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ABSTRACT 

 

Chronic liver disease is a highly prevalent condition associated with significant morbidity and 

mortality. There is need for clinicians to stratify chronic liver disease and for researchers to 

define meaningful study endpoints. Currently this is often reliant on liver biopsy histology, 

which is known to be a flawed gold standard. There is a need to develop novel, non-invasive 

techniques for the evaluation of chronic liver disease that are accurate and reliable. 

 

In this thesis I have demonstrated that multiparametric MRI can stage hepatic fibrosis in an 

unselected cohort with performance comparable to existing non-invasive fibrosis markers. 

The assessment of fibrosis is however confounded by inflammation. The sensitivity of 

multiparametric MRI to inflammation allows the differentiation of simple steatosis and 

NASH but in a non-alcoholic fatty liver disease (NAFLD) cohort, multiparametric MRI fails 

to predict fibrosis stage. Evaluating NAFLD with magnetic resonance spectroscopy has 

shown that this technique is feasible and that lipidomic differences can be demonstrated in 

patients with NAFLD. Exploring the role of multiparametric MRI in primary sclerosing 

cholangitis (PSC) has demonstrated a characteristic pattern in the distribution of corrected T1 

in PSC suggesting that multiparametric MRI may have a role in its diagnosis and evaluation.  
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CHAPTER 1: GENERAL INTRODUCTION AND REVIEW OF NON-

INVASIVE BIOMARKERS IN THE STAGING OF HEPATIC 

FIBROSIS 
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1.1 Preamble 

 

Chronic liver disease is a major public health problem worldwide with significant mortality. 

In developed countries it is the 5th biggest killer of adults.2 The burden of liver disease is 

focused on a younger age group than many other leading causes of death making liver disease 

the 3rd largest cause of death during working age, surpassed by ischaemic heart disease and 

self-harm only.2 Not only is chronic liver disease highly prevalent, it is the only major cause 

of death in the UK that is increasing in incidence.2 Figure 1.1-1 shows that from 1970 to 2005 

liver disease has seen a 500% increase in its standardised mortality rate while all other disease 

groups saw a steady decline year on year. 

 

 

Figure 1.1-1: Rates of death from liver disease have increased since 1970 in contrast to other 

leading causes of death. Take from: The Lancet Commissions report: Addressing liver 

Disease in the UK, The Lancet, 2014.2 
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This increase in the prevalence of chronic liver disease is expected to continue over the next 

decade due to several factors. Firstly, the epidemic of obesity, insulin resistance and type two 

diabetes sweeping the developed world is leading to an increase in non-alcoholic fatty liver 

disease (NAFLD) and secondly, despite emerging therapies being highly effective, chronic 

viral hepatitis remains a public health challenge. The large pool of unrecognised infection in 

the community is projected to lead to an increase in cirrhosis secondary to chronic viral 

hepatitis until the 2020’s.3 However, the impact of NAFLD and viral hepatitis, although 

significant, is dwarfed by the consequences of harmful alcohol consumption. It is estimated 

that ¾ of all deaths from liver disease are as a result of alcohol excess and it is noteworthy 

that this figure does not include other harmful effects of alcohol excess including pancreatitis, 

injuries sustained while intoxicated, or the effects of alcohol excess on cardiovascular health 

and the incidence of certain cancers.2  

 

Although the mechanisms of liver injury differ between the above mentioned aetiologies, the 

final common pathway of most chronic liver disease is progressive hepatic fibrosis. It is 

predominantly fibrosis that drives the clinical sequelae of chronic liver disease including 

portal hypertension, progressive hepatic failure and the development of hepatocellular 

carcinoma (HCC). Thus the presence of hepatic fibrosis is a strong predictor of morbidity and 

mortality. 

 

The clear importance of fibrosis in the development of adverse clinical outcomes in liver 

disease means that one facet of the challenge to reduce death from liver disease is the 

identification, staging and management of patients with hepatic fibrosis. In this thesis, 



 

4 
 

strategies for the identification and staging of chronic liver disease will be discussed in 

several clinical situations with a focus on the assessment of hepatic fibrosis. 
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1.2 Hepatic fibrosis 

 

1.2.1 Pathogenesis of fibrosis 

 

Fibrosis is a pathological reaction to liver injury that occurs when severe or repeated injury 

overwhelms the liver’s normal repair mechanisms. Microscopically the changes seen in 

fibrosis include hepatocyte death, liver infiltration by inflammatory cells, activation of 

stromal cells and expansion of the extracellular matrix (ECM).4-6 The pathogenesis of these 

changes is complex but a summary of key points is outlined in Figure 1.2-1. In health, the 

amount of ECM present in the liver is finely controlled and there is balance between 

deposition and breakdown. Liver injury leads to cellular damage and the release of 

inflammatory cytokines such as platelet-derived growth factor and transforming growth factor 

beta (TGF-β). T-lymphocytes are recruited to the liver and produce further inflammatory 

mediators such as interferon gamma and interleukin-6. These inflammatory cytokines cause 

native hepatic stellate cells (HSC) to activate and migrate to sites of injury where they deposit 

excess ECM. In addition to increased deposition of ECM there is inhibition of the breakdown 

of ECM through the action of TGF-β on activated myofibroblasts. Matrix metalloproteases, 

which break down ECM, are inhibited by the secretion of tissue inhibitors of metalloprotease 

thus preventing the breakdown of ECM.  
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Figure 1.2-1: Schematic representation of the mechanism underlying hepatic fibrosis. Taken 

from Schuppan D et al, Lancet, 2008.6 

 

1.2.2 Fibrosis progresses to cirrhosis 

 

During the early stages of fibrosis there is little disruption of normal hepatic microanatomy 

and no impact on hepatic function. However, as the fibrogenic process outlined above 

continues, changes occur in the hepatic microanatomy and microcirculation. Fibrosis 

deposition in and around sinusoids and the space of Disse leads to ‘capillarisation’ of the 

sinusoids and porto-venous and arterio-venous shunting of blood occurs. This reduces 

hepatocyte perfusion and impairs hepatocyte function.6, 7 The microcirculatory changes also 

increase hepatic vascular resistance, which is instrumental in the development of portal 

hypertension. Nodules of regenerating hepatocytes form and dysplasia within these nodules is 

the first step to the formation of hepatocellular carcinoma.6 These microscopic changes are 
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well characterised and form the basis for the histological staging of fibrosis. For example, the 

system of fibrosis staging developed by Ishak et al in 1995 stages the severity of fibrosis 

based on the pattern of fibrosis deposition within liver tissue (Figure 1.2-2).8 The 

characteristic histological appearance of cirrhotic liver seen in Figure 1.2-3, namely 

regenerative nodules of hepatocytes surrounded by bands of fibrous tissue that distort liver 

anatomy at a microscopic and macroscopic level. 

 

 

Figure 1.2-2: The original description of the Ishak fibrosis staging system taken from Ishak K 

et al, Journal of Hepatology, 1995. 
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Figure 1.2-3: Trichrome stain of a liver biopsy specimen showing thick fibrous bands (blue) 

and regenerative nodules typical of cirrhosis. Image courtesy of Ed Uthman, via Wikimedia 

Commons, accessed 05 July 2016. 

 

1.2.3 Fibrosis staging informs prognosis and guides clinical decision making 

 

The clinical complications of chronic liver disease (portal hypertension, liver failure and 

hepatocellular carcinoma) occur to a large extent as a result of the effects of cirrhosis and 

therefore it is reasonable to expect that liver related outcomes should be concentrated in those 

with cirrhosis. The logical extension to this is therefore that the presence of cirrhosis has a 

negative impact on prognosis for patients with chronic liver disease. This assumption is 

supported by evidence from a number of different aetiologies. A 2010 publication from the 

HALT-C trial of 1050 patients with hepatitis C infection that found there was a statistically 

significant difference in the incidence of a first liver related outcome between those with 

cirrhosis (Ishak stage 5 and 6) and those with moderate (Ishak stage 4) fibrosis (Figure 

1.2-4).9 The inter group difference in incidence of a first liver related outcome between Ishak 

stages 2 to 4 were not statistically significant. This link between cirrhosis and negative 
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clinical outcomes has also been shown, for example, in patients with alcoholic liver disease.10, 

11 genetic haemochromatosis,12 autoimmune hepatitis13 and NAFLD.14 In NAFLD, Angulo et 

al demonstrated a 4 fold increase in liver related events in patients with cirrhosis compared to 

those with advanced fibrosis.14 

 

This identification of a group of patients at risk from liver related outcomes thus allows the 

targeting of screening for gastro-oesophageal varices and surveillance for HCC into high risk 

groups thus increasing the cost effectiveness of the intervention and avoiding procedural risk 

in patients unlikely to benefit. 

 

 

Figure 1.2-4: Cumulative risk of  a first liver related outcome stratified by Ishak stage at 

baseline showing an increased risk and quicker progression to liver liver related events with 

advancing fibrosis stage. Taken from: Everhart J et al, Hepatology, 2010.9 

 

While the presence of cirrhosis is clearly an important indicator of poor prognosis, evidence 

exists that prognosis in chronic liver disease is not simply linked to the binary distinction 
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between those with and those without cirrhosis. The stage of fibrosis on an index biopsy has 

been shown to inform the rate of progression to cirrhosis and the incidence of liver related 

complications in chronic hepatitis C,9, 15, 16 alcohol related liver disease,11, 17 primary 

sclerosing cholangitis (PSC),18 primary biliary cholangitis (PBC)19, 20 and NAFLD.14, 21 The 

explanation for the link between fibrosis stage and outcomes in patients who do not have 

cirrhosis has not been definitively identified however it is likely that the identification of 

patients with fibrosis, even at an early stage, characterises a patient group with more 

aggressive disease that leads to greater progression of fibrosis over time and therefore an 

increased probability of developing complications.  

 

The favourable prognosis for patients without significant fibrosis allows for patients to be 

appropriately reassured and potentially discharged from clinical follow up in a hospital 

setting, if there is no evidence of significant fibrosis. Similarly, those with more advanced 

fibrosis can be kept under close clinical follow up to monitor for progression. These patients 

may also benefit from entry into clinical studies. Study recruitment can be open only to those 

with more advanced fibrosis or may be stratified by fibrosis stage. Lastly, the timing of 

treatment in chronic viral hepatitis is influenced by fibrosis stage. In hepatitis C the recently 

introduced direct acting antiviral agents have significantly narrowed the gap in treatment 

efficacy between those with and those without fibrosis,22 however, knowledge of fibrosis 

stage continues to influence treatment urgency and the duration of treatment in some 

genotypes.22, 23  

 

In summary, the assessment of fibrosis is important in chronic liver disease to inform 

prognosis and to inform clinical decisions about follow-up, treatment and inclusion in clinical 



 

11 
 

studies. There are several available and emerging techniques for the staging of hepatic 

fibrosis, each with their own advantages and disadvantages. The remainder of this chapter will 

look at liver biopsy as the current, so-called, gold standard for fibrosis assessment as well as 

exploring the role of several established and emerging non-invasive techniques in the 

assessment of hepatic fibrosis. 
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1.3 Liver biopsy  

 

Indications for liver biopsy can be broadly divided into three groups: to make a diagnosis, to 

inform about prognosis, to guide treatment decisions.  

 

The assessment of fibrosis is an important factor in all three of these roles. Histological 

assessment of tissue obtained by liver biopsy is, at present, the gold standard for the 

assessment of fibrosis in chronic liver disease. This status as the gold standard test for fibrosis 

assessment is however challenged by many newer technologies. An understanding of the 

benefits and limitations of liver biopsy is important to understanding its role in hepatology 

practice and when evaluating alternative technologies.24 

 

1.3.1 Advantages of liver biopsy histology for fibrosis assessment 

 

Liver biopsy histology is a well-established technique that is widely regarded as the gold 

standard for fibrosis assessment. Although non-invasive techniques are beginning to 

challenge this dogma, liver biopsy histology retains some clear advantages over non-invasive 

techniques. 

 

Histological assessment of liver tissue allows the pattern of fibrous tissue within the liver to 

be evaluated. The accepted definition of cirrhosis and the semi-quantitative scoring systems 

for fibrosis in routine use, such as those described by Ishak et al in 19958 and Kleiner et al in 

200525 are based on fibrosis pattern and distribution rather than the amount of fibrosis per se. 

This identification of patterns of fibrosis gives great specificity particularly in the 
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identification of cirrhosis. Although the qualitative assessment of fibrosis pattern is important, 

the amount of collagen contained within a biopsy specimen can be accurately measured. 

Collagen proportionate area (CPA) with digital image analysis allows the amount of collagen 

contained in a liver biopsy specimen to be precisely defined. This has been shown to correlate 

strongly with portal pressure26 and clinical outcomes.15 

 

Histology is able to differentiate between fibrosis of recent onset and more established 

fibrosis based on the presence or absence of elastic fibres within the fibrous bands. This 

information is not possible to obtain from non-invasive tests and can provide valuable insights 

into the disease process. 

 

Non-invasive fibrosis tests are designed and validated for the detection of fibrosis only and do 

not give information on diagnosis. Histological assessment of liver tissue is able to detect 

aetiological factors not suspected by the clinical circumstances. For example a histological 

diagnosis of autoimmune hepatitis in a patient thought to have NAFLD. Histology also allows 

for assessment of other pathological features that add value to the assessment such as 

assessing the severity of steatohepatitis in NAFLD or necro-inflammation in viral hepatitis.  

 

In summary, liver biopsy has several potential advantages over non-invasive techniques for 

the assessment of hepatic fibrosis and although imperfect, it remains the gold standard for 

fibrosis assessment in chronic liver disease. 
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1.3.2 Limitations of liver biopsy histology for fibrosis assessment 

 

The limitations of liver biopsy histology to stage hepatic fibrosis are well documented and can 

broadly be divided into issues that relate to the biopsy procedure and issues that relate to the 

histological assessment of the biopsy sample.  

 

Percutaneous biopsy is the most commonly used method of obtaining liver tissue for 

assessment. While the procedure is generally regarded as safe, it is invasive and has an 

inherent risk of serious complication. Pain is common following liver biopsy occurring to 

some degree in up to 84% of patients27 with approximately 30% of patients requiring 

analgesia post procedure.28 Serious complications are rare in patients undergoing non-targeted 

biopsies with bleeding requiring transfusion or intervention occurring in 0.35-0.5% of 

procedures and perforation of an adjacent viscus occurring in only 0.01-0.1% of procedures.28 

The mortality rate from liver biopsy is extremely low. A study of over 68,000 liver biopsies 

from multiple Italian centres revealed a mortality rate of 9 per 100,000 biopsies.29 Despite the 

rarity of serious complications, the associated morbidity and potential mortality of liver 

biopsy reduce patient acceptance and essentially precludes repeated assessment with biopsy.  

 

When they do occur, the complications arising from liver biopsy are most common within the 

first 4 hours following the procedure. This has led to the adoption of a 4-6 hour period of 

observation post procedure in most centres.30 This bed occupancy adds significantly to the 

cost of liver biopsy and is a distinct disadvantage over non-invasive tests. 
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Liver biopsy is also limited by the potential for sampling error. A liver biopsy takes only 

0.001-0.003% of the total liver volume and this tiny specimen may not be characteristic of the 

liver as a whole.31 This variability in histological lesions across the liver has been documented 

in NALFD,32 PBC33 and PSC.34  

 

Histological assessment of biopsy specimens is a subjective process and is therefore prone to 

inter-observer variation. Given a biopsy of ideal size, agreement about fibrosis stage is 

good.35 However, agreement is adversely affected by a range of factors including biopsy 

size,36, 37 degree of fragmentation and stage of fibrosis in the specimen being assessed.38 Other 

features of liver disease assessed at biopsy have lower inter-observer agreement than fibrosis. 

