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ABSTRACT 

Collagen is the ligand for the discoidin domain receptor 1 (DDR1), a receptor tyrosine 

kinase that is over-expressed in Hodgkin lymphoma. However, the role of DDR1 in diffuse 

large B cell lymphoma (DLBCL) is not known. I showed that DDR1 is over-expressed in a 

subset of DLBCL where it positively correlates with expression of its collagen ligands, and 

negatively correlates with expression of mitotic spindle genes. DDR1 correlated genes 

also overlapped with three aneuploidy signatures and DDR1 expression correlated 

significantly with autosomal aneuploidy index. RNAseq analysis revealed that over-

expression of DDR1 in primary germinal centre B cells down-regulated expression of 

CENPE, an essential component of the mitotic spindle checkpoint that when inactivated 

leads to chromosome mis-segregation and aneuploidy. CENPE expression was also 

significantly reduced in primary DLBCL. Moreover, I showed that the constitutive 

activation of DDR1 in an in vitro lymphoma model led to aneuploidy. Finally, I showed 

that DDR1 can be inhibited by three small molecules and established the basis for in vivo 

model to test these inhibitors in DLBCL xenograft. My data provide evidence that DDR1 

can induce aneuploidy in B cells, and as such identify a mechanism to potentially explain 

the link between chronic inflammation and lymphomagenesis. 
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1. Introduction 

1.1 Diffuse large B cell lymphoma 

1.1.1 Epidemiology and classification 

Diffuse large B cell lymphoma (DLBCL) is an aggressive and heterogeneous group of 

malignancies derived from normal developing B cells, and is the most common type of 

non-Hodgkin lymphoma among adults accounting for approximately 30% to 40% of all 

lymphoid cancers (Team, 1997, Friedberg and Fisher, 2008, Lenz and Staudt, 2010b, 

Smith et al., 2015). The disease appears to be slightly more frequent in males than 

females, and  most commonly occurring  between the age of 60 to 80 (Novelli et al., 

2013), although the disease is not restricted to any age group. Patients usually present 

with enlarged lymph nodes or rapidly growing extra-nodal masses, which are mostly 

restricted to one area (Gatter et al., 2012). In the majority of cases, the cause of this 

disease is not clear. However, a few factors which could contribute to the process of 

tumorigenesis have been suggested; an increased risk of developing DLBCL was 

connected with immunosuppression (including HIV) (Harris et al., 2008, Doll and 

Ringenberg, 1989), chemical substances such as pesticides and fertilizers (Weisenburger, 

1985), but also alkylating agents in combination with exposure to ultraviolet radiation (as 

used in cancer therapy) were shown to increase the risk of lymphomas as secondary 

malignancies. Moreover, in a subset of DLBCL, EBV infection is also linked with the 

development of this cancer and associated with a poorer prognosis (Park et al., 2007, 
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Hoeller et al., 2010). Also infection with other viruses, such as hepatitis C virus (HCV) and 

human herpes virus 8 (HHV8), have been linked with DLBCL (Swerdlow et al., 2008). 

The diagnosis of DLBCL is generally based on the analysis of histological, immunological 

and cytogenetic investigations, which demonstrate a high level of diversity between the 

subtypes. Histology usually shows a diffuse infiltrate of large lymphoid cells, whose size is 

described as “more than twice the size of a normal lymphocyte” (Harris et al., 2008, 

Swerdlow et al., 2016, Gatter et al., 2012). The immunophenotype is extremely broad and 

strictly correlated with a specific subtype of DLBCL. The hallmarks of DLBCL subtypes also 

include some specific and complex chromosomal alterations. The most common one (in 

around one third of cases) is connected with changes in the BCL-6 gene, which is crucial 

for the formation of germinal centers (Spagnolo et al., 2004, Lo Coco et al., 1994).   

Because of high clinical and biological heterogeneity, the classification of DLBCL is under 

constant evaluation. The most commonly accepted classification is by the World Health 

Organisation (WHO) (Swerdlow et al., 2016). The 2016 WHO revision of a previously 

published classification of lymphoid neoplasms is based on novel discoveries, which have 

important implications towards diagnosis, prognosis and therapy for these diseases. This 

report lists many different subtypes of DLBCL, based on their clinical and molecular 

features (Table 1). Other types of DLBCL which did not fit into these criteria and therefore 

could not have been divided into specific subgroups, are referred to as DLBCL, not 

otherwise specified (NOS). Within this group, based on the origin of malignant cells and 

diversity in clinical outcome, two molecular subgroups were recognised: germinal center 
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B cell (GCB) type and activated B cell (ABC) type (Table 1) (Swerdlow et al., 2016). In this 

thesis DLBCL refers to the DLBCL-NOS group of lymphomas. 

 

Table 1.1 WHO classification of DLBCL (Swerdlow et al., 2016). 

Diffuse large B -cell lymphoma (DLBCL), NOS 

- Germinal centre B-cell type 

- Activated B-cell type 

D
LB

C
L 

su
b

ty
p

es
 

T-cell/histiocyte-rich large B-cell lymphoma 

Primary DLBCL of central nervous system (CNS) 

Primary cutaneous DLBCL, leg type 

EBV DLBCL, NOS 

O
th

er
 ly

m
p

h
o

m
as

 o
f 

la
rg

e 
B

 c
el

ls
 

DLBCL associated with chronic inflammation 

Primary mediastinal (thymic) large B cell lymphoma 

Intravascular large B-cell lymphoma 

ALK large B-cell lymphoma 

Plasmablastic lymphoma 

Primary effusion lymphoma 

HHV8 DLBCL, NOS 

High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 

rearrangements 

High-grade B-cell lymphoma, NOS 

B-cell lymphoma, unclassified, with features intermediate between 

DLBCL and classic Hodgkin lymphoma. 
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1.1.2 Molecular subgroups of DLBCL 

Different gene expression profiles and mutational signatures in DLBCL cases led to the 

identification of two distinct molecular classes of DLBCL. These subtypes are associated 

with different clinical outcomes, specific genetic alterations and mediate different 

molecular signalling pathways (Vockerodt et al., 2015, Rosenwald et al., 2002). As they 

are derived from lymphocytes at different developmental stages, it is important to first 

understand the process of normal B cell development and signalling. 

1.1.2.1 Normal B cell development 

B (bone marrow-derived) lymphocytes are highly conserved cells  (Cooper and Alder, 

2006), which express a variety of immunoglobulin (Ig) receptors able to recognize specific 

epitopes on antigens, and therefore are the first line of immune response in mammals. In 

humans, the development of these cells starts in the bone marrow (primary lymphoid 

tissue) and comprises of several stages which bring B cells to full functional maturity in 

secondary lymphoid tissue (e.g. lymph nodes) (LeBien and Tedder, 2008).  

B cells originate from hematopoietic stem cells (HSCs) which, in the human foetus 

differentiate towards B cell progenitors (pro-B cells). The process of bone marrow cells 

(pro-B cells, CD34+/CD10+/CD22+) differentiation towards B cells, starts from 

rearrangements of three Ig gene segments: V, D and J, in the Ig heavy-chain (IgH), which 

results in presentation of CD34+/CD10+/CD19+ pre-B-1 cell-specific surface molecules. 

Pre-B1 cells then differentiate into CD34- large pre-B2 cells. Next, IgH pairs with light-

chain (IgL), which present J and V rearranged gene segments, and create a complex called 
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pre-B cell receptor (pre-BCR) (Melchers, 2005). Pre-B2 cells with pre-BCR undergo several 

(4-6) cycles of cell division and a few more genetic rearrangements of the light chain of 

the receptor. B cell maturation is also accompanied by sequential activation and down-

regulation of recombination activating genes 1 and 2 (RAG1 and RAG2), whose protein 

products are necessary for Ig rearrangement and generation of DNA strand breaks 

(needed for VDJ recombination) (Spicuglia et al., 2006). As a result of this whole process, 

a highly diverse repertoire of Ig genes is produced and a fully functional, developed BCR is 

presented in the immature B cell. Immature B cells possess several characteristic markers 

on their surface such as CD20, CD21, CD22 and CD40 (LeBien and Tedder, 2008). 

Immature B cells with BCR leave the bone marrow and transit towards secondary 

lymphoid organs, such as spleen, Peyer’s patches, tonsils and lymph node. Mature, naïve 

B cells (CD24+/C38+) circulate through blood and lymphoid tissue, or reside in primary 

follicles in lymph node, where they wait for their first contact with a foreign antigen 

(Figure 1.1). 

Antigen presentation to the BCR combined with signals from T helper cells, results in the 

activation of the germinal center (GC) reaction (Victora and Nussenzweig, 2012) (Figure 

1.1). After entering the ‘dark zone’ of GC, naïve B cells start to rapidly proliferate 

(centroblasts). This robust clonal expansion is accompanied by somatic hypermutation 

(SHM) of centroblasts’ VH genes, which leads to the production of antibodies with a 

higher affinity to antigen. B-cell lymphoma 6 (BCL-6) is a master transcriptional regulator 

of this stage (Basso and Dalla-Favera, 2012). Next, highly proliferating centroblasts 

differentiate into non-proliferating centrocytes in the ‘light zone’ of GC. Centrocytes 
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undergo selection, based on their affinity to the antigens presented by T cells and 

follicular dendritic cells. Low affinity interaction leads cells towards apoptosis. In this 

stage of B cell differentiation, cells (centrocytes) can undergo class switch recombination 

(CSR), which allows for changing of IgH class from IgM and IgD to IgG and IgA, and can 

therefore interact with different effector molecules (LeBien and Tedder, 2008). Both of 

these reactions, SHM and CSR, are driven by the enzyme activation-induced cytidine 

deaminase (AID), which, in cells is regulated by interferon regulatory factor 8 (IRF8) 

(Muramatsu et al., 2000) (Figure 1.1). These DNA modifications are necessary for normal 

B cell development; however, they also carry the risk of uncontrolled mutations, which 

can lead to the development of lymphomas. 

The last stage of B cell development is a differentiation step, which establishes the GC B 

cell phenotype. This process is regulated by several transcriptional factors such as: BCL6, 

MTA3, SPIB, BTB domain and CNC homolog 2 (BACH2), OCT2, OCAB and IRF8 (Lenz and 

Staudt, 2010a). As mentioned before, BCL6 is the most important in the centroblast SHM 

reaction, but also down-regulation of this factor is essential for GC exit and final B cell 

differentiation. BCL-6 represses many genes connected with cell-cycle progression, 

cellular response to DNA damage, apoptosis and plasma cell differentiation (Shaffer et al., 

2000). Differentiation of B cells towards plasma cells is connected with up-regulation of 

interferon regulatory factor 4 (IRF4), which increases activation of B lymphocyte induced 

maturation protein 1 (BLIMP1) (Klein et al., 2006), a master regulator of plasma cell 

differentiation. BLIMP1 regulates BCL6 repressor functions, and therefore favours B cell 

differentiation towards antibody-secreting plasma cells (Shaffer et al., 2000). In contrast 
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to this process, reduction of BCL-6 levels in combination with the activation of another 

transcriptional factor, PAX5, results in suppression of BLIMP1 and memory B cell 

development (Cobaleda et al., 2007). 
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Figure 1.1 Normal B cell development. 

B cells originate from hematopoietic stem cells (HSCs) which, after a few more stages of differentiation 

(indicated by dashed line) in bone marrow become pro-B cells and therefore initiate the process of 

development of the B-lineage. Large B cells which represent an incompletely developed BCR (green), 

undergo several rounds of proliferation, which results in the production of small pro-B2 cells, followed by 

immature B cells, with a fully functional BCR (blue). Immature B cells migrate from the bone marrow and 

circulate between marrow and lymphoid organs. Antigen (red triangle) presentation to naïve B cells, 

together with a signal from T helper cells (not shown), activate naïve B cell which then start rapidly 

proliferating in the dark zone of the germinal centre (clonal expansion). Centroblasts undergo somatic 

hypermutations (SEM) which helps to improve their affinity to the antigen. In the light zone of the germinal 

centre, centroblasts differentiate into non-proliferative centrocytes. Centrocytes are then selected by 

antigen presenting follicular dendritic cells (FDC) and T helper cells, for further differentiation, or if they 

have low affinity to the antigen, are mediated toward apoptosis. Next, chosen centrocytes undergo class 

switch recombination (CSR). As a consequence of the activation of specific transcriptional factors, 

centrocytes migrate outside the germinal centre and differentiate into plasma B cells or memory B cells.  
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1.1.2.2 DLBCL GCB and ABC subtypes  

Two distinct molecular subtypes were identified in DLBCL NOS based on their gene 

expression profiles, which indicate that they originate from different stages of GC B cell 

development. These are, germinal centre B cell (GCB) and activated B cell (ABC) subtypes, 

with 15% of patients who remain unclassified (Alizadeh et al., 2000, Rosenwald et al., 

2002). This classification seems to be very important in the context of therapeutic 

approaches, as these subtypes are driven by different signalling pathways (Shaffer et al., 

2012, Roschewski et al., 2014) (Figure 1.2) and ABC type DLBCL is associated with the 

worst survival (Lenz et al., 2008b). 

GCB type DLBCL 

It is believed that GCB DLBCL is derived from GC B cells, as they express genes highly 

expressed in normal germinal centre B cells, such as CD10, LMO2 and BCL6 (Alizadeh et 

al., 2000, Rosenwald et al., 2002). 

Several oncogenic pathways and genetic abnormalities were described as being 

characteristic of GCB DLBCL (Figure 1.2). For example, the t(14;18) translocation appears 

in approximately 30-40% of GCB DLBCL patients, but not in the ABC type of tumour. This 

translocation deregulates BCL2 (B-cell lymphoma 2) gene expression, which is responsible 

for the anti-apoptotic function in cells (Rosenwald et al., 2002, Lenz et al., 2008c). 

Overexpression of BCL2 in GCB DLBCL also has a negative prognostic impact on patients 

after R-CHOP treatment (Iqbal et al., 2011). Moreover, 20% of GCB DLBCL patients have a 

mutation of EZH2, a histone methyltransferase (Beguelin et al., 2013, Morin et al., 2010). 
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It was shown that EZH2 as a master regulator, in co-operation with BCL6, mediates 

lymphoma development in GCB type (Beguelin et al., 2013, Caganova et al., 2013). A 

somatic point mutation of the EZH2 gene (in exon 15), results in the replacement of 

tyrosine Tyr461 within the EZH2 protein. This change leads to a gain-of-function and 

increased methylation of histone 3, which promotes transcriptional silencing of key 

regulatory genes and therefore promotes lymphomagenesis (Sneeringer et al., 2010, Yap 

et al., 2011, Beguelin et al., 2013). Interestingly, in 10% of GCB DLBCL patients, deletions 

in the tumour suppressor gene PTEN (phosphate and tensin homologue) were described; 

in another 15%, amplification of miR-17-92 (microRNA cluster) which suppresses 

expression of PTEN, was identified (Xiao et al., 2008, Lenz et al., 2008c). The down-

regulation of PTEN expression (by immunohistochemistry) was detected in 55% of GCB 

DLBCL patients, in comparison with only 14% of non-GCB cases. This results in 

constitutive activation of the PIK3/AKT signalling pathway and suggests it is important in 

GCB type DLBCL pathogenesis (Pfeifer et al., 2013). 

ABC type DLBCL 

Based on its gene expression profile, ABC subtype of DLBCL is believed to derive from B 

cells that are already differentiating into plasma cells. They express genes characteristic 

of normal mature plasma cells, such as X-box binding protein 1 (XBP1; the master 

regulator of Ig secretion) (Shaffer et al., 2004). The characteristic feature of ABC subtype 

is constitutive activation of NFκβ pathway, which mediates a signal promoting cell 

survival and proliferation, and inhibition of apoptosis due to constitutive activation of 
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CBM complex comprised of CARD11, BCL10 and MALT1 (Figure 1.2) (Davis et al., 2010). In 

normal lymphocytes, this complex is only activated by antigen stimulation; however, in 

ABC DLBCL it can be activated by several genetic aberrations. Approximately 10% of ABC 

DLBCL cases carry the mutation which activates CARD11, whereas the remainder of cases  

have sustained chronic activation of BCR signalling which influences the CBM complex 

(Davis et al., 2010, Lenz et al., 2008a). Constitutive BCR signalling was also discovered to 

be mediated by mutations in CD79A and CD79B in 20% of cases, but also by activation of 

downstream kinases SYK (spleen tyrosine kinase), PI3K, BTK (Bruton tyrosine kinase) and 

PKCβ (protein kinase C β) (Davis et al., 2010). It was also shown that in more than 30% of 

ABC DLBCL patients, mutation of MYD88 results in upregulation of NFκβ and JUN 

pathways (Ngo et al., 2011). Constitutive activation of NFκβ in ABC DLBCL can be also 

caused by inactivation of the NFκβ negative regulator A20 (TNFAIP3), which occurs 

through its mutation and deletion (Compagno et al., 2009, Kato et al., 2009). Moreover, 

as a consequence of chronic activation of NFκβ, IRF4 transcriptional factor is activated 

which can direct centrocyte differentiation towards plasma cells (Davis et al., 2001). 

However, in the case of ABC DLBCL, this differentiation is not fully complete due to 

mutations and deletions of PRDM1 (PR domain zinc finger protein 1); this gene encodes 

BLIMP-1 (Tam et al., 2006, Pasqualucci et al., 2006). Additionally, in 25% of ABC DLBCLs, 

BCL6 translocation was observed, which also represses expression of BLIMP-1. These 

observations indicate a block in B cell differentiation to be important in the pathogenesis 

of the ABC subtype.  
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Figure 1.2 Molecular subtypes in DLBCL and their key oncogenic pathways. 
Based on the gene expression profile of DLBCL, it can be divided into two main molecular subtypes: 
germinal centre B cell like (GCB) and activated B cell like (ABC) type. GCB is believed to derive from GC B 
cells, and ABC type from B cells which are differentiating into plasma cells, just before GC exit. The main 
oncogenic pathways, characteristic for these subtypes are listed. 
 

 



14 
 

1.1.2.3 Identification of GCB DLBCL and ABC DLCB subtypes 

An accessible and reliable method to determine the molecular subtype of DLBCL is 

important from a prognostic and therapeutic point of view. Unfortunately, gene 

expression profiling is not available for every patient, due to the lack of a commercially 

available test and fresh-frozen tissue specimens. Nowadays, the common method to 

identify the DLBCL subtypes is IHC staining proposed by Hans et al., the so-called Hans 

algorithm. In this method, a combination of CD10, BCL-6 and MUM1/IRF4 IHC markers 

are used (Hans et al., 2004). According to this algorithm, DLBCL cases positive for CD10 

marker are classified as GCB DLBCL type. DLBCL cases negative for CD10 and BCL6 

markers are classified as non-GCB subtype, however if a case is negative for CD10 but 

positive for BCL6, staining for MUM1/IRF4 marker should be performed. Cases positive 

for MUM1/IRF4 are classified as ABC subtype, and cases negative for MUM1/IRF4 as GCB 

DLBCL subtype (Figure 1.3). This classification, due to its oversimplification and the poor 

reproducibility, only correlates with subgroups defined by gene expression profiling in 

approximately 87% of cases (Meyer et al., 2011, de Jong et al., 2007). Therefore, the IHC 

method of DLBCL classification still remains an imperfect substitution for gene expression 

profiling. Nevertheless, due to the unavailability of gene expression profiling as a 

standard test for every patient, WHO classification of lymphoid neoplasms (revision from 

2016), considers Hans algorithm as an acceptable method for identification of DLBCL 

subtypes (Swerdlow et al., 2016). Novel studies based on quantification of RNA 

transcripts on paraffin-embedded tissue using NanoString technology, provides promising 
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gene expression-based methodology, which in the future could be successfully used for 

the reliable identification of DLBCL subtypes (Scott et al., 2014).   

 

 

 

Figure 1.3. Hans algorithm for classification of DLBCL subtypes (Hans et al., 2004). 
IHC analysis of DLBCL cases based on the expression of 3 markers: CD10, BCL6 and MUM1. 
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1.1.3 Prognostic factors and DLBCL survival 

1.1.3.1 Survival of DLBCL patients 

The general 5-year overall survival (OS) in patients with DLBCL is approximately 46% 

(Smith et al., 2015). In the context of specific subtypes, OS seems to be more favourable 

towards GCB DLBCL patients, in comparison to the ABC subgroup (Alizadeh et al., 2000, 

Rosenwald et al., 2002, Shipp et al., 2002, Wright et al., 2003). The prediction of patients’ 

survival has been attempted in several ways. The commonly used Hans algorithm predicts 

5-year OS to be 76% of GCB type DLBCL, compared to 34% of ABC type DLBCL (Hans et al., 

2004). Furthermore, gene expression analysis was used to identify specific genes which 

regulate OS in patients with DLBCL. Studies on patients with DLBCL after anthracycline-

based therapy pointed at LMO2, BCL-6 and FN1 as genes which predict longer survival; 

whereas expression of CCND2, SCYA3 and BCL-2 genes, were connected with a shorter 

predicted survival (Lossos et al., 2004, Rosenwald et al., 2002, Shipp et al., 2002). 

However, the IHC method poses a 20% rate of misclassification with gene expression 

analysis, suggesting the need for improvement of this model. 

The rearrangement of MYC oncogene (which appears in approximately 10% of DLBCL 

cases) in combination with BCL2 and/or BCL6 was shown to negatively affect DLBCL 

patient survival (Barrans et al., 2010, Savage et al., 2009), and therefore they are included 

as a new category of, “high-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 

rearrangements”, in the 2016 revised WHO classification (Table 1.1) (Swerdlow et al., 

2016). A MYC and BCL2 translocation, referred to as “double hit lymphoma” occurs in 
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approximately 5% of DLBCL cases and has been shown to reside within GCB subtype; 

whereas MYC/BCL6 translocation is called “triple-hit lymphoma” and both of these 

signatures have a very poor prognosis with median OS of less than 12 months 

(Jedrzejczak, 2015, Menguy et al., 2018, Jaglal et al., 2012, Wang et al., 2015, Johnson et 

al., 2012). Moreover, overexpression of MYC (measured by IHC) in 25-30% of DLBCL cases 

is associated with BCL2 expression in 20-35% DLBCL cases (Johnson et al., 2012, Green et 

al., 2012). The majority of these cases are not connected with translocations of MYC and 

BCL2 genes, and are referred to as “dual-expressers”; they are more common in ABC 

subtype of DLBCL and are connected with a significantly poorer prognosis than patients 

who express only one or neither of these proteins (Hu et al., 2013).  

Furthermore, it was shown that it was not only the molecular signature of tumour cells, 

but also the tumour microenvironment that affects survival in DLBCL patients following 

treatment (Lenz et al., 2008b). Two ‘stromal signatures’ were described to be variably 

present in both GCB and ABC subtypes. Stromal-1 signature is characterised by 

extracellular matrix deposition and infiltration of macrophages into the tumour, and was 

identified to be more favourable and connected with longer survival (Lenz et al., 2008b, 

Wels et al., 2008); whereas stromal-2 signature is characterised by a high density of blood 

vessels and is associated with a worse survival (Lenz et al., 2008b).  

For years, the combination of cyclophosphamide, doxorubicin, vincristine and prednisone 

(CHOP) was the standard treatment for patients with DLBCL, independent of the subtype 

of the disease. The addition of rituximab, an anti-CD20 IgG1 monoclonal antibody, to 
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CHOP chemotherapy has significantly improved DLBCL patient survival (73% vs. 63%, 

p=0.005). However, more than 50% of ABC type DLBCL patients will still die from their 

disease without further improvements in treatment of this cancer (Lenz et al., 2008b, 

Coiffier et al., 2002). 

1.1.3.2 Prognostic factors in DLBCL 

Prognostic factors in DLBCL, which were shown to significantly influence survival of 

patients with this disease, can be considered in several categories; those related to the 

patient, such as age, presence of specific symptoms and status of performance; those 

related to the tumour, such as stage, proliferating fraction, tumour size, bone marrow 

and extranodal involvement; those related to aggressiveness of the disease, such as 

lactate dehydrogenase (LDH) level or β2-microglobulin level, and those related to the 

treatment (Coiffier et al., 1991, Velasquez et al., 1991, Litam et al., 1991). In clinical 

practice, the commonly used tool to predict outcome in patients with aggressive non-HL 

is The International Prognostic Index (IPI) (Shipp et al., 1993, International Non-hodgkin's 

Lymphoma Prognostic Factors, 1993). It was developed before the availability of 

rituximab, and after revision to include rituximab in CHOP treatment, confirmed its 

prognostic usefulness  (Sehn et al., 2007). Currently IPI does not include identification of 

distinct molecular subtypes of DLBCL. 

The IPI consists of 5 negative prognostic factors: 

 Age over 60 

 Stage III to IV 
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 More than one extranodal site 

 Elevated level of LDH (serum lactate dehydrogenase) 

 ECOG (Eastern Cooperative Oncology Group) performance status of 2 or more 

For each factor, one point is assigned and the total IPI score assigns patients into one of 

four outcome groups, with the 5-year OS being between 26% to 73% (Shipp et al., 1993). 

More recently, a new updated NCCN-IPI score was proposed, which seems to be more 

successful in identifying high-risk patients (5-year OS of 33%) (Zhou et al., 2014). It 

included data from the National Comprehensive Cancer Network (NCCN) and 

incorporates the same 5 IPI factors; however further categorisation is based more on age, 

LDH level, and extranodal involvement in the bone marrow, liver, lung or central nervous 

system, rather than the number of extranodal sites (Zhou et al., 2014). 

1.1.4 Treatment 

1.1.4.1 Front-line therapy 

For years, the standard front-line treatment for patients with DLBCL contained 

chemotherapy and radiotherapy, which in combination gave the best results (reviewed 

by: Friedberg et al., 2008)(Martelli et al., 2013). Three cycles of anthracycline (CHOP)-

based drugs, followed by field radiation (40-50Gy), or 8 cycles of CHOP alone, were used 

as standard therapy for intermediate-high grade DLBCLs (Miller et al., 1998, 

Pfreundschuh et al., 2008). More recently, it was discovered that addition of the anti-

CD20 monoclonal antibody rituximab to standard treatment with CHOP (R-CHOP), is 

successful in patients with DLBCLs. The results from an initial trial showed improvement 
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in 10-year OS in 16% of elderly patients (improving the disease-free survival rate from 

40% with CHOP treatment alone, to 60% with R-CHOP therapy) (Coiffier et al., 2002, 

Coiffier et al., 2010). These observations were later confirmed by several additional trials, 

which resulted in R-CHOP being established as standard care for patients with DLBCL 

(Pfreundschuh et al., 2008, Pfreundschuh et al., 2006, Habermann et al., 2006, Sehn et 

al., 2005). It was shown that even 6 cycles of R-CHOP was sufficient for patients with 

advanced-stage disease (Pfreundschuh et al., 2008). In some advanced-stage patients 

with a potential risk of residual disease, consolidative radiatiotherapy is frequently used 

after completion of chemotherapy (recommended 3 cycles of R-CHOP for patients with 

stage I and non-bulky stage II disease), as several retrospective analyses indicated the 

possible benefits of this treatment (Aviles et al., 1994, Aviles et al., 2005, Dorth et al., 

2012, Phan et al., 2010, Held et al., 2014, Nakamura et al., 2016). Although, no 

randomised trials from the ‘rituximab era’ have confirmed the role of consolidative 

radiation in treatment of DLBCL. 

1.1.4.2 Treatment of relapse and refractory disease 

Although the addition of rituximab to CHOP chemotherapy in standard treatment of 

DLBCLs has improved the disease-free survival of patients to approximately 60%, 

approximately 10% to 15% of patients still suffer from primary refractory disease and an 

additional 20% to 25% of patients who exhibit an initial response to treatment, relapse 

within the first 2 years (Coiffier et al., 2010, Friedberg, 2011).  
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It is established that less than 10% of patients who do not respond to first-line therapy 

and undergo currently available salvage therapy will achieve long-term disease-free 

survival (Hitz et al., 2015). Salvage treatment includes high dose chemotherapy and if 

possible, autologous stem cell transplantation (HDC/ASCT) (Philip et al., 1995); only 

around half of relapse/refractory DLBCL patients are eligible for this intensive treatment 

due to advanced age. The second-line chemotherapy treatment for these patients usually 

includes drugs such as ifosfamide, carboplatin and etoposide (ICE), in combination with 

rituximab (Kewalramani et al., 2004). Additionally, it was shown by correlative biomarker 

analysis that GCB subtype DLBCL patients may possibly benefit more from treatment with 

a combination of rituximab with several other drugs: dexamethasone, Ara-C and cisplatin 

(R-DHAP) as second-line therapy (Thieblemont et al., 2011). 

Based on the very poor prognosis for relapse/refractory DLBCL, low effectiveness of 

currently available salvage therapy and high number of patients not eligible for such 

treatment, novel, more effective and less toxic agents are urgently needed. 

1.1.4.3 Novel therapies for treatment of DLBCL 

Gene expression studies on the molecular heterogeneity of DLBCL uncovered several new 

therapeutic targets which could be used for further improvement of DLBCL treatment.   

NFκβ and BCR signalling as potential targets for novel DLBCL therapies 

As mentioned before, NFκβ and BCR signalling have been described as constitutively 

active in ABC subtype of DLBCL. Therefore, several therapies targeting these pathways 

are currently under assessment. For example, bortezomib which blocks the degradation 
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of Iκβα (an inactive protein for NFκβ), was successfully used in combination with 

chemotherapy as a second-line treatment in relapsed ABC type DLBCL patients (Dunleavy 

et al., 2009). The example of the drug targeting BCR cascade is ibrutinib. This inhibitor of 

BTK, which is currently in clinical trials (phase 3, PHOENIX), induced positive response in 

41% of relapsed ABC type DLBCL patients compared to 5% response in patients with GCB 

type DLBCL (Wilson et al., 2012). In phase 1 and 2 trial, fostamatinib disodium, a SYK 

inhibitor, also showed response in more than 20% of tested refractory DLBCL patients 

(Friedberg et al., 2010). Everolimus, is another drug proposed to target important 

component of BCR pathway - PI3K signalling, by selective inhibition of mTOR. It is 

currently in phase III trial and  showed positive response in various lymphomas, including 

30% of DLBCL patients (Witzig et al., 2011). 

BCL2 targeting therapies 

Overexpression of BCL2 is observed in both subtypes of DLBCL, and was described as a 

negative prognostic factor for GCB type DLBCL and for “dual expresser” lymphomas 

(Johnson et al., 2012, Green et al., 2012). Phase I clinical study on selective BCL2 inhibitor, 

known as ABT-199, showed successful improvement in 38% of relapsed DLBCL patients 

(Souers et al., 2013, Davids et al., 2014). 

Targeting microenvironment of DLBCL 

The known importance of the tumour microenvironment in the development of cancer 

also provides opportunities for lymphoma therapies. Lenalidomide is a drug belonging to 

the group of immunomodulating agents able to inhibit angiogenesis and stimulate 
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immune response; and therefore also able to influence tumour enriched for the stromal-

2 signature of DLBCL (Thieblemont et al., 2012). It was shown to be effective in 

approximately 35% of relapsed aggressive B-cell non-HL patients (Wiernik et al., 2008) 

and was shown to be safely combined with R-CHOP treatment (Nowakowski et al., 2011, 

Vitolo et al., 2014); therefore the phase III ROBUST clinical trial is investigating the impact 

of the addition of this drug to R-CHOP treatment of ABC DLBCLs. 
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1.2 Receptor tyrosine kinases (RTKs) 

RTKs  are a large and diverse group of transmembrane proteins, whose main function is 

extracellular signal transduction into the cell, and therefore control of the most 

important intracellular pathways responsible for basic cellular functions, such as 

proliferation, differentiation and apoptosis (Ullrich and Schlessinger, 1990, Blume-Jensen 

and Hunter, 2001). In normal cells, these functions are under tight control. However, the 

observation that  increased proliferation and immortality of cells are amongst the most 

important features in cancer, led to the investigation of deregulation of RTKs in 

tumorigenesis (Bennasroune et al., 2004).  

One of the first RTKs observed to be up-regulated in the human genome was the 

HER2/neu gene. A 100-fold amplification of this receptor was discovered in around 30% 

of tested patients with invasive breast cancer, and this over-expression correlated with a 

poor prognosis (Slamon et al., 1989). This discovery highlights the importance of finding 

new therapeutic targets among receptor tyrosine kinases, and confirming the role of this 

receptor family in the process of tumorigenesis. 

1.2.1 RTK structure and general mechanisms of action 

The RTK family accounts for around 20 subfamilies, which in total include 58 different 

receptors (Robinson et al., 2000, Manning et al., 2002). All of them are similar in structure 

and mechanism of activation. Activation of the receptor is usually due to a glycosylated 

hydrophilic extracellular ligand-binding domain, which is connected with the cytoplasmic 

part of the receptor by single α-helix transmembrane region (20 amino acids). Inside the 



25 
 

cell, receptor is built of a juxtamembrane domain (40-80 amino acids), a conserved 

protein tyrosine kinase domain, and finishes with a C-terminus (carboxyl terminal tail). In 

addition to general structure these receptors also contain sub-domain motifs, which are 

responsible for substrate-binding, receptor phosphorylation and dimerization (Figure 1.4) 

(Hanks et al., 1988, Hunter, 1998, Hubbard, 1997).  
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Figure 1.4 Structure of receptor tyrosine kinases (RTKs). 
RTKs are built of an N-terminal selective ligand-binding extracellular domain, whose structure varies 
amongst different RTK subfamilies; a single α-helix transmembrane domain, which is important for 
stabilisation of the receptor; and an intracellular C-terminal domain, which is composed of a 
juxtamembrane region, tyrosine kinase domains – composed of 12 subdomains connected by one kinase 
insert domain (subdomain V) and C-terminal tail. The intracellular domain is directly responsible for 
receptor activation and downstream signal transduction by phosphorylation of tyrosine kinase domains.     
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The activation of the receptor cannot take place without its earlier dimerization. Here, 

the α-helix transmembrane domain helps with formation and stabilization of a dimer by 

non-covalent oligomerisation of α-helices in a lipid cell membrane (Arkin, 2002, Moriki et 

al., 2001). The pre-dimerized receptor is able to recognise its ligand, which binds to N-

terminus of the receptor. This ligand-receptor interaction is very specific for each RTK 

subfamily and requires a large number of low-energy bonds such as ionic, hydrophobic or 

Van der Waals (Segaliny et al., 2015). Signals from the activated extracellular domain by 

successful ligand-binding cause further stabilisation of a dimer, and conformational 

changes to the tyrosine kinase domain, which results in receptor auto-phosphorylation 

and change to an ‘open’ conformation of the activation loop (located on the tyrosine 

kinase domain) (Lemmon and Schlessinger, 2010). Receptor orientation and 

phosphorylation determine the active state of a kinase domain. Phosphorylation of two 

tyrosine residues in an activation loop is necessary for a functional receptor and to 

stabilize its ‘open structure’. This conformation is necessary for successful ATP binding. 

