function:

Gp(s
g, o) =

{(
d(sg ,o)
or

)α
d(sg, o) < or

1 d(sg, o) ≥ or
(5.9)

which is Gp(s
g, o) = 0 when sg = o and increases progressively with

the distance d(sg, o) until d(sg, o) = or.

• exponential function:

Ge(s
g, o) =

{
elnm·

or−d(sg,o)
or d(sg, o) < or

1 d(sg, o) ≥ or
(5.10)

where α > 0 is a parameter, and m > 0 is the derating minimal value
that the function Ge takes when d(s, o) = 0 (i.e. Ge(o, o) = m).
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The above are standard derating functions used in the literature (Beasley
et al., 1993). Alternatively to the derating functions, a flat derating factor
can be used:

Mflat(s) =

{
ol d(s, o) < or

F (s) d(s, o) ≥ or
o = arg min

o∈Lopt

{d(s, o)} (5.11)

This derating factor can’t be used with techniques such as SN, since they
don’t use the topological information of the fitness landscape. The main
differences between using Equation (5.11) instead of Equation (5.8) are that
the penalising factor (i.e. ol = F (w∗)) is:

• not pre-set but derived from the local topology of F ;

• it covers the tabu region with a flat surface instead of a ’hole’ (max-
imisation problem) or a ’bump’ (minimisation problem);

The latter point is particularly important because it avoids the creation of
artificial basins of attraction such as valleys created by neighbouring derating
functions (see Figure 5.4b). For this reason, the modified fitness function of
Equation (5.11) will be used henceforth.

When the search part of the algorithm is terminated, a post processing
part is performed to select from the set O the best optima. This part is
described in the following section.
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Figure 5.3: The example shows and instance of BA local search on the one-
dimensional fitness function F (sg) = −sin(sg)/sg in the interval [6, 12]. The
neighbourhood is centred in sn (in blue) and the search is performed using
stlim = 5 and different nr. The worst solutions (in red) generated at each
step of the last stlim steps lie around the local optimum region boundary.
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(a) Before

(b) After

Figure 5.4: Minimisation problem on the multimodal fitness landscape of the
Schwefel function (Laguna and Marti, 2005). The tabu region is delimited
using the best (blue) and worst (red) solutions found during the local search
(a), and a derating function is applied to ’plug’ the hole and discourage
further searches in the region (b).
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LORRE Algorithm: Main Steps

1. (Initialisation) Every initial solution is generated with a 0 level,
namely sl = 0, and the local optima set is initialised as O = ∅;

2. (Modified Fitness) Every solution s is evaluated by the following
modified fitness function M :

M (sg) = F (sg)

sl∏
i=0

G(sg, oi) (5.8)

where oi is the ith found optimum in O and G(sg, oi) is a derating
function.

3. (Level Adjustment) Every time a new candidate solution s is
generated, its level sl is set as follows:

• if s is a scout bee used in the global search, then sl = |O|;
• if s is a forager bee of the site v, then sl = vl;

4. (Optimum Estimation) When a site stalls:

(a) its best local solution sn becomes a new optimum o with radius
or found as following the steps suggested in Section 5.3.1 and
derating level ol = M (w∗);

(b) the new local optimum is added to the solutions set O = O∪o;

5. (Search Termination) Terminate the search process when a stop
criteria is met;

6. (Solutions Pruning) Prune the local optima set O from all the
solutions that are unlikely to be distinct local optima of F , following
the steps explained in Section 5.4;

7. (Algorithm Termination) The algorithm terminates returning
the pruned local optima set as a list of local optima of F ;

Algorithm 5.1: The LORRE Algorithm
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(a) First iteration (b) 16th iteration

(c) 70th iteration (d) 200th iteration

Figure 5.5: Modified search space on the Griewank (Molga and Smutnicki,
2005) function (minimisation problem). Proportional derating functions with
dynamically estimated radius are progressively added every time a local min-
imum is found.
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5.4 Strategies for Solutions Pruning

Once the exploratory part of the LORRE algorithm is completed, the set of
candidate optima O will contain several solutions. These solutions may be:

(i) valid optima, that are a good approximation of the local optima of F ;

(ii) duplicate solutions, or other solutions from the same basin of attraction
but of lower fitness;

(iii) spurious optima, solutions away from optima in F , either due to pre-
mature convergence of the local search at a site, or artifacts introduced
by the application of the derating functions in M ;

Pruning the solution set from duplicate and spurious optima is not a trivial
task, and is a common problem in multi-solution optimisation. The most
reliable way to select the best optima is to use domain knowledge to weed
out spurious, duplicate, and low-fitness solutions. When this knowledge is
not present, some heuristics can be used to perform the selection.