For example, steatosis has poor inter-observer agreement39 with a tendency for overestimation 

compared to digital image analysis of specimens.40 Given the importance of biopsy size on the 

accuracy and reproducibility of fibrosis assessment it is recommended that biopsy samples are 

2-3cm in length and contain at least 11 portal tracts.30, 41 

 

Fibrosis progression from normal liver to cirrhosis is a continuum and it should be recognised 

that imposing a categorical staging system on a continuous variable is artificial and inevitably 

introduces error. For example, if you take the Ishak staging system, it would be wrong to 

think of stage 4 fibrosis as simply twice as bad as stage 2 and the transition from stage 1 to 

stage 2 does not have the same clinical significance as transition from stage 4 to stage 5.  

 

Some of the above mentioned limitations of histology assessment can be mitigated by the use 

of collagen proportionate area (CPA) to quantify fibrosis. This technique is objective and so 

reduces variation in assessment and has a theoretical benefit of describing hepatic fibrosis as a 
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continuous variable. Digital image analysis of biopsy specimens allows the proportion of liver 

tissue taken up by fibrosis to be precisely calculated. CPA correlates well with semi-

quantitative staging systems such as Ishak stage with published correlation coefficient 

(Spearman’s Rho) of 0.67 (p<0.001).26 It must be remembered that both techniques are 

assessing fibrosis in very different ways and as such should not be regarded as being directly 

comparable. A notable strength of CPA is that it has been shown to predict portal pressure26 

and give prognostic information.42 
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1.4 Rationale for development of a non-invasive alternative to biopsy  

 

The issues outlined in section 1.3.2 limit the utility of liver biopsy histology for the staging of 

fibrosis.  Under or over staging of fibrosis has a clear implication when providing prognostic 

information to patients and making clinical decisions based on the fibrosis stage. This lack of 

accuracy is also relevant to clinical trials that use liver biopsy as the reference standard. In a 

trial of a new therapy that uses liver biopsy histology to measure effect, inaccuracies in 

assessment may under or overestimate the effect of the intervention. Also in studies of novel 

diagnostic tests an imperfect reference test increases the risk of type 2 error.43  

 

A test that is quicker and more acceptable to patients, has less cost to health systems and 

avoids the sampling error and inter-observer variation inherent in liver biopsy histology has 

clear attractions and this has led to great interest in the development of non-invasive 

biomarkers of liver disease.  The ideal marker has yet to be discovered but a 2007 review 

article gives the following as the characteristics of the ideal biomarker:44 

 

 “An ideal liver fibrosis marker should have the following characteristics:Liver specific, 
Readily available and standardised between all laboratories performing diagnostic 
biochemistry / haematology, Not subject to false positive results, for example due to 
inflammation, Identifies the stage of fibrosis” 
 
The characteristics of the ideal non-invasive fibrosis tests. Taken from: Rossi et al, Clin 

Biochem Rev, 2007.44 

 

The following section will examine the currently available biomarkers of hepatic fibrosis. 
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1.5 Tests Currently Available 

 

Current non-invasive technologies for assessing liver fibrosis include blood biomarker panels, 

novel blood biomarkers, imaging techniques assessing liver morphology, elastography 

techniques based on ultrasound and MRI and tissue characterisation with MRI. 

 

1.5.1 Routine serum liver tests  

 

‘Routine’serum liver tests, often referred to as liver function tests (LFTs), include bilirubin, 

albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline 

phosphatase (ALP) and gamma-glutamyl transpeptidase (gGT). These tests are inexpensive 

and readily available however, individually, they do not show a significant association with 

fibrosis stage.44 Indeed the entire range of histological abnormalities seen in NAFLD can 

occur in patients with a normal ALT.45 Clearly more complex testing is required to establish 

fibrosis stage. 

 

1.5.2 Simple blood biomarker panels 

 

The use of simple blood biomarker panels began in 1988 when Williams et al reported the use 

of the AST:ALT ratio to identify patients with cirrhosis.46 Since then the field has expanded 

with many different panels evaluated in a range of different aetiologies. Table 1.5-1 outlines 

the constituents for five of the more common panels. Simple blood biomarkers can be 

accurate with a recent meta-analysis finding that, to detect advanced fibrosis in patients with 
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NAFLD, the summary AUROC values for APRI, FIB-4 and NAFLD fibrosis score (NFS) 

were 0.77, 0.84 and 0.84 respectively.47 

 

Name Included tests 
AST:ALT ratio46 AST, ALT 
AST:platelet ratio index (APRI)48 AST, platelet count 
Fibrosis-4 (Fib-4)49 AST, ALT, platelet count, age 
FibroIndex50 Platelet count, AST, gGT 
Forns index51 Age, platelet count, gGT, cholesterol 

Table 1.5-1: Constituents of common simple blood biomarker panels. 

 

The research interest is perhaps unsurprising as combining routine tests and basic 

demographics into a biomarker panel that can predict fibrosis is an appealing way of 

improving the performance of readily available tests. Often the required information is 

collected routinely and this would make an accurate simple blood biomarker panel extremely 

cost effective. 

 

However, even with the obvious advantages, simple biomarker panels are not without 

limitations. The panels outlines in Table 1.5-1 contain tests that do not directly measure 

hepatic fibrosis but rather the effects of hepatocyte injury.52 For this reason they are 

sometimes referred to as ‘indirect tests’ and as such are prone to confounding from necro-

inflammatory activity within the liver.44 An example of this is the effect of alcohol on the 

liver tends to elevate AST out of proportion to ALT, which significantly confounds simple 

panel that include AST such as AST:ALT ratio and APRI.  

 

The application of biomarker panels in clinical practice must also take into account the liver 

disease aetiology of the population in which they are being used and also the population in 



 

20 
 

which they were defined. The majority of the literature in the field of simple biomarker panels 

has been conducted in patients with chronic hepatitis C53 and it does not necessarily follow 

that performance will be equivalent in other aetiologies. gGT has been shown to be associated 

with fibrosis in chronic hepatitis B but not in other aetiologies.54 Knowledge of the 

characteristics of the reference population is not limited to aetiology. The gGT:platelet ratio 

has been found to be a useful marker of liver fibrosis in sub-Saharan Africa55-57 but this 

finding was not however replicated in a large cohort of patients with chronic hepatitis B in 

Hong Kong.58 

 

The accuracy of biomarker panels is known to vary with fibrosis stage.59 An illustration of 

this is a 2013 meta-analysis in patients with hepatitis C that evaluated biomarker panels for 

the detection of fibrosis (Table 1.5-2) and detection of cirrhosis (Table 1.5-3).60 It is notable 

from these data that, for the detection of fibrosis, the accuracy is only moderate and certainly 

less good than for the detection of cirrhosis.  For all reported cut off values, specificity is high 

with low sensitivity or vice versa thus reducing the usefulness. The use of dual cut off values 

helps to maximise both sensitivity and specificity however this leads to a ‘grey zone’ for the 

test where the significance of the result is unclear and further testing is necessary. 

 

For cirrhosis, the performance of all evaluated biomarker panels is superior to that for the 

detection of fibrosis and there is increasing confidence in the use of simple biomarker panels 

for the exclusion of cirrhosis however, simple blood biomarkers have insufficient sensitivity 

or specificity for the detection of early stage fibrosis.  
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Another factor that reduces the clinical usefulness of simple biomarkers is the lack of 

agreement between different panels.  Recent work from Edinburgh in NAFLD shows poor 

correlation between AST:ALT ratio, APRI and Fib-4, which can lead to diagnostic 

confusion.61 

 

Name Median (range) 
AUROC 

Cut off 
value 

Median (range) 
Sensitivity 

Median (range) 
Specificity 

Platelet count 0.71 (0.38-0.94) <140 to 
<163* 

0.56 (0.28-0.89) 0.91 (0.69-1.0) 

AST:ALT ratio 0.59 (0.50-0.82) >1.0 0.35 (0.08-0.45) 0.77 (0.62-1.0) 
APRI 0.77 (0.58-0.95) >0.55 0.81 (0.29-0.98) 0.55 (0.10-0.94) 

>1.5 0.37 (0-0.72) 0.95 (0.58-1.0) 
Fib-4 0.74 (0.61-0.81) >1.45 0.64 (0.62-0.86) 0.68 (0.54-0.75) 

>3.25 0.50 (0.28-0.86) 0.79 (0.59-0.99) 
FibroIndex 0.76 (0.58-0.86) >1.25 0.94 (0.62-0.97) 0.40 (0.40-0.48) 

>2.25 0.30 (0.17-0.36) 0.97 (0.97-1.0) 
Forns index 0.76 (0.60-0.86) >4.2 0.88 (0.57-0.94) 0.52 (0.20-0.77) 

>6.9 0.36 (0.18-0.61) 0.94 (0.66-1.0) 
* Cut-off value varies between studies included in the meta-analysis. 
 
Table 1.5-2: Common blood biomarker panels and their diagnostic performance in terms of 

AUROC for the detection of significant fibrosis (METAVIR ≥ stage 2). Median sensitivity 

and specificity of these biomarker panels are shown based on published cut off values. Table 

adapted from: Chou et al, An Int Med, 201360 
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Name Median (range) 
AUROC 

Cut off 
value 

Median (range) 
Sensitivity 

Median (range) 
Specificity 

Platelet count 0.89 (0.64-0.99) <140 to 
<155* 

0.78 (0.41-0.93) 0.87 (0.84-0.94 

AST:ALT ratio 0.72 (0.52-0.91) >1 0.36 (0.12-0.78) 0.92 (0.59-1.0) 
APRI 0.84 (0.54-0.97) >1 0.84 (0.54-0.97) 0.75 (0.30-0.87) 

>2 0.48 (0.17-0.76) 0.94 (0.65-0.99) 
Fib-4 0.87 (0.83-0.92) >1.45 0.90† 0.58† 

>3.25 0.55† 0.92† 
FibroIndex 0.86 (0.78-0.92) >1.9 0.70 and 0.91† 0.91 and 0.78† 
Forns index 0.87 (0.85-0.91) >4.2 0.98† 0.27† 

>6.9 0.67† 0.91† 
* Cut-off value varies between studies included in the meta-analysis. 
† Results from individual studies given if fewer than 3 studies included. 
 
Table 1.5-3: Common blood biomarker panels and their diagnostic performance in terms of 

AUROC for the detection of cirrhosis (METAVIR stage 4). Median sensitivity and specificity 

of these biomarker panels are shown based on published cut off values. Table adapted from: 

Chou et al, An Int Med, 201360 

 

1.5.3 Direct Serum Biomarkers 

 

In addition to the indirect tests discussed in section 1.5.2, direct fibrosis markers have been 

investigated for the staging of hepatic fibrosis. Direct markers measure components of the 

fibrotic process either individually or combined in a panel as outlined in Table 1.5-4. These 

tests have a theoretical benefit over indirect tests in that they are less susceptible to 

confounding from hepatic inflammation. The performance of these tests is discussed 

individually. 
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Name Included tests 
Hyaluronic acid  
Osteopontin  
Cytokeratin (CK) -18  
Enhanced liver 
fibrosis (ELF) test 62 

hyaluronic acid, amino-terminal propeptide of type III 
procollagen (PIIINP) and tissue inhibitor of metalloproteinase 1 
(TIMP-1), (original version also included age) 

Fibrotest 63 age, gender, α2-macroglobulin, haptoglobin, apolipoprotein A1, 
gGT, bilirubin 

FibroMeter 64 Age, gender, platelet count, AST, α2-macroglobulin, 
prothrombin time, gGT, urea 

Table 1.5-4: Constituents of direct blood biomarkers. 

 

Hyaluronic acid 

 Hyaluronic acid is an integral part of extracellular matrix and in some studies the AUROC of 

hyaluronic acid to differentiate cirrhosis from lower stages of fibrosis has been as high as 

0.924.65 This finding has not however been universally replicated. Hyaluronic acid has not 

been shown to correlate well with fibrosis stages below cirrhosis and it has low accuracy for 

the detection of early fibrosis.66 In addition, hyaluronic acid is a component of extracellular 

matrix throughout the body leading to confounding from other fibrotic diseases. 

 

Osteopontin 

Osteopontin is a pro-fibrogenic extracellular matrix protein that recruits neutrophils and T-

cells into the liver and promotes the deposition of collagen by hepatic stellate cells.67 

Osteopontin has been shown to predict fibrosis with high accuracy in alcoholic liver disease68 

and hepatitis C infection.69 However, these studies are small and independent validation is 

lacking. The most significant obstacle to the adoption of Osteopontin as a fibrosis biomarker 

is that lacks specificity for hepatic fibrosis. It is elevated in patients with hepatocellular 
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carcinoma,70, 71 non-hepatic carcinomas72-74 and patients at increased risk of cardiovascular 

events.75 

 

Cytokeratin-18 

Cytokeratin-18 (CK-18) is an intracellular filament protein that is broken down and released 

during hepatocyte apoptosis. There is limited evidence from small, single centre studies that 

measurement of CK-18 fragments in serum correlates with fibrosis.76 However, CK-18 

measurements are heavily confounded by inflammation and particularly non-alcoholic 

steatohepatitis (NASH).77 The main interest in CK-18 is as a marker of NASH and as such 

will be discussed in more detail in Chapter 3. 

 

Enhanced liver fibrosis test 

As outlined in Table 1.5-4, the enhanced liver fibrosis (ELF) test is a combination biomarker 

that calculates a score based on the serum concentration of several components of the fibrotic 

process. The original ELF was derived from a cohort of 921 patients with paired liver biopsy 

and serum samples and also included age in the equation. AUROC for the detection of 

cirrhosis was 0.887 with AUROC for detection of any fibrosis lower at 0.77.62 A further 

validation study in 192 patients with NAFLD developed a simplified ELF panel that excluded 

age from the equation. Both original ELF and simplified ELF have high accuracy for the 

detection of advanced fibrosis with AUROCs of 0.89 and 0.93 respectively.78 Meta-analysis 

of 9 studies including both simplified and original ELF has shown high accuracy for the 

identification of both advanced fibrosis and cirrhosis with median (range) AUROC 0.81 (0.72 

to 0.87) and 0.88 (0.78 to 0.91) respectively.60 An independent validation of the simplified 

ELF test by Lichtinghagen et al in 2013 has highlighted areas of caution in interpreting ELF 
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results.79 In this large study ELF identified patients with advanced fibrosis and cirrhosis with 

high accuracy however; scores were significantly higher in men than women and had a trend 

towards being higher in the afternoon than the morning. Despite these cautions in interpreting 

the results, ELF is a valuable tool in the non-invasive assessment of hepatic fibrosis and is 

gaining widesepread acceptance. The recently published National Institute for Health and 

Care Excellence (NICE) guidelines on the management of NAFLD use ELF as a cost 

effective 1st line method of staging fibrosis and therefore guiding patient referral.80 

 

Fibrotest 

Fibrotest has shown high accuracy for identification of cirrhosis in hepatitis C infection,81 

hepatitis B infection82 and alcoholic liver disease83 with AUROC (95% CI) of  0.94 (0.86-

0.98), 0.991 (0.973-1.00) and 0.86 (0.83-0.89) respectively. Similarly to other evaluated blood 

biomarkers, accuracy for advanced fibrosis is lower with little ability to detect early stage 

fibrosis. 

 

FibroMeter 

FibroMeter (Echosens, Paris, France) is a proprietary algorithm combining several direct and 

indirect markers of hepatic fibrosis. Direct markers are specific for fibrosis but not specific for 

the liver and the converse is true for indirect markers and therefore the combination of direct 

and indirect markers has a theoretical benefit over either approach alone. Another unique 

feature of the FibroMeter test is that the component blood parameters and the algorithm itself 

varies between viral liver disease and alcohol related liver disease. In the original work on 

FibroMeter by Calès et al the diagnostic accuracy (% (95% CI)) of FibroMeter for the 

detection of clinically significant (METAVIR ≥F2) fibrosis was 82.1 (77.7–86.5) for viral 
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liver disease and 92.0 (86.4–97.7) for alcohol related liver disease.64 Diagnostic accuracy for 

both algorithms was reduced when used to assess the aetiology for which it was not designed 

and this highlights the difficulty in applying FibroMeter when aetiology is not clear or mixed. 