The phosphorylation of tyrosine kinases requires ATP which is stored in between two 

tyrosine kinase lobes and is provided by Mg2+-ATP complexes. ATP is then bound to the 

protein substrate, which contains a tyrosine target, and initiates the transfer of the 

phosphate group from ATP to the receptor domain. Phosphorylated tyrosine kinases are 

then able to recruit cytoplasmic proteins, which then allows for activation of down-

stream signalling pathways (Hubbard and Till, 2000) (Figure 1.5). RTKs can affect 

signalling pathways directly by recruiting enzymatic effectors, or indirectly through their 

adapter proteins. The spectrum of RTKs is very broad; therefore many different pathways 
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can be affected. However, the most common pathways activated by RTKs and responsible 

for cellular functions such as cell proliferation, death, differentiation, migration or 

angiogenesis, are MSPK (Cargnello and Roux, 2011); PI3K/Akt/mTOR (Song et al., 2005); 

and Src (Bromann et al., 2004) pathways.  
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Figure 1.5 Dimerization and activation of receptor tyrosine kinases (RTKs). 
A stable dimer, consists of two α-chains, and is created thanks to strong interactions between α-helix 
transmembrane domains in the cell membrane. This inactive form changes its conformation after binding 
of a specific ligand to the N-terminal of the receptor. Ligand binding initiates changes in the intracellular 
tyrosine kinase domain and release of ATP, and in that way phosphorylation of tyrosine kinases. Activation 
of the receptor cause attachment of intracellular proteins to phosphor-tyrosine docking sites and further 

signal transduction and activation of down-stream signalling pathways. 
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1.3 Discoidin domain receptor (DDR) family 

Discoidin domain receptors are a relatively new (only discovered in the early 1990s), 

subfamily of RTKs. In the human genome it is represented by two members: DDR1 and 

DDR2 (Vogel et al., 2006). Their function is typical for RTKs and includes regulation of 

proliferation, adhesion and differentiation (Leitinger, 2011, Lemmon and Schlessinger, 

2010). DDRs though can influence ECM structure and take part in its remodelling, owing 

to their ability to control matrix metalloproteinases (MMPs) (Leitinger, 2014). What 

makes them different from other RTKs is their mechanism of activation. DDRs can only be 

activated by one type of non-soluble ligand; collagen, and activation of the receptor is 

characterised by slow kinetics; the maximal activity of DDRs is observed several hours 

after collagen treatment (Vogel et al., 1997). What is more, Leitinger and co-workers, 

showed that dimerization of the extracellular domains of the DDRs is necessary for 

collagen binding; this stands in opposition to the widely known paradigm of ligand 

induced dimerization of RTKs. DDRs already exist as a dimers on the cell surface and 

ligand binding activates their signalling by changes in dimer conformation; however, 

ligand binding does not induce receptor oligomerisation, as has been observed in many 

RTKs (Leitinger, 2003, Lemmon and Schlessinger, 2010).  

1.3.1 DDRs’ expression and functions  

DDRs are widely expressed in normal developing organisms. High levels of DDR1 mRNA 

was reported in lung, keratinocytes, spleen, kidney, placenta and brain (Sakamoto et al., 

2001, Dimarco et al., 1993, Curat and Vogel, 2002, Shackel et al., 2002, Bhatt et al., 2000). 
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Whereas DDR1 expression is predominantly in epithelial cells (Alves et al., 1995), DDR2 

dominates in tissues developing from embryonic mesoderm and is found in muscle, skin, 

kidney and lung (Alves et al., 1995, Lai and Lemke, 1994, Labrador et al., 2001). DDR 

expression was also noted in cells of both the nervous and immune systems (Zerlin et al., 

1993, Lai and Lemke, 1994, Chetoui et al., 2011, Kamohara et al., 2001, Sanchez et al., 

1994).  

DDR1 plays important role in the process of organogenesis, while DDR2 is crucial for bone 

growth. In a DDR1-knockout mouse model, it was shown that lack of DDR1 affects several 

reproductive functions, including lactation and blastocyst implantation (Vogel et al., 

2001). Lack of DDR1 in mice was also connected with defects in kidneys and inner ear 

structure of these animals (Torban and Goodyer, 2009). What is more, as mentioned 

previously, DDR1 is very important for cellular differentiation and motility, and also for 

collagen synthesis and signalling. DDR2 is involved in early development for controlling 

several aspects of bone growth (Zhang et al., 2011) and dysregulation of DDR2 function in 

mice resulted in defective bone growth as expected (Labrador et al., 2001, Kawai et al., 

2014). In humans, DDR2 mutations leads to spondylo-meta-epiphyseal dysplasia (SMED-

SL), a rare genetic disorder characterised by disproportions in body structure (short 

stature and limbs, broad fingers) and bone abnormalities (Borochowitz et al., 1993, 

Bargal et al., 2009). Although DDRs’ functions in early embryo development appear clear, 

the role of their expression in healthy adult tissue is not fully established. Some evidence 

has found roles for the DDRs in wound healing (DDR2) and immune response (DDR1). 

Expression of DDR1 was reported in mononuclear cells of peripheral blood and in 
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activated T cells (Kamohara et al., 2001, Chetoui et al., 2011), whereas DDR2 was found in 

human circulating neutrophils (Afonso et al., 2013). The ability of neutrophils to migrate 

in 3D collagen matrices, suggests an important role for DDRs in immune responses. It is 

also postulated that DDRs can mediate migration of activated leukocytes toward the site 

of inflammation (Afonso et al., 2013). Interestingly, the observation of dysregulation of 

DDRs’ expression in many pathological conditions has generated much interest in cancer 

research, and DDR1 over-expression has been described in breast, ovarian, brain and lung 

cancer, acute lymphocytic leukaemia and Hodgkin lymphoma (Chiaretti et al., 2005, 

Cader et al., 2013, Johnson et al., 1993, Heinzelmann-Schwarz et al., 2004, Weiner et al., 

2000, Yang et al., 2010). What is more, DDR1 was found to be associated with the 

development of several other diseases such as atherosclerosis and fibrosis (Hou et al., 

2001, Roberts et al., 2011). The role of DDRs in the regulation of expression and 

activation of metalloproteinases (MMPs), and its ability to degrade ECM components and 

tissue remodelling, seems to be very important for development of these diseases (Vogel 

et al., 1997, Valiathan et al., 2012). The over-expression of DDR1 across multiple diseases, 

including cancer, makes it a good therapeutic target.   

1.3.2  Discoidin domain receptor 1 (DDR1) structure and isoforms 

DDR1 possesses the typical structure of RTKs. However, interesting differences were 

noted in the extracellular part of the receptor. Like no other RTKs, DDR1 is a compound of 

an extracellular discoidin homology domain (DS), which is responsible for ligand binding; 

and DS-like domain which after ligand binding, participates in receptor activation (Vander 
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Kooi et al., 2007, Carafoli et al., 2009). What is more, it seems that loose packing of these 

DS and DS-like domains creates more space for possible alterations in structure, and 

might explain conformational changes seen in the DDR1 dimer (Carafoli et al., 2009). It 

was shown that DDR1 forms ligand-independent dimers, separately for extracellular and 

intracellular part of the receptor. Two motifs have been identified in the transmembrane 

part of DDR1: leucine zipper and GXXXG, which seem to be responsible for the 

appearance of DDR1 as a stable dimer in the absence of a ligand. Furthermore, a leucine 

zipper appears to be responsible for DDR1 self-association in biological membrane 

(Noordeen et al., 2006). 

Its remaining structure comprises of an extracellular juxtamembrane region, which is 

built of 50 amino acids and contains N-, O- glycosylation and matrix metalloproteinase 

sites, a transmembrane domain, which is responsible for ligand independent dimerization 

of the receptor; a large intracellular juxtamembrane region (169 amino acids) with 

tyrosine kinases able to phosphorylate, one intracellular tyrosine kinase domain and C-

terminal tail (Perez et al., 1994, Noordeen et al., 2006, Lemeer et al., 2012, Carafoli et al., 

2012).   

The DDR1 gene is found on human chromosome 6 (6p21.2) and is made up of 17 exons 

(Perez et al., 1994, Playford et al., 1996). It encodes 5 different transcripts, which raise 5 

different DDR1 isoforms called DDR1a – e, generated by alternative splicing. DDR1 

isoforms differ from each other by tyrosine kinase activity. Isoforms DDR1a – c have fully 

functional kinase activity, out of which DDR1c is the longest one, and possesses 919 

amino acids. DDR1a and DDR1b in comparison to the c – isoform, lack 37 and 6 amino 
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acids in the intracellular juxtamembrane region or kinase domain, respectively. In 

contrast, DDR1d and DDR1e, are truncated proteins lacking the kinase region, and 

therefore have no kinase activity at all (Alves et al., 2001) (Borza and Pozzi, 2014, Rammal 

et al., 2016) (Figure 1.6). DDR1 isoforms analysis in adult tissues, suggests the DDR1b 

isoform is the most common (Perez et al., 1996). Interestingly, DDR1a was found to 

dominate in several cancer cell lines including Hodgkin lymphoma, breast and glioma 

tumour cell lines (Cader et al., 2013, Perez et al., 1996, Ram et al., 2006). 

Not much is known yet about the mechanism regulating DDR1 transcription. However, in 

a few cases it was found that DDR1 transcription can be regulated by the Ras/Raf/ERK 

signalling pathway in human T cells (Chetoui et al., 2011) or in primary lung carcinoma. 

Here, DDR1 expression is regulated by DDR2 activation mediated by type I collagen which 

must be accompanied by ERK1/2 activation (Ruiz and Jarai, 2011). Interestingly, in breast 

and colon cancer cells, activation of DDR1 regulates its own expression by further 

Ras/Raf/ERK signalling (Ongusaha et al., 2003). 
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Figure 1.6 Structure of different DDR1 isoforms. 
DDR1a, DDR1b and DDR1c are enzymatically functional receptors, whereas DDR1d and DDR1e do not 
present functional activity. The extracellular part of the DDR1 receptor is the same for all isoforms. 
Differences in structure and length are detected in the intracellular domain which determines the 
functionality  of the receptor. DS- discoidin domain; DS-like – discoidin like domain; AA – amino acids. 
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1.3.3 DDR1 activation by collagen 

Activation of DDR1 starts with collagen binding to the DS domain of the receptor. DDR1 

activation appears to happen only in the presence of native, triple-helical collagen. It has 

been shown that denatured forms of collagen, like gelatin, are not able to induce kinase 

activity (Vogel et al., 1997, Kadler et al., 2007). Several types of collagen have been 

confirmed to induce DDR1 activation; this includes fibrillar collagens types I – III and 

network forming collagens type IV, VI and VIII (Vogel et al., 1997, Shrivastava et al., 1997).  

The specificity of ligand binding to DDR1 is connected to the fact that DDRs are able to 

recognise only a specific amino acid sequence of collagens. This selective ligand 

recognition is possible due to highly conserved motifs, created by five surface-exposed 

loops at the top of the DS domain of DDRs. On DDR1, GVMGFO (O, hydroxyproline) 

sequence defines the main collagen binding residue. It is composed of six highly 

conserved in DDR1 amino acids (Trp53, Thr57, Arg105, Glu113, Asn175 and Asp69) and 

presents high affinity to fibrillary collagens I-III, but not to collagen IV (Abdulhussein et al., 

2004, Leitinger, 2003). This observation suggests that DDR1 has to present another motif 

to bind non-fibrillar collagens, however this is not yet well characterised (Xu et al., 2011, 

Carafoli et al., 2009).  

How DDRs are activated by collagen is still poorly understood. What is known is that by 

binding to the pre-formed DDR dimers, collagen causes the conformational changes 

necessary for receptor activation (Leitinger, 2003, Lemmon and Schlessinger, 2010). This 

process is characterised by slow kinetics and in some cases can take up to 18h from initial 
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exposure to collagen for full receptor autophosphorylation (Vogel et al., 1997, Mihai et 

al., 2009). This slow phosphorylation of kinase residues in DDR1 might be connected with 

the prolonged time needed for full receptor internalization on the cell surface. Thus far, 

only a single study has proposed that collagen binding to the receptor might cause its 

rapid aggregation, followed by receptor internalization into early endosome vesicles and 

after that, internalized DDR1 is recycled back to the cell surface (Mihai et al., 2009). These 

observations suggest that DDR1 phosphorylation can take place in the cytoplasmic 

compartment of the cell, rather than on the cell surface, and that DDR1 signalling can be 

controlled by endocytosis. This model would also provide an explanation for the 

unusually slow kinetics of DDR1 activation, however further studies are required to 

confirm these observations (Mihai et al., 2009).  

Like other RTKs, DDR1 ligand-mediated phosphorylation of tyrosine residues leads to 

activation of several downstream signalling pathways. It is not yet known how the signal 

is translated from the collagen binding domain towards the tyrosine residues of DDR1. In 

total DDR1 possesses 15 tyrosine residues, which can be phosphorylated upon receptor 

stimulation with collagen. In the activation loop of all DDR1 isoforms (region containing 

20-35 residues, beginning with the conserved Asp-Ohe-Gly motif), 3 major tyrosine 

residues were localised: Tyr792, Tyr796 and Tyr797, which seem to be critical for 

receptor activation (Perez et al., 1994). Additionally, several tyrosine residues in the 

juxtamembrane region (in DDR1b: Tyr513, Tyr484, Tyr 521) (Lemeer et al., 2012) and in 

the cytoplasmic domain, can be phosphorylated and work as docking sites for adaptor 

molecules. These residues differ between DDR1 isoforms. DDR1a isoform contains only 
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13 tyrosine residues and lacks Tyr513 and Tyr520. It was shown that activation of DDR1 is 

accompanied by p85 (subunit of PI3K) binding to Tyr881 residue and SHP-2 to Tyr703, 

Tyr796 and Tyr740 (Koo et al., 2006, Wang et al., 2006). Tyrosine residues also interact 

with several other proteins, such as RasGAP, SHIP-1/2 or STAT family members (Lemeer 

et al., 2012). However, detailed information about which tyrosine kinase domains 

became activated after collagen stimulation is lacking. 

1.3.4 DDR-mediated signalling 

DDR1 presents signalling typical of RTKs; it is often dependent on the cell or ligand type, 

and is still not fully understood (Borza and Pozzi, 2014). 30 different proteins have been 

identified, that potentially interact with DDR1 tyrosine phosphorylation residues (Lemeer 

et al., 2012). Most of those proteins possess a SH2 or PTB (phosphotyrosine binding) 

domain, through which they attach to the receptor. DDRs can recruit their enzymatic 

effectors directly by binding them to tyrosine domains, or indirectly using adapter 

proteins (e.g. Grb2, Shc, JAK2, STAT3, and CDC42). Two main signalling pathways are 

activated after receptor phosphorylation; MAPK/ERK and PI3K/Akt. Additionally, NFκβ 

and Notch 1 pathways have also been described as being activated by DDR1. DDR1 

phosphorylation drives pro-survival signalling in breast and colon cancer cell lines via the 

NFκβ pathway, and in colon carcinoma through Notch-1 signalling (Ongusaha et al., 2003, 

Das et al., 2006, Kim et al., 2011). Recent discoveries in colorectal cancer point towards a 

new ability of DDR1 to phosphorylate BCR protein on Tyr177 and through this regulate β-

catenin signalling responsible for cell motility (Jeitany et al., 2018). 
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MAPK/ERK signalling pathway 

The main functions of the MAPK (mitogen-activated protein kinase)/ERK (extracellular 

signal-regulated kinase) signalling pathway are to control cell proliferation, 

differentiation, apoptosis, migration and angiogenesis. 

As mentioned before, DDRs’ activation after collagen binding results in phosphorylation 

of their tyrosine domains. This phosphorylation allows for recruitment of Grb2 adaptive 

protein, which binds to phosphorylated tyrosine residues by its SH2 domains. The second 

adaptive protein, SOS, binds to Grb2 by its SH3 domain. Due to this complex, RAS protein 

can be activated (SOS allows for exchange of GDP for GTP). Activated RAS transduces 

signals through recruitment and phosphorylation of Raf kinases (Cseh et al., 2014). 

Activated Raf phosphorylates MEK1 and MEK2 (MAP2K 1/2), which catalyse the 

phosphorylation on ERK1/ERK2. Activated ERK1/2 is then responsible for activation of 

transcriptional factors in the cell nucleus, such as, STAT, Elk-1 or CREB. These regulators 

activate transcription of genes regulating specific intracellular functions (Roskoski, 2012) 

(Figure 1.7). 

The MAPK pathway additionally activates three other pathways: p38, JNK and ERK5. 

Activation of p38 pathway by MAP2K results in transcription of genes controlling cell 

proliferation, inflammation, angiogenesis and production of cytokines. Through the JNK 

pathway, DDR1 can control cell apoptosis and development of the immune system 

(Shintani et al., 2008), and in ERK5 pathway activation of MEKK2/3 by WNK1 results in 

phosphorylation and translocation of ERK5, which, in the nucleus activates cyclin D1 and 
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by this controls cell proliferation and survival (Raman et al., 2007, Cargnello and Roux, 

2011).   

DDR1 was observed to differentially affect the ERK pathway in different cell types. For 

example, DDR1 was described to activate ERK in smooth muscle cells (Lu et al., 2011), 

whereas the opposite effect was observed in mesangial cells, where the ERK pathway 

seems to be inhibited by DDR1 (Curat and Vogel, 2002). What is more, in T47D breast 

cancer cell line, high expression of DDR1 does not affect ERK pathway activation at all 

(L'Hote C et al., 2002). 

PI3K/Akt pathway 

The PI3K pathway mainly controls the cell cycle and through this maintains the cell 

survival-apoptosis balance. It plays a role in cell proliferation, migration and metabolism 

of glucose. PI3K pathway activation by DDR1 has been reported in a variety of normal and 

cancerous human cell lines (Ongusaha et al., 2003). 

PI3K pathway can be activated similarly to the MAPK pathway, by binding of Grb2 and 

SOS adaptor proteins. PI3K catalytic activation starts with its recruitment by activated 

RTKs. PI3K is a kinase able to phosphorylate membrane lipids through its p110 subunit. Its 

activation transfers phosphate groups from PIP2 (phosphatidylinositol 4,5-bisphosphate) 

to PIP3 (phosphatidylinositol 3,4,5-triphosphate), which then allows for recruitment of 

Akt and PDK-1 to the membrane. PDK-1 is then activated by PIP3; this results in 

phosphorylation of Akt protein. Active Akt opens a spectrum of possibilities for further 

protein binding, and activation of processes responsible for cell survival, such as 
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degradation of pro-apoptotic BAD or p53 proteins, or expression of anti-apoptotic Bcl-2 

protein. Additionally, Akt affects cell proliferation by inhibiting cell cycle repressors like 

p21 or p27, and induces angiogenesis by transcription of VEGF and HIF-1α genes. 

Regulation of glucose and lipid metabolism by Akt is possible through suppression of 

GSK3 and activation of mTOR protein (Song et al., 2005) (Figure 1.7). 
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Figure 1.7 Main signalling pathways activated by DDR1.  

Activation of DDR1 by collagen binding, causes its autophosphorylation on tyrosine residues ( ) which 
allows for Grb2 – SOS adaptive protein binding. This complex is able to recruit further proteins, which are 
translating phosphorylated signals towards the nucleus. The MAPK/ERK pathway leads to activation of 
ERK1/ERK2 protein, which later activates transcriptional factors and is responsible for transcription of genes 
involved in regulation of proliferation, apoptosis, differentiation, migration and angiogenesis (blue on 
graph). MAPK/ERK is also activating p38 (green; proliferation, angiogenesis, inflammation, cytokine 
production), JNK (purple; apoptosis, development of immune system) and ERK5 (blue; proliferation, 
apoptosis) pathways. NFκβ and Notch1 pathways activated by DDR1 induce pro-survival functions in the 
cell (cream and grey; apoptosis). PI3K/Akt pathway activation starts from PI3K lipid kinase binding to 
Grb2/SOS complex and transfer of phosphate groups to PIP3. This whole process leads to Akt activation 
which is a binding site for many other proteins that regulates cell cycle progression and cell survival (red; 
proliferation, apoptosis, migration). Akt also controls glucose and lipid metabolism by activating mTOR 
(green; lipid metabolism) and GSK3 (orange; glucose metabolism) (for details see text in Section 1.3.4). 
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1.3.5 DDR1 cooperation with other receptors and growth factors 

In addition to signal transduction by DDR1 after direct collagen activation of the receptor, 

DDR1 also seems to affect cell signalling induced by other receptors, such as integrins, 

Wnt5a/Frizzled, Notch1 or TM4SF1 tetraspanin, but also by growth factors, e.g. TGF-β.  

It was shown that TM4SF1 tetraspanin helps with recruitment of syntenin2 and PKCα to 

the DDR1 kinase domain, which results in the activation of JAK2 and STAT3 proteins. The 

consequences of this activation are associated with increased metastatic properties of 

several breast cancers (Gao et al., 2016). 

Integrins 

DDR1 activation by collagen binding has been shown to occur independently of integrins 

(Vogel et al., 2000); however there is evidence that DDR1 and integrins can modulate 

each other’s signals. Crosstalk between these receptors has been reported in the β1 

integrin subfamily; four members of this family were found to be activated by collagen in 

a similar way to DDRs (Leitinger, 2011). This cooperation can enhance signal transduction 

or cell adhesion, but can also inhibit specific functions of both receptors in a cell 

dependent manner. In a mouse model, crosstalk between DDR1 and α2β1 integrin  

maintained undifferentiated embryonic stem cell renewal by selective activation of 

specific pathways which control Bim-1 (self-renewal controlling molecule) (Suh and Han, 

2011). Overexpression of DDR1 in cells possessing α1β1 and α2β1 integrins was also 

shown to enhance the integrin-dependent adhesion to collagen, due to increased 

activation of integrins (Xu et al., 2012). Moreover, in pancreatic cancer cells, cooperation 
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of DDR1 and α2β1 result in JNK pathway activation and through this, promote cell 

scattering (Shintani et al., 2008). 

In MDCK cells, DDR1-integrin interactions had the opposite effect. In these cells, DDR1 

activation by collagen I mediated a suppressive effect on cell migration and adhesion, 

induced by α2β1 (Wang et al., 2005). In human adipose stromal cells in 3D culture, it was 

observed that DDR1-mediated transcription of stromal aromatase is inhibited by β1 

integrins (Ghosh et al., 2013). 

Collagen-independent activation of DDR1 

Although DDR1 is clearly activated by collagen, there is evidence to suggest that under 

specific conditions, DDR1 might also undergo collagen-independent activation. 

DDR1 activation can, in some cases, be mediated by growth factors. Cooperation of DDR1 

and TGF-β seems to be critical for normal mammary gland development in mice (Roarty 

and Serra, 2007). Wnt5a was also found to interact with DDR1, causing its 

phosphorylation in human mammary epithelial cells, and through this influence cell 

adhesion and migration (Jansson and Andersson, 2001). Moreover, in carcinoma cells 

expressing p53, DDR1 was shown to be activated by genotoxic stress (DNA damage or 

ionising radiation) (Ongusaha et al., 2003). 
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1.4 DDR1 expression in diseases 

It is already well established that DDR1 expression is dysregulated in a variety of human 

cancers and other diseases. It has been linked with the development and progression of 

atherosclerosis, lung and kidney fibrosis and a number of cancers. 

1.4.1 Atherosclerosis 

Atherosclerosis is a disease in which smooth muscle cells (SMC) are highly proliferating 

and are characterised by increased migration, MMP and ECM synthesis. This pathological 

activity of SMCs causes thickening of the neointimal lesions in vessel walls and 

atherosclerotic plaque formation – the hallmark of this disease. The first observation of 

the role of DDR1 in atherosclerosis was made by Hou et al. in a mouse model. They 

showed that DDR1 plays an important role in collagen accumulation in atherosclerotic 

plaques. Mice with DDR1 knocked out demonstrate less intimal layer thickening and 

collagen accumulation after blood vessel injury than wild type controls (Hou et al., 2001). 

Additionally, DDR1 seems to also drive the migration of SMC cells and collagen 

remodelling (Ferri et al., 2004). Studies with Ldlr-/- (low-density lipoprotein receptor) 

mice (this represents a more complicated model of human atherosclerosis) confirmed a 

critical role of DDR1 in plaque formation. DDR1 drives both inflammation and fibrosis 

during early stages of plaque formation. This pro-inflammatory role of DDR1 was 

confirmed by the observation of a reduced number of plaque infiltrating macrophages in 

Ldlr/DDR1 knockout mice, in comparison to the DDR1 positive control (Franco et al., 

2008). 
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1.4.2 Fibrosis 

DDR1 upregulation was found to be a cause of fibrosis in several tissues. In lung, it has 

been shown that deficiency of DDR1 in mice decreases the fibrotic response by decreased 

inflammation. An observed reduction in the number of CD3-positive lymphocytes and 

F4/80-positive cells in lung infiltrate, but also decreased activation of p38 kinase in MAPK 

signalling, known to be involved in the lung fibrosis, suggests DDR1 is an important 

regulator of this disease (Underwood et al., 2000, Avivi-Green et al., 2006). Furthermore, 

the expression of DDR1 in human lung tissue was confirmed and the role of DDR1 in 

epithelial repair in lung was also investigated in vitro, which confirmed the results seen in 

the mouse model (Roberts et al., 2011). Therefore, DDR1 could be a good target for the 

treatment of idiopathic pulmonary fibrosis (IPF), which is characterised by continuous 

epithelial injury. 

DDR1 overexpression is also well established in patients with kidney fibrosis, as well as in 

the mouse model of this disease. Observations from the DDR1 knockout mouse model 

concluded that DDR1 drives development of hypertension-induced kidney disease, by 

modulating both inflammation and fibrosis (Flamant et al., 2006). High levels of DDR1 

expression were also described in other kidney disorders such as lupus nephritis, 

Goodpasture syndrome and Alport syndrome. DDR1 knockout in the Col4a3 mouse 

model (for progressive renal scarring) improved kidney function by reducing 

inflammation and fibrosis (Gross et al., 2010). 
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1.4.3 Cancer 

The mutation and expression of DDRs is found in many tumours, for example, breast, 

lung, brain, head and neck, liver, pancreatic, prostate and ovarian cancers, and in a broad 

range of lymphomas and leukaemias (Valiathan et al., 2012, Rammal et al., 2016). DDRs 

have been shown to regulate cell proliferation, migration and therefore tumour 

invasiveness. Their activation in cancer is also linked with malignant transformation and 

epithelial to mesenchymal transition (EMT), which plays a crucial role in tissue 

differentiation and repair, but can also cause tissue fibrosis and in tumours is associated 

with poor survival, resistance to therapy and increased cell motility (Thiery et al., 2009). 

Depending of type and stage of cancer, DDR1 can act in a pro- or anti-tumorigenic 

manner, which makes the process of understanding their role in the development and 

progression of cancers more complex. 

Breast cancer 

One of the first studies about DDR expression in cancer tissue originated from cells 

isolated from breast cancer in mice and suggests a critical function of these receptors in 

breast cancer progression. In the mouse model, DDR1 knockout was connected with 

abnormalities in mammary phenotype (Vogel et al., 2001).  

DDR1 is also known to be highly expressed in the human breast carcinoma cell lines T47D 

and BT-20 (Johnson et al., 1993). However, analysis of different types of primary human 

breast cancers resulted in conflicting observations. In primary invasive carcinoma with 

lymph node metastases, DDR1 expression in mRNA was elevated (Barker et al., 1995), 
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whereas a study on human breast carcinomas (grade intermediate to high) showed 

reduction of DDR1 mRNA expression relative to normal tissue (Neuhaus et al., 2011). 

Some studies in human breast cancer cell lines suggest that in breast cancers with 

elevated DDR1 expression, activation of the receptor can promote cell proliferation, 

resistance to chemotherapy (Das et al., 2006)(T47D, MDA-MB-435 cell lines), migration 

(Neuhaus et al., 2011)( MDA-MB-468,T47D cell lines) and invasion (Juin et al., 2014)( 

MDA-MB-231 cell line). However, in other studies opposite effects were observed 

depending on the cell line (Assent et al., 2015)(proliferation: MCF-7, ZR-75-1 cell lines) 

(Koh et al., 2015)(migration: MDA-MB-231, Hs578T cell lines). These observations once 

again indicate a DDR1-cell dependent function in cancer and are suggestive of DDR1’s 

involvement in regulation of cell proliferation, migration and invasion in breast 

carcinoma, although the exact role of DDR1 in breast cancer progression is still not fully 

understood (Jing et al., 2018).  

Lung cancer 

NSCLC is characterised by dysregulation of DDR expression, phosphorylation, and in some 

cases even mutation. DDR1 was found to be overexpressed in a cohort of primary NCLCs 

from a few independent studies (Ford et al., 2007, Yang et al., 2010, Valencia et al., 2012). 

Moreover, DDR1 overexpression was found to be negatively associated with overall 

survival (Yang et al., 2010, Valencia et al., 2012). High levels of activation of DDR1 were 

confirmed in a study of 150 primary NSCLC tumours, where DDR1 was found to be among 

the most phosphorylated RTKs (third after Met and Alk) (Rikova et al., 2007). These 
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observations, taken together suggest that DDR1 might be associated with the 

development and progression of NSCLC. Interestingly, genetic analysis of DDRs in NSCLC 

from several studies identified three somatic mutations of DDR1 (A496S in cytoplasmic 

JM region, W385C in extracellular JM region and F866Y in kinase domain) (Davies et al., 

2005, Ding et al., 2008) and 11 mutations in the DDR2 gene, among which L239R and 

I638F were found to regenerate cellular sensitivity to the RTK inhibitor dasatinib 

(Hammerman et al., 2011).  

Hodgkin lymphoma 

It is known that the pathogenesis of haematological malignancies is associated with 

dysregulation of tyrosine kinase function. However, the number of studies which focus on 

DDR function in blood cancers is very limited. Until now, only a few studies have been 

published which confirm disruptions in DDR1 expression in adult acute lymphocytic 

leukaemia (ALL) (Chiaretti et al., 2005) and DDR1 expression (Favreau et al., 2012) and 

gene mutations in acute myeloid leukaemia (AML) (Tomasson et al., 2008, Loriaux et al., 

2008). Recently, DDR1 was also shown to be expressed in chronic lymphocytic leukaemia 

(CLL). DDR1 mRNA expression was confirmed in CLL by three published datasets, which 

showed that the high level of DDR1 correlates with three independent prognostic 

markers for CLL (time-to-first-treatment (TTFT), ZAP70 and IGVH status), suggesting that 

expression of DDR1 in CLL might be connected with poor prognosis. Furthermore, DDR1 

cell surface expression was also confirmed on peripheral blood leukaemia cells in a small 
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cohort of CLL cases; however the functional role and mechanisms controlling DDR1 

expression in this cancer has not been confirmed (Barisione et al., 2017). 

So far, Hodgkin lymphoma seems to be the best studied haematological malignancy in 

the context of DDR expression and functions. Upregulation of DDR2 expression was 

demonstrated in 30-70% of Hodgkin-Reed-Sternberg (HRS) cells from lymph nodes of HL 

patients, which were shown to remain in close contact with collagen I (Renne et al., 2005, 

Willenbrock et al., 2006). Over-expression of DDR1 in HRS cells was described by Cader et 

al., together with the observation of the close association of HRS cells with collagen. In 

primary HL, DDR1 in HRS cells was localised to the cell membrane and cytoplasm. 

Upregulation of DDR1 expression (both in protein and  mRNA) was also described in 4 HL-

derived cell lines (L591, L428, L1236, KMH2), followed by the discovery that the DDR1a 

isoform is predominantly expressed in these cells (Cader et al., 2013). Moreover, it was 

also shown that collagen activates DDR1 in HL lines, which was seen by robust 

phosphorylation of the receptor after collagen stimulation. Activation of DDR1 by 

collagen was then shown to protect L428 cells from apoptosis, and in DG75 cells, DDR1 

phosphorylation protected cells from death induced by the addition of the 

chemotherapeutic drug, etoposide (Cader et al., 2013).  

Other cancers 

DDR1 expression was also described in several other cancers (Valiathan et al., 2013).  

Overexpression of DDR1 in mRNA was reported in different types of brain tumours in 

children and adults (Weiner et al., 2000, Ram et al., 2006). DDR1 expression at the 
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protein level was shown to be elevated and strongly correlated with poor prognosis in 

gliomas. DDR1 has also been shown to play an important role in the regulation of 

proliferation, (Yamanaka et al., 2006), migration and invasiveness of glioma cells (Ram et 

al., 2006). 

Some studies in ovarian and endometrial cancers indicated that DDR1 may be a useful 

target and biomarker for these diseases, as its high expression has been correlated with a 

poor prognosis (Quan et al., 2011, Colas et al., 2011). DDR1 and PCA1 (prostate cancer 

antigen 1) are highly expressed in primary prostate cancers, and it was shown that PCA1 

regulates DDR1 expression in prostate cancer cell lines (Shimada et al., 2008).  

