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Abstract

This research project consists of using the theory of perverse equivalences to study Broué’s

conjecture for the principal block of some finite groups when the defect group is elementary

abelian of rank 2. We will look at G = Ω+
8 (2) and prove the conjecture in characteristic 5,

the only open case for this group. We will also run our algorithm for the principal 5-block of

G = 2F4(2)′.2, Sp8(2) and the principal 7-block of 3D4(2); for those groups, it seems that a

slight modification of our method is required to complete the proof of the conjecture. Finally,

we will see what happens when we apply our method - which is mainly used for groups G of

Lie type - to some sporadic groups, namely G = J2, He, Suz, F i22.
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INTRODUCTION

Let G be a finite group and ` a prime number. In representation theory, it is an open problem to

determine how and why some aspects of the representation theory of G are somehow controlled

by the family of subgroups of the form NG(Q), where Q is a non-trivial `-subgroup of G; such

subgroups are called `-local. The amount of information that `-local subgroups carry about the

representation theory of G is the content of a family of conjectures - most of them far from

being solved - that we usually refer to as “local-global conjectures”. One of the oldest and

most notable ones, and also very easy to state, is McKay’s conjecture (1972), predicting that

the number of irreducible representations over C of dimension not divisible by ` is the same for

G and NG(P ), where P ∈ Syl`(G); namely, the number Irr`′(G) is determined by the `-local

subgroup NG(P ). Most of these conjectures are actually taking place at the level of `-blocks

of G rather than G itself, and the bridge between blocks of G and blocks of the given `-local

subgroup is provided by a crucial result of local-global theory, the Brauer correspondence.

The first version of the Brauer correspondence appeared in 1944 in the article of Richard

Brauer [6], and it represented a remarkable result for the future development of Block theory

of finite groups and modular representation theory. Briefly, for a fixed subgroup H ≤ G, under

certain conditions there is a bijection between `-blocks of H of a fixed defect group D and

`-blocks of G with the same defect group; this will be precisely stated in Theorem 1.1.7. The

most relevant and interesting situation occurs when H = NG(P ), where P ∈ Syl`(G). Forty-six

years later, in 1990, Michel Broué conjectured in [9] that this is not a mere correspondence,

and that the `-block b of H and the corresponding `-block B of G are related in terms of their

categories mod(b) and mod(B), which are expected to be derived equivalent, when D is abelian.

This conjecture is the main subject of the dissertation.

The thesis is structured as follows. The basic necessary setting is introduced in Chapter

1. We start by recalling two crucial results in modular representation theory: the Green corre-

spondence and the Brauer correspondence. In the following, we will give some basic notions of



INTRODUCTION v

equivalences between module categories (stable, derived, etc). In the following, we will intro-

duce the conjecture and the method that we will use to attack some individual groups. Before

it, we give a brief description of some related local-global conjectures which are still open and

the relevant current ongoing work towards them. The description of our strategy will involve

both the theoretical aspect and the computational one.

The last two chapters consist of the actual results of the thesis. We will examine some groups

of Lie type first; in particular, we have examined the principal `-blocks of G = Ω+
8 (2), 2F4(2)′.2,

3D4(2), Sp8(2). For each of these groups, the prime ` to examine is the only one for which the

conjecture applies (the Sylow `-subgroup must be abelian) and is still open (essentially, when

P is not cyclic); this turns out to be always ` = 5, except for G = 3D4(2) where we have ` = 7.

The last chapter will focus on what we manage to find when G is a sporadic group. We looked

at: G = J2, He, Suz, F i22, F i23, and in each case ` = 5 is the only interesting prime to consider.

As the computational aspect is fundamental for our work, the algorithms that have been

used to implement our method are in the appendix. This mainly consists of the algorithm

that provides the perverse equivalence between the two blocks, and the algorithm providing the

stable equivalence that we aim to lift to our perverse equivalence. More details are given in the

appendix.

Notation

Every group considered is intended to be finite; ` > 0 will denote a prime number and k will

denote an algebraically closed field of characteristic `. As usual in representation theory, we will

denote by (K,O, k) an `-modular system, i.e. O is a complete discrete evaluation ring such that

O/J(O) ∼= k and K is the field of quotients of O. The notation p to denote a prime number will

be used in the setting of groups of Lie type, when we want to specialise a generic group of Lie

type G to a fixed p-power q, namely G = G(q). In our particular situation we will always have

` 6= p. This notation matches with the one of [11] and [12]. An `-local subgroup G will often

be denoted by H, and in the last two chapters of the thesis we will always have H = NG(P ),

where P ∈ Syl`(G). In order to denote the opposite of a given group (G, ·), we will use Gopp,

the group having the same elements of G and operation ∗ defined by g1 ∗ g2 := g2 · g1 for each

g1, g2 ∈ G. In analogy with this, for a given algebra A, the opposite algebra Aopp is the same

algebra A but with opposite multiplication. For dihedral groups, the notation Dn will denote

the dihedral group of order n. For a group G, we denote by B0(G) the principal `-block of



kG; for a general `-block B of G, the Brauer correspondent block of H will be denoted by b -

whereas for principal blocks we will simply use B0(H).

As for modules, we will always consider left modules. Given an `-block B, we will refer to

the set of irreducible B-modules by SB. The set of ordinary representations belonging to the `-

block B is Irr(B). Following the standard notations in the literature, we will write l(B) := |SB|

and k(B) := |Irr(B)|. Every module is intended to be a left module. For a kG-module M , the

restriction of M down to H will be denoted by MH ; for a kH-module V , the induction up to G

is V G. For a module M , the projective cover of M is denoted by P(M). The set of composition

factors (also called constituents) of M is denoted by cpf(M).

Finally, for a block B, Mod(B) is the category consisting of all B-modules and mod(B)

the subcategory of all finitely generated B-modules; we will denote by D(B) and K(B) the

derived category and homotopy category of mod(B) of bounded complexes respectively. The

stable category of mod(B) will be denoted by mod(B). We will say that B and b are derived

equivalent if D(B) and D(b) are equivalent categories, and stably equivalent if mod(B) and

mod(b) are equivalent categories. The idempotent of kG related to a block B is denoted by eB.



CHAPTER 1

PRELIMINARIES

1.1 Modular representation theory

The book [1] is the source of all the material covered by Sections 1.1.1 and 1.1.2. Definitions

and proofs of results which are not provided here and further remarks can be found there.

All the modules that we consider are finite-dimensional. As the dissertation focuses on one

of the deepest conjectures of local-global type, we immediately introduce the basic results of

representation theory describing one fundamental aspect of how the modular representation

theory of a finite group G is related to the modular representation theory of its local subgroups

NG(Q), where Q ≤ G is an `-group; this leads us to introduce the necessary general background

to state and prove the Green correspondence and the Brauer correspondence, for modules and

blocks respectively.

1.1.1 Green correspondence

The Green correspondence is a main result of modular representation theory and will be exten-

sively used to describe our results and our algorithm. Here Q is an `-subgroup of G and H ≤ G

is such that NG(Q) ≤ H. The typical situation will be Q ∈ Syl`(G) and H = NG(Q), but the

Green correspondence can be stated in more generality. We briefly recall the notation of [1]: we

have the family of subgroups defined by X = {sQs−1 ∩Q | s /∈ H}, Y = {sQs−1 ∩H | s /∈ H},

and z = {R | R ≤ Q,R 6⊆G X}. We say that a module U is relatively projective with respect to

a family of subgroups if each summand of U is relatively projective with respect to a subgroup

in such family.

Theorem 1.1.1. (Green correspondence) There is a one-to-one correspondence between

1



isomorphism classes of indecomposable kG-modules with vertex in z and indecomposable kH-

modules with vertex in z. If U and V is such a pair, then they have the same vertex R ∈ z and

moreover

UL ∼= V ⊕ Y,

V G ∼= U ⊕X,
(1.1.1)

for some relatively Y-projective kH-module Y and relatively X-projective kG-module X.

Most of our computations are carried out at the level of kH-modules. The next result will

be constantly used in our Magma computation, as it provides an easy criterion to distinguish

the Green correspondent V from the relatively projective part Y ; this result shows that we

can easily distinguish them by looking at their dimension, with no need to run the dedicated

algorithm IsRelQProj, which can be slow. For this result, we will assume NG(Q) = H.

Proposition 1.1.2. Let Y be as in Proposition 1.1.1. Then ` | dimY .

We prove first:

Lemma 1.1.3. Let M be an indecomposable kG-module with vertex Q. Let P ∈ Syl`(G) be

such that Q ≤ P . Then [P : Q] | dimM .

Proof. It is sufficient to prove it in the case that G is an `-group. In fact, writing down the

decomposition of MP into indecomposable submodules MP = (MP )1⊕(MP )2⊕· · ·⊕(MP )r, r ∈

N and considering that the vertex of each (MP )i is a subgroup of a G-conjugate of Q (Mackey’s

Theorem), we deduce that it suffices to check the statement for these factors, i.e. for `-groups

in general. Let us assume G = P and let S be a source of M . Then M |SP . By Green’s

indecomposability criterion, the module SP is indecomposable, then necessarily M = SP , and

as a consequence dimM = [P,Q] · dimS.

Proof. (Proposition 1.1.2): Let Y1 be an arbitrary indecomposable summand of Y . Since Y is

relatively Y-projective then Y1 is relatively NG(Q)∩gQg−1-projective for some g /∈ NG(Q). We

distinguish two cases:

• Suppose first that Q /∈ Syl`(G). Let R1 be a vertex of Y1 and P ∈ Syl`(G) such that

R1 ≤ NG(Q) ∩ gQg−1 < P , where the last inclusion is strict since Q is not a Sylow `-

subgroup of G and then, certainly, NG(Q) ∩ gQg−1 is not, either. Then [P,R1] > 1 is a

2



power of ` dividing dimY1 by Lemma 1.1.3, and this happens for all the indecomposable

summands of Y , then ` | dimY .

• Suppose now Q ∈ Syl`(G), and then Q ∈ Syl`(NG(Q)). We have NG(Q) ∩ gQg−1 /∈

Syl`(NG(Q)), since if it was, it would coincide with Q, which is the only Sylow `-subgroup

of NG(Q), and from cardinality we would get gQg−1 = Q; this would be a contradiction

since g /∈ NG(Q). So we can choose again R1 to be a vertex of Y1 such that R1 ≤

NG(Q) ∩ gQg−1 < Q, with the last inclusion being strict. Then again [Q,R1] > 1 is

an `-power dividing dimY1 by Lemma 1.1.3, therefore ` divides the dimension of any

indecomposable summand of Y , and then ` | dimY .

This concludes the proof.

1.1.2 Brauer correspondence

The notion of Green correspondence can be specialised in the setting of block theory and lead

to Brauer’s correspondence. We can regard kG as a k[G×G]-module with the natural action

(g1, g2) · a = g1ag
−1
2 . (1.1.2)

Thus being a k[G × G]-submodule is the same as being an ideal of kG, as we can see by

considering the action of (g, 1G), (1G, g) for any g ∈ G. It follows that the decomposition of kG

into `-blocks is the decomposition into the direct sum of indecomposable k[G×G]-submodules.

The relevance of Brauer’s correspondence lies in the connections (some of them still conjectural)

between the `-blocks of G and those of H, where H is a subgroup of G with certain properties.

In the following, for any subgroup D ≤ G, we will denote by δ(D) = {(d, d) | d ∈ D} ≤ G×G

the diagonal embedding of D in G ×G. This type of subgroup gains relevance in this context

due to the following:

Proposition 1.1.4. [See IV.13, [1]] Let B be an `-block of G. As a k[G × G]-module, B has

vertex δ(D) for some `-subgroup D ≤ G.

Definition 1.1.5. A subgroup D ≤ G such that δ(D) is a vertex of B is a defect group of B.

A natural way to find a connection between `-blocks of G and H is to restrict kG to H×H.

Definition 1.1.6. Let B be an `-block of G and b an `-block of H. We write B = bG if b|BH×H

and no other block of kH satisfies the same property.

3



For a given B, a corresponding `-block b such that B = bG does not necessarily exist, but

it does under some assumptions, for example if CG(D) ≤ H; therefore, it is the case when

H = NG(D). This correspondence is a bijection between blocks having the same defect group

when some conditions are fulfilled; this is the content of Brauer’s theorem. We recall that the

principal `-block B0(G) is the block affording the trivial kG-module k.

Theorem 1.1.7. [Brauer’s First and Third Main Theorems][See IV.14, [1]] Let G be a

finite group, H a subgroup and D an `-subgroup such that NG(D) ≤ H ≤ G; then bG is defined,

and moreover:

• there is a one-to-one correspondence between `-blocks of H with defect group D and `-

blocks of G with defect group D, and this correspondence is given by associating the block

b of H to the block bG of G;

• if b = B0(H) is the principal `-block of H, then bG is the principal `-block B0(G) of G.

For our purposes, we will always consider the relevant case H = NG(D) in which this

correspondence occurs. In this case, we use the following terminology:

Definition 1.1.8. Let b be an `-block of NG(D). The block B = bG of G is defined, and it is

called the Brauer correspondent of b.

Brauer’s result is a remarkable initial fact of a pattern in modular representation theory,

namely an example of local-global result: we see that if we want to determine how many blocks

of G have a certain `-subgroup D as a defect, we can just count those of NG(D) with the same

property. Moreover, the Brauer correspondence just defined above carries many more results

and conjectures - many of them still open - concerning how the representation theory of G is

controlled by that of local `-subgroups. The connection between Brauer’s correspondence and

Green’s correspondence that we mentioned before is due to:

Remark 1.1.9. In the setting of Brauer’s correspondence, the `-block bG of G is the Green

correspondent of b, regarding the latter as a k[H ×H]-module.

1.1.3 Morita equivalence

Let A1 and A2 be two k-algebras. In modern representation theory, the common approach to

understand how A1 and A2 are related consists of looking at their module categories Mod(A1)

4



and Mod(A2) and eventually find some form of strong or weak equivalences between them. This

strategy has benefits as these equivalences will preserve some properties of A1 and A2: hence,

if we assume that A2 has a manageable structure, those properties can be checked and they

will then hold for A1 too. We briefly recall the most common equivalences that play a role in

modular representation theory.

We express as Morita equivalence the classical notion of equivalence of categories: two

k-algebras A1, A2 are said to be Morita equivalent if Mod(A1) and Mod(A2) are equivalent

as k-linear categories. In practice, we ask that there is an equivalence F : Mod(A1) →

Mod(A2) which is k-linear, namely F maps between homomorphism spaces HomA(U, V ) →

HomB(F (U), F (V )) as a linear map of k-modules (k-vector spaces, according to our assump-

tion on k to be a field). Assuming that F is k-linear is enough to get that F preserves the

structure of Mod(A1) and Mod(A2) as abelian categories, such as kernels and cokernels.

The notion of Morita equivalence is often too strong for many purposes: many aspects of

the representation theory of A1 and A2 are preserved by weaker notions of equivalences, such as

derived equivalences. Although being Morita equivalent is a strong requirement, in the study

of `-local determination in Block theory it is still open whether the local datum of the defect

group is enough to control the Morita theory of a block. This is expressed by the long-standing:

Conjecture 1.1.10. (Donovan - 1975, [2]) Let ` be a prime number and D an `-group. The

number of blocks of groups algebras whose defect group is isomorphic to D is finite up to Morita

equivalence.

In other words, for a fixed `-group D, only finitely many blocks up to Morita equivalence

should have D as a defect group. The conjecture is known to hold in some cases, for example

when D is cyclic, and elementary abelian when ` = 2. We also have the result for D dihedral,

semi-dihedral, as well as quaternion and generalised quaternion; it is also known to hold (by

Puig) if we restrict to `-blocks of `-solvable groups. It is possible to wonder if Donovan’s

conjecture might be reversed. The answer is not clear at the moment.

Problem 1.1.11. Let B1 and B2 be `-blocks of groups and let us assume that B1 and B2 are

Morita equivalent. Are their defect groups isomorphic?

Indeed, the problem above is a more general formulation of another problem which was also

mentioned by Brauer in [8]. This is known as:

5



Problem 1.1.12. (Modular isomorphism problem) Let P and Q be `-groups such that

kP ∼= kQ as algebras. Is it true that P ∼= Q?

We carry on this initial chapter by introducing the two types of (weaker) equivalences that

will actually play a role in our approach to Broué’s conjecture.

1.1.4 Derived Equivalences and Broué’s conjecture

A weaker type of equivalence occurring between k-algebras is derived equivalence. For two k-

algebras A1 and A2, an equivalence F : D(A1) → D(A2) is called derived equivalence between

A1 and A2. In our setting of Broué’s conjecture, we will only consider the case of two Brauer

correspondent `-blocks B and b. This equivalence is strictly weaker than Morita equivalence,

but some properties of the representation theory of a block which are invariant under a Morita

equivalence are invariant under a derived equivalence as well: for example, a derived equivalence

between B and b implies l(B) = l(b) and k(B) = k(b); this will be explained better later on,

when we will introduce the definition of perfect isometry. A derived equivalence is exactly the

structural connection that the conjecture of Broué predicts whenever the defect group D of B

is abelian:

Conjecture 1.1.13. (Broué’s abelian defect conjecture - 1990, [9]) Let G be a finite

group and let ` be a prime number. Let B be an `-block of G with abelian defect group D and

b be the `-block of NG(D) corresponding to B under the Brauer correspondence; then B and b

are derived equivalent.

Actually, the classical version of Broué’s conjecture is predicting something more, specifically

a derived equivalence at the level of blocks of OG and ONG(D). More precisely, the `-block

decomposition kG = B1 ⊕ · · · ⊕ Bn follows from the `-block decomposition of OG, namely

OG = B′1 ⊕ · · · ⊕B′n, where Bi = B′i and the map − : OG→ kG reduces the coefficient of each

element of OG modulo J(O). Broué’s conjecture predicts that each block B′ of OG is derived

equivalent to the Brauer-corresponding block of ONG(D). In particular, this would imply a

derived equivalence for the corresponding block B = B′ of kG and its Brauer correspondent

block of kNG(D), whereas a derived equivalence at the level of k does not lift to O in general.

However, we will explain later that the particular type of derived equivalence between B and b

that we are aiming for can be always lifted up to O, and therefore, in this dissertation, there is
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no loss in formulating Broué’s conjecture over O instead of k. This is of great importance, as

we will perform all our computations over fields rather than over O.

The conjecture first appeared in [9] and remains open, although it has been verified for a

certain number of cases, for example for all blocks with cyclic defect group, for all blocks of

`-solvable groups, and for some blocks of some sporadic simple groups (in characteristic 2, 3 or

5). Broué’s conjecture is currently known to hold in certain cases; some situations where the

conjecture has been verified (the list is not exhaustive) are:

1. G is `-solvable, by Dade, Puig, Harris, Linckelmann;

2. D is cyclic, by Linckelmann, Rouquier, Rickard;

3. D ∼= C2 × C2, by Erdmann, Linckelmann, Rickard, Rouquier;

4. D ∼= C3 × C3, B principal block, by Okuyama, Koshitani, Kunugi, Waki;

5. G = An by Marcus, G = Sn by Rickard, Chuang, Kessar, Rouquier;

6. D is a 2-group and B principal, by Rouquier, Okuyama, Golan, Marcus;

7. G = SL2(q), B principal block, where ` | q, by Chuang, Kessar, Okuyama;

8. Some other groups of Lie type when ` - q; for example GLn(q) by Chuang and Rouquier;

A complete list of general and individual cases where the conjecture in known (up to 2008)

can be found in [27]. Some more recent results where the conjecture has been checked are:

• D ∼= (C2)3, (C2)4 by Eaton [15] and [13]; recently, for D ∼= C2n × C2 × C2 by Eaton and

Livesey [14];

• D ∼= C3 × C3, B block such that its Brauer correspondent b is not nilpotent and has a

unique isomorphism class of simple modules (in particular, this is a Morita equivalence),

by Kessar [21];

• G = HN , every non-principal block B with defect D ∼= C3×C3, by Koshitani and Müller

[22];

• G = 2.HS, B the faithful block of defect D ∼= C3 ×C3, by Koshitani, Müller, Noeske [23]

(this completes the proof of the conjecture for each block and each prime when G = 2.HS);
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• G = Co1, for the unique block B of defect D ∼= C3 × C3 (and, as a consequence, this

completes the proof for every 3-block), by Koshitani, Müller, Noeske [24].

• G = Co3, for the 2-block of defect D ∼= C2 × C2 × C2, by Koshitani, Müller, Noeske [25],

and this has completed the proof of the conjecture for each block and each prime when

G = Co3; notice that this result for the individual group Co3 is included in the more

recent and general result of Eaton [15] that we have mentioned above.

We will give a very brief overview of other local/global conjectures in the next section.

In contrast to other local-global conjectures, a general reduction theorem for Broué’s abelian

defect group conjecture to simple or quasi-simple groups is currently not known; however, this

is known for principal blocks.

We conclude this brief introduction of the conjecture by stating a stronger form of it. Al-

though the existence of a derived equivalence between two such blocks B and b has many

consequences, the original formulation of Broué’s abelian defect conjecture does not provide

any description of the equivalence itself. It is currently believed that we can state a stronger

version of Broué’s conjecture, for which we now give the concept of splendid equivalence, which

has been introduced by Rickard in [34].

Definition 1.1.14. (Splendid Equivalence - [34]) Let B and b be Brauer correspondent

`-blocks of G and H respectively, of common defect D. A complex C of (b, B)-bimodules being

projective as left b-modules and as right B-modules such that

1. C⊗BC∗ ∼= b⊕X, C∗⊗bC ∼= B⊕Y where X,Y are complexes of (b, b) and (B,B)-bimodules

homotopy equivalent to 0 respectively;

2. each (b, B)-bimodule appearing in C is a summand of a relatively ∆D-projective permu-

tation module,

is said to be a splendid tilting complex. If the standard functor C ⊗B − : D(B) → D(b) is a

derived equivalence between B and b, we say that this is a splendid derived equivalence.

A splendid derived equivalence implies more than a general derived equivalence. A ben-

efit of establishing a splendid derived equivalence is that we can work on the field k, and a

splendid derived equivalence at the level of blocks for kG and kH lifts to a derived equivalence

between OG and OH, and this is not automatic for general derived equivalences. This property
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is especially important for this dissertation, where the computational approach is central; in

particular, calculation can be run over fields rather than over O, without any loss. The concept

of splendid derived equivalence is introduced as it is believed that the following refinement of

Broué’s conjecture holds:

Conjecture 1.1.15. (Broué-Rickard) With the same notation and under the same conditions

stated in Broué’s abelian defect conjecture, there is a splendid derived equivalence between B

and b.

1.1.5 Stable Equivalences

We finally introduce very briefly the definition of stable equivalence: this will be needed to

explain how our strategy (due to Rouquier) relies on the construction of such an equivalence

between B and b, which is weaker then a derived equivalence, and how we can lift it to a derived

equivalence.

Let A be a k-algebra. For any two A-modules U, V we consider the set Homproj
A (U, V ) ⊆

HomA(U, V ) consisting of all the A-homomorphisms that factor through a projective A-module.

In other words, if ϕ is anA-homomorphism, then ϕ ∈ Homproj
A (U, V ) if there existA-homomorphisms

α, β and a projective A-module P such that this diagram commutes:

U

P V

ϕα

β

As Homproj
A (U, V ) is closed under addition and multiplication by scalars, this is a k-subspace

of HomA(U, V ). The stable category mod(A) is defined by having the same set of objects

as mod(A), and for any two objects U, V we set HomA(U, V ) = HomA(U, V )/Homproj
A (U, V ).

Projective objects are annihilated in the stable category, namely U is projective if and only if

U ∼= {0} in mod(A). For two k-algebras A1 and A2, an equivalence F : mod(A1) → mod(A2)

is said to be a stable equivalence between A1 and A2. As for the derived equivalence, stable

equivalences which are induced by a splendid tilting complex will play a specific role.

Definition 1.1.16. (Splendid stable equivalence) Let B and b be Brauer correspondent `-

blocks of G and H respectively, of common defect D. If there is a complex C of (b, B)-bimodules

such that
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• C ⊗B C∗ ∼= b⊕X ′ and C∗ ⊗b C ∼= B ⊕ Y ′, where X ′ and Y ′ are homotopy equivalent to

complexes of projective (b, b) and (B,B)-bimodules respectively,

• each (b, B)-bimodule appearing in C is a summand of a relatively ∆D-projective permu-

tation module,

then we say that C induces a splendid stable equivalence between b and B.

The standard functor C ⊗B − : D(B) → D(b) induces an equivalence mod(B) → mod(b)

via the equivalence of categories D(B)/K(proj-B) → mod(B), see [33]. Again in [33], we

see that a derived equivalence implies a stable equivalence. Conversely, a stable equivalence

does not imply a derived equivalence in general; in the case when, given a stable equivalence

F̄ : mod(B)→ mod(b), we can find a derived equivalence F : D(B)→ D(b) which induces F̄ at

the level of stable categories, then we say that F lifts the stable equivalence F̄ . Splendid stable

equivalences will play a role in the development of the future work, in particular we will see

that under some condition, it is possible to lift a stable equivalence up to a derived equivalence.

This will be explained more clearly in the following.

1.2 Local-global conjectures

As we mentioned in the introduction, many deep and long-standing questions in representation

theory of finite groups can be labelled as local-global conjectures. In this section we aim to give

an overview of those conjectures, for example how they are related to each other, their current

status and how the modular and ordinary representation theory of a group can be related by

these conjectured properties.

Broué’s abelian defect conjecture is often regarded as a structural conjecture between an

`-block B of G and its Brauer correspondent b. Other well-known and open conjectures happen

to be related to the character side of B and b. For a recent overview (2015) about the current

status of many of these problems and their progress, we mention the survey [26], from which we

take some of the following results, with more recent developments. Many of these developments

includes the proof of these conjectures in some particular cases or progress in the direction of

some reduction results.