In addition FibroMeter is a proprietary algorithm and this adds to the cost of performing the 

test.  

 

1.5.4 Liver morphology on routine imaging 

 

The morphological changes in the liver that occur in cirrhosis can be identified on routine 

clinical imaging including ultrasound, computed tomography (CT) and magnetic resonance 

imaging (MRI). Clear signs of established cirrhosis and portal hypertension such as 

splenomegaly, intra-abdominal varices and irregularity of the liver margin are well known and 

have high positive predictive value. However, negative predictive value is low and these signs 

occur only in established cirrhosis and portal hypertension. Several more subtle 

morphological changes have been identified that occur in cirrhosis in the absence of the above 

findings. These include elevated caudate to right lobe ratio, widening of the porta hepatis, 

expansion of the gall bladder fossa and reduction in the liver to abdominal area ratio 

(LAAR).84-88 These features have been shown to be highly specific for cirrhosis and may help 

to identify patients with compensated cirrhosis who are at risk liver related adverse events.88, 

89 Despite their simplicity, many of these features are prone to inter-observer variability and 

although specificity is high, sensitivity is relatively low. Liver morphology has no role in the 

staging of fibrosis that falls short of cirrhosis.  
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1.5.5 Elastography Techniques 

 

Elastography is the measurement of the elastic properties of soft tissue. This is more 

commonly referred to as tissue ‘stiffness’. As well as the assessment of liver fibrosis, 

elastography has been investigated for the detection of tumours in breast and prostate, the 

diagnosis of muscular and tendon injury and the evaluation of venous thrombus.90 In this 

section the evidence supporting the 3 most commonly used elastography techniques is 

examined. These techniques are vibration controlled transient elastography (VCTE), Acoustic 

radiation force impulse (ARFI) elastography and magnetic resonance elastography.  

 

Vibration controlled transient elastography (FibroScanTM) 

Vibration controlled transient elastography (VCTE) is an ultrasound based technology upon 

which FibroScanTM (Echosens, Paris, France) is based. VCTE allows the non-invasive 

measurement of liver stiffness as a surrogate for liver fibrosis. FibroScanTM is a bedside test 

that can be completed in a few minutes. The handheld FibroScanTM probe generates a low 

frequency pulse when held again the skin on the right side of the abdomen. This pulse causes 

a sheer wave to propagate through the liver tissue. Multiple ultrasound pulses track the 

propagation of the sheer wave and allow the calculation of the speed of the wave. The speed 

of the wave is proportional to the stiffness of the liver tissue and the FibroScanTM machine 

displays a measurement of liver stiffness in kilopascals (kPa).  

 

The advantages of VCTE over liver biopsy histology include the fact that it is non-invasive 

and therefore does not carry the risks associated with biopsy. The volume of tissue examined 

with VCTE (approximately 3 cm3) is much greater than that assessed by liver biopsy reducing 
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the potential for sampling error. It is also quick to perform and, unlike blood biomarkers, 

provides immediate results. Although VCTE requires operator training, reliable results can be 

obtained after as few as 10 examinations.91 Inter-observer and intra-observer reproducibility 

has been shown to be good.92  

 

As with all tests there are limitations to its use. Obesity can make VCTE impossible in up to 

15% of patients93, 94 and, even when VCTE is technically possible, an increased distance from 

the skin to the capsule of the liver has been shown to reduce the accuracy of fibrosis 

assessment.95 VCTE is an indirect test of fibrosis and liver stiffness can be confounded by 

several factors. Hepatic inflammation,96  hepatic engorgement from cardiac failure96 and 

increased portal blood flow from recent food intake97 all elevate liver stiffness independently 

from fibrosis. It has also been reported that the degree of steatosis influences the accuracy of 

fibrosis assessment with severe steatosis leading to an over estimation of fibrosis.98 However, 

this finding is disputed and in a large cohort of UK patients with NAFLD, it has been 

demonstrated that in multivariable analysis steatosis does not influence liver stiffness.99 

 

Notwithstanding the above limitation, liver stiffness as measured by VCTE has been 

demonstrated to be a reliable surrogate for cirrhosis in multiple studies since the first report 

was published in 2003.92 AUROC values for the detection of cirrhosis with VCTE vary 

slightly but are generally >90%.100-104 Although VCTE can reliably diagnose cirrhosis, the 

accuracy for lower stages of fibrosis is less good. A prospective study of a large population of 

patients with chronic viral hepatitis showed AUROC for moderate fibrosis (METAVIR ≥F2) 

of 0.76.105 A 2013 meta-analysis produced similar findings with sensitivity and specificity for 

the diagnosis of moderate fibrosis (METAVIR ≥F2) of 0.79 and 0.78.106 The speed and ease 
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of use of VCTE makes it an attractive tool for screening for liver disease. A 2012 study found 

VCTE to be a useful tool for the identification of cirrhosis in an asymptomatic population 

attending for a medical check-up.107  

 

VCTE has also been shown to correlate well with portal hypertension and the risk of 

oesophageal variceal haemorrhage.108-111 The Baveno VI consensus report uses a cut off value 

of 20kPa combined with a platelet count of >150,000 to exclude clinically significant portal 

hypertension and thus avoid surveillance endoscopy.112, 113 This approach has been externally 

validated and, in a large retrospective study, was found to misclassify only 2% of patients.114 

 

Acoustic radiation force impulse (ARFI) elastography 

Acoustic radiation force impulse (ARFI) elastography is an ultrasound based technique that 

relies on the measurement of liver stiffness as a surrogate for fibrosis. It is conceptually 

similar to VCTE in that sheer waves are generated in liver tissue and ultrasound pulses track 

the speed of sheer wave propagation. Whereas FibroScanTM requires a dedicated machine and 

uses a mechanical driver to generate the sheer wave, ARFI is a function built into 

conventional ultrasound machines and uses a ‘longitudinal wave push pulse’ generated by the 

ultrasound probe to initiate the sheer wave. As shown in Figure 1.5-1, a region of interest 

(ROI) is placed within the liver parenchyma and the liver stiffness is calculated within the 

ROI. Placing the ROI within the parenchyma under direct vision allows for major biliary and 

vascular structures that would increase stiffness to be avoided. ARFI is available on the 

majority of modern ultrasound equipment from various manufacturers under various trade 

names. This wide availability of ARFI elastography allows it to be performed at the same 

time as conventional imaging, providing valuable additional information to the clinician.  
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In general terms the performance of ARFI is comparable to that of VCTE for cirrhosis and 

advanced fibrosis115 but lower for early fibrosis.116 For the detection of cirrhosis AUROC 

across studies is consistently >0.9 with AUROC for significant fibrosis >0.8.117-121 ARFI has 

also been shown to correlate with the severity of portal hypertension.111 The failure rate of 

ARFI is significantly lower than VCTE even when the FibroScanTM XL probe is available.115, 

120 

 

 

Figure 1.5-1: Schematic representation of an ARFI elastography examination. Taken from 

D’Onofrio et al, World J Gastroenterol, 2013.117 

 

  



 

31 
 

Magnetic Resonance Elastography  

Magnetic Resonance Elastography (MRE) is an MRI based elastography technique and, like 

VCTE and ARFI, relies on the premise that the stiffness of liver tissue is proportional to the 

degree of fibrosis. MRE employs a mechanical driver strapped to the abdominal surface to 

send sheer waves through the liver. Figure 1.5-2 shows example images generated by MRE 

sequences. A region of interest (ROI) is placed within the liver and the mean stiffness for that 

ROI is expressed in kPa. For the examples in Figure 1.5-2, these values are 2.07kPa for 

normal liver and 9.65kPa for cirrhosis. It should be noted that despite VTCE and MRE using 

the same units the differences in the techniques and the use of different cut off values mean 

that liver stiffness measured with MRE is not directly comparable with liver stiffness 

measured by VTCE. 

 

Many of the early studies into the use of MRE were small and are difficult to compare due to 

variation in: shear wave frequency, acquisition sequence, method of histological assessment 

and study population.122 More recent work has standardised many of these parameters and 

MRE has emerged as a useful tool for the non-invasive assessment of liver fibrosis.122-129 The 

performance of MRE is superior to other non-invasive markers including VCTE for the 

detection of cirrhosis 125, 130, 131 and this difference becomes more marked in early stage 

fibrosis where MRE shows significantly better performance.123, 131-133 Additional value of the 

MRE examination in NAFLD is that MRE has also been shown to differentiate simple 

steatosis from the more aggressive non-alcoholic steato-hepatitis (NASH) even in those 

without fibrosis.126, 134, 135 MRE has an additional advantage of VCTE in that it is not 

adversely affected by the presence of ascites or obesity. Overall, MRE has a significantly 

higher success rate than VCTE especially in obese patients.123, 125, 136  
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Figure 1.5-2: Example images generated by magnetic resonance elastography. From left to 

right the images show: localiser images ensure correct slice selection, phase contrast 

acquisition sequences incorporating motion encoding gradients detect the motion of liver 

tissue and inversion algorithms convert these measurements to colour coded maps of liver 

stiffness. Row A shows a patient without significant fibrosis and row B shows a patient with 

cirrhosis confirmed on liver biopsy.  Figure taken from Low G et al, World Journal of 

Radiology, 2016.137 

 

MRE is not without limitations. MRE suffers the same lack of specificity for fibrosis as all 

elastography techniques. Inflammation, hepatic congestion and postprandial hyperaemia all 

increase liver stiffness independent from fibrosis. In addition, the reduction in MR signal seen 

in patients with iron overload can make MRE impossible. 125 The major disadvantage of MRE 
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over VCTE is cost and availability. MRE requires additional hardware in addition to standard 

MRI equipment and is not widely available in the UK. 

 

1.5.6 MRI techniques 

 

Several MR techniques have been evaluated for their use as a measure of fibrosis in liver 

disease. To date the best studied techniques have been diffusion weighted imaging and 

perfusion imaging. In this section the evidence supporting their use is presented. Another 

novel MRI technique is T1 mapping, the evaluation of which is the main focus of this thesis. 

The technique is discussed further in Section 1.7 and Chapter 2.  

 

Diffusion Weighted Imaging 

Diffusion Weighted Imaging (DWI) is an MRI technique that uses the movement of protons 

within tissue to provide image contrast. The most abundant source of protons in tissue is 

water and, in effect, DWI measures the diffusion of water molecules. In free water, molecules 

move randomly by Brownian motion, however within tissues the movement of water 

molecules is restricted by macromolecules and cellular structures (cytoskeleton, organelles, 

membranes etc.). In a DWI acquisition sequence, movement of protons due to diffusion 

causes a loss of signal and therefore the greater the ability for water to diffuse the greater the 

loss of signal intensity. The loss of signal is expressed as an apparent diffusion coefficient 

(ADC).  

 

DWI is a well-established technique for the identification and characterisation of focal liver 

lesions138-140 and several studies have investigated the ability of DWI to stage hepatic fibrosis. 
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A reduction in ADC with increasing fibrosis has been shown in both experimental animal 

models and humans.139, 141-145 The ability to identify early stage fibrosis is limited but some 

studies report AUROC (95% CI) for the identification of advanced (≥F3) fibrosis as high as 

0.91 (0.84-0.99).146 Studies are however generally small and of low quality147 making the role 

of DWI to stage fibrosis in clinical practice uncertain. A 2012 meta-analysis found summary 

AUROC for the detection of advanced fibrosis to be reasonably high at 0.86 but the included 

studies were small and heterogeneous.129 In addition, the presence of inflammation, steatosis 

and altered perfusion may have a role in reducing ADC and confounding fibrosis 

assessment.148, 149 The final difficulty in assessing the utility of DWI is the variation in 

technique for calculating ADC. In particular an acquisition parameter known as the ‘b-value’ 

has been shown to effect the accuracy of fibrosis assessment107 and this parameter varies 

widely between studies.138-140 In summary, DWI has proven to be a useful technique for the 

characterisation of focal liver lesions but currently its efficacy for the staging of fibrosis has 

not been proven. 

 

Perfusion Imaging 

During the progression of fibrosis, hepatic micro-anatomical changes reduce arterial and 

portal venous inflow to the liver and thus alter hepatic perfusion. Perfusion imaging 

techniques using liver specific contrast agents can assess hepatic perfusion and therefore have 

potential to stage hepatic fibrosis. A 2008 study by Higiwara et al showed AUROC for the 

diagnosis of significant fibrosis of 0.824 150 however, to date, studies investigating this 

technique have been small and heterogeneous.150-155 Recent work by a group from 

Nottingham has shown the ability of a multiparametric MRI technique that includes 
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measurement of hepatic perfusion to predict portal hypertension.156 There is clear potential for 

development of these techniques into a useful clinical tool. 
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1.6 Summary 

 

Chronic liver disease is a major public health issue and its prevention, assessment and 

treatment is a challenge to health services worldwide. Progressive fibrosis is the common 

final pathway for nearly all chronic liver disease and so the detection and staging of fibrosis is 

an important goal for clinicians. Accurate staging of fibrosis helps to target surveillance for 

complications, provide prognostic information and guide treatment. The accurate assessment 

of fibrosis is also of importance as an endpoint for clinical studies.  

 

Existing blood markers and imaging techniques have their strengths but often suffer from 

relatively low sensitivity for the detection of the early stages of fibrosis and have limited 

ability to measure small changes in fibrosis. Liver biopsy, the current gold standard method 

for assessing fibrosis, is a valuable test but is imperfect due to several important limitations. 

 

There is a clear need for the development of a reliable alternative to existing non-invasive 

biomarkers. 

 

  



 

37 
 

1.7 Multiparametric MRI and LiverMultiscan
TM 

 

A proposed biomarker of liver disease is multiparametric MRI. This technique involves 

running multiple acquisition sequences within a single examination to provide quantitative 

data about the liver. Data from these sequences is analysed with software (LiverMultiscanTM) 

developed by Perspectum Diagnostics ltd (Oxford, UK). LiverMultiscanTM uses a proprietary 

algorithm to correct T1 for the confounding effects of iron and produces a corrected T1 (cT1) 

value. This is proposed as a novel biomarker of hepatic fibrosis. The LiverMultiscanTM 

software also provides a measure of hepatic steatosis and siderosis with modified Dixon and 

gradient echo sequences respectively. These techniques are well validated biomarkers of liver 

disease.  

 

The sequences required for LiverMultiscanTM  are: 

 T1 mapping - Shortened modified Look Locker inversion sequence 
o A potential biomarker of hepatic fibrosis 

 T2* mapping - High resolution gradient echo sequence 
o A validated measure of hepatic iron content 

 Proton density fat fraction - Modified Dixon sequence 
o A validated measure of hepatic steatosis 

 

 

The remainder of this thesis examines the role of multiparametric MRI analysed with 

LiverMultiscanTM to calculate cT1 and the utility of cT1 measurements in the evaluation of 

hepatic fibrosis.  

 

Chapter 2 looks at the background to multiparametric MRI, the techniques used and the 

reproducibility of the technique. 
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Chapter 3 looks at the use of multiparametric MRI to stage fibrosis in a mixed cohort of 

patients undergoing liver biopsy and a cohort of patients on the transplant waiting list. 

Chapter 4 examines the use of multiparametric MRI in the evaluation of NAFLD.  

Chapter 5 assesses a novel application of magnetic resonance spectroscopy to evaluate 

NAFLD severity. 