In liver cancer, DDR1 was found to be among the most phosphorylated RTKs and its over-

expression was connected with advanced stage of the tumour (Shen et al., 2010, Gu et 

al., 2011). Moreover, DDR1 over-expression was also confirmed in pancreatic (Couvelard 

et al., 2006) and head and neck cancer (Squire et al., 2002). In both cancers, the in vitro 

studies proposed a role for DDR1 in increased tumour migration (Park et al., 2007, Rudra-

Ganguly et al., 2014) and EMT (Shintani et al., 2008, Maeyama et al., 2008).   
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1.5 DDR1 as a therapeutic target in cancer 

The contribution of DDR1 signalling to the pathogenesis of many different cancers 

indicates that blocking of DDR1 activity or expression might be a good therapeutic 

approach. DDR1 can be affected by several strategies which could lead to down-

regulation of the receptor or to the inhibition of DDR1 activation. For example, genetic 

mutation of DDR1 expression was shown in mice model of glomerulonephritis (Kerroch et 

al., 2012). The latter approach was already successfully tested on cancer cells. This could 

work via several mechanisms; thus, the activation of intracellular pathways by DDRs can 

be prevented by: disruption of DDRs-collagen interaction, inhibition of DDR activation by 

affecting extracellular domains of receptor and by inhibition of DDR kinase activity by 

small molecules inhibitors (Figure 1.8) (Borza and Pozzi, 2014). 
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Figure 1.8 DDRs therapeutic therapy strategy in cancer.  
Preventing DDRs activation can be achieved by: blocking collagen/DDR interactions, inhibition of DDR 
activation by specific antibodies which prevents receptor oligomerisation and transformation caused by 
collagen binding and by specific small molecule inhibitors which block phosphorylation of the tyrosine 
kinases of the receptor.    
 

 

 

 

 



54 
 

1.5.1 DDR1 inhibitors 

DDR1 activation can be inhibited by broad range of antibodies which bind to the DS-like 

domain of receptor, but do not influence collagen binding (Carafoli et al., 2012), they 

include the monoclonal antibodies Fab 3E3 (Carafoli et al., 2012), 48B3 (Ram et al., 2006) 

and H-126 (Castro-Sanchez et al., 2010). 

Another approach is to use small molecule inhibitors targeting directly the kinase domain 

of the receptor. Small molecule inhibitors are divided into three groups. Type I inhibitors 

target the highly conserved DFG motif at the beginning of the activation loop of the 

kinase domain in its active DFG-IN conformation, and they work as ATP competitors. 

Their action is described as promiscuous; however their advantage lies in their ability to 

inhibit kinases that are resistance to type II inhibitors (Eglen and Reisine, 2009, Tokarski 

et al., 2006). Nowadays, most of the kinase inhibitors belong to this group. Type II 

inhibitors seem to be more selective because of more specific binding to the kinase 

domain in its non-active conformation - DFG-OUT. This conformation allows for binding 

of the inhibitor to additional sites in the kinase domain and therefore stabilizes it in an in-

active form (Kothiwale et al., 2015). The type III inhibitors target allosteric sites 

responsible for the regulation of kinase activity, rather than ATP binding site itself (Taylor 

and Kornev, 2011).  

Three small molecule inhibitors, are currently in use for treatment of patients with 

chronic myelogenous leukaemia (CML): imatinib (Gleevec®, STI571, type II) which is used 

as a first line treatment, and two second-generation inhibitors: nilotinib (Tasigna®, 
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AMN107, type II) and dasatinib (Sprycell®, BMS354825, type I), which are supporting 

imatinib treatment in patients with some resistance to this drug (Weisberg et al., 2005).  

All these inhibitors were originally designed to target the tyrosine kinase activity of the 

fusion oncogene Breakpoint Cluster Region-Abelson kinase (BCR-ABL) and nilotinib’s and 

imatinib’s specificity to this kinase was confirmed. However, dasatinib was described to 

potentially inhibit many more kinases including those belonging to Src family. Therefore, 

the probability of observing off-target effects during in vivo treatment with dasatinib is 

high (Shah et al., 2004, Weisberg et al., 2007). Interestingly, the ability of these drugs to 

inhibit the phosphorylation of DDR1 was also identified, with nilotinib showing the 

strongest affinity for DDR1 in chronic myelogenous leukaemia (Day et al., 2008). Recent 

studies confirmed the effectiveness of nilotinib in inhibiting DDR1 in colorectal cancer 

(CRC). Treatment of colorectal cancer cell lines with nilotinib resulted in reduction of cell 

metastasis and invasion, as a result of an effect on the newly discovered DDR1-BCR 

signalling. These observations were also confirmed in CRC liver metastasis mouse model 

(Jeitany et al., 2018). Two more BCR-ABL kinase inhibitors able to inhibit DDR1 activity 

were reported; Bafetanib (INNO-406) is a structural analogue of imatinib and nilotinib, 

but its specificity is not comparable to those drugs. Ponatinib, another type II selective 

ABL inhibitor was also described to effectively block DDR1 activation (Canning et al., 

2014). Bafatanib was reported to interfere with other kinases, including PDGFR, KIT and 

LYN (Rix et al., 2010). Similar properties were described for the LCB 03-0110 inhibitor, 

which in HEK293 cells successfully blocked collagen induced activation of DDR1 and DDR2 

(Sun et al., 2012).  
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These inhibitors were designed against BCR-ABL and so are not specific for DDR1. The 

functional effects of DDR1 inhibition by anti-BCR-ABL drugs in cancers, pointed at the 

importance of inhibitory treatment of DDR1 in cancer therapies. Therefore, the need of 

specific blocking of DDR1 phosphorylation, led to the discovery of few novel and selective 

DDR1 inhibitors.  

Gao and co-workers reported 3-(2(pyrazolo[1,5-α]-pyrimidin-6-yl)ethynyl)benzimides as 

novel and selective DDR1 inhibitors, which tightly capture the ATP binding domain. By 

screening around 2000 compounds previously designed to inhibit BCR-ABL and other 

RTKs, they reported a group of 24 pyrazolopyrimidine compounds called 7a-7x, which 

showed the highest affinity to DDR1/DDR2. After some structural optimisations, two 

compounds, 7rh and 7rj, were reported to show high specific inhibitory activity against 

DDR1, but much less towards DDR2, BCR-ABL, c-Kit kinases and to a further 456 tested 

kinases. The initial tests on the NCI-H23 non-small cell lung cancer cell line, characterised 

by high expression of DDR1, showed a decrease in total DDR1 protein levels, which was 

suggested to be caused by the inhibition of the proliferative signals from Ras/Raf/ERK and 

PI3K/Akt pathways. Moreover, inhibition of DDR1 resulted in decreased level of produced 

metalloproteinase 2 (MMP2), indicating a possible role for 7rh and 7rj inhibitors in the 

down-regulation of migration and invasion of cancer cells. The anti-proliferative effect of 

7rh and 7rj inhibitors, already in low µM concentrations, was also confirmed in several 

other cell lines. 7rh and 7rj also reduced adhesion and colony formation in NCI-H23 lung 

cancer cells (Gao et al., 2013). 
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Independently, another potent and selective type II DDR1 inhibitor: DDR-IN-1, which 

currently is also commercially available, was designed and synthesised (Kim et al., 2014). 

The ability of DDR-IN-1 inhibitor to block (with a high selectivity) DDR1 kinase 

phosphorylation after exposure to collagen was confirmed in U20S cells. It was also 

shown that DDR1-IN-1 affects kinases such as EGFR, Src, Cdk1, mTOR and PI3K. 

Treatment of several cancer cell lines with DDR1-IN-1 resulted in inhibition of cell 

proliferation, but not at concentrations lower than 10µM, perhaps surprising in light of 

the suggested very high selectivity of this inhibitor (Kim et al., 2014).   

Selective DDR1 inhibitors described above were mostly designed based of the known 

structure of BCR-ABL inhibitors (nilotinib, imatinib, dasatinib) and their mechanism of 

action. A new approach to the discovery of small molecule inhibitors of DDR1 was 

presented by Murray and co-workers (Murray et al., 2015). Their discovery of novel 

DDR1/DDR2 inhibitors was based on the analysis of fragments (protein complexes) on the 

crystal structure of DDR1, which are targeted by specific inhibitors. It was found that 

most of the fragments were localised on the hinge region, at the front of ATP binding 

motif of DDR1. However, 10 fragments were localised in the back pocket of DDR1, which 

is accessible only when activation loop is in DFG-OUT conformation. The design of the 

new drugs was then based on specific fragments binding, starting from those which were 

discovered to bind to the back pocket of DDRs. This approach resulted in construction of 

9 DDRs inhibitors with a very high selectivity to DDR1 or/and DDR2 receptors (Murray et 

al., 2015).  
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1.6  Chromosomal instability and cancer 

1.6.1 Mitosis 

Understanding how equal chromosomal division occurs into two daughter cells was a 

challenge since the first observation of chromosome separation during mitosis of 

fertilized eggs of sea urchin by Theodor Boveri in 1902 (Kops et al., 2005, Boveri, 1902). 

The aim of mitosis is to produce two identical daughter cells containing equal numbers of 

chromosomes. Mitosis has several phases, controlled by mitotic checkpoints. The 

beginning of mitosis is defined by chromosome condensation and mitotic spindle 

(separation of duplicated centrosomes) formation during prophase (Rieder, 2011, Kops et 

al., 2005, Rosenblatt, 2005). At this stage, the process of chromosome condensation is 

still reversible. However, after passing this point, the cell enters the next stage of mitosis 

called late prophase, and from now on the cell is committed to mitosis and the process of 

division can be stopped only by cell death. After nuclear envelope breakdown (NEB) the 

cell enters prometaphase. Chromosomes, which are now loose in the cytoplasm, become 

attached to microtubules, what is driven by microtubule motor protein CENPE 

(Mitchison, 1988). If any of the kinetochores is not attached, the mitotic checkpoint (SAC; 

spindle assembly checkpoint) is activated and process of mitosis is stopped. Microtubule 

capture by all kinetochores results in silencing of the mitotic checkpoint and the 

continuation of mitosis. Duplicated sister chromatids captured by microtubules are then 

aligned into mitosis plate (metaphase), and pulled apart in anaphase (Mitchison, 1988, 

Wadsworth et al., 1988). In the last phase of mitosis the nuclear envelope is reproduced 
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and chromosomes decondense (telophase), leading to final division of the cell in 

cytokinesis (Rieder, 2011, Kops et al., 2005) (Figure 1.9).  
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Figure 1.9 Phases of mitosis. 
Chromosomes condensation, centrosomes (green circles) separation and nuclear envelope breakdown (the 
dashed circle) in prophase starts process of mitosis. Chromosomes are attached to microtubules in 
prometaphase. Single error in attachment of kinetochores (red triangle) to microtubules results in 
activation of mitotic checkpoint and by that blockade of the progress of mitosis. Capture of all kinetochores 
(white triangles) on duplicated chromosomes by microtubules, inactivates mitotic checkpoint and allows for 
mitotic plate formation in metaphase. Aligned sister chromatids are then pulled apart in anaphase. In 
telophase, cell is preparing for final division and cytokinesis, by reformation of nuclear envelope and 
decondensation of chromosomes. 
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1.6.2 Mitotic checkpoints 

The process of proper segregation of chromosomes during mitosis is controlled by a 

primary cell cycle control mechanism called the mitotic checkpoint (SAC, spindle 

assembly checkpoint). Its activation by the signal generated in the event of a mistake in 

the attachment of kinetochores, prevents progression of the cell division process though 

anaphase. The first components of the mitotic checkpoint were initially discovered in 

budding yeasts (Bub1-3, Mad1-3 and MPS1) and the importance of its orthologues were 

also confirmed in vertebrates (Mad1, Mad 2, Bub3, kinase Bub1 and Mps1) (Shin et al., 

2003, Abrieu et al., 2001, Jin et al., 1998, Li and Benezra, 1996, Taylor et al., 1998). The 

vertebrate mitotic checkpoint is additionally comprised of the kinase BUBR1, the 

microtubule motor protein CENPE (centromere protein E), the protein complex ZW10-

ROD-zwilch and MAPK (mitogen-activated protein kinase) (Abrieu et al., 2000, Chan et al., 

1999, Chan et al., 2000, Mao et al., 2003, Minshull et al., 1994) (Table 1.2).  

The signal transduction in SAC starts from CENPE which is the microtubule motor protein 

responsible for chromosome capture during metaphase. The signal from unattached 

kinetochores, driven by CENPE, activates the SAC and promotes recruitment of the 

mitotic checkpoint components. It has been shown that MPS1 (monopolar spindle 1) 

kinase activation may contribute to kinetochore capture by CENPE protein and controls 

the phosphorylation of MAD1 protein (Abrieu et al., 2001) (Faesen et al., 2017, Mattison 

et al., 2007). Phosphorylation of MAD1 is subsequently required for its association with 

MAD2 protein (Chen et al., 1999, Faesen et al., 2017). Binding of the CENPE protein to its 
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direct binding partner, BUBR1, causes activation of CENPE which is necessary for further 

attachment of the MAD1/MAD2 complex. Therefore, MPS1 and CENPE seems to be 

necessary for MAD1/MAD2 complex recruitment to the kinetochores during activation of 

the SAC. In return, this complex is responsible for changes in the MAD2 conformation to 

its active form (Chan et al., 1999, Shah et al., 2004). Activated MAD2 binds with BUBR1 

and BUB3, and in creating this complex, is able to prevent CDC20 (cell-division-cycle 20 

homologue) from activating a multi-subunit E3 ubiquitin ligase, APC/C (anaphase 

promoting complex/cyclosome). A few other proteins supporting this process include 

BUB1 and MPS1, which, when missing, weakens mitotic checkpoint signalling (Abrieu et 

al., 2001). All these proteins together form an active complex, and have the capacity to 

block mitosis in prophase because of the lack of ubiquitination of securin and cyclin B1, 

normally mediated by active APC/C (Figure 1.10a) (Cleveland et al., 2003, Sudakin et al., 

2001) (Hwang et al., 1998). However, when kinetochore attachment is completed by 

microtubule capture (mediated mostly by CENPE), inhibitory complex production is 

hindered and the mitotic checkpoint is silenced (Figure 1.10b) (Putkey et al., 2002, 

Weaver et al., 2003). Degradation of cyclin B1 by APC/C, known as a ‘master regulator of 

mitosis’, results in inactivation of CDK1 (cyclin-dependent kinase 1) and initiates mitotic 

exit; whereas degradation of securin causes activation of separase. Active separase 

influences cohesin links which keep sister chromatids together, and cause their 

separation (Peters, 2002). It has been shown in one cell type (PtK1, vertebrate somatic 

cells), that a signal from a single unattached kinetochore, can delay progression of mitosis 

for at least 3 hours (Rieder et al., 1994).  
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Table 1.2 Mitotic checkpoint components (Kops et al., 2005; Faesen et al., 2017; 

modified) 

Protein Size/Description Binding partners Function in checkpoint 

BUB1 122 kDa; 

serine/threonine 

kinase 

BUB3 Inhibits CDC20 by phosphorylation 

BUBR1 120 kDa; 

serine/threonine 

kinase 

CENPE, BUB3, CDC20 Part of APC/C inhibitor complex. Directly binds to CDC20 

and inhibits APC/C activity 

BUB3 37 kDa BUB1, BUBR1 Part of APC/C inhibitory complex. Localizes BUB1 and 

BUBE1 to kinetochores 

MAD1 83 kDa MAD2 Directly recruits MAD2 to unattached kinetochores 

MAD2 23 kDa MAD1, CDC20, 

CMT2/p31
comet

 

Part of APC/C inhibitory complex. Directly binds to 

CDC20 and inhibits APC/C activity 

CMT2/p31
comet

 31 kDa MAD2 Inhibits mitotic checkpoint signalling by antagonizing 

MAD2 

MPS1 97 kDa CENPE, MAD1, BUB1 Spindle poles duplication; phosphorylation of MAD1 

protein, targeting MAD1:MAD2 complex; recruitment of 

BUB1 and BUB3  

CENPE 312 kDa; plus-

end directed 

microtubule 

motor 

BUBR1 Activates BUBR1 at the unattached kinetochore 

ZW10 89 kDa ROD, Zwilch Part of complex that recruits the MAD1-MAD2 

heterodimer to unattached kinetochores ROD 251 kDa ZW10, Zwilch 

Zwilch 67 kDa ROD, ZW10 

APC/C, anaphase promoting complex/cyclosome; BUB, budding uninhibited by benzimidazole; BUBR1, BUB1-related 

protein; CDC20 – cell-division-cycle20; CENPE, centromere protein E; MAD, mitotic arrest deficient; MPS1, monopolar 

spindle 1. 
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Figure 1.10 Mitotic checkpoints in mammals – activation and deactivation.  
A) Activation of the mitotic checkpoint is caused by lack of attachment of all kinetochores to a 
chromosome. CENPE, a microtubule motor protein, binds directly to BUBR1, which causes its activation and 
further attachment of MAD1/MAD2 complex. Activation of MAD1/MAD2 is then responsible for the 
conformational changes in MAD2 structure towards its active form. This process is supported by other 
proteins such as MPS1 and BUB1. Connection of active MAD2, with BUBR1 and BUB3 creates a complex 
which is able to capture CDC20 and in this way prevents activation of APC/C. As a consequence of this 
action, securin and cyclin B1 are not degraded by APC/C; they then bind to separase and in combination 
with CDK1 block its activity. B) Deactivation of the mitotic checkpoint starts from attachment of 
kinetochore microtubules to CENPE. This connection prevents binding of MAD1/MAD2 complex and stops 
production of the active form of MAD2 protein. The remaining active MAD2 is captured by the p31/CMT2 
complex, which releases CDC20 and allows for its binding to APC/C. This connection activates APC/C, allows 
ubiquitination of securin and cyclin B1 and in the same way allows for further activation of separase and 
progression of mitosis towards anaphase. 
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1.6.3 Aneuploidy and chromosomal instability (CIN) 

Chromosomal instability is a pathological persistent state of chromosome mis-

segregation during cell division, in which whole chromosomes are (randomly) lost or 

gained (Orr et al., 2015) (Lengauer et al., 1997). Chromosomal instability is closely 

connected with aneuploidy and usually arises as a consequence of abnormal mitosis. 

Several mistakes in the process of cell division, such as mitotic timing, microtubule 

dynamic, centrosome relocation within the cell or telomere maintenance can lead to CIN 

(Schvartzman et al., 2010). However, growing  evidence indicates that disruption of the 

mitotic checkpoint is the main cause of CIN (Cahill et al., 1998). As chromosomal 

instability seems to be a hallmark of most of human cancers, understanding its role in 

tumour initiation and progression is at the centre of research.  

The history of research on aneuploidy dates to almost a century ago, when Theodor 

Boveri performed the first systematic analysis of the influence of aneuploidy on cells (Orr 

et al., 2015, Boveri, 1902). This was subsequently followed by many studies which 

concluded that aneuploidy causes serious abnormalities in an organism. The term 

aneuploidy describes a disrupted number of chromosomes in a cell, which is either more 

or less than the usual 46 chromosomes. It is estimated that during normal development 

of a multicellular organism, the possible rate of developing aneuploidy by chromosome 

missegregation is 1 in every 105 cell divisions (Hartwell et al., 1982). Therefore, the effect 

of this rare event in a normally developing organism is usually eliminated by apoptosis of 

the aneuploid cells. However, if this event occurs more frequently, and the organism is 



66 
 

not able to eliminate all cells with an abnormal chromosome number, it can lead to 

disruption in cellular function (Torres et al., 2008, Orr et al., 2015). In contrast to 

polyploidy (chromosome set number greater than normal 2n), which in many plants or 

animals is a normal condition necessary for organism development, aneuploidy is usually 

associated with serious pathological conditions such as sterility, diseases or tumour 

formation. There are many genes in the human genome, which when present in only one 

copy causes serious abnormalities. It is also known that a loss of chromosomes is less 

well-tolerated by an organism than a gain (Torres et al., 2008, Fisher and Scambler, 1994). 

In humans, examples of non-lethal aneuploidy are trisomies 13, 18 and 21. Individuals 

with trisomies of 13 and 18 carry serious developmental defects and their survival is 

usually below one year.  Trisomy of chromosome 21, known as Down syndrome, is quite 

common (approximately 1 in 750 births) and affected individuals have both physical and 

mental disabilities. Survival of affected individuals though, is much longer than trisomies 

13 and 18. The most common human somatic aneuploidy disease is cancer. It is known 

that over 90% of solid tumours possess features of aneuploidy, which are consequences 

of defects during cell division (Orr et al., 2015).  

1.6.4 The road to whole chromosomal aneuploidy 

Normal cell division requires equal separation of chromosomes into daughter cells.  

Certain events must take place for this process to be successfully completed. These are 

correct organisation of microtubules into mitotic spindles and proper attachment of 

chromosomes to kinetochores, at the appropriate time in mitosis. Defects in these 
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processes can result in cell aneuploidy. There are several ways in which this can happen  

(Orr et al., 2015, Kops et al., 2005).  

a) Aberrant mitosis 

For correct cell division, kinetochores must be attached to microtubules from the 

opposite spindle poles. However, this process often generates several mistakes, which, if 

not fixed by the spindle assembly checkpoint (SAC), can lead to chromosome or structural 

aneuploidy, affecting the process of cell division or even life of the cell (Orr et al., 2015). 

The process of aberrant mitosis happens when cells enter mitosis with a multipolar 

spindle; this can be a consequence of the over-production of centrosomes in previous 

cytokinesis (cell polyploidization - 8N) or errors during centrosome duplication (Storchova 

and Pellman, 2004). This division creates aneuploid daughter cells. It was found that the 

genetic changes underlying this process are connected with amplification of 

STH15/aurora kinase A (Zhou et al., 1998) and inactivation of p53 and BRCA1 which are 

tumour suppressors (Fukasawa et al., 1996, Deng, 2002).  

b) Cohesion defects  

The cohesion between two sister chromatids is extremely important for successful cell 

division and allows for synchronous separation after passing the SAC (Orr et al., 2015). 

The control of the cohesion between sister chromatids is dependent on regulation of one 

of the proteases, separase. Separase is inhibited by securin (pituatory tumour 

transforming gene 1, PTTG1) (Pei and Melmed, 1997). Any disruption in cohesion leads to 

chromosome mis-segregation, and in the same way might contribute to aneuploidy in 
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human cancers (Orr et al., 2015). There is a described correlation between the level of 

securin and the invasiveness of pituitary tumours (Zhang et al., 1999). It  has also been 

shown that removing securin in human cancer cells resulted in the elevation of CIN 

(Jallepalli et al., 2001). 

c) Mistakes in centrosome attachment to spindle microtubules 

The constitutive attachment of one kinetochore to the microtubules from both spindle 

poles is another possible cause of aneuploidy (Cimini et al., 2001). The inhibition of 

aurora kinase B, borealin, survivin or INCENP (Inner centromere protein), which belong to 

the attachment-error-correction mechanism, promotes this type of attachment in cells 

(Gassmann et al., 2004). 

d) Mitotic checkpoint defects 

SAC is a complicated signalling network with the ability to delay the mitotic progression 

until all kinetochores are correctly attached to microtubules. Its role is to control this 

connection and at the same time minimise the likelihood of errors. Therefore, errors in 

this mechanism lead to the possibility of mistakes during cell division, and at the same 

time can cause whole chromosome missegregation which will lead to aneuploidy (Orr et 

al., 2015, Kops et al., 2005).  

1.6.5 Aneuploidy and CIN in cancer 

David Hansemann was the first scientist who, in 1890 discovered mitotic defects in cancer 

cells (Rajagopalan and Lengauer, 2004, Kops et al., 2005). He analysed chromosome 
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architecture in various carcinomas and noticed abnormal changes in their sizes and 

structure. His discovery raised the idea of a possible link between aneuploidy and the 

process of tumorigenesis. There is increasing evidence suggesting that numerical and 

structural aneuploidy in cancer is caused by chromosomal instability, reflected by 

frequently observed defects in mitotic segregation during cell division (Rajagopalan and 

Lengauer, 2004). Most cancer cells contain an abnormal number of chromosomes (in 

between 60 and 90) and what is more, in the same tumour this number usually differs 

between cancer cells. These chromosomes also usually carry some structural changes 

which are rarely seen in normal cells. Chromosomal instability (CIN) is a common feature 

of many cancers. The cause of this is not yet known, but there is growing evidence which 

emphasizes the importance of defects in the mitotic checkpoint in the process of 

tumorigenesis. It was found that defects in the mitotic checkpoint are possible causes of 

CIN in cancers, and can contribute to tumour growth and progression. Complete 

inactivation of mitotic checkpoint signalling is lethal for the cell. However, it was shown 

that many tumour cells are characterised by down-regulation of mitotic checkpoint 

genes, and when tested in mice, this down-regulation caused spontaneous tumour 

formation (Kops et al., 2005). Mice cells deficient in CENPE were not able to recruit 

enough checkpoint proteins and generate a strong enough signal; as a result, few 

unattached chromosomes were not able to inhibit mitosis progression. In addition, high, 

frequent rates of mis-segregation were observed both in vivo and in vitro (Weaver et al., 

2003). Similar results were seen in mice with down-regulation of Mad2, BUBR1 or Bub3. 
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In all cases, a higher level of aneuploid fibroblasts and a small increase in tumour 

development was observed (Babu et al., 2003, Michel et al., 2001, Dai et al., 2004).   

The basis of our understanding of the process of tumour formation is based on 

observations of genetic alterations in specific genes of individual cells (Nowell, 1976, 

Fearon and Vogelstein, 1990). It is also clear that it is not only aneuploidy which is a 

common signature of most solid tumours, but also several mutations in oncogenes and 

tumour suppressor genes, for example KRAS, tumour protein p53 (TP53) and breast 

cancer 1 (BRCA1)) (Kops et al., 2005).  In 1998, it was first discovered that mutations in 

mitotic checkpoint proteins BUBR1 and BUB1, are common in a subset of colorectal 

cancer cell lines (4 out of 19) (Cahill et al., 1998). Different studies confirmed mutations 

of other mitotic checkpoint proteins (MAD2, MAD1, BUB1, BUBR1, ZW10-ROD-zwilch) in 

different types of cancers including: lung, pancreatic, rectal, lymphoid, breast, prostate 

and bladder (Gemma et al., 2000, Hempen et al., 2003, Ohshima et al., 2000, Imai et al., 

1999, Hernando et al., 2001, Nomoto et al., 1999, Percy et al., 2000, Tsukasaki et al., 

2001, Wang et al., 2004a); However, the changes in mitotic checkpoint function are not 

only affected by mutations of specific proteins; oncogene products and tumour 

suppressors also significantly affect mitosis by regulating mitotic checkpoints. The 

evidence suggests that a weakened mitotic checkpoint, especially if it appears in 

conjunction with a mutation in a tumour suppressor gene, might facilitate cancer 

development (Kops et al., 2005, Rao et al., 2005). Loss of tumour suppressors such as 

APC, p53, or BRCA1, as well as overexpression of oncogenes (MSM2, AURA, RAS) play an 

important role in microtubule instability and centrosome amplification (Nigg, 2002, 
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Fukasawa et al., 1996, Deng, 2002). What is more, mitotic entry or suppression could also 

be regulated by tumour suppressors (CHFR, LATS1, RASSF1A) (Scolnick and Halazonetis, 

2000, Tao et al., 1999, Song et al., 2004). Some oncogenes and tumour suppressors 

(BRCA1, BCSG1, RB, E2F, p53) can also affect and weaken mitotic checkpoints by direct 

influence on checkpoint proteins (Wang et al., 2004a, Ren et al., 2002, Chun and Jin, 

2003, Iwanaga and Jeang, 2002); It is known that mutations appear during the clonal 

evolution of cancer, but it is not clear how many mutations in a single cell must take place 

to make it develop into a metastatic cell. Mathematical analysis suggests six to ten clonal 

mutations in a single cell, to develop a mature cancer cell (Knudson, 2001, Nowak et al., 

2002).  

1.6.6 The causes of aneuploidy in tumours  

There are two separate theories which may explain why aneuploidy is so common in 

cancer. The first theory is that aneuploidy is simply necessary for the process of 

tumorigenesis (Duesberg et al., 1999). It was observed that patients with trisomy 21 are 

more likely to develop childhood leukaemia (Hasle et al., 2000). Based on previous 

studies, Torres et al. proposed another way in which aneuploidy could generate 

tumorigenesis. As mentioned previously, during normal cell proliferation, aneuploidy can 

appear approximately once per every 105 cell divisions. For most of these cells, the 

aneuploidy state is lethal. However, in some of the aneuploid cells which do not die, the 

process of cell division appears to be much slower than in the normal cells. In this way, 

aneuploid cells are usually outcompeted by normal cells, and the effect of aneuploidy in 
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an organism is blocked. The problem appears when, around slowly proliferating 

aneuploid cells, there are not enough normal dividing cells. In this situation, aneuploid 

cells will overcome diploid cells, and tumour formation begins. They also proposed that 

cell stress (caused by the process of aneuploidy) and the changes this generates increases 

genomic instability in aneuploid cells to strongly encourage the process of tumorigenesis. 

Their analysis led them to the conclusion that the first gene mutations caused by 

aneuploidy in cells, are those which let aneuploid cells tolerate the negative effects of 

aneuploidy itself. Aneuploidy could cause genomic changes and promote mechanisms, 

which will now promote the growth and proliferation of cells in a particular environment. 

What is more, it could also protect cells from lethal mutations by providing extra copies 

of genes necessary for tumorigenesis (Torres et al., 2008).  

The second theory puts less emphasis on aneuploidy in cancer development, and explains 

changes in the number of chromosomes as a consequence of uncontrolled growth of 

tumour cells. In this way, aneuploidy would be an echo of previous events in the cell 

which are more important for the process of tumorigenesis. Bunz et al. proposed that 

aneuploidy might be the effect of inactivation of p53 pathways, which appear late during 

tumour development and result in cell tetraploidization – a state which can promote 

aneuploidy (Bunz et al., 2002). Several other studies support this theory, and even 

suggest that aneuploidy suppresses rather than promote the process of tumour 

formation. One piece of evidence to support this theory is an observation that individuals 

with an extra copy of chromosome 21 are 50% less likely to develop a solid tumour than 

healthy individuals (Hasle et al., 2000, Satge et al., 2003). Weaver et al. showed that in a 
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mouse model, the induction of low levels of aneuploidy prevents tumorigenesis in most 

tissues, and postpones tumour formation in others (Weaver et al., 2007). 

Although very interesting, both these theories still do not have enough evidence for their 

confirmation, and the science world is still divided in its opinion about the reasons for 

aneuploidy in tumours. 

1.6.7 Prognosis and treatment 

Cancers carrying aneuploidy and/or chromosomal instability were found to be associated 

with a poorer prognosis than diploid cancers (Watanabe et al., 2001, Zhou et al., 2002). 

What is more, there is some evidence suggesting that chromosomal instability (CIN) may 

contribute to the development of chemotherapy resistance in cancer (Sawyers, 2001).  

CIN might influence changes in intracellular and extracellular environments and through 

this contribute to cellular resistance to some drugs commonly used as chemotherapy like 

imatinib (Gleevec) and 5-fluorouracil (Wang et al., 2004b, Sawyers, 2001). There are 

already several drugs in use or in clinical studies which aim to block mitosis by affecting 

the mitotic checkpoint. Chemotherapeutic drug groups called taxanes and vinca alkaloids 

are currently in use as part of standard treatment regimens for patients with lung, breast, 

ovarian and prostate cancers, lymphomas and myelomas (Jordan and Wilson, 2004) (Orr 

et al., 2015). They provoke long term cell cycle arrest in mitosis by affecting production of 

unattached kinetochores and influencing microtubule dynamics. The new drug Ispinesib 

is currently in clinical trials and its function is to block EG5 which is needed for spindle-

pole separation. Preclinical tests in mouse xenografts resulted in total regression of 
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tumours (Purcell et al., 2010). Several other new drugs in clinical trials are also targeting 

mitotic spindle proteins, such as aurora kinase A and B (Dar et al., 2010), and certain 

cyclin dependent kinases (CDKs) (Malumbres and Barbacid, 2009). Blocking mitotic check 

point by drugs is usually followed by cell death (Jordan and Wilson, 2004). Several 

researchers are also in the process of discovering a way to completely block mitotic 

checkpoints in cancer cells, leading tumour cells toward apoptosis. The potential 

treatment of cancer using its aneuploidy signature, could include selective elimination of 

aneuploid tumour cells, based on their stress-induced phenotype, which differs from 

normal diploid cells (Orr et al., 2015). In theory, the idea of blocking mitosis to kill tumour 

cells sounds very promising, but there is a high risk of increasing aneuploidy in healthy 

cells as a consequence of this treatment. 