Two of the longest-standing conjectures of modular representation theory are due to Brauer.

The oldest one, still open, predicts that the number of ordinary characters lying in a given block
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is controlled by the defect group. We refer to this conjecture by k(B) due to the large use in

the literature of the notation k(B) := |Irr(B)|.

Conjecture 1.2.1. (Brauer’s k(B)-conjecture - 1954, [5]) Let G be a finite group and B

an `-block of G of defect D. We have |Irr(B)| ≤ |D|.

It is still open in general, although singular cases have been covered. This conjecture ap-

peared in [5]; Brauer himself managed to show the bound |Irr(B)| ≤ 1
4 |D|

2 + 1 in a joint work

with W. Feit. The case G being `-solvable is also known to hold. Recently (2014), a work of

Sambale in form of textbook [37] has proved the conjecture in different cases, for example D

abelian of rank at most 3; more open conjectures, including most of the following in this section,

are approached and solved in that work in some specific cases.

Given a finite group G and an `-block B of defect D, we recall that the height of a character

χ ∈ Irr(B) is defined by the equality χ(1)`|D| = `ht(χ)|G|`. In [7], Brauer conjectured a relatively

simple condition for a block to have an abelian defect group in terms of its characters:

Conjecture 1.2.2. (Brauer’s height zero conjecture - 1955, [7]) Let G be a finite group

and B an `-block of G of defect D. All the characters in Irr(B) have height zero if and only if

D is abelian.

This conjecture is open but important progress have been made. For example, one direction

is known: in [20], Kessar and Malle proved that if D is abelian, then ht(χ) = 0 for all χ ∈ Irr(B).

This result relies on a previous result of reduction type, stating that it is enough to prove that

this direction of Brauer’s conjecture is true for `-blocks of quasi-simple groups. This reduction

has been proved independently in [4] and [30] respectively.

Moreover, the conjecture has been proved in two restricted cases: for `-solvable groups G,

and for the case ` = 2, D ∈ Syl2(G). The second result is due to Navarro and Tiep [31], whereas

the first was proved by Gluck and Wolf [16].

Another well-known conjecture is the following:

Conjecture 1.2.3. (Alperin-McKay conjecture - 1976, [2]) Let G be a finite group and `

a prime. If B is a `-block of G of defect D, and b the Brauer correspondent block in NG(D) of

B, we have:

|Irr0(B)| = |Irr0(b)|, (1.2.1)

where Irr0(·) is the set of height-zero characters.
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Notice that if D is abelian, then the known part of Brauer’s Height zero conjecture (Kessar-

Malle) gives |Irr0(B)| = |Irr(B)| and |Irr0(b)| = |Irr(b)|; hence, Alperin-McKay reduces to say

that B and b have the same number of ordinary simple modules. Another conjecture, due to

Alperin and known as Alperin’s weight conjecture, predicts the same consequence l(B) = l(b)

for the number of simple modular representations, again when D is assumed to be abelian.

Let Irr`′(G) be the subset of Irr(G) consisting of characters whose degree is not divisible by

`. Conjecture 1.2.3 is a refinement of a previous conjecture due to McKay in 1972: this states

that the equality

|Irr`′(G)| = |Irr`′(NG(P ))| (1.2.2)

holds for every finite group G and prime `, where P ∈ Syl`(G). This descends from the Alperin-

McKay conjecture as when D = P , then Irr`′(B) = Irr0(B) by definition of height. As the sets

Irr0(B) partition Irr0(G), it is enough to sum over them - and over the Brauer correspondent

blocks b on the right hand side - to get 1.2.2. The conjecture of McKay is known to hold for

all the cases where Alperin-McKay is known to hold, but it has been independently proved in

some particular cases, for example for symmetric groups. Moreover, Wilson [39] has proved it

for all sporadic groups, and Isaacs for every group of odd order [19].

Further generalisations of this conjectured relation between Irr0(B) and Irr0(b) have been

proposed; for instance in [18] (conjecture A), Navarro and Isaacs suggest that having the same

number of elements should be somehow consistent with some numerical properties. Precisely,

they predict that:

|{χ ∈ Irr`′(G) : χ(1) ≡ ±h mod `}| = |{ψ ∈ Irr`′(NG(P )) : ψ(1) ≡ ±h mod `}| (1.2.3)

for each h = 1, . . . , `− 1. Notice that this statement extends McKay’s conjecture; an analogous

extension - still based on arithmetic properties - for the more general conjecture 1.2.3 of Alperin-

McKay exists (see conjecture B in [18]). Conjecture B reduces to conjecture A in the case that

Alperin-McKay’s conjecture reduces to McKay’s conjecture.

All these conjectures are somehow partially related to each other, and the most immediate

connection between them comes out in the special case of an `-block B with abelian defect group

D. It is worth mentioning that this is the case where the structural role of Broué’s conjecture

applies. An example of a connection between two of those conjectures is given by:

Proposition 1.2.4. In the setting of Alperin-McKay’s conjecture and Alperin weight conjecture,
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the two statements are equivalent when D is abelian.

This equivalence was proved by Knörr and Robinson.

1.2.1 Perfect isometries

The notion of perfect isometry plays a significant role in Block theory and in some local-global

conjectures. We now recall the basic definitions and results, as well as how perfect isometries

are involved in local-global conjectures. A traditional reference for this subject is [9].

Given a finite group G and the usual `-modular system (K,O, k), here B is a sum of blocks of

OG (it will often be a single block). We recall that an element g ∈ G is `-singular if ` divides the

order of g, and `-regular if not; the set of `-regular elements of G is denoted by G0. We will use

the standard notation used in the literature about isometries: the abelian group generated by

Irr(B) is denoted byR(G,B); theK-vector space generated by Irr(G) is the set ofK-valued class

functions onG, denoted by CF (G,K); in this regard we can embedR(G,B) into CF (G,K), and

Irr(B) spans the K-subspace CF (G,B,K) inside CF (G,K). Finally we consider two subsets

of CF (G,B,K), namely CF (G,B,O) and CF`′(G,B,K), the class functions taking values in

O, and those vanishing on `-singular elements g ∈ G respectively. The standard inner product

of characters 〈·, ·〉 extends to each of these sets of generalised characters.

We now introduce a second finite group H; we denote by b a block (or a sum of blocks) of

OH. Let µ ∈ R(G×Hopp, B ⊗O bopp), a generalised character of G×H. We define the linear

maps Iµ : CF (H, b,K)→ CF (G,B,K) and Rµ : CF (G,B,K)→ CF (H, b,K) by:

Iµ(α)(g) = 〈µ(g, ·), α(·)〉H =
1

|H|
∑
h∈H

µ(g, h−1)α(h), α ∈ CF (H, b,K), (1.2.4)

and

Rµ(β)(h) = 〈µ(·, h), β(·)〉G =
1

|G|
∑
g∈G

µ(g−1, h)β(g), β ∈ CF (G,B,K). (1.2.5)

There linear maps are adjoint with respect to the usual scalar product. Vice-versa, if we start

from a linear map I : CF (H, b,K) → CF (G,B,K), it defines a generalised character µ such

that I = Iµ by setting µ :=
∑

θ∈Irr(H,b)

I(θ)θ.

Proposition 1.2.5. (Broué, [9]) Let G,H be two finite groups and B, b two blocks of OG

and OH respectively. Let I : CF (H, b,K) → CF (G,B,K) be a linear map and µ ∈ R(G ×
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Hopp, B ⊗O bopp) be such that I = Iµ. The adjoint map is denoted by Rµ. The following two

conditions on I = Iµ together:

• Iµ : CF (H, b,O)→ CF (G,B,O), Rµ : CF (G,B,O)→ CF (H, b,O), i.e. Iµ and Rµ send

O-valued maps to O-valued maps;

• Iµ : CF`′(H, b,K) → CF`′(G,B,K), Rµ : CF`′(G,B,K) → CF`′(H, b,K), i.e. Iµ, Rµ

sends maps vanishing on `-singular elements to maps vanishing on `-singular elements;

are equivalent to the following two conditions on µ together:

• µ(g, h)

|CG(g)|
,
µ(g, h)

|CH(h)|
∈ O, ∀(g, h) ∈ G×H;

• if µ(g, h) 6= 0, then either both g, h are `-singular or are `-regular.

Introducing these objects makes sense in consideration of the following definition:

Definition 1.2.6. (Perfect Isometry, [9]) Let G,H be two finite groups, B, b blocks of

OG and OH respectively and I : CF (H, b,K) → CF (G,B,K) a linear map afforded by the

character µ ∈ R(G×Hopp, B ⊗O bopp), i.e. I = Iµ. We also assume that I is an isometry. We

say that µ is perfect and Iµ is a perfect isometry if they fulfil the equivalent conditions stated

in Proposition 1.2.5.

The notion of perfect isometry is usually regarded as the character implication of a derived

equivalence; in fact, Broué has shown that if two blocks are derived equivalent over O, then

there is a perfect isometry between them (Theorem 3.1, [9]). Broué also showed that a perfect

isometry between two blocks B and b implies l(B) = l(b) and k(B) = k(b) (Theorem 1.5, [9]).

The following lemma follows from the definition of perfect isometry and it will be necessary

later to disprove the existence of a perverse equivalence in the case of J2 in characteristic 5.

Lemma 1.2.7. Given two finite groups G,H, let I = Iµ be a perfect isometry between the

two blocks B, b of the group rings OG and OH respectively, afforded by the perfect character

µ ∈ R(G × Hopp, B ⊗O bopp). Let θ1, θ2 ∈ Irr(b) be characters having the same `-reduction,

namely θ1(h) = θ2(h) ∀h ∈ H0, then Iµ(θ1) and Iµ(θ2) have the same `-reduction as well.

Proof. We need to check whether Iµ(θ1)(g) = Iµ(θ2)(g), ∀g ∈ G0. For any fixed g ∈ G0, we

have µ(g, h) = 0 ∀h ∈ H \H0 as µ is perfect. Then it follows:
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Iµ(θ1)(g) =
1

|H|
∑
h∈H

µ(g, h−1)θ1(h) =
1

|H|
∑
h∈H0

µ(g, h−1)θ1(h) =
1

|H|
∑
h∈H0

µ(g, h−1)θ2(h) =

1

|H|
∑
h∈H

µ(g, h−1)θ2(h) = Iµ(θ2)(g),

as we claimed.

The notion of perfect isometry for two blocks B and b of G and H can be used to define

another (stronger) equivalence between them which was introduced by Broué and is called iso-

typy. For the definition of an isotypy in the case when B and b are principal blocks, we refer

to [34], §6. An isotypy between B and b is more than a perfect isometry: roughly speaking,

an isotypy carries a family of perfect isometries between blocks of some local `-subgroups (cen-

traliser of subgroups Q ≤ P in H and G), and all these isometries fulfil some restrictions of

compatibility. Mentioning the concept of isotypy is useful as it represents a stronger version

of perfect isometry as much as the notion of splendid derived equivalence represents a stronger

version of derived equivalence. The following result, which can be made more general involving

non-principal blocks, explains this connection. The property of having the same `-local struc-

ture (that is used in the Theorem) is defined in [34]; as an example, when P ∈ Syl`(G) is abelian

and H = NG(P ), then G and H have the same `-local structure.

Theorem 1.2.8. ([34] Th. 6.3) Let G and H be two finite groups with the same `-local structure

and with isomorphic `-Sylow subgroup. If the principal blocks B, b of the group rings OG and

OH are splendid derived equivalent, then they are isotypic.

Moreover, this result uses the fact that a perfect isometry is induced whenever we have

a derived equivalence, and it shows indeed that the same implication holds for isotypies and

splendid derived equivalences respectively. As the notion of isotypy is the character counterpart

of splendid derived equivalence, as perfect isometries are for derived equivalences, this conjecture

follows:

Conjecture 1.2.9. (Broué’s isotypy conjecture - 1990) Let B be an `-block of G of abelian

defect D. There is an isotypy between B and the Brauer correspondent b of B in NG(D).

This was conjectured by Broué in [9]. As we mentioned, it would follow from the strong

form of Broué’s abelian defect conjecture predicting a splendid derived equivalence between B

and b.
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CHAPTER 2

STRATEGY AND ALGORITHM

2.1 Perverse equivalences

In recent years, the theory of perverse equivalences has been successfully applied to gain some

progress in the study of Broué’s conjecture, especially in the case of finite groups of Lie type

in non-defining characteristic. In this thesis we will present an algorithm producing perverse

equivalences, and then derived equivalences, whenever the blocks are principal and the defect

group is abelian of rank 2; these derived equivalences are actually splendid derived equivalences.

The algorithmic approach to perverse equivalences has already been used in [11] to produce

perverse equivalences for some groups of Lie type as well as some sporadic groups.

Definition 2.1.1. (Perverse equivalence) Let A1, A2 be k-algebras and F : D(A1)→ D(A2)

be a derived equivalence. Let us denote by S1, . . . Sn and T1, . . . , Tn the sets of isomorphism

classes of the simple A1-modules and A2-modules respectively and let π : {1, . . . , n} → Z≥0

be a function. We say that F is a perverse equivalence with perversity function π if for every

i ∈ {1, . . . , n} the modules occurring as composition factors of H−j(F (Si)) are Tα such that

π(α) < j ≤ π(i), and a single copy of Ti if j = π(i).

We notice that this definition carries a bijection between the set of simple A1-modules and

A2-modules, and this is given by indexing those sets from 1 to n. With an abuse of notation,

we can often think of π as a function defined on the set {T1, . . . , Tn} rather than {1, . . . , n},

and therefore write π(Ti) instead of π(i). This will make the notation easier in some settings.

The goal of this section is to present the two algorithms that this dissertation is based on:

PerverseEq and FinalStabEq. Both those algorithms are integrally included in the appendix,

together with the several sub-algorithms having a role inside these two main ones. Here we will
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explain the theoretical basis of these procedures, as well as providing a criterion to judge when

those algorithms are providing a successful output.

2.1.1 The algorithm PerverseEq

Given a finite group G and a prime `, we recall our notation: we have H := NG(P ), where

P ∈ Syl`(G); B0(G) and B0(H) are the principal `-blocks of G and H, and SB0(G),SB0(H) the

set of simple kG and kH-modules which lie in the principal block. As we can see in Definition

2.1.1, finding a suitable perversity function π is necessary in order to find a perverse equivalence.

There is no general formula for the perversity function related to perverse equivalences between

blocks of kG and kH, but such a formula exists at a conjectural level when G is a group of Lie

type. In particular, this formula is computed via the unipotent ordinary characters of G, and

then extended to the simple B0(H)-modules.

Let us explain it in more detail. We assume that G is a group of Lie type and consider

the set of unipotent characters Uch(B0(G)) := Uch(G) ∩ Irr(B0(G)) of G lying in the principal

block B0(G). Our method consists of finding bijections

Uch(B0(G))
1:1−−−−→ SB0(G)

1:1−−−−→ SB0(H) (2.1.1)

between those three sets, and we want to explain how a perversity function π : SB0(H) → Z≥0,

which will turn out to be valid for each group of Lie type that we consider, can be defined.

• Let us assume that a bijection between Uch(B0(G)) and SB0(H) is defined; this will just

be the composition of the two bijections in (2.1.1). Our method consists of defining a

map π : Uch(B0(G)) → Z≥0; using the bijection between Uch(B0(G)) and SB0(H), this

automatically defines a map on SB0(H) → Z≥0 as well. In Section 2.3 we will mention

the geometric side of this method involving perverse equivalences and algebraic geometry,

and at the end of this section we will provide an explicit formula to compute π(χ), where

χ ∈ Uch(B0(G)). By an abuse of notation, we will refer to π as the perversity function

defined either on Uch(B0(G)) or SB0(H), under the assumption that a bijection between

Uch(B0(G)) and SB0(H) has been fixed.

• The bijection Uch(B0(G))
1:1−−→ SB0(G) is defined as follows: we order the set Uch(B0(G))

according to the given perversity function, namely χ ≤ χ′ ⇐⇒ π(χ) ≤ π(χ′). If two
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or more characters have the same value, we can arbitrarily fix an ordering for them.

Permuting the rows of a decomposition matrix with respect to this order, it turns out

that there exists a way to permute the list of the simple B0(G)-modules (the columns)

to obtain a unitriangular matrix in all the cases that we will consider. This unitriangular

structure of the decomposition matrix gives the required bijection between SB0(G) and

Uch(B0(G)).

• A more tricky part consists of finding the right bijection between SB0(G) and SB0(H). This

is the bijection which is carried by the definition of perverse equivalence. In [11] we have

a way to find the correct bijection in the case of cyclic Sylow subgroup only. Anyway, in

the cases treated here, our Sylow `-subgroups are abelian of rank 2, however the number

of modules that we consider is limited, therefore we can find the correct bijection using

the approach of trial and error (the bijection will be correct if it makes the algorithm work

as we will explain). Some additional numerical information will reduce the possibilities a

lot; for example, the underlying perfect isometry of the derived equivalence that we aim

for would imply that:

(−1)π(T ) dim(T ) ≡ χ(1) mod `, (2.1.2)

where χ ∈ Uch(B0(G)) and T ∈ SB0(H) correspond under the resulting bijection between

Uch(B0(G)) and SB0(H). Therefore, if the bijection between Uch(B0(G)) and SB0(G) has

already been obtained, the numerical information coming from the relations (2.1.2) restrict

the possible choice for the bijection SB0(G)
1:1−−−−→ SB0(H).

In the following, we will explain how the perversity function is built for groups of Lie type.

Let z = reiθ be a non-zero complex number and κ, d be positive integers such that (κ, d) = 1.

The set Argκ/d(z) consists of all the positive numbers which are an argument for z and are

smaller than 2πκ
d , namely

{
θ + 2πh : h ∈ Z, 0 ≤ θ + 2πh ≤ 2πκ

d

}
. (2.1.3)

For a polynomial f , we denote by Argκ/d(f) the multiset produced by the union of all Argκ/d(z),

where z runs over all the roots of f different from 0 and 1, counting their multiplicity. The

multiplicity of 0 as a root is denoted by a(f), the degree of the trailing term of f . The root 1

is excluded as we want to count it with half its multiplicity, and we define φκ/d(f) as the sum
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of half the multiplicity of 1 as a root of f and |Argκ/d(f)|.

According to the Deligne-Lusztig theory, a group of Lie type G descends from a more general

object called a generic group of Lie type, often denoted by G; this is a family of groups of Lie

type parametrised by numbers of the form q = ps, where p is prime and s ≥ 1 is an integer,

so we can specialise G to the prime-power q, and write G = G(q). We will not focus on any

Deligne-Lusztig theory in this thesis, and it is enough to mention that the number of unipotent

characters of G are actually determined at the level of G, and in particular a unipotent character

of G descends from a more general object called a generic character of G, which depends on

the type of Dynkin diagram. To a generic unipotent character χ ∈ Uch(G), we can associate a

polynomial f = fχ ∈ Q[x] such that f(q) = degχ|q, and χ|q is the character of G descending

from the generic χ. We define the perversity function as

πκ/d(χ|q) :=
κ

d
(a(fχ) + deg(fχ)) + φκ/d(fχ), (2.1.4)

where d is the order of q modulo `, and κ is a positive integer coprime to d. More details about

this definition will be given in the section 2.3. Furthermore, the polynomial f(q) is the product

of cyclotomic polynomials and a factor of the form aqN , for N ∈ Z≥0 and a ∈ Q, and this will

make it easier to write an algorithm producing πκ/d(χ|q) given χ|q, κ, d.

As a combination of the map π : Uch(B0(G)) → Z≥0 that we have just described, and of

a fixed bijection between Uch(B0(G)) and SB0(G) we can assume that a perversity function

π : SB0(H) → Z≥0 is now given. Let us see how this is involved in our algorithmic construction.

For any r ∈ Z≥0, we define:

Jr := {V ∈ SB0(H) | π(V ) ≤ r}. (2.1.5)

Let T be a simple kH-module lying in B0(H). We now explain how to produce the complex

XT ∈ D(B0(H)) which is supposed to be the image of T under a potential perverse derived

equivalence.

If π(T ) = 0, then the algorithm will automatically return the complex XT : 0 → T → 0.

Let us assume now that n := π(T ) > 0. Then we will produce a complex of length n + 1 that

we will denote by

XT : 0→ Pn
ϕn−−→ Pn−1

ϕn−1−−−→ . . .
ϕ1−−→ P0 → 0, (2.1.6)
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where P0 is in degree zero, and then Pn in degree −n. Before defining each module of the

complex, we introduce the notation:

Definition 2.1.2. Let A be an algebra and let T be a set of simple A-modules and M an

A-module. The T-radical of M is defined as the largest submodule T-rad(M) ⊆ M with

composition factors in T.

Now we can finally build the complex 2.1.6. The first module Pn, of degree −n, will be the

injective hull of T , so Pn := I(T ). We now want to define the map ϕn, and we will start by

giving the kernel of it. We define kerϕn := Mn, where Mn is the submodule of Pn such that

Mn

T
= Jn−1-rad

(
Pn
T

)
. (2.1.7)

The following term is defined by Pn−1 := I
(
Pn
Mn

)
, with natural map ϕn being the composition

of the projection to the quotient and the inclusion in the injective hull. This is just the first

step of the inductive process: in general, we set Li := Im(ϕi) and we get modules Mi such that

Mi

Li+1
= Ji−1-rad

(
Pi
Li+1

)
, 2 ≤ i ≤ n− 1. (2.1.8)

This allows us to define each module of the complex inductively: we define Pi−1 and the

map ϕi as

Pi−1 :=I

(
Pi
Mi

)
, i = 3, . . . , n− 1,

ϕi : Pi �
Pi
Mi

↪→ Pi−1,

(2.1.9)

where the surjective map and the injective map are the natural projection and the natural

inclusion in the injective hull respectively. So far, we have defined the construction of our

complex XT up to the degree −2; it remains to define the last two terms P1 and P0, namely

the final part of XT :

. . .
ϕ2−−→ P1

ϕ1−−→ P0 → 0.

The following definition is necessary to describe the condition that P1 has to satisfy.

Definition 2.1.3. Let M be a kG-module. We say that M is stacked relatively projective

with respect to a single subgroup Q of G if M admits a filtration by relatively Q-projective
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modules {0} = M0 ⊆ · · · ⊆Mm = M for some m ∈ N, namely such that Mj/Mj−1 is relatively

Q-projective for each j = 1, . . . ,m.

In particular, a relatively Q-projective module, and therefore a projective module as well,

is a trivial example of stacked relatively projective module. Finally, let us consider a bijection

between SB0(H) and SB0(G), and let S be the B0(G)-module corresponding to T under such

bijection. We have to specify that this bijection is usually defined via trial and error, under

the criterion that it must fulfil the requirements that we are going to mention. In particular,

this will be the bijection which is carried in the definition of the perverse equivalence. Given

a bijection, in order to declare the algorithm successful, we request that P1 and P0 fulfil the

following two conditions:

• P0 must be a copy of CS , the Green correspondent of S;

• each indecomposable summand of P1 must be stacked relatively projective with respect

to some proper subgroup Q ⊂ P , which will be a cyclic group of order `, or the trivial

subgroup in case of projective summand.

Moreover, the conditions on the cohomology which are imposed by the perverse equivalence,

and which are implemented by the relation 2.1.8, must also hold. In order to fulfil this coho-

mology condition, we build M1 in the same was as each previous kernel M2,M3, . . . ,Mn, so as

a submodule of I
(
P2
M2

)
; however, rather than defining P1 as I

(
P2
M2

)
, we try to build it as an

extension of CS by M1 whose summands satisfy the second condition above. The last module

P0 is defined as

P0 =
P1

M1

∼= CS , (2.1.10)

where the isomorphism to CS holds by construction of P1; this would fulfil the requested con-

dition on P0. The map ϕ1 : P1 → P0 is the natural projection to the quotient.

Remark 2.1.4. The crucial stage of this algorithm is about the construction of P1. The

construction of all the previous terms P2, . . . , Pn is determined by an iterative process, whereas

the construction of P1 is subject to the existence of a non-trivial peculiar extension of CS by M1.

The existence of such an extension is basically determining whether the algorithm is working

with the given datum of π and with the chosen bijection between SB0(H) and SB0(G).

An algorithm to test whether the module P1 admits a filtration by a given list of modules

is provided. In order for P1 to be filtered by modules with vertex Q, it is always sufficient to
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consider the list of modules with vertex Q and trivial sources for all the cases considered in the

dissertation.

This concludes the technical explanation of what the procedure behind PerverseEq consists

of. This procedure is based on a result of the theory of perverse equivalences in the setting of

Broué’s abelian defect group conjecture developed by Rouquier and Chuang; the result in more

generality can be found in [11]. For our purposes, we can summarise it as follows:

Proposition 2.1.5. (Rouquier, [11]) Let G be a finite group, ` a prime number, and H :=

NG(P ), where P ∈ Syl`(G). Let C be a bounded complex of (B0(H), B0(G))-bimodules which are

finitely generated and projective when regarded as left B0(H)-modules and right B0(G)-modules.

Let us assume that:

• the standard functor L := C ⊗B0(G) − : D(B0(G)) → D(B0(H)) induces a stable equiva-

lence L̄ : mod(B0(G))
∼−→ mod(B0(H));

• there is a perversity function π and there is a bijection between SB0(G) and SB0(H) such

that for each T ∈ SB0(H), the complex XT fulfil the two conditions that make the algorithm

PerverseEq successful;

• each XT is stably isomorphic to L(S), where T ∈ SB0(H) and S ∈ SB0(G) correspond under

the bijection introduced above.

If those three conditions hold, then there is a derived equivalence between B0(G) and B0(H),

and therefore Broué’s conjecture holds for the principal `-block of G. In particular, this derived

equivalence between B0(G) and B0(H) induces L̄ as a stable equivalence, and if we regard S as

a complex concentrated in degree zero, XT is the image of S under such derived equivalence.