Chapter 6 looks at the ability of multiparametric MRI to define disease severity in PSC.  
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CHAPTER 2: MRI METHODS AND REPRODUCIBILITY STUDIES 
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2.1 Rationale for the investigation of T1 mapping as a biomarker of liver disease 

 

In chapter 1 the importance of hepatic fibrosis assessment was discussed along with the 

currently available methods for fibrosis assessment. There is a need to develop new 

biomarkers that are accurate, cost effective and acceptable to patients. The main focus of this 

thesis is an investigation of the potential applications of T1 mapping as a non-invasive 

biomarker of liver diseases severity.  

 

T1 mapping is a MRI technique widely used in the field of cardiac MRI to detect myocardial 

fibrosis157 however, it has not been well studied in liver disease. The concept that T1 is 

proportional to hepatic fibrosis is not new. As early as 1983 hepatic T1 was noted to be 

prolonged in animal models of hepatic fibrosis158 and this finding has subsequently 

reproduced in both animals and humans.159-165 The mechanism is thought to relate to the free 

water content of liver tissue. T1 is a physical property of tissues that is affected by the 

molecular composition of that tissue. As hepatic fibrosis progresses the volume of 

extracellular matrix increases. Extracellular matrix is rich in free water molecules, which have 

a long T1. Thus, as fibrosis progresses, for any given volume of liver tissue there is an 

increasing abundance of free water molecules. This relative excess of free water prolongs T1. 

Thus it is proposed that T1 is proportional to hepatic fibrosis. 

 

A detailed explanation of MRI physics is beyond the scope of this thesis and is not necessary 

to understand the rest of the work. However, a basic understand of the principles behind the 

techniques and a basic understanding of how T1 and T2 are derived is helpful and will be 

described here.  
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2.2 T1 relaxation 

 

Due in part to its abundance in the body the most commonly used element for MRI is 

hydrogen. The nucleus of which is known as a proton. A proton can be visualised as a tiny 

magnet that is spinning on its axis. The poles of these ‘magnets’ are arranged randomly as 

shown in Figure 2.2-1. Within a volume of tissue the magnetic forces from each individual 

proton cancel out giving no net magnetic charge.  

 

 

Figure 2.2-1: Protons within a volume of tissue have no net magnetic charge. Taken from: 

Basic MRI Physics, Evert J Blink, 2004.166 

 

MRI scanners contain strong magnets that produce a static magnetic field. By convention, the 

axis of the static field is denoted as the z axis and when tissue is placed inside this strong 

magnetic field the protons align with z as shown in Figure 2.2-2. 
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Figure 2.2-2: Protons align with the magnetic field found within MRI scanners. Taken from: 

Basic MRI Physics, Evert J Blink, 2004.166 

 

The application of a radiofrequency (RF) pulse causes the axis around which the protons spin 

to ‘flip’ away from the z axis towards the xy plane. This process is shown in Figure 2.2-3. The 

angle through which the protons flip (the flip angle) can be altered by the strength and 

duration of the RF pulse. Once the RF pulse is removed protons relax back to align with z. 

During flipping the protons gain energy from the RF pulse and during relaxation this energy 

is released as RF signal and heat.  

 

z 
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Figure 2.2-3: Application of a radio frequency pulse causes the axis of protons to ‘flip’. In this 

example the axis has moved through 90 degrees and so has a flip angle of 90 degrees. Taken 

from: Basic MRI Physics, Evert J Blink, 2004.166 

 

Although all protons in a given volume of tissue will start to relax at the same time the rate at 

which protons relax is governed by the chemical bonds in which each individual proton is 

involved. For example the tightly bound protons within fat molecules relax much more 

quickly than the more loosely bound protons in water molecules. The rate of relaxation for a 

volume of tissue can be described by the T1 relaxation curve as shown in Figure 2.2-4. T1 is 

defined as the time in milliseconds for 63% of the protons within a volume of tissue to align 

with z. In different tissues the T1 relaxation curve is shifted either up or down thus giving a 

different value for T1.  
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Figure 2.2-4: T1 relaxation curve. Taken from: Basic MRI Physics, Evert J Blink, 2004.166 

 

  

Proportion of 

protons aligned 

with the z axis 
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2.3 T2 relaxation 

 

T2 relaxation occurs simultaneous with T1 relaxation but is an entirely separate process. 

Protons wobble on their axis as they spin. This is known as precession. When exposed to the 

RF pulse not only does the axis of the spins flip (as described above) but the protons start to 

precess in phase. This is represented schematically in Figure 2.3-1. 

 

 

Figure 2.3-1: Schematic representation of precession in and out of phase. Adapted from: Basic 

MRI Physics, Evert J Blink, 2004.166 

 

When the RF pulse is removed, interactions between protons (known as spin-spin interaction) 

cause the precession to de-phase. The rate at which a proton goes out of phase is again 

dependent on the bonds in which the proton is involved. For example, tightly bound protons 

Precession out of phase 

Precession in phase 
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within fat molecules de-phase much more quickly than the more loosely bound protons in 

water molecules. 

 

The rate of de-phasing for a given volume of tissue can be described by the T2 relaxation 

curve as shown in Figure 2.3-2. T2 is defined as the time in milliseconds for the spins to de-

phase to 37% of the original value. 

 

Figure 2.3-2: T2 relaxation curve. Taken from: Basic MRI Physics, Evert J Blink, 2004.166 
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protons that remain 
in phase 
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2.4 T2* relaxation 

 

In reality the observed loss of phase coherence occurs more quickly than would be expected 

from T2 effects alone. Tiny imperfections in the construction of the magnet and the mass of 

the patient within the scanner distort the magnetic field and cause it to become 

inhomogeneous. This inhomogeneity causes the spins to de-phase more quickly than would 

occur from spin-spin interaction alone. The time taken for 63% of the spins to de-phase is the 

T2* time. 

 

T2* is particularly relevant to this work as the presence of paramagnetic substances within the 

magnetic field increases the magnetic field inhomogeneity and thus shorten T2*. Within the 

liver the only paramagnetic substance in a significant concentration is iron and so T2* can be 

used as a measure of liver iron content.167 
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2.5 T1 and T2* mapping 

 

The terms ‘T1 mapping’ and ‘T2* mapping’ refer to MRI techniques that generates images 

with contrast derived from the T1 or T2* value for each pixel of the image. For example, to 

generate the T1 map shown in Figure 2.5-1 the T1 value for each pixel of the image has been 

calculated and displayed as a greyscale image. The brighter the pixel the higher the T1 value 

for that pixel. The black circle on the image is a region of interest (ROI) which can be placed 

on the image. The software will display the mean T1 value within that ROI. 

 

 

Figure 2.5-1: Representative T1 map with region of interest (black circle) for T1 

measurement. 

 

2.5.1 Known confounding effect of iron on T1 mapping 

 

The presence of extracellular water within the liver tissue is not the only factor that influences 

T1. The presence of hepatic iron overload is known to reduce hepatic T1 due to its 

paramagnetic effects.164, 167 This effect can be clearly seen in Figure 2.5-2 taken from the 
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work of Hoad et al, NMR Biomed, 2015. Patients with high levels of iron deposition had a 

shorter T1 than those without iron overload. This effect reached statistical significance in 

those with early stage fibrosis. This confounding effect of iron would have a detrimental 

effect on the ability of T1 to act as a reliable surrogate of hepatic fibrosis. 

 

 

Figure 2.5-2: Box plot demonstrating that T1 is lower in patients with iron overload (hatched 

bars) than without iron overload (solid bars) across all fibrosis stages. Taken from: Hoad et al, 

NMR Biomed, 2015.164 
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2.6 Corrected T1 

 

A novel approach to using MRI to stage hepatic fibrosis was taken by Banerjee R. and 

colleagues in a 2013 paper in the Journal of Hepatology.163 In this work, measurement of T2* 

with a gradient echo sequence was used to quantify hepatic iron content. The measured T1 

value was then corrected for the effects of iron excess with a patented algorithm to produce a 

corrected T1 (cT1). This eliminates the confounding effect of iron excess on T1 measurement 

and so cT1 can be thought of as the T1 value that would have been measure if liver iron was 

normal.  

 

In a clinical study assessing this new technique 79 patients having a standard of care liver 

biopsy and 7 healthy volunteers underwent MRI scan and calculation of cT1. Liver biopsies 

were staged according to the Ishak system by expert pathologists blinded to the MRI findings. 

In this study cT1 was found to have a strong association with histologic fibrosis stage. This 

relationship is shown in  

Figure 2.6-1 and there were statistically significant differences between all groups except 

Ishak 1-2 and Ishak 3-4.Perhaps the he most notable finding with this work was the ability of 

their MRI protocol to identify those with early fibrosis. AUROC for the differentiation of 

those with any liver fibrosis (Ishak ≥1) from those without fibrosis (Ishak 0 or healthy 

volunteer) was 0.94. This identification of early fibrosis had not previously been 

demonstrated with a non-invasive technique.  

 



 

51 
 

 

Figure 2.6-1: Scatter plot showing that cT1 correlates strongly with fibrosis stage  

(red circles – patients, blue squares – healthy volunteers). *** denotes significance at the 

p<0.05 level for inter-group differences by one way ANOVA with Bonferroni’s correction. 

Taken from: Banerjee et al, J Hep, 2014.163 
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2.7 LiverMultiscan
TM  

 

On the strength of the Banerjee et al paper the authors founded a University of Oxford spin 

out company called Perspectum Diagnostics Ltd. The algorithm used to generate cT1 from T1 

and T2* measurements was patented and the development of this technology into a 

commercially available product for the assessment of hepatic fibrosis was started.  This 

software product is called LiverMultiscanTM and is now CE marked and food and drug 

administration (FDA) approved. LiverMultiscanTM is a software programme that takes MRI 

data from freely available MRI sequences and processes these data to quantify cT1, fat 

fraction and liver iron. It also generates a colour coded cT1 map of the liver. Figure 2.7-1 

shows examples of the cT1 maps generated by LiverMultiscanTM. 

 

The grant that is the main source of funds for the work contained in this thesis was awarded 

jointly to The University of Birmingham, The University of Edinburgh and Perspectum 

diagnostics to develop LiverMultiscanTM and validate to Banerjee paper and further 

investigate LiverMultiscanTM  and cT1 as a potential biomarker of hepatic fibrosis. 
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Figure 2.7-1: Sample cT1 maps generated by LiverMultiscanTM. The liver parenchyma is 

colour coded according to the calculated cT1 value of each pixel. Low cT1 is represented by 

green increasing to yellow, orange and red for the highest cT1 values seen in the liver. 
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2.8 MRI data acquisition 

 

In this work the shortened modified Look Locker inversion (ShMoLLI) sequence (5, 1, 1) is 

used to measure T1 and a high resolution Gradient Recalled Echo (GRE) sequence is used to 

measure T2*. The well-established Dixon sequence is used to measure proton density fat 

fraction (PDFF). 

 

2.8.1 Patient preparation 

 

All MRI scans were performed at 3 Tesla on Siemens Verio MRI scanners (Siemens 

Healthcare GMBH, Erlangen, Germany). The MRI protocol does not require intravenous 

contrast. The participant lies supine with 3 lead ECG for cardiac gating. A combination of 

body matrix and spine matrix coil elements was used to acquire data. Following localisers and 

shimming, the sequences include: ShMOLLI recovery sequence (T1 mapping), multi-

gradient-echo sequence (T2* mapping) and modified Dixon sequence. All data were acquired 

during diastole with breath held in expiration to minimise movement artefact. Maps were 

acquired in a transverse plane through the liver hilum using the same slice position for each 

sequence.  

 

2.8.2 T1 mapping 

 

The ShMoLLI sequence calculates T1 by sampling the signal intensity at set intervals 

following 3 inversion pulses (5 samples after the 1st, 1 after the 2nd and 1 after the 3rd). These 
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measured signal intensities are plotted against time and the T1 relaxation curve fitted to the 

measured points. A schematic representation of this is shown in Figure 2.8-1. 

 

 

Figure 2.8-1: Schematic representation of the fitting of the T1 relaxation curve to measured 

points.  

 

The ShMoLLI sequence has an advantage over other T1 mapping sequences due to the shorter 

duration of the required breath holds and the increased accuracy in patients with higher heart 

rates, which is a particular disadvantage of the MoLLI sequence.168  

 

2.8.3 T2* mapping 

 

The GRE sequence used in this work is a well-established technique for T2* mapping and, as 

with T1 mapping relies on the fitting of a T2* relaxation curve to a number of measured 

signal intensities at known time points. 
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2.8.4 Dixon sequence 

 

The Dixon sequence is a well validated technique to measure liver fat and has been shown to 

correlate strongly with histological assessment of steatosis.169-172 Quantification of liver fat 

with the Dixon sequence relies on the fact that fat and water molecules precess at different 

rates. This means that fat and water de-phase at different rates and the acquisition of images at 

slightly different times generates images that have fat and water molecules in and out of phase 

with each other. Combining these mages allows the fat content to be calculated.173 

 

 

Figure 2.8-2: The 4 images generated by the Dixon sequence. Image courtesy of Allen D. 

Elster, MRIquestions.com.  
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2.9 MRI data analysis 

 

MRI data were acquired at the study sites and recorded in the industry standard DICOM file 

format. The DICOM files were anonymised and sent to Perspectum Diagnostics by secure 

electronic transfer. Once at Perspectum, T1 and T2* and Dixon maps were analysed using 

LiverMultiscanTM software by employees of Perspectum Diagnostics. The operator analysing 

the scans was blinded to the clinical findings and biopsy results. To generate cT1 values, a 

region of interest (ROI) of approximately 1.4cm3 was placed in a representative area of the 

right lobe of the liver avoiding vascular and biliary structures on both the T1, T2* and Dixon 

maps. LiverMultiscanTM software then calculates a value for cT1, iron content and fat 

fraction. 
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2.10 Reproducibility of cT1 mapping 

 

The use of cT1 to stage liver fibrosis is an emerging technique and little is known of the 

reproducibility of the test or the stability of hepatic cT1. Some existing non-invasive 

techniques for assessment of hepatic fibrosis such as VCTE and MRE are known to be less 

accurate in the post prandial state. We undertook studies with healthy volunteers to test the 

reproducibility of cT1 measurement and the stability of hepatic cT1 over time and in response 

to eating.  

 

Healthy volunteers were recruited from colleagues and students at the University of 

Birmingham. To ensure that volunteers did not have undiagnosed liver disease the following 

exclusion criteria were used: history of liver disease, significant medical co-morbidity (as 

judged by the study team), presence of features of the metabolic syndrome, body mass index 

(BMI) >30kg/m2 and alcohol consumption in excess of 21 units/week for men or 14 

units/week for women. 

 

2.10.1 Test, re-test 

 

In this study 5 volunteers were scanned as described in Chapter 2 and then taken out of the 

scanner. They were immediately taken back into the scanner and re-scanned using the same 

acquisition protocol. This immediate test and re-test study assesses the reproducibility of the 

acquisition protocol and data analysis. It is assumed that hepatic cT1 would not change in the 

short time between scans.  
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Of the 5 volunteers, all were Caucasian and 3 were female. Mean (±SD) age was 38.8 (±9.8) 

years. Mean (±SD) BMI was 23.7 (±2.5) Kg/m2. No volunteer was a current smoker. One 

volunteer was an ex-smoker with an 8 pack year history. All volunteers consumed alcohol, 

with a range of intake from 1-16 UK units/week. No volunteer consumed alcohol outside of 

recommended limits. Mean (±SD) time between the scans was 43 (±3) minutes. 

 

Mean (±SD) cT1 in scan 1 was 768.7 (±71.8) msec and in scan 2 was 793.6 (±35.6) msec. A 

paired sample t-test shows the difference in cT1 between first and second scans to be non-

significant (p=0.307). The coefficient of variation between the first and second scan for each 

individual was calculated and the mean (±SD) for these values was 3.7 (±3.5) %. The absolute 

change in cT1 between scans for each individual volunteer is shown in Figure 2.10-1. This 

demonstrates that although overall there was no statistically significant difference in cT1, one 

volunteer does have a striking increase in cT1 from 657.8 msec to 754.8 msec. This is a 

14.7% change in cT1 between the 2 scans, which is markedly higher than the mean (±SD) % 

change in cT1 for all volunteers (5.4 (±5.4) %) and the remaining 4 volunteers alone (3.0 

(±1.7) %). 
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Figure 2.10-1: Absolute cT1 values in the test, re-test study demonstrating the change in cT1 

for individual volunteers. 