1.6.8 CENPE - a mitotic checkpoint gene in cancer 

Cell proliferation is a well-known target of cancer chemotherapy. Influencing dividing 

cells and leading them towards apoptotic pathways, seems to be an obvious move 

towards treating cancer. Therefore, it is not a surprise that there is interest in the kinesins 

family of motor proteins as potential cancer drug targets (Wood et al., 2001). The 

superfamily of kinesins contains more than 650 members, of which 45 are found in the 

human genome (Hirokawa et al., 2010). The main function of this group of proteins is to 

control different stages of cell division and intracellular transport. Currently, 16 kinesins 

which play important role in the process of mitosis and cytokinesis are known; among 

them is centromere-associated protein E (CENPE) (Rath and Kozielski, 2012). CENPE is a 
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protein responsible for binding spindle microtubules to kinetochores at the earliest 

stages of this process (Yao et al., 1997). Therefore, its importance in correct cell division 

seems to be obvious. Interestingly, it was discovered that the hallmark of some tumours 

is disrupted CENPE expression, indicating its possible role in tumorigenesis and therefore 

as a potential drug target in cancer treatment. However, the role of CENPE dysregulation 

in tumour development and progression is not very well studied. Since our knowledge 

about the localisation and function of CENPE in healthy cells is expanding, there is also 

growing interest in this protein in the context of tumorigenesis. Liu et al. showed that 

downregulation of CENPE in HepG-2 human hepatoma cells causes numerical 

chromosomal abnormalities and possibly also plays an important role in the development 

and progression of hepatocellular carcinoma (Liu et al., 2015). On the other hand, 

overexpression of CENPE in combination with overexpression of cyclin B1 correlated with 

a poor prognosis in breast cancer (Agarwal et al., 2009, Kung et al., 2014). What is more, 

it was discovered in a mouse model of high risk neuroblastoma, that CENPE is a promising 

therapeutic target for this disease, based on genetic analysis of tumour progression 

(Balamuth et al., 2010). In clinical trials there are currently several CENPE inhibitors being 

tested, of which GSK923295  (in Phase I clinical trials), seems to provide promising results 

in patients with refractory cancer;  partial response in one patient; stable disease in one-

third of patients with mild side effects (Chung et al., 2012). Despite the fact that there is 

still much to investigate in relation to CENPE as a therapeutic target in different types of 

cancers, current results are promising, confirming its importance and possible future use 

as a target in cancer treatment. 
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1.7 Study aims 

Nowadays, treatment of all DLBCL patients is based on standard R-CHOP therapy, but this 

is only curative in approximately 60% of cases and is complicated by the diversity of this 

disease. Therefore, individual treatment of patients based on the targeting of specific 

molecular abnormalities is required. DDR1 is highlighted as an oncoprotein, which is an 

important regulator of tumour cell growth, survival, metastasis and invasiveness. A broad 

spectrum of pathways mediates DDR1 signalling, make it an important, but not an easy, 

target for cancer therapy. Therefore, despite growing research on DDR1, our knowledge 

about this receptor still needs improvement. This thesis explores the contribution of 

DDR1 signalling to the pathogenesis of DLBCL, and considers its potential therapeutic 

reversal using small molecule inhibitors of DDR1. 

 The specific aims of this thesis are to: 

1.  Identify the DDR1 mediated transcriptional changes that follow collagen 

stimulation in germinal centre B cells, and examine their relevance to B cell 

lymphomagenesis. 

2. Investigate the potential role of activation of DDR1 by collagen in mediating 

aneuploidy in DLBCL. 

3. Investigate the potential therapeutic use of DDR1 inhibitors in vitro and in vivo. 
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2. Materials and methods 

2.1 Cell culture 

2.1.1 Maintenance of the cell lines 

All used suspension cell lines were cultured in growth media (summarised in Table 2.1), at 

37oC in a humidified atmosphere containing 5% of carbon dioxide (Galaxy R CO2 

Incubator; RS Biotech). Twice a week, to replenish nutrients and remove waste, cells 

were pelleted by centrifugation at 1700rpm for 5min (Eppendorf Centrifuge 5810R; 

Eppendorf UK Limited). The supernatant was aspirated using a VACUSAFE aspirator 

(INTEGRA Biosciences AG) and cells were re-suspended in fresh media, pre-warmed to 

37oC (HerathermTM Compact Microbiological Incubator; Thermo Fisher Scientific). Cells 

were counted and seeded in new culture flask, at a concentration of 5x105 cells/ml. 

Adherent cell lines were maintained in the growth media described in Table 2.1. To 

prevent over growth, cells were passaged at 80% confluency, as estimated by visual 

microscopic inspection. Prior to sub-culturing, media was aspirated (VACUSAFE aspirator; 

Integra Biosciences AG) and cells were washed twice with PBS (phosphate buffered 

saline, pH 7.4; Life Technologies Ltd). PBS was then removed and trypsin solution (Gibco; 

Life Technologies Ltd) was added to the cells and incubated at 37oC for 3 min, to allow 

cells to detach from the culture flask. To neutralise trypsin, fresh media was added to 

cells. To remove the trypsin, cells were pelleted by centrifugation at 1700rpm for 5min 

and re-suspended in fresh, pre-warmed media to the desired concentration.  
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Table 2.1 Summary of cell lines and the culture conditions.  

Cell line  Growth 
characteristic 

Cancer type Origin Culture media 

L591 Suspension Nodular sclerosis, 
HL (human) 

B cell derived lymphoma cell 
line, established from 31 
years old female with 
diagnosed Hodgkin 
lymphoma in 1982 (Diehl et 
al., 1982); EBV positive. 

RPMI-1640 (Gibco, Life Technologies Ltd) 
supplemented with 10% v/v fetal bovine 
serum (FBS, Gibco; Life Technologies Ltd) 
and 1% v/v penicillin/streptomycin (P/S, 
Gibco; Life Technologies Ltd) 
 

L1236 Suspension Mixed cellularity, 
HL (human) 

EBV negative cell line 
established in 1994, from 
peripheral blood of 34 years 
old male patient (Kanzler et 
al., 1996). 

L428 Suspension Nodular sclerosis, 
HL (human) 

Established from 37 years old 
woman with Hodgkin 
lymphoma in 1978 (Schaadt 
et al., 1980); EBV negative 
(Schaadt et al., 1979). 

L540 Suspension T cell derived 
nodular sclerosis, 
HL (human) 

Hodgkin lymphoma cell line 
from the bone marrow of 20 
years old woman; EBV 
negative (Diehl et al., 1981).  

KMH2 Suspension Mixed cellularity, 
HL (human) 

Established in 1974 from 37 
years old male patient with 
Hodgkin lymphoma; EBV 
negative (Kamesaki et al., 
1986) 

U2932 Suspension DLBCL (human) Cell line derived from 29 
years old female patient with 
DLBCL, who previously was 
diagnosed with Hodgkin 
lymphoma; ABC-like subtype; 
EBV negative (Amini et al., 
2002). 

Ocily 7 Suspension DLBCL (human) GCB-like lymphoma subtype; 
established from peripheral 
blood sample of a 48-year-
old man with B-cell non-
Hodgkin lymphoma (DLBCL), 
EBV negative (Tweeddale et 
al., 1987 ). 

HT Suspension DLBCL (human) Established in 1983 from 70 
years old male patient with 
DLBCL; GCB-like lymphoma 
subtype; EBV negative 
(Beckwith et al., 1990) 

Karpas 
422 

Suspension DLBCL (human) GCB-like lymphoma subtype; 
established from 72 years old 
woman with DLBCL in 1986; 
EBV negative (Dyer et al., 
1990). 

Farage Suspension DLBCL (human) GCB-like lymphoma subtype, 
established in 1990 from the 
lymph node of female 
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patient with DLBCL; EBV 
positive (Benbassat et al., 
1992). 

SUDHL4 Suspension DLBCL (human) Established From 38 years 
old male patient with DLBCL 
in 1975; GCB-like lymphoma 
subtype; EBV negative 
(Epstein et al., 1978). 

SUDHL5 Suspension DLBCL (human) GCB-like lymphoma subtype; 
established from the lymph 
node of the 17 years old 
woman with DLBCL; EBV 
negative (Epstein et al., 
1978). 

BJAB Suspension DLBCL (human) GCB-like lymphoma subtype; 
derived from bone marrow, 
nowadays classified as DLBCL 
(Wennborg et al., 1987). 
Previously known as Burkitt 
lymphoma; EBV-negative; 
established from 5 years old 
girl (Klein et al., 1974). 

DG75 Suspension BL (human) Established in 1975 from 10 
years old boy with Burkitt 
lymphoma; EBV negative 
(Benbassat et al., 1977). 

Hela Adherent Human epitheloid 
cervix carcinoma 

Established in 1951 from 51 
years old woman (Scherer et 
al., 1953). Later diagnosis – 
adenocarcinoma; EBV 
negative. 

Ocily 3 Suspension DLBCL (human) ABC-like lymphoma subtype; 
bone marrow of a 52-year-
old man with B-cell non-
Hodgkin lymphoma (DLBCL), 
EBV negative (Tweeddale et 
al., 1987 ). 

IMDM (Gibco, Life Technologies Ltd) 
supplemented with 20% v/v fetal bovine 
serum (FBS, Gibco; Life Technologies Ltd) 
and 1% v/v penicillin/streptomycin (P/S, 
Gibco; Life Technologies Ltd) 
 

Ocily 1 Suspension DLBCL (human) GCB-like lymphoma subtype; 
bone marrow of a 44-year-
old man with B-cell non-
Hodgkin lymphoma (DLBCL), 
EBV negative (Tweeddale et 
al., 1987 ). 

IMDM (Gibco, Life Technologies Ltd) 
supplemented with 10% v/v fetal bovine 
serum (FBS, Gibco; Life Technologies Ltd) 
and 1% v/v penicillin/streptomycin (P/S, 
Gibco; Life Technologies Ltd) 
 

A20 Suspension Murine B cell 
lymphoma 

Mouse derived lymphoma 
cell line, established in 1979. 
Presents B cell properties 
(Kim et al., 1979). 

RPMI-1640 (Gibco; Life Technologies Ltd) 
supplemented with 2mM L-glutamine, 10% 
v/v FBS (Sigma), 10mM HEPES (Sigma), 1mM 
sodium pyruvate (Sigma), 200mg/l glucose 
(Sigma) and 0.05mM 2-mercaptoethanol 
(Gibco; Life Technologies Ltd) 
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2.1.2 Cryopreservation of cells and recovery of frozen cells 

To cryopreserve cell lines, 5x106 cells were pelleted by centrifugation in 4oC, at 1700rpm 

for 10min (Eppendorf Centrifuge 5810R; Eppendorf UK Limited) and re-suspended in 

500µl of cold freezing solution (90% v/v FBS (Gibco, Life Technologies Ltd) and 10% v/v 

dimethyl sulphoxide (DMSO; Sigma). Cells were transferred into cryopreservation vials 

(Nunc® Cryo Tubes; Sigma) and slowly frozen down to -80oC in a cryo container (Nalgene® 

Mr. Frosty; Sigma). Cells were subsequently stored at -80oC.  

To recover frozen cells for cell culture, cryopreserved cells were thawed quickly to 

minimize the exposure to DMSO, and re-suspended in 5ml of fresh pre-warmed media. 

Cells were pelleted by centrifugation at 1700rpm for 5 min and immediately re-

suspended in 7ml of complete medium. Cells were grown in 25cm3 flasks at 37oC in the 

humidified incubator with 5% CO2. 

2.1.3 Cell counting 

Cell concentration was determined by mixing equal volume of cell suspension and Trypan 

Blue (Sigma) (1:1; 10µl each). 10µl of this solution was then pipetted onto a Naubauer 

haemocytometer (Marienfeld), and live (bright) cells were counted using Olympus CK30 

inverted light microscope in four separate zones of the grid. The concentration of the 

cells (number of cells per ml of culture) was calculated by multiplying the average 

number of counted cells by 104 and the dilution factor of Trypan Blue (2).  
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2.2 Isolation and maintenance of primary human GC B cells from tonsils 

2.2.1 Tonsil specimens 

Paediatric tonsil tissues were obtained from the  

. All work using tonsils was performed under local ethics 

committee approval (Ref No. 06/Q2702/50). Fresh tonsils were transported in phosphate 

buffered saline (PBS, Life Technologies Ltd) on ice. 

2.2.2 Purification of tonsillar mononuclear cells (TMCs) 

Work on tonsils was started immediately after arrival of tissue and processed with help of 

. All steps of isolation were carried out in 

sterile conditions on ice, using cold reagents, to prevent apoptosis (as described 

previously by (Vockerodt et al., 2008)). Tonsils were placed in cold RPMI 1640 medium 

(Gibco; Life Technologies Ltd) supplemented with 1% v/v penicillin/streptomycin solution 

(Gibco; Life Technologies Ltd) and 0.5% v/v ciproxin (Bayer). Using a scalpel, tonsils were 

minced to release the tonsillar cells into the medium. The cell suspension was collected in 

50ml falcon tubes (Corning® Self-standing Centrifuge tubes; Sigma) and kept on ice.  

Mononuclear cells were then isolated by gradient separation using LymphoprepTM 

solution (Axis-Shied Diagnostics Ltd). 15ml of lymphoprep solution was transferred into 

50ml tubes then 35ml of tonsillar cell suspension in medium layered on top, followed by 

30 min centrifugation at 2200rpm, at room temperature with the break off. This 

procedure created the visible layers of: plasma (top), mononuclear cells (middle), 
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lymphoprep solution (bottom) and erythrocytes (pellet). Mononuclear cells were 

transferred to a new tube, topped up with cold RPMI 1640 media and washed twice in 

medium and once in autoMACS solution (Miltenyi Biotec Ltd) supplemented with 0.5% 

v/v ciproxin (Bayer), 1% v/v penicillin/streptomycin solution (Gibco; Life Technologies Ltd) 

and 5% v/v MACS® BSA stock solution (Miltenyi Biotec Ltd), by centrifugation at 4oC, 

1000rpm for 10 min. Tonsillar mononuclear cells were counted using Trypan Blue (Sigma) 

as previously described. 

2.2.3 Purification of CD10 positive GC B cells 

Isolated mononuclear cells were re-suspended in autoMACS solution (Miltenyi Biotec Ltd) 

to a concentration of 107 cells/100µl. Anti-CD10-Phycoerythrin (PE) antibody 

(eBioscience) was added to cell suspension at 1:50 dilution, and incubated for 10 min at 

4oC in the dark. After this time, cells were washed with 10x staining volume of autoMACS 

solution and re-suspended again with autoMACS, at the concentration of 107 cells/100µl. 

Anti-PE microbeads (Miltenyi Biotec Ltd) at the dilution 1:10 were added and incubated 

for 15 min at 4oC in the dark. Cells were washed with 10x of staining volume of ice cold 

autoMACS solution. 

As the last step, cells were re-suspended in autoMACS solution to the concentration 108 

cells/500µl (assuming that max 40% of cells are labelled) and LS columns (Miltenyi Biotec 

Ltd) with 50µm cell filters (CellTrics®; Partec), were prepared for cell loading by being 

placed on a pre-cooled separation magnet (Miltenyi Biotec Ltd) and rinsed with 3ml of 

autoMACS solution.  500µl of cell suspension was applied to the column and left to fully 
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pass through, followed by 3 separate washes with 3ml of autoMACS solution. To release 

CD10+ cells from the column, LS columns were removed from the magnet and placed into 

15ml tubes. 5ml of autoMACS buffer was added and the contents forced through by 

gentle pressure with the plunger. Cells were counted using trypan blue and kept on ice 

until further use or frozen at -80oC.  

2.3 Plasmid preparation 

2.3.1 Broth and agar preparation 

Luria-Bertani (LB) broth was prepared using 2g LB-Broth Base powder (Invitrogen) in 

100ml distilled water, autoclaved and stored at room temperature. 

LB agar was prepared by dissolving 1.5g select agar powder (Invitrogen) and 2g LB-Broth 

Base powder in 100ml of filtered water and autoclaved. Prepared agar was kept at RT. 

Before pouring on plates, agar was heated up in microwave and antibiotic (100µg/ml 

ampicillin (Sigma)) was added. Ready plates were then stored at 4oC, until further use. 

2.3.2 Preparation of plasmid from glycerol stock 

Glycerol stock of pIRES2-EGFP plasmid with and without DDR1a insert was a gift of  

 Details of the plasmid used are 

summarised in Table 2.2. A small portion (pipette tip) of the plasmid glycerol stock was 

transferred into 2ml of freshly prepared LB broth with 50µg/ml kanamycin monosulphate 

(Sigma) and placed in a shaking incubator at 37oC, 150rpm for 8 hours. After this time, 

the mixture was transferred into conical flask with 100ml of LB broth and incubated 
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overnight with shaking at 37oC, 150rpm. Next day the content of the flask was transferred 

into 50ml conical tubes and pelleted by centrifugation at 4oC, 7000rpm for 15 min. Pellets 

were immediately lysed with 8ml of Lysis Buffer LYS-EF (part of the Nucleobond kit) and 

the plasmid was purified using Nucleobond Xtra Midi Plus EF kit, according to 

manufacturer’s protocol (MACHEREY-NAGEL) or frozen at -80oC. Plasmid concentration 

was determined using a NanoDropTM 1000 spectrophotometer (Thermo Scientific). 

2.3.3 Transformation of bacteria  

pCDH-mDIV-DDR1 and pCDH-DIV-DDR1 plasmids were gifts from  

). mDIV-DDR1 and DIV-

DDR1 plasmids were cut from Whatman paper and incubated in RNA free water at 4oC 

overnight. XL1-Blue competent cells were thawed on ice. 50µl of bacteria was mixed with 

1µl of plasmid and incubated on ice for 30min. After this time tube was transferred to 

40oC water bath and heat shock for 1min. Cells with plasmid were then moved straight 

back on ice for 1min. To let bacteria grow, 250µl of LB media without antibiotic was 

added and cells were incubated for 1h at 37oC on shaker. After required time, 100µl of 

cells were plated on selective agar plate (100µg/ml ampicillin (Sigma)) and left over night 

in 37oC incubator. Next day, picked colonies were transferred into 2ml of LB broth with 

100µg/ml ampicillin and incubated for 8h at 37oC, on shaker. Glycerol stock was prepared 

by mixing 850µl of grown bacteria with 150µl of glycerol (Sigma) or bacteria were 

transferred into 100ml of LB broth and incubated for plasmid extraction as described in 

Section 2.3.2. Glycerol stock was frozen and stored at -80oC.  
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2.4 Transfection of cell lines and primary GC B cells 

All procedures were performed in sterile conditions. 

2.4.1 Nucleofection 

2.4.1.1 DDR1 expression plasmid 

Cell lines 

DG75 cells were transfected by nucleofection at room temperature. For the procedure, 

Cell Line Nucleofector® Kit V (Lonza) and Nucleofector device (first generation; Lonza) 

was used. One day before transfection cells were seeded in fresh RPMI 1640 medium, 

supplemented with 1% v/v penicillin/streptomycin solution (Gibco; Life Technologies Ltd) 

and 10% v/v fetal bovine serum (FBS, Gibco; Life Technologies Ltd), at a concentration of 

5x105 cells/ml. Cells were pelleted by centrifugation at 750rpm for 10 min at room 

temperature and re-suspended at 1x106 cells/100µl of nucleofector solution V per 

reaction. Cells in solution were then mixed with 2µg of plasmid (Table 2.2) and 

transferred into the nucleofection cuvettes supplied with the kit (Lonza). Cells were 

nucleofected using the R-013 program on the Nucleofector device, and immediately 

transferred into 2ml of fresh pre-warmed medium. Before further analysis, cells were 

incubated for 24h at 37oC in a humidified atmosphere with 5% CO2.  

Primary germinal centre B cells 

The nucleofection of primary GC B cells was carried directly after isolation from tonsils 

tissue. The whole protocol was performed at room temperature and Human B Cell 
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Nucleofector® Kit (Lonza) was used. Cells were pelleted by centrifugation in 720rpm for 

10 min at room temperature and re-suspended in a concentration of 5x106 cells/100µl of 

nucleofector solution B per reaction. 10µg of pIRES2-EGFP vector (Clontech Laboratories) 

as a control or 10µg of pIRES2-EGFP vector containing DDR1a (gift of  

) per reaction was added. Cells were nucleofected in 

Nucleofector device (first generation, Lonza), using program U-15. Cells were 

immediately transferred to fresh, pre-warmed RPMI 1640 medium supplemented with 

5% v/v FBS and 1% v/v penicillin/streptomycin, and incubated at 37oC in 5% CO2, for 8h.  

2.4.1.2 Knock down of CENPE gene using siRNA 

Silencer® Select Validated siRNA from Ambion was used for the silencing of CENPE in cell 

lines (Table 2.3). DG75 cells were seeded 24h before nucleofection in the fresh 

supplemented medium at a concentration of 5x105cells/ml.  Cells were nucleofected with 

2µg of Silencer® Select Validated CENPE siRNA (Ambion) or with 2µg of Negative Control 

Silencer® Select #1 siRNA (Ambion), using Nucleofector device and solutions as described 

above. Cells were incubated for 24h at 37oC in a humidified atmosphere with 5% CO2.  
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Table 2.2 Details of used plasmids. 

Plasmid Selectable 

marker 

Note Company 

pIRES2-EGFP Kanamycin Express EGFP Clontech Laboratories –  

 

 

  

DDR1a-

pIRES2-EGFP 

Kanamycin Express EGFP 

and DDR1a 

     

 

 

pCDH-mDIV-

DDR1 

Ampicillin Not active 

DDR1 mutant 

 

 

 pCDH-DIV-

DDR1 

Ampicillin Constitutively 

active DDR1 

 

 

 

Table 2.3 CENPE siRNA information. 

siRNA information Sense Antisense 

Sequence (5’-> 3’) GGUUGACUCAGAUACUACAtt UGUAGUAUCUGAGUCAACCtt 

Length 21 21 

Molecular Weight 6700 6600 
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2.4.2 Electroporation 

24h prior to transfection BJAB cells were seeded in fresh medium at a concentration of 

5x105 cells/ml. Cells were pelleted by centrifugation at 4oC, 1000rpm for 10 min and re-

suspended at a concentration of 1x107 cells/250µl of cold medium per reaction, 

supplemented with 25mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes; 

Sigma). Cell suspension was then mixed with 20µg of plasmid, as detailed above (Table 

2.2) and transferred to 4mm electroporation cuvettes (Geneflow Limited). Cells were 

electroporated using BioRad Gene Pulser II electroporator (Bio-Rad Laboratories Ltd) at 

250V and high capacity of 950µF. Following this procedure cells were immediately 

transferred into 10ml of fresh, pre-warmed medium and incubated for 24h at 37oC in the 

incubator with 5% CO2. 

2.5 Stimulation with collagen and cell harvest 

All procedures were performed in sterile conditions. 

Cell lines 

DG75 or BJAB cells after transfection were collected into separate tubes for DDR1a and 

empty vector control. Non-transfected L591 cells were counted and seeded the day 

before stimulation, at 5x105cells/ml. 

Cells were pelleted by centrifugation at room temperature, 1000rpm for 10 min and re-

suspended in the same volume of fresh pre-warmed RPMI 1640 medium supplemented 

with 1% v/v of penicillin/streptomycin, without FBS. Cells were seeded in equal volume 
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(5ml) in separate Petri dishes for each time point of stimulation and were ‘serum starved’ 

for 2h at 37oC in 5% CO2 conditions. After this time, soluble type I collagen (extracted 

from rat tail; Millipore Ltd) or 0.5% acetic acid as a control (Fisher Scientific), was added 

directly to the cell suspension at a concentration of 100µg/ml and incubated at 37oC in 

5% CO2 condition, for the required time. 

Stimulated cells were harvested by centrifugation at 4oC, 1700rpm for 7min. The 

supernatant was removed from the cell pellet using VACUSAFE aspirator and cells were 

washed with cold PBS supplemented with 1mM of activated sodium vanadate (SOV; 

Sigma). In the next step PBS with SOV was removed and cell pellets frozen in -20oC. 

Germinal centre B cells isolated from tonsil 

Transfected GCB cells were stimulated with 100µg/ml of soluble type I collagen 

(Millipore) added directly to the cell suspension and incubated for 4h at 37oC in a 

humidified atmosphere with 5% CO2. Cells were harvested by addition of 250µl/ml of 

collagenase (Sigma) and 10 min incubation at 37oC. After this time, cells were mixed with 

cold PBS and transferred into two tubes: one for cells transfected with the plasmid 

containing DDR1a insert and one for the control plasmid. Cells were pelleted by 

centrifugation at 4oC in 900rpm for 10min. To fully remove collagen, cells were washed 

again with 35ml of autoMACS solution. Cells treated this way were ready for the 

immediate cell sorting. 
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2.6 Cell sorting 

Transfected GC B cells were re-stained using anti CD10-phycoerythrin (PE) antibody 

(eBioscience) by mixing the cell pellet with 250µl/sample of antibody dilution (25µl of 

CD10-PE in 250µl of AutoMACS solution) and incubated for 10min in the dark at 4oC. Cells 

were washed once with autoMACS and re-suspended in 250µl of the solution. As a last 

stage, cells were passed through 50µm cell filters (Miltenyi Biotec Ltd) straight into a 

FACS tubes.  

At the same time sorting controls were prepared. 1ml of tonsillar mononuclear cells 

(TMC) each was stained (as described above) separately for: anti CD10-PE as a positive 

control for GC B cells and anti CD4-FITC as a control for GFP-positive cells. An unstained 

negative control was also prepared by mixing 50µl of TMC with 200µl of autoMACS 

solution. 

Immediately prior to sorting, Hoechst dye (Cell Signalling; prepared from powder to 

working solution of 20µg/ml) was added to transfected GC B cells and to control TMC. 

Live (Hoechst negative) transfected GC B cells (CD10+GFP+) were sorted using MoFlo 

Astrios (Beckman-Coulter) into cold PBS. Cells were pelleted by centrifugation at 4oC in 

1700rpm for 7min and frozen at -80°C. 
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2.7 Treatment of the cells with inhibitors 

Discoidin domain receptor 1 (DDR1) inhibitors 

Three different DDR1-specific small molecule inhibitors were tested. All were dissolved in 

DMSO (Sigma) at different stock concentrations: 7rh (7-4104) inhibitor (500µM), 7rj (7-

4109) inhibitor (5mM) (  

and DDR1-IN-1 dihydrochloride (R&D Systems) (Kim et al., 2014) (10mM). Stock solutions 

were stored in aliquots at 4oC. 

Transfected BJAB cells were seeded 24h prior to treatment in a concentration of 5x105 

cells/ml in fresh medium supplemented with 10% serum. The next day cells were ‘serum 

starved’ for 2h. Inhibitors were diluted to the required concentrations in serum-free 

medium and added to the cells in suspension, which was immediately followed by 

collagen stimulation. Cells with inhibitor and collagen were incubated for 1h and 

harvested by centrifugation at 4oC in 1700rpm for 5min. Cell pellets were then frozen at -

20oC, until further use.   

CENPE inhibitor (GSK923295) 

CENPE inhibitor (GSK923295; Cayman Chemical) was dissolved in DMSO, to 1mM stock 

concentration (Bennett et al., 2015). 

DG75 and Hela cells were seeded 24h prior to treatment in fresh medium supplemented 

with 10% FBS. Next day cells were ‘serum starved’ for 2h, followed by 4h incubation at 

37oC with 50nM CENPE inhibitor. Dividing Hela cells were released to media supernatant 
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by gentle mechanical tapping on a flask. DG75 and Hela cells in suspension were then 

harvested by 10min centrifugation at RT, 1000rpm, followed by PBS wash. Cell pellets 

were re-suspended in PBS, counted and cytospins were prepared (as described in Section 

2.10.2.1). Cells were fixed on glass slides in 100% ice cold methanol (Sigma) for 15min, 

followed by immunofluorescent staining.  

MPS1 kinase inhibitor (AZ3146) 

MPS1 kinase inhibitor (AZ3146; ApexBio) was dissolved in DMSO to 50mM stock solution. 

DG75 cells treated with CENPE inhibitor (as described above), were incubated with 2µM 

of AZ3146 for 2 hours at 37oC. Cells were then harvested by centrifugation for 10min at 

RT, 1000rpm and washed twice with PBS. After second wash, cell pellet was re-suspended 

in culture media supplemented with 10%FBS and cells were cultured for 24h at 37oC and 

in 5% CO2 conditions. Next day, cells were stained for metaphase spread (section 2.10.3). 

2.8 Trypan blue viability assay 

To check toxicity of DDR1 inhibitors, DDR1a transfected BJAB cells were seeded 24h prior 

to treatment in 5x105 cells/ml, in fresh medium supplemented with 10% FBS. Next day, 

cells were ‘serum starved’ for 2h. After this time, cells were treated with different 

concentrations of inhibitors for 1, 2 and 3h. Untreated and DMSO treated cells were 

included as a control baseline of cell viability. Cells were harvested, centrifuged at 

1500rpm for 5min at RT and re-suspended in 100µl of serum free media. 10µl of cells 

were then mixed 1:1 with 0.4% trypan blue solution (Sigma). Live and dead cells were 

then counted using haemocytometer, under the bright field microscope.  
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2.9 RNA analysis 

All RNA work was performed using RNase-free equipment and reagents on ice, to 

minimise the risk of contamination. The work space and pipettes used for RNA work were 

decontaminated with RNaseZap® Rnase Decontamination Solution (Ambion) and RNAse 

free filter tips (Starlab) were used. 

2.9.1 RNA extraction and purification 

Cell lines and control non-transfected GC B cells 

Cells were seeded in fresh medium, 24h before harvesting at a concentration of 

5x105cells/ml. The next day 5x106 cells was transferred to fresh tubes and pelleted by 

centrifugation at 4oC, in 1700rpm for 5min. The cell pellet was then washed once with 

cold PBS. Non-transfected GC B cells were pelleted straight after isolation (as described 

above) and stored at -80oC. Prior to RNA extraction, pellets were taken out of the freezer 

and kept on ice. 

Total RNA was extracted from cell pellets using QIAGEN mini RNeasy kit, according to the 

manufacturer’s protocol (QIAGEN Ltd). Cells were lysed in RLT buffer supplemented with 

β-mercaptoethanol (Sigma). To degrade contaminating DNA in samples, DNase digestion 

was performed using RNase-Free DNase Set (QIAGEN Ltd), as recommended in the 

manufacturer’s protocol. RNA was eluted from columns by addition of 30µl of nuclease-

free water (Promega UK Ltd) directly to the column membrane and a short 

centrifugation. RNA concentration of the samples was determined using NanoDrop ND-

1000 spectrophotometer and samples were stored at -80oC.  
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Primary transfected GC B cells 

Cell pellets from sorted, transfected GC B cells were lysed in 100µl of RLT buffer 

supplemented with 1µl of 14.3M β-mercaptoethanol (Sigma) and 1µl of N-carrier 

(AmpTec). Next steps of RNA extraction were performed as per manufacturer’s protocol 

for the QIAGEN RNeasy micro kit (QIAGEN Ltd). The quality and concentration of RNA was 

measured using the Bioanalyser 2100 (Agilent) with the Agilent RNA 6000 Pico Kit 

according to the manufacturer’s protocol (Agilent Technologies). For RNA amplification, 

only samples in which RNA integrity (RIN) was >7 were chosen. 

2.9.2 cDNA preparation 

RNA was reverse transcribed to complementary DNA (cDNA) using qScript cDNA 

SuperMix (Quanta Biosciences). 500ng of RNA from cell lines and 200ng of RNA from 

primary DLBCL (  was mixed in sterile, thin 

walled 0.2ml PCR tubes, with 4µl of SuperMix and topped up with nuclease free water to 

a total volume of 20µl. The samples were immediately transferred to a Verti Thermal 

Cycler (Applied Biosystems) and incubated with the following protocol: 5min at 25oC, 

30min at 42oC and 5min at 85oC. After this time cDNA samples were placed on ice and 

stored at -20oC. 

2.9.3 Amplification of cDNA for gene expression analysis 

Amplification of cDNA from total RNA extracted from isolated, transfected, stimulated 

and sorted GC B cells was performed using  NuGEN Ovation® RNA-Seq system V2 kit 



96 
 

(NuGEN Ltd), according to manufacturer’s protocol. The final product of this reaction – 

amplified SPIA® cDNA, was stored at -80oC, until it was sent for RNA sequencing.  

2.9.4 RNA sequencing (RNAseq) 

RNA from three biological replicates of GC B cells described above, was isolated, cDNA 

amplified and samples were sent to Edinburgh Genomics (UK) for RNAseq. All samples 

passed quality control test and TruSeq Nano gel-free library (350bp insert) was produced 

from the amplified cDNA. Six samples were sequenced in one lane using HiSeq 4000 HO 

125 base paired end platform. Resulting data was analysed by  

 

2.9.5 Quantitative real time polymerase chain reaction (qRT-PCR) 

All qRT-PCR reactions were prepared on 96 well optical reaction plates (Applied 

Biosystems, Life technologies Ltd) in a total volume of 20µl/reaction. Each reaction was a 

mixture of: 5µl of diluted 1:20 in nuclease free water cDNA, 10µl of FastStart Universal 

Probe Master Mix (Roche Diagnostic Limited), 1µl of 20x primer/probe of gene of interest 

(FAM labelled), 1µl of 20x primer/probe endogenous control (GAPDH; VIC TAMRA 

labelled) (Applied Biosystems) and 3µl of nuclease free water. All primers and probes 

used are listed in Table 2.4. The plate was set as a multiplex reaction, each sample was 

run in triplicate and water control (no target; cDNA free) was included. The plate was 

sealed with an optical clear adhesive film (STARLAB Ltd), centrifuged briefly to remove air 

bubbles and samples were amplified using ABI Prism 7700 Sequence Detection System 

(Applied Biosystems) according to standard relative quantification method in following 
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conditions: enzyme activation at 50oC for 2min, denaturation at 95oC for 10min, 40 cycles 

of amplification at 95oC for 15s and extension at 60oC for 1min. 

2.9.6 Fluidigm®48.48 Fast Real Time PCR 

2.9.6.1 Fluidigm® Gene Expression Specific Target Amplification 

The amplification of the specific target genes in cDNA samples was performed according 

to the manufacturer’s protocol (Fluidigm). In the first step, ‘pooled assay mix’ was 

prepared by mixing 2µl of each 20x primer/probe (including endogenous control) 

(TaqManTM, Applied Biosystems) with TE Buffer Low (ThermoFisher Scientific) to a total 

volume of 200µl. 

The sample mixture was prepared in thin walled 0.65ml PCR tubes by combining 

separately for each sample: 2.5µl of TaqMan PreAmp Master Mix (2x) (Applied 

Biosystem), 1.25µl of ‘Pooled assay mix’ and 1.25µl of cDNA. The reactions were mixed 

and amplified in MasterCycler® Gradient Thermal Cycler (Eppendorf) using the following 

settings: 95oC for 10min followed by 14 cycles of 95oC for 15s and 60oC for 4min. The 

amplified product was diluted 1:5 by adding 20µl TE Buffer Low and kept at -20oC until 

required. 