Spurious optima (iii) are mainly created in the last iterations of the al-
gorithm, when most or all the optima in F have already been found and
the landscape created by M is mainly determined by the derating functions.
A fitness-based ranking procedure is therefore able to eliminate most of this
kind of optima.

Duplicate optima (ii) are possible since at any time several (at most nb)
sites use the same modified fitness function. This happens at the start of
the LORRE algorithm when no site has yet stalled, and the original fitness
function F is used at all sites. After the fitness function has been modified,
any two or more sites initialised at the same step (at most all nb) will share
the same fitness function. In this situation, it is possible that some or all the
sites sharing the same fitness function converge at the same optimum. These
duplicate solutions can be detected by their similarity.

Since often only optima of very high fitness are sought, another possible
pruning strategy is to rank all the solutions oi ∈ O by their fitness score,
and use a finite difference operator D to assess where the fitness presents
a sharp decrease. The D operator approximates the first derivative for the
fitness score in the discrete space of the ranked solutions, and can be defined
as follows:

D(t) = F (oi)−F (oo−1) i > 1 (5.12)
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In conclusion, since the problem of selecting the local optima is specific to
the topology of F and the task, an optimal pruning criterion doesn’t exist.
Instead, different pruning filters can be implemented, and some examples
based on the above remarks are summarised as follows:

domain-guided the motivation behind the use of a search metaheuristics is
that often very little is known about the possible solutions. However,
depending on the domain, some properties of the desired solutions may
be known, and these properties can be used to guide the pruning pro-
cess. For instance, in certain cases a minimum fitness score is given for
acceptable solutions. This information can be used to rule out subop-
timal solutions from O (absolute cut-off );

percentile cut-off the solutions in O can be sorted according to their score,
and only solutions within a certain percentile are retained.

derivative cut-off the above absolute and percentile cut-off criteria rely on
domain knowledge, which is not always available. Using the function
defined in Equation (5.12) it is possible to establish a cut-off point at
a given solution ot ∈ O based on the D(t) signal. Sorting the elements
of O in descending order, D(t) is always non-positive. A cut-off point
can then be defined where the absolute difference D(t)−D(t+ 1) > c
or the relative difference D(t+1)/D(t) > c.

similarity-based two or more sites may find the same local optimum. Du-
plicate solutions can be detected by their similarity, and the time when
the local search was initialised. Only the fittest element of two or more
duplicate solutions is kept.

level-based sites generated at the same time use the same modified fitness
function (Section 5.3.2). The level variable sl identifies which modified
version of the fitness function is used at a site. Thus, two topologically
close solutions (having overlapping derating functions) found by sites
using the same fitness function (same level), are likely to come from
the same basin of attraction.

Figure 5.6 shows an example of pruning techniques applied on the solutions
found by a run of the LORRE algorithm used to find the minima of the
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Griewank function in [−5, 5]. In this example, the first sites generated der-
ating functions of peak values of about1 −1 with a radius that covers most
of the local optima region. However, the points outside those regions have a
lower score than −1 so the next solutions still tend to stall in the same regions
becoming duplicated optima and, as it’s possible to see in the top-rightmost
part of Figure 5.6b, deceptive optima. These optima are removed applying
different filters. A simple absolute cutoff (at −0.3) is able to remove most
of the unwanted solutions (see Figure 5.6c) and a further level-based filter
removes the duplicates almost completely (see Figure 5.6d).