We have defined our algorithmic construction of the set of complexes {XT |T ∈ SB0(H)} which

are the image of a perverse equivalence (provided that they fulfil the condition of Proposition

2.1.5). We conclude this section by mentioning a property of the cohomology H(Xi) of each

complex; this property is explained in [12]. Let us fix a simple B0(H)-module Ti, and let

Xi := XTi be the complex generated by our algorithm. We consider the following virtual

module:
π(Ti)⊕
j=0

 ⊕
T∈cpf(H−j(Xi))

(−1)j−π(T )T

 . (2.1.11)

Following [12], this is called the alternating sum of cohomology ; we explain how this virtual

module can be used to reconstruct the unitriangular form of the decomposition matrix that we
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have been using to define the bijection between a subset of irreducible character of G lying in

B0(G) (if G is of Lie type, this is the set of unipotent characters) and SB0(G). For a simple

module Tm ∈ SB0(H), we denote by am its multiplicity into the alternating sum of cohomology;

in particular, we notice that due to the construction of Xi (which is coming from the definition

of perverse equivalence), each module Tm appearing in the alternating sum, i.e. am > 0, is such

that π(Tm) ≤ π(Ti), and the equality occurs when m = i. In the following we denote by rj the

vector consisting of the j-th row of the fixed unitriangular decomposition matrix, and by vj the

vector consisting of 0 in each entry, except for the j-th entry, which is 1. These vectors have

length |SB0(H)|, as each row of the decomposition matrix. The numbers am fulfil the following

conditions:

vi =
∑
m:

π(Tm)≤π(Ti)

am · rm = ai · ri +
∑
m:

π(Tm)<π(Ti)

am · rm. (2.1.12)

In particular, the rows of the decomposition matrix that we are considering have been ordered

according to the π-value of each irreducible character, therefore each row rm such that π(Tm) <

π(Ti) comes before ri; for example, the row of the trivial character 1G, whose π-value is 0,

is always at the top of the matrix. The relations 2.1.12 show that we can reconstruct the

unitriangular decomposition matrix inductively: assume that we already have each row rm such

that π(Tm) < π(Ti), then the alternating sum of cohomology would provide the numbers am

for m = 1, . . . , i and therefore we can compute the next row ri of the decomposition matrix.

In all our examples (for instance, see the table 3.1.2 for the case G = Ω+
8 (2)) , we will report

the data coming from the alternating sum of cohomology under the label “total”, and using the

formal expression ∑
m:

π(Tm)≤π(Ti)

am ·m

instead of the vector notation with rm. Typically, we will almost always find that our coefficients

am are 1 or −1.

2.2 Lifting stable equivalences to derived equivalences

This section is meant to explain how the third condition of Proposition 2.1.5 can be checked;

therefore, we will explain you the objects L(S), for all S ∈ SB0(G) can be constructed in Magma

in order to test the stable isomorphism between them and each XT previously constructed via
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PerverseEq. By Proposition 2.1.5, this will be enough to deduce the existence of a derived

equivalence between B0(G) and B0(H). We will always assume that our `-block B0(G) has

defect group P ∼= C` × C`.

A stable equivalence L̄ that will be used to apply Proposition 2.1.5 has been described by

Rouquier in [36]. In the following, we will recall this particular stable equivalence and we will

implement the construction of each object L(S), for all S ∈ SB0(G).

For an `-subgroup Q of G, we recall that the Brauer map

BrQ : Mod(kG)→ Mod(kNG(Q))

is defined on the objects as BrQ : M 7→ MQ/(
∑

R<Q TrQRM
R), where MR is the set of points

fixed by R and the trace map TrQR : MR →MQ is defined as TrQR(m) =
∑

g∈Q/R gm, ∀m ∈MR.

The result connecting a derived equivalence at local level and a stable equivalence at the global

level is:

Proposition 2.2.1. (Rouquier, [36]) Let C be a splendid tilting complex of (B0(H), B0(G))-

bimodules. The following two are equivalent:

• C ⊗B0(G) − is a splendid stable equivalence between B0(G) and B0(H);

• for every non-trivial subgroup Q of P , then Br∆Q(C) induces a splendid derived equiva-

lence between B0(CG(Q)) and B0(CH(Q)),

where Br is the Brauer map extended to complexes of modules.

Still in [36], Rouquier applies this result to build a complex C of (B0(H), B0(G))-bimodules

inducing a stable equivalence whenever P ∼= C` × C`. The strategy consists of building

complexes of kNH×G(∆Q)-modules such that the restriction to CH(Q) × CG(Q), seen as a

(kCH(Q), kCG(Q))-bimodule, induces a derived equivalence betweenB0(CG(Q)) andB0(CH(Q)),

for each conjugacy class of non-trivial Q < P . In particular, it is crucial here to remind that

the construction of such modules relies on the knowledge of the derived equivalence when the

defect group is cyclic (Broué’s conjecture is known in such a case).

In particular, this strategy applies favourably for ` = 2, and it is used to prove Broué’s

conjecture in general when P ∼= C2 ×C2 (again, in [36]). When ` is odd (in our cases ` = 5, 7),

such a general result to lift the stable equivalence induced by C to a derived equivalence does

not work, but the construction of the stable equivalence still holds and lifting this particular
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stable equivalence to a derived equivalence can be done case by case. More details about the

actual construction can be found in [36].

In our computational setting, we mostly care about the image in D(B0(H)) of the stable

equivalence induced by C; in particular, we will compute the images of each simple module

L ∈ SB0(G) under such stable equivalence and we will compare it with the output of the perverse

equivalence algorithm corresponding to L (namely, under the image of L under the supposed

perverse equivalence). Together with the construction of C in [36], in [11] we have an explicit

construction of what the image C ⊗kG L is as a complex of kH-modules: this is the object

that we need to know, and that we will physically build in our algorithm FinalStabEq. More

precisely, this complex has length 2; the module in degree 0 being the Green correspondent of

L (that we already have, in most cases), the algorithm will actually build the module in degree

−1. Therefore, now we can focus on how the construction of each image C ⊗kG L is performed;

for the details of C as a complex of (kH, kG)-bimodules we refer to [36] and [11].

2.2.1 The algorithm FinalStabEq

Let us fix a subgroup Q < P of order `. We are still assuming that P ∼= C`×C`. In the following,

we will assume that there exist N̄G(Q) and N̄H(Q) which denote complements ofQ inNG(Q) and

NH(Q) respectively; those complements exist for each case that we will consider. In particular,

we choose them such that N̄H(Q) ≤ N̄G(Q). Finally, let us consider C̄H(Q) = CH(Q)∩ N̄H(Q)

and C̄G(Q) = CG(Q) ∩ N̄G(Q); therefore, both C̄G(Q) and C̄H(Q) have a cyclic Sylow `-

subgroup, and then we have a derived equivalence between their principal blocks (Broué’s

Conjecture holds when the defect group is cyclic).

We set N∆ := (C̄H(Q) × C̄G(Q)opp)∆N̄H(Q); this group acts on C̄G(Q) and then we can

consider kC̄G(Q) as a kN∆-module as well as a C̄H(Q) × C̄G(Q)opp-module. In particular, as

kN∆-module we have that

eC̄H(Q)kC̄G(Q)eC̄G(Q) = MQ ⊕ P, (2.2.1)

where MQ is indecomposable as a C̄H(Q)× C̄G(Q)opp-module and induces a stable equivalence

(Rouquier, [36] or [11]), whereas P is projective. We have a precise description of what a

projective cover of MQ is isomorphic to. We consider the map γ : SB0(C̄G(Q)) → SB0(C̄H(Q)),

where γ(V ) is defined to be the unique simple B0(C̄H(Q))-module such that
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Hom(VC̄H(Q), γ(V )) 6= {0}, V ∈ SB0(C̄G(Q)).

A projective cover of MQ as a C̄H(Q)× C̄G(Q)opp-module is of the form

P(MQ) ∼=
⊕

V ∈SB0(C̄G(Q))

P(γ(V ))⊗ P(V )∗, (2.2.2)

where each summand P(γ(V )) ⊗ P(V )∗ gains the natural structure of C̄H(Q) × C̄G(Q)opp-

module. Finally, we define the subset E ⊆ SB0(C̄G(Q)) of all modules whose corresponding edge

in the Brauer tree of B0(C̄G(Q)) has distance d+ 1 (mod 2) from the exceptional vertex, where

d is the distance of the trivial module from the exceptional vertex. In other words, depending

on d, we consider the set of edges whose distance from the exceptional node is even or odd (a

definition of the Brauer tree can be found in [1]). We now define UQ :=
⊕

V ∈E P(γ(V ))⊗P(V )∗;

again by [11], it is possible to extend the action of C̄H(Q)× C̄G(Q)opp up to N∆; with an abuse

of notation, we will see UQ as a N∆-module from now on. We define TQ := UQ ⊕ P , where P

is the projective N∆-module appearing in (2.2.1).

Remark 2.2.2. The module MQ is what we are building in our algorithm StableEqSetup,

together with all the necessary groups and subgroups involved, such as C̄H(Q), C̄G(Q), N∆; the

module TQ is built manually case by case, since the construction depends on the Brauer tree of

C̄G(Q); TQ will be given as an input to the algorithm FinalStabEq.

It remains to explain how to use these objects to get the complex of kH-modules C ⊗kG L.

The tensor TQ⊗kC̄G(Q)LNG(Q) gains the structure of N∆×NG(Q)-module, and in particular we

will regard it as a NH(Q)-module: the copy of NH(Q) inside N∆ ×NG(Q) that we consider is

defined by the bijection h→ ((h̄, h̄−1), h), where h̄ is the image of h in N̄H(Q); in our algorithm,

N̄H(Q) is constructed as a subgroup of NH(Q) such that NH(Q) = Q o N̄H(Q) rather than

as a quotient, and therefore h̄ will have to be defined as the element such that h · h̄−1 ∈ Q.

Regarding TQ⊗kC̄G(Q) LNG(Q) as a NH(Q)-module, we finally have the expression for C ⊗kG L:

C ⊗kG L ∼= (0→ eH
⊕
Q<P

(TQ ⊗kC̄G(Q) LNG(Q))
H → eHLH → 0), (2.2.3)

where Q runs over all the H-conjugacy classes of subgroup of order `.

Remark 2.2.3. In the construction of C ⊗kG L above, as an object in the stable category

the module in degree 0 consists of the Green correspondent of L together with the relatively
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projective summands occurring in the correspondence. Again in [11], it is possible to construct

a complex C ′ which is homotopy equivalent to C and such that C ′ ⊗kG L has the Green corre-

spondent only as a term of degree 0. In particular, the term of degree −1 in C ′ is constructed

as for the one of C, but TQ is replaced by UQ.

Remark 2.2.4. The following construction of the objects C ⊗kG L that we will give in 2.2.3

has been implemented in each case considered. The method of constructing C ⊗kG L that we

have just explained has proved to be successful as long as each complex XT for T ∈ SB0(H) that

is produced by PerverseEq has the property that the module X−1
T in degree −1 is a sum of

modules that are projective or have vertex Q, for some proper subgroup Q ≤ P . In general,

this is not true: when dealing with individual groups, will see that in general X−1
T is a sum of

projective, relatively Q-projective and stacked relatively projective modules, and whenever this

last type of summand occur, the result for C ⊗kG L given by the algorithm FinalStabEq is not

the one which would allow us to conclude by applying Proposition 2.1.5. This has not allowed

us to complete the proof of Broué’s conjecture for G = 2F4(2).2, Sp8(2), 3D4(2) yet. Work in

order to fix this result and make it produce the right stable equivalence is in progress at the

time of submission.

2.3 Geometric Broué’s conjecture and perversity functions

Some of the groups that we will examine are of Lie type, and a particular remark is necessary.

Although we will not provide a deep report of the current theory behind it, we can mention

how the search of a perverse equivalence intersects with some underlying geometry of the group,

represented by their Deligne-Lusztig varieties. In our setting, this connection (still conjectural

in large part) is related to the crucial choice of the perversity function π, for which we have

introduced a precise expression 2.1.4 to use in our algorithm. Therefore, in this section G = G(q)

will be a group of Lie type, for some generic group of Lie type G and some p-power q, where

p 6= ` is a prime; moreover, the facts that we state here are generally valid for unipotent `-blocks

B of G. We recall that B is a unipotent block if there is a unipotent character lying in B. As

the trivial character is unipotent, the principal block B0(G) is a unipotent block.

Fact 2.3.1. Let B be a unipotent `-block of G, where G is a group of Lie type, ξ := e2πκi/d

a primitive d-root of unity for d ∈ N. For each κ ≥ 1 coprime to d, we can define a variety
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Yξ = Yκ/d, that we call Deligne-Lusztig variety, and then a complex of cohomology H•(Yκ/d, Q̄`).

This variety depends on B.

In this setting, we have to think that an ` modular system (O,K, k) has been fixed and O

is an extension of Z` large enough such that K = Q̄` and k = F̄`. Let D be the defect group

of the block B. Let d be the multiplicative order of q modulo `, and κ a positive integer prime

to d. The complex H•(Yκ/d, Q̄`) of Q̄`G-modules arises from a complex defined over O, which

produces a complex C over k as well, by reducing modulo J(O). The complex C is the central

object of the geometric form of Broué’s conjecture. What we know is that it carries an action of

G on the right, and an action of D on the left; it is conjectured that this action can always be

extended to NG(D), and that as a complex of (kNG(D), kG)-bimodules it is inducing a derived

equivalence:

Conjecture 2.3.2. (Geometric Broué’s abelian defect conjecture - 1988) Let d be

the order of q modulo `. There exists κ such that the complex H•(Yκ/d, Q̄`) gives rise to a

complex of (kNG(D), kG)-bimodules which induces a derived equivalence between B and its

Brauer correspondent b. Moreover, this equivalence is perverse.

Some cases of this conjecture are known (Dudas, Rouquier). For our computational ap-

proach, the object H•(Yκ/d, Q̄`) is too hard to manage, and so the perverse equivalence that is

conjecturally induced must be searched via a different direction. As a complex, H•(Yκ/d, Q̄`) is

predicted to fulfil the following property:

Conjecture 2.3.3. Let χ a unipotent character of Q̄`G. The complex H•(Yκ/d, Q̄`) has unique

degree in which χ appears. This defines a function πκ/d : Uch(B0(G))→ Z≥0, where πκ/d(χ) is

such degree.

As we have explained in the previous section, a map πκ/d : Uch(B0(G)) → Z≥0 can be

regarded as a map πκ/d : SB0(H) → Z≥0 using a unitriangular form of the decomposition matrix

of B0(G). This is supposed to be the perversity function that characterises the conjectured

perverse equivalence:

Conjecture 2.3.4. The function πκ/d : SB0(H) → Z≥0 descending from the unitriangular form

of the decomposition matrix of B0(G) together with the map of Conjecture 2.3.3 is the perversity

function of the perverse equivalence induced by the complex C.
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This conjecture gives the precise source of the perversity function providing the perversity

equivalence that we rely on, but still there is no way to find it algorithmically, as we are still

supposed to pass through H•(Yκ/d, Q̄`). The decisive fact is that, conjecturally, we indeed have

a relatively simple formula for πκ/d, and this is the same formula that we used to define our

algorithm:

Conjecture 2.3.5. (Craven - 2012) Let χ ∈ Uch(B0(G)) and let f = fχ be its degree

polynomial. The perversity function from Conjecture 2.3.3 is:

πκ/d(χ) =
κ

d
(a(f) + deg(f)) + φκ/d(f),

where a(f) is the multiplicity of the root q = 0, and φκ/d(f) is a number depending on the

remaining roots of f .

This conjectured result would provide a viable way to get our perversity function πκ/d

that our algorithm strongly relies on. Moreover, it is relatively easy to find the list of degree

polynomials related to the set of unipotent characters of a fixed block (the principal) of a fixed

group of Lie type; finding the value of a(f) and φκ/d(f) is also easy. It is worth remarking that

some of the ground where our algorithm has taken roots is still at a conjectural level; still, there

is no reason why we cannot try to use this conjectural data as an input for our algorithm, and

as we will see in the following, this choice for our input has always provided the expected result

for each group of Lie type that we have considered. In the next section we carry on explaining

another computational aspect of this work, namely how we have dealt with the construction of

the B0(G)-modules, which are necessary for the implementation of the algorithm.

2.4 Building B0(G)-modules in Magma

Almost all the Magma computations are carried out over the field F`, although on some occasions

it could be necessary to extend our modules to F`2 : for instance this would happen when a

certain module that we need does not exists as a F`G-module, but it does as a F`2G-module.

The Magma commands which manage the change of fields are

ChangeRing;

IsRealisableOverSmallerField;
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to extend or reduce the base field respectively.

The group that we examine in each section will be denoted by G, and an `-Sylow subgroup

of G will be denoted by P , and its normaliser NG(P ) by H.

In order to carry out the algorithm PerverseEq, the objects that we actually need are

reasonably small: a copy of each irreducible B0(H)-module and a copy of the Green corre-

spondent of each irreducible B0(G)-module. Although it is almost immediate to get a list of

simple modules for the normaliser H, it can be hard to get a copy of the Green correspondent

of B0(G)-modules with high dimension: indeed, the Green correspondents are constructed via

each simple B0(G)-module, which is restricted down to H, and then decomposed (eventually,

after getting rid of all free and projective summands). For high-dimension B0(G)-modules,

these steps - especially getting a copy of the B0(G)-module and restricting it - could turn out

to be hard and finally not doable. In each section we give a very short description of how a

copy of each simple B0(G)-modules was obtained. For each group G that we have considered,

a complete list of how the simple kG-modules split among all blocks is available online at The

Modular Atlas website [38]. This is a great advantage, since this has allowed us to know which

modules we should look for from the beginning, precisely all those lying in the principal block.

The Modular Atlas is the source which provided all the decomposition matrices that we will

mention in the following. We have also made use of the Atlas of Finite Group Representations

- Version 3 [3]. This provides informations such as the generators of our groups, the generators

of some small representations, and information about the maximal subgroups of a group.

The most straightforward way to get simple modules consists of applying the command

CompositionFactors on some modules. Different modules can be easily produced by tensoring

small modules, as well as inducing modules from subgroups with reasonable index.

This search can be guided using the ordinary character table together with the decomposition

matrix. Using the notation of [32], let us assume that we want to build a simple kG-module

U and this is afforded by the irreducible Brauer character ϕU . Our aim is to find two simple

kG-modules M,N such that U ∈ cpf(M ⊗N). By looking at the decomposition matrix, we can

find an ordinary irreducible character (usually we try to consider the smallest) αU ∈ Irr(G) such

that α0
U contains ϕU in its decomposition. Now assume that we found χ, ψ ∈ Irr(G) such that

χ ·ψ = αU +β for some complement β; χ and ψ will be in general much smaller than αU . If we

restrict this expression to the set of `-regular elements G0, we can write that χ0 ·ψ0 = ϕU +γ for

some Brauer character complement γ (which includes β0 inside). Now we just have to use the
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decomposition matrix to decompose χ0, ψ0 into irreducible Brauer characters: assuming that

such decompositions are χ0 = µ1 + · · ·+ µm and ψ0 = ν1 + · · ·+ νn, for positive integers m,n,

then ∑
1≤i≤m
1≤j≤n

µi · νj = ϕU + γ. (2.4.1)

Under a module-theoretic point of view, this means that U is a composition factor of a tensor

Mi⊗Nj for some i, j, where Mi is the simple kG-module afforded by µi and Nj is afforded by νj .

All in all, this method only needs to find two irreducible characters χ, φ such that 〈χ·ψ, αU 〉 6= 0,

and to check the decomposition matrix.

A different elementary method to build simple kG-modules uses modules induced from

subgroups with small index. Let R be a subgroup of G of small index - a maximal one for

example. We assume again that we want to build the simple kG-module U , and we aim to find

it as a composition factor of some MG, where M is a simple kR-module. M can be found using

a parallel check of the ordinary character table as follows: we keep searching for an ordinary

character χ ∈ Irr(R) such that χG = αU + β, where αU is as above and β is some complement.

Again, restricting to `-regular elements, (χG)0 = ϕU + γ for some γ. On the other hand,

χ0 admits a decomposition of elements in SkR, say χ0 = µ1 + · · · + µm, m ≥ 1, and since

(χG)0 = (χ0)G then ϕU + γ = µG1 + · · · + µGm. We conclude that U can be found among the

composition factors of some MG
i , where Mi is the kR-module afforded by µi. In the end, again

we only need the character tables and decomposition matrices of G and R.

2.5 Results

In the next two chapters we present the list of groups that have been examined. For each

group, there are two algorithms that we have to run: PerverseEq and FinalStabEq. The first

algorithm is meant to produce suitable complexes Xi ∈ D(B0(H)) fulfilling the condition of

being the image under a perverse equivalence D(B0(G)) → D(B0(H)) for each Si ∈ SB0(G).

The second algorithm is necessary to check that this conjectural perverse equivalence is lifting

a known stable equivalence between mod(B0(G)) and mod(B0(H)).

It has been possible to run PerverseEq successfully for some of them; for others, a “partial

perverse equivalence” was achieved, where a partial equivalence stands for a partial list of

complexes which actually works, namely we do not have a complex for some simple B0(H)-
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module T . We summarise the result of what was achieved with this list (every result is referred

to the principal 5-block of each group, except for 3D4(2) where we consider the principal 7-

block):

• Both our algorithms work well for G = Ω+
8 (2), and therefore Broué’s conjecture holds in

this case;

• For G = Sp8(2), 2F4(2)′.2, 3D4(2), PerverseEq works well and successfully returns a

complete lists of complexes. However, the current version of the method in [11] that

FinalStabEq is based on to provide a stable equivalence to lift to our perverse equiv-

alence is not working in those three cases (this will be explained more clearly in each

specific section). A generalisation of this method is the next step that we need in order

to claim the conjecture for those three cases;

• We are able to prove that no perverse equivalence exists when we examine the case G = J2;

• For the sporadic He, the method to produce a valid stable equivalence applies and the

algorithm has run successfully. As for the perverse equivalence, we currently have a partial

result consisting of seven valid complexes out of ten. Completing the perverse equivalence

is work in progress at the time of submission;

• Obtaining a full perverse equivalence for Suz, Fi22, Fi23 is prevented by the difficulty of

getting the Green correspondents of each irreducible B0(G)-module, due to computational

reasons. For Suz and Fi22, partial perverse equivalences have been found, and they might

potentially be completed to a perverse equivalence as soon as we are able to go beyond

the current computational strength of our computers.
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CHAPTER 3

PERVERSE EQUIVALENCES FOR GROUPS OF LIE TYPE

In this chapter, we run the algorithm searching for perverse equivalences on the principal block

of some groups of Lie type (all simple except for 2F4(2)′.2), and then we compare the output

with the image of a particular stable equivalence; eventually, this leads to the proof of Broué’s

conjecture for G = Ω+
8 (2) and partial results for other three cases (which are work in progress

at the time of submission).

3.1 Ω+
8 (2)

Let G := Ω+
8 (2), a Chevalley simple group of type Dn, for n = 4 and q = 2. In this section

we consider k := F̄5. We will show that Broué’s conjecture holds for the principal block of G

by giving a perverse (and therefore derived) equivalence between B0(G) and B0(H). We prove

that:

Theorem 3.1.1. Broué’s abelian defect group conjecture holds for the principal 5-block of

Ω+
8 (2).

3.1.1 Structure of H

So let G := Ω+
8 (2); the perversity function πκ/d will be computed by using κ = 1, and d must

be the order of 2 modulo 5, therefore d = 4. We denote by P ∼= C5 ×C5 a Sylow 5-subgroup of

G, and H := NG(P ); then |H| = 400 and in particular H ∼= P o S, where S can be defined via

the following presentation:

S ∼= {x, y, z|x4 = y2 = e, x2 = z2, yxy = x−1, xz = zx, yz = zy}. (3.1.1)
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There are three conjugacy classes of subgroups of H of order 5, represented by Q1, Q2, Q3.

3.1.2 Irreducible B0(H) and B0(G)-modules

The following decomposition matrix, as well as the list of simple B0(G)-modules, have been

obtained from the Modular Atlas [38]. In this section we will use the chosen labelling for the

simple B0(G)-modules Si:

S1 = 11

S2 = 831

S3 = 832

S4 = 833

S5 = 5391

S6 = 5392

S7 = 5393

S8 = 17291

S9 = 7221

S10 = 281

The decomposition matrix (in a uni-triangular shape), together with π-values for each unipotent

character, is:

B0(G), G = Ω+
8 (2), ` = 5

π1/4 Unipotent Char S1 S2 S3 S4 S9 S10 S5 S6 S7 S8

0 11 1

3 841 1 1

3 842 1 1

3 843 1 1

4 9721 1 1 1 1 1

5 281 1

5 13441 1 1 1

5 13442 1 1 1

5 13443 1 1 1

6 40961 1 1 1 1 1 1

The algebra kH = B0(H) has 10 simple modules, all absolutely simple, eight of them of

dimension 1 and two of dimension 2. We now give a labelling such that T1, . . . , T8 have dimension

1 and T9, T10 have dimension 2; T1 denotes the trivial module. When writing the socle structure

of a module, Ti is abbreviated to i.