2.9.6.2 Fluidigm®48.48 real time polymerase chain reaction 

The assay was prepared according to the Fluidigm 48.48 Fast Real Time PCR Workflow 

Quick Reference protocol, provided by the manufacturer. Briefly, 10x assay mix and 

sample mix were prepared separately in two 96 well optical reaction plates. To prepare 



98 
 

10x assay mix for each targeted gene, 2.5µl of 20x primer/probe was combined with 2.5µl 

of 2x Assay Loading Reagent (Fluidigm). On the second plate, sample mix was prepared 

by adding 2.5µl of 2x TaqMan Fast Advanced Master Mix (Applied Biosystems) and 0.25µl 

of 20x GE Sample Loading Reagent (Fluidigm) to 2.25µl of amplified cDNA.  

After priming the Fluidigm 48.48 Dynamic ArrayTM IFC for Gene Expression chip 

(Fluidigm), samples and assays were loaded, all eventual air bubbles were removed and 

the chip was run in IFC Controller MX machine (Fluidigm) for 1h. After this time the IFC 

chip was transferred to the BioMarkTM HD instrument for real time PCR reaction using GE 

48X48 Standard v1 specific protocol (Fluidigm). The data and colour-coded expression 

heat map were collected using BioMark HD Data Collection Software v3.0.2 and analysed 

using Fluidigm Real-Time Software.  
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  Table 2.4 List of TaqMan® Gene Expression Assays used for qRT-PCR and Fluidigm®. 

Gene Assay ID 

ADAM12 Hs01106101_m1 

AGAP3 Hs01553093_m1 

ANKRD50 Hs00379454_m1 

ARHGEF19 Hs01584221_g1 

CILP Hs00173647_m1 

DDR1 Hs01058433_g1 

FBP1 Hs00983323_m1 

GMIP Hs00213126_m1 

HSPB1 Hs00356629_g1 

LDLR Hs00181192_m1 

OBSCN Hs00405789_m1 

PLN Hs01848144_s1 

PSD4 Hs00202892_m1 

RAB34 Hs01094510_g1 

SIRPA Hs00388953_g1 

SMPD3 Hs00920354_m1 

SYDE2 Hs00410961_m1 

SYNPO Hs00702468_s1 

SYTL4 Hs00299039_m1 

UNC5B Hs00900710_m1 

ZSWIM5 Hs01123837_mH 

KLHL15 Hs00399541_m1 

SRSF4 Hs00900675_m1 

GCSAM Hs00381190_m1 

LMNB2 Hs00383326_m1 

NAA40 Hs00227062_m1 

CCNF Hs00171049_m1 

CENPE Hs01068241_m1 

RAD54L Hs00269177_m1 

GAPDH Hs02758991_g1 

β2M Hs00187842_m1 

PGK1 Hs99999906_m1 

TBP Hs00427620_m1 

HPRT1 Hs02800695_m1 
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2.9.7 qRT-PCR and Fluidigm data analysis 

The threshold cycle (Ct value) data generated by both ABI Prism 7700 sequence detection 

system and BioMarkTM HD instrument were created based on amplification plots of 

fluorescent intensity analysed for each signal.  Based on these values, the delta-delta (ΔΔ) 

Ct method (described previously by Livak and Shmittgen,2001 (Livak and Schmittgen, 

2001)) was used, to quantify the relative levels of transcripts normalised against an 

endogenous control (β2M, TBP, HPRT1, GAPDH, PGK1). The difference between target Ct 

value and control Ct value was calculated for each sample (target Ct - endogenous control 

Ct) and the resultant value was presented as a relative gene expression, determined 

based on reference sample which was assigned a value of 1. These calculations resulted in 

an absolute value of fold change for each sample which was used for further analysis and 

data presentation. 

2.10 Protein analysis 

2.10.1 Western blotting 

2.10.1.1 Protein extraction 

Fresh cells were prepared for protein extraction 24h before, by counting and re-

suspending in fresh warm supplemented medium at a concentration of 5x105 cells/ml. 

The following day, cells were pelleted by centrifugation at 4oC in 1700rpm for 5min.   

Most of the samples were also analysed for the phosphorylation of proteins. Therefore, 

all the cell pellets prior to lysis were washed once in cold PBS supplemented with 1mM 

SOV to preserve any phosphorylated proteins, before being transferred to 1.5ml micro 
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centrifuge tubes (Eppendorf) and kept on ice. Cell pellets were then re-suspended in RIPA 

(Radio-Immuno-Precipitation Assay) lysis buffer (Sigma) supplemented with 1mM of 

activated SOV and 4% v/v protease inhibitor cocktail (cOmplete tablets, EDTA-free; Roche 

Diagnostic Limited), and incubated on ice for 30min. To obtain pure protein extract, cells 

with lysis buffer were then centrifuged in Heraeus Pico 17 Microcentrifuge (Thermo 

Fisher Scientific) at full speed, at 4oC for 15min. The supernatant was transferred to clean 

1.5ml tubes and stored at -20oC. 

2.10.1.2 Determination of protein concentration 

To quantify protein concentration, the Bio-Rad Protein Assay (Bio-Rad Laboratories Ltd) 

was used. To plot a calibration curve, five standards were prepared from 1mg/ml stock 

bovine serum albumin (BSA, Sigma) by dilution in distilled water to 0.1, 0.2, 0.3, 0.4 and 

0.5mg/ml. 2.5µl of each sample was mixed with 22.5µl of sterile distilled water. 10µl of 

standards and samples was then loaded in duplicate in a 96 well flat bottom plate. Bio-

Rad Protein Assay Reagent was diluted 1:5 in distilled water and 200µl was added to each 

well. The plate was then transferred to a Bio-Rad 680 microplate reader and absorbance 

read as an end point reaction at 595nm. The protein concentration was obtained from 

calculations based on the calibration curve.  

2.10.1.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were separated by SDS-PAGE using 8% resolving acrylamide gels. Small gels 

designed for 10 samples were made according to Lab FAQs booklet (Roche Diagnostic 

Limited) in a two-step process. To run >10 samples, ready-made Criterion TGX Stain Free 

Gel, 7.5%, 12+2-well (Bio-Rad) was used. Gels were transferred to Mini/Midi Trans-Blot® 
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Cell tank (Bio-Rad Laboratories Ltd.) and fully submerged in Tris-Glycine-SDS PAGE Buffer 

(Geneflow Ltd.). Typically,  50µg of protein was diluted 1:1 in 2x Laemli sample buffer 

(Bio-Rad Laboratories Ltd.) supplemented with 1M dithiothreitol (DTT). To denature 

proteins, samples were boiled at 95oC for 10min. Samples were loaded on pre-made gels 

alongside a Spectra Multicolor Broad Range Protein ladder (Thermo Fisher Scientific) or 

for bigger proteins, Color-coded Prestained Protein Marker High Range (43-315 kDa) (Cell 

Signaling) and separated at 120V for 2h. 

2.10.1.4 Protein transfer 

Transfer of protein from acrylamide gel to a polyvinylidene fluoride (PVDF) membrane 

was performed using ready-to-use Trans-Blot Turbo Mini or Midi PVDF Transfer Packs and 

Trans-Blot Turbo Transfer System (Bio-Rad Laboratories), with the standard built-in 

settings for high molecular weight proteins (1.3A, 25V for 7min).  

2.10.1.5 Immunoblotting 

The membrane with transferred protein was incubated for 1h at room temperature on a 

shaking platform in 5% BSA (Sigma) dissolved in TRIS buffered saline-tween (BSA/TBST; 

milk/TBST) to block non-specific protein binding. TBST buffer was prepared by dissolving 

1.21g TRIS, 8.77g NaCl and 0.5ml Tween20 (Thermo Fisher Scientific) in 1l of distilled 

water. Membranes were then incubated overnight on a rocker at 4°C with primary 

antibodies diluted to the appropriate concentration in 5% v/v BSA/TBST. The membrane 

was washed 3 times with TBST with shaking for 10min, followed by 1h incubation with 

corresponding HRP-conjugated secondary IgG antibodies (Dako), diluted in 5% v/v 
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BSA/TBST (Table 2.5). After incubation, the membrane was washed again 3 times for 

10min each in TBST as before.  

Antibody-protein complexes were visualised using Bio-Rad Clarity Western enhanced 

chemiluminescence (ECL) (Bio-Rad Laboratories Ltd.) by 1min incubation of membrane 

with ECL mixture and visualising with ChemiDoc MP imaging system (Bio-Rad Laboratories 

Ltd.). The blots were analysed using ImageLab 4.1 software. 

Some membranes were probed for other proteins of interest by first stripping bound 

antibodies with 1x mild stripping solution (Millipore) in RT on a shaker for 10min. The 

membrane was then blocked for 1h in 5% v/v BSA/TBST and re-probed as described 

above.  

Following detection of the protein of interest, the membrane was then probed with 

housekeeping proteins as a protein loading control.  The membrane was washed 3 times 

at RT for 10min each wash, in TBST. Then the membrane was re-probed as described 

above at RT on a shaker for 30min in β-actin or β-tubulin HRP-conjugated (Cell Signaling) 

antibody, diluted 1:1000 in 5% v/v BSA/TBST.    
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Table 2.5 List of used primary and secondary antibodies. 

Antibody Supplier Clone Species WB 

dilution 

IHC dilution and 

condition 

IF dilution and 

condition 

DDR1 (D1G6) XP(R) Cell Signaling 5583S Rabbit 1:1000

  

1:50; 4
o
C, O/N 1:200; 4

o
C O/N 

DDR1 (Tyr792) Cell Signaling 11994S Rabbit 1:1000 - - 

Collagen VI LsBio LS-B696 Rabbit - 1:200; 4
o
C, O/N 1:600; RT, 1h 

Cenpe Sigma HPA042294 Rabbit 1:1000 1:1800; 4
o
C, O/N  1:6000; (tissue), 

1:400 (cytospin) 

4
o
C, O/N 

CD20  Dako L26 Mouse - Ready to use; 1h RT 

CD30  Dako Ber-H2 Mouse - Ready to use; 1h RT 

α-Tubulin Sigma T5168 Mouse - - 1:2000 

(cytospin)  

RT; 1h 

B actin (13E5) (HRP) Cell Signaling 5125 Rabbit 1:1000 - - 

B tubulin (9F3) (HRP) Cell Signaling 5146 Rabbit 1:1000 - - 

Polyclonal Goat anti-

Rabbit (HRP) 

Dako P0448 Goat 1:1000 - - 

Polyclonal Goat anti-

mouse (HRP) 

Dako P0447 Goat 1:3000 - - 

ImmPRESS HRP reagent 

Universal Anti Mouse/ 

Rabbit IgG 

Vector 

Laboratories 

Ltd. 

MP-7500 Horse - Ready to use; 

30min, RT 

- 

Clean Blot IP Detection 

Reagent (HRP) 

Thermo Fisher 

Scientific 

21230 - 1:500 - - 
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2.10.2 Sample preparation for immunohistochemistry (IHC) and immunofluorescence (IF) 

2.10.2.1 Preparation of cytospins 

Cultured cells were counted (as described above) and the appropriate number was 

pelleted by centrifugation at 4oC, at 1700rpm for 5min. Cells were re-suspended in cold 

PBS (Life Technology Ltd) to a concentration of  2x106 cells/ml. A thin layer of cells was 

then placed on a glass slide (X-tra positive charged Adhesive; Surgipath) using the 

CytospinTM 4 Cytocentrifuge (centrifuge, CytofunnelTM disposable sample chambers, filter 

cards and CytoclipsTM; Thermo Fisher Scientific). 100µl of cell suspension was centrifuged 

at 1000rpm for 5min. Cytospins were left to air dry for 10min and fixed by immersing in 

10% v/v buffered formaldehyde solution (Fernadale Pharmaceutical) for 10min or in ice 

cold 100% methanol (Sigma) for 15min. After this time slides were washed in distilled 

water or PBS and left to air dry for 30min. Cytospins were used fresh for further 

experiments or stored at -20oC. 

2.10.2.2 Preparation of Poly-Lysine coated slides and Hela cells seeding 

Cover slips were washed twice in 70% ethanol (Sigma), followed by single wash in PBS. 

Slides were left to air dry for 15min. 0.1% poly L-lysine solution (Sigma) was diluted 1:10 

in PBS and 200µl was applied on prepared cover slip. Coated slides were left to dry for 1h 

at 65oC and rinsed in PBS before seeding cells. 

Dividing Hela cells were released to suspension by tapping culture flask. Cells released to 

culture medium were collected by centrifugation at RT in 100rpm for 10min. Supernatant 

was removed, pellet was re-suspended in 2ml of culture media and cells were counted.  
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2x104 cells/slide was seeded on prepared poly L-lysine cover slips and incubated for 

10min prior to fixation with ice cold methanol for 15min. Fixed cover slips with cells were 

stored at 4oC until further use.  

2.10.2.3 Primary paraffin embedded samples 

Paraffin-embedded blocks of reactive tonsils were obtained from  

 Sections were cut to 4µM in thickness and placed onto X-tra 

Adhesive micro slides (Surgipath Europe) by the pathology department at  

  

Paraffin-embedded tumour microarray (TMA) blocks of DLBCL were prepared by a 

pathologist,  based on a cohort of DLBCL 

patient samples with full clinical annotation, retrieved from the pathology department at 

. Each TMA section contains 30 different DLBCL 

cases including tonsil as a control. Other set of DLBCL TMA’s used, were a gift of  

.  

The paraffin embedded sections of mouse tissue were prepared by  

 

2.10.3 Metaphase spread 

Cells were seeded the day before in the concentration of 5x105cells/ml. Next day, 5mln 

cells were incubated with 200µl of colcemide (10µg/ml; Sigma) for 3h. Cells were 

transferred into 50ml tubes and spin at 1500rpm for 5min at RT, followed by wash with 

10ml of PBS. After centrifugation, supernatant was removed and 1.5ml of fresh PBS was 
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added to re-suspend cell pellet, by tapping the bottom of the tube. In next step, 10ml of 

pre-warmed (37oC) and freshly made hypotonic buffer (5ml of FBS, 5ml of 75mM KCl, 

25ml of H2O) was slowly added to the cell suspension, and incubated for 30min at 37oC. 

After incubation, 1ml of freshly made fixation buffer (25% of volume of acetic acid (Sigma) 

and 75% of volume of ethanol (Sigma)) was added – drop by drop, while shaking gently. 

Tube was inverted once to mix and spin down at 1200rpm for 5min. Supernatant was 

removed, leaving around 1-2ml of hypotonic buffer at the bottom of the tube. By gently 

tapping, cells were re-suspended in remaining buffer, 10ml of fresh fixation buffer was 

added and cells were centrifuge at 1200rpm for 5min. This step was repeated 3 times. 

After third time, supernatant was removed leaving around 1ml of fixation buffer at the 

bottom of the tube. Re-suspended cells were then frozen at -20oC. Next day, two 

microscope slides per cell line were immersed in acetic acid and 20µl of the fixed cells 

were dropped on the slide from arm length. Slides were then left to dry overnight. Dry 

slides where stained for 15min in Giemsa solution (1:20 dilution in water; Scientific 

Laboratory Supplies), washed in water for 5min and left to dry. Slides were mounted 

using Entellan New (VWR International Marketplace) mounting media and analysed under 

the bright field microscope, using 100x lense. Chromosome counting was performed in 

Fiji ImageJ program. 

2.10.4 Van Gieson staining method 

For Van Gieson’s method for collagen fibres, slides were first de-waxed in xylen for 

10min, followed by re-hydration in 100% ethanol then in 90% ethanol, 10min each. Slides 

were then washed in distilled water for 5min and placed on a slide tray. Sections were 
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circled with PAP-PEN. Weigert’s Working Haematoxylin solutions A & B (Polyscience Inc.) 

were mixed 1:1 and 100µl of mixture was incubated on the slide for 10min. Slides were 

washed in distilled water, dried and stained by Van Gieson’s solution for 5min. Slides 

were then dehydrated by immersing in 100% ethanol for 30s followed by 5min incubation 

in histoclear. Stained samples were mounted with coverslips using DPX mounting medium 

(Invitrogen) and analysed under the microscope. 

2.10.5 Immunohistochemistry (IHC) 

2.10.5.1 Preparation of slides for immunohistochemistry (IHC) 

Cytospins 

Cytospins were taken out of the freezer, thawed at room temperature for a few minutes 

and the endogenous peroxidase activity blocked by immersing slides in 0.3% v/v 

hydrogen peroxidase (Sigma) for 15min. After incubation, slides were rinsed in cold 

running tap water for 5min. 

Tissue sections 

Slides were de-waxed by immersing in HistoClear (National Diagnostics) for 10min and re-

hydrated in 100% ethanol (Sigma) for another 10min. The slides were then washed in cold 

running tap water for 5min and endogenous peroxidase activity was blocked by 

immersing slides in 0.3% v/v hydrogen peroxidase for 15min. Before the antigen retrieval 

step, slides were rinsed for 5min in cold running tap water. 
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2.10.5.2 Antigen retrieval 

The citric buffer microwave antigen retrieval method was used. 1.26g of sodium citrate 

and 0.25g of citric acid were dissolved in 1l of distilled water and pH was adjusted to 6.0 

with 0.1M sodium hydroxide. Before immersing slides, the buffer was boiled in a glass 

beaker for 10min at microwave full power. Immediately after this, slides were placed in 

the buffer ensuring that the slides were fully submerged and boiled for another 10min at 

moderate power, followed by 10min at low power. The buffer was then left to cool for 

around 30min, before removing the slides and washing in running tap water. 

2.10.5.3 Detection and visualisation of antigen by immunohistochemistry (IHC) 

Slides were placed on a metal microscope slide staining tray (Richardson of Leicester Ltd), 

the section was circled with the PAP-PEN (Dako) and washed with 0.1% PBS-Tween (PBST) 

for 5min. To block non-specific background staining, samples were incubated in 5x casein 

blocking solution (Vector Laboratories Ltd) for 10min. Casein was removed and primary 

antibodies were applied. Samples were incubated with primary antibody diluted in PBS to 

the desire concentrations (Table 2.5). After incubation, samples were washed 3 times in 

PBST for 5min each; ImmPRESS HRP reagent Universal Anti Mouse/ Rabbit IgG (Vector 

Laboratories Ltd) secondary antibodies were applied and incubated for 30min at room 

temperature. For visualisation of staining, ImmPact DAB substrate system 

(diaminobenzidine) (Vector Laboratories Ltd) was added which bound to the antibody-

antigen complex and converted the substrate into a brown insoluble product. Sections 

were then washed for 5min in cold running tap water and counterstained in Mayer’s 

haematoxylin (Sigma) for 2min, followed by another 2min wash in hot running tap water. 



110 
 

Samples were then dehydrated by immersing in 100% ethanol for 10min, followed by 

10min incubation in histoclear. Stained slides were mounted with coverslips using DPX 

mounting medium (Invitrogen) or OmnimountTM Histological Mounting Medium (National 

Diagnostics) and analysed under the microscope with help of  

 

2.10.5.4 Slides scoring 

Stained slides were then analysed under the microscope and scored by  

 In case of DDR1 staining, samples were recorded as 

positive if >=25% of cells were positive for each marker. For CENPE staining, samples were 

recorded as negative, positive (if tumour cells were stained with the same intensity as in 

control germinal centre B cells and non-malignant cells in the tumour microenvironment), 

or weakly positive (if tumour cells were stained less intensely than control germinal 

centre B cells and non-malignant cells in the tumour microenvironment). Collagen VI 

staining was classified as positive, when >=25% of tumour cells were in contact with 

collagen. 

2.10.6 Detection of antigen by single/multiple immunofluorescence (IF) staining using 

OpalTM kit 

Immunofluorescence staining was performed using the OpalTM kit (PerkinElmer). The 

protocol used was provided by manufacturer for the Opal™ Fluorophore kit. Staining 

using Opal fluorescent dyes provided strong and specific binding to the antigen and 

enabled multi-labelling on fixed tissue or cells, as re-heating the sample does not affect 

the previously constructed covalent bond between fluorophore and antigen (PerkinElmer 
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Assay development guide booklet). This method allowed visualisation of several different 

markers of interest on a single slide. 

2.10.6.1 Preparation of slides 

Cytospins 

Cytospin slides were prepared in the same way as described above for IHC, with the 

difference in the final washing step, which was performed in distilled water. 

Tissue sections 

Paraffin-embedded sections were de-waxed using xylene (Fisher Scientific) for total of 

30min and re-hydrated by immersing slides in different dilutions of ethanol: 100% ethanol 

for 5min, 95% ethanol for 3min and 70% ethanol for 3min. Sections were washed for 

5min in running distilled water and endogenous peroxidase activity was blocked as 

described above. Slides were washed again for 5min in distilled water. 

2.10.6.2 OpalTM fluorophore staining 

After citric buffer (pH6.0) antigen retrieval, slides were placed on a staining tray and the 

section was marked by PEP-PEN (Dako). Samples were washed with PBST for 5min and 

blocked for 10min in 5x casein blocking solution (Vector Laboratories Ltd) or 1h in 10% 

FBS. Primary antibodies were applied and incubated for the required time (Table 2.5). 

Slides were washed with PBST and ImmPRESS HRP reagent Universal Anti Mouse/Rabbit 

IgG (Vector Laboratories Ltd) secondary antibody was added. After 30min incubation, 

slides were washed in PBST, as described above.  
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For the visualisation step, the chosen fluorophore was optimally diluted in amplification 

diluent (part of OpalTM 3-plex kit; FP1135) (Table 2.6) and incubated on the section, at 

room temperature, in the dark for 10min. Slides were then washed with PBST. 

For multiple labelling, after fluorophore dye application and the first wash in PBST, 

second antigen retrieval step was performed. Slides were boiled again in pre-heated 

(5min on high power) pH 6.0, citric buffer, for 15min at microwave low power, to strip the 

antigen-antibody complex. All the following steps were repeated (as described above), 

making sure that different fluorophore dye (Table 2.6) was used for each primary 

antibody applied.  

As a final step, DAPI (Life Technology) diluted 1:1000 in PBS was applied and incubated for 

5min, followed by 5min wash with PBST. Slides were mounted with a coverslip using 

Vectrashield Hard Set (Vector Laboratories Ltd) mounting medium. Cells were analysed 

with help of  using a Nikon E600 UV 

microscope or Vectra Slide Scanning System. 
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Table 2.6 Fluorophores used for multiplex immunofluorescence staining. 

Fluorophore Company Dilution Conditions 

Cyanine 5 Perkin Elmer 1:400 Diluted in amplification 
diluent (FP1135), part of 
Opal™ Fluorophore kit; 
Incubation for 6min 

Cyanine 3 Perkin Elmer 1:200 Diluted in amplification 
diluent (FP1135), part of 
Opal™ Fluorophore kit; 
Incubation for 10min 

FITC Perkin Elmer 1:200 Diluted in amplification 
diluent (FP1135), part of 
Opal™ Fluorophore kit; 
Incubation for 10min 

DAPI Life Technology 1:1000 Diluted in PBS; 
incubation for 5min 

 

2.10.7 Flow cytometry 

With help of , flow 

cytometry was used to detect DDR1 cell surface expression. 1x106 cells in media were 

transferred to each flow cytometry tube. At the same time, an extra tube for each stain of 

compensation beads (BD Bioscience) was prepared, with 1 drop of relevant anti-species Ig 

and negative control each. Cells were then pelleted by centrifugation at room 

temperature at 1500rpm for 3min. To fully remove the media, cells were re-suspended in 

1ml of 1% v/v FBS/PBS and centrifuged again. The pellets were re-suspended in 100µl of 

1% v/v FBS/PBS with 2µl of each antibody (DDR1-PE, CD20 APC CY7, CD30 PerCP 

(Ebioscience)) and incubated for 20min at 4oC, in the dark. Cells and compensation beads 

were then washed in 1% v/v FBS/PBS and fixed by re-suspension in 1% paraformaldehyde. 

Cells were run through a BD LCR II Cell Analyser (BD Bioscience) and the results were 

analysed using Flowjo software (TreeStar Inc).  
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2.11  Mouse model 

2.11.1 L591, BJAB, A20 xenograft 

Cells were maintained as described in section 2.1.1. Prior to injection, cells were counted 

and seeded to a concentration of 5x105cells/ml. The following day, cells were harvested 

by brief centrifugation at 1700rpm for 5min. Cells were re-suspended in PBS to 3x107 

cells/ml. Immunodeficient NSGTM Mice (The Jackson Laboratory) were injected with 100µl 

of cells (3x106cells/mouse) subcutaneously in the right flank, N=3 mice/cell line (carried 

out by  Mice were monitored weekly and tumours measured as soon as 

they were visible. After 39 days, mice were killed by cervical dislocation and the tumour 

was collected in RPMI-1640. A small portion of the tumour was fixed in 10% formalin for 

further use in immunohistochemistry staining. The rest of the tissue was minced and cells 

were analysed by flow cytometry.  

A20 xenograft samples were a gift of  

2.12 Statistical analysis 

2.12.1 RNA sequencing data analysis from GC B cells 

Statistical analysis of RNA sequencing data from GC B cells transfected with DDR1a and 

EV, was performed by . Sequence reads were 

aligned to hg19 reference sequence using Rsubread aligner (Liao et al., 2013). Mapped 

sequencing reads were assigned to individual genes using featureCounts function. Gene 

symbol and description were obtained from NCBI gene database. The data was then 

normalized using TMM (trimmed mean of M values) method and converted into counts-
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per-million (CPM) reads using the edgeR package (Robinson et al., 2010). edgeR was also 

used for differential expression analysis with criteria: p<0.05  and fold change <1.5. Genes 

with read counts-per-million < 2 in more than three samples were removed. 

2.12.2 Re-analysis of published datasets 

The re-analysis of published RNAseq data and microarray datasets were performed by  

  

RNAseq data of 105 DLBCL cases, among which 32 had been categorised as ABC-type and 

54 as GCB-type DLBCL, were downloaded from the controlled access area of NIH database 

(dbGap; http://www.ncbi.nlm.nih.gov/gap; accession code phs000532.v5.p2) (Morin et 

al., 2011). RNA-seq data for four GC B cell samples were downloaded from Gene 

Expression Omnibus (http://www.ncbi.hlm.nih.gov/geo/; accession GSE45982 – 

GSM1129344, GSM1129345, GSM1129346 and GSM1129347) (Beguelin et al., 2013). 

CPM was generated by using the same methodology as described above.  

The global gene expression microarray data from GSE10846 of 414 DLBCL cases, among 

which 167 were classified as ABC type and 183 as GCB type DLBCL (Lenz et al., 2008b), 

and from GSE12453 for several types of lymphoma, including 11 DLBCL, 12 HL and 10 

normal GC B cells (5 centrocyte and 5 centroblast) (Brune et al., 2008), were downloaded 

from the Gene Expression Omnibus (GEO) website. Data from both datasets were 

normalised using the affy package in R (Bolstad et al., 2003, Irizarry et al., 2003).  

Differential expression analysis was performed using limma (Smyth, 2004) in R. 

 



116 
 

2.12.3 Measurement of aneuploidy index 

Clinical data, level 3 copy number data and level 3 RNA-sequencing (v2) data for the 

DLBCL dataset were downloaded from TCGA’s data portal and analysed by  

 In total there were 48 tumour samples for which 

both copy number and RNA-sequencing data were available. Copy number data were also 

available for 46 matched normal (blood or bone marrow) samples. Segmented copy 

number data based on the hg19 human reference genome were used. For each sample, a 

copy number “index” value was calculated separately for each chromosomal arm, as the 

weighted (by length of segment) average of the copy number values for each segment. 

Total autosomal aneuploidy was then calculated for each sample as the sum across all 

autosomal arms of the absolute value of two minus index value. Allowance for tumour 

purity was made using the “percent_tumor_nuclei” item available in the clinical data. The 

un-normalized gene-level RNA-sequencing data were used. Raw read counts were 

normalized (trimmed mean of M-values method) between samples and converted to 

counts-per-million reads for each gene using the edgeR package in R (Robinson et al., 

2010), as described above. 

2.12.4 Overall survival analysis in DDR1 positive DLBCL 

Clinical data for the DLBCL samples used to determine the overall survival in DDR1 

positive and negative DLBCL were a kind gift of  

These comprised 29 DLBCL cases which after 

scoring were described as DDR1 positive, 46 cases described as DDR1 negative (described 

in Section 2.10.5.4) and 7 cases classified as indeterminate and excluded from further 
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analysis. From DDR1 positive cases, 18 patients and from DDR1 negative cases, 19 

patients didn’t survive first 1000 days from diagnosis. Kaplan-Meier analysis was 

performed by  using survival package in R. 

P value was calculated using log-rank test. 
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3. Investigating the contribution of DDR1 to the pathogenesis of diffuse 

large B cell lymphoma 

3.1 Expression of DDR1 receptor and its ligand collagen in DLBCL  

3.1.1 Over- expression of DDR1 in primary diffuse large B cell lymphoma 

To investigate the expression of DDR1 in DLBCL, with a help of  

, a re-analysis of three datasets that had analysed global gene 

expression in DLBCL was performed (Brune et al., 2008, Lenz et al., 2008b, Morin et al., 

2011). The first analysis was done with the dataset published by Brune et al. This dataset 

consists of microarray analysis of 11 DLBCL (subset unknown), 12 HL and 10 normal GC B 

cells (centrocytes, centroblasts from 5 healthy tonsils) (Brune et al., 2008). This revealed 

that when compared to primary germinal centre B cells (GCB), DDR1 was significantly 

over-expressed in a subset of DLBCL (p=0.01129; Figure 3.1A and raw data provided in 

Appendix 1). To further investigate DDR1 expression, separately in ABC and GCB types of 

DLBCL, I next analysed datasets reported by Morin et al. (Morin et al., 2011) and Lenz et 

al (Lenz et al., 2008b). The Morin dataset was created by analysing gene expression by 

RNA sequencing of 117 tumour samples, which included 32 ABC and 54 GCB type of 

DLBCL. DDR1 expression in cpm in both types of DLBCL was then compared to 4 normal 

GC B cell controls (controls taken from RNAseq results published by Beguelin et al. 

(Beguelin et al., 2013). Lenz et al. published a microarray analysis of 414 newly diagnosed 

DLBCL, among which 167 were classified as ABC type and 183 as GCB type DLBCL. The re-

analysis of both datasets showed statistically significantly higher expression of DDR1 in 
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GCB type, in comparison to ABC type of DLBCL (Morin p=0.00083, Lenz p=0.00008431) 

(Figure 3.1B and 3.1C; raw data in Appendix 2 and 3). 

I next used Fluidigm®48.48 Fast Real Time PCR (as described in Materials and Methods, 

section 2.9.6) to study the expression of DDR1 mRNA in a separate cohort of DLBCL, 

provided by   

This analysis revealed that, 20/44 DLBCL samples had significantly higher levels of DDR1 

compared with normal GC B cells (Figure 3.1D, raw data in Appendix 4). 
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Figure 3.1 Over-expression of DDR1 in diffuse large B cell lymphoma. 
A) Re-analysis of datasets reporting global gene expression in DLBCL and normal GC B cells revealed that when 
compared to primary germinal centre B cells, DDR1 mRNA was significantly over-expressed in a subset of DLBCL, 
including cases of both ABC and GC type (p=0.02011). Comparison of DDR1 expression in a series of DLBCL reported by 
B) Morin and C) Lenz separately, reveals that DDR1 expression is significantly higher in GCB type, when compared to 
ABC type DLBCL (Lenz p=0.00008431; Morin p=0.01782) D) qRT-PCR confirms the over-expression of DDR1 mRNA in a 
separate cohort of DLBCL. 20/44 DLBCL samples showed significantly higher levels of DDR1 compared with normal GC B 
cells. Students T test, where red bars indicates significant up-regulation of DDR1 (p≤0.05). 
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To study DDR1 protein expression, I next performed immunohistochemistry on primary 

DLBCL. To do this, I first confirmed the specificity of a rabbit monoclonal antibody to 

DDR1 (D1G6) XP® (Cell Signaling). I used the DG75 Burkitt lymphoma cell line, which 

expresses very low endogenous levels of DDR1. I transfected DG75 cells with DDR1a 

plasmid or with empty vector (EV) as a control (Materials and Methods section 2.4). Both 

immunohistochemistry and immunoblotting, showed specific detection of DDR1 in 

transfected cells, in comparison to EV control (Figure 3.2A and 3.2B). As a last level of 

confirmation, I performed immunofluorescent staining on primary HL, which is already 

known to express high levels of DDR1 in HRS cells (Cader et al, 2013). My results 

confirmed high DDR1 expression in tumour cells, in comparison to DDR1 negative GC cells 

in tonsil control (Figure 3.2C).  
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Figure 3.2. Validation of DDR1 antibody. 
A) Immunohistochemistry shows DDR1 staining in DG75 cell line, transfected with DDR1 or EV as a control, using 
rabbit monoclonal DDR1 (D1G6) XP® antibody (Cell Signaling). B) Immunoblotting confirming DDR1 expression in 
DDR1 expressing DG75 cells (MW of protein 125kDa). Equal loading of the protein is shown using β-actin antibody 
(MW of protein 45kDa).  
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Figure 3.2C. Immunofluorescent staining with DDR1 antibody in primary HL (top panels) shows expression 
of DDR1 in HRS cells (DDR1+CD30+; marked with arrows, bottom left panel), in contrast to germinal centre 
negative control (bottom right panel). GC- germinal centre. 

DDR1 CD30 

DDR1/DAPI/CD30 DDR1/DAPI 

GC 

HL HL 

HL Tonsil 

C 



125 
 

Having confirmed the specificity of the DDR1 antibody, I tested a separate cohort of 75 

cases of DLBCL by immunohistochemistry. Stained sections were analysed under the 

microscope and scored by . DDR1 

expression was recorded as positive if >=25% of cells were positive for DDR1 marker. In 

contrast to normal GC B cells which did not express detectable DDR1, 29/75 cases of 

DLBCL showed DDR1 expression in tumour cells (Figure 3.2D). Data was already available 

on those cases for BCL6, CD10 and IRF4 staining and the Hans algorithm had been used to 

defined each case as either GC or non-GC type (Hans et al., 2004). 20/29 DDR1 positive 

DLBCL were of ABC type and 9/29 of GCB type.  