 

This study suggests that measurement of cT1 is reproducible and has low inter-test variability 

with mean coefficient of variation of 3.7%. One volunteer however had a noticeably greater 

rise in cT1 between scans than the other 4 volunteers. The reason for the larger change in cT1 

is not clear. The quality of the acquisition and particularly the T2* map can degrade the 

accuracy of measurement, however all MRI acquisitions in this study were of good quality. 

The most likely source of variation is the placement of the ROI used to take the T1 or T2* 

measurement. Although the operator was blinded to the circumstances of the scan, this 

procedure is operator dependent and therefore a potential source of variation. The use of 

automated systems to place the ROI or analysis of the whole liver slice should reduce operator 

dependence and improve reproducibility further.  
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A limitation of this study is the small sample size used in this study. It is difficult to know 

how the distribution in a small sample such as this reflects the population distribution. It may 

be that a change in cT1 of 14.7% is very unusual in the population as a whole or it may be 

closer to the norm. A repeat of this study with a larger sample size and more consistent ROI 

placement could be conducted to better define the reproducibility of cT1 measurement.  

 

2.10.2 Fasted and fed 

 

The portal venous and hepatic arterial flow increases greatly in the fed state compared to 

fasting.174 This increase in flow causes a change in the liver parenchyma known as 

postprandial hyperaemia.175, 176 These changes are known to adversely affect the accuracy of 

assessment of fibrosis with elastography techniques such as VCTE and MRE.97, 175, 176 We 

sought to determine the changes in hepatic cT1 that occur following eating with a view to 

establishing if fasting before cT1 measurement was necessary to ensure reliable results are 

obtained. 

 

8 volunteers were scanned between 09:30 and 10:00 following an overnight fast. Drinking 

water was allowed at any time. After the first scan, volunteers continued with their usual daily 

activities and returned for a second scan between 14:00 and 15:30 the same day. It has been 

shown that the increase in liver blood flow due to eating occurs quickly and lasts for up to 180 

minutes.97  To ensure that scans were completed within this window, volunteers started their 

lunch no more than 60 minutes prior to their MRI scan. The meal consumed was not 

standardised. For this study, volunteers were included with BMI outside the range specified 

for other reproducibility studies.  
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Of the 8 volunteers, all were Caucasian and 5 were female. Mean (±SD) age was 34.9 (±4.4) 

years. Mean (±SD) BMI was 25.9 (±4.6) kg/m2. All volunteers were never smokers. All 

volunteers consumed alcohol, with a range of intake from 1-15 UK units/week. No volunteer 

consumed alcohol outside of recommended limits. Mean (±SD) time between the scans was 4 

hours 58 minutes (±20 minutes). All volunteers reported eating their typical lunch 45-60 

minutes before the scan. 

 

Mean (±SD) cT1 in the fasted scan was 771.1 (±47.1) msec and in the fed scan was 778.7 

(±47.6) msec. A paired sample t-test shows this difference to be non-significant (p=0.347). 

The coefficient of variation between the fasted and fed scan for each individual was 

calculated and the mean (±SD) for these values was 1.2 (±1.5)%.  Of note, the mean 

coefficient of variation in this study is lower than in the test, re-test study (3.7 (±3.5)%). The 

absolute change in cT1 for individual volunteers is shown in Figure 2.10-2. This shows that 

although overall there was no statistically significant difference in mean cT1, one volunteer 

does have a marked increase in cT1 from 778.6 msec to 835.5 msec. This was not the same 

volunteers as discussed in the test, re-test study. 
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Figure 2.10-2: Absolute cT1 values in the fasted and fed study demonstrating the change in 

cT1 for individual volunteers. 

 

These data indicate that cT1 in the fed state is not different to cT1 in the fasted state and it 

implies that fasting is not required before measurement of cT1. This conclusion should 

however be made with caution as one patient did have a marked increase in cT1 in the fed 

state. It is again not clear why this should have occurred for this one individual. The same 

explanation for variation may apply as in the test re-test study with changes in the ROI 

placement explaining the variation.  

 

A weakness of this study is the lack of meal standardisation. The effects of the fed state on 

cT1 could be underestimated by some individuals eating small or low calorie meals. The one 

volunteer in whom a marked increase in cT1 was observed may have eaten a particularly high 

calorie meal. Another factor that may be having an effect is the baseline condition of the liver. 
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The effects of a standardised test meal on FibroScan measurements became more pronounced 

as underling fibrosis stage increased.175 As the volunteers in this study were not assessed for 

the presence of liver fibrosis with any validated test, it is possible that underlying fibrosis 

stage may have influenced the result.   

 

2.10.3 Stability of cT1 over time 

 

In sections 2.10.1 and2.10.2, it has been demonstrated that the inter-test variation of cT1 

measurement is low. However, the chronological variation in hepatic cT1 has not to my 

knowledge been studied. cT1 may vary from day to day and this raises a question about the  

interpretation of small changes in cT1 on follow-up scans.  

 

To establish the natural variation in cT1 over time, 3 volunteers underwent cT1 mapping on a 

weekly basis for 10 weeks. These scans were performed as described in Chapter 2 and, for 

consistency, occurred in the early afternoon in each case. As shown above the fasting status of 

the volunteer should not be expected to alter the measured cT1. 

 

The 3 volunteers were all male with mean (±SD) age of 33 (±3.6) years. Mean (±SD) BMI 

was 25.4 (±1.0) Kg/m2. All volunteers were never smokers. All volunteers consumed alcohol, 

with a range of intake from 5-15 UK units/week. No volunteer consumed alcohol outside of 

recommended limits. Due to unforeseen circumstances, HV-B-017 was unable to have a scan 

on weeks 3 and 9. No volunteer experienced any significant intercurrent illness or had any 

change to BMI or alcohol intake during the 10 week period. 

 



 

65 
 

Mean (±SD) cT1 for HV-B-003, HV-B-016 and HV-B-017 was 788.2 (±14.7), 753.5 (±12.3) 

and 777.8 (±24.5) msec respectively. The variation in the absolute cT1 values over the 10 

week period is shown in Figure 2.10-3. 

 

 

Figure 2.10-3: Absolute cT1 values for 3 volunteers over a 10 week period demonstrating the 

natural variation in cT1 over time. 

 

The coefficient of variation for HV-B-003, HV-B-016 and HV-B-017 was 2.0%, 1.7% and 

3.4% respectively. Mean (±SD) coefficient of variation was 2.4 (±0.9) %. This study 

demonstrates that variation in cT1 over time is small. The coefficient of variation for all three 

volunteers is within the mean coefficient of variation in the test, re-test study.  

  

1 2 3 4 5 6 7 8 9 10
HV-B-003 792.5 784.4 805.1 771.9 784.6 787.3 771.1 812.8 804.3 768.3
HV-B-016 750.8 756.9 756.0 746.3 737.1 750.7 780.8 768.4 742.7 745.3
HV-B-017 823.2 736.1 759.3 780.1 797.5 781.9 762.3 781.9
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2.10.4 Discussion 

 

In Summary, these studies have shown that T1 measurement and cT1 calculation with our 

technique is reproducible, stable over time and does not need to be performed fasted. These 

results are relevant to the application of this test in clinical and research practice. These 

studies test the whole process of producing a cT1 value including both measurement and data 

analysis. It is likely that the variation seen in two of the test subjects is introduced during data 

analysis and relates to the position of the ROI.  The next step in assessing the reproducibility 

of this test would be to repeat these studies with standardised ROI placement. An increase in 

the sample size would also increase the reliability of this conclusion. 
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2.11 cT1 for healthy individuals 

 

cT1 mapping for staging liver disease is a little studied technique and the range of values 

expected in normal individuals is currently documented in one published study only. In the 

2014 Banerjee et al paper the mean (±SD) cT1 for the 7 healthy volunteers was 717 (±48) 

msec and 7 patients with Ishak 0 fibrosis was 750 (±42).163 It is clear that this is an 

insufficient sample upon which to reliably define a reference range for this technique. To my 

knowledge there are no other published studies outlining a reference range for hepatic cT1 or 

indeed for uncorrected T1 at 3T. The field strength is important as T1 increases with the 

strength of the standing magnetic field. This means that the value for healthy volunteers in the 

Banerjee study is not comparable to two published studies looking at hepatic T1 in healthy 

individuals at 1.5T. As would be expected for a lower field strength, these studies found a 

shorter mean (±SD) T1 of 678 (±45) msec (n=31)177 and 645 (±44) msec (n=14).164 Although 

field strength is important, the fact that these studies do not use the iron correction algorithm 

incorporated into LiverMultiscanTM should not affect the comparability of the results. In a 

patient with normal liver iron, there should be no correction from with algorithm and 

therefore T1 should equal cT1. 

 

2.11.1 Current upper reference limit for cT1 

 

The upper limit of the reference range for cT1 used by Perspectum is 822 msec. This value is 

derived from the mean (±SD) cT1 of the 14 patient in the ‘normal liver’ group (healthy 

volunteers and patients with Ishak 0 fibrosis) in the 2014 Banerjee et al paper (Personal 
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communication: Dr M. Kelly, Head of Innovation, Perspectum Diagnostics ltd, 07 Feb 2018). 

The mean (±SD) cT1 values for this combined group are not given in the paper. 

 

2.11.2 Defining a new upper reference limit for cT1 

 

In the studies described in this thesis and the initial development of the protocol a total of 103 

scans were performed on 34 individual healthy volunteers. These healthy volunteers were 

recruited for a range of reasons including: development of the study protocol, the 

reproducibility studies discussed in section 2.10 and as controls for the studies described in 

Chapters 3 and 4. There were also a number of volunteers recruited from the University of 

Edinburgh for similar reasons. The criteria for defining a ‘healthy’ volunteer, the MRI 

acquisition protocol and the method of data processing was identical at the two sites. In 

addition the scanners were calibrated on the same MRI phantom prior to the start of the study. 

This means that data from the two sites should be directly comparable. 

 

Healthy volunteers were recruited from colleagues and students at the University of 

Birmingham and University of Edinburgh. To ensure that volunteers did not have 

undiagnosed liver disease the following exclusion criteria were used: history of liver disease, 

significant medical co-morbidity (as judged by the study team), presence of features of the 

metabolic syndrome, body mass index (BMI) >30kg/m2 and alcohol consumption in excess of 

21 units/week for men or 14 units/week for women. The number of scans per healthy 

volunteer ranged from 1 to 11 scans. The majority of healthy volunteers had 2 scans with the 

frequency of multiple scans shown in Table 2.11-1. 
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Number of scans per healthy volunteer Frequency 
1 6 
2 21 

3-4 2 
8-11 5 

Table 2.11-1: The distribution of the number of scans per healthy volunteer. 

 

Taking the healthy volunteer cohort as a whole, the distribution of cT1 was not normal. 

Median (IQR) cT1 for healthy volunteers was 771.1 (750.7-805.4) msec. Minimum and 

maximum values were 657.8 and 951.5 msec respectively and can be seen in Figure 2.11-1.  

 

In this cohort, individual healthy volunteers having multiple scans has had an impact on the 

distribution of cT1. For example HV-E-010 has a hepatic cT1 at the upper end of the observed 

range in the majority of their scans. These values are highlighted in red in Figure 2.11-1. The 

reason for the high cT1 values in this individual is not clear. They are not an outlier in terms 

of their demographics or clinical parameters. Other measures of liver health such as 

biochemical tests or transient elastography were not performed. Whatever the reason for their 

relatively high cT1 the fact that this individual underwent 11 scans (the most of any 

volunteer) influenced the distribution. 
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Figure 2.11-1: Scatter plot of cT1 values from the studied healthy volunteers. The points in 

red are from a single individual (HV-E-010). Solid line: median, dashed lines 25th and 75th 

centiles. 

 

Excluding the values from HV-E-010 gives cT1 in healthy volunteers a distribution that 

approximates to normal as seen in Figure 2.11-2. Mean (±SD) cT1 in this group is 772.9 

(±45.8). Using the typically defined normal range of 1.96 standard deviations from the mean 

178 makes the upper limit of the reference range 862.6 msec. 
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Figure 2.11-2: Histogram demonstrating the distribution of cT1 in the healthy volunteer 

population with HV-E-010 excluded. The values on the x-axis are the upper border of the 

group. 

 

2.11.3 Discussion 

 

The upper limit of the reference range for cT1 defined in this study (863 msec) is clearly 

different to the one previously defined using data from Banerjee et al (822 msec). This study 

has a much larger sample size and so would be expected to provide a more reliable reference 

range. It is noticeable that the cT1 values seen in healthy volunteers in the Banerjee paper are 

low compared to the values seen in this cohort. The reason for this is not clear. There may be 
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unidentified differences in data acquisition but it may simply reflect the small sample size of 

the Banerjee paper. In addition to the small sample size the 822 msec cut-off may be 

unreliable as it is defined from a group where 7 of the 14 were not healthy volunteers but 

patients with Ishak 0 fibrosis. Healthy volunteers and patients with Ishak 0 fibrosis are clearly 

not the same and I do not think they should be analysed together.  

 

This study has some limitations. Repeated scans give too much weight to the cT1 values of 

individuals with more scans. This causes the distribution to skew and may have altered the 

reference value defined by this study. In addition, healthy volunteers were not all assessed for 

signs of liver disease by established methods. Efforts were made to recruit volunteers without 

risk factors for liver disease but the majority did not undergo blood tests or alternative fibrosis 

markers to ‘prove’ that they did not have undiagnosed liver disease.  

 

However, limitations notwithstanding, the large sample size used in this study provides an 

important contribution to the available knowledge of cT1 in healthy individuals. 
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2.12 Proton Magnetic Resonance Spectroscopy 

 

Proton Magnetic Resonance Spectroscopy (1H-MRS) is a MR technique that can non-

invasively identify substances within living tissue and measure their relative concentration. 

This ability to identify different substances is investigated in Chapter 5 as a potential 

biomarker in non-alcoholic fatty liver disease. 

 

2.12.1 Background 

 

The spin of protons and in particular the precession of their axis has previously been 

discussed in terms of T2 relaxation. Within a static magnetic field, the rate of precession of a 

proton (known in the field of MR spectroscopy as the ‘resonant frequency’) is proportional to 

two factors. The first is the strength of the magnetic field and the second is the chemical 

milieu in which a proton exists. For example, within a static magnetic field, the protons within 

a water molecule (H2O) have a different resonant frequency to those in a methane molecule 

(CH4) and within methanol (CH3OH) the protons in the methyl (-CH3) group have a different 

resonant frequency to the proton in the hydroxyl (-OH) group. This is due to the different 

bonding atom involved, the bond length and the adjacent bonds. This difference in resonant 

frequency between different protons is the principle on which 1H-MRS is based. During a 

proton magnetic resonance spectroscopy (1H-MRS) sequence, the magnetic field within the 

examined volume of tissue is homogeneous and thus the only factor influencing resonant 

frequency are the bonds in which protons are involved.  
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The strength of the static magnetic field will vary slightly between different scanners due to 

slight variations in the manufacturing of the magnet coil. Due to the fact that resonant 

frequency is dependent on field strength, it is not possible to directly compare 1H-MRS results 

from different scanners without first standardising for field strength. For this purpose the 

concept of ‘chemical shift’ is used. Chemical shift is the resonant frequency of the sample 

normalised to the resonant frequency of a standard molecule (usually tetramethylsilane) and is 

expressed in parts per million (ppm). The acquired signal from a 1H-MRS sequence is 

displayed as a histogram showing the relative abundance of protons on the y axis (arbitrary 

units) against chemical shift on the x axis (ppm). Figure 2.12-1 shows example spectra from 

patients with high and normal liver fat.  