We denote by T9 the 2-dimensional simple module appearing as second socle factor of P(1),

the projective cover of T1, and T10 the other 2-dimensional module, which is the dual of T9.
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We define T8 as the exterior square of T9 (or of T10, they are isomorphic). The third socle

factor of P(1) is the sum of three simple one-dimensional modules, which will be denoted by

T2, T3, T4; these three modules are permuted by Out(H) ∼= S3. It remains to define T5, T6, T7:

they appear as composition factors in the fifth socle factor of P(1), and in particular we set

T5 := T4⊗ T3, T6 := T2⊗ T4, T7 := T3⊗ T2; therefore, once we have distinguished T2, T3, T4, we

have distinguished T5, T6, T7 as well. Summarising, P(1) is:

P(1) =

1

10

2 3 4

9 9

1 1 5 6 7

10 10

2 3 4

9

1

The three conjugacy classes of subgroup of order 5 can be labelled by Q1, Q2, Q3 by looking

at some relatively projective modules appearing as summands of the term of degree −1 of

some complex: in particular there are three modules, that we denote by R1, R2, R3, which are

summands of IndHQ1
k, IndHQ2

k, IndHQ3
k respectively and they appear in the complexes X2, X3, X4

and X5, X6, X7. We have dim(Ri) = 10, i = 1, 2, 3 and their structure is:

R1 =

10

3 4

9

1 5

10

R2 =

10

2 4

9

1 6

10

R3 =

10

2 3

9

1 7

10

By labelling the simple B0(H)-modules, we are able to distinguish those three modules, and

therefore this distinguishes the three conjugacy classes Q1, Q2, Q3.

Also, when running the algorithm, we will see that in the complexesX5, . . . , X10, the modules

U1, U2, U3 (or their duals) appear: each Ui has vertex Qi and has dimension 30. Their structure

is:
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U1 =

6 7

10 10

2 2 3 4 8 8

9 9 9

1 5 6 6 7 7

10 10

2 8

U2 =

5 7

10 10

2 3 3 4 8 8

9 9 9

1 5 5 6 7 7

10 10

3 8

U3 =

5 6

10 10

2 3 4 4 8 8

9 9 9

1 5 5 6 6 7

10 10

4 8

Each Ui has source of dimension 3.

3.1.3 Green correspondents

The Green correspondent of each Si is denoted by Ci. We have:

C2 =

5

10

3 4

9

5

C3 =

6

10

2 4

9

6

C4 =

7

10

2 3

9

7

C5 =

8 9

5 6 7 9

1 5 5 6 7 10 10

2 3 4 8 8 10 10 10 10

2 3 3 4 4 8 8 9 9

3 4 5 6 7 9 9 9

1 5 6 7 9 10

5 8 10

C6 =

8 9

5 6 7 9

1 5 6 6 7 10 10

2 3 4 8 8 10 10 10 10

2 2 3 4 4 8 8 9 9

2 4 5 6 7 9 9 9

1 5 6 7 9 10

6 8 10
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C7 =

8 9

5 6 7 9

1 5 6 7 7 10 10

2 3 4 8 8 10 10 10 10

2 2 3 3 4 8 8 9 9

2 3 5 6 7 9 9 9

1 5 6 7 9 10

7 8 10

C8 =

2 3 4 8 8

9 9 9

1 5 5 6 6 7 7

10 10 10

2 3 4 8 8

C9 =

10

2 3 4 8 8

8 9 9 9 9

1 1 5 5 6 6 7 7 9

5 6 7 10 10 10

2 3 4 8 10 10

8 8 9

C10 =

10

2 3 4

9 9 9

1 1 5 6 7

10 10

1 2 3 4

9 10

We give here a summary of the bijection between ordinary characters, simple B0(H)-modules

and simple B0(H)-modules and the perversity function; the polynomial Φn denotes the nth

cyclotomic polynomial.

π1/4 χ Polynomial kH-mod B0(G)-mod dim Ci

0 11 1 T1 = 11 S1 = 11 dim(C1) = 1

3 841 q2Φ3(q)Φ6(q) T2 = 12 S2 = 831 dim(C2) = 8

3 842 q2Φ3(q)Φ6(q) T3 = 13 S3 = 832 dim(C3) = 8

3 843 q2Φ3(q)Φ6(q) T4 = 14 S4 = 833 dim(C4) = 8

4 9721 q3Φ2(q)4Φ6(q)/2 T9 = 21 S9 = 7221 dim(C9) = 47

5 281 q3Φ1(q)4Φ3(q)/2 T10 = 22 S10 = 281 dim(C10) = 28

5 13441 q6Φ3(q)Φ6(q) T5 = 15 S5 = 5391 dim(C5) = 64

5 13442 q6Φ3(q)Φ6(q) T6 = 16 S6 = 5392 dim(C6) = 64

5 13443 q6Φ3(q)Φ6(q) T7 = 17 S7 = 5393 dim(C7) = 64

6 40961 q12 T8 = 18 S8 = 17291 dim(C8) = 29

No modules with vertex Q1, Q2 or Q3 appear in the Green correspondence for B0(G).
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3.1.4 Perverse equivalence

Complexes X2, X3, X4 with π = 3.

The complex X1 produced by T1 being trivial, we start from those with perversity function

π = 3, namely T2, T3 and T4. We have that the Green correspondents have dimension 8 and

the complexes are:

X2 : 0→ P(2)→ P(10)→ P(5)⊕R1 � C2 → 0,

X3 : 0→ P(3)→ P(10)→ P(6)⊕R2 � C3 → 0,

X4 : 0→ P(4)→ P(10)→ P(7)⊕R3 � C4 → 0.

Complex X9 with π = 4.

The complex X9 is:

X9 : P(9)→ P(8)⊕ P(10)⊕ P(10)→

→P(2)⊕ P(3)⊕ P(4)⊕ P(5)⊕ P(6)⊕ P(7)⊕ P(8)→ P(10)⊕ U∗1 ⊕ U∗2 ⊕ U∗3 � C9 → 0.

Complexes X5, X6, X7 and X10 with π = 5.

From X2,X3,X4 we can see how 5, 6, 7 are permuted. Now we move to the triple T5, T6, T7.

X5 : P(5)→P(8)⊕ P(10)→ P(6)⊕ P(7)⊕ P(9)→ P(5)⊕ P(6)⊕ P(7)⊕ P(10)→

→ P(8)⊕ P(9)⊕R1 ⊕ U2 ⊕ U3 � C5 → 0.

X6 : P(6)→P(8)⊕ P(10)→ P(5)⊕ P(7)⊕ P(9)→ P(5)⊕ P(6)⊕ P(7)⊕ P(10)→

→ P(8)⊕ P(9)⊕R2 ⊕ U1 ⊕ U3 � C6 → 0.

X7 : P(7)→P(8)⊕ P(10)→ P(5)⊕ P(6)⊕ P(9)→ P(5)⊕ P(6)⊕ P(7)⊕ P(10)→

→ P(8)⊕ P(9)⊕R3 ⊕ U1 ⊕ U2 � C7 → 0.

The complex X10 turns out to be:

X10 : P(10)→ P(5)⊕ P(6)⊕ P(7)→ P(5)⊕ P(6)⊕ P(7)⊕ P(8)→

→ P(8)⊕ P(9)⊕ P(9)→ P(10)⊕R∗1 ⊕R∗2 ⊕R∗3 � C10 → 0.
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Complex X8 with π = 6.

The complex X8 is:

X8 : P(8)→ P(8)⊕ P(8)→ P(5)⊕ P(6)⊕ P(7)→ P(10)⊕ P(10)→

→ P(8)⊕ P(9)⊕ P(9)→ U∗1 ⊕ U∗2 ⊕ U∗3 � C8 → 0.

We can see that the modules U1, U2, U3 appear again. Finally, we give the cohomology of each

complex (the meaning of the column “total” has been introduced with the alternating sum of

cohomology defined by the expression 2.1.11):

Xi π1/4 H−6 H−5 H−4 H−3 H−2 H−1 Total

X2 3 2 1 2-1

X3 3 3 1 3-1

X4 3 4 1 4-1

X9 4 2/3/4/9 1⊕ 1 9-4-3-2+1+1

X10 5 1/10 1 10

X5 5 3/4/9/5 1 5-9+3+4-1

X6 5 2/4/9/6 1 6-9+2+4-1

X7 5 2/3/9/7 1 7-9+2+3-1

X8 6 A 1 1-2-3-4-5-6-7+8+9+9-10

(3.1.2)

For compactness, we have set A := 2/3/4/9/9/10/5/6/7/8 (see complex X8).

3.1.5 Stable Equivalence

We perform the construction in [11] of the complex determining a stable equivalence between

mod(B0(G)) and mod(B0(H)).

As we remarked at the beginning of the section, we have three H-conjugacy classes of

subgroups of order 5. We can denote by Q a generic subgroup of order 5; the result from the

construction of the stable equivalence is the same for each of those three, up to isomorphism.

We recall the notation from [11]: N̄G(Q) and N̄H(Q) are complements of Q inside NG(Q)

and NH(Q) respectively, and they can be chosen such that N̄H(Q) ≤ N̄G(Q). We need Q-
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complements of centralisers as well, and we take then C̄G(Q) = CG(Q) ∩ N̄G(Q) and C̄H(Q) =

CH(Q) ∩ N̄H(Q).

For each of the three Q = Q1, Q2, Q3, we have C̄H(Q) ∼= D10, the dihedral group of order

10, and C̄G(Q) ∼= A5. As a k[C̄H(Q) × C̄G(Q)opp]-module, we have that kC̄G(Q) = MQ ⊕ V ,

where MQ and V are indecomposable, dim(MQ) = 35, dim(V ) = 25, and only MQ lies in the

principal block. So we have eC̄H(Q)kC̄G(Q)eC̄G(Q) = MQ. In particular, no projective summand

P appears in this decomposition. As N̄H(Q) ≤ NG(Q) and in this case C̄G(Q) � NG(Q), then

N̄H(Q) normalises C̄H(Q) and the action of C̄H(Q)× C̄G(Q)opp on kC̄G(Q) can be extended to

a natural action of N∆ = (C̄H(Q) × C̄G(Q)opp)∆N̄H(Q); it turns out that, as a kN∆-module,

kC̄G(Q) does not decompose any further than MQ and U . So we conclude that

eC̄H(Q)kC̄G(Q)eC̄G(Q) = MQ (3.1.3)

as a kN∆-module.

The representation theory of kC̄H(Q) and kC̄G(Q) is briefly recalled: they decompose into

one and two blocks respectively, and kC̄H(Q) has two simple modules 11, 12, and kC̄G(Q) has

three simple modules 11, 31, 51, where the first two of them belong to the principal block. Each

simple module can be seen as a simple module for k[C̄H(Q) × C̄G(Q)opp], where the original

group acts as usual and the other factor acts trivially. The set of irreducible modules for

k[C̄H(Q)× C̄G(Q)opp] is indeed 11⊗ 11, 12⊗ 11, 11⊗ 31, 12⊗ 31, 11⊗ 51, 12⊗ 51. The Brauer tree

of the principal block of kC̄G(Q) is:

11 31

The map γ : SB0(C̄G(Q)) → SB0(C̄H(Q)) is defined via the requirement

Hom(SC̄H(Q), γ(S)) 6= {0}, S ∈ SB0(C̄G(Q)).

This makes γ send the trivial module to the trivial module and 31 to 12. As expected according

to [11], our computation in Magma confirms that a projective cover of MQ is in the form

P(11 ⊗ 11)⊕ P(12 ⊗ 31) �MQ. (3.1.4)

The subset E of SB0(C̄G(Q)) is defined by looking at the Brauer tree of B0(C̄G(Q)): the distance

d between the exceptional vertex and the edge of the trivial module is 1; so the subset E ⊆
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SB0(C̄G(Q)) such that the distance of the edge from the exceptional vertex is 1 + 1 = 0 (mod 2)

is formed of 31 only. Therefore, the complex X is:

X : (0→ P(12 ⊗ 31)
a−→MQ → 0), (3.1.5)

where X is now a complex of k[C̄H(Q) × C̄G(Q)opp]-modules that can be extended to a N∆-

module. In this situation, this complex coincides with the complex C ′ in Remark 2.2.3, whereas

they are only homotopy equivalent in general.

We can now run the algorithm FinalStabEq; this would compute the image of each element

in SB0(G) under the stable equivalence L in Proposition 2.1.5; if the result matches with the

output of the algorithm PerverseEq, then by Proposition 2.1.5 we have a splendid derived

equivalence between B0(G) and B0(H).

As no projective summand appears in the decomposition 3.1.3, we deduce that TQ = UQ =

P(12 ⊗ 31), so we have to compute TQ ⊗kC̄G(Q) SNG(Q) for every Q = Q1, Q2, Q3 and for

every simple B0(G)-module S = S1, . . . , S10. For each S = Si, we must check the following

isomorphism in the stable category:

⊕
Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= X−1

i in mod(kH), (3.1.6)

where X−1
i is the terms in position −1 of the complex Xi which was produced from Si under

the algorithm of the perverse equivalence. Our computations show that conditions 3.1.6 are
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satisfied, as we get:

S = S1,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S2,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= R1 ⊕ {0} ⊕ {0} ∼= R1;

S = S3,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= {0} ⊕R2 ⊕ {0} ∼= R2;

S = S4,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= {0} ⊕ {0} ⊕R3

∼= R3;

S = S5,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= R1 ⊕ U2 ⊕ U3;

S = S6,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= U1 ⊕R2 ⊕ U3;

S = S7,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= U1 ⊕ U2 ⊕R3;

S = S8,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= U∗1 ⊕ U∗2 ⊕ U∗3 ;

S = S9,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= U∗1 ⊕ U∗2 ⊕ U∗3 ;

S = S10,
⊕

Q=Q1,Q2,Q3

TQ ⊗kC̄G(Q) SNG(Q)
∼= R∗1 ⊕R∗2 ⊕R∗3.

where all these isomorphisms are in the stable category, namely up to projective summands. By

comparing these results with our complexes Xi, we have finally concluded the proof of Theorem

3.1.1.
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3.2 2F4(2)′.2

The family of groups 2F4(q2) was introduced by Ree; here q2 = 22m+1, an odd power of 2.

These groups are simple apart from the case q2 = 2, that contains a simple subgroup of index

2, namely 2F4(2)′, the simple Tits group. Broué conjecture was already proved by Robbins for

both 2F4(2)′ and 2F4(2) = 2F4(2)′.2:

Proposition 3.2.1. ([35]) Broué’s conjecture holds for the principal 5-blocks of G = 2F4(2)′.2.

The main purpose of this section is to look for a perverse equivalence between the principal

5-block of 2F4(2)′.2 and the normaliser of a Sylow 5-subgroup. Again, in this section we have

k := F̄5.

3.2.1 `-local subgroups

The normaliser H of the Sylow 5-subgroup P ∼= C5 × C5 has order 2400 and is of the form

H ∼= P o (S o S3), where S is the same group that we found for the normaliser H in Ω+
8 (2).

3.2.2 Irreducible B0(H) and B0(G)-modules

Here we give a brief description of the representation theory of H and G, and we introduce the

labelling for the irreducible B0(H) and B0(G)-modules that define the desired bijection between

the two sets SB0(H) and SB0(G). The group algebra kH = B0(H) has 16 simple modules and

all of them are absolutely simple. The label for T1, . . . , T16 will be such that T1, . . . , T4 have

dimension 1, and in particular T4 is the only one such that T4 ⊗ T4
∼= T1; T5, . . . , T10 have

dimension 2, T11, . . . , T14 have dimension 3 and T15, T16 have dimension 4. The chosen labelling

for our simple B0(H)-modules must be such that the socle factors of P(1) and P(4) are:
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P(1) =

1

6

12

15

7 14

16

11

5

1

P(4) =

4

9

11

15

7 13

16

12

8

4

This uniquely determines the modules of dimension 3 and 4. We should now distinguish T2 and

T3
∼= T ∗2 , and it is enough to say that T3 is a composition factor of T5⊗T5. Finally, the self-dual

T10 can be defined as the tensor product of the other self-dual T7 by T2, and this determines

the labelling {Ti | i = 1, .., 16} = SB0(H) completely.

In the following table, we list all the unipotent characters lying in the principal 5-block of

G, together with their degree polynomials. The polynomials Φ′8,Φ
′′
8,Φ

′
24,Φ

′′
24 ∈ R[x] are such

that Φ8 = Φ′8Φ′′8 and Φ24 = Φ′24Φ′′24. In particular:

Φ′8(q) = q2 +
√

2q + 1 = (q − ψ3)(q − ψ5),

Φ′′8(q) = q2 −
√

2q + 1 = (q − ψ)(q − ψ7),

Φ′24(q) = q4 +
√

2q3 + q2 +
√

2q + 1 = (q − α5)(q − α11)(q − α13)(q − α19),

Φ′′24(q) = q4 −
√

2q3 + q2 −
√

2q + 1 = (q − α)(q − α7)(q − α17)(q − α23),

(3.2.1)

where ψ = e
2πi
8 and α = e

2πi
24 . The perversity function πκ/d is computed by setting κ = 3 and

d = 8.
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B0(G), G = 2F4(2)′.2, ` = 5

π3/8 Ordinary Character Degree Degree polynomial

0 φ1,0 1 1

8 2B2[ψ3] 27 1√
2
qΦ1Φ2Φ2

4Φ12

8 2B2[ψ5] 27 1√
2
qΦ1Φ2Φ2

4Φ12

10 φ′′1,4 78 q2Φ12Φ24

14 2F IV
4 [−1] 52 1

3q
4Φ2

1Φ2
2Φ12Φ24

14 2F I
4[−i] 351 1

4q
4Φ2

1Φ2
2Φ2

4Φ12Φ′24

15 2F I
4[−1] 27 1

12q
4Φ2

1Φ2
2Φ2

4Φ12Φ′′24

15 2F I
4[−1] 27 1

12q
4Φ2

1Φ2
2Φ2

4Φ12Φ′′24

15 2F I
4[−1] 78 1

6q
4Φ2

1Φ2
2Φ2

4Φ24

15 2F II
4 [−1] 1 1

12q
4Φ2

1Φ2
2(Φ′′8)2Φ12Φ′′24

15 2F I
4[i] 351 1

4q
4Φ2

1Φ2
2Φ2

4Φ12Φ′24

15 φ2,3 351 1
4q

4Φ2
4(Φ′′8)2Φ12Φ′24

16 φ′1,4 1248 q10Φ12Φ24

17 2B2[ψ3]; 1 1728 1√
2
q13Φ1Φ2Φ2

4Φ12

17 2B2[ψ3]; 1 1728 1√
2
q13Φ1Φ2Φ2

4Φ12

18 φ1,8 4096 q24

As for Ω+
8 (q), a list of degree polynomials for unipotent characters can be found in [10],

although this source has some misprints; a reviewed version of the list can be found for example

in [12]. In particular, the polynomial of the two characters of dimension 1728 and of those

non-cuspidal of dimension 78 is 1√
2
q13Φ1Φ2Φ2

4Φ12 and 1√
2
qΦ1Φ2Φ2

4Φ12 respectively; and the

character of dimension 650 denoted by ρ2 in [10] has polynomial 1
2q

4Φ2
8Φ24. This last character

does not belong to the principal block anyway. Our unitriangular shape of the decomposition

matrix of B0(G) is:

45



B0(G), G = 2F4(2)
′.2, ` = 5

π3/8 χ 11 271 272 781 521 3511 3512 12 273 274 782 2181 9201 3513 3514 11861

0 11 1

8 2B2[ψ
3]; 1 1

8 2B2[ψ
5]; 1 1

10 φ′′1,4 1

14 2F IV
4 [−1] 1

14 2F I
4 [i] 1

14 2F I
4 [−i] 1

15 2F II
4 [−1] 1

15 2F II
4 [i] 1

15 2F II
4 [−i] 1

15 2F I
4 [−1] 1

15 φ2,3 1 1 1 1 1

16 φ′1,4 1 1 1 1 1 1 1 1

17 2B2[ψ
3]; ε 1 1 1 1 1 1

17 2B2[ψ
5]; ε 1 1 1 1 1 1

18 φ1,8 1 1 1 2 1 1 1 1 1 1 1 1 1 1

3512 1 1 1

3514 1

3516 1

14041 1 1

3.2.3 Green correspondents

As usual, the Green correspondent of each Si is denoted by Ci. We have:

C2 =

12

8 15

4 7 13 14

6 9 16 16 16

2 10 11 11 12 12

5 8 15 15

1 7 13 14

6 16

C3 =

11 12

5 8 15

1 4 13 14

6 9 16

11 12

C4 =

5 15

1 7 13 14

6 9 16 16

3 10 11 11 12 12

5 8 15 15

4 7 13 14

9 16

11 15
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C5 =

9

11

8 15

7 13

16

4 12

8 9

C6 =

2

8

13 14

6 16

10 12

15

14

C7 =

14

16

10 11

15

13

5 9

3 14

C8 = 10 C9 =

11

5 15

1 7 13 14

6 9 16 16 16

3 10 11 11 12 12

5 8 15 15

4 7 13 14

9 16

C10 =

8 15

4 7 13 14

6 9 16 16

2 10 11 11 12 12

5 8 15 15

1 7 13 14

6 16

12 15

C11 =

13

16

10 12

15

14

6 8

2 13

C12 =

6

12

5 15

7 14

16

1 11

5 6

C13 =

6 9 16

2 3 10 11 11 12 12

5 5 8 8 15 15 15 15

1 4 7 7 13 13 13 14 14 14

6 6 9 9 16 16 16 16

2 3 10 11 11 12 12

5 8 15

C14 =

3

5

13 14

9 16

10 11

15

13

C15 = 4 C16 =

7

16

11 12

15

7

We give here a summary of the bijection between ordinary characters, simple B0(G)-modules

47



and simple B0(H)-modules and the perversity function.

π3/8 B0(H)-mod B0(G)-mod dim Ci

0 T1 = 11 S1 = 11 dim(C1) = 1

8 T6 = 22 S6 = 27 dim(C6) = 27

8 T7 = 23 S7 = 27 dim(C7) = 27

10 T12 = 32 S12 = 78 dim(C12) = 28

14 T2 = 12 S2 = 351 dim(C2) = 76

14 T4 = 14 S4 = 351 dim(C4) = 76

14 T8 = 24 S8 = 521 dim(C8) = 2

15 T11 = 31 S11 = 27 dim(C11) = 27

15 T14 = 34 S14 = 27 dim(C14) = 27

15 T15 = 41 S15 = 12 dim(C15) = 1

15 T5 = 21 S5 = 78 dim(C5) = 28

15 T16 = 42 S16 = 2181 dim(C16) = 18

16 T13 = 33 S13 = 920 dim(C13) = 120

17 T9 = 25 S9 = 351 dim(C9) = 76

17 T10 = 26 S10 = 351 dim(C10) = 76

18 T3 = 13 S3 = 11861 dim(C3) = 36

There is a unique conjugacy class of subgroups of order 5 in H, and we denote by Q a

representative. No module with vertex Q appears in the restriction (Si)H for any i = 1, . . . , 16.

3.2.4 Perverse equivalence

Due to the large values of the perversity function π, our complexes are long and we will only

write the final part of each of them, namely the degree 0 and −1. As we are mainly interested in

the non-projective part of each module of the complex, and as each term is projective whenever

the degree is smaller than −2, we do not have any loss of information. The perversity function

has been computed using κ = 3 and d = 8.

Complexes X6, X7 with π = 8.

X6 : 0→ P(6)→ · · · →M1 � C6 → 0

X7 : 0→ P(7)→ · · · → P(14)⊕M2 � C7 → 0
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where M1 and M2 have dimension 150 and are stacked relatively Q-projective as follows:

M1 =

R1,1

R1,2

R1,3

R1,4

R∗1,3

M2 =

R2,1

R2,2

R∗2,1

R2,3

R2,4

M1 =

2 10 12

8 8 15 15

4 7 13 13 13 14 14

6 6 9 9 13 14 16 16 16 16

2 3 6 10 10 11 11 11 12 12 12 16

2 5 5 8 10 12 15 15 15

1 7 8 13 14 14 15

6 13 14 16

M2 =

9 16

3 10 11 11 12

5 5 8 15 15 15

1 4 7 7 13 13 13 13 14 14 14 14

6 6 9 9 9 16 16 16 16 16

2 3 10 10 11 11 11 12 12 12

5 8 8 15 15 15

4 7 13 13 14

We have:

R1,1 =

2 10 12

8 15

13 14

6 16

2 10 12

R1,2 =

8 15

4 7 13

9 16

11 12

8 15

R1,3 =

13 14

9 16

3 10 11

5 15

13 14

R1,4 =

6 16

11 12

5 15

1 7 14

6 16

R2,1 =

9 16

3 10 11

5 15

13 14

9 16

R2,2 =

11 12

5 15

1 7 14

6 16

11 12

R2,3 =

4 7 13

9 16

11 12

8 15

4 7 13

Each of these modules has dimension 30 and are they summands of IndHQk.

Complex X12 with π = 10.

X12 : 0→ P(12)→ · · · → P(6)⊕M3 � C12 → 0
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M3 =

11 12

5 8 15 15

1 4 7 7 13 13 14 14

5 6 6 9 9 15 16 16 16 16

1 2 3 7 10 10 11 11 11 12 12 12 14

5 6 8 8 15 15 15 16

4 7 11 12 13 13 14

5 9 15 16

M3 =

R2,2

R∗2,1

R2,3

R2,1

R∗1,4

Complexes X2, X4, X8 with π = 14.

X2 : 0→ P(2)→ · · · → P(12)⊕M4 � C2 → 0

The module M4 at degree −1 is stacked relatively projective and its structure, as well as the

filtration, is given by:

M4 =

8 15

4 7 13 13 14

6 9 9 16 16 16

2 3 9 10 10 11 11 11 12 12 12 16

5 5 8 8 11 12 15 15 15 15

1 7 8 13 13 14 14 14 15

4 6 6 7 13 16 16

2 9 10 12 16

M4 =

R1,2

R1,3

R1,4

R1,1

R∗1,2

As for X4, we have:

X4 : 0→ P(4)→ · · · → P(5)⊕ P(15)⊕M7 � C4 → 0

where M7 is stacked relatively Q-projective and
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M7 =

4 7 13

9 9 16 16

3 10 11 11 11 12 12

5 5 8 8 8 15 15 15 15 15

1 4 4 7 7 7 13 13 13 13 14 14 14

6 6 9 9 16 16 16 16

2 10 11 11 12 12 12

8 8 15 15

M7 =

R2,3

R2,1

R2,2

R∗2,1

R1,2

The complex X8 is:

X8 : 0→ P(8)→ · · · →M5 ⊕M6 � C8 → 0.