I next examined the impact of DDR1 expression on survival in this cohort (statistical 

analysis performed by ). DDR1 positive cases appear to have worse 

survival; however this was not statistically significant (Figure 3.3). I conclude that DDR1 is 

over-expressed in a subset of DLBCL, which includes cases of both GC and ABC type 

DLBCL. 
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Figure 3.2D DDR1 expression in diffuse large B cell lymphoma. 
Immunohistochemistry shows representative examples of DDR1 staining in normal tonsil (two top 
panels) and four representative cases of DLBCL showing tumour cell expression (bottom panels). GC- 
germinal centre, EP - tonsillar epithelial cells. GC B cells did not stain for DDR1. DDR1-positive tumour 
cells are arrowed.  
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Figure 3.3 Overall survivals in DDR1 positive and negative DLBCL patients. 
Kaplan-Meier plot is showing overall survival in patients with DLBCL in first 1000 days from diagnosis. 
Although not statistically significant (p=0.05832), DDR1 positive cases (red) appear to have worse 
survival in comparison to DDR1 negative (blue) cases. 
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3.1.2 DDR1-expressing DLBCL are enriched for the expression of collagen genes 

To explore the relationship between DDR1 expression and that of its collagen ligands in 

DLBCL, I next interrogated a meta-analysis of 11 DLBCL gene expression datasets 

comprising over 2000 cases of DLBCL, data provided by  

 (Care et al., 2015). For each data set, the variance for each gene was used to order 

them by patient sample and Spearman’s rank correlations compared to that of DDR1 

were calculated from the top 80% of the genes. The correlation matrices and p values 

were merged across all datasets using median values. A DDR1-correlated gene set was 

created by taking all genes present in at least six datasets with a median p<0.05. This 

meta-analysis revealed that the expression of 1446 unique genes was positively 

correlated, and that of 1295 unique genes negatively correlated, with DDR1 expression in 

primary DLBCL. I then compared these gene sets to a list of all known collagen genes 

(source: http://www.genenames.org /genefamilies/COLLAGEN) (46 genes; Appendix 5). 

This analysis showed that collagen genes were significantly enriched among genes that 

were positively correlated with DDR1 expression in primary DLBCL (odds ratio=5.69; 

p<0.0001), and depleted among genes negatively correlated with DDR1, although this did 

not reach statistical significance (odds ratio= 0; p=0.075) (Figure 3.4A). I noted that 

collagen genes enriched among genes positively correlated with DDR1 in DLBCL included 

a number of subunits of type VI collagen, including COL6A1, COL6A2, COL6A3, and 

COL6A5. Immunohistochemistry of normal lymphoid tissues and the same cohorts of 

DLBCL described above revealed that while normal germinal centre B cells lacked type VI 

collagen, all 22 DDR1-expressing DLBCL as well as 10 DDR1 negative DLBCL cases, showed 

a prominent deposition of type VI collagen surrounding tumour cells (Figure 3.4B).  
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I confirmed the co-expression of DDR1 and type VI collagen in tonsil and in two cases of 

DDR1 positive DLBCL by multiplex immunofluorescent staining (Figure 3.4C and 3.4D). 

These observations suggest that DDR1 and collagen are expressed in close proximity in 

DLBCL.  
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Figure 3.4 DDR1-expressing DLBCL are enriched for the expression of collagen genes. 
A) A meta-analysis of 11 DLBCL gene expression datasets comprising over 2000 cases of DLBCL revealed that 
collagen genes were significantly enriched among those genes that were positively correlated (left panel; 
p<0.0001), and depleted among those genes that were negatively correlated (right panel; p value=0.08), with DDR1 
in primary DLBCL. Collagen genes enriched among genes positively correlated with DDR1 included COL6A1, COL6A2, 
COL6A3, and COL6A5 (red box). B) Representative examples of staining for type VI collagen in tonsil (left upper 
panel) and primary DLBCL. Type VI collagen was mostly absent from normal germinal centres (GC), whereas DDR1-
expressing primary DLBCL displayed prominent type VI collagen deposition surrounding tumour cells (T).  
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Figure 3.4C Multiplex immunofluorescence staining with DDR1, COL6 and CD20 in tonsil control. EP- 
epithelium, GC – germinal centre. 
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Figure 3.4D Multiplex immunofluorescence confirmed that DDR1-expressing tumour cells (CD20 positive) 
were intimately associated with stromal type VI collagen in DLBCL (marked by arrows). T- tumour cells. 
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3.2 Genes negatively correlated with DDR1 expression in DLBCL are enriched for mitotic 

spindle associated genes 

Next, using an online gene functional classification tool, DAVID 

(https://david.ncifcrf.gov/)(Dennis et al., 2003), I performed an ontology analysis of the 

genes whose expression was either positively or negatively correlated with that of DDR1 

in primary DLBCL. I found that genes positively correlated with DDR1 expression in DLBCL 

were significantly enriched for the GO terms ‘collagen catabolic process’, ‘collagen 

metabolic process’ and ‘wound healing’ as well as ‘regulation of apoptosis’ and ‘cell 

migration’ reflecting the known functions of DDR1 (Figure 3.5A). On the other hand, 

genes negatively correlated with DDR1 were enriched for GO terms associated with the 

regulation of mitotic integrity, including ‘mitotic spindle organisation’ and ‘mitotic sister 

chromatid segregation’ (Figure 3.5B). 
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Figure 3.5 Genes negatively correlated with DDR1 expression in DLBCL are enriched for mitotic spindle 
associated genes. 
A) Selected GO terms from the ontology analysis of genes positively correlated with DDR1 expression in 
DLBCL included ‘collagen catabolic process’, ‘collagen metabolic process’ and ‘wound healing’ as well as 
‘regulation of apoptosis’ and ‘cell migration’, reflecting known DDR1 functions. B) Selected GO terms from 
the ontology analysis of genes negatively correlated with DDR1 expression in DLBCL included ‘chromosome 
organisation’, ‘mitotic sister chromatid segregation’, and ‘chromosome segregation’. Red asterisks shows GO 
terms associated with mitotic spindle functions. 
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To further explore the possibility that genes with mitotic spindle functions might be 

down-regulated in DDR1-expressing DLBCL, I used a comprehensive list of 513 ‘mitotic 

spindle associated’ genes that was compiled by our group (Ramagiri et al., manuscript in 

preparation), which included those classified under the GO terms listed above, as well as 

those that had been identified in an unbiased Pubmed search using the search term 

‘mitotic spindle’. I found a significant enrichment of ‘mitotic spindle associated’ genes 

among genes negatively correlated with DDR1 expression in DLBCL (odds ratio=3.67; 

p<0.0001; Figure 5C upper panel), and a significant depletion among those positively 

correlated with DDR1 (odds ratio=0.43; p=0.0015; not shown). I also used a 

comprehensive mitotic spindle checkpoint signature comprising 103 genes which 

included those classified under the GO term ‘GO:0031577’ (Ramagiri et al., manuscript in 

preparation). I found a significant enrichment of ‘mitotic spindle checkpoint’ genes 

among genes negatively correlated (odds ratio=7.03; p<0.0001; Figure 3.5C, lower panel), 

but not among those positively correlated (odds ratio=1.35; p=0.245; not shown), with 

DDR1 expression. I conclude that genes negatively correlated with DDR1 expression in 

DLBCL are enriched for mitotic spindle associated genes. 
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Figure 3.5C: Using a comprehensive list of 513 ‘mitotic spindle associated’ genes which included those 
classified under the GO terms listed above, as well as those identified in an unbiased Pubmed search using 
the search term ‘mitotic spindle’, I found that 463 of these genes were also on the human genome build 
used to derive the genes sets positively and negatively correlated with DDR1 in DLBCL. I found a significant 
enrichment of ‘mitotic spindle associated’ genes among genes negatively correlated with DDR1 expression 
in DLBCL (odds ratio=3.67; p<0.0001; upper panel), and a significant depletion among those positively 
correlated with DDR1 (odds ratio=0.43; p=0.0015; not shown). I also used a comprehensive mitotic spindle 
checkpoint signature, comprising 103 genes which included those classified under the GO term 
‘GO:0031577’, as well as those reported by Bieche et al., and those identified in an unbiased Pubmed 
search using the search term ‘mitotic spindle checkpoint’. 90 of these genes were also on the human 
genome build used to derive the genes sets positively and negatively correlated with DDR1 in DLBCL. I 
found a significant enrichment of ‘mitotic spindle checkpoint’ genes among genes negatively correlated 
(odds ratio=7.03; p<0.0001; lower panel), but not among those positively correlated (odds ratio=1.35; 
p=0.245; not shown), with DDR1 expression. 

C 
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3.3 DDR1 expression correlates with aneuploidy in primary DLBCL 

Given that the loss or reduced expression of mitotic spindle associated genes contributes 

to aneuploidy, I next explored if DDR1 expression was directly associated with aneuploidy 

in DLBCL. To do this I first utilized a gene set known as TRI70, which contains 50 genes 

that display the strongest absolute negative correlation with aneuploidy in trisomic MEFs 

(Sheltzer, 2013) (Appendix 6A). I found that 25/50 genes from TRI70 aneuploidy 

signature, were also negatively correlated with DDR1 in DLBCL. This represents significant 

enrichment (p<.0001; odds ratio=7.92; Figure 3.6A, left panel). No genes from TRI70 

aneuploidy signature were found among genes positively correlated with DDR1 in DLBCL; 

this represent a significant depletion (p=0.037; odds ratio=0, Figure 3.6A right panel). 

Next, I used a second aneuploidy signature, referred to as HET70, which consists of the 

genes displaying the strongest positive correlation with karyotype heterogeneity in the 

NCI60 panel of cell lines (Sheltzer, 2013) (Appendix 6B). 17/65 HET70 genes were 

significantly enriched among genes positively correlated with DDR1 (p<.0001; odds 

ratio=3.74; Figure 3.6B right panel), but not among those negatively correlated (p=0.22; 

odds ratio=0.51; Figure 3.6B left panel), with DDR1. To further confirm this association, I 

used a third transcriptional signature derived from multiple aneuploid vs. diploid datasets 

(Duerrbaum et al., 2014). I found that genes up-regulated in the Core aneuploidy 

signature were significantly enriched among genes positively correlated with DDR1 

(p=0.0061; odds ratio=4.04; Figure 3.6C, left panel), but not among those negatively 

correlated (p= 0.15; odds ratio=0; Figure 3.6C, right panel), with DDR1. Finally, total 

autosomal aneuploidy was measured by  

, in a cohort of 48 DLBCL samples available from the TCGA for which both copy 
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number and RNA-sequencing data were available. For each sample, a copy number 

“index” value was calculated separately for each chromosomal arm, as the weighted (by 

length of segment) average of the copy number values for each segment. Total autosomal 

aneuploidy was then calculated for each sample as the sum across all autosomal arms of 

the absolute value of two minus index value. Allowance for tumour purity was made 

using the “percent_tumor_nuclei” item available in the clinical data. A statistically 

significant positive correlation was found between the aneuploidy index and DDR1 

expression in this cohort (Pearson correlation coefficient: r=0.33, p=0.023; Figure 3.6D). 

Taken together these data show that DDR1 expression is associated with aneuploidy in 

primary DLBCL. 
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Figure 3.6 DDR1 expression correlates with aneuploidy in primary DLBCL.  
A) Genes negatively correlated with DDR1 expression in DLBCL were enriched among genes negatively 
correlated with aneuploidy in the TRI70 signature (p<0.0001; odds ratio=7.92; left panel), and significantly 
depleted among genes positively correlated with DDR1 in DLBCL (p=0.037; odds ratio=0; right panel). B) 
Genes positively correlated with DDR1 in DLBCL were enriched among those displaying the strongest positive 
correlation with karyotype heterogeneity in the NCI60 panel of cell lines (HET70 signature) (p<.0001; odds 
ratio=3.74; right panel), but not among those negatively correlated (p=0.22; odds ratio=0.51; left panel), with 
DDR1. C) Genes positively correlated with DDR1 in DLBCL were also enriched among those genes up-
regulated in a core aneuploidy signature derived from multiple aneuploid vs. diploid datasets (p=0.006; odds 
ratio=4.04). D) Total autosomal aneuploidy is positively correlated with DDR1 expression in primary DLBCL 
(Pearson correlation coefficient: r=0.33, p=0.023). 
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3.4 Regulation of lymphoma-associated genes by DDR1 in primary and transformed GC 

B cells 

Given that DDR1 is a receptor tyrosine kinase that can engage multiple cell signalling 

pathway to regulate cellular gene expression, I next focused on the possibility that DDR1 

might induce an aneuploidy phenotype through one or more of its transcriptional targets. 

3.4.1 Optimization of conditions for the transfection and analysis of DDR1-transfected 

primary GC B cells 

To identify the transcriptional targets of DDR1 relevant to lymphoma development, I used 

primary GC B cells, the presumed progenitors of DLBCL, isolated from fresh paediatric 

tonsils. To isolate GC B cells I used a method which was already optimized in our group by 

 (Vockerodt et al., 2008). With help from , I next 

optimized the protocol for the transfection of isolated primary human germinal centre B 

cells with DDR1. First, I transfected freshly isolated GCB cells with 10µg of pIRES2-EGFP 

with DDR1a insert and with pIRES2-EGFP plasmid as a control (EV), using Human B Cell 

Nucleofector® Kit (Lonza). Next, I wanted to determine the time point at which I obtained 

maximum DDR1 expression. I tested different time points post-transfection (8, 10, 12 and 

16 hours of incubation). Immunoblotting revealed maximal DDR1 protein expression 8 

hours after transfection (Figure 3.7). I then used flow cytometry to study DDR1 expression 

in transfected cells. My results showed that, by using nucleofection as a method of 

transfection and 8 hours post-transfection cells incubation, I was able to obtain around 

30% of live cells, from which around 14% was successfully transfected. 12 hours of 

incubation reduced number of live cells by half (Figure 3.8A and 3.8B). 
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Figure 3.7 Optimization of the time of post-transfection of GCB cells. 
GC B cells transfected by nucleofection with DDR1a and EV as a control were harvested 8, 10, 12 and 
16 hours after transfection. Immunoblotting showed the DDR1 expression at 8 hours. β-actin 
confirmed equal loading of the samples. Data shown is representative of two independent 
experiments from two different donors. 



142 
 

 

 

 

 

Figure 3.8 Optimization of the method of GC B cells transfection.  
GC B cells transfected by nucleofection with DDR1a (bottom panels) and EV (top panels) as a control. 8 and 
12h after transfection cells were tested by flow cytometry, based on inserted GFP marker. A) The results 
revealed that after 8 hours, around 30% of cells survives the process of transfection (36.8% for EV and 

26.5% for DDR1; left panels, red circle), from which 10.7% for EV and 18.8% for DDR1(CD10
+

GFP
+

; right 
panels, red circle), were successfully transfected with pIRES2-EGFP plasmid with DDR1a insert or without, 
as a control (EV - empty vector). B) After 12 hours of incubation the number of life cells were reduced by 
half: 18.3% for EV and 12.8% for DDR1 (left panels, red circle), when compared to 8 hours  time point. Data 
shown are representative from two independent experiments.  
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3.4.2 Optimization of collagen stimulation of DDR1 transfected GC B cells 

To activate the DDR1 receptor in primary GC B cells, I used soluble collagen type I, which 

was already shown to activate DDR1 in cell lines (Cader et al., 2013). I stimulated cells 

transfected either with DDR1 or EV as a control with 100µg/ml collagen (as described by 

Cader et al., 2013) for 4 and 8 hours. With the help of , I checked cell 

viability by flow cytometry. This showed higher number of alive transfected cells after 4h 

of stimulation, in comparison to the other tested time point. These results were 

confirmed by measurement of RNA on a Bioanalyzer; RNA quality was the highest in tonsil 

samples after 4h stimulation (Appendix 7). 

3.4.3 Identification of DDR1 target genes in primary GC B cells 

Having successfully optimized the transfection of GC B cells and their stimulation with 

collagen, I prepared three replicates of GC B cells (from three different donors), 

transfected with DDR1 or EV for 8 hours, followed by collagen stimulation for 4 hours 

(Materials and Methods Sections 2.4.1.1 and 2.5). Cells were then flow sorted as 

described in Materials and Methods (Sections 2.6).  

Due to low number of cells after transfection and sorting, I amplified extracted RNA using 

NuGEN Ovation® RNA-Seq system V2 kit (NuGEN Ltd) (Figure 3.9B). Having confirmed the 

expression of DDR1 in transfected GC B cells by qPCR and immunoblotting (Figure 3.9A), I 

used RNAseq (performed by Edinburgh Genomics, UK), to measure cellular gene 

expression in DDR1-expressed or control primary GC B cells treated with collagen. After 

quality checks and successful library preparation, samples were sequenced using Illumina 

HiSeq 4000 HO 125 base paired end platform. 
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Figure 3.9 Summary of data from GC B cells transfected with DDR1 or EV and harvested for RNAseq 
analysis. 
A) DDR1 expression in transfected cells was confirmed by qRT-PCR (left panel) and immunoblotting (right 
panel). Data shown (T24) are representative of the three donors used. B) Table presents information from 
cell sorting, RNA concentration and post-amplified cDNA concentration of GC B cells isolated from three 
separate donors (T20,T22,T24) and transfected with DDR1a or EV (empty vector). Samples were sent for 
RNAseq.  
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RNAseq raw data, received from Edinburgh Genomics, was analyzed by  

Data was aligned to the human hg19 reference sequence using Rsubread aligner. Mapped 

sequencing reads were assigned to hg19 refGene using featureCounts. Genes with read 

counts < 2 in more than three samples were removed. The data were normalized using 

TMM (trimmed mean of M values) method. Differentially expressed cellular genes were 

identified using edgeR and DDR1 targets were identified by comparing DDR1 transfected 

versus EV transfected germinal centre B cells with the criteria of absolute fold change > 

1.5 and p value < 0.05. I found that compared to control cells, collagen stimulation of 

DDR1-expressing GC B cells was followed by the up-regulation of 400 unique genes (raw 

data available on request) and by the down-regulation of 260 unique genes (raw data 

available on request).  

Analysis of the DDR1a sequence in RNAseq confirmed that the ectopically expressed 

DDR1a was a wild type (performed by ). 

3.4.4 Validation of DDR1 target genes. 

I next compared the lists of genes generated by RNAseq with the lists of genes correlated 

with DDR1 in DLBCL (Care et al., 2015) for up-regulated and down-regulated genes 

separately (gene list generated as described in Results section 3.4.3). I found that genes 

positively correlated with DDR1 in DLBCL, were significantly enriched in the group of 

genes up-regulated by collagen treatment of DDR1-expressing GC B cells (45 genes, 

p<0.001; odds ratio=2.1) (Figure 3.10, top panel). However, I did not observe an 

enrichment of genes negatively correlated with DDR1 among genes down-regulated by 

DDR1 in GC B cells. Rather, the overlap was only 6 genes which represent a significant 
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depletion (p=0.04; odds ratio=0.44) (Figure 3.10, bottom panel).  Note: downregulated 

genes include CENPE (see later). 
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Figure 3.10 Overlap between genes correlated with DDR1 in DLBCL and differentially expressed 
following collagen stimulation of DDR1-expressing GC B cells.  
A) Overlap between genes positively correlated with DDR1 in DLBCL and genes upregulated by 
DDR1 in GC B cells transfected with DDR1. B) Overlap between genes negatively correlated with 
DDR1 and downregulated by DDR1 in GC B cells. 
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To select genes for validation, I then compared the expression of the 45 up-regulated 

genes found in the RNAseq data from transformed GC B, with two other DLBCL datasets, 

reported by Morin et al. (Morin et al., 2011) and Brune et al (Brune et al., 2008). This 

analysis revealed 21 up-regulated genes (including DDR1) that were common between 

those DLBCL databases and these were selected for further validation. The list of 8 down-

regulated genes for validation was also created based on genes in common across the 

DLBCL databases and according to the strongest down-regulation in GC B cells transfected 

with DDR1 (based on fold change; Table 3.1).   
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Table 3.1 DDR1 target genes selected for validation by Fluidigm®48.48 Fast Real Time PCR.   
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To validate the differential expression of selected DDR1 targets in collagen-treated DDR1 

or empty vector-transfected primary GC B cells I used Fluidigm®48.48 Fast Real Time PCR. 

This method allows high throughput quantification of target genes combining 48 samples 

and 48 assays into 2304 parallel PCR reactions. What is more, it requires only 1.25µl of 

cDNA per sample. Samples were loaded onto a plate in triplicate and analyzed for all 29 

target genes and 5 different ‘housekeeping’ genes at the same time. To choose the 

correct endogenous control, results from 5 ‘housekeeping’ genes were analyzed. My 

initial panel of housekeeping genes included GAPDH, β2M, PGK1, TBP, HPRT1. I excluded 

β2M from the analysis of primary DLBCL samples, as it is known to be mutated in a subset 

of DLBCL (Challa-Malladi et al., 2011, Morin et al., 2011). Next, I analyzed the 4 remaining 

housekeeping genes according to the level of expression and variability in replicates of 

samples. This analysis revealed that PGK1 showed the least variation and the highest 

consistency in between samples. Results were analyzed as described in Materials and 

Methods, section 2.9.7, using the delta-delta (ΔΔ) Ct method in which the relative levels 

of transcripts are normalized against the PGK1 endogenous control.  

DDR1 expression in GC B cells transfected with DDR1 or EV was confirmed (Figure 3.11). 

14/28 of the target genes were validated in at least 2 out of 3 replicates (Figure 3.12, left 

panels), including 7/20 genes up-regulated by DDR1 (Figure 3.12A, left panel) and 7/8 

genes down-regulated by DDR1 (Figure 3.12B, left panel). Data for genes not validated are 

presented in Appendix 8. 

I next investigated the expression of these target genes in primary DLBCL, analyzing 44 

different DLBCL samples for all 28 target genes (Figure 3.12A and 3.12B, right panels).  
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Figure 3.11 DDR1 expression in primary GC B cells transfected with DDR1a and EV as a control, in 3 
separate donors. 
DDR1 expression in transfected cells was confirmed by qRT-PCR. Data shown are from three 
separate donors.  
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Figure 3.12A Analysis of the expression of genes up-regulated in collagen-treated DDR1 compared with 
empty vector-transfected primary GC B cells and in primary DLBCL versus normal GC B cells. 
Differential expression of genes upregulated in DDR1a expressing GC B cells, compared to EV-transfected GC 
B cells is shown in the left panels. Right panels show expression of those genes in DLBCL vs normal GC B. 
Significant upregulation is marked by red colour. 
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Figure 3.12B Analysis of the expression of genes down-regulated in collagen-treated DDR1 compared with 
empty vector-transfected primary GC B cells and in primary DLBCL versus normal GC B cells. 
Differential expression of genes down regulated in DDR1a expressing GC B cells, compared to EV-transfected 
GC B cells is shown in the left panels. Right panels show expression of those genes in DLBCL vs normal GC B. 
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3.4.5 Validation of DDR1 target genes in lymphoma cell lines and the establishment of 

cell line model for in vivo and in vitro studies 

Having shown the differential expression of DDR1 target genes in primary DLBCL, I next 

wanted to measure the expression of these genes in lymphoma cell lines and establish a 

cell line model suitable for future testing of DDR1 inhibitors and in vivo studies.  

To do this, I first investigated the expression of DDR1 in HL and DLBCL cell lines by qRT-

PCR and immunoblotting. As DDR1 expression in HL was already reported by Cader et al 

(Cader et al., 2013), I enclosed those cell lines in my study as a positive control. This 

analysis showed that DDR1 mRNA is expressed in all DLBCL cell lines tested but levels 

were generally not higher than in GC B cells. However, the level of endogenous DDR1 

expression in HL cell line is much higher than in GC B cells and tested DLBCL cell lines 

(Figure 3.13A and B). 

 I first used BJAB cells, a DDR1-negative GC DLBCL line. I tested the optimum 

concentration of collagen required for DDR1 activation, based on the results already 

published by Cader et al. on HL cell lines (Cader et al, 2013). I found that 100µg/ml of 

soluble collagen type I for 1h was sufficient for the activation of DDR1 (Figure 3.14A).  

I then transfected with DDR1a another cell line - DG75 and used L591 cells which 

endogenously express DDR1. I found that 1h of 100µg/ml collagen induced the robust 

phosphorylation of DDR1 (Figure 3.14B and C). 
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Figure 3.13 DDR1 expression in HL and DLBCL cell lines. 
A) DDR1 expression in one HL and 6 DLBCL cell lines was shown by qRT-PCR in comparison to three normal 
GC B cell samples. B) Immunoblotting results of endogenous expression of DDR1 in HL and DLBCL cell 
lines, detected by specific DDR1 antibody (MW=125kDa). β-actin in HL and β-tubulin in DLBCL, confirmed 
equal loading of the sample. Data shown are representative of three independent experiments.  
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Figure 3.14A Optimisation of the collagen concentration for DDR1 activation.  
A) Immunoblotting results of endogenous expression of DDR1 in BJAB cell line transfected with DDR1a 
and receptor phosphorylation after collagen stimulation, with detectable band after 50, 100 and 
150µg/ml collagen concentration, in comparison non-stimulated control (MW=125kDa). β-actin 
confirmed equal loading of the sample. Data shown are representative of two independent experiments.  

A 
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Figure 3.14B and C. DDR1 expression and phosphorylation after collagen stimulation in HL and DLBCL 
cell lines. 
B) Immunoblotting results of endogenous expression of DDR1 in HL L591 cell line and receptor 
phosphorylation after collagen stimulation, with detectable band after 1 hour in comparison to 0.5% 
acetic acid control (MW=125kDa). C) Immunoblotting results of DDR1 expression and phosphorylation 
status after activation of DDR1 by collagen in DG75 and BJAB cell lines transfected with DDR1a and EV as a 
control. One hour DDR1 stimulation by collagen resulted in its activation. β-actin confirmed equal loading 
of the sample. Data shown are representative of three independent experiments.  

B 
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I next analysed the expression of DDR1 target genes in these three collagen-stimulated 

cell lines, at four time points: 1h, 2h, 4h and 6h, using the Fluidigm®48.48 Fast Real Time 

PCR for all 21 up-regulated (Figure 3.15C) and 8 down-regulated (Figure 3.16B) DDR1 

target genes. The 5 different ‘housekeeping genes’ (GAPDH, β2M, PGK1, TBP, and HPRT1) 

were included. For L591 cells the data was normalized against HPRT1, and for DG75 and 

BJAB cell lines GAPDH appeared to be the best endogenous control. DDR1 expression was 

confirmed by qRT-PCR (Figure 3.15A). Genes with the relative expression >1.1 were 

classified as up-regulated and with relative expression <0.9 as down-regulated, in 

comparison to EV (for BJAB and DG75) or 0.5% acetic acid (for L591) control which had a 

normalised value of 1. This analysis revealed differences in the regulation of DDR1 target 

genes expression between cell lines at different time points. After 1h collagen 

stimulation, 3 genes: SYTL4, UNC5B and ADAM12, were up-regulated (Figure 3.15B) and 4 

genes: CENPE, GCSAM, SRSF4 and KLHL15 were down-regulated in all three lines (Figure 

3.16A).  
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Figure 3.15A DDR1 expression in cell lines treated with collagen.  
DDR1 expression in L591, Hodgkin lymphoma cell line – endogenous level of DDR1, and in two 
DDR1a and EV control transfected cell lines: BJAB, DLBCL cell line and DG75, Burkitt lymphoma cell 
line, after collagen stimulation for 1, 2, 4 and 6 hours. L591 cells were treated with 0.5% acetic acid 
as a control. 

A 



162 
 

 

 

 

 

 

 

 

B 

Figure 3.15B Summary of the analysis of the expression of genes up-regulated in collagen-treated cell 
lines.  
Table presents the summary of genes upregulated (relative expression calculated using ΔΔCt method 
>1.1) in all three tested cell lines after 1, 2, 4 and 6 hours of collagen stimulation. After 1 hour of 
collagen treatment the highest number of genes were up regulated in all 3 cell lines (3 genes), when 
compared with other time points.  
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Figure 3.15C Analysis of the expression of genes up-regulated in collagen-treated cell lines.  
Differential expression of genes up-regulated in DDR1-expressing cell lines, after 1h collagen stimulation. 
L591, Hodgkin lymphoma cell line, endogenously expressing DDR1 and two DDR1a and EV control, 
transfected cell lines: BJAB, DLBCL cell lines and DG75, Burkitt lymphoma cell line. L591 cells were treated 
with 0.5% acetic acid as a control. 
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Figure 3.16A Summary of the analysis of the expression of genes down-regulated in collagen-treated cell 
lines.  
Table presents the summary of genes down regulated (relative expression calculated using ΔΔCt method 
<0.95) in all three tested cell lines after 1, 2, 4 and 6 hours of collagen stimulation. After 1 hour of collagen 
treatment there were found 2 genes down regulated in all 3 cell lines: GCSAM and CENPE, when compared 
with other time points.  
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Figure 3.16B Analysis of the expression of genes down-regulated in collagen-treated cell lines.  
Differential expression of genes down regulated in DDR1 expressing cell lines after 1h collagen 
stimulation. L591, Hodgkin lymphoma cell line, endogenously expressing DDR1 and two DDR1a and EV 
control, transfected cell lines: BJAB, DLBCL cell lines and DG75, Burkitt lymphoma cell line. L591 cells 
were treated with 0.5% acetic acid as a control. Students T test where * indicates p≤0.05, ** p≤0.01 and 
*** p≤0.001. 
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3.5 CENPE is down-regulated in primary DLBCL and transformed GC B cells 

I decided to focused on CENPE which was down-regulated by collagen treatment of 

DDR1-expressing GC B cells, compared to control cells (fold change=-2.31; p value=0.032). 

Moreover, as I showed earlier during the re-analysis of existing datasets, CENPE was 

among the genes negatively correlated with DDR1 in DLBCL and down-regulated by DDR1 

in DLBCL cell lines. CENPE was also of particular interest because it has been shown to be 

essential for the proper functioning of the mitotic checkpoint signal at individual 

kinetochores and because reduced expression of CENPE has been shown to induce 

aneuploidy (Bennett et al., 2015).  

I next analysed the two previously described aneuploidy signatures, TRI70 and HET70 

(described in Section 3.2.3). CENPE was the only DDR1-regulated gene among genes that 

were negatively correlated with the TRI70 aneuploidy signature (p=0.46, odds ratio=2.05, 

Figure 3.17A, left panel). From the second analysed aneuploidy signature HET70, 1/70 

genes was negatively correlated with DDR1 (p=0.7, odd ratio=0.14, Figure 3.17B left 

panel) and 3/70 HET70 genes were positively correlated with DDR1 in transformed GC B 

cells (p=0.057, odd ratio=2.93, Figure 3.17B right panel), however CENPE was not among 

them. 
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Figure 3.17 DDR1 expression correlates with aneuploidy in primary DDR1- expressing GC B cells.  
A) CENPE was the only gene among genes negatively correlated with TRI70 aneuploidy signature that 
was negatively correlated with DDR1 in transformed GC B cells (p=0.46, odds ratio=2.05, left panel). 
No genes in common were found in between genes positively correlated with DDR1 in transfected GC 
B cells and genes negatively correlated with TRI70 aneuploidy signature (p=0.38; odds ratio=0; right 
panel). B) Genes positively correlated with DDR1 in transfected GC B cells, were enriched among 
those displaying the strongest positive correlation with karyotype heterogeneity in the NCI60 panel 
of cell lines (HET70 signature) (p<.0001; odds ratio=3.74; right panel), but not among those negatively 
correlated (p=0.7; odds ratio=0.14; left panel), with DDR1. This was not statistically significant. 
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With help of bioinformatician, , the existing 

DLBCL database published by Morin et al. was re-analyzed (Morin et al., 2011), to 

investigate the expression of CENPE in primary cases of ABC and GCB type of DLBCL. The 

re-analysis of this dataset showed statistically significantly lower expression of CENPE in 

GCB type, in comparison to ABC type of DLBCL (p=0.04712). Those results also suggest the 

possible down-regulation of CENPE in both types of DLBCL, when compared with 4 

normal GC B cells [(Beguelin et al., 2013); GSE45982], however this change appeared to 

be not statistically significant (ABC vs normal p=0.09851; GCB vs normal p=0.07006) 

(Figure 3.18A).  

I used qRT-PCR to investigate CENPE mRNA expression in collagen treated DDR1-

expressing GC B cells and a cohort of 44 primary DLBCL. This analysis showed that CENPE 

expression was decreased in three out of four transformed GC B cells (Figure 3.18B), and 

in 42/44 tested primary DLBCL, compared to primary GC B cells (Figure 3.18C).  
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Figure 3.18 Down - regulation of CENPE in diffuse large B cell lymphoma. 
A) Morin reveals that CENPE expression is significantly down-regulated in GCB type, when 
compared to ABC type DLBCL (p=0.04712) B) qRT-PCR confirms the down-regulation of CENPE 
mRNA in three out of four collagen treated DDR1a-expressing GC B cells, in comparison to EV 
control and C) in a separate cohort of DLBCL, when compared with normal GC B cells. Students T 
test, where green bars indicates significant down-regulation of CENPE. 
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Having shown downregulation of CENPE mRNA in primary DDR1-expressing GC B cells and 

DLBCL by qRT-PCR, I next performed immunohistochemistry on primary DLBCL sections. 