 

 

Figure 2.12-1: Simplified 1H-MRS spectra showing: A) A patient with high hepatic fat 

content and B) normal hepatic fat content. Image adapted from Radiological Society of North 

America (RSNA) press release, 16/07/2013.179 
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The abundance of protons of a particular resonant frequency and therefore the concentration 

of a particular molecule within the examined volume of tissue is calculated by measuring the 

area under each peak. As the y axis on the spectrum is in arbitrary units the area under each 

peak cannot be directly compared between patients and must be normalised before 

comparison. It is conventional to normalise to the water peak and so the amount of lipid in a 

sample is found with the equation: 

 

lipid fraction =
𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑖𝑝𝑖𝑑 𝑝𝑒𝑎𝑘 

𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑖𝑝𝑖𝑑 𝑝𝑒𝑎𝑘 +  𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑤𝑎𝑡𝑒𝑟 𝑝𝑒𝑎𝑘
 

 

 

2.12.2 Water suppression  

 

Within liver tissue the majority of protons are contained in water with lipid making up the 

majority of the remainder. For patients with relatively low levels of liver fat the water signal 

is so large that the signal from the protons in fat is difficult to quantify. For this reason water 

suppression pulses are used during signal acquisition to de-phase water molecules and 

therefore prevent the acquisition of signal from water. This allows the fat signal to be more 

clearly seen. However, water suppression is not precisely directed at water and may also 

reduce the signal acquired from molecules with a similar resonant frequency. In practice this 

may reduce the size of peaks that are adjacent to the water peak and introduce error to the 

measurements.  
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An example for water suppressed and non-water-suppressed MR spectra are shown in Figure 

2.12-2. This figure shows the water peak and the peaks from different groups within fat 

molecules numbered 1 to 7. The origin of these peaks is shown in Table 2.12-1.  

 

Peak number 
(Figure 2.12-2) 

Chemical 
shift (ppm) 

Group name Group structure  Protons 
per group 

1 5.3 Olefinic -CH=CH- 2 
Water 4.7* Water H2O 2 
2† 2.8 Diacyl -CH=CH-CH2-CH=CH- 2 
3 2.2 α-Carboxyl -COOH-CH2-CH2- 2 
4 2.0 α-Olefinic -CH2-CH=CH-CH2- 4 
5 1.6 β-Carboxyl COOH-CH2-CH2- 2 
6 1.3 Methylene -CH2- 2 
7 0.9 Methyl -CH3 3 
* Measured as the sum of two peaks(narrow and broad) to provide more accurate fitting 
† Peak often difficult to identify and is not well seen in Figure 2.12-2 
 
Table 2.12-1: Identification of peaks in 1H-MRS spectra of the liver. The first column refers 

to the labelled peaks in Figure 2.12-2. The protons highlighted in bold in the column headed 

“Group structure” shows the protons contributing to the magnitude of the peak. The number 

of protons per group is from a customised basis set based on the work of Hamilton et al.180 

The magnitude of each peak is based on the abundance of protons with a particular chemical 

shift, dividing the peak magnitude by the number of protons in each group gives the number 

of groups and the number of groups that occur only once per FA chain (eg. methyl groups) 

gives the number of chains. 
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Figure 2.12-2: MR spectra from the same voxel showing A) Non-water-suppressed spectrum 

and B) Water-suppressed spectrum. The black line is the measured spectrum with the 

overlying red line showing the fitted spectrum. For key to peaks see Table 2.12-1. 
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2.12.3 1H-MRS data acquisition and processing 

 

1H-MRS measurements were performed on a 3 Tessla Siemens Verio MRI scanner (Siemens 

Healthcare GMBH, Erlangen, Germany). High order, automated shimming was performed 

and localisers in 3 planes were used to place a 2 x 2 x 2 cm voxel (volume in which 1H-MRS 

is measured) in the right lobe of the liver avoiding large biliary and vascular structures. 1H-

MRS data from water-suppressed (WS) and non-water-suppressed (WREF) Stimulated Echo 

Acquisition Mode (STEAM) acquisitions (Repeat time 3 sec, echo time 20 msec; 5 

measurements of 1 signal average for both) were processed and analysed by Mr Robert 

Flintham (RBF) (medical physicist with experience of in vivo MRS) using TARQUIN 

software.181 TARQUIN performs automated phase and frequency correction, pre-processing, 

and fitting of the fat/liver spectrum.  Visual quality control of fitted spectra was performed by 

RBF and poorly fitted spectra were excluded from the analysis. TARQUIN was used to select 

the individual peaks in turn to measure the area under the peak. An exception to this is that the 

1.6 and 2.2 ppm peaks (protons α and β to carboxyl groups) were fitted and measured 

simultaneously. An example of the fitting of the peaks at 1.3 and 0.9 ppm is shown in Figure 

2.12-3 the area under the fitted curve measured by TARQUIN gives the relative concentration 

of protons with that resonant frequency.  
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Figure 2.12-3: Example of the fitting individual peaks in a water-suppressed spectrum. A) 1.3 

ppm (methylene) peak. B) 0.9 ppm (methyl) peak. 
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2.12.4 Calculation of fatty acid characteristics 

 

When looking at fatty acid composition it is necessary to identify the number of fatty acid 

chains within a sample and use this to normalise the measurements. With knowledge of the 

basic structure of a FA (Figure 2.12-4) it can be seen that the methyl, α-carboxyl and β-

carboxyl groups occur only once in any given FA and so the abundance of these groups can 

be used to estimate the total number of FA chains present. 

 

 

Figure 2.12-4: Basic structure of a simple fatty acid; in this case stearic acid. 

 

The relative magnitude of each spectral peak is based on the number of protons rather than the 

number of groups. A basis set was customised based on Hamilton et al180 to define the 

number of proton within each chemical group (Table 2.12-1) and thus define the relative 

number of groups present.  

 

  



 

81 
 

Thus, the number of fatty acid chains to act as a denominator can be calculated from the 

formula: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑖𝑛𝑠 =  
𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 0.9, 1.6 𝑎𝑛𝑑 2.2 𝑝𝑝𝑚 𝑝𝑒𝑎𝑘𝑠

(3 + 2 + 2)
 

With a known denominator, the required parameters can be calculated with the following 

formulae: 

𝑀𝑒𝑎𝑛 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚𝐶𝐿)  =
𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑎𝑙𝑙 𝑓𝑎𝑡 𝑝𝑒𝑎𝑘𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑖𝑛𝑠
 

 

𝑃𝑈𝐹𝐴 =  
(𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 2.8 𝑝𝑝𝑚 𝑝𝑒𝑎𝑘 ÷ 2)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑖𝑛𝑠
 

 

𝐷𝑜𝑢𝑏𝑙𝑒 𝑏𝑜𝑛𝑑𝑠 𝑝𝑒𝑟 𝑐ℎ𝑎𝑖𝑛 (𝑛𝐷𝐵) =  
(𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 5.3 𝑝𝑝𝑚 𝑝𝑒𝑎𝑘 ÷ 2)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑖𝑛𝑠
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CHAPTER 3: MAGNETIC RESONANCE T1 MAPPING FOR THE 

STAGING OF HEPATIC FIBROSIS 
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3.1 Disclosure 

 

This data has been written up and submitted for publication in Scientific Reports. Dr Peter 

Eddowes is a joint first name author on this paper. The analysis presented here was performed 

by Dr Peter Eddowes and is independent of the submitted manuscript. 
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3.2 Aims 

 

As outlined in Chapter 2, T1 mapping has potential utility in the staging of hepatic fibrosis. 

LiverMultiscanTM (Perspectum Diagnostics, Oxford, UK) has been developed to overcome 

the known confounding effects of hepatic iron overload. In this chapter data are presented that 

aim to prospectively evaluate the ability of LiverMultiscanTM to identify and stage hepatic 

fibrosis.  

 

In the first study (Section 3.3) LiverMultiscanTM is evaluated using liver biopsy histology as 

the reference standard. As a secondary aim, the performance of LiverMultiscanTM for staging 

hepatic fibrosis will be compared to existing non-invasive biomarkers. 

 

Liver biopsy histology has the potential for sampling error and this is a well-known limitation 

of using liver biopsy histology as the reference standard. The second experiment (Section 3.4) 

aims to control for this limitation by using multiple samples from hepatectomy specimens as 

the reference standard. 
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3.3 cT1 as a marker of fibrosis in chronic liver disease: a prospective validation 

study of LiverMultiscan
TM  

 

3.3.1 Methods 

 

This study conforms to the research ethics guidelines of the 1975 declaration of Helsinki. It 

has received approval from the national research ethics service (14/WM /0010) and local 

research and development offices at the study sites. The study is registered with the ISRCTN 

registry (ISRCTN39463479) and the National Institute of Health Research (NIHR) portfolio 

(15912). 

 

Participants 

All adult patients booked for a non-targeted liver biopsy for any indication at Queen Elizabeth 

Hospital Birmingham and Royal Infirmary of Edinburgh between February 2014 and 

September 2015 were invited to take part in the study. Exclusion criteria were: biopsy of a 

distinct focal lesion, inability to give fully informed consent and any contraindication to MRI. 

All patients who took part gave fully informed written consent and then underwent research 

MRI, FibroScanTM, blood sampling and collection of demographic data in the two weeks prior 

to their liver biopsy.  

 

At the Queen Elizabeth Hospital Birmingham a total of 652 patients were invited to take part 

and 80 patients were consented. The total number of patients invited to take part at the Royal 

Infirmary of Edinburgh was not recorded and 82 patients were consented. The flow chart for 

recruitment is shown in Figure 3.3-1. 
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Healthy volunteers were recruited from colleagues and students at the University of 

Birmingham and University of Edinburgh. To reduce the chance that volunteers had 

undiagnosed liver disease they were excluded if they had a history of liver disease, any 

significant medical co-morbidity, features of the metabolic syndrome, BMI >30kg/m2 or 

alcohol consumption in excess of 21 units/week for men or 14 units/week for women.  

 

 

Figure 3.3-1: Flow chart for recruitment. 

 

Study Interventions 

MRI scans were conducted as described in Chapter 2. VCTE was measured by trained 

operators in accordance with manufacture’s guidelines. Examinations were regarded as 

‘possible’ if at least 10 valid readings could be recorded and ‘reliable’ if they contained at 

least 10 valid readings and had interquartile range (IQR) to median ratio ≤30%.182 The 

decision on using the M probe or XL probe was made on the recommendation from the 

FibroScanTM machine based on the automated skin to liver capsule distance measurement. 
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Blood samples were analysed for routine markers of liver disease including aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), 

bilirubin and albumin. Simple blood biomarker panels including AST:ALT ratio, AST/platelet 

ratio index (APRI) and Fib-4 were calculated according to published formulae.46, 48, 49 Serum 

samples were also sent to iQur ltd. (London, UK) for analysis to determine the enhanced liver 

fibrosis (ELF) score. 

 

Histological assessment 

Liver biopsies samples were taken with 16 gauge biopsy needles. Histology was assessed by 

experienced liver histopathologists blinded to the MRI findings. Biopsies that were less than 

15mm in length or that contained less than 11 portal tracts were regarded as inadequate for 

histological assessment and were therefore excluded.30, 41 Fibrosis was staged according to 

Ishak et al.8 Liver biopsy samples were also assessed for collagen proportionate area by Dr 

Natasha McDonald at the University of Edinburgh. The method used was according to 

Calvaruso et al.26 

 

As multiple pathologists were involved in the scoring of liver biopsies in this study there is 

potential for inter-observer variation in fibrosis assessment to reduce the reliability of the 

results. To assess if this has had a significant effect the interobserver agreement between 

pathologists was assessed. A random sample of cases was shared between the University of 

Birmingham and the University of Edinburgh. These cases were rescored and weighted kappa 

statistics used to assess the agreement between pathologists.  
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Statistical analysis 

Statistical analysis was carried out using IBM SPSS Statistics for Windows version 22 (IBM 

Corp, Armonk, NY). Variables are summarised with mean and standard deviation (SD) if 

normally distributed and with median and range if not normally distributed. Correlation 

between continuous variables was determined with Spearman’s correlation coefficient (Rho). 

Association between normally distributed variables was assessed with t-tests or ANOVA as 

appropriate. Non-normally distributed variables were assessed with the Mann-Whitney U test, 

the Kruskal-Wallis test or the Jonckheere-Terpstra test as appropriate. For all tests a p-value 

<0.05 was taken to indicate statistical significance. Diagnostic performance was compared by 

calculation of the receiver operating characteristic and determination of the area under the 

curve (AUROC) with 95% confidence intervals (CI). 

 

3.3.2 Results 

 

Out of 162 patients consented to take part in the study 13 were excluded due to an inadequate 

liver biopsy specimen. A further 7 patients were excluded due to MRI scans being unavailable 

for analysis (technical failure/breakdown: 3, withdrawal of consent: 2, unable to tolerate scan: 

2), which left a total of 142 patients for analysis. 24 volunteers were recruited and underwent 

research MRI scans. The acquisition protocol for volunteers was the same as for patients and 

is described in Chapter 2. All recruited volunteers had complete data for analysis. 

 

Characteristics of the participants and histology 

Baseline demographics of the study cohort are outlined in Table 3.3-1. Of the 142 patients 

included in the final analysis the mean (±SD) biopsy length was 25.3 (±6.2) mm. The post-
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biopsy diagnoses are shown in Table 3.3-2 and the distribution of patients in each Ishak stage 

is shown in Table 3.3-3.  

 

Median (range) collagen proportionate area was 5.64 (0.25-43.19) %. The relationship 

between CPA and Ishak stage is highly significant by the Jonckheere-Terpstra test (p<0.0001) 

(Figure 3.3-2). 

 

 Patients  
n=142 

Healthy 
Volunteers 
n=24 

p-value 

Recruited from Birmingham 73 (51.4%) 11 (45.8%) 0.663 
Age (years) 52 (18-77) 37 (22-67) 0.001 
Male 84 (59.2%) 13 (54.2%) 0.660 
Caucasian 125 (88%) 24 (100%) 0.297 
Asian 13 (9.2%) 0 (0%) 
Afro-Caribbean 4 (2.8%) 0 (0%) 
BMI (Kg/m2) 29.8 (±6.7) 22.6 (±3.0) <0.001 
Post-transplant 34 (23.9%) n/a n/a 
Current alcohol consumption 42 (29.6%) 24 (100%) <0.001 
  Median intake* 7.5 (1-140) 7.5 (1-17) 0.995 
Data presented as n (%), median (range) or mean (±SD) as applicable. 
p-values from Fisher’s exact test, Mann-Whitney U test or t-tests as appropriate. 
* Of those who consume alcohol 
Table 3.3-1: Baseline demographics of the study population separated into patients and 

healthy volunteers. Volunteers were significantly younger, had a lower BMI and were more 

likely to consume alcohol. Median intake of drinkers was not significantly different. 
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Post-biopsy diagnosis n % 
Non-alcoholic fatty liver disease (NAFLD) 50 35.2% 
Autoimmune liver disease* 27 19.0% 
Chronic hepatitis B and C 18 12.7% 
Normal 13 9.2% 
Transplant related complications  
(rejection or vascular problems) 

11 7.7% 

Alcohol related liver disease 6 4.2% 
Drug induced liver injury 4 2.8% 
Others including haemochromatosis, α1-
antitrypsin deficiency, sarcoid liver disease, 
ductal plate malformation and nodular 
regenerative hyperplasia 

13 9.2% 

* Includes autoimmune hepatitis, primary biliary cholangitis and primary sclerosing 
cholangitis. 
Table 3.3-2: Post-biopsy diagnosis for the 142 patients included in the final analysis. 