1since this is a minimisation problem, the values of the Griewank function have reversed
sign in F .
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(a) F function (b) unfiltered solutions

(c) absolute cutoff (d) absolute cutoff and level-based

Figure 5.6: Example of solutions found on the Griewank function (minimi-
sation problem) and the effect of different solutions pruning filters applied
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5.5 Some Considerations

When a site is abandoned by BA at iteration t, a derating function is applied
to F at the location of the optimum o, to create a modified fitness function
M . This new function M will be used by all the scout bees (and any forager
they may recruit) generated from iteration t + 1 onwards, until a new site
abandonment triggers another modification to M .

Given that exhausted sites are abandoned asynchronously, to be replaced
by new sites using a modified fitness function, it can be said that LORRE
performs in parallel different local searches on different fitness landscapes
(unless search in two or more sites is initialised at the same time). This
introduces the problem of comparing the fitness of the scouts (i.e. the fittest-
so-far solutions) of different sites, since the fitness evaluation criterion is not
the same for all sites. This problem exists when the solutions created using
global search are compared to the solutions of local search, to select the next
nb sites for local search. Consequently, global search may be best avoided in
the LORRE procedure, with exception for:

• The initialisation (step 1 of the algorithm), where only scout bees are
used. In this case, all the scouts evaluated on the same fitness function
F ;

• The BA iteration after a site is abandoned, nrb scout bees may be sent
out to perform global search, and the best solution found becomes the
centre of a new local search site . These scout bees are evaluated on
the same fitness function (i.e. M with level l = |O| maximum) and are
not compared with other existing sites;

For the same reason, partitioning the best nb sites into elite and best, with
a different allocation of foragers for the two groups, should be avoided in the
LORRE procedure.

5.6 Tests on Benchmark Functions

To assess the performance of the LORRE algorithm, 3 tests cases have been
selected, and the performance of the proposed algorithm is evaluated against
a standard BA using Sequential Niching (SN) to prevent further searches
near already discovered optima. Since SN and LORRE use the BA for search,



5.6. TESTS ON BENCHMARK FUNCTIONS 99

the differences found in the results will be determined by the way the two
algorithms modify the fitness landscape.

Selecting the correct derating radius in the SN algorithm is of crucial
importance. This task is often very difficult, since the radius of the optimum
region (the equivalent of the tabu region for LORRE) is only guessed without
using any information from the search. To simplify the task, in this study the
dimensionality (number of independent variables) of the benchmark functions
is reduced to two.

Two popular benchmark functions were selected from the literature for
the tests because of their topological properties, together with a third custom-
made function. These benchmark functions have been designed as minimi-
sation problems, therefore the algorithms will be set in finding the global
minimum. For consistency reasons, the third custom-made function is also
designed to model a minimisation problem. The first benchmark is the
Griewank function (Molga and Smutnicki, 2005), considered for −5 ≤ xi ≤ 5
and defined as follows:

Griewanklowered(x, y) = 1 +
1

4000
(x2 + y2)− cos

(
x · y√

2

)
− 2 (5.13)

This definition, here called lowered Griewank, differs from the original one
only for the −2 term, a modification made necessary only for technical rea-
sons. The implementations for the SN and LORRE algorithms used in these
tests always maximise F , so in order to minimise a target function g(x), the
fitness function is set as the opposite of the target function F (x) = −g(x).
The values of the Griewank function, as it is defined in literature, are always
positive. As a result the values of the fitness function F used to minimise
the Griewank function are always negative. This create problems with the
derating functions Equations (5.9) and (5.10) defined in the SN, which work
as intended only when the fitness function is positive. Adding the −2 term
in the Griewank definition makes F always positive, solving this issue. No-
tably, the derating procedure described in Equation (5.11), unique to the
LORRE algorithm, doesn’t suffer of the same problem, working as intended
even when F is negative.