The two stacked relatively Q-projective modules M5 and M6 are:

M5 =

13 14

6 9 16 16

2 3 10 10 11 11 12 12

3 5 5 8 8 10 11 15 15 15 15

1 4 5 7 7 13 13 13 14 14 14 15

6 6 9 13 14 16 16 16

2 9 10 11 12 12 16

3 8 10 11 15

M5 =

R1,3

R1,4

R1,1

R1,2

R∗1,1

M6 =

8 15

4 7 13 13 14

6 9 9 16 16 16

2 2 3 10 10 10 11 11 11 12 12 12 12

5 5 8 8 8 15 15 15 15 15

1 4 7 7 13 13 13 14 14 14

6 6 9 16 16 16

2 10 11 12 12

M6 =

R∗2,1

R2,3

R2,1

R2,2

R1,1

Complexes X11, X14, X15, X5, X16 with π = 15.

X11 : 0→ P(11)→ · · · → P(13)⊕ U1 � C11 → 0
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X14 : 0→ P(14)→ · · · → U2 � C14 → 0

where both U1 and U2 are stacked relatively Q-projective; in particular:

U1 =

R∗1,4

R1,1

R1,2

R1,3

R1,4

R∗2,1

U2 =

R∗1,2

R∗1,1

R∗1,4

R∗1,3

R∗1,2

R1,3

U1 =

2 10 12

5 8 8 15 15 15

1 4 7 7 13 13 13 14 14 14

6 6 6 8 9 9 15 16 16 16 16 16

2 3 10 10 11 11 11 12 12 12 13 14

5 5 6 8 15 15 15 16

1 2 7 10 11 12 12 13 14 14

5 6 8 15 15 16

U2 =

3 10 11

5 5 15 15

1 7 13 13 14 14 14

6 6 9 9 9 13 14 16 16 16 16 16

2 3 9 10 10 11 11 11 11 12 12 12 12 16

3 5 8 8 8 10 11 15 15 15 15

4 4 5 7 7 13 13 13 14 15

9 9 13 14 16 16

As for X5 and X15, we have:

X5 : 0→ P(5)→ · · · → P(9)⊕ U∗2 � C5 → 0

X15 : 0→ P(15)→ · · · → U3 � C15 → 0

U3 =

R∗1,3

R∗1,2

R∗1,1

R∗1,4

R∗1,3

R2,3

U3 =

9 16

3 10 11 11 12

5 5 8 15 15 15

1 4 4 7 7 7 13 13 13 13 13 14 14 14 14

6 6 6 9 9 9 16 16 16 16 16 16

2 2 3 10 10 10 11 11 11 12 12 12 12

5 8 8 8 15 15 15 15

4 7 13 13 13 14 14

Finally:

X16 : 0→ P(16)→ · · · → V1 � C16 → 0
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Here V1 has dimension 330 and is stacked relatively Q-projective as follows:

V1 =

R2,3

R∗1,1

R1,4

R1,1

R∗1,2

R2,1

R∗1,1

R1,4

R1,1

R2,2

R1,2

Complex X13 with π = 16.

X13 : 0→ P(13)→ · · · → P(6)⊕ P(9)⊕ P(16) � C13 → 0.

As we see, here the module in degree −1 is projective.

Complexes X9, X10 with π = 17.

We find:

X9 : 0→ P(9)→ · · · →M8 � C9 → 0,

where M8 is stacked relatively Q-projective of structure:

M8 =

R2,2

R∗2,2

R2,3

R2,1

R1,4

M8 =

11 12

5 8 15 15

1 4 7 7 13 13 14 14

6 6 6 9 9 16 16 16 16 16

2 3 10 10 11 11 11 11 12 12 12 12

5 5 8 8 15 15 15 15

1 4 7 7 13 13 14 14

6 9 16 16

The complex X10 is:
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X10 : 0→ P(10)→ · · · P(8)⊕ P(15) � C10 → 0

where:

M9 =

6 16

2 10 11 12 12

5 8 8 15 15 15

1 4 5 7 7 13 13 13 14 14 14 15

1 6 6 7 9 9 14 16 16 16 16

2 3 6 10 10 11 11 12 12 16

5 8 11 12 15 15

5 13 14 15

M9 =

R1,4

R1,1

R1,2

R1,3

R∗1,4

Complex X3 with π = 18.

X18 : 0→ P(18)→ · · · →→M10 ⊕M11 � C18 → 0

where:

M10 =

5 8 15 15

1 4 7 7 13 13 13 14 14 14

6 6 9 9 9 16 16 16 16 16

2 3 10 10 11 11 11 12 12 12

5 8 8 11 12 15 15 15

4 5 7 8 13 13 14 15 15

9 13 14 16

M10 =

R1,2

R1,3

R∗1,4

R∗1,3

R∗1,2

M11 =

11 12

5 8 8 15 15 15

1 4 7 7 13 13 13 14 14 14

6 6 6 9 9 16 16 16 16 16

2 3 10 10 11 11 11 12 12 12

5 5 8 15 15 15

1 7 11 12 13 14 14

6 8 15 16

M11 =

R2,2

R∗2,1

R1,2

R1,3

R1,4
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The table recording the cohomology of each complex, sorted by the value of π, is the fol-

lowing:

Xi π H−18 H−17 H−16 H−15 H−14 H−13 H−12 H−11 H−10

X6 8

X7 8

X12 10 1/6/12

X2 14 6/2 1/6 1

X4 14 4 12 6/12 6⊕ 7

X8 14 12/8 12 7 1⊕ 7 1

X14 15 14 12/6/1 12/6/1

X11 15 11 7 7

X15 15 B 12/6/1

X5 15 5 7 7

X16 15 16/7 7 12/6/1

X13 16 A C 12/6/1 7

X9 17 D 12/8/4 12/8/4 7 7

X10 17 E 11/5 7 7

X3 18 G I 12/8/4 7 12/6/1 7

Xi π H−9 H−8 H−7 H−6 H−5 H−4 H−3 H−2 H−1 Total

X6 8 1/6 1 6

X7 8 7 1 1 7

X12 10 1/6 12

X2 14 1 1 2

X4 14 7 1 1 4

X8 14 8

X14 15 14

X11 15 1 1 11

X15 15 15

X5 15 1 1 5

X16 15 7 1 1 16-12+1-7-6

X13 16 6/1 13-16-15-14-11+12

X9 17 16+15+11+9-13-12-4-7-8

X10 17 1 1 F

X3 18 1 1 J

Here we denote: A := 16/15/14/13/12/11/8/7/6/2, B := 15/12/6/1, C := 12/8/6/2,

D := 16/15/13/12/11/9/8/7/4, E := 16/15/14/13/12/11/10/8/6/5/2, F := 16+15+14+10−

13− 12− 8− 6− 2, G := 16/15/14/13/11/10/9/5/3, I := 16/12/8/7/4, J := −16− 16− 15−
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14− 11− 10− 9− 5− 1 + 13 + 12 + 6 + 3.

3.2.5 Stable Equivalence

Let Q be a representative of the unique conjugacy class of subgroups of G of order 5. We have

C̄H(Q) ∼= C̄G(Q) ∼= C5 o C4, and then we have four irreducible kC̄G(Q)-modules 11, 12, 13, 14.

As a kN∆-module, kC̄G(Q) is indecomposable of dimension 20, and indeed it is already inde-

composable as a k[C̄H(Q)× C̄G(Q)opp]-module, as it consists of a unique 5-block. The Brauer

tree of B0(C̄G(Q)) is a star:

13 11

14

12

As we explained in Remark 2.2.4, the method that allowed us to lift a stable equivalence

to a perverse equivalence in the previous case G = Ω+
8 (2) does not work when the algorithm

PerverseEq returns stacked relatively Q-projective modules in degree −1. This happens to be

the case for 2F4(2)′.2, as we have observed. At the moment this is preventing us from applying

Proposition 2.1.5 and deduce the validity of the conjecture for the principal block G = 2F4(2)′.2,

therefore this final step of the procedure will be carried out as soon as a generalisation of this

method is available.
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3.3 Sp8(2)

In this section we will look at is the symplectic G = Sp8(2), of type C, and again k := F̄5.

3.3.1 Irreducible B0(H) and B0(G)-modules

We have fourteen kG-modules lying in the principal block. On the computational level, 511 can

be found in the atlas online, as well as 351 which does not belong to the principal block. It is also

easy to build 851, 1351, 5101, 10551, 17851, which do not belong to the principal block but are

useful to build B0(G)-modules. In particular: 282381 and 32131 are constituents of Λ2(5101);

229321 is a constituent of 851 ⊗ 10551; 8661, 12741, 19391 are constituents of 851 ⊗ 1351; the

permutation module of dimension 120 provides 1181; 2381, 70151 are constituents of 851 ⊗ 5101

and 351 ⊗ 17851 respectively; 27381 is a constituent of Λ2(1181); 25341 is a constituent of

351 ⊗ 5101; finally, the two last modules 511 and 47271 can be found by inducing the trivial

module of two subgroups of small index, 2295 and 11475 respectively. The two biggest modules

(which we cannot store) 229321 and 282381 can also be found more easily as constituents of

351 ⊗ 1055 and of the induction up to G of a simple module of dimension 21 of the maximal

subgroup of index 2295, respectively.

As for H, we can check in Magma that its structure is the wreath product H ∼= C4 o C2 =

(C4 ×C4)oC2, namely C2 swaps the coordinates of C4 ×C4. We have kH = B0(H) and there

are 14 irreducible B0(H)-modules; T1, . . . , T8 will be the modules of dimension 1, and T9, . . . T14

those of dimension 2. In particular, the fixed labelling makes the projective cover of T1 be:

P(1) =

1

10

7 11

9 13

1 2 8 14

10 12

6 11

9

1

This identifies each irreducible B0(H)-module except for T3, T4, T5, which are defined to be

isomorphic to T2 ⊗ T8, T2 ⊗ T6 and T2 ⊗ T7 respectively. The unitriangular shape of the
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decomposition matrix realising our perverse equivalence is:

B0(G), G = Sp8(2), ` = 5

π1/4 χ S1 S7 S6 S10 S9 S14 S11 S2 S8 S12 S13 S5 S3 S4

0 11 1

3 1191 1 1

4 511 1

5 2381 1

5 9181 1 1 1

6 57121 1 1 1 1

6 15121 1 1

6 28561 1 1

6 28562 1 1 1

7 146881 1 1 1 1

7 38081 1 1

7 304641 1 1 1 1

8 655361 1 1 1 1 1

8 130561 1 1 1

32131 1

32132 1 1

96391 1 1

289171 1 1 1 1 1

385561 1 1 1

514081 1 1 1

3.3.2 Green correspondents

Two Green correspondents are simple: C1
∼= T1 and C6

∼= T8. The socle structure of the others

are:
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C2 =

12

4 5 6 11

9 9 13 13

1 2 3 8 14 14

3 10 10 12

5 7 11 12

4 13

C3 =

10

5 6 7 11

9 9 13 13

1 3 8 14 14

1 10 12 12

4 6 10 11

7 9

C4 =

10

7 11

9 9 13

1 2 8 14

10 12

1 6 11

9 10

C5 =

4 13

3 9 9 12 14

1 2 2 4 6 8 10 11 12 14 14 14

4 5 7 9 9 10 10 10 10 11 12 12 12 12 13

1 2 4 4 5 5 6 6 7 7 9 11 11 11 11 13 14 14

2 6 9 9 9 10 10 12 13 13 13 14

1 2 3 5 7 8 9 10 11 13 14 14

5 10 12 13 14

C7 =

2

10

11

9

2

C8 =

10

5 11

9 9 13

1 2 3 14

10 12

1 4 11

9 10

C9 =

14

10 12

6 7 11

9 13

14

C10 =

12

6 11

9 13 13

1 3 8 14

10 12

7 8 11

12 13

C11 =

4 13

3 9 14

2 3 8 10 12 14

4 5 7 10 11 12 12 12

4 5 6 9 11 11 13

2 9 11 13 13 14

3 8 10 13 14

3 5 12

C12 =

5 7 9

1 2 13 13 14 14

2 3 8 10 10 12 12 14 14

4 4 5 6 6 7 10 10 10 11 11 12 12

4 5 6 7 9 9 11 11 13 13

3 5 7 8 9 9 11 13 14 14

1 2 9 12 12 13 14

2 4 6 10 14

C13 =

4 5 6 11

9 9 13

1 2 3 14 14

10 10 12

4 5 7 11

C14 =

10

4 5 7 11

5 9 9 13 13

1 2 3 8 13 14 14

3 10 12 12 14

4 6 10 11 12

4 5 9
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A summary of the above informations is given by the following table:

π1/4 χ Degree polynomial B0(H)-mod B0(G)-mod dim Ci Rel. Q-proj

0 11 1 T1 = 11 S1 = 11 dim(C1) = 1 -

3 1191
1
2qΦ3Φ8 T7 = 17 S7 = 1181 dim(C7) = 8 R1,7

4 511
1
2qΦ6Φ8 T6 = 16 S6 = 511 dim(C6) = 1 -

5 2381
1
2q

2Φ2
1Φ3Φ8 T10 = 22 S10 = 2381 dim(C10) = 28 R1,2

5 9181
1
2q

2Φ2
2Φ6Φ8 T9 = 21 S9 = 8661 dim(C9) = 16 -

6 57121 q4Φ3Φ6Φ8 T14 = 28 S14 = 47271 dim(C14) = 47 U1,4

6 15121
1
2q

4Φ2
1Φ2

2Φ3Φ6 T11 = 23 S11 = 12741 dim(C11) = 64 R1,8

6 28561
1
2q

4Φ3Φ6Φ8 T2 = 12 S2 = 19391 dim(C2) = 39 -

6 28562
1
2q

4Φ3Φ6Φ8 T8 = 18 S8 = 27381 dim(C8) = 28 R1,9

7 146881
1
2q

6Φ2
2Φ6Φ8 T12 = 24 S12 = 71051 dim(C12) = 100 U1,3

7 38081
1
2q

6Φ2
1Φ3Φ8 T13 = 25 S13 = 25341 dim(C13) = 29 U1,6

7 304641
1
2q

9Φ3Φ8 T5 = 15 S5 = 229321 dim(C5) = 102 U1,5

8 655361 q16 T3 = 13 S3 = 282381 dim(C3) = 38 -

8 130561
1
2q

9Φ6Φ8 T4 = 14 S4 = 32131 dim(C4) = 28 R1,9

The modules with vertex Q1 appearing in the Green correspondence are:

R1,8 =

11

13

3 8

12

11

R1,9 =

1 2

10

11

9

1 2

U1,3 =

10

5 7 11

9 13 13

3 8 14 14

10 12 12

4 6 11

9

U1,4 =

13

3 8 14

10 12 12

4 5 6 7 11

9 13 13

3 8 14

12

U1,5 =

12

4 6 11

9 9 13

1 2 14 14

10 10 12

5 7 11

13

U1,6 =

9

1 2 14

10 10 12

4 5 6 7 11

9 9 13

1 2 14

10
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3.3.3 Perverse Equivalence

The complex X1 being trivial, we write Xi for i = 2, . . . 14.

Complex X7 with π = 3.

X7 : 0→ P(7)→ P(10)→ P(2)⊕R1,1 � C7 → 0,

where

R1,1 =

10

11

9

1 2

10

has vertex Q1 and trivial source.

Complex X6 with π = 4.

X6 : 0→ P(6)→ P(12)→ P(3)⊕ P(12)→M1,1 � C6 → 0,

where:

M1,1 =

12

4 6 11

9 9 13

1 2 3 3 8 8 14 14

10 10 12 12 12

4 5 6 7 11 11

9 13 13

3 8 14

M1,1 =

R1,5

R1,4

R∗1,1

R1,3

R1,2

R1,2 =

3 8

12

11

13

3 8

R1,3 =

14

10

5 7

13

14

R1,4 =

4 6

9

14

12

4 6

R1,5 =

12

11

13

3 8

12
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Complex X10, X9 with π = 5.

X10 : P(10)→ P(2)⊕ P(14)→ P(2)⊕ P(4)⊕ P(14)→

→ P(4)⊕ P(9)⊕ P(13)→ P(12)⊕R∗1,5 ⊕R2,1 � C10 → 0,

X9 : P(9)→ P(4)⊕ P(11)→ P(3)⊕ P(4)⊕ P(4)⊕ P(11)→

→ P(10)⊕ P(12)⊕ P(12)→ ⊕M1,2 ⊕R∗2,1 � C9 → 0,

M1,2 =

14

10 12 12

4 5 6 7 11 11

9 9 13 13 13

1 2 3 8 14 14

10 10 12

5 7 11 14

12 13

M1,2 =

R1,3

R1,5

R1,6

R1,7

R∗1,6

R2,1 =

9 13

1 8 14

10 12

6 7 11

9 13

R1,6 =

12

4 6

9

14

12

R1,7 =

11

9

1 2

10

11

where R2,1 has vertex Q2 and trivial source, and R1,6, R1,7 have vertex Q1 with trivial source.

Complex X14, X11, X2, X8 with π = 6.

X14 : P(14)→ P(4)⊕ P(13)→ P(3)⊕ P(9)⊕ P(13)→ P(5)⊕ P(10)⊕ P(12)⊕ P(11)→

→ P(2)⊕ P(4)⊕ P(5)⊕ P(6)⊕ P(7)⊕ P(11)⊕ P(13)→ P(10)⊕M1,3 ⊕ U1,1 ⊕ U2,1 � C14 → 0,
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U2,1 =

4 5 11

9 9 13 13

1 2 2 3 3 8 14 14 14

10 10 10 12 12 12

4 4 5 5 6 7 11 11 11

9 9 13 13

2 3 14

U1,1 =

5 7

13 13

3 8 14 14

10 12 12

4 5 6 7 11

9 13

14

M1,3 =

4 6

9 9 13

1 2 3 8 14 14

10 10 12 12 12

4 5 6 7 11 11

9 13 13

3 4 6 8 14

9 12

M1,3 =

R1,4

R∗1,1

R∗1,6

R1,2

R1,6

where U1,1, U2,1 have vertex Q1 and Q2 respectively, and their source is 3-dimensional.

X11 : P(11)→ P(2)⊕ P(12)→ P(4)⊕ P(10)⊕ P(12)→ P(3)⊕ P(8)⊕ P(9)⊕ P(14)→

→ P(2)⊕ P(3)⊕ P(8)⊕ P(12)⊕ P(14)→ P(4)⊕ P(10)⊕M1,4 ⊕ U∗2,1 � C11 → 0,

M1,4 =

13

3 8 14

10 12 12

4 5 6 7 11 11

9 9 13 13 13

1 2 3 8 14 14

10 10 12

5 7 11

13

M1,4 =

R∗1,5

R∗1,3

R1,1

R∗1,4

R∗1,5

X2 : P(2)→ P(4)⊕ P(11)→ P(9)⊕ P(12→ P(10)⊕ P(12)⊕ P(12)→

→ P(3)⊕ P(4)⊕ P(8)⊕ P(11)⊕ P(14)→M1,1 ⊕ U2,1 � C2 → 0,
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X8 : P(8)→ P(13)→ P(5)⊕P(13)→ P(5)⊕P(11)→ P(2)⊕P(7)⊕P(11)→ P(10)⊕M1,5 � C8 → 0,

M1,5 =

11

9 13

1 2 3 8 14

9 10 10 12 12

1 2 4 5 6 7 11 11

9 10 13 13

3 8 11 14

9 12

M1,5 =

R1,7

R∗1,6

R1,2

R1,6

R∗1,1

Complex X12, X13, X5 with π = 7.

X12 : P(12)→ P(3)⊕ P(4)⊕ P(13)→ P(3)⊕ P(3)⊕ P(5)⊕ P(8)⊕ P(14)→

→ P(5)⊕ P(11)⊕ P(12)⊕ P(13)→ P(2)⊕ P(9)⊕ P(13)⊕ P(13)⊕ P(13)→

→ P(3)⊕ P(5)⊕ P(10)⊕ P(11)⊕ P(12)⊕ P(14)→

→ P(5)⊕ P(7)⊕M1,6 ⊕M1,7 ⊕ U∗2,1 � C12 → 0,

M1,6 =

14

10 12 12

4 4 5 6 6 7 11 11

9 9 9 13 13

1 2 3 8 14 14 14

10 12 12 12

4 6 11

M1,6 =

R1,6

R1,7

R1,3

R1,5

R1,4
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M1,7 =

9

1 2 14

10 10 12

4 5 6 7 11 11 11

9 9 9 13 13

1 2 3 8 14 14

10 12 12

4 6 11

M1,7 =

R∗1,1

R1,3

R1,5

R1,4

R1,7

X13 : P(13)→ P(5)⊕ P(12)→ P(4)⊕ P(5)⊕ P(11)→ P(2)⊕ P(3)⊕ P(8)⊕ P(14)→

→ P(10)⊕ P(12)⊕ P(12)→ P(4)⊕ P(9)⊕ P(13)⊕ P(13)→M1,8 ⊕ U2,1 � C13 → 0,

M1,8 =

4 6

9 9 13

1 2 3 8 14 14 14

10 10 10 12 12

4 5 5 6 7 7 11 11

9 13 13 13

3 8 14

M1,8 =

R∗1,6

R1,2

R1,4

R∗1,1

R1,3

X5 : P(5)→ P(4)⊕ P(13)→ P(2)⊕ P(12)⊕ P(14)→ P(4)⊕ P(5)⊕ P(10)⊕ P(11)⊕ P(12)→

→ P(2)⊕ P(3)⊕ P(4)⊕ P(8)⊕ P(9)⊕ P(13)⊕ P(14)→

→ P(2)⊕ P(3)⊕ P(10)⊕ P(12)⊕ P(12)⊕ P(14)⊕ P(14)→

→ P(4)⊕ P(9)⊕ P(13)⊕ U∗1,2 ⊕M1,2 ⊕R∗2,1 ⊕ U∗2,1 � C5 → 0,

where the new module
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U1,2 =

14

10 12

4 5 6 7 11

9 9 13

1 2 14 14

10 10

5 7

has vertex Q1 and its source has dimension 3.

Complex X3, X4 with π = 8.

X3 : P(3)→ P(3)⊕ P(4)→ P(5)⊕ P(12)→ P(12)⊕ P(13)→ P(2)⊕ P(3)⊕ P(8)⊕ P(14)→

→ P(3)⊕ P(5)⊕ P(11)⊕ P(14)→ P(4)⊕ P(9)⊕ P(13)⊕ P(13)→

→ P(4)⊕ P(10)⊕M1,3 ⊕R2,1 � C3 → 0,

X4 : P(4)→ P(3)⊕ P(4)→ P(3)⊕ P(12)→ P(12)⊕ P(13)→ P(3)⊕ P(13)⊕ P(14)→

→ P(3)⊕ P(5)⊕ P(11)⊕ P(14)→ P(5)⊕ P(9)⊕ P(11)⊕ P(13)→

→ P(10)⊕M1,5 ⊕R2,1 � C4 → 0.

3.3.4 Stable Equivalence

We have two conjugacy classes of subgroups of order 5. We can easily distinguish them by

looking at their centralisers: let Q1 and Q2 such that C̄G(Q1) ∼= S6 and C̄G(Q2) ∼= A5.

Let us look at Q1. The Brauer tree of the principal block of C̄G(Q1) in characteristic 5 is

11 81 82 12

For Q2, we have C̄G(Q2) ∼= A5 and also C̄H(Q2) ∼= D10, exactly like in Ω+
8 (2). As the candidate

complexes for the perverse equivalence do not have any stacked relatively projective module

with respect to Q2, we expect the stable equivalence algorithm to work well when we focus on
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Q2. Indeed, when Q = Q2, we get:

S = S1, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S2, TQ ⊗kC̄G(Q) SNG(Q)
∼= U2,1;

S = S3, TQ ⊗kC̄G(Q) SNG(Q)
∼= R2,1;

S = S4, TQ ⊗kC̄G(Q) SNG(Q)
∼= R2,1;

S = S5, TQ ⊗kC̄G(Q) SNG(Q)
∼= R∗2,1 ⊕ U∗2,1;

S = S6, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S7, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S8, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S9, TQ ⊗kC̄G(Q) SNG(Q)
∼= R∗2,1;

S = S10, TQ ⊗kC̄G(Q) SNG(Q)
∼= R2,1;

S = S11, TQ ⊗kC̄G(Q) SNG(Q)
∼= U∗2,1;

S = S12, TQ ⊗kC̄G(Q) SNG(Q)
∼= U∗2,1;

S = S13, TQ ⊗kC̄G(Q) SNG(Q)
∼= U2,1;

S = S14, TQ ⊗kC̄G(Q) SNG(Q)
∼= U2,1.

This coincides with the contributions of Q2 in the perverse equivalence in terms of relatively

Q2-projective modules. As for Q1, we would need to find several stacked relatively Q1-projective

modules, the same that we found when running PerverseEq; this will be possible with a more

generalised version of the method described in section 2.2.
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3.4 3D4(2)

Let G = 3D4(2). We recall that |G| = 212 · 34 · 72 · 13, hence in this section we fix k := F7. The

perversity function πκ/d that will be used has κ = 1 and d = 3, the order of 2 modulo 7.

3.4.1 Irreducible B0(H) and B0(G)-modules

We have kH = B0(H). There are two conjugacy classes of subgroups of order 5 in H, and

we denote by Q1 and Q2 two representatives. They can be distinguished by looking at their

centralisers, in particular we have C̄G(Q2) ∼= C7 and C̄G(Q1) ∼= PSL(2, 7).