To do this, I first validated the specificity of CENPE antibody. I tested several lymphoma 

cell lines for their endogenous expression of CENPE using qRT-PCR and immunoblotting 

(Figure 3.19A and B). I next validated an antibody against CENPE, by knocking down 

CENPE gene expression in the DG75 cell line, which had detectable levels of endogenous 

CENPE expression at both the RNA and protein level. To do this, I transfected DG75 cells 

with CENPE Silencer® Select Validated siRNA (Ambion) (Materials and Methods section 

1.4.1.2) and checked protein expression by immunoblotting. Results showed specific 

detection of CENPE in DG75 transfected with Negative Control Silencer® Select #1 siRNA, 

in comparison to cells transfected with CENPE Silencer®, which did not show CENPE 

expression (Figure 3.19C).  
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Figure 3.19 CENPE expression in lymphoma cell lines.  
A) qRT-PCR shows CENPE mRNA level in one HL, 6 DLBCL and DG75 cell lines in comparison to three 
normal GC B cells samples.  
B) Immunoblotting results of endogenous of CENPE on chosen HL, DLBCL and DG75 cell lines, detected 
by specific CENPE antibody (Sigma, MW=312kDa). β tubulin confirmed equal loading of the sample. C) 
Validation of CENPE antibody (Sigma) on DG75 with knocked down CENPE gene expression, by 
transfection with CENPE Silencer® Select Validated siRNA (Ambion), in comparison to DG75 
transfected with Negative Control Silencer® Select #1 siRNA as a control. Data shown are 
representative of three independent experiments.  
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Having confirmed the specificity of the CENPE antibody, I next investigated CENPE 

expression by immunohistochemistry in 33 primary DLBCL that were previously tested for 

DDR1. Stained for CENPE expression sections were analysed and scored by  

. For CENPE, samples were recorded as negative, 

positive (if tumour cells were stained with the same intensity as in control germinal 

centre B cells and non-malignant cells in the tumour microenvironment), or weakly 

positive (if tumour cells were stained less intensely than control germinal centre B cells 

and non-malignant cells in the tumour microenvironment). This analysis revealed that 

20/33 cases showed downregulation of CENPE in tumour cells (compared to non-

malignant cells). 13/33 cases showed expression of CENPE that was equivalent to non-

malignant cells (Figure 3.20).  I also performed co-staining on two DLBCL cases positive for 

DDR1. This confirmed the down-regulation of CENPE (red) in tumour cells (positive for 

CD20; yellow) expressing DDR1 (green) (Figure 3.21A), in comparison to tonsil control 

(Figure 3.21B). I conclude that DDR1 downregulates CENPE expression and that CENPE is 

downregulated in primary DLBCL.  
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Tonsil DLBCL-negative 

DLBCL-weak DLBCL-positive 

GC 

Figure 3.20 CENPE is down-regulated in primary DLBCL. 
Representative examples of staining for CENPE. Top left panel shows strong expression of CENPE in a 
normal germinal centre (GC) of tonsil. Remaining panels show examples of CENPE staining including 
cases in which CENPE was not detected in tumour cells (top right), a case with weak expression in 
tumour cells (bottom left), and a case showing strong staining (bottom right). Black arrows show 
tumour cells. Red arrows indicate non-malignant cells that are positive for CENPE. 
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CENPE 

CD20 

DDR1 

DDR1/CENPE/CD20/DAPI 

Figure 3.21A CENPE and DDR1 expression in DLBCL - multiplex immunofluorescence. Multiplex 
immunofluorescence confirmed that CENPE (red) expression is decreased in DDR1-expressing (green) tumour 
cells (CD20 positive, yellow) in comparison to tonsil control (Figure 3.22 B). Top left panel present DDR1 
expression on tumour cells (white arrows), right top panel represent downregulation of CENPE in tumour cells 
and middle panel shows CD20 positive tumour cells (white arrows pointing at DDR1 positive tumour cells). 
Bottom panel present co-expression of DDR1, CENPE and CD20 on DLBCL case. Tumour cells expressing DDR1 
and with decreased level of CENPE are marked by white arrows. Red arrows pointing at tumour cells negative 
for DDR1 and with high expression of CENPE.  
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Figure 3.21B CENPE and DDR1 expression in Tonsil - multiplex immunofluorescence. Multiplex 
immunofluorescence on Tonsil control. CENPE (red) expression is strong in germinal centre (GC) (top right 
panel). DDR1 level (green) is very low in GC but highly expressed by epithelial cells (top left panel). Presence 
of B cells was confirmed by CD20 staining (yellow, bottom left). Bottom right panel present DDR1, CENPE and 
CD20 staining in tonsil control. EP - epithelium, GC – germinal centre. DDR1 positive and CD20 negative 
epithelial cells are marked by white arrows (bottom right panel, DDR1/CENPE/CD20/DAPI). 
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3.6 CENPE expression is down-regulated following collagen stimulation of DDR1a 

transfected BJAB and DG75 cells. 

I next wanted to investigate the effect of DDR1 activation on CENPE expression in cell 

lines. 

To do this, I transfected BJAB and DG75 cell lines with DDR1a, and stimulated them with 

collagen or 0.5% acetic acid as a control, for 1, 2, 4 and 6h (as descried in Materials and 

Methods, sections 2.4 and 2.5). CENPE expression was measured by qRT-PCR and 

immunoblotting. I found that collagen treatment of these cells led to a decrease in the 

expression of CENPE in both cell lines. Down-regulation of CENPE mRNA was detected 

already after 1h of DDR1 stimulation with collagen (Figure 3.22A), whereas the strongest 

effect on protein expression was detected by immunoblotting after 2h of collagen 

stimulation (Figure 3.22B). 
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Figure 3.22 CENPE expression in lymphoma cell lines after activation of DDR1 by collagen.  
A) qRT-PCR shows down-regulation of CENPE mRNA in DDR1a transfected BJAB and DG75 cell 
lines after 1h collagen stimulation, in comparison to 0.5% acetic acid treated control cells. B) 
Immunoblotting for CENPE in BJAB and DG75 cell lines, detected by specific CENPE antibody 
(Sigma, MW=312kDa). Blot also shows successful transfection and activation of DDR1 receptor by 
2h collagen stimulation. β actin confirmed equal protein loading. Data shown are representative 
of three independent experiments.  
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3.7 DG75 cell line as a model to investigate the impact of DDR1 on the development of 

aneuploidy in vitro. 

Decreased CENPE expression is known to induce aneuploidy. The next set of experiments 

was designed to test if the downregulation of CENPE by DDR1 could induce aneuploidy in 

B cells.  

With the help of , I stained metaphase 

spreads of three cell lines: L591, DG75 and BJAB with Giemsa. For each cell line, 220 cells 

were counted and based on cell size, divided into three groups: normal (2N), hyperploid 

(>2N), and hypoploid (<2N). DG75 cells showed the smallest variability in cell size – 

78.28% of cells were normal (2N), compared to 59.82% for BJAB and 71.36% for L591. 

Only 4.53% of DG75 were classified as hypoploid (<2N); as opposed to 15.98% for BJAB 

and 15.91% for L591 (Figure 3.23A). 

I next counted the exact number of chromosomes in 35 metaphase cells for each cell line. 

DG75 showed the least variation in the number of chromosomes, with a mean 

chromosome number of 44.5 (Figure 3.23B). 

Based on those observations I decided to use the DG75 line as a karyotypically stable 

model for my further experiments. 
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Figure 3.23A Analysis of cell sizes based on metaphases of DG75, BJAB and L591 cells. 
Metaphase spreads of DG75, BJAB and L591 cell lines were stained and the size of the cells analysed. An 
example of normal (2N), hyperploid (>2N), and hypoploid (<2N) BJAB cells are shown. 220 cells were 
analysed for each cell line. Graphs show percentages of normal, hyperploid and hypoploid cells.  



184 
 

 

 

 

   

B 

Figure 3.23B Analysis of chromosome number in metaphase spreads of DG75, BJAB and L591 cell 
lines. 
Metaphase spreads were stained and chromosomes in each metaphase counted. Chromosomes 
from 35 cells were counted for each cell line. DG75 had a mean chromosome number of 44.7 and 
the least variability in chromosome number. Lines on a graph represent mean value and standard 
errors. 
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Previously, Bennet et al., showed that the inhibition of CENPE with GSK923295 generated 

aneuploidy in HeLa and DLD-1 cell lines (Bennett et al., 2015). GSK923295 is an allosteric 

inhibitor which disrupts the ATPase activity of CENPE, which is needed for microtubule 

activation and their interactions with kinetochores during mitosis. This inhibitor has a 

high specificity for the CENPE motor domain and stabilise the CENPE protein in a 

conformation that highly increase its affinity for microtubule binding (Wood et al., 2010). 

I first wanted to confirm that I could block CENPE localisation in HeLa cells.  

To do this, I treated HeLa cells with or without 50nM of GSK923295 inhibitor for 4h, fixed 

in ice cold methanol and stained for CENPE and α-tubulin. As expected, GSK923295 

treatment resulted in the dislocation of CENPE proteins during metaphase. Thus, in un-

treated HeLa cells, CENPE proteins were located exactly at the end of each kinetochore in 

a correctly formatted metaphase plate (Figure 3.24, top panel). However, in cells treated 

with GSK293295, CENPE proteins were dislocated from kinetochores, or were fully 

blocked at spindle poles, preventing proper formation of metaphase plates (Figure 3.24, 

bottom panel).  
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Figure 3.24 Dislocation of CENPE protein in HeLa cells after treatment with GSK923295.  
HeLa cells were treated with 50nM of GSK923295 for 4 hours. CENPE and α-tubulin were visualised by 
immunofluorescent staining. Location of CENPE protein (red) in metaphase cell treated with inhibitor (bottom 
panels), was different in comparison to non-treated control (top panels). GSK923295 inhibitor prevented 
CENPE protein from binding to kinetochores, and formation of proper metaphase plate. This effect was 
detected as strong red staining in mitotic spindle poles (bottom panels). α-tubulin (green) staining was 
performed to detect metaphase cells.  Mitotic spindle poles are marked with white arrows. 
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Having confirmed that GSK923295 disrupts CENPE localisation in HeLa cells, I next wanted 

to investigate its effects in DG75 cells. Inhibition of CENPE by GSK923295 has been shown 

to result in a delay in mitosis, lack of mitosis plate formation and activation of the SAC, 

which if prolonged results in apoptosis. To avoid apoptosis after CENPE inhibition, I 

treated cells with an inhibitor of the MPS1 kinase, known as AZ3146, which helps override 

SAC, and by this allowing anaphase to proceed. Inhibition of MPS1 during mitosis 

inactivates the SAC, by releasing MAD1-MAD2 complex which prevents production of the 

active form of MAD2 and therefore activation of APC/C which mediates further 

progression of mitosis (Hewitt et al., 2010) (Figure 3.25). 

 

 

Figure 3.25 Experimental plan for induction of aneuploidy in DG75 cells.  
DG75 cells (2N) treated with CENPE inhibitor (GSK923295) should results in misalignment of chromosomes 
at the metaphase plate. CENPE proteins (red dots) on chromosomes are clustered close to, or in 
centrosomes/mitotic spindles (green circles). Lack of chromosome alignment activates the spindle assembly 
checkpoint (SAC). Addition of MPS1 inhibitor (AZ3146) results in release of MAD1-MAD2 complex and 
inactivation of SAC, allowing mitosis progression. As a result of these treatment aneuploid cells (>2N) 
should be produced.  
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I incubated DG75 cells with GSK923295 for 4h, followed by AZ3146 for 2h. Cells were then 

incubated in fresh media supplemented with 10% FBS for 24 hours and metaphase 

spreads stained with Giemsa. 

225 cells were counted for control or GSK923295/AZ3146 treated cells and divided into 

three groups based on cell size as before. Compared to control cells, GSK923295/AZ3146 

treatment of DG75 cells increased the percentage of hyperploid cells (>2N) (21.3% to 

45.8%) and decreased the percentage of normal cells (2N) (73.37% to 52.9%) (Figure 

3.26A).  

These observations were confirmed by chromosome counts. 100 cells were analysed in 

control and treated cells. Compared to control cells, GSK923295/AZ3146 treatment of 

DG75 cells significantly increased chromosome number (p=0.028) (Figure 3.26B).  
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Figure 3.26A Aneuploidy in DG75 cells after CENPE/MPS1 kinase inhibition, as measured by 
metaphase cell size. 
DG75 cells were treated with 50nM of GSK923295 for 4 hours, followed by 2µM of AZ3146 for 2 hours. 
Metaphase spreads were stained after 24h and cell size measured as before. 225 cells were analysed. 
Graphs show percentages of normal (2N) (black), hyperploid (>2N) (grey) and hypoploid (<2N) (grey 
patterned) cells. Results are based on a single experiment. 
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Figure 3.26B Aneuploidy in DG75 cells after CENPE/MPS1 kinase inhibition, as measured by chromosome 
number.  
DG75 cells were treated with 50nM of GSK923295 for 4 hours, followed by 2µM of AZ3146 for 2 hours. 
Metaphase spreads were stained after 24h and the number of chromosomes counted in 100 cells. Students 
T test was used to compare the mean of treated and controls cells. Result is based on a single experiment. 
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To provide further confirmation of these observations I adopted a different strategy, this 

time transfecting BJAB and DG75 cells with a constitutively active DDR1 (DIV) or mutant 

control (mDIV) (kind gift of  

    

I confirmed expression of these constructs by immunoblotting using the phospho-DDR1 

specific antibody (Y792; Cell Signaling). I observed strong activation of DDR1 in BJAB cells 

transfected with DIV-DDR1 plasmid, compared with mDIV-DDR1 transfected controls, 

which shared only lower levels of DDR1 activation (Figure 3.27A). Immunofluorescence 

staining of cells transfected with DIV-DDR1 DG75 cells confirmed successful transfection 

(Figure 3.27B). 
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Figure 3.27 Validation of constitutively active DDR1 (DIV) plasmid in BJAB and DG75 cell line. 
A) Immunoblotting confirming DIV-DDR1 expression and activation (Y791 phospho-DDR1 
antibodies) in DIV-DDR1 expressing BJAB cells, in comparison to its mutant control (mDIV) (MW of 
protein 90kDa). Equal loading of the protein is shown using β-actin antibody (MW of protein 45kDa).  
Data from a single experiment. B) Immunofluorescent staining with rabbit monoclonal DDR1 (D1G6) 
XP® antibody (Cell Signaling), shows DDR1 staining in DG75 cell line, transfected with DIV-DDR1. 
Data shown are representative of two independent experiments. 

DDR1 
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To test if constitutively active DDR1 could induce aneuploidy, I transfected DG75 cells 

with the constitutively active (DIV) and non-active DDR1 mutant (mDIV) constructs. Cells 

were incubated for 24h to allow expression of each receptor, followed by 9 or 29h of 

incubation. Cells were then harvested for analysis of metaphases. I first tested if any 

effect could be observed without adding MPS1 inhibitor. 

I first analysed cell size, again classifying cells into three groups as before. Compared to 

untreated cells, DG75 cells transfected with the constitutively active DDR1 (DIV) showed 

an increase in the percentage of hyperploid cells at both time points. Thus, after 9h, there 

was a noticeable increase in the percentage of hyperploid (>2N) cells which increased 

from 18.18% in the control un-transfected (DDR1-negative) cells to 50.87% in DG75 cells 

transfected with the constitutively active DDR1. The percentage of hyperploid cells was 

also increased in DG75 cells transfected with mutant DDR1 (mDIV). This is consistent with 

the lower levels of DDR1 activation previously observed in these cells (Figure 3.23B). After 

29h of incubation, the percentage of hyperploid (>2N) cells increased from 32.27% in 

control cells and 23.18% in mDIV transfected cells to 59.09% in DG75 cells with 

constitutively active DDR1 (Figure 3.28A). As expected, I observed an accompanying 

decrease in the percentage of normal (2N) cells in cells expressing constitutively active 

DDR1 compared to those expressing either no DDR1 or the mutant DDR1 (Figure 3.28A). 
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Figure 3.28A Increased detection of hyperploidy in DG75 cells expressing a constitutively active DDR1, 
as measured by cell size. 
DG75 cells were either untreated or transfected with constitutively active DDR1 (DIV) or mutant DDR1 
(mDIV) and incubated for 24h. After a further 9h (top graph) and 29h (bottom graph) metaphase 
spreads were stained and cell size estimated in 225 cells were analysed. Graphs shows percentages of 
normal (2N) (black), hyperploid (>2N) (grey) and hypoploid (<2N) (grey patterned) cells. Results are 
based on a single experiment. 
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Next, I counted the number of chromosomes in 100 control, mDIV and DIV transfected 

cells at both time points. This analysis revealed an increase in chromosome number in 

cells transfected with constitutively active DDR1 (DIV) at both time points, when 

compared to non-transfected and mDIV transfected control cells. This effect was 

particularly marked and highly significant at the 29h time-point (p=6.56x10-10, and 

p=1.35x10-15). At the 9h time point a significant difference was only apparent in DG75 

cells transfected with constitutively active DDR1 compared to those transfected with the 

mutant DDR1 (p=0.0176).  

Taken together, these results provide strong evidence that DDR1 activation is alone able 

to induce aneuploidy in DG75 cells (Figure 3.28B).  
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Figure 3.28B: Increased detection of hyperploidy in DG75 cells expressing a constitutively active 
DDR1, as measured by chromosome number 

DG75 cells were either untreated or transfected with constitutively active DDR1 (DIV) or mutant 
DDR1 (mDIV) and incubated for 24h. After a further 9h (top graph) and 29h (bottom graph) 
metaphase spreads were stained and chromosome number measures in 100 control, mDIV and 
DIV transfected cells Results show significant increase in number of chromosomes in DG75 
transfected with constitutively active DDR1 (DIV), in comparison to mutant (mDIV) and non-
transfected control at both time points. Students T test was used to compare means. Results are 
based on a single experiment. 
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CHAPTER FOUR 

Results part II 

POTENTIAL THERAPEUTIC REVERSAL OF DDR1 

ACTIVATION USING DDR1 INHIBITORS. 
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4. Potential therapeutic reversal of DDR1 activation using specific DDR1 

inhibitors  

4.1 Blocking the phosphorylation of DDR1 receptor by small molecular inhibitors 

I used three published inhibitors, two: 7rh (7-4104) and 7rj (7-4109) were a gift of Dr Ke 

Ding, Jinan University, China and their specificity for DDR1 was already described in Gao 

et al. (Gao et al., 2013). The third DDR1 inhibitor - DDR1-IN-1 di-hydrochloride (R&D 

Systems), is the only small molecule inhibitor of DDR1 that is commercially available (Kim 

et al., 2014).  

BJAB cells were transfected with DDR1a and serum starved cells for 2 hours, then treated 

for 1 h with collagen and DDR1 inhibitor. Based on previous publications, I chose a range 

of concentrations for each inhibitor. The inhibition of DDR1 activation, in comparison to 

untreated and collagen only treated control cells, was then measured by immunoblotting 

using specific phospho-DDR1 (Tyr792) antibody. All three inhibitors decreased DDR1 

phosphorylation in a dose dependent manner. Successful inhibition, proved by weaker 

band in comparison to collagen control, was already noticed after addition of 0.5µM of 

7rh, 7rj and DDR1-IN-1 inhibitor (Figure 4.1). Effectiveness and specificity of those 

inhibitors was confirmed by trypan blue toxicity assay, which identified 0.5 µM 

concentration as non-toxic for BJAB cells, after 1, 2 and 3h of stimulation with 7rh (Figure 

4.2), 7rj (Figure 4.3) and DDR1-IN-1 inhibitors (Figure 4.4).  
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Figure 4.1 Inhibition of DDR1 activation by 7rh, 7rj and DDR1-IN-1 in BJAB cells transfected with 
DDR1a, after collagen stimulation. 
Immunoblotting results of DDR1 expression and inhibition of receptor phosphorylation after blocking 
DDR1 by 7rh inhibitor (A), 7rj inhibitor (B) and DDR1-IN-1 inhibitor (C) in BJAB cell lines, transfected 
with DDR1a. Treatment of activated by collagen DDR1 with all tested concentrations of inhibitors 
resulted with reduction of its activation, when compared to collagen stimulated control. β-actin 
confirmed equal loading of the sample. Data shown are representative of three independent 
experiments.  

B 

A 

C 
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  Figure 4.2 Toxicity assay with trypan blue on DDR1a transfected BJAB cell line, treated with 7rh DDR1 
inhibitor. 
BJAB cell line transfected with DDR1a, were treated with 0.05µM 7rh inhibitor for 1, 2 and 3 hours. 
Harvested cells were counted in haemacytometer under microscope with bright field, using 0.4% Trypan 
Blue solution. Mean percentage of life cells is presented on graphs. Non-treated cells and cells with 
DMSO was used as a control for the test. Data shown are mean percentage of three independent 
experiments.  
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Figure 4.3 Toxicity assay with trypan blue on DDR1a transfected BJAB cell line, treated with 7rj DDR1 
inhibitor. 
BJAB cell line transfected with DDR1a, were treated with 0.5µM 7rj inhibitor for 1, 2 and 3 hours. Harvested 
cells were counted in haemacytometer under microscope with bright field, using 0.4% Trypan Blue solution. 
Mean percentage of life cells is presented on graphs. Non-treated cells and cells with DMSO was used as a 
control for the test. Data shown are mean percentage of three independent experiments. 
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Figure 4.4 Toxicity assay with trypan blue on DDR1a transfected BJAB cell line, treated with 
DDR1-IN-1 DDR1 inhibitor. 
BJAB cell line transfected with DDR1a, were treated with 0.5µM DDR1-IN-1 inhibitor for 1, 2 and 3 
hours. Harvested cells were counted in haemacytometer under microscope with bright field, using 
0.4% Trypan Blue solution. Mean percentage of life cells is presented on graphs. Non-treated cells 
and cells with DMSO was used as a control for the test. Data shown are mean percentage of two 
independent experiments.  



203 
 

4.2 Establishing an in vivo model to test DDR1 inhibitors 

With a view to the future testing of these inhibitors in vivo, I next wanted to establish 

suitable animal models. These experiments were performed with the help of  

  

4.2.1  Tumour growth of L591 and BJAB xenograft 

First I wanted to establish the baseline growth kinetics of the transduced cell lines when 

grown in immunodeficient mice. L591 and BJAB cells were injected subcutaneously in the 

right flank of 3 Immunodeficient NSGTM mice per cell line. The growth of the tumour was 

monitored weekly starting from 8 days after injection (Figure 4.5). Tumours were 

harvested after 39 days. Cells were isolated from tumours and tested by flow cytometry 

and some tissue fixed for immunohistochemistry.  

4.2.2  DDR1 expression in L591 xenografts 

I used flow cytometry to measure human DDR1 expression in the xenograft tumour. This 

revealed that 4.43% of CD30 positive tumour cells within the single mouse L591 xenograft 

studied expressed DDR1, compared to 23.3% in the cell line grown in vitro (Figure 4.6). 

Unfortunately there was not enough isolated from tumour BJAB cells to test it by flow 

cytometry.  
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Figure 4.5 Tumour growth in L591 and BJAB mice xenograft. 
A) L591 and B) BJAB tumour growth (mm

3
) in xenograph model. Tumour growth was monitored weekly 

starting from day 8 after cells injection subcutaneously in the right flank in 3 mice per cell line. 
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Figure 4.6 Human DDR1 expression in L591 xenograft model.  
A) Cells isolated from L591 tumour xenograft, after 39 days from subcutaneously injection of L591 cell 
line into mouse, were stained with CD30 (marker for HL tumour cells) and human DDR1, and tested by 
flow cytometry. 4.43% of live, CD30/DDR1 positive cells were detected in L591 xenograft (right panel) 
and B) 23.3% of live, double positive cells were found in L591 cell line control (bottom right panel). 
Percentage of double positive cells is marked by red circle. Top panels are presenting the unstained 
control. 
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4.3  Collagen expression in mouse tumours 

Having confirmed the expression of human DDR1 in the mouse L591 xenograft I next, 

tested BJAB, OCI-LY3 and L591 xenograft sections for the presence of collagen, using van 

Gieson staining. These results revealed expression of collagen fibres in tumour 

microenvironment (Figure 4.7). 
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Tonsil L591 

BJAB OCI-LY3 

Figure 4.7 Van Gieson staining showing collagen expression in mouse xenograft models. 
Van Gieson staining on L591, BJAB and OCI-LY3 xenograft revealed expression of collagen fibres (pink 
fibres) in tumour environment. Collagen fibres in close association with tumour cells (marked by 
arrows) were noticed in all tested xenografts. Tonsil staining is enclosed as a positive control.  
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4.4  DDR1 and collagen expression in A20 xenograft 

While looking for a good mouse model for studying DDR1 inhibitors, I also tested well 

known mouse lymphoma cell-derived A20 xenograft for the expression of DDR1. 

I first, tested A20 cell line for the expression of DDR1 by immunoblotting. This result 

showed undetectable level of DDR1 expression in A20 cell line, in comparison to L591 HL 

cell line control (Figure 4.8). 

I next, investigated collagen expression in A20 xenograft (  

) by Van Gieson staining. Those results revealed presence of collagen in 

tumour microenvironment (Figure 4.9). 
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Tonsil A20 

GC 

Figure 4.8 DDR1 expression in A20 cell line. 
 Immunoblotting results showing detectable expression level of DDR1 protein in A20 cell line, 
which is higher than in GC B cells control, and lower than in two tested HL cell lines 
(MW=125kDa). β-actin confirmed equal loading of the sample. Data shown are representative of 
three independent experiments.  

Figure 4.9. Van Gieson staining showing collagen expression in A20 xenograft. 
Van Gieson staining on A20 xenograft revealed expression of collagen fibers in tumour environment. 
Tonsil staining was enclosed as a positive control. 
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Discussion and future perspectives 

In this thesis I have explored the contribution of the collagen receptor DDR1 to the 

pathogenesis of diffuse large B cell lymphoma (DLBCL). To date there has been only one 

study that has shown the role for DDR1 in lymphoma; Cader et al., demonstrated the 

overexpression of DDR1 in Hodgkin lymphoma and showed that collagen ligation of DDR1 

overexpressing lymphoma cell lines promoted their survival and protected them from 

etoposide induced death (Cader et al., 2013).  

In this thesis, I have shown that DDR1 is overexpressed also in a subset of DLBCL. This 

subset includes cases of GCB and ABC subtype indicating that DDR1 likely contributes to 

both major subtypes of DLBCL. This observation was confirmed by both qRT-PCR and 

immunohistochemistry on separate cohorts on patients. Furthermore, I found that all 

DDR1 positive cases also showed deposition of collagen type VI, in close proximity to 

DDR1 expressing tumour cells. I have not directly addressed the mechanism through 

which DDR1 is overexpressed. Previous studies have shown that several inflammatory 

mediators, including tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β), granulocyte-

macrophage colony-stimulating factor (GM-CSF) and lipopolysaccharides (LPS), can also 

increase the expression of DDR1 in leukocytes (Kamohara et al., 2001). It was also 

proposed that collagen I can also induce expression of DDR1 by the integrin-independent 

activation of DDR2 in lung fibroblasts (primary normal human lung fibroblasts; NHLF) 

(Ruiz and Jarai, 2011). It was shown that recruitment of phospho-JAK2 to DDR2 and 

activation of ERK1/2 is required for this process (Ruiz and Jarai, 2011).  
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A critical finding in this thesis was the observation that the overexpression of DDR1 in 

DLBCL was associated with aneuploidy. For example, I observed a significant overlap 

between genes regulated by DDR1 with three separate signatures of aneuploidy and with 

two gene sets representing mitotic spindle and mitotic spindle checkpoint genes, 

respectively. I also observed a significant positive correlation between DDR1 

overexpression and total autosomal aneuploidy as measured by the analysis of copy 

number data from primary DLBCL. For several reasons these observations are potentially 

important. First, there is a growing literature linking chronic inflammation to lymphoma 

development. For example there is a well-established linked between Burkitt lymphoma 

and the polyclonal stimulation of B cells caused by either malaria, HIV, or both (Moss et 

al., 1983, Whittle et al., 1984, Petersen et al., 1985, Burkes et al., 1986). More recently, a 

relationship between chronic inflammation and DLBCL has been firmly established. 

Indeed, DLBCL associated with chronic inflammation is an entity recognised by the WHO 

2016 classification (Swarlow et al., 2016). Although this association is known, the 

mechanisms responsible are incompletely understood.  

Several publications have suggested that elevated DDR1 expression in immune cells may 

be important in the context of its role in immune response and the development of 

several diseases including cancer. For example, DDR1 expression was shown to be higher 

in leukocytes in human renal tumour infiltrate, in comparison to normal cells (Kamohara 

et al., 2001); and on activated T-cells (Chetoui et al., 2011, Hachehouche et al., 2010). 

Moreover, DDR1a was identified as the major isoform expressed in leukocytes in renal 

tumour infiltrate (Kamohara et al., 2001) and that DDR1 is responsible for migration of 

THP-1 and T cells in three-dimensional (3D) collagen matrix (Kamohara et al., 2001; 
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Hachehouche et al., 2010). Previous studies have also shown that DDR1, through 

interaction with collagen of ECM mediates leukocyte and macrophage migration towards 

the site of inflammation, and therefore DDR1 was also connected with the development 

of several inflammatory diseases (such as fibrosis and atherosclerosis) and with cancer 

invasiveness (Franco et al., 2009, Franco et al., 2010, Avivi-Green et al., 2006, Kamohara 

et al., 2001, Leitinger, 2014).  

Based on current knowledge about the regulation of DDR1 expression, its function 

observed in cells connected with the immune response (such as leukocytes and 

macrophages), and on my observations that overexpression of DDR1 is inversely related 

to expression of CENPE, which induces aneuploidy in vitro; I am proposing the hypothesis 

that my findings also present a novel mechanism which could underpin the contribution 

of chronic inflammation to lymphoma development. However, this proposition would 

have to be confirmed experimentally, by direct analysis of DDR1 and CENPE expression in 

immune cells in DLBCL. 

In this thesis, the downregulation of CENPE by DDR1 was initially shown in primary GC B 

cells. This model has been used in previous reports by our group to explore the impact of 

viral and cellular genes on the early stages of lymphoma development. This model proved 

to be useful in this thesis, providing a unique opportunity to explore the impact of 

collagen activation of DDR1 in a normal B cell background. The RNAseq analysis of the 

transcriptional changes that follow the activation of DDR1 in these cells provided a broad 

picture of the potentially pathogenic effects of DDR1 in B cell lymphomas. For example I 

observed that DDR1 altered the expression of genes associated with cell proliferation, 
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protection from apoptosis and cell migration, all of which were previously established 

functions of DDR1 (reviewed by: Valiathan et al., 2012, Leitinger et al., 2011, Lemmon and 

Schlessinger, 2010).  However, this GC B cell model is limited insofar as I was only able to 

observe the effect of DDR1 during a short time window following transfection and the low 

numbers of cells that are obtained from this experiment make it difficult to examine 

protein expression of downstream targets.  

Assessment of the impact of the DDR1 on aneuploidy in vitro required the development 

of a new model. To do this, I took advantage of an existing model that has been reported 

on Hela cells, in which chromosome miss-segregation is first induced by exposure to a 

CENPE inhibitor. This is then followed by the inactivation of mitotic spindle checkpoint by 

an inhibitor of the MPS1 kinase. I was able to reproduce the effects of these inhibitors in 

Hela cells before going to show that constitutive activation of DDR1 was sufficient to 

induce aneuploidy in DG75 cells, which I used as a karyotypically stable B cell lymphoma 

line. However, a preferable model would be one in which the long-term effects of DDR1 

could be monitored in vitro in untransformed B cells. Thus, one could envision a model in 

which GC B cells isolated from human tonsils by CD10 magnetic Dynabeads are cultured 

in soluble trimeric human recombinant megaCD40L and IL-4, and maintained over several 

weeks as we have described (Smith et al., 2013). These cells could then be subject to the 

CENPE and MPS1 kinase inhibitors used in this thesis 

Chromosomal abnormalities were found to appear in almost all patients with non-

Hodgkin lymphoma. Aneuploidy and chromosomal instability (CIN) was also previously 

described in DLBCL. It was shown that, in almost all (70-90% of cases in different reports) 
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diffuse large B cell lymphoma cases, gains or losses of whole chromosomes can be found 

(Bea et al., 2005, Johansson et al., 1995, Bloomfield et al., 1983, Kramer et al., 2003, 

Bakhoum et al., 2011b); and CIN is postulated to be important for the progression and 

aggressiveness of this tumour (Bakhoum et al., 2011). There is evidence showing that 

chromosomal instability contributes to a poor prognosis in DLBCL patients. DLBCL is 

reported to be heterogeneously aneuploidy and CIN seems to play an important role in 

tumour aggressiveness and evolution (Kramer et al., 2003, Bernasconi et al., 2008, 

Tibiletti et al., 2007, Tzankov et al., 2006). For example, aggressive DLBCLs were carrying 

centrosome aberrations in 41.8% of tested cases in comparison to 25.5% in more indolent 

lymphomas, such as follicular lymphoma (FL); and this finding correlated with the higher 

proliferation index in DLBCL (Kramer et al., 2003). Bakhoum et al. investigated CIN in 54 

DLBCL patient samples by scoring chromosome segregation defects (lagging 

chromosomes or chromatin bridges) in anaphase and correlated the results with clinical 

data. Their analysis pointed to a decrease in overall survival, and increase in tumour 

invasiveness and relapse after treatment in patients who carried an increased frequency 

of chromosomal mis-segregation (Bakhoum et al., 2011a). Fluorescent in situ analysis 

(FISH) of DLBCL cases showed gain of chromosomes 3, 12, 18 and X (Bernasconi et al., 

2008). Interestingly, these chromosomal aberrations appear to differ depending on the 

DLBCL subgroup. ABC-DLBCL more frequently had a gain of chromosome 3, whereas GCB 

type of DLBCL gained more chromosome 12. Gain of chromosome 3 in DLBCL was found 

to be correlated with shorter survival in these patients (Bea et al., 2005). Also 

deregulation of cyclin E, a critical regulator of the cell cycle, was shown to be able to 



216 
 

induce CIN and was connected with a poor prognosis in some neoplastic diseases 

including DLBCL (Saez et al., 2004, Ferreri et al., 2001, Tzankov et al., 2006).  