The Griewank function presents clearly discernible optima of similar depth
situated in symmetric positions. All the attraction basins of the optima are
large and have the same radius. This function therefore presents the ideal
conditions for the application of the SN algorithm which uses derating func-
tions of fixed pre-set radius.
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Another function that presents multiple symmetric optima was made
specifically for this study and, considered for −20 ≤ xi ≤ 20, is defined
as follows:

H&H(x, y) = −
n∑
i=1

NPDF (x, y, µi, Ci) ∗ vi (5.14)

where NPDF is the probability density function of the multivariate normal
distribution of average µi and covariance matrix

Ci =

(
ci 0
0 ci

)
The last coefficient vi is used to lower/rise the local minima. The actual
values of the coefficients are defined in Table 5.1. This function will be

i µi ci vi
1 [0, 0] 10.5 2.0
2 [20, 0] 14.0 2.5
3 [0, 20] 16.0 2.7
4 [−20, 0] 12.0 2.5
5 [0,−20] 9.0 2.3
6 [10, 10] 0.1 0.05
7 [−10,−10] 0.2 0.3
8 [−10, 10] 0.25 0.24
9 [10,−10] 0.17 0.23

Table 5.1: Coefficients values for the Hills & Holes 5.14 function.

henceforth called Hills & Holes. Differently from the Griewank function, Hills
& Holes presents basins of attraction of very different radius. Furthermore,
the basins of deepest holes are the narrowest. This function is expected to
be more difficult for the SN algorithm, since a an optimal radius of fixed
size doesn’t exists for the derating functions. In the experiments, two SN
algorithms using derating functions of different radii are evaluated.

The last benchmark is the 2D Michalewicz (Molga and Smutnicki, 2005)
function, considered for 0 ≤ xi ≤ π, which is defined as follows:

Michalewicz(x, y) = − sin(x) sin20

(
x2

π

)
− sin(y) sin20

(
2
y2

π

)
(5.15)
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The Michalewicz function is characterised by two relatively close main min-
ima2 at the crossing of valleys and surrounded by plateaux. This function
should be the most difficult for SN amongst those considered, since it is
very easy to exclude one or both the main minima with a derating function
misplaced in one of the valleys. The three functions are shown in Figure 5.7.

The domain where the three benchmarks are defined, together with the
parameters used for the algorithms are given in Table 5.2. The algorithms
were parameterised by trial and error. For two benchmarks, the radius of
the derating functions for the SN algorithm was optimised to fit as closely as
possible the basin of attraction of the main (Michalewicz) or all (Griewank)
the local minima. This setting is the most favourable for SN. In the case of
Hills & Holes function, there is no one radius that fits all basins of attraction,
so the algorithm was tested in two parameterisations: one where the derating
functions use the radius that fits the narrowest basins, and one where it fits
the widest basins.

In all cases, the parameters ns, ne and nre in the BA used by the SN and
LORRE are set to 0 (Section 5.5). SN changes the fitness landscape (Sec-
tion 2.4) every 15 iterations of the BA. Given the simplicity of the bench-
marks, this interval is adequate to locate with good accuracy one of the
minima.

The total number of derating functions added (i.e. stops and restarts
with a modified fitness function) is equal to the number of optima (no) in
the benchmark function. This setting too creates the optimal conditions for
SN to find all the optima in the fitness landscape, without generating any
further spurious solutions once all the basins of attraction have been filled
by the derating functions. The LORRE algorithm terminates after 15 · no
iterations, performing thus the same number of fitness evaluations in one run
as SN (the two algorithms are parameterised to perform the same number of
fitness evaluations per iteration).

5.6.1 Evaluation Criteria

The LORRE and the SN algorithms were tested on the three becnhmark
functions described in the previous section. Their performance is evaluated
as follows:

2In the experiments the strict variant of optimum o definition is used: ∃ε > 0 | F (x) <
F (o)∀x ∈ B(o, ε)
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(a) (lowered) Griewank

(b) Hills and Holes

(c) Michalewicz

Figure 5.7: Functions used in the experiments.
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Function Algorithm nb nrb stlim Iterations Derating Radius

Griewank
SN 5 8 5 60 2

LORRE 5 8 5 60 -

Hills & Holes
SN 1 4 3 120 [2, 5.5]

LORRE 1 4 3 120 -

Michalewicz
SN 5 10 6 30 0.25

LORRE 5 10 6 30 -

Table 5.2: Algorithm parameters used for the different functions.