 

Ishak Stage  n % 
0 29 20.4% 
1 26 18.3% 
2 22 15.5% 
3 32 22.5% 
4 9 6.3% 
5 7 4.9% 
6 17 12.0% 
Table 3.3-3: Distribution of Ishak fibrosis stages in the cohort. 
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Figure 3.3-2: Box plot showing the relationship between CPA and Ishak stage in the 142 

patients included in the final analysis. The overall relationship is highly significant 

(p<0.0001) by the Jonckheere-Terpstra test. 

 

Inter-observer agreement between pathologists 

The assessment of fibrosis by Ishak stage showed good agreement between the 4 pathologists 

assessing biopsies with weighted kappa of 0.66.  

 

Relationship between cT1 and fibrosis 

cT1 had a moderate correlation with Ishak stage with Rho = 0.432 (p<0.001). Mean cT1 for 

healthy volunteers (HV) was 768.9 msec and mean cT1 for Ishak stages 0, 1-2, 3-4 and 5-6 

were 851.7, 901.9, 953.5 and 995.6 msec respectively. This relationship is shown in Figure 
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3.3-3 and was statistically significant by the Kruskal-Wallis test with p<0.001. Statistically 

significant pairwise differences are seen between groups HV and 1-2 (p<0.001), HV and 3-4 

(p<0.001), HV and 5-6 (p<0.001), 0 and 3-4 (p=0.002), 0 and 5-6 (p<0.001) and 1-2 and 5-6 

(p=0.006). cT1 had a weak but statistically significant positive correlation with CPA with 

Spearman’s Rho of 0.333 (p<0.001).  

 

Using the cT1 cut-off value of 822 msec that is proposed by Perspectum Diagnostics as the 

upper limit of normal (see section 2.11.1) multiparametric MRI had sensitivity of 0.82, 

specificity of 0.45, positive predictive value (PPV) of 0.85 and negative predictive value 

(NPV) of 0.39 for the detection of liver fibrosis (≥ Ishak stage 1). Using the upper limit of 

normal defined in section 2.11.2 (863 msec) multiparametric MRI had sensitivity of 0.78, 

specificity of 0.59, PPV of 0.88 and NPV of 0.40 for the detection of liver fibrosis (≥ Ishak 

stage 1). 
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Figure 3.3-3: A) Box plot showing the relationship between cT1 and Ishak stage for patients 

undergoing liver biopsy. HV did not undergo liver biopsy and are presented as a separate 

group. p<0.001 by the Kruskal-Wallis test. See text for significant intergroup differences by 

post hoc tests. B) Scatter plot showing the correlation between cT1 and CPA for patients only. 

Spearman’s Rho = 0.333, p<0.001. 

A 

B 
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Relationship between established biomarkers and fibrosis 

Volunteers did not undergo blood sampling or VCTE so established biomarkers of fibrosis are 

available for patients only. VCTE was possible in 136/142 (95.8%) patients and reliable by 

Boursier’s criteria182 in 130/142 (91.5%) patients. Only reliable VCTE was included in further 

analysis. As shown in Figure 3.3-4, all assessed biomarkers had a statistically significant 

association with Ishak stage by the Jonckheere-Terpstra test. AST:ALT ratio (p=0.001), APRI 

(p=0.006), FIB-4 (p<0.001), hyaluronic acid (p<0.001), ELF test (p<0.001) and liver stiffness 

from reliable VCTE examinations (p<0.001). 

 

As shown in Figure 3.3-5, CPA showed a moderately strong positive correlation with ELF 

(Rho=0.401, p<0.001) and VCTE (Rho=0.432, p<0.001). There was a weak but statistically 

significant positive correlation with AST:ALT ratio (Rho=0.272 , p=0.001), FIB-4 

(Rho=0.269, p=0.001) and hyaluronic acid (Rho=0.390, p<0.001). There was no statistically 

significant correlation with APRI (Rho=0.146, p=0.085).   
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Figure 3.3-4: Box plots showing the relationship between Ishak stage and non-invasive 

biomarkers of fibrosis. All relationships significant by the Jonckheere-Terpstra test (n=130 for 

FibroScan. 
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Figure 3.3-5: Scatter plots showing the correlation between CPA and non-invasive biomarkers 

of fibrosis.  
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Comparative performance of cT1 compared to other non-invasive biomarkers for the staging 

of fibrosis 

For the detection of any fibrosis (Ishak ≥1), advanced fibrosis (Ishak ≥4) and cirrhosis (Ishak 

≥5) the area under the receiver operating characteristic (AUROC) with 95% confidence 

interval is shown in Table 3.3-4. The cT1 values to maximise the Youden index are also given 

along with the sensitivity and specificity at this cut off.  

 

 Any fibrosis 
(Ishak ≥1) 

Advanced 
fibrosis (Ishak 
≥4) 

Cirrhosis 
(Ishak ≥5) 

cT1 0.71 (0.59-0.82) 0.73 (0.64-0.82) 0.71 (0.61-0.81) 

 
Cut-off value to 
maximise Youden index 888.0 msec 888.0 msec 888.0 msec 

 Sensitivity 0.72 0.97 1.00 

 Specificity 0.79 0.50 0.47 
Liver stiffness * 0.83 (0.75-0.91) 0.83 (0.75-0.91) 0.81 (0.71-0.92) 
ELF 0.79 (0.71-0.88) 0.66 (0.55-0.77) 0.66 (0.54-0.78) 
Hyaluronic acid 0.78 (0.70-0.87) 0.69 (0.58-0.79) 0.69 (0.58-0.80) 
FIB-4 0.68 (0.58-0.79) 0.67 (0.56-0.78) 0.73 (0.62-0.84) 
APRI 0.66 (0.55-0.76) 0.60 (0.49-0.72) 0.65 (0.53-0.78) 
AST:ALT ratio 0.63 (0.51-0.75) 0.60 (0.48-0.72) 0.68 (0.57-0.80) 
* n=130 for liver stiffness (Reliable FibroScan examinations only) n=142 for all other tests 
    
Table 3.3-4: AUROC (95% CI) values for the identification of any fibrosis, advanced fibrosis 

and cirrhosis. 

 

Influence of inflammation of cT1 

During data analysis it was noted that there were several patients with an elevated cT1 

without significant fibrosis and it was also noted that cT1 is significantly higher in patients 

with non-alcoholic fatty liver disease (NAFLD) than in other aetiologies.  
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It is proposed that this increase in cT1 is caused by hepatic inflammation. This is supported 

by previous work by Hoad et al, which suggested that inflammation leads to a significant 

increase in hepatic T1 independent of fibrosis stage.164 The correction algorithm to calculate 

cT1 from T1 corrects for iron overload but not inflammation. 

 

We sought to assess how hepatic inflammation influences cT1 in this cohort. Hepatic 

inflammation is difficult to quantify in a mixed cohort such as this due to the absence of a 

single validated histological score for inflammation across aetiologies. Different aetiologies 

have different patterns of liver injury and therefore a system that describes the histological 

appearance of inflammation in one condition is not valid for other conditions. For this reason 

a complex system to describe inflammation was inappropriate. To define the presence of 

inflammation, histology reports were reviewed by investigators blinded to the MRI findings. 

Biopsy samples were divided into those with and those without inflammation by consensus 

agreement. For patients with and without inflammation on liver biopsy, mean cT1 was 942.1 

and 884.9 msec respectively. The difference in cT1 was statistically significant by the Mann-

Whitney U test (p=0.004) and is shown in Figure 3.3-6.  
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Figure 3.3-6: Box plot showing the statistically significant difference in cT1 between patients 

with no inflammation (n=93) and those with inflammation (n=49) on liver biopsy.  

 

As demonstrated in Figure 3.3-7. This difference in cT1 is not seen in patients with fibrosis 

and approaches statistical significance in those without fibrosis suggesting that there may be a 

ceiling effect. cT1 appears to reflect ‘fibro-inflammation’ within the liver.  
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Figure 3.3-7: Box plot showing the difference in cT1 between patients stratified by fibrosis 

stage and by the presence of inflammation. 

 

Exclusion of ‘fibro-inflammatory’ liver disease 

23/142 patients had no fibrosis and no more than minimal inflammation on biopsy. Mean 

(±SD) cT1 was statistically significantly lower in this group compared to those with either 

fibrosis, inflammation or both (831 (±111) msec vs 940 (±113) msec, p<0.001) (Figure 3.3-8). 

cT1 had AUROC (95% CI) for the differentiation of these groups of 0.768 (0.658-0.879) A 

cut off value of 822 msec is proposed as the upper limit of normal by Perspectum 

diagnostics.163 Using this value gave cT1 a PPV and NPV of 0.90 and 0.36 respectively for 

the exclusion of fibro-inflammatory liver disease.  

 

p=0.054 

p=0.567 

n=23 n=6 n=26 n=87 
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Figure 3.3-8: Distribution of cT1 values in patients with either fibrosis or inflammation 

compared to those with neither. P-value from independent samples t-test. 

 

Confounding effect of aetiology 

If the 34 liver transplant recipients are excluded from the analysis, the correlation between 

cT1 and Ishak stage for the remaining 108 patients showed a stronger correlation (Rho=0.53, 

p<0.001) than in the whole cohort (Rho = 0.432, p<0.001). The same stronger correlation was 

seen when fibrosis was assessed with CPA. With transplant patients were excluded Rho=0.41 

(p<0.001) and in the whole cohort Rho=0.333 (p<0.001). For the 50 patients with NAFLD, 

p<0.001 
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the correlations between cT1 and both Ishak stage and CPA are non-significant with 

Rho=0.23 (p=0.115) and Rho=0.18 (p=0.209) respectively. 

 

As demonstrated in Figure 3.3-9, there is a statistically significant elevation of cT1 in NAFLD 

compared to other aetiologies. As seen in  Figure 3.3-10, this difference in cT1 is not 

explained by the distribution of fibrosis or inflammation.  

 

 

Figure 3.3-9: Boxplot demonstrating that cT1 varies by diagnosis. p<0.001 by the Kruskal-

Wallis test. Post hoc tests show significant inter-group differences between NAFLD and all 

other groups and between normal biopsies and ‘other’. There is no statistically significant 

difference between those in the viral and other groups. 
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 Figure 3.3-10: Distribution of fibrosis and inflammation between different aetiologies. A) 

The distribution of fibrosis stages is not significantly different between aetiologies (p=0.548 

by Fisher’s exact test). B) The distribution of histological inflammation is not significantly 

different between aetiologies (p=0.098 by Fisher’s exact test). 
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3.3.3 Discussion 

 

Given the known limitations of currently available methods of fibrosis assessment there is 

clear need to develop effective and accurate non-invasive biomarkers of hepatic fibrosis. Such 

a method could have utility in clinical practice and as a useful surrogate endpoint in research. 

This study is the first independent validation of cT1 as a biomarker of hepatic fibrosis. 

Presented are data evaluating the performance of cT1 in a large and well characterised cohort 

of patients and HVs.  

 

Demographic data show that patients are older, have higher BMI and are less likely to 

consume alcohol than HV. The lower BMI in HV is expected due to exclusion of potential 

HV with BMI above the normal range and the lower age in HV reflects the fact that the 

majority of HV were students who tend to be younger. In this study the HV are treated as a 

separate group from patients without fibrosis on biopsy. Thus the demographic differences do 

not introduce confounding.   

 

The biopsies included in this study are of a good size, which has been shown to improve the 

reliability and repeatability of the histological assessment of fibrosis.37 This suggests that, 

notwithstanding the intrinsic limitations of liver biopsy histology, it is likely to have provided 

a reliable reference standard against which to compare multiparametric MRI. Further 

confidence in the reliability of biopsy as a reference standard in this study is provided by the 

good agreement between the pathologists involved in this study. Weighted kappa statistics 

show good agreement and these kappa values are in line with published data.183-185 The 

relationship between Ishak stage and CPA seen in this study is comparable to previous 
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studies.26, 186 CPA technique is not well standardised and this agreement with published data 

provides reassurance that our CPA technique is reliable. 

 

Within the patient cohort all stages of fibrosis are represented. This increases the applicability 

of the results to a wide range of patients. Even though all fibrosis stages are represented, there 

are fewer patients with cirrhosis than earlier stage fibrosis. This is likely to be due to the fact 

that cirrhosis is more readily detectable by non-invasive tests and therefore standard of care 

biopsy is less likely to be indicated in those with cirrhosis. Within the study cohort there is a 

relative excess of autoimmune liver disease and a paucity of alcohol related liver disease. This 

demonstrates that the patients referred for liver biopsy are not representative of liver patients 

as a whole. This should be born in mind when applying these results to other populations. It is 

possible that the findings of this study would not be applicable to the wider population. 

 

Data show a stepwise increase in cT1 with increasing Ishak stage and a fairly weak but highly 

statistically significant correlation between cT1 and CPA. Post hoc tests show statistically 

significant differences in cT1 between HV and mild fibrosis, moderate fibrosis and cirrhosis. 

Patients without fibrosis on biopsy had statistically significant differences in cT1 when 

compared to those with advanced fibrosis and cirrhosis. There were no statistically significant 

differences between any two adjacent groups. Of note there is no statistically significant 

difference between advanced fibrosis and cirrhosis or between no fibrosis and mild fibrosis.  

 

Other evaluated non-invasive tests have performed broadly in keeping with published data 

however the correlations between CPA and non-invasive tests were generally less strong than 

published studies. No statistically significant correlation between CPA and APRI was found. 
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When comparing non-invasive tests for the detection of any fibrosis (Ishak >0), advanced 

fibrosis (Ishak ≥4) or cirrhosis (Ishak ≥5) cT1 had AUROC comparable to all other evaluated 

tests. Only VCTE outperformed multiparametric MRI across all stages of fibrosis. 

 

Although these data show that the performance of multiparametric MRI is comparable to 

other non-invasive markers of liver fibrosis the strength of the relationship between cT1 and 

hepatic fibrosis is less strong in this cohort than in previous published data from Banerjee et 

al.163 The Banerjee study reports Rho=0.68 (p<0.0001) for the correlation between cT1 and 

Ishak stage and Rho=0.54 (p<0.0001) for the correlation between cT1 and CPA. This is in 

contrast to Rho=0.43 (p<0.001) for the comparison with Ishak stage and Rho=0.33 (p<0.001) 

for the comparison with CPA in this study. Banerjee et al also showed statistically significant 

differences between all fibrosis groups except between Ishak 1-2 and Ishak 3-4 as shown in  

Figure 2.6-1. This has not been replicated in this work where there was no statistically 

significant difference between no fibrosis vs early stage fibrosis nor moderate fibrosis vs 

cirrhosis.  

 

This weaker relationship is reflected in reduced diagnostic performance.  For the detection of 

any fibrosis AUROC (95% CI) for multiparametric MRI was 0.71 (0.59-0.82) in this study, 

which is notably lower than 0.94 (0.90–0.99) in the Banerjee study. When making this 

comparison it should be noted that, in the Banerjee paper, HV and patients without fibrosis on 

biopsy are analysed together whereas here they are analysed as two separate groups. In these 

data there is a non-statistically significant trend towards lower cT1 in HV than those with 

Ishak 0 fibrosis on biopsy. It is possible that this difference in the analysis has contributed to 

the lower AUROC in this work. 
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The difference in analysis cannot completely explain the weaker correlation between cT1 and 

fibrosis seen in this work and it remains unclear why multiparametric MRI should have 

performed less well in this study than in previous work. Other non-invasive markers of liver 

fibrosis assessed in this study have performed broadly in line with published data. This would 

suggest that if patient factors are confounding the ability of cT1 to measure fibrosis that it is 

an issue specific to multiparametric MRI. 