There are seven kH-modules, of dimensions 1, 1, 1, 2, 2, 2, 3. The labelling T1, . . . , T7 that we

choose is the one such that the projective indecomposable module covering the trivial T1 has

the following structure:

P(1) =

1

6

7

5 6

1 2 7

4 5 6

1 7 7

4 5 6

1 3 7

5 6

7

5

1

We give the decomposition matrix defining the bijection between simple B0(G)-modules and

unipotent characters lying in the principal block. We have:
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B0(G), G = 3D4(2), ` = 7

π1/3 Unipotent Character S1 S6 S2 S7 S5 S4 S3

0 11 1

3 261 1

5 4681 1 1

6 521 1

6 3241 1 1

7 16641 2 1 1

8 40961 1 1 2 1

3.4.2 Green correspondents

This table summarises the bijection between unipotent characters, B0(H) and B0(G)-modules.

π1/3 χ Polynomial B0(H)-mod B0(G)-mod dim Ci

0 11 1 T1 S1 = 11 dim(C1) = 1

3 261 q(q4 − q2 + 1) T6 S6 = 261 dim(C6) = 26

5 4681
1
2q

3(q + 1)2(q4 − q2 + 1) T2 S2 = 4671 dim(C2) = 26

6 3241
1
2q

3(q + 1)2(q2 − q + 1)2 T5 S5 = 2981 dim(C5) = 102

6 521
1
2q

3(q − 1)2(q4 − q2 + 1) T7 S7 = 521 dim(C7) = 52

7 16641 q7(q4 − q2 + 1) T4 S4 = 12621 dim(C4) = 86

8 40961 q12 T3 S3 = 10531 dim(C3) = 24

There is no summand of vertex Q1 or Q2 in each restriction (Si)H , so each Si reduces to Ci

in mod(kH).

3.4.3 Perverse Equivalence

Complexes X1 with π = 0.

The complex related to the trivial module T1
∼= C1 is the trivial one:

X1 : 0→ T1
∼= C1 → 0.
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Complexes X6 with π = 3.

For π = 3, the kH-module T6 produces the complex:

X6 : 0→ P(6)→ P(7)→ P(3)⊕R1 � C6 → 0.

Here R1 has vertex Q1, and its dimension is 28, with structure:

R1 =

2 7

4 5

1 7

4 6

3 7

5 6

2 7

Complexes X2 with π = 5.

For π = 3, the kH-module T2 produces the complex:

X2 : 0→ P(2)→ P(7)→ P(5)⊕ P (7)→ P(4)⊕ P (5)⊕ P (6)→ P(7)⊕R2 � C2 → 0.

Again, R2 has dimension 28 and its vertex is Q2. Its socle structure is:

R2 =

4 6

3 7

5 6

2 7

4 5

1 7

4 6

Complexes X5, X7 with π = 6.

X5 : P(5)→ P(3)⊕ P(7)→ P(3)⊕ P(4)⊕ P(7)→ P(4)⊕ P(4)⊕ P(5)→

→ P(3)⊕ P(3)⊕ P(4)⊕ P(5)⊕ P(6)→ P(2)⊕ P(7)⊕M2 � C5 → 0.

Here M2 is a module of dimension 196 filtered by seven modules isomorphic to R∗1,R∗2. Its

structure is:
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M2 =

4 5

1 3 7 7

4 4 5 5 6 6

1 2 3 3 7 7 7 7

4 4 4 5 5 5 5 6 6 6

1 1 2 2 3 3 3 7 7 7 7 7 7 7

4 4 4 4 5 5 5 5 5 6 6 6 6 6

1 2 2 2 3 3 7 7 7 7 7 7

4 4 4 4 5 5 5 5 6 6

1 1 2 3 7 7 7 7

4 4 4 5 6 6

3 3 7 7

M2 =

R∗2

R∗1

R∗2

R∗1

R∗2

R∗1

R∗1

X7 : P(7)→ P(4)⊕ P(5)→ P(3)⊕ P(4)⊕ P(5)→ P(2)⊕ P(3)⊕ P(3)⊕ P(7)→

→ P(2)⊕ P(3)⊕ P(4)⊕ P(7)→ P(6)⊕M1 � C7 → 0.

Here M1 is a module of dimension 196 filtered by seven modules isomorphic again to R∗1,R∗2.

Its structure is:

M1 =

3 7

4 5 5 6

1 2 3 7 7 7

4 4 4 5 5 5 6 6

1 1 2 3 3 7 7 7 7 7

4 4 4 4 4 5 5 5 5 5 6 6 6 6

1 1 1 2 2 3 3 7 7 7 7 7 7 7

4 4 4 4 4 5 5 5 6 6 6 6

1 2 3 3 3 7 7 7 7 7

4 4 5 5 5 6 6 6

2 2 3 7 7 7

4 4 5 5

M1 =

R∗1

R∗2

R∗1

R∗2

R∗1

R∗2

R∗2
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Complex X4 with π = 7.

X4 : P(4)→ P(3)⊕ P(4)→ P(3)⊕ P(7)→ P(2)⊕ P(4)⊕ P(5)→

→ P(4)⊕ P(4)⊕ P(5)→ P(3)⊕ P(3)⊕ P(7)→ P(2)⊕M3 � C4 → 0.

M3 =

4 5

1 3 3 7 7 7

4 4 4 5 5 5 5 6 6 6

1 1 2 2 3 3 3 7 7 7 7 7 7 7

4 4 4 4 5 5 5 5 5 6 6 6 6 6

1 1 2 2 2 3 3 7 7 7 7 7 7 7

4 4 4 4 4 5 5 5 5 5 6 6 6 6

1 1 2 2 3 3 7 7 7 7 7 7

4 4 4 4 5 5 6 6

3 3 7 7

M3 =

R∗2

R∗1

R∗2

R∗1

R∗1

R∗2

R∗1

Complexes X3 with π = 8.

X3 : P(3)→ P(3)⊕ P(3)→ P(3)⊕ P(4)→ P(4)⊕ P(4)→ P(4)⊕ P(7)→

→ P(7)⊕ P(7)→ P(4)⊕ P(5)⊕ P(7)→M1 � C3 → 0.

The module M1 in degree −1 is isomorphic to the one that we found in X7.

The cohomology table related to the six complexes above is:

Xi π H−8 H−7 H−6 H−5 H−4 H−3 H−2 H−1 Total

X6 3 1/6 1 6

X2 5 2/6 1/6 1 1 2-1

X7 6 1/6/7 1/6 7

X5 6 5 1/6 1 5-6

X4 7 A 2/6 1 4+6-5-7-7

X3 8 B C

In the last two lines, A andB denotesA := 1/2/4/5/6/6/7/7 andB := 1/2/3/4/4/5/5/6/6/7/7/7,

C := 3 + 1 + 5 + 5 + 7 + 7 + 7− 2− 4− 4− 6− 6.
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3.4.4 Stable Equivalence

When we consider Q2, we get C̄G(Q2) ∼= C7, and then its only irreducible module in character-

istic 7 is trivial. In particular, as E never contains the trivial module, then E = ∅ and Q2 does

not give any contribution to Rouquier’s construction of the stable equivalence. Indeed, this is

in accordance with the complexes coming from the perverse equivalence that we found in the

previous section, as we did not find any module of vertex Q2 in any term. Let us now focus on

Q1; here, we have C̄G(Q1) ∼= PSL(2, 7). In characteristic 7, the irreducible modules of G are

11, 31, 51, 71, where the first three of them belong to the principal block. The Brauer tree is a

line:

11 51 31

The distance between the exceptional vertex and the edge labelled by the trivial module is

d = 2, then E = {51}. As C̄H(Q1) ∼= C7 oC3, we have three simple kC̄H(Q1)-modules 11, 12, 13,

where 12 denotes the only module such that Hom(ResC̄H(Q)51, 12) 6= {0}. So the map γ sends

51 to 12. As a N∆-module, eC̄H(Q1)kC̄G(Q1)eC̄G(Q1), therefore

MQ = eC̄H(Q1)kC̄G(Q1)eC̄G(Q1).

The restriction of MQ down to C̄H(Q)× C̄G(Q)opp is indecomposable as well, and a projective

cover of it is isomorphic to
⊕

S∈SB0(C̄H (Q))
P(γ(S))⊗ P(S)∗. For S = S1, S2, S6, our algorithm

computes:

S = S1,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= {0} ⊕ {0} ∼= {0};

S = S2,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= R2 ⊕ {0} ∼= R2;

S = S6,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= R1 ⊕ {0} ∼= R1;

As expected, we get the correct module in those three cases where PerverseEq provides rela-

tively Q-projective modules in degree −1. As for the previous cases, the completion of the stable

equivalence algorithm for the remaining modules S3, S4, S5, S7 is conditional to a generalisation

of the method, as we have explained in Remark 2.2.4.
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CHAPTER 4

PERVERSE EQUIVALENCES FOR SPORADIC GROUPS

In the previous chapter, we have combined the use of the algorithm with the theory of perverse

equivalences for groups of Lie type; in particular, the theory has provided us with the (conjec-

tural) correct perversity function πκ/d to use as an input for the algorithm, and a positive output

was indeed obtained. When we managed to show that the output of the perverse equivalence

algorithm lifted a known stable equivalence to a derived equivalence - namely for G = Ω+
8 (2)

- we have been able to show Broué’s conjecture for that case. Although most of the results of

this theory are still at a conjectural level, our algorithmic approach allows us to check that the

expected perverse equivalences indeed exists. In terms of our algorithm, we have been able to

provide a perverse equivalence immediately as the perversity function π was determined by the

set of degree polynomials defined by Uch(B0(G)), together with a suitable bijection between

Uch(B0(G)) and the irreducible B0(H)-modules. For sporadic groups, there is no notion of

unipotent character and degree polynomial, and we do not have a formula for the perversity

function π as in the Lie type case. However, although we do not have any conjecture about how

a derived equivalences between B0(G) and B0(H) can be induced when G is not of Lie type,

a perverse equivalence could still exist, and our algorithm can be used to try to produce one.

It is worth remarking that we “only” need a perversity function π : SB0(H) → Z≥0 to run that

algorithm, and that we can check whether the algorithm is successful provided that we have the

set of Green correspondents for each simple B0(G)-module. In the actual algorithmic process,

the search of π will mostly be via trial and error.
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4.1 G = J2

Broué’s conjecture for the principal 5-block of G = J2 has already been proved by Holloway as

a result of his PhD dissertation:

Proposition 4.1.1. ([17]) Broué’s Abelian Defect group conjecture holds for the principal 5-

block B0(G) when G = J2.

The purpose of this section is to show that no derived equivalence between B0(G) and B0(H)

is perverse.

4.1.1 Representation theory of H and G

Let G := J2 and H := NG(P ), where P ∈ Syl5(G), P ∼= C5×C5. We have that H is maximal in

G and H := P oD12. We aim to explain why there is no perverse equivalence between B0(H)

and B0(G). Here we include a (non-unitriangular) decomposition matrix for the principal block

of kG. In order to get a unitriangular form of this matrix, we must choose six ordinary characters

χi to realise the first six rows and then the bijection with the six simple B0(G)-modules via

the unitriangular structure; this is exactly the same procedure used for each group of Lie type

treated in the previous chapter, although in that case the modules in the first rows are the

unipotent ones, and the modules in the bottom are the non-unipotent. For sporadic groups the

split between modules must be worked out by looking at the decomposition matrix.

We see that there are four couples of ordinary characters having the same reduction modulo

5, namely {141, 142}, {211, 212}, {1891, 1892}, {2241, 2242}; by looking at the decomposition

matrix below, it is easy to realise that the only way to achieve a unitriangular form of this

matrix must necessarily split at least one of this pair, namely one of them will be among the six

in the upper part, and the other one in the bottom. This is roughly the reason why the perverse

equivalence approach is not working, and will be formalised properly in Proposition 4.1.2. The

decomposition matrices of B0(G) and kH = B0(H) in characteristic 5 are the following:
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B0(G), G = J2, k = F5

Ord. Character 11 141 211 411 851 1891

11 1

141 1

142 1

211 1

212 1

361 1 1 1

631 1 1 1

1261 1 1

1891 1

1892 1

2241 1 1 1

2242 1 1 1

2881 1 1 1

3361 1 1 1 1

(4.1.1)

B0(H), k = F5

Ord. Character 11 12 13 14 21 22

11 1

12 1

13 1

14 1

21 1

22 1

61 1 1 1 1

62 1 1 1 1

63 1 1 1 1

64 1 1 1 1

65 1 1 1 1

66 1 1 1 1

67 1 1 1 1

68 1 1 1 1

(4.1.2)

In particular, as ordinary characters we have 61 = 62, 63 = 64, 65 = 66, 67 = 68.
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4.1.2 Perverse equivalence

The information above is enough to conclude that a perverse equivalence between B0(H) and

B0(G) cannot exist.

Proposition 4.1.2. Let G = J2, P ∈ Syl5(G) and H := NG(P ). There is no perverse equiva-

lence between B0(H) and B0(G).

Proof. By contradiction, let us suppose that a perverse equivalence F : D(B0(H))→ D(B0(G))

exists, and in particular the corresponding unitriangular structure for the decomposition matrix

of B0(G) is fixed: this matrix that we consider is a re-arrangement of the decomposition matrix

(4.1.1) via permutation of rows and columns. The unitriangular structure for the matrix of

B0(H) is actually diagonal and is given in (4.1.2). In B0(G), the unitriangular structure of

the decomposition matrix determines a subset U of Irr(B0(G)), where |U | = 6 (we can think

that U plays the same role that unipotent characters play in the Lie type case). By definition,

the perverse equivalence F carries a bijection between SB0(H) and SB0(G), and the unitriangular

structure of the decomposition matrices of B0(G) and B0(H) provide natural bijections between

SB0(H) and {11, 12, 13, 14, 21, 22} ⊂ Irr(B0(H)), as well as SB0(G) and U . As F is a perverse

equivalence, then the resulting bijection {11, 12, 13, 14, 21, 22} → U arises from a perfect isometry

IF : CF (H,B0(H),C)→ CF (G,B0(G),C),

namely IF is preserving the division into upper and lower parts of the triangular decomposition

matrix of both B0(H) and B0(G). This is all we know about IF , and it is enough to get a

contradiction. In fact, up to sign we have U = {IF (11), IF (12), IF (13), IF (14), IF (21), IF (22)}.

By Lemma 1.2.7, any two of those characters do not have the same reduction modulo `, as

11, 12, 13, 14, 21, 22 do not either. This implies that the upper part U of our re-arranged unitri-

angular decomposition matrix of B0(G) consists of the six ordinary characters which are not

pairwise the same when restricted modulo `, namely U = {11, 361, 631, 1261, 2881, 3161}. But

it is now easy to see that this is not compatible with a unitriangular re-arrangement of the

decomposition matrix 4.1.1: for example, just notice that the first row can only have 11, and it

is now impossible to choose a character after 11: in order to have a uni-triangular matrix, we

should have a character which is decomposing in one Brauer character only, or in two Brauer

characters and one of those must be the trivial one. As none of the remaining five characters

361, 631, 1261, 2881, 3161 fulfils one of these two requirements, we have a contradiction.
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4.2 G = He

4.2.1 Structure of H

Let G := He. Let P ∼= C5 × C5 be a Sylow 5-subgroup of G, and H := NG(P ). From the

Atlas, we have that H is maximal in G and |H| = 1200; in particular H ∼= P o S′, where the

`-complement is S′ ∼= 4.A4
∼= (S o C3), where S is the complement of the Sylow 5-subgroup

that we found in the case of Ω+
8 (2); a presentation (3.1.1) of S was provided.

There is one conjugacy class only of subgroups of H (and, consequently, of G) of order 5,

and we denote any of them by Q.

4.2.2 Computational remarks

In the computational setting, we will work over k := F5. Some modules will turn out to be

indecomposable over F5 but not over F25 (and then not over F̄5). This is not a problem for

us, and indeed working over F5 rather than F25 (where modules splits as they do over F̄5)

makes computations more efficient. We only have to mention that if a B0(H)-module T is

indecomposable over F5, but splits over F25 as the sum of T ′ and T ′′, then the complex XT over

F5 will split over F25 accordingly, in two complexes XT ′ and XT ′′ .

It is not particularly difficult to get the ten simple kG-modules lying in the principal block.

Let us consider a subgroup of index 4116 (there is only one conjugacy classes of these subgroups);

this is included in a maximal subgroup of G having index 2058 and isomorphic to S4(4) : 2. The

permutation representation of dimension 4116 provides the simple kG-modules of dimensions

S3 = 1021, 1041 and 18501; we find a copy of 6801 as well, a simple module lying in the

block of defect 1. It turns out that 1041 ⊗ 6801 has S2 = 108601 as a constituent, as well as

S10 = 63941, 41161; those two can also be found in 1041 ⊗ 1021 and Λ1(1041) respectively;

moreover, 1041 ⊗ 1021 also provides S9 = 3061. The module S6 = 65281 is obtained as a

constituent of S3 ⊗ S9. Finally, there is a maximal subgroup of index 8330 isomorphic to

22.L3(4).S3; the related permutation representation has S7 = 42491 among its constituents.

4.2.3 Irreducible B0(H) and B0(G)-modules

The algebra kH = B0(H) has ten simple modules, two have dimension 1 (say T1 and T2), two

have dimension 2 and are not absolutely irreducible (say T3 and T4) as they decompose over
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F5, two have dimension 2 and are absolutely irreducible (T5 and T6), two have dimension 3 (T7

and T8) and finally we have T9 and T10, being 4-dimensional and are not absolutely irreducible

as they split in two 2-dimensional summands on F25. Tensoring by the linear module T2 swaps

T3 and T4, T5 and T6, T7 and T8, T9 and T10. In the following, Ti is usually abbreviated with

i. We can identify them by considering the projective cover P(1) of the trivial module T1. The

socle factors are:

P(1) =

1

6

7

10

3 8

9

7

5

1

As we mentioned before, T4 is determined as T4
∼= T3 ⊗ T2.

In the following list we will state the chosen labelling for the simple kG-modules Si, and

this fixes a bijection between the irreducible kG-modules lying in the principal block and the

irreducible modules of kH. As only seven out of ten complexes are available, we cannot state a

bijection for T4, T5 and T8, so S4, S5 and S8 are not mentioned now. We set:

S1 = 11

S2 = 108601

S3 = 1021

S6 = 65281

,

S7 = 42491

S9 = 3061

S10 = 63941

Some of them are not absolutely irreducible, and they are decomposable over F25 as follows:

S3 = S3,1 ⊕ S3,2, S9 = S9,1 ⊕ S9,2, S10 = S10,1 ⊕ S10,2, where

S3,1 = 511

S9,1 = 1531

S10,1 = 31971

,

S3,2 = 512

S9,2 = 1532

S10,2 = 31972.
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The remaining three B0(G)-modules are not assigned, namely 1041, 18501 and 41161. The

module 18501 splits as a direct sum of 9251 and 9252 as an F25G-module, so even if we do

not have a π-value, we can think that it corresponds to T4, which splits over F25 as well. In

addition, the requirement dimχi ≡ (−1)π(Ti) dimTi mod ` would suggest that π(Ti) must be

odd, as 2058 ≡ (−1) · 2 mod 5.

The following table is a (partial) unitriangular decomposition matrix, where the rows are

ordered by the π-value, where available. The partial perversity map has been obtained via trial

and error. The reducible ordinary characters 1021, 149941, 3061 occur as they correspond to

S3, S9, S10, which are reducible as F25G-modules.

B0(G), G = He, k = F5

π Ord. Character S1 S3 S7 S10 S6 S9 S2 - - -

0 11 1

0 1021 1

3 43521 1 1 1

4 149941 1 2 1

5 65281 1

5 3061 1

7 215041 1 1 1 1

4.2.4 Green correspondents

The Green correspondent of each Si is denoted by Ci. We have a full list of the Green cor-

respondents of each simple kG-module lying in the principal block. Two of them are simple,

namely C1 and C3. Their structures are:

C2 =

2 8 10

3 5 8 8 9

4 6 6 6 7 8 9 9

2 2 7 7 7 7 9 10

4 5 5 7 8 10 10

3 5 6 8 8 10

2 8 9

C3 = 3 C6 =

6

7

5 10

3 8

9

1 7

5 6
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C7 =

8

6 9

7 7

5 10

8

C9 =

9

7 7

5 5 10 10

1 1 3 8 8

6 6 9

3 7 7

9 10

C8 =

9

2 2 4 7 7

4 5 5 5 5 10 10

1 1 3 8 8 8 8 10

6 6 8 8 9 9

4 6 6 7 7 9

2 2 4 10

The following are the Green correspondents of the non-labelled B0(G)-modules 1041, 18501 and

41161, in that order:

4 7

5 10

1 8 8

6 9

4 7

4 10

8 8 10

3 6 6 8 8 8 8 9

2 2 4 6 6 6 6 7 7 9 9 9

2 2 4 5 5 7 7 7 7 10

2 2 5 5 7 7 8 8 10 10

3 5 5 8 8 9 10

4 8 8 9

9

4 7 7

5 5 5 10 10

1 1 3 8 8 8

6 6 9 9

1 4 7 7

6 10

They have dimensions 29, 150 and 66 respectively.

The partial bijections between the ordinary characters in the decomposition matrix, the

B0(G)-modules (given by the triangular structure of the matrix itself) and {Ti}, as well as the

function π, are summarised in the following table:
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π B0(H)-mod B0(G)-mod dim Ci

0 T1 S1 = 11 dim(C1) = 1

0 T3 S3 = 1021 dim(C3) = 2

3 T7 S7 = 42491 dim(C7) = 24

4 T10 S10 = 63941 dim(C10) = 94

5 T6 S6 = 65281 dim(C6) = 28

5 T9 S9 = 3061 dim(C9) = 56

7 T2 S2 = 108601 dim(C2) = 110

? 1041 29

? 18501 150

? 41161 66

There is no summand of vertex Q appearing in the decomposition of each (Si)H , so each module

Si restrict to a sum of its Green correspondent and some projective summands.

4.2.5 Partial perverse equivalence

We now describe the seven (out of ten) complexes that the algorithm has returned. In degree

−1 we find the following modules of vertex Q:

M1 =

8 8

6 6 9 9

2 2 4 4 7 7 7 7

5 5 5 10 10 10

1 3 8 8 8 8 8

6 6 9 9

2 4 7

R1 =

6 9

7 7

5 10

1 3 8

6 9

R2 =

5 10

1 3 8

6 9

7 7

5 10

In particular, R1 and R2 have trivial source and are 30-dimensional, and M1 has dimension
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90 and source of dimension 3. The list of complexes is the following:

X1 : 0→ T1
∼= C1 → 0,

X3 : 0→ T3
∼= C3 → 0.

X7 : P(7)→ P(6)⊕ P(9)→ R1 ⊕ P(8) � C7 → 0.

X10 : P(10)→ P(4)⊕ P(6)⊕ P(6)⊕ P(9)→ P(4)⊕ P(7)⊕ P(7)⊕ P(8)⊕ P(8)→

→ P(9)⊕M∗1 ⊕M∗1 � C10 → 0.

X6 : P(6)→ P(8)→ P(2)⊕ P(8)→ P(2)⊕ P(10)→ R∗1 ⊕ P(6) � C6 → 0.

X9 : P(9)→ P(8)⊕ P(8)→ P(4)⊕ P(8)⊕ P(8)→ P(4)⊕ P(5)⊕ P(5)⊕ P(10)→

→ P(9)⊕R∗1 ⊕R∗1 � C9 → 0.

X2 : P(2)→ P(8)→ P(5)⊕ P(8)→ P(4)⊕ P(5)⊕ P(6)→ P(8)⊕ P(10)→

→ P(6)⊕ P(8)⊕ P(9)→ P(2)⊕ P(10)⊕R1 ⊕M1 � C2 → 0.

The cohomology table related to the complexes that we achieved to get is the following:

Xi π H−7 H−6 H−5 H−4 H−3 H−2 H−1 Total

X7 3 7 1⊕ 3 7-3-1

X10 4 7/7/10 1⊕ 3⊕ 1 10-7-7+3+1+1

X6 5 1/6 1 6

X9 5 3/9 3 9

X2 7 6/2 1/6 1⊕ (7/10) 1 1 2-1-1-10+7

4.2.6 Stable Equivalence

We can skip the introductory part as we have C̄G(Q) ∼= A5 and C̄H(Q) ∼= D10, so the setting

matches the one that we found for Ω+
8 (2). The isomorphism classes of CH(Q), CG(Q), NH(Q)

NG(Q), N∆ as well as the Q-complements of centralisers and normalisers are also the same as

in the case Ω+
8 (2). Hence TQ is the same kN∆-projective module of dimension 50. The images
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of our simple B0(G)-modules under the usual stable equivalence give the following results:

S = S1, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S2, TQ ⊗kC̄G(Q) SNG(Q)
∼= R1 ⊕M1;

S = S3, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S6, TQ ⊗kC̄G(Q) SNG(Q)
∼= R∗1;

S = S7, TQ ⊗kC̄G(Q) SNG(Q)
∼= R1;

S = S9, TQ ⊗kC̄G(Q) SNG(Q)
∼= R∗1 ⊕R∗1;

S = S10, TQ ⊗kC̄G(Q) SNG(Q)
∼= M∗1 ⊕M∗1 .

This shows that, in the stable category, the images under the partial perverse equivalence that

we managed to build coincide with the images of Rouquier’s stable equivalence. Unlike the

perverse equivalence, we managed to build the images of every simple B0(G)-module. For the

remaining three modules we have:

S = 1041, TQ ⊗kC̄G(Q) SNG(Q)
∼= M∗1 ;

S = 41161, TQ ⊗kC̄G(Q) SNG(Q)
∼= R∗1;

S = 18501, TQ ⊗kC̄G(Q) SNG(Q)
∼= M1 ⊕M1;

In the hypothesis that a perverse equivalence would exist, as the bijection between SB0(H)

and SB0(G) is in general confirmed by the successful outcome of our algorithm, we are now

unable to state which of those three modules S4, S5 and S8 are, namely we can only say that

{1041, 41161, 18501} = {S4, S5, S8}.