1. Each algorithm (LORRE or SN) is run until the pre-set maximum
number of iterations is reached;

2. Two different instances of SN using different derating radius are eval-
uated.

3. All the found solutions O are extracted and, in case of the LORRE,
filtered using absolute cut-off and level-based pruning filters;

4. For each test, an error value is generated as follows:

Error(O) =
1

no

no∑
i=1

min
o∈O
{d(o, roi)} (5.16)

with ro1, . . . , rono optima of the function F .

Equation (5.16) takes every peak in the fitness landscape (roi), and finds its
distance from the closest found solution (o). In the ideal case that the algo-
rithm under evaluation has located all the local optima with good accuracy,
there will be a closely matching solution for each optimum (d ≈ 0, and the
total error value will be small or zero. If one or more fitness optima were
missed or poorly approximated (e.g. local search stalled prematurely), the
distance of the closest solution from the optimum will be significant, and the
error value large. Thus, the measure in Equation (5.16) captures the ability
of an algorithm to locate all optima as well as its precision in locating them.

5.6.2 Experimental Results

For each function, both algorithms were run 100 times, and the five number
summary of the error values is presented in Table 5.3. The table shows that
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with exception of the Griewank function, LORRE always outperforms SN.
In the case of the Griewank function, it should be remembered that the
experiment is strongly biased in favour of SN, since the algorithm is given
the exact radius of the minima whilst LORRE must find it. Despite being at
disadvantage, the results obtained by LORRE are very close to those obtained
using SN. The differences in performance are particularly noticeable in the
Hills & Holes function, where there is no one radius that fits all holes.

Function Algorithm min 1th q. median 3th q. max

Griewank
SN 3.157× 10−2 6.560× 10−2 8.417× 10−2 9.740× 10−2 1.400× 10−1

LORRE 1.582× 10−2 8.456× 10−2 1.231× 10−1 1.664× 10−1 2.684× 10−1

H&H (r = 2)
SN 1.994 3.547 4.734 5.397 8.017

LORRE 1.387 2.426 2.955 3.481 5.242

H&H (r = 5.5)
SN 3.489× 10−1 3.171 3.552 4.617 6.112

LORRE 1.387 2.426 2.955 3.481 5.242

Michalewicz
SN 4.438× 10−3 5.704× 10−1 5.748× 10−1 5.825× 10−1 6.128× 10−1

LORRE 1.873× 10−3 3.059× 10−2 5.502× 10−2 5.732× 10−1 6.917× 10−1

Table 5.3: Five Values Summary of the error for the different test cases.

In conclusion, the above results show that even using the most favourable
settings for SN, LORRE is highly competitive on multi-solution problems.

5.7 LORRE Applied to Multi-Shape Prob-

lem

The results of the tests reported in Section 3.3 suggest that the BA is a
good technique to tackle the single-shape PF problem, whilst the results in
Section 5.6 suggest that the LORRE algorithm is a good technique to tackle
multi-solutions problems. In order to assess the most innovative aspect of the
LORRE algorithm, namely its ability to exclude already explored regions, it
is here tested against the regular BA. Since the base search mechanism is
identical, if the tests will show any difference, this difference will be due to
the effect of the derating functions applied to the local optima regions in
the LORRE algorithm. In the case of the BA all the found solutions will be
evaluated, in contrast with the LORRE algorithm, where the found solutions
are pruned before the evaluation step. For each type of shape, 20 different
instances of PC were created, each instance containing multiple instances of
the shape were performed. Each individual instances featured a PC including
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8 equidistant shapes placed on a symmetrical grid at points (x, y, z) where
x, y, z ∈ {0, 3}. Each shape in a PC is composed of 100 points, has a random
size of extremes as in Table 5.4 and, when applicable, a random rotation.

Size Parameter Sphere Box Cylinder
radius (0.3, 1.0) - (0.3, 1.0)
height - (0.3, 1.0) (0.3, 1.0)
width - (0.3, 1.0) -
depth - (0.3, 1.0) -

Table 5.4: Parameter ranges for the random shapes generation.

The BA and LORRE algorithms were differently parameterised for each
shape type. The parameterisation of the two algorithms is given in Ta-
ble 5.5, and has been optimised via trial and error. Using the parameters in
Table 5.5, the two algorithms exactly sample the same number of solutions
in the solution space.