Recent studies have highlighted the possibility of specific targeting aneuploidy as a 

therapeutic option. Patients with aneuploid tumours resistant to existing therapies could 

benefit from alternative treatments. Two approaches can be envisioned: 

First, aneuploid cells that emerge following inactivation of the SAC can be recognised and 

eliminated by the immune system (Lopez-Soto et al., 2017). Thus, hyperploid malignant 

cells over-express ligands for NKG2D and DNAM1 which stimulate NK cell cytotoxicity 

(Lopez-Soto et al., 2015). Moreover, aneuploid cells display a pro-inflammatory 

senescence-associated secretory phenotype (SASP) (Lopez-Soto et al., 2015, Santaguida 

et al., 2017) and over-express genes regulated by the cGMP-AMP (cGAMP) synthase 

(cGAS)-stimulator of interferon (IFN) genes (STING) pathway (Mackenzie et al., 2017). 

Aneuploid cells can also be recognised by adaptive immune cells. Thus, tumours 

generated from hyperploid cells are increased in mice depleted of CD4+ or CD8+ T 

lymphocytes (Senovilla et al., 2012). Hyperploid cancer cells also show increased levels of 

ER stress, resulting in over-expression of calreticulin, an ER chaperone required for 

rejection of hyperploid tumours by adaptive immunity (Senovilla et al., 2012). 

Second, aneuploid cells are characterised by energy and proteotoxic stress that increases 

their susceptibility to apoptosis (Milan et al., 2014). As a result aneuploid cells are more 

sensitive to specific small molecule compounds, such as AICAR, which allosterically 

activates AMP-activated protein kinase (AMPK) thereby mimicking energy stress, and 17-
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AAG, which inhibits Hsp90, a chaperone required for protein folding, activation and 

assembly (Tang et al., 2011). 

At the present moment it is difficult to envisage a role for DDR1 inhibitors in the 

therapeutic targeting of aneuploidy in transformed cells, since presumably the 

fundamental defects that lead to the development of aneuploidy have already occurred. 

However, blocking DDR1 activities in tumours might be expected to lead to therapeutic 

benefits as a result of the downregulation of cell proliferation, protection from apoptosis 

and cell migration. I showed that small molecule inhibitors of DDR1 are effective in 

blocking the phosphorylation of DDR1 in B lymphoma lines, which is in accordance with 

previous studies which showed that these inhibitors can block DDR1 phosphorylation in 

cell lines derived from bone, colon, breast, lung and uterine cancers (Kim et al., 2013: 

U2OS, HCT-116, T47D, A549, H1975, SkBr3, SW480, SNU-1040, EJ) (Gao et al., 2013: A549, 

NCI-H23, NCI-H460, MDA-MB-435S, MCF-7, T47D, HCT116, K562). These inhibitors did not 

cause toxicity in lymphoma cells. However, clearly more work is required to establish 

their effects on cellular phenotypes both in vitro and in vivo. In this latter respect I made 

some progress towards the establishment of relevant animal models in which these 

inhibitors could be tested. This included an initial assessment of the expression of 

collagen in 3 different xenografts of DLBCL. These in vivo models will also provide an 

opportunity to analyse in vivo, the effects of DDR1 on aneuploidy, as well as the potential 

therapeutic blockade of aneuploidy described above. 

The use of DDR1 targeted therapies could be extended to the use of monoclonal 

antibodies which could block the interaction between DDR1 and collagen, and thereby 
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prevent receptor activation. Since previously published in vitro studies indicate that the 

ligation of DDR1 by collagen protects lymphoma cells from apoptosis induced by 

chemotherapy (Cader et al., 2013), therapeutic blockade of the collagen-DDR1 interaction 

would be expected to sensitise lymphoma cells to apoptosis induced by chemotherapy. It 

is well established that ligand-independent activation of receptor tyrosine kinases can 

occur through cross talk with other receptors and that this is important for normal tissue 

homeostasis (Carafoli et al., 2009). Emerging evidence suggests that this is also the case 

for DDR1 (Favelyukis et al., 2001, Canning et al., 2014). Furthermore, a body of evidence 

suggests that the collagen-independent interaction of DDR1 with other molecules such as 

E-cadherin regulates normal epithelial functions (Till et al., 2002, Bertrand et al., 2012). 

Monoclonal antibodies that sterically interfere with the structure of DDR1 may well also 

affect the normal collagen-independent functions of DDR1 potentially leading to 

unwanted toxicities. Importantly, disrupting this interaction using antibodies against the 

collagen binding site of DDR1 would also have no effect on the other functions of collagen 

that depend on its interaction with different collagen receptors.  

Although I have demonstrated the transcriptional consequences of DDR1 activation in B 

cells, I did not study the signalling pathways activated by DDR1 in these cells. Previous 

studies have shown that DDR1 signalling can be mediated by several pathways, including 

MAPK, ERK, PI3K/Akt, NFκβ, Notch1 and STAT, in a cell-type dependent manner (reviewed 

by:  (Leitinger, 2014, Fu et al., 2013). This is in interest given that constitutive activation of 

several of these pathways, e.g. PI3K/Akt (for GCB DLBCL subtype) (Pfeifer et al., 2013) and 

NF-κβ and JAK/STAT (for ABC DLBCL subtype) (Davies et al., 2010, Compagno et al., 2009), 

was reported in DLBCL. However, the precise mechanisms through which DDR1 could 
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influence the activation of these pathways are not known. For the future, it will be 

important to investigate the signalling pathways activated by DDR1 in DLBCL. This could 

be done in several ways. First, transcription factor activation could be analysed for 

example using the PathDetect Trans-reporting System (Agilent Technologies) (Cismowski 

et al., 2000)(Rechfeld et al., 2014) in DDR1 transfected GC B cells. This system is able to 

detect if a gene of interest is involved in signal transduction, and also which step of the 

pathway is involved; Moreover, the ontology analysis (GO) of the genes positively 

correlated with DDR1 expression in DLBCL pointed at wound healing, regulation of 

apoptosis, cell proliferation, migration and angiogenesis; functions known to be mediated 

by for example, the MAPK/ERK and PI3K/Akt pathways.  
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Future plans - summary 

I outline below several immediate and short term objectives for the extension of this 

work:  

- DDR1 and collagen contribution to the pathogenesis of DLBCL 

o DDR1 activation in GC B cells and analysis of the activation of transcription 

factors by PathDetect Trans-reporting System.  

o In silico analysis of the GC B cell RNAseq data in context of the activated 

signalling pathways.  

- The potential therapeutic use of DDR1 inhibitors 

o Create stable BJAB cell line expressing constitutively active DDR1 

o Mouse xenograft with stable DDR1+ BJAB cell line   

o Treatment of animals with DDR1 inhibitors; observation of tumour growth 

o Organoids grown on collagen matrix and treated with DDR1 inhibitors–an 

alternative model 

o Analysis of the signalling pathways activated by DDR1 in the presence of 

DDR1 inhibitors in  cell lines or in the mouse model, with a focus on the 

functional effects of DDR1 inhibition 

- Confirmation of the DDR1 input  towards  an aneuploidy signature of DLBCL  

o Repeat activated DDR1 plasmid (DDR1-DIV) transfection in DG75 cells; 

confirmation of observed changes in chromosome number in cells 

(replication of experiment presented in this thesis) 
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o Activated DDR1 transfection (DDR1-DIV) in BJAB cell line; chromosome 

count  

o BJAB xenograft in mouse; analysis of aneuploidy signature in cells (ditto) 

 

Longer term objectives 

o More studies on DDR1 in DLBCL – understanding the cell signalling and 

agents which are driving this process 

o Development of specific antibodies detecting phosphorylation of the 

receptor at different residues 
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APPENDICES 

Appendix 1. Data from published dataset (Brune et al., 2008) used for investigation of 

DDR1 expression in primary DLBCL in comparison to normal GCB cells.  

GEO_id Cell type DDR1 exp 

GSM312870 Naive B cells 1 37,41 

GSM312872 Naive B cells 2 43,62 

GSM312874 Naive B cells 3 25,94 

GSM312875 Naive B cells 4 50,08 

GSM312876 Naive B cells 5 26,31 

GSM312877 Memory B cells 1 43,23 

GSM312879 Memory B cells 2 27,55 

GSM312882 Memory B cells 3 40,27 

GSM312883 Memory B cells 4 27,21 

GSM312886 Memory B cells 5 43,25 

GSM312887 Centrocytes 1 11,07 

GSM312890 Centrocytes 2 21,44 

GSM312893 Centrocytes 3 20,67 

GSM312894 Centrocytes 4 29,26 

GSM312895 Centrocytes 5 33,46 

GSM312937 Centroblasts 1 19,26 

GSM312938 Centroblasts 2 25,83 

GSM312939 Centroblasts 3 24,49 

GSM312940 Centroblasts 4 26,57 

GSM312941 Centroblasts 5 27,31 

GSM312942 Plasma cells 1 28,44 

GSM312943 Plasma cells 2 24,33 

GSM312944 Plasma cells 3 28,79 

GSM312945 Plasma cells 4 30,89 

GSM312946 Plasma cells 5 32,2 

GSM312858 DLBCL 1 27,76 

GSM312859 DLBCL 2 28,65 

GSM312860 DLBCL 3 37,86 

GSM312861 DLBCL 4 52,35 

GSM312862 DLBCL 5 19,15 

GSM312863 DLBCL 6 71,42 

GSM312864 DLBCL 7 42,55 

GSM312865 DLBCL 8 22,17 

GSM312867 DLBCL 9 47,47 

GSM312868 DLBCL 10 33,7 

GSM312869 DLBCL 11 26,49 
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Appendix 2. Data from published dataset (Morin et al., 2013) used for investigation of 

DDR1 expression in primary DLBCL in comparison to normal GCB cells. 

Sample type DDR1 
expression 
[cpm] 

Sample type DDR1 
expression 
[cpm] 

ABC-DLBCL 1 4,00 GCB-DLBCL 14 1,82 

ABC-DLBCL 2 4,16 GCB-DLBCL 15 9,51 

ABC-DLBCL 3 4.07 GCB-DLBCL 16 6,71 

ABC-DLBCL 4 7.95 GCB-DLBCL 17 17,23 

ABC-DLBCL 5 4.73 GCB-DLBCL 18 21,68 

ABC-DLBCL 6 0.95 GCB-DLBCL 19 6,56 

ABC-DLBCL 7 2.15 GCB-DLBCL 20 9,98 

ABC-DLBCL 8 5.13 GCB-DLBCL 21 12,60 

ABC-DLBCL 9 3.50 GCB-DLBCL 22 2,14 

ABC-DLBCL 10 0.2 GCB-DLBCL 23 52,36 

ABC-DLBCL 11 53,98 GCB-DLBCL 24 16,59 

ABC-DLBCL 12 3.54 GCB-DLBCL 25 46,72 

ABC-DLBCL 13 24.63 GCB-DLBCL 26 4,30 

ABC-DLBCL 14 2.83 GCB-DLBCL 27 13,71 

ABC-DLBCL 15 1.96 GCB-DLBCL 28 4,15 

ABC-DLBCL 16 3.90 GCB-DLBCL 29 2,76 

ABC-DLBCL 17 0.65 GCB-DLBCL 30 1,47 

ABC-DLBCL 18 3.22 GCB-DLBCL 31 6,52 

ABC-DLBCL 19 2.02 GCB-DLBCL 32 36,14 

ABC-DLBCL 20 5.45 GCB-DLBCL 33 7,33 

ABC-DLBCL 21 9.03 GCB-DLBCL 34 10,00 

ABC-DLBCL 22 28,53 GCB-DLBCL 35 9,94 

ABC-DLBCL 23 4,19 GCB-DLBCL 36 8,01 

ABC-DLBCL 24 5,64 GCB-DLBCL 37 7,28 

ABC-DLBCL 25 2,18 GCB-DLBCL 38 5,19 

ABC-DLBCL 26 3,71 GCB-DLBCL 39 38,58 

ABC-DLBCL 27 14,08 GCB-DLBCL 40 122,53 

ABC-DLBCL 28 5,16 GCB-DLBCL 41 0,94 

ABC-DLBCL 29 3,61 GCB-DLBCL 42 13,40 

ABC-DLBCL 30 12,85 GCB-DLBCL 43 4,91 

ABC-DLBCL 31 12,66 GCB-DLBCL 44 7,30 

ABC-DLBCL 32 3,03 GCB-DLBCL 45 5,71 

GCB-DLBCL 1 7,52 GCB-DLBCL 46 101,28 

GCB-DLBCL 2 3,55 GCB-DLBCL 47 8,26 

GCB-DLBCL 3 7,68 GCB-DLBCL 48 4,66 

GCB-DLBCL 4 6,97 GCB-DLBCL 49 12,50 

GCB-DLBCL 5 51,42 GCB-DLBCL 50 1,40 

GCB-DLBCL 6 4,48 GCB-DLBCL 51 56,84 

GCB-DLBCL 7 7,38 GCB-DLBCL 52 3,66 

GCB-DLBCL 8 16,02 GCB-DLBCL 53 47,72 

GCB-DLBCL 9 5,12 GCB-DLBCL 54 8,19 

GCB-DLBCL 10 1,91 Normal GC B cell 1 19,82 

GCB-DLBCL 11 19,11 Normal GC B cell 2 13,47 

GCB-DLBCL 12 7,63 Normal GC B cell 3 15,75 

GCB-DLBCL 13 1,78 Normal GC B cell 4 8,89 
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Appendix 3. Data from published dataset (Lenz et al., 2008) used for investigation of 

DDR1 expression in primary DLBCL. Database present expression of DDR1 in 167 DLBCL 

ABC type and 183 GCB type samples. 

Sample type DDR1 
expression 
[RMA 
linear] 

ABC-DLBCL 1 102,62 

ABC-DLBCL 2 81,87 

ABC-DLBCL 3 44,76 

ABC-DLBCL 4 98,66 

ABC-DLBCL 5 51,41 

ABC-DLBCL 6 53,63 

ABC-DLBCL 7 121,51 

ABC-DLBCL 8 81,90 

ABC-DLBCL 9 65,93 

ABC-DLBCL 10 60,41 

ABC-DLBCL 11 124,70 

ABC-DLBCL 12 56,07 

ABC-DLBCL 13 78,83 

ABC-DLBCL 14 57,07 

ABC-DLBCL 15 70,47 

ABC-DLBCL 16 119,88 

ABC-DLBCL 17 87,88 

ABC-DLBCL 18 62,78 

ABC-DLBCL 19 55,18 

ABC-DLBCL 20 80,98 

ABC-DLBCL 21 103,05 

ABC-DLBCL 22 68,44 

ABC-DLBCL 23 84,93 

ABC-DLBCL 24 47,30 

ABC-DLBCL 25 52,05 

ABC-DLBCL 26 163,06 

ABC-DLBCL 27 71,61 

ABC-DLBCL 28 66,17 

ABC-DLBCL 29 84,90 

ABC-DLBCL 30 90,91 

ABC-DLBCL 31 57,07 

ABC-DLBCL 32 80,50 

ABC-DLBCL 33 54,61 

ABC-DLBCL 34 80,93 

ABC-DLBCL 35 51,35 

ABC-DLBCL 36 72,13 

Sample type DDR1 
expression 
[RMA 
linear] 

ABC-DLBCL 37 96,77 

ABC-DLBCL 38 97,16 

ABC-DLBCL 39 77,07 

ABC-DLBCL 40 40,50 

ABC-DLBCL 41 118,73 

ABC-DLBCL 42 95,87 

ABC-DLBCL 43 51,87 

ABC-DLBCL 44 72,21 

ABC-DLBCL 45 95,74 

ABC-DLBCL 46 113,67 

ABC-DLBCL 47 101,84 

ABC-DLBCL 48 63,66 

ABC-DLBCL 49 89,97 

ABC-DLBCL 50 90,55 

ABC-DLBCL 51 76,63 

ABC-DLBCL 52 87,07 

ABC-DLBCL 53 54,88 

ABC-DLBCL 54 41,42 

ABC-DLBCL 55 62,57 

ABC-DLBCL 56 49,10 

ABC-DLBCL 57 63,72 

ABC-DLBCL 58 94,75 

ABC-DLBCL 59 64,25 

ABC-DLBCL 60 68,04 

ABC-DLBCL 61 90,82 

ABC-DLBCL 62 87,61 

ABC-DLBCL 63 87,82 

ABC-DLBCL 64 55,26 

ABC-DLBCL 65 128,39 

ABC-DLBCL 66 68,15 

ABC-DLBCL 67 38,15 

ABC-DLBCL 68 61,87 

ABC-DLBCL 69 93,18 

ABC-DLBCL 70 69,86 

ABC-DLBCL 71 79,06 

ABC-DLBCL 72 60,21 

Sample type DDR1 
expression 
[RMA 
linear] 

ABC-DLBCL 73 62,00 

ABC-DLBCL 74 95,89 

ABC-DLBCL 75 80,25 

ABC-DLBCL 76 103,26 

ABC-DLBCL 77 81,98 

ABC-DLBCL 78 115,82 

ABC-DLBCL 79 93,18 

ABC-DLBCL 80 76,17 

ABC-DLBCL 81 127,01 

ABC-DLBCL 82 83,96 

ABC-DLBCL 83 71,97 

ABC-DLBCL 84 86,13 

ABC-DLBCL 85 95,06 

ABC-DLBCL 86 63,40 

ABC-DLBCL 87 68,08 

ABC-DLBCL 88 75,28 

ABC-DLBCL 89 45,64 

ABC-DLBCL 90 94,18 

ABC-DLBCL 91 131,61 

ABC-DLBCL 92 53,65 

ABC-DLBCL 93 80,10 

ABC-DLBCL 94 101,19 

ABC-DLBCL 95 86,37 

ABC-DLBCL 96 125,66 

ABC-DLBCL 97 158,12 

ABC-DLBCL 98 75,61 

ABC-DLBCL 99 90,53 

ABC-DLBCL 100 172,21 

ABC-DLBCL 101 169,32 

ABC-DLBCL 102 155,03 

ABC-DLBCL 103 112,88 

ABC-DLBCL 104 148,31 

ABC-DLBCL 105 117,30 

ABC-DLBCL 106 94,86 

ABC-DLBCL 107 103,39 

ABC-DLBCL 108 129,97 
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Sample type DDR1 
expression 
[RMA 
linear] 

ABC-DLBCL 109 108,14 

ABC-DLBCL 110 106,85 

ABC-DLBCL 111 87,48 

ABC-DLBCL 112 81,12 

ABC-DLBCL 113 57,44 

ABC-DLBCL 114 76,54 

ABC-DLBCL 115 82,44 

ABC-DLBCL 116 144,50 

ABC-DLBCL 117 81,89 

ABC-DLBCL 118 66,87 

ABC-DLBCL 119 110,69 

ABC-DLBCL 120 69,56 

ABC-DLBCL 121 94,33 

ABC-DLBCL 122 57,68 

ABC-DLBCL 123 97,69 

ABC-DLBCL 124 115,98 

ABC-DLBCL 125 99,97 

ABC-DLBCL 126 83,63 

ABC-DLBCL 127 157,46 

ABC-DLBCL 128 229,39 

ABC-DLBCL 129 139,80 

ABC-DLBCL 130 85,26 

ABC-DLBCL 131 73,90 

ABC-DLBCL 132 75,55 

ABC-DLBCL 133 70,69 

ABC-DLBCL 134 81,28 

ABC-DLBCL 135 88,84 

ABC-DLBCL 136 88,96 

ABC-DLBCL 137 100,63 

ABC-DLBCL 138 75,82 

ABC-DLBCL 139 115,65 

ABC-DLBCL 140 57,37 

ABC-DLBCL 141 81,54 

ABC-DLBCL 142 124,84 

ABC-DLBCL 143 63,41 

ABC-DLBCL 144 85,94 

ABC-DLBCL 145 97,89 

ABC-DLBCL 146 90,11 

ABC-DLBCL 147 221,94 

ABC-DLBCL 148 77,80 

ABC-DLBCL 149 102,22 

Sample type DDR1 
expression 
[RMA 
linear] 

ABC-DLBCL 150 74,09 

ABC-DLBCL 151 114,54 

ABC-DLBCL 152 159,00 

ABC-DLBCL 153 83,45 

ABC-DLBCL 154 83,70 

ABC-DLBCL 155 82,14 

ABC-DLBCL 156 71,54 

ABC-DLBCL 157 90,31 

ABC-DLBCL 158 138,70 

ABC-DLBCL 159 86,75 

ABC-DLBCL 160 124,56 

ABC-DLBCL 161 77,12 

ABC-DLBCL 162 148,07 

ABC-DLBCL 163 147,19 

ABC-DLBCL 164 229,55 

ABC-DLBCL 165 120,39 

ABC-DLBCL 166 106,44 

ABC-DLBCL 167 70,27 

GCB-DLBCL 1 120,24 

GCB-DLBCL 2 104,25 

GCB-DLBCL 3 68,29 

GCB-DLBCL 4 88,54 

GCB-DLBCL 5 139,15 

GCB-DLBCL 6 106,72 

GCB-DLBCL 7 73,69 

GCB-DLBCL 8 93,47 

GCB-DLBCL 9 51,27 

GCB-DLBCL 10 91,66 

GCB-DLBCL 11 105,60 

GCB-DLBCL 12 98,24 

GCB-DLBCL 13 66,96 

GCB-DLBCL 14 75,86 

GCB-DLBCL 15 85,44 

GCB-DLBCL 16 123,35 

GCB-DLBCL 17 51,92 

GCB-DLBCL 18 127,00 

GCB-DLBCL 19 125,28 

GCB-DLBCL 20 58,21 

GCB-DLBCL 21 163,67 

GCB-DLBCL 22 139,47 

GCB-DLBCL 23 59,62 

Sample type DDR1 
expression 
[RMA 
linear] 

GCB-DLBCL 24 104,86 

GCB-DLBCL 25 78,88 

GCB-DLBCL 26 70,68 

GCB-DLBCL 27 62,82 

GCB-DLBCL 28 164,41 

GCB-DLBCL 29 116,78 

GCB-DLBCL 30 85,78 

GCB-DLBCL 31 72,59 

GCB-DLBCL 32 77,32 

GCB-DLBCL 33 73,36 

GCB-DLBCL 34 75,46 

GCB-DLBCL 35 105,10 

GCB-DLBCL 36 120,59 

GCB-DLBCL 37 63,57 

GCB-DLBCL 38 131,40 

GCB-DLBCL 39 67,43 

GCB-DLBCL 40 100,08 

GCB-DLBCL 41 95,85 

GCB-DLBCL 42 65,64 

GCB-DLBCL 43 96,81 

GCB-DLBCL 44 115,93 

GCB-DLBCL 45 66,35 

GCB-DLBCL 46 65,42 

GCB-DLBCL 47 108,68 

GCB-DLBCL 48 103,19 

GCB-DLBCL 49 66,92 

GCB-DLBCL 50 111,98 

GCB-DLBCL 51 85,67 

GCB-DLBCL 52 105,66 

GCB-DLBCL 53 100,47 

GCB-DLBCL 54 93,49 

GCB-DLBCL 55 66,38 

GCB-DLBCL 56 120,38 

GCB-DLBCL 57 143,44 

GCB-DLBCL 58 111,10 

GCB-DLBCL 59 81,29 

GCB-DLBCL 60 70,29 

GCB-DLBCL 61 72,10 

GCB-DLBCL 62 130,64 

GCB-DLBCL 63 172,62 

GCB-DLBCL 64 104,84 
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Sample type DDR1 
expression 
[RMA 
linear] 

GCB-DLBCL 65 102,83 

GCB-DLBCL 66 82,05 

GCB-DLBCL 67 136,21 

GCB-DLBCL 68 176,49 

GCB-DLBCL 69 94,21 

GCB-DLBCL 70 169,41 

GCB-DLBCL 71 215,97 

GCB-DLBCL 72 83,96 

GCB-DLBCL 73 65,68 

GCB-DLBCL 74 69,63 

GCB-DLBCL 75 101,80 

GCB-DLBCL 76 79,86 

GCB-DLBCL 77 64,12 

GCB-DLBCL 78 85,12 

GCB-DLBCL 79 109,69 

GCB-DLBCL 80 74,11 

GCB-DLBCL 81 78,77 

GCB-DLBCL 82 120,86 

GCB-DLBCL 83 106,70 

GCB-DLBCL 84 147,35 

GCB-DLBCL 85 167,67 

GCB-DLBCL 86 195,17 

GCB-DLBCL 87 50,75 

GCB-DLBCL 88 122,34 

GCB-DLBCL 89 120,69 

GCB-DLBCL 90 86,77 

GCB-DLBCL 91 104,21 

GCB-DLBCL 92 79,46 

GCB-DLBCL 93 169,49 

GCB-DLBCL 94 102,01 

GCB-DLBCL 95 73,45 

GCB-DLBCL 96 123,50 

GCB-DLBCL 97 113,74 

GCB-DLBCL 98 81,17 

GCB-DLBCL 99 135,55 

GCB-DLBCL 100 103,68 

GCB-DLBCL 101 59,44 

GCB-DLBCL 102 70,94 

GCB-DLBCL 103 99,42 

GCB-DLBCL 104 133,39 

GCB-DLBCL 105 115,73 

Sample type DDR1 
expression 
[RMA 
linear] 

GCB-DLBCL 106 182,46 

GCB-DLBCL 107 63,38 

GCB-DLBCL 108 106,71 

GCB-DLBCL 109 141,24 

GCB-DLBCL 110 242,09 

GCB-DLBCL 111 143,44 

GCB-DLBCL 112 82,03 

GCB-DLBCL 113 147,07 

GCB-DLBCL 114 132,74 

GCB-DLBCL 115 94,01 

GCB-DLBCL 116 122,61 

GCB-DLBCL 117 82,53 

GCB-DLBCL 118 80,76 

GCB-DLBCL 119 92,64 

GCB-DLBCL 120 114,85 

GCB-DLBCL 121 92,71 

GCB-DLBCL 122 110,49 

GCB-DLBCL 123 115,88 

GCB-DLBCL 124 131,88 

GCB-DLBCL 125 174,08 

GCB-DLBCL 126 106,23 

GCB-DLBCL 127 106,57 

GCB-DLBCL 128 105,24 

GCB-DLBCL 129 432,21 

GCB-DLBCL 130 154,03 

GCB-DLBCL 131 92,21 

GCB-DLBCL 132 173,03 

GCB-DLBCL 133 90,75 

GCB-DLBCL 134 201,66 

GCB-DLBCL 135 168,89 

GCB-DLBCL 136 68,51 

GCB-DLBCL 137 111,85 

GCB-DLBCL 138 91,95 

GCB-DLBCL 139 91,90 

GCB-DLBCL 140 88,72 

GCB-DLBCL 141 117,13 

GCB-DLBCL 142 185,38 

GCB-DLBCL 143 122,52 

GCB-DLBCL 144 115,99 

GCB-DLBCL 145 110,35 

GCB-DLBCL 146 83,24 

Sample type DDR1 
expression 
[RMA 
linear] 

GCB-DLBCL 147 119,06 

GCB-DLBCL 148 97,24 

GCB-DLBCL 149 102,06 

GCB-DLBCL 150 92,56 

GCB-DLBCL 151 87,22 

GCB-DLBCL 152 77,41 

GCB-DLBCL 153 133,53 

GCB-DLBCL 154 75,60 

GCB-DLBCL 155 104,22 

GCB-DLBCL 156 102,50 

GCB-DLBCL 157 161,63 

GCB-DLBCL 158 545,81 

GCB-DLBCL 159 86,93 

GCB-DLBCL 160 101,86 

GCB-DLBCL 161 563,08 

GCB-DLBCL 162 55,10 

GCB-DLBCL 163 96,41 

GCB-DLBCL 164 82,01 

GCB-DLBCL 165 110,44 

GCB-DLBCL 166 109,90 

GCB-DLBCL 167 81,56 

GCB-DLBCL 168 83,07 

GCB-DLBCL 169 78,43 

GCB-DLBCL 170 105,74 

GCB-DLBCL 171 98,95 

GCB-DLBCL 172 69,53 

GCB-DLBCL 173 74,93 

GCB-DLBCL 174 123,23 

GCB-DLBCL 175 151,00 

GCB-DLBCL 176 92,19 

GCB-DLBCL 177 76,62 

GCB-DLBCL 178 89,16 

GCB-DLBCL 179 128,94 

GCB-DLBCL 180 76,33 

GCB-DLBCL 181 218,18 

GCB-DLBCL 182 169,89 

GCB-DLBCL 183 64,04 
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Appendix 4. DDR1 expression in 50 samples from a series of tumour biopsies of DLBCL 

patients and 3 GC B cells samples, obtained by Fluidigm®48.48 Fast Real Time PCR analysis. 

 

 Sample Relative 
expression of 
DDR1 

GC B 
cells 

GCB 1 2,470647 

GCB 2 1,239899 

GCB 3 0,882194 

DLBCL 8 956,5984 

26 264,5807 

1 19,05468 

17B 16,85453 

7B 11,50662 

9B 10,70792 

10B 7,98521 

30B 5,447077 

7 4,457224 

23 4,281078 

12B 3,636998 

13 3,516518 

5 2,767029 

19 2,718059 

26B 2,525352 

6 2,474068 

15 2,320874 

3B 2,268519 

5B 2,268519 

25B 2,214993 

22 1,676158 

27B 1,573339 

24 1,570151 

14 1,459154 

 Sample Relative 
expression of 
DDR1 

DLBCL 20B 1,355245 

3 1,22243 

18 1,179488 

14B 1,148293 

9 0,958022 

19B 0,942199 

4B 0,738605 

2 0,722606 

18B 0,549832 

16 0,503887 

10 0,494023 

4 0,424183 

20 0,14693 

24B 0,023967 

11 0 

12 0 

17 0 

21 0 

25 0 

13B 0 

1B 0 

21B 0 

22B 0 

28B 0 

2B 0 

8B 0 
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Appendix 5. List of collagen genes (source: http://www.genenames.org 

/genefamilies/COLLAGEN). 

 

Name of collagen gene 

COL1A1 

COL1A2 

COL2A1 

COL3A1 

COL4A1 

COL4A2 

COL4A3 

COL4A4 

COL4A5 

COL4A6 

COL5A1 

COL5A2 

COL5A3 

COL6A1 

COL6A2 

COL6A3 

COL6A4P1 

COL6A4P2 

COL6A5 

COL6A6 

COL7A1 

COL8A1 

COL8A2 

COL9A1 

COL9A2 

COL9A3 

COL10A1 

COL11A1 

COL11A2 

COL12A1 

COL13A1 

COL14A1 

COL15A1 

COL16A1 

COL17A1 

COL18A1 

COL19A1 

COL20A1 

COL21A1 

COL22A1 

COL23A1 

COL24A1 

COL25A1 

COL26A1 

COL27A1 

COL28A1 
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Appendix 6A. TRI70 aneuploidy genes signature, which contains 20 genes positively 

correlated with aneuploidy and 50 genes negatively correlated with aneuploidy.  

Positively correlated with aneuploidy 

ANXA7 

ATG7 

BDNF 

CDKN2B 

CHFR 

CNDP2 

ENO3 

F3 

GIPC2 

GJB5 

HSPB7 

IMPACT 

P2RY14 

PCDH7 

PKD1 

PLCG2 

SNCA 

SNCG 

TMEM140 

TMEM40 

Negatively correlated with aneuploidy 

AURKA 

BCL11B 

BIRC5 

BLMH 

BRD8 

BUB1B 

CCNA2 

CDC5L 

CDK1 

CENPE 

CENPN 

CTH 

DLGAP5 

HMGB2 

IDH2 

ISOC1 

KIAA0101 

KIF22 

LIG1 

LSM2 

MCM2 

MCM5 

MCM7 

MYBL2 

NASP 

NCAPD2 

NCAPH 

NMI 

NUDT21 

PCNA 

PIGO 

PLK1 

PLK4 

POLD2 

RACGAP1 

RAD51 

RFC2 

RFC3 

RFC5 

RPA2 

SMAD4 

SMC4 

SSRP1 

TAB2 

TCOF1 

TIMELESS 

TIPIN 

TOP2A 

UBE2C 

USP1 
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Appendix 6B. 70 genes  from HET70 aneuploidy gene signature. 

 

AHCYL1 

AKT3 

ANO10 

ANTXR1 

ATP6V0E1 

ATXN1 

B4GALT2 

BASP1 

BHLHE40 

BLVRA 

CALU 

CAP1 

CAST 

CAV1 

CLIC4 

CTSL 

CYB5R3 

ELOVL1 

EMP3 

FKBP14 

FN1 

FST 

GNA12 

GOLT1B 

HECTD3 

HEG1 

HOMER3 

IGFBP3 

IL6ST 

ITCH 

P3H1 

P3H2 

LEPROT 

LGALS1 

LIMA1 

LPP 

MED8 

MMP2 

MUL1 

MYO10 

NAGK 

NR1D2 

NRIP3 

P4HA2 

PKIG 

PLOD2 

PMP22 

POFUT2 

POMGNT1 

PRKAR2A 

AGER 

RHOC 

RRAGC 

SEC22B 

SERPINB8 

SPAG9 

SQSTM1 

TIMP2 

EMC3 

TRIM16 

TRIO 

TUBB2A 

VEGFC 

VIM 

WASL 

YIPF5 

YKT6 

ZBTB38 

ZCCHC24 

ZMPSTE24 
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Appendix 7. Quality check for GC B cells transfected with DDR1 and EV as a control, 

stimulated with collagen for 4 and 8 hours. Data from one tonsil. 

 

Time of stimulation Sample RNA concentration 
[pg/µl] 

RIN 

4 HOURS EV + collagen 50 8.20 

DDR1 + collagen 322 7.80 

8 HOURS EV + collagen 91 2.90 

DDR1 + collagen 588 N/A 
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Appendix 8. DDR1 target genes not validated in GCB cells transfected with DDR1 or EV (left), 

and its expression in primary DLBCL (right). 
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