4.2.7 Further developments

Question 4.2.1. Can this partial construction of a perverse equivalence be completed to a full

one? Namely, can we:

• complete the bijection between SB0(H) and SB0(G) by finding the remaining unknown cor-

respondence between {1041, 41161, 18501} and {T4, T5, T8} and then defining S4, S5, S8;

• complete the perversity function π by assigning π(T4), π(T5), π(T8);

• finally produce the three missing complexes X4, X5, X8?
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Computations have given no answer so far. When looking for the information above, it is

reasonable to believe that T4 would correspond to 18501, and then S4 := 18501; this is supported

by the fact that both T4 and 18501 split over F25, and the matching between non-absolutely

indecomposable modules is indeed happening for the part of the bijection that we know, i.e.

T3, S3, T9, S9 and T10 and S10 are all splitting over F25, and the image of the perverse and of the

stable equivalence are already decomposable. Under this assumption, the numerical restriction

imposed by the perfect isometry would imply that 2058 ≡ (−1)π(T4) · 2 (mod 5), and this would

imply that π(T4) is odd.
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4.3 G = Suz

4.3.1 Structure of H

Let G := Suz, k := F̄5, and let P ∼= C5 × C5 be a Sylow 5-subgroup of G, and H := NG(P );

then |H| = 600 and in particular H ∼= P o (S3 × C4); moreover, H is contained in a maximal

subgroup isomorphic to J2 : 2, of index 370656 in G. Finally, there are two conjugacy classes

of subgroups of H of order 5, denoted by Q1, Q2. We distinguish Q1 and Q2 by specifying that

|NG(Q1)| = 1200, whereas |NG(Q2)| = 7200.

4.3.2 Computational remarks

Our computations in Magma show that the Green correspondents of S1 and S2 are both simple,

T1 and T2 respectively, and then we can set π(T1) = π(T2) = 0. Using a trail and error approach,

the first possible non-zero value for π turns out to be 5. In fact, looking at the decomposition

matrix, we can realise that the third choice in the column of the ordinary character must be

one among 1431, 3641 and 189541. As we must have dimχi ≡ (−1)π(Ti) dimTi (mod 5), the

π-value for any of these three must be odd, so we test first π = 1 and π = 3. By setting π = 1,

testing this choice for the nine remaining B0(H)-modules T3, . . . T12 produced nine candidates

complexes. As we have already seen, the module P−1 of degree −1 is an extension of the kernel

of the previous map P−2 → P−1 by the Green correspondent Ci of Si, and it must by filtered

by relatively Q-projective modules, so the dimension must be multiple of 5. The possible Green

correspondents have dimensions 13 and 28. The kernels returned by running the algorithm

nine times with π(T1) = π(T2) = 0, π(Ti) = 1, π(Tj) >> 0, j 6= 1, 2, i have dimensions

1, 1, 1, 1, 1, 1, 3, 3, 2, 2. So the only chance is that P−1 is the extension of one of those kernel

of dimension 2 (when the algorithm is run on T11 and T12) by the Green correspondence of

dimension 28, resulting in a module of dimension 30. Unfortunately, it turns out that for T11

the only possible extension is the trivial one (direct sum), which does not fulfil the conditions,

and in the second case there is a non-trivial extension but not filtered in the desired way. We

can now try π = 3. The kernels that we get for every assignment π(Ti) = 3, i = 3, 4, .., 12

have dimensions: 24,24,24,24,25,25,48,48,48,48. For dimensional reasons we conclude that this

choice cannot work, as no extension of any kernel by any of the three Green correspondents of

dimensions 13, 13, 28 would have dimension a multiple of 5. We will see indeed that the choice

π(T4) = π(T6) = π(T10) = 5 works.
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The simple B0(G)-modules have been obtained as composition factors of different modules.

The four maximal subgroups of smallest index are copies of G2(4), 32.U4(3).23′ , U5(2) and

21+6.U4(2) of indices 1782, 22880, 32760 and 135135 in G respectively. The permutation repre-

sentation induced by G2(4), and so of dimension 1782, provides the simple module S2 = 1001.

The permutation representation of dimension 32760 contains S10 = 1431, 118691 and S4 = 3631;

this last one can be found in the permutation module of dimension 22880 as well. The represen-

tation of dimension 135135 is harder to decompose, but still doable and it provides S6 = 189531.

The small simple modules already available can be used, in particular the exterior square Λ2(S4)

contains 418221, and the symmetric square S2(S10) contains 32891. Finally, we have two cases

where computation did not go through: let us consider the maximal subgroup of index 370656,

isomorphic to J2 : 2. The permutation module contains a copy of 755821; moreover, J2 : 2 has a

non-trivial irreducible representation of dimension 1, which provides a new 370656-dimensional

kG-module. It turns out that this module contains 852931. Finally, the remaining modules

167851 and 1161271 can be found using modules for 6.G; in particular, the tensor product of

one of the 12-dimensional simple modules and one of the 11076-dimensional ones, chosen such

that the tensor product acts trivially on the center C6, contains both of them as constituents.

All these information have been obtained by looking at the Modular Atlas [38] as well as the

Atlas of Finite Group Representations [3].

4.3.3 Irreducible B0(H) and B0(G)-modules

We manage to construct five suitable complexes Xi via our algorithm; therefore, after fixing a

labelling on SB0(H), we are able to label five simple B0(G)-modules accordingly. We have:

S1 = 11,

S2 = 10011,

S4 = 3631,

S6 = 189531,

S10 = 1431,

At the current status, we do not have a labelling for the remaining seven B0(G)-modules

32891, 118691, 167851, 418221, 755821, 852931, 1161271. The (partial) decomposition matrix in

the unitriangular form is:
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B0(G), G = Suz, k = F5

π Ord. Character S1 S2 S4 S6 S10

0 11 1

0 10011 1

5 3641 1 1

5 189541 1 1

5 1431 1

We have kH = B0(H) and there are twelve simple B0(H)-modules T1, . . . , T12; all of them

are absolutely simple, eight have dimension one, say T1, . . . , T8, and four have dimension 2, say

T9, . . . , T12. The trivial module is T1. The socle factors of the projective cover of T1 allows us

to fix most of them. The labelling that we fix is such that:

P(1) =

1

10

2 11

4 6 9

1 12 12

3 5 10

2 11

9

1

It remains to define T7 and T8. We have T8 := T3 ⊗ T5 and T7 := T8 ⊗ T2. In particular,

tensoring by T2 swaps T3 and T4, as well as T5 and T6, T7 and T8, T9 and T10 and finally T11

and T12. Moreover, T3, T4, T5, T6 are such that Ti ⊗ Ti ∼= T2, i = 3, 4, 5, 6, whereas T7 ⊗ T7 and

T8 ⊗ T8 are just the trivial module T1.

By decomposing IndHQik for i = 1, 2 we get a list of modules of vertex Qi, i = 1, 2 that could

occur in the filtration of the term of degree −1 of our complexes.

4.3.4 Green correspondents

The Green correspondent of each Si is denoted by Ci. We have:
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C2 = 2 C4 =

12

3 10

2 11

4 9

12

C6 =

12

5 10

2 11

6 9

12

C10 =

10

2 11

4 6 9 9

1 12 12

3 5 10

1 2 11

9 10

In addition, we include the structure of some additional Green correspondents, whose complexes

have not been found so far. The following two are the Green correspondents of 32891 and 118691

respectively.

8 9

6 7 9 12

1 3 5 7 10 12 12

3 5 5 5 8 10 10 10 11 11

2 2 4 6 8 9 11 11 11 11

4 6 6 7 9 9 9 12

1 7 10 12 12

5 6 8 10

8 9

4 7 9 12

1 3 5 7 10 12 12

3 3 3 5 8 10 10 10 11 11

2 2 4 6 8 9 11 11 11 11

4 4 6 7 9 9 9 12

1 7 10 12 12

3 4 8 10

Finally, this is the socle structure of the Green correspondent of 418221:

3 5 10

2 8 8 8 11 11 11

4 4 6 6 9 9 9 9 9 9

1 1 1 7 7 7 12 12 12 12 12

3 3 5 5 7 10 10 10 10

2 8 10 10 11 11 11

4 6 8 8 9

4.3.5 Partial perverse equivalence

Before giving the complexes that we have been able to produce, a brief summary of the current

knowledge of the Green correspondent and of the partial perverse equivalence follows:
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π kH-mod kG-mod dim Ci Rel. Q-proj

0 T1 = 11 S1 = 11 dim(C1) = 1 -

0 T2 = 12 S2 = 10011 dim(C2) = 1 -

5 T4 = 14 S4 = 3631 dim(C4) = 13 -

5 T6 = 16 S6 = 189531 dim(C6) = 13 R′2

5 T10 = 22 S10 = 1431 dim(C10) = 28 R′′2

? 32891 74 R′2

? 118691 74 U ′2

? 167851 Unknown Unknown

? 418221 77 U ′′2

? 755821 Unknown Unknown

? 852931 Unknown Unknown

? 1161271 Unknown Unknown

where the modules of vertex Q2 appearing with the Green correspondents are:

R′2 =

1 12

5 10

2 11

6 9

1 12

R′′2 =

2 11

6 9

1 12

5 10

2 11

U ′2 =

4 9

1 7 12 12

3 3 5 10 10 10

2 8 8 11 11 11

4 4 6 9 9 9

1 7 12 12

3 10

U ′′2 =

3 10

2 8 11 11

4 4 6 9 9 9

1 7 7 12 12 12

3 3 5 10 10 10

2 8 11 11

4 9

In particular, U ′′2
∼= U ′2 ⊗ T2.

Complexes X1, X2 with π = 0.

As we said before, C1
∼= T1 and C2

∼= T2 are simple and then the complexes X1, X2 are

X1 : 0→ T1
∼= C1 → 0,

X2 : 0→ T2
∼= C2 → 0.

Complexes X4, X6, X10 with π = 5.

X4 : 0→ P(4)→ P(11)→ P(5)⊕ P(11)→ P(3)⊕ P(5)⊕ P(10)→ P(12)⊕R1,1 � C4 → 0
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X6 : 0→ P(6)→ P(11)→ P(3)⊕ P(11)→ P(3)⊕ P(5)⊕ P(10)→ P(12)⊕R2,1 � C6 → 0

X10 : 0→ P(10)→ P(7)⊕P(12)→ P(7)⊕ P(8)⊕ P(12)→

→ P(4)⊕ P(6)⊕ P(8)⊕ P(9)→ P(10)⊕R∗1,1 ⊕R∗2,1 � C10 → 0

Here we have:

R1,1 =

3 10

2 11

4 9

1 12

3 10

R2,1 =

5 10

2 11

6 9

1 12

5 10

the modules of vertex Q1 and Q2 appearing in the above complexes. Here is the cohomology of

the complexes that have been shown above:

Xi π H−6 H−5 H−4 H−3 H−2 H−1 Total

X4 5 4 1 4-1

X6 5 6 1 6-1

X10 5 1/10 1 10

4.3.6 Stable Equivalence

Let us consider a representative Q1 of the conjugacy class of subgroups of order 5 such that

|NG(Q1)| = 1200. We have C̄G(Q1) ∼= A5 and C̄H(Q1) ∼= D10, so the same setting that

occurred in G = Ω+
8 (2), He. We can move on to the conjugacy class represented by Q2. We

have C̄G(Q2) ∼= A6 and C̄H(Q2) ∼= D10. In characteristic 5, for A6 we have:

11 81

As d = 1, we have E = {81}. Our algorithm returns:
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S = S1,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= {0} ⊕ {0} ∼= {0};

S = S2,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= {0} ⊕ {0} ∼= {0};

S = S4,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= R1,1 ⊕ {0} ∼= R1,1;

S = S6,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= {0} ⊕ (R2,1 ⊕R′2);

S = S10,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= R∗1,1 ⊕ (R∗2,1 ⊕R′′2).

For S1, S2, S4, the output of the algorithm coincides with the datum from the perverse equiva-

lence. For S6 and S10 we get extra modules of vertex Q2, namely R′2 and R′′2 , and this is what

we expected; indeed, R′2 and R′′2 are the non-projective modules appearing together with the

Green correspondent C6 and C10, namely S6
∼= R′2 ⊕ C6 and S10

∼= R′′2 ⊕ C10 in mod(kH). We

can also write the image under this stable equivalence of some B0(G)-module for which the

perverse equivalence algorithm has not produced a suitable complex yet.

S = 32891,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= U1,1 ⊕ (R2,1 ⊕R′2);

S = 118691,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= R1,1 ⊕ (U2,1 ⊕ U ′2);

S = 418221,
⊕

Q=Q1,Q2

TQ ⊗kC̄G(Q) SNG(Q)
∼= U1,1 ⊕ (U∗2,1 ⊕ U ′′2 );

where U1,1, U2,1 have vertex Q1 and Q2 respectively, have 3-dimensional source, and:

U1,1 =

7 12

3 5 10 10

2 8 8 11 11 11

4 6 6 9 9 9

1 7 7 12 12 12

3 5 10 10

8 11

U2,1 =

7 12

3 5 10 10

2 8 8 11 11 11

4 4 6 9 9 9

1 7 7 12 12 12

3 5 10 10

8 11
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4.3.7 Further developments

As the partial perverse equivalence coincides with the (partial) stable equivalence constructed

by the algorithm, we can say that:

1. Finding a perverse equivalence could be possible; of course, we need the Green correspon-

dents of each simple B0(G)-module, and at the moment we miss four of them, namely

167851, 755821, 852931, 1161271; getting those modules is also necessary to compute the

stable equivalence;

2. Some condensation methods could work for these cases; this is a possible direction to look

at in order to prove the conjecture for the principal 5-block of G = Suz. The theory

of condensation is a powerful tool which have been used to deal (computationally) with

algebras and modules of high dimension. Some introductory notes about condensation

can be found in [28]. As an example, in [29] we can find an application of a condensation

methods to find the irreducible modules for Co2 in characteristic 2.
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4.4 G = Fi22

We work again in characteristic 5, so let k := F̄5. Let P ∼= C5×C5 be a Sylow 5-subgroup of G,

and H := NG(P ); then |H| = 2400 and in particular H ∼= P o S; the complement S has order

96, and it contains a normal subgroup of order 24 isomorphic to SL(2, 3) admitting a cyclic

complement of order 4. So S ∼= SL(2, 3) o C4. Finally, H is contained in one of the maximal

subgroups of G isomorphic to Ω+
8 (2) : S3, of index 61776. There is a unique conjugacy class of

subgroups Q of order 5.

4.4.1 Computational remarks

We are able to get 7 simple modules in the principal block only (out of 16). For standard

generators, the matrices generating the simple modules 781 and 4281 are available online on

the Atlas of Finite Group Representations. However, in some cases it is convenient to have

three generators for G, such that two generate the normaliser H, as this would make the

restriction of kG-modules down to H immediate (otherwise, restriction of modules of high

dimension, for example 806531, could turn out to be computationally difficult). In this latter

case, we find 781 as a constituent of the permutation module of dimension 142155, arising

from the maximal subgroup isomorphic to 210 : M22 of that index; the maximal subgroup of

index 3510 isomorphic to 2.U6(2) provides 4281. After building 781 and 4281, some others follow

quickly: Λ2(4281) and 781⊗4281 have 806531 and 319541 among their constituents respectively.

Moreover, 30031 = Λ2(781). It remains to find 10011. As a kG-module, 10011 is a constituent

of 781⊗ 30031, which can be built but it is hard to decompose with current computers; though,

10011 can be obtained as a k[2.G]-module where the center of order 2 acts trivially. In particular,

10011 is a composition factor of Λ2(3521), where 3521 is an irreducible k[2.G]-module whose

matrices can be obtained in the Atlas online.

4.4.2 Irreducible B0(H) and B0(G)-modules

The algebra kH = B0(H) has 16 simple modules, all of which are absolutely irreducible. We

have that T1, . . . , T4 are 1-dimensional; T5, . . . , T10 have dimension 2; T11, . . . , T14 have dimen-

sion 3 and the last two T15 and T16 have dimension 4. The structure of the projective cover of

the trivial module T1 fixes some of the labelling:

94



P(1) =

1

5

11

15

9 13

16

12

6

1

The module T5 ⊗ T5 determines T4, as it is the only non-trivial 1-dimensional constituent, and

we fix T3 := T ∗4 . We set T8 := T4⊗T5, T7 := T ∗8 . This fixes all the simple modules of dimension

2 apart from one, which will be T10; analogously, T2 is the remaining module of dimension 1.

Finally, we set T14 := T13 ⊗ T2.

4.4.3 Green correspondents

Here we write the structure of the Green correspondents that we have been able to get. The

last one is the Green correspondent of the simple B0(G)-module of dimension 80653; this is

unlabelled as we do not have yet a simple B0(H)-module Ti corresponding to 806531 under a

(conjectural) perverse equivalence.

C2 = 2 C4 =

9 13

5 16

11 12

6 15

9 13

C5 =

7

12

8 15

9 14

16

2 11

7 8

C7 =

5

11

6 15

9 13

16

1 12

5 6
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C12 =

3 8

6 14 15

2 9 13 14 16

7 7 10 11 16 16 16

10 11 11 12 12 15

8 8 13 15 15

2 5 9 12 14 14

4 7 15 16

5 16 16

4 10 11 11 12 12

6 6 6 8 8 15 15 15 15

1 1 2 9 9 13 13 13 14 14 14

5 5 7 7 16 16 16

1 3 10 11 11 12 12

5 6 15 15 16

4.4.4 Partial perverse equivalence

The partial set of complexes that our algorithm managed to construct is summarised by the

following table:

π kH-mod kG-mod dim Ci

0 T1 = 11 S1 = 11 dim(C1) = 1

0 T2 = 12 S2 = 10011 dim(C2) = 1

5 T5 = 21 S5 = 781 dim(C5) = 28

5 T7 = 22 S7 = 30031 dim(C7) = 28

9 T4 = 14 S4 = 4281 dim(C4) = 28

9 T12 = 32 S12 = 319541 dim(C12) = 104

Complexes X1, X3 with π = 0.

We have that C1
∼= T1 and C2

∼= T2, so the Green correspondents are simple and two suitable

complexes X1, X2 are:

X1 : 0→ T1
∼= C1 → 0,

X2 : 0→ T2
∼= C2 → 0.
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Complexes X5, X7 with π = 5.

The algorithm finds two suitable complexes attached to the choice π = 5. These two complexes

are produced from T5 and T7. We recall that T7
∼= T5 ⊗ T2.

X5 : P(5)→ P(13)→ P(3)⊕ P(13)→ P(3)⊕ P(15)→ R1 ⊕ P(7) � C5.

X7 : P(7)→ P(14)→ P(4)⊕ P(14)→ P(4)⊕ P(15)→ R2 ⊕ P(5) � C7.

R1 =

8 15

2 9 14

7 16

11 12

8 15

R2 =

6 15

1 9 13

5 16

11 12

6 15

In particular, we notice that R2
∼= R1 ⊗ T2 and C7

∼= C5 ⊗ T2. Indeed, we have that both those

complexes can be got from the other by tensoring each term by T2, namely X7
∼= X5 ⊗ T2 (and

vice-versa, as T2 ⊗ T2
∼= T1).

Complexes X4, X12 with π = 9.

Here we see that T4 and T12 return suitable complexes when π(T4) = π(T12) = 9. We have:

X4 : P(4)→ P(13)→ P(6)⊕ P(13)→ P(6)⊕ P(15)→ P(12)⊕ P(15)→

→ P(10)⊕ P(11)⊕ P(12)→ P(10)⊕ P(11)⊕ P(16)→

→ P(5)⊕ P(16)⊕ P(16)→ P(9)⊕ P(13)⊕R3 � C4.

X12 : P(12)→ P(16)→ P(4)⊕ P(16)→ P(4)⊕ P(9)⊕ P(13)→ P(9)⊕ P(13)⊕ P(13)→

→ P(3)⊕ P(5)⊕ P(6)⊕ P(15)→ P(6)⊕ P(15)⊕ P(15)→

→ P(7)⊕ P(11)⊕ P(12)⊕ P(13)→ P(3)⊕M ⊕R4 � C12.

The modules R3 and R4 of vertex Q have structure:
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R3 =

5 16

11 12

6 15

1 9 13

5 16

R4 =

7 16

11 12

8 15

2 9 14

7 16

In particular, R4
∼= R3 ⊗ T2. The module M appearing at degree −1 has dimension 150 and is

stacked relatively projective with respect to Q.

We display the cohomology of those complexes here:

Xi π H−9 H−8 H−7 H−6 H−5 H−4 H−3 H−2 H−1 Total

X5 5 5/1 1 5

X7 5 7/2 2 7

X4 9 5/4 5/1 1 1 4-1

X12 9 12/7/2 7/2 5/1 1 12-5

4.4.5 Stable Equivalence

We have to deal with one conjugacy class of groups of order 5 only. We have C̄G(Q) ∼= S5 and

C̄H(Q) ∼= C5 oC4. As a N∆-module, we have a decomposition kC̄G(Q) = MQ⊕P1⊕P2, where

P1, P2 are projective and do not belong to the principal block. The Brauer tree for the principal

5-block of S5 is:

11 31 32 12

Let us try to apply the algorithm by considering the far right node as the exceptional vertex.

As d = 3, we have E = {12, 31}. The algorithm computing the degree −1 of the images under

our stable equivalence provides:

S = S1, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S2, TQ ⊗kC̄G(Q) SNG(Q)
∼= R5;

S = S5, TQ ⊗kC̄G(Q) SNG(Q)
∼= R1;

S = S7, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0};

S = S4, TQ ⊗kC̄G(Q) SNG(Q)
∼= R3;

S = S12, TQ ⊗kC̄G(Q) SNG(Q)
∼= {0}.
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where

R5 =

2 9 14

7 16

11 12

8 15

2 9 14

As we can see, what we get for S7, S2, S12 under this stable equivalence does not coincide

with the datum coming from the perverse equivalence. In particular:

• for S7, it is worth to mention that a modification of TQ would provide exactly R2; in

particular, if we include 32 in our set E , then the corresponding summand V := Pγ(32)⊗P32

of TQ would give the result:

S = S7, V ⊗kC̄G(Q) SNG(Q)
∼= R2.

At the moment, we can suppose that the value π(T7) = 5 is not the correct one and

should then be changed; anyway, due to the very partial status of the potential perverse

equivalence, we are not able to explain this fact more accurately;

• it is possible that the perverse equivalence lifting this stable equivalence does not have

π(T2) = 0, although this choice produces a complex (of length one) satisfying the require-

ment of the perverse equivalence.

4.4.6 Further development

As for further potential development, the search of a perverse equivalence using this compu-

tational approach is out of reach; the same can be said about the stable equivalence, which

requires the full set of simple B0(G)-modules. Due to the large dimension of some of those, any

attempt to get and store them is not viable at the moment. Although the case of G = Fi22 is

mostly speculative - due to these computational obstacles - the output consisting of 7 suitable

complexes (out of 16 simple B0(G)-modules) shows that the existence of a perverse equivalence

proving Broué’s conjecture is a reasonable hypothesis, for this group.
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4.5 G = Fi23

4.5.1 Computational remarks and Green correspondents

Let us consider the Fischer simple group G = Fi23, and we set k := F̄5. In this case there is

not much that we can say: apart from the the trivial module, we are only able to produce the

simpleB0(G)-module of dimension 25806. There is a maximal subgroup of relatively small index,

Ω+
8 (3) : S3, of index 137632. In particular, Ω+

8 (3) : S3 has two small irreducible representations

12 and 21; the induced module 1G2 has a composition series of length 2, whose composition

factors are the module of our interest 258061 and another simple module of dimension 111862

lying in the non-principal block of defect 2. Moreover, it is maybe possible to get the simple

B0(G)-module of dimension 274482: this is a constituent of 2G1 , the other one being the module

of dimension 782 lying in the other block of defect 2. We have not tried it, as we do not expect

that we would be able to compute the Green correspondent anyway.

So the only Green correspondent that we can compute is the one of the module of dimension

25806 only. There is only one conjugacy class in H of subgroups of order 5, let Q be one of them.

The simple 258061 restricts down to H and decomposes into the sum of the Green correspondent,

one (non-projective) relatively Q-projective module of dimension 30, and a projective part. The

Green correspondent is simple of dimension 1, say T2. This is easy to identify uniquely: the

projective cover of the trivial module P(T1) has a module of dimension 4 among its composition

factors, say M , and its dual M∗; no more constituents of dimension 4 appear. We have that T2

is the only non-trivial 1-dimensional modules appearing as a direct summand of M ⊗M∗. In

summary, at the moment we can just guess that a potential perverse equivalence could start as

follows:

π B0(H)-mod B0(G)-mod Ci

0 T1 = 11 S1 = 11 C1 = T1

0 T2 = 12 S2 = 258061 C2 = T2

The two “small” simple B0(G)-modules, namely 35881 and 50831, are composition factors

of modules which are to large to treat, hence they cannot be obtained and then nothing can be

said about their Green correspondents.
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APPENDIX A

MAGMA

Here we provide the Magma code that has been used, and will be used in the future, to get

perverse equivalences and so to test Conjecture 1.1.13. In our MAGMA sessions, we will denote

by R the polynomial ring Q[x].

R<x>:=PolynomialRing(Rationals());

In this section, as we are in a computational setting, k will necessarily be finite of characteristic

`; in each case that we have considered, it is always sufficient to choose the finite field of `

elements.