The range of the solution space was set to [−5, 5] for each centre coordi-
nate, and [0.1, 10] for the size parameters for both the algorithms. On each
PC, the BA and LORRE algorithms were run for 200 iterations.

The final solution sn = o found at each stalled site, as well as all the
current centre of the sites that had not yet stalled when the algorithm was
terminated, were included in a set O. The error of an algorithm, with a
solutions set O, on a PC composed by the set of 8 primitives P is computed
using the formula in Equation (5.16) (no = 8):

E(S, P ) =
1

8

∑
p∈P

min
o∈O
{d(p, o)} (5.17)

Shape Algorithm ns nb ne nrb nre stlim

Sphere
BA 0 2 1 4 8 5

LORRE - 4 - 3 - 2

Box
BA 0 5 1 10 20 5

LORRE - 5 - 12 - 4

Cylinder
BA 0 5 1 10 12 5

LORRE - 4 - 13 - 3

Table 5.5: Algorithms Parameters for the different shape types.
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where d(p, o) is the distance between each of the 8 primitives p and a solu-
tion o. This distance is computed as the Euclidean distance of the vectors
composed by the shape centre and size parameters. This error metric has
been chosen for its simplicity.

For each test, 10 independent runs were performed for each algorithm,
and the five number summary of the results is shown for each type of shape
in Table 5.6 and fig. 5.8.

The Mann-Withey test was used to assess the significance of the differ-
ences between the results obtained by the two algorithms. For each shape,
the Mann-Withey test compared the error results attained on the 200 inde-
pendent tests performed (10 independent runs for each of the 20 test PC).
The p-values obtained in the Mann-Whitney tests are smaller than 4 · 10−55,
indicating that the results on each shape are significantly different.

Shape Algorithm min q1 median q3 max

Sphere
BA 2.927 3.366 3.429 3.472 3.607

LORRE 1.092 1.574 2.015 2.415 3.533

Box
BA 4.617 5.909 6.611 7.236 8.985

LORRE 2.443 3.704 4.329 5.002 6.462

Cylinder
BA 3.412 4.707 5.407 6.154 7.918

LORRE 2.035 2.925 3.426 4.057 5.546

Table 5.6: Error values of the multi-shape tests of the BA and LORRE
algorithms as five values summary.

5.7.1 Discussion

It is useful to notice that the terms of the comparison are biased towards the
BA for the following reasons. First, once the local search stalls at (near) a
fitness peak, LORRE is prevented from returning to the local optimum by a
derating function. Contrarily, in the the BA other instances of local search
(i.e. scouts) may re-discover the same peak and further improve the accuracy
with which the peak is located. Second, the error function defined in Equa-
tion (5.17) takes into account, for each shape, only the best approximation
amongst all the solutions found by the BA. In the case of LORRE, Equa-
tion (5.17) uses only the solutions that have been selected after the pruning
process. If one of the peaks hasn’t been found with high accuracy, it may
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Figure 5.8: Graphical representation of the multi-shape test results for
spheres, boxes and cylinders. The LORRE results are in blue.

get filtered out from the set O. In summary, the risk mistakenly removing
a poorly approximated peak compounds the problem that LORRE has only
one attempt to locate with precision a peak. Removing the pruning step to
evaluate the two algorithms on a more equal footing would not be correct,
since pruning is an integral part of multi-solution problems.

Despite the biases discussed above, the experimental results reported in
Table 5.6 show that LORRE attains a smaller error than the standard BA
in the identification of all shapes.

5.8 Conclusion

In this chapter a new algorithm for the multi-solution problem has been pre-
sented. Topological information on the fitness landscape given by the worst
solutions produced by local search is discarded in standard BA practice. Con-
versely, LORRE exploits this information to create tabu regions that exclude
already explored regions from future local search attempts. LORRE stands
out from similar state-of-the-art multi-solution techniques for its ability to
dynamically estimate the radius of already visited regions in the search space
as well as the capability of using different radii for different regions.

In this chapter several pruning criteria for the found solutions were also
provided. It is worth noticing that the pruning problem is often overlooked
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in the discussion of similar multi-solution techniques like the EA variant with
fitness sharing and the SN.

The performance of LORRE was assessed on different benchmark func-
tions as well as on the real-world problem of multi-shape recognition PF. In
the latter case, the LORRE performances compared to the BA showed how
the heuristics introduced are beneficial in solving a practical multi-solution
problem. In the former case, the algorithm outperforms the SN, a state-of-
the-art technique in the multi-solution problems. These results are particu-
larly interesting, considering the tests on the benchmark functions with the
derating radius, in the SN, is set to optimal values for the different functions
and the tests on the multi-shape problem are similarly biased in favour of the
BA. The promising results of these preliminary tests suggest that LORRE is
suited to tackle multi-solution problems, and can be a valuable tool in many
practical applications.



Chapter 6

Conclusions

In this work, PF has been approached as a numerical optimisation problem.
Two different solutions have been proposed, respectively variants of EA and
BA, and the results achieved suggested the BA as the most fit solution for
the problem, even in presence of noisy models. This approach yields the
competitive advantage of not requiring ad-hoc assumptions on the object
scanned.

The work done on the PF problem motivated a deep analysis of the BA,
with a focus on the statistical properties of the sequence of local searches
performed by a site. The study started from a mathematical formalisation
of the BA, and performed an a-posteriori analysis on a site lifetime, from
its inclusion into the nb best sites, to its abandonment. The stalling proba-
bility was evaluated in different cases, with and without the neighbourhood
shrinking heuristics. The effect of different parameterisations of the BA was
statistically analysed. The results of the analysis yielded useful information
on trade-offs such as the stagnation limit stlim versus the number of foragers
nr at a site. The results of the analysis confirmed experimental findings from
the literature, and provide useful guidelines for the parameterisation of the
Bees Algorithm. Finally, for the first time the effect of the choice of neigh-
bourhood shape on the algorithm performance has been discussed, and the
results are particularly relevant for high dimensional problems.

Similarities and differences between BA variants and similar algorithms
(e.g. LJ Search and VNS) were discussed where appropriate. This work of
analysis of the BA is particularly significant for the Swarm Intelligence field,
where theoretical studies are usually scarce and limited in scope, and the
literature is overwhelmingly composed of empirical studies.
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The study of the BA local search drew the attention on the possibility
of inferring the local topology of the fitness landscape from the results of
the sampling within one neighbourhood. This led to a novel approach to
discourage further searches in already visited regions of the solution space.
This approach was implemented in the new LORRE algorithm, which was
conceived with the aim of solving multi-solution optimisation problems. The
motivation for the LORRE algorithm was to find multiple primitives in one
PC. The LORRE algorithm was proven competitive with the well-known
SN algorithm on a number of benchmark functions. Tested on multi-shape
models, LORRE confirmed its competitiveness and accuracy. The results
of the tests presented in this thesis indicate that the LORRE algorithm is
a promising innovative approach for finding multiple local optima in multi-
modal functions.

6.1 Future Work

This thesis included a thorough statistical analysis of the BA, provided a
general approach to the PF problem, and devised an innovative technique
for the multi-solution optimisation problem. Perhaps most importantly, this
work provided the ground for interesting future research directions.

Chapter 3 presented a new method to fit geometric primitives to PC
models. Three different types of primitives were considered: spheres, boxes
and cylinders. However, the proposed approach is general enough to be used
on other primitive shapes. Furthermore, the technique can be used to fit
non-primitive shapes, provided a point-to-surface distance and normal con-
cordance can be defined (see Equation (3.1)). Further work should extend
the application of the proposed approach to other kinds of primitives. Com-
binations of primitives could be used to create more complex shapes.

The experimental tests proved the robustness of the BA to deal with sam-
pling error, which simulates sensor imprecision. Further work should inves-
tigate the ability of the proposed algorithm to fit partially occluded shapes.
This occurrence is common in many real-world applications, particularly in
cluttered and unstructured (e.g. outdoor scenes) environments.