1.1 Perversity function

For a polynomial f and positive coprime integers κ, d, we want to compute πκ/d(f). For our

purposes, f will be a degree polynomial of a unipotent character, which will then be of the

shape: f(q) = aqm
∏
j∈J Φj(q) where m,n ≥ 0, a ∈ Q, Φj is the j-th cyclotomic polynomial

and J a set of indices. For a group of Lie type G, the set of unipotent characters and their

degree polynomials can be obtained in GAP3 by using UnipotentCharacters. For instance,

for the group G = Ω+
8 (q), the list of unipotent characters and their polynomial is given by

Display(UnipotentCharacters(CoxeterGroup( "D", 4))). We will start by checking that

f has the required shape that we described above, or equivalently that f(q)
aqm is a product of

cyclotomic polynomials. The function a(f) is just the degree of the smallest term of f :

function a(f);

return Degree(TrailingTerm(f));

end function;
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In order to write a test saying if a polynomial is the product of cyclotomic polynomials, we will

get a list of enough cyclotomic polynomials and will check whether each irreducible factor of f

is in that list. In order to understand how many cyclotomic polynomials we need to produce,

we see that if Φn is a factor of f for some n, then ϕ(n) ≤ deg(f); in the worst case that f is

cyclotomic itself, we could have deg(f) = ϕ(n). In order to cover all the possible cyclotomic

polynomials occurring in f , we need to get a list of the first m cyclotomic polynomials, where

m is such that deg(f) ≤ ϕ(m); here f is fixed, and we aim that m is one of the smallest number

with this property, not to make the list needlessly long. A reasonable value of m can be obtained

by recalling that

m

eγ log(log(m)) + 3
log(log(m))

< ϕ(m), ∀m ≥ 3, (1.1.1)

where γ is the Euler-Mascheroni constant. In particular, we notice that the function in the left-

hand side is increasing. So if m is the smallest number such that the left-hand side in 1.1.1 is

larger then deg(f), we can be sure that all the factors of f are contained in the list Φ1, . . . ,Φm,

and such a list is immediately produced by Magma, as we can see in IsProductOfCyclotomic.

The following computes the left-hand side of Equation 1.1.1.

function UpperBoundDegree(n);

g:=EulerGamma(RealField(8));

return n/((Exp(1))^(g)*Log(Log(n))+3/(Log(Log(n))));

end function;

Now we can decompose f and check if each factor is a cyclotomic polynomial or not:

function IsProductOfCyclotomic(f);

d:=Degree(R!f);

if d eq 0 then

return false;

end if;

n:=3;

while(UpperBoundDegree(n) le d) do

n:=n+1;

end while;

L:=[R!CyclotomicPolynomial(i) : i in [1..n]];

F:=Factorization(f);
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for i in [1..#F] do

if Position(L,R!F[i][1]) eq 0 then

return false;

end if;

end for;

return true;

end function;

Given a positive integer n and κ, d as above, the following will compute the value of φκ/d(Φn).

We will simply consider each linear factor (x− e
2πit
n ) of Φn(x) =

∏
1≤t≤n
(t,n)=1

(x− e
2πit
n ), and we will

increase the number h until the inequality θ + 2πh ≤ 2πκ
d , equivalently dt + dnh ≤ kn, fails.

This is iterated for each linear factor of Φn(x).

function phiForCyclotomic(k,d,n);

l:=0;

for t in [1..n-1] do

if Gcd(n,t) eq 1 then

h:=0;

while d*t+d*n*h le k*n do

h:=h+1;

l:=l+1;

end while;

end if;

end for;

return l;

end function;

Here we compute the value of φκ/d(f) where f is a product of cyclotomic polynomial (the first

thing will consist of checking this); then we will just have to check that every factor of f appears

in the list of cyclotomic polynomials that we create.

function phi(k,d,f);

if IsProductOfCyclotomic(f) eq false then

print "not product of cyclotomic polynomials";
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end if;

c:=0;

n:=3;

while(UpperBoundDegree(n) le Degree(R!f)) do

n:=n+1;

end while;

L:=[R!CyclotomicPolynomial(i) : i in [1..n]];

F:=Factorization(f);

for i in [1..#F] do

n:=Position(L,F[i][1]);

if n eq 1 then

c:=c+(F[i][2])/2;

else c:=c+phiForCyclotomic(k,d,n)*F[i][2];

end if;

end for;

return c;

end function;

Finally, we can implement the Perversity function 2.1.4:

function PerversityFunction(k,d,f);

if Gcd(k,d) ne 1 then

return "integers must be coprime";

end if;

g:=f div x^(a(f));

N:=(Degree(f)+a(f))*k/d +phi(k,d,g);

return N;

end function;

1.2 Perverse equivalence

For a kG-module U and a list X of simple kG-modules, the following algorithm returns the

maximal semisimple submodule V ⊆ U with composition factors in the list X; notice that the
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set of constituents of the zero-module is the empty subset of X, and therefore such a submodule

always exists.

function SemisimpleXRad(Q,X);

K:=[];

for M in X do

hom:=AHom(M,Q);

if Dimension(hom) gt 0 then

B:=&+[Image(hom.j) : j in [1..Dimension(hom)]];

K:=Append(K,B);

end if;

end for;

if #K eq 0 then

return sub<Q|0>;

else

T:=&+K; return T;

end if;

end function;

The following is a straight application of the previous one. Given a list of simple kG-modules

X, a kG-module U and a submodule V , the function returns W such that V ⊆ W ⊆ U and

W/V is the X-radical of U/V . This is equivalent to saying that W is the maximal submodule

such that V ⊆W ⊆ U and there is a filtration from V to W whose quotients are in X.

function PreImageXRadical(P,M,X);

Q,q:=P/M; N:=M;

_,R:=HasPreimage(SemisimpleXRad(Q,X),q);

/* If N equal R, we do not enter the loop. Indeed, it means that there is nothing */

/* acceptable between M and P, so it returns M itself as M/M is considered to be in X */

while Dimension(N) lt Dimension(R) do

N:=R; Q,q:=P/N;

_,R:=HasPreimage(SemisimpleXRad(Q,X),q);

end while;

return R;
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end function;

Now let n ∈ Z≥0 and p : SB0(H) → Z≥0. Here we get the set Jn in 2.1.5.

function J(X,n,p);

I:={};

for M in X do

if p(M) le n then

I:=Include(I,M);

end if;

end for;

return I;

end function;

The following returns the injective hull of a kG-module M equipped with an injective map.

function InjHull(M);

IM:=Dual(ProjectiveCover(Dual(M))); h:=AHom(M,IM);

repeat f:=Random(h);

until IsInjective(f);

return IM,f;

end function;

We are now finally able to build the algorithm which is indeed returning the complexes Xi,

namely the images of Ti ∈ SB0(H) under the perverse equivalence between D(B0(G)) and

D(B0(H)) that we are trying to construct. Hence, T is a B0(H)-module, X denotes SB0(H) and

p : X = SB0(H) → Z≥0 is a (perversity) function. The following algorithm produces the com-

plex that we need in order to define the desired perverse equivalence between the two principal

blocks. Sequences of the kernels, images and cohomologies are also returned.

function PerverseEq(T,p,S);

if p(T) eq 0 then

return "The complex is trivial, T->0";

end if;

n:=p(T); P:=[]; K:=[]; I:=[];

P[1],i:=InjHull(T); T:=Image(i);
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K[1]:=PreImageXRadical(P[1],T,L(S,n-1,p));

for r in [2..n] do

B:=P[r-1]/K[r-1];

P[r],i:=InjHull(B);

I[r-1]:=Image(i);

Q,q:=P[r]/I[r-1];

K[r]:=PreImageXRadical(P[r],I[r-1],L(S,n-r,p));

end for;

P[n+1]:=P[n]/K[n]; H:=[K[1]];

for r in [2..n] do

Append(~H,K[r]/I[r-1]);

end for;

return P,K,H,I;

end function;

1.3 Stable equivalence

This algorithm aims to implement the construction of the stable equivalence described in [11].

What we will actually build is the image of the simple B0(G)-modules SB0(G) under this stable

equivalence; the algorithm is then meant to return the complexes of B0(H)-modules described

in [11]. We recall the notation of [11] that we have already introduced in 2.2: we have a kN∆-

module TQ and a kNG(Q)-module L; previously, L denoted a kG-module, but as we need to

restrict it to NG(Q) even before running the algorithm, we can directly regard it as an kNG(Q)-

module. The tensor product TQ⊗kC̄G(Q)L has a natural structure of N∆×NG(Q)-module, where

NG(Q) acts trivially on TQ andN∆ acts trivially on L. Our construction involves TQ⊗kC̄G(Q)L as

a NH(Q)-module; this means that we consider the copy of NH(Q) embedded inside N∆×NG(Q)

as described in [11], take (TQ⊗L)NH(Q) and build the quotient (TQ⊗L)NH(Q)/〈R〉NH(Q), where

R = {ct ⊗ l − t ⊗ cl | c ∈ C̄G(Q), t ∈ TQ, l ∈ L}; here, the action of C̄G(Q) on TQ is meant to

be carried by the copy of C̄G(Q) inside N∆, and as for L we have the action of C̄G(Q) lying

inside NG(Q). With an abuse of notation, we are implicitly using that C̄G(Q) is fixed at the

beginning as a subgroup of G, and then the expression ct⊗ l− t⊗cl is clear. The main difficulty

of this algorithm is about how to build the set R. First, we notice that as we consider the
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NH(Q)-span, we do not really need to construct each vector of the shape ct⊗ l− t⊗ cl, but we

can restrict t to the elements of a basis of TQ, ` to the elements of a basis of L, and c to a set

of generators of C̄G(Q), typically a set of two generators. However, as some L have dimension

in the thousands, the tensor TQ ⊗ L would have a prohibitive dimension, but we can skip this

problem by remarking two facts:

1. L is the restriction of a simple kG-module down to NG(Q); then, it is in general decom-

posable, and it will split in a number of indecomposable non-projective and projective

summands: L = L1 ⊕ · · · ⊕ Lr ⊕ P1 ⊕ · · · ⊕ Ps, where {Li}ri=1 are non-projective and

{Pj}sj=1 are projective. Decomposing a module of dimension in the thousands can be

hard, but in general it is easy to detect all the projective summands - as a projective

submodule is a summand - and end up with the non-projective part of L only, which is

in general very small. As the tensor product over a subalgebra is linear, we have:

TQ ⊗kC̄G(Q) L =

(
r⊕
i=1

TQ ⊗kC̄G(Q) Li

)
⊕

 s⊕
j=1

TQ ⊗kC̄G(Q) Pj

 . (1.3.1)

This shows that we can focus on indecomposable modules L only. The module TQ is in

general already indecomposable. Moreover, we realise that it is convenient to compute

TQ⊗kC̄G(Q)Pj at the beginning once and for all, so the contribution of the projective part of

L to the tensor TQ⊗kC̄G(Q)L is immediately known as soon as we have the decomposition

of L.

2. Now we have to find TQ ⊗kC̄G(Q) L
′, where L′ is indecomposable. The summands L′ of L

will often be small enough to proceed with the direct computation, but sometimes not.

Although L′ is now indecomposable, we notice that in order to get vectors ct⊗l−t⊗cl, t ∈

TQ, l ∈ L′, we only care about the action of C̄G(Q). So in a computational setting, we

can restrict both TQ and L′ further down to C̄G(Q). For example, if the decomposition

of TQ as a kC̄G(Q)-module is (TQ)C̄G(Q) = T1 ⊕ · · · ⊕ Tm for some m ≥ 1, then a basis

of TQ as a vector space can be chosen as the union of basis for each subspace T1, . . . , Tm;

the massive computational advantage is that an arbitrary element t of the basis of TQ can

now be seen as a vector of some Tj , for j = 1, . . . ,m, which is remarkably smaller and

so the matrix-vector multiplications t · c is done almost immediately in each case that we

considered. As a vector in Tj , then t · c can be easily coerced inside TQ and tensored with
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`; the same argument applies to the C̄G(Q)-summands of L′.

This method allows us to build the term in degree −1 which is supposed to come out from the

image of the simple B0(G)-modules under our stable equivalence. The algorithm is mostly based

on three parts. First of all, for a given kNG(Q)-module L, we want to detect all the indecompos-

able summands and their multiplicities - as using the command IndecomposableSummands()

is not the best option when L has dimension in some thousands. Given L and the list of inde-

composable projective kNG(Q)-modules, the following returns a list recording how many times

each projective appears as a summand of L, and a module being a copy of L without its projec-

tive summands. In the following algorithm, we make use of RemFree, that we have not copied

here; this take a module M , a positive number n, and for n times it tries to generate a free

submodule in M to quotient by. If n is large enough, it quotients M by enough free summand

(a free submodule is a summand), we ultimately get the non-free part of M as an output.

function SplitL(M,LP);

/* How many times should we try to look for free summands?

The potential number is Dim(M) div #Group(M), the greatest integer

less than or equal to Dim(M)/#G. As RemFree can fail,

we will check two times this number. */

nf:=Dimension(M) div #Group(M);

if not (nf eq 0) then

T:=RemFree(M,2*nf);

else T:=M;

end if;

/* c tells me how many free summands we have removed from M */

c:=(Dimension(M)-Dimension(T)) div #Group(M);

/* LN is a list of integers. It will track how many times each projective is found

inside M, and will be returned in the end. */

if c eq 0 then

LN:=[0 : x in LP];

else LN:=[c*Dimension(Socle(x)) : x in LP];

end if;

/* Now we focus on T, to find the remaining projective summands */
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for k in [1..#LP] do

B,n:=CountProj(T,LP[k]); delete T; T:=B; delete B; LN[k]:=LN[k]+n; delete n;

end for;

return T,LN;

end function;

Given the finite group G, the `-local subgroup H (which will always be the normaliser of

a Sylow `-subgroup), a cyclic group Q of order ` contained in H and its normaliser NG(Q)

- that we denote in the code as NG - the following StableEqSetup returns the kN∆-module

V = kC̄G(Q), which will provide, as it is described in [11], our module TQ. Moreover, the code

returns the groups denoted as BCG, IBCG, NH, BNH, IBNH, IBCH; they are, respectively, a

copy of C̄G(Q) in NG(Q), a copy of C̄G(Q) in N∆, a copy of NH(Q) and N̄H(Q) inside NG(Q),

a copy of N̄H(Q) inside N∆, and a copy of C̄G(Q) inside N∆. We do not need that the code

returns the group N∆ as well, as it is already carried by V , and it is easily recovered by using

the command Group(). Each of these group is returned as generated by two elements. Finally,

i consists of both the embeddings of C̄H(Q) and C̄G(Q) inside N∆.

function StableEqSetup(G,H,NG,Q);

/* Here we define all groups and subgroups that are involved

in the construction of the stable equivalence.

We make sure that each subgroup is generated by two elements. */

NH:=Normaliser(H,Q);

NH:=GenTwoEl(NH);

CG:=Centraliser(G,Q);

CG:=GenTwoEl(CG);

CH:=Centraliser(H,Q);

CH:=GenTwoEl(CH);

BNH:=Complements(NH,Q)[1];

BNH:=GenTwoEl(BNH);

BNG:=Complements(NG,Q)[1];

BNG:=GenTwoEl(BNG);

/* As requested by the algorithm, BNH must be contained in BNG */

repeat
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g:=Random(NG); BNG:=Conjugate(BNG,g);

until BNH subset BNG;

BCH:=CH meet BNH;

BCH:=GenTwoEl(BCH);

BCG:=CG meet BNG;

BCG:=GenTwoEl(BCG);

D,i,p:=DirectProduct(NH,NG);

ND:=sub<D|i[1](BCH.1),i[1](BCH.2),i[2](BCG.1),i[2](BCG.2),i[1](BNH.1)*i[2](BNH.1),

i[1](BNH.2)*i[2](BNH.2)>;

DP:=sub<ND|i[1](BCH.1),i[1](BCH.2),i[2](BCG.1),i[2](BCG.2)>;

IBNH:=sub<ND|i[1](BNH.1)*i[2](BNH.1),i[1](BNH.2)*i[2](BNH.2)>;

IBCH:=sub<ND|i[1](BCH.1),i[1](BCH.2)>;

IBCG:=sub<ND|i[2](BCG.1),i[2](BCG.2)>;

/* We can now define the k[BCH]-k[BCG] bimodule k[BCG] */

LG:=[g : g in IBCG];

n:=#IBCG;

k:=GF(#Q);

Zg1:=ZeroMatrix(k,n,n);

for i in LG do Zg1[Position(LG,i),Position(LG,i*IBCG.1)]:=1; end for;

Zg2:=ZeroMatrix(k,n,n);

for i in LG do Zg2[Position(LG,i),Position(LG,i*IBCG.2)]:=1; end for;

Zh1:=ZeroMatrix(k,n,n);

for j in LG do Zh1[Position(LG,j),Position(LG,i[2](BCH.1^(-1))*j)]:=1; end for;

Zh2:=ZeroMatrix(k,n,n);

for j in LG do Zh2[Position(LG,j),Position(LG,i[2](BCH.2^(-1))*j)]:=1; end for;

/* Here we define the action of \bar{N_H(Q)}, so kC_G(Q) is a module

for the whole N_{\Delta} */

Zn1:=ZeroMatrix(k,n,n);

for i in LG do Zn1[Position(LG,i),Position(LG,(IBNH.1)^(-1)*i*IBNH.1)]:=1; end for;

Zn2:=ZeroMatrix(k,n,n);

for i in LG do Zn2[Position(LG,i),Position(LG,(IBNH.2)^(-1)*i*IBNH.2)]:=1; end for;

/* N_{\Delta} has 6 generators: 2 for C_H(Q), 2 for C_G(Q),
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and 2 for the diagonal \bar{N_H(Q)} */

V:=GModule(ND,[Zh1,Zh2,Zg1,Zg2,Zn1,Zn2]);

return V,BCG,IBCG,NH,BNH,IBNH,i,IBCH;

end function;

The following algorithm is the main one. This will be used to compute TQ⊗kC̄G(Q) L
′ when

L′ is indecomposable as a kNG(Q)-module.

function StableEquivalence(Tq,V,H,Q,BCG,IBCG,NH,BNH,IBNH,i);

ND:=Group(Tq);

NG:=Group(V);

Gamma,ii,pp:=DirectProduct(ND,NG);

g:=NH.1;

for x in BNH do

if x*g^(-1) in Q then y1:=x;

end if;

end for;

g:=NH.2;

for x in BNH do

if x*g^(-1) in Q then y2:=x;

end if;

end for;

s:=hom< NH -> IBNH|i[1](y1)*i[2](y1),i[1](y2)*i[2](y2)>;

/* s is the "quotient" map of NH onto the diagonal copy of BNH inside ND=N_{Delta}. */

/* x1, x2 generate N_H(Q) inside Gamma, and we recall that ii is the embedding

of N_{Delta} and N_G(Q) inside Gamma. */

x1:=ii[1](s(NH.1))*ii[2](NH.1);

x2:=ii[1](s(NH.2))*ii[2](NH.2);

/* Finally, the copy of N_H(Q) which is diagonally embedded inside Gamma: */

NNH:=sub<Gamma|x1,x2>;

k:=Field(Tq);

/* We have V, which is a N_G(Q)-mod, and now we provide it

with the (trivial) action of the other factor of Gamma, i.e. N_{Delta}. */
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d:=Dimension(V);

IdV:=IdentityMatrix(k,d);

a:=ActionGenerators(V);

NewV:=GModule(Gamma,[IdV,IdV,IdV,IdV,IdV,IdV,a[1],a[2]]); delete a;

/* We have T_q now, which is a N_{Delta}-mod, and we give it the (trivial) action

of the other factor of Gamma, i.e. N_G(Q). */

d:=Dimension(Tq);

IdTq:=IdentityMatrix(k,d);

a:=ActionGenerators(Tq);

NewTq:=GModule(Gamma,[a[1],a[2],a[3],a[4],a[5],a[6],IdTq,IdTq]); delete a;

/* Generators of the centraliser. We need them for the relations that we quotient by. */

a1:=ii[1](IBCG.1)^(-1);

b1:=ii[2](BCG.1);

a2:=ii[1](IBCG.2)^(-1);

b2:=ii[2](BCG.2);

Ten:=TensorProduct(NewTq,NewV);

ListT1:=[]; ListT2:=[];

ListV1:=[]; ListV2:=[];

ResTq:=Restriction(NewTq,ii[1](IBCG));

ResV:=Restriction(NewV,ii[2](BCG));

IT:=IndecomposableSummands(ResTq);

print "\nRestricted to the Q-complement of CG(Q), the module Tq decomposes into",

#IT, "summands of dimension:";

l:=[];

for x in IT do Append(~l,Dimension(x));

end for;

l;

IV:=IndecomposableSummands(ResV);

print "\nRestricted to the Q-complement of CG(Q), the module L decomposes into",

#IV, "summands of dimension:";

l:=[];

for x in IV do Append(~l,Dimension(x));
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end for;

l;

"\nNow Tq and L have been decomposed as much as possible, namely the action is

restricted to the Q-complement of CG(Q).";

NewBasisTq:=[];

/* We want to create vectors of the shape tg*l-t*gl, where * is tensor product.

Here we create two lists, i.e. vectors t*g’s and g*l’s. */

for C in IT do

basC:=Basis(C);

NewBasisTq:=NewBasisTq cat [NewTq!(ResTq!v) : v in basC];

LC1:=[NewTq!(ResTq!(v*a1)) : v in basC];

LC2:=[NewTq!(ResTq!(v*a2)) : v in basC];

ListT1:=ListT1 cat LC1;

ListT2:=ListT2 cat LC2;

end for;

"Done with Tq.";

NewBasisV:=[];

for D in IV do

basD:=Basis(D);

NewBasisV:=NewBasisV cat [NewV!(ResV!v) : v in basD];

LD1:=[NewV!(ResV!(v*b1)) : v in basD];

LD2:=[NewV!(ResV!(v*b2)) : v in basD];

ListV1:=ListV1 cat LD1;

ListV2:=ListV2 cat LD2;

end for;

"Done with L, we have our vectors in Tq and L, now we tensor them.";

/* ListT1, ListT2 are coerced vectors in NewTq; ListV1, ListV2 are vectors

of NewV. Now we tensor them, so we get our set of desired vectors in

NewTq x NewV, namely Ten */

ListTen1:=[];

ListTen2:=[];

m:=0;
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for i in [1..#ListT1] do

for j in [1..#NewBasisV] do

Append(~ListTen1,Ten!Vector((TensorProduct(ListT1[i],NewBasisV[j])-

TensorProduct(NewBasisTq[i],ListV1[j]))));

m:=m+1;

if (m mod 1000) eq 0 then

"We have tensored", m, "vectors out of", 2*#ListT1*#NewBasisV;

end if;

end for;

end for;

for i in [1..#ListT2] do

for j in [1..#NewBasisV] do

Append(~ListTen2,Ten!Vector((TensorProduct(ListT2[i],NewBasisV[j])-

TensorProduct(NewBasisTq[i],ListV2[j]))));

m:=m+1;

if (m mod 1000) eq 0 then

"We have tensored", m, "vectors out of", 2*#ListT1*#NewBasisV;

end if;

end for;

end for;

"\nNow we generate our submodule, quotient, clean off projectives,

and return the final kN(P)-module.";

ListFinal:=ListTen1 cat ListTen2;

"Now we restrict the tensor product to N_H(Q), its dimension is", Dimension(Ten);

Ten:=Restriction(Ten,NNH);

Rel:=sub<Ten|ListFinal>;

Xs:=Ten/Rel;

r:=Representation(Xs);

_,f:=IsIsomorphic(NNH,Group(Xs));

U:=GModule(NH,[r(f(NNH.1)),r(f(NNH.2))]);

p:=#Q;

ProjU:=[ProjectiveCover(x) : x in IrreducibleModules(Group(U),GF(p))];
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n:=Dimension(U) div #Group(U);

U:=RemFree(U,2*n);

U:=RemoveAllProj(U,ProjU);

IV:=Induction(U,H);

return IV;

end function;

The final algorithm aims to iterate the previous algorithm StableEquivalence over each

indecomposable summands of the kNG(Q)-module L. We will use SplitL first and we will

process the non-projective part of L first, as most of the times the projective summands have

been already processed in a previous case and there is no need to redo the calculation. The

list of projective indecomposable kNG(Q)-modules is ProjNG. Whether we want to process the

projective summands of L as well or not, it is decided by the input “bool”.

function FinalStabEq(Tq,L,H,Q,BCG,IBCG,NH,BNH,IBNH,i,ProjNG,bool);

/* Here bool decides if we have to compute the tensor of Tq with the projective summands

of L as well. Sometimes, we already know those, as it was done before, and we do not have

to do the same computation again, in this case we set bool=false. */

NG:=Group(L);

T,LN:=SplitL(L,ProjNG);

/* Let us count how many summands L splits into. We will print this result on screen. */

c:=0;

NonZero:=[[Dimension(T),1]];

/* Let us remember that LN is the list of multiplicities of indecomposable projective

inside L. The index h runs across the total number of projectives. */

for h in [1..#ProjNG] do

if not (LN[h] eq 0) then c:=c+1; Append(~NonZero,[Dimension(ProjNG[h]),LN[h]]);

end if;

end for;

print "\nThe kN(Q)-module decomposes into summands of dimension (with multiplicities):";

for x in NonZero do x;

end for;

/* first, we find the desired tensor of Tq with the non-projective part of L. We will add
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the "projective" part later. */

print "\nWe work on the tensor no", 1, "out of", #NonZero;

U:=StableEquivalence(Tq,T,H,Q,BCG,IBCG,NH,BNH,IBNH,i);

if not bool then

return U;

end if;

/* Whenever bool=true, we go on and now we sum the contribution coming from

the projective summands of L. */

num:=2;

for j in [1..#ProjNG] do

if not (LN[j] eq 0) then

print "\nWe work on the tensor no", num, "out of", #NonZero;

StEq:=StableEquivalence(Tq,ProjNG[j],H,Q,BCG,IBCG,NH,BNH,IBNH,i);

for k in [1..LN[j]] do

U:=DirectSum(U,StEq);

end for;

num:=num+1;

end if;

end for;

return U;

end function;
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