The BA analysis in Chapter 4 shed light on some dynamics of the algo-
rithm. This however is not an exhaustive study. The dynamics of multiple
local searches, and their relations with the global search carried out by the
random scouts, have been only mentioned in this work. These dynamics



6.2. CONTRIBUTIONS OF THIS THESIS 111

deserve a deeper analysis.
Section 4.4 analysed for the first time the implications of the choice

of neighbourhood shape for the local search, especially in the context of
exploitative search in high dimensional problems. This preliminary study
should be deepened and expanded, and the results could be utilised to opti-
mise the exploitative search of the algorithm.

The experiments performed in Chapter 5 suggest that the LORRE algo-
rithm is a valid approach for multi-solution optimisation problems. One of
the main advantages of LORRE respect to similar multi-solution techniques,
is that it doesn’t employ a pre-fixed derating radius. At present, its main
limitation is that it works optimally on isotropic basins of attraction; that
is, on attraction basins that are symmetric about the optimum. A more
sophisticated approach would be to use anisotropic derating functions, for
example hyper-ellipsoids instead of hyper-spheres. The same considerations
made in Section 5.3.1 to draw the borders of isotropic regions, can be made
to delimit more complex shapes in the fitness surface.

The preliminary experiments on the multi-shape problem described in
Section 5.7 showed promising results. However, the complexity of this prob-
lem demands a deeper validation of the fitness function proposed in Equa-
tion (5.1) on more complex cases, such as partly occluded shapes, heavy
background noise, etc. The presence of shapes of different type in the same
scene must also be considered. Finally, the evaluation of the proposed method
on real scenes is needed to provide the final validation for use in real-world
applications.

6.2 Contributions of this Thesis

The work undertaken by the author in the PhD program and detailed in this
thesis brought the following scientific contributions:

• it provided two numerical optimisation solutions to the PF problem,
one based on an EA and another based on the BA. Experimental eval-
uation of the two methods was carried out;

• it formalised for the first time the BA in mathematical terms, as a
necessary step towards a formal analysis of the algorithm;

• it performed a statistical analysis of key parts of the BA, with a focus
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on the dynamics of the sequence of consecutive local searches at a site,
including:

– the analysis of the progress of local search at a site, including the
determination of the a) expected reach and b) upper bound on
the speed of convergence to a local optimum;

– the analysis of the stalling probability at a site, and its impact on
the accuracy of the local optimum approximation;

– the analysis of the trade-off in the allocation of sampling resources
between stagnation limit (when search at a site is deemed ex-
hausted)) and number of foragers per BA cycle.

– the analysis of the implications of the choice of shape for the
neighbourhood in local search, and the potential impact of this
choice on the local search progress in high dimensional optimisa-
tion problems;

• designed and implemented an innovative algorithm, called LORRE,
suited to finding the best local optima in multimodal functions;

• tested the LORRE algorithm on a selected number of optimisation
benchmarks, and successfully applied it to the multi-shape variant of
the PF problem;

6.3 Publications Arising from this Thesis

The work undertaken in the PhD program and described in this thesis re-
sulted in the following publications:

• Pham, D.T., Baronti, L., Zhang, B. and Castellani, M., 2018. “Optimi-
sation of Engineering Systems With the Bees Algorithm.” International
Journal of Artificial Life Research (IJALR), 8(1), pp.1-15.

• Baronti L., Alston M., Mavrakis N., Ghalamzan A. M. and Castellani
M. “Primitive Shape Fitting in Point Clouds Using the Bees Algo-
rithm.” Under second revision for Applied Sciences.

• Baronti L., Castellani, M. and Pham, D.T. “An Analysis of the Search
Mechanisms of the Bees Algorithm” Under first revision for Swarm
and Evolutionary Computation (SWEVO).
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Part of this work has also been presented in the following conferences:

• Baronti L. and Castellani, M. 2018 “Application of LORRE, a Novel Al-
gorithm for Multi-Modal Optimisation to Shape Recognition for Robotic
Manipulation in Disassembly Operations.” III International Workshop
on Autonomous Remanufacturing (IWAR)

• Castellani, M. and Baronti L. 2018, Primitive fitting based on the Bees
Algorithm for robotic disassembly in remanufacturing. First Interna-
tional Workshop on Application of the Bees Algorithm in sustainable
development (IWABA 2018), Hanoi, Vietnam
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