 

The reduced diagnostic performance of multiparametric MRI in this study compared to 

previous work may be driven partly by inflammation. Figure 3.3-6 shows that, in line with 

published work by Hoad et al cT1 is significantly different between those with and without 

inflammation on biopsy.164 As seen in Figure 3.3-7, this effect of inflammation on cT1 is most 

marked in patients without fibrosis suggesting that a raised cT1 may be due to either fibrosis 

or inflammation or both. This is a clear confounding factor when using cT1 to measure 

hepatic fibrosis. 

 

It may be more clinically useful to consider cT1 a measure of ‘fibro-inflammation’ rather than 

any single process. In clinical practice a tool that could reliably identify patients without 

significant fibrosis or inflammation could be of value as it may allow these patients to be 

quickly and safely reassured and discharged from follow-up. AUROC for the identification of 

participants with fibro-inflammation was higher than for the detection of fibrosis alone. 

However, to be a useful test to exclude fibro-inflammation and avoid further testing, 

multiparametric MRI would require a high NPV. Using the cT1 cut off value of 822 msec163 

the NPV for the exclusion of fibro-inflammatory liver disease is very low at 0.36. The PPV is 

high at 0.90 however, the accuracy of both these assessments are limited by the recruitment 
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strategy. Participants were recruited from patients having a standard of care biopsy and 

therefore there was already a suspicion of either fibrosis or inflammation. This influences the 

pre-test probability and therefore influences NPV and PPV.  

 

The performance of multiparametric MRI is not consistent across aetiologies. When analysing 

only patients with NAFLD (the single biggest group in this cohort) cT1 shows no significant 

relationship with either Ishak stage or CPA. Excluding liver transplant recipients from the 

analysis improves the correlation of cT1 with Ishak stage but the performance remains less 

good than in the Banerjee study. The mix of aetiologies is another possible reason for the 

poorer performance of multiparametric MRI in this study. Although the cohort used for this 

study has broadly similar demographics to that used previously, the mix of diagnoses is 

notably different. Autoimmune liver disease forms the second largest group in the current 

study and it is an uncommon diagnosis in the Banerjee study’s cohort. There are also no liver 

transplant recipients in the Banerjee cohort and 23.9% of patients in the current study were 

liver transplant recipients.  

 

As well as the diagnostic performace of multiparametric MRI varying with aetiology there is 

a significant increase in cT1 in patients with NAFLD compared to other aetiologies. As seen 

in  Figure 3.3-10 this difference cannot be explained by either the severity of fibrosis or the 

presence of inflammation. This suggests that factors other than fibrosis and inflammation also 

contribute to the measured cT1. 

 

One obvious difference between patients in the NAFLD group and those in the other groups is 

the hepatic fat content. By histological assessment of steatosis there is significantly more fat 
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in the liver of patients with NAFLD than without (p<0.001 by Fisher’s exact test). Published 

evidence using MRI simulation and phantom experiments suggests that T1 is overestimated in 

the presence of steatosis when, as in this study, it is measured by the ShMoLLI sequence.187 

Further work by Perspectum Diagnostics suggests that this effect is small and not clinically 

relevant (Personal communication, Dr R. Banerjee, CEO Perspectum Diagnostics). The 

difference in performance and the difference in absolute cT1 values between aetiologies 

remain unexplained and warrants further study. 

 

Another factor that may be important when assessing cT1’s ability to assess hepatic fibrosis is 

the use of liver biopsy as the reference standard and in particular the sampling error inherent 

in assessment with liver biopsy.31 It is unlikely that the ROI used to make the cT1 

measurement would be placed in the same place as the site of biopsy and so variations in 

fibrosis across the liver may confound assessment with multiparametric MRI. This possible 

source of confounding is considered further in section 3.4. 
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3.4 Evaluation of cT1 for the staging of fibrosis using multiple colocalised histology 

specimens 

 

3.4.1 Aims 

 

As discussed above, a factor that may reduce the correlation between cT1 and liver biopsy 

histology is the limitations of liver biopsy histology as a reference standard. One key aspect of 

liver biopsy histology that limits its accuracy is sampling error. In the study described in 

section 3.3 it is likely that the ROI for cT1 measurement will have been placed in a different 

part of the liver to the site of the biopsy. With the variation in fibrosis that can be seen in 

chronic liver disease, the severity of fibrosis within the cT1 measurement ROI could be 

different to the severity of fibrosis at the site of the biopsy, thus confounding the comparison 

of cT1 and histology.  

 

The goal of this study was threefold: 

 

 To devise a method to allow cT1 measurement and histological assessment to be 

colocalised to eliminate the effects of sampling error and fibrosis variation.  

 To determine the variation of fibrosis across the liver and evaluate the potential for T1 

mapping to demonstrate this variation. 

 To assess if multiparametric MRI assessment of the whole liver is superior to a single 

ROI 
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3.4.2 Methods 

 

This study conforms to the research ethics guidelines of the 1975 declaration of Helsinki. It 

has received approval from the national research ethics service (14/WM /0010) and local 

research and development office. 

 

Patient recruitment 

The only practical way to get access to multiple samples from the same liver was from 

hepatectomy specimens. The Centre for Liver Research has a close relationship with the liver 

transplant programme at University Hospitals Birmingham NHS Foundation Trust and 

hepatectomy specimens taken at the time of liver transplantation (the explant) are already 

used within the Centre for Liver Research for tissue collection. 

 

Patients awaiting liver transplant at University Hospitals Birmingham NHS Foundation Trust 

were identified from the liver transplant waiting list. To minimise the time between the scan 

and transplant, patients who could be expected to have a short waiting time were selected. 

This included patients with blood group A, B or AB, all patients (of any blood group) with a 

UKELD ≥ 60 and patients (of any blood group) being transplanted for hepatocellular 

carcinoma (HCC). Specific exclusion criteria were the presence of polycystic liver disease 

and any contraindication to MRI. The flow chart for recruitment is shown in Figure 3.4-1. For 

this pilot work a target of 10 patients was set. 

 

Patients meeting inclusion and without exclusion criteria were invited for a single research 

visit where they underwent research MRI, FibroScan, blood sampling and the collection of 
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demographic and clinical information. When recruited patients underwent transplantation, 

their explant was collected from the operating theatre and processed in the Centre for Liver 

Research. Once the target of 10 patients with paired MRI and histology data was reached no 

further patients were enrolled and no further explants were processed for those who had 

already been enrolled. 

 

 

Figure 3.4-1: Flow chart for recruitment to this study indicating reasons for drop out from the 

study 
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Study Interventions 

MRI scans were conducted as described in Chapter 2 with the exception that the T1 maps for 

this study were acquired in the sagittal plane to facilitate colocalisation of histology and MRI 

data. FibroScan examinations were performed by trained operators in accordance with 

manufacture’s guidelines. Examinations were regarded as ‘possible’ if at least 10 valid 

readings could be recorded and ‘reliable’ if they contained at least 10 valid readings and had 

interquartile range (IQR) to median ratio ≤30%.182 The decision on using the M probe or XL 

probe was made on the recommendation from the FibroScan machine based on the automated 

skin to liver capsule distance measurement. 

 

Blood samples were analysed for routine markers of liver disease including aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), 

bilirubin and albumin. Simple blood biomarker panels including AST:ALT ratio, AST/platelet 

ratio index (APRI) and Fib-4 were calculated according to published formulae.46, 48, 49 Serum 

samples were also sent to iQur ltd. (London, UK) for analysis to determine the enhanced liver 

fibrosis (ELF) score. 

 

Histological specimen preparation 

Explanted livers were laid on their posterior surface and slices cut in the sagittal plane. 2 

slices were taken from the right lobe and 2 from the left. Each slice was 1cm thick and the 

position of each of these slices within the liver was measured from the right lateral edge of the 

liver. This is shown schematically in Figure 3.4-2. Slices were labelled A to D from right to 

left. 
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Figure 3.4-2: Anterior view of explant from MURAL-B-006 demonstrating positioning of 

slices. Grey bars: position of the slices, black arrow: medio-lateral size of explant, white 

arrows: measurement of slice position.  

 

Four samples of approximately 2x2cm were then taken from each slice as demonstrated in 

Figure 3.4-3. These were labelled 1 to 4 from cranial to caudal. Measurements were made 

from the superior and anterior surface of the liver so that the position of the sample could be 

matched to the corresponding MRI slice. Samples were placed in histology cassettes, formalin 

fixed and paraffin embedded.  

 

R L 

24 cm 
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Figure 3.4-3: Photograph of slice B from MURAL-B-006 showing the position of samples. 

 

Cut sections were stained with Haematoxin & Eosin, Perl’s stain and van Gieson stain by Dr 

Gary Reynolds (Senior Research Fellow, Centre for Liver Research, University of 

Birmingham). Semi-quantitative assessment of steatosis, siderosis and fibrosis of each sample 

was performed by Dr Owen Cain (Pathology academic clinical fellow, University Hospitals 

Birmingham NHSFT). Steatosis, siderosis and fibrosis were scored using the systems 

described by Brunt et al,188 Scheuer et al189 and Ishak et al8 respectively. Sections were also 

stained with Picro Sirius Red stain and photographed with a Leica Aperio slide scanner 

(Leica, Nussloch, Germany). Digital imagaes were analysed with the Definiens Tissue Studio 

(Definiens, Munich, Germany) to calculate the collagen proportionate area (CPA). 

Representative images of liver tissue stained with Picro Sirius Red at varying magnification 

are shown in Figure 3.4-4 demonstrating the staining of collagen fibres within pathological 

hepatic fibrosis. 
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Due to the large area of the histology specimens in this study (approximately 400mm2) an 

unedited technique was used for CPA calculation. An unedited technique is where structural 

collagen present in normal liver, such as supporting portal tracts and blood vessel walls is not 

edited from the digital image prior to CPA calculation. It has been shown by Standish et al in 

2006 that an unedited technique is appropriate for large samples, such as the ones used in this 

study.190 

 

 

Figure 3.4-4. Liver tissue stained with Picro Sirius Red at varying magnifications. 

 

MRI data analysis 

MRI data were analysed using LiverMultiscanTM software by a single operator at Perspectum 

Diagnostics ltd blinded to the participant characteristics and histology results. A single ROI 

was placed on the T1 map with the position of the ROI chosen to match the location of the 

corresponding histology sample. The method of colocalisation of MRI ROI and histology 
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sample is described below. cT1 was calculated from the measured T1 value by the 

LiverMultiscanTM software using a T2* measurement taken from the T2* map taken through 

the hilum of the liver in a transverse plane. 

 

In addition to single ROI analysis cT1 values for the whole liver were calculated. To perform 

this analysis the LiverMultiscanTM software calculates the cT1 value for each pixel in the liver 

and the mean, median, mode and coefficient of variation around the mean of these values is 

calculated. LiverMultiscanTM was used to identify blood vessels within the liver with a 

threshold technique based on T1 values. Once identified, vessels are digitally subtracted from 

the image and the mode cT1 of the liver parenchyma without the vessels is calculated. An 

example of vessel subtracted liver slice is shown in Figure 3.4-5. 

 

 

Figure 3.4-5: cT1 map of a single liver slice with the blood vessels removed with a threshold 

technique. Image courtesy of Perspectum Diagnostics Ltd. 
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Colocalisation of histology sample and MRI ROI 

The colocalisation of ROIs for cT1 calculation and the location of the histology samples has 

proven to be very challenging. Compared to an explant lying flat on its posterior surface (as 

shown Figure 3.4-2) a liver in situ is rotated around both its cranio-caudal and medio-lateral 

axes. Rotation around the medio-lateral axis does not inhibit colocalisation as it does not alter 

the plane of the slice taken through the liver. However, rotation around the cranio-caudal axis 

causes the plane of the slice to differ between the MRI and the histology. This rotation is 

shown in  

Figure 3.4-6.   

 

 

Figure 3.4-6: cT1 maps of transverse sections through the liver demonstrating rotation around 

the craino-caudal axis. A: Orientation of liver in situ with the red line demonstrating 

orientation of MRI slices. B: Orientation of the liver during preparation of histological 

specimens with the blue line demonstrating the orientation of histological slices. Image 

courtesy of Perspectum Diagnostics Ltd. 
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To overcome the issues relating to the orientation of the liver slice, the angle through which 

the liver had rotated was measured for all patients from transverse images of the liver. This 

angle of rotation is denoted θ in  

Figure 3.4-6. A rotation matrix calculation was performed by Stella Kin at Perspectum 

Diagnostics Ltd. To calculate the position of the MRI slices that corresponds to the 

histological specimens. This leads to MRI slices being positioned as shown in Figure 3.4-7. 

 

 

Figure 3.4-7: Demonstration of the plane of MRI slices following rotation through θ. Image 

courtesy of Perspectum Diagnostics Ltd. 

 

The second challenge in the colocalisation of histology sample and MRI ROI was the 

deformation of the liver that occurs after removal from the body. The liver is not a rigid 

structure and removal of arterial and portal perfusion makes the liver flaccid and susceptible 

to changes in shape. Mobilisation of the liver and removal of the usual supporting structures 

caused a significant change in the shape of the liver. Some degree of shape change on removal 

from the body was anticipated but this was found to be much more pronounced than expected. 
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The two images in Figure 3.4-8 are the MRI slice and corresponding histology specimen 

showing the profound shape change that can occur.  

 

 

Figure 3.4-8: MRI image (A) and histology specimen (B) for the same slice from MURAL-B-

007 showing the marked shape change that occurs between the liver in situ and ex-vivo.  

 

The effect of this shape change is that the position of the histology sample measured from the 

explant does not always fall within the liver parenchyma on the MRI image. This is 

demonstrated in Figure 3.4-9.  

 

 

Figure 3.4-9: MRI slices from the same patient where the calculated position of the histology 

specimen (blue circle) falls A: on a major vessel, B: within the liver parenchyma and C: 

outside of the liver. 
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3.4.3 Results 

 

Patient demographics 

Demographic information, baseline investigations, underlying diagnoses and indication for 

transplant are outlined in Table 3.4-1.  

 

Demographics 
Total participants 10 
Male 6 (60%) 
Age (years) 60 (24-70)  
BMI (kg/m2) 25.3 (±4.0)  
Interval between MRI and transplant (weeks) 11.3 (±6.3) (range 3.8 to 24.9) 
 
Underlying diagnosis 
Primary Biliary Cholangitis 3 (30%) 
Hepatitis C 2 (20%) 
Alcohol related liver disease  2 (20%) 
Haemochromatosis 1 (10%) 
Hepatitis B 1 (10%) 
Primary Sclerosing Cholangitis 1 (10%) 
 
Indication for transplantation 
Hepatocellular carcinoma 6 (60%) 
Hepatic failure 3 (30%) 
Intractable puritis 1 (10%) 
 
Fibrosis biomarkers 
APRI 1.22 (0.35-2.61) 
AST:ALT Ratio 0.96 (0.82-2.35) 
FIB-4 3.12 (1.31-10.69) 
ELF test 10.8 (7.7-12.1) 
Median liver stiffness (kPa) 22.2 (7.9-45.0) 

 
CONTINUED… 
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CONTINUED… 
 
Prognostic scores 
United Kingdom End-stage Liver Disease 
(UKELD) score 

49.5 (±3.2) 

Child-Pugh score 
 5 5 (50%) 
 6 2 (20%) 
 7 2 (20%) 
 9 1 (10%) 
Data presented as n (%), mean (±SD) or median (range) as appropriate. 
 

Table 3.4-1: Demographic information and baseline investigations 

 

Histological assessment 

Semi-quantitative histological staging was possible for all 152 samples collected. MURAL-B-

002 had a severely atrophic left lobe and it was not possible to take histological samples from 

this lobe. CPA analysis was available from 141 samples with technical failure of the image 

analysis process accounting for this reduction in available samples. Within individual patients 

there was little variation in semi-quantitative histology scores between the different samples 

from the liver. In particular there was very little variation in Ishak stage with no patient 

having variation of more than 1 stage. There was much greater variation in CPA between the 

different samples taken from the same liver. A summary of the CPA analysis is shown in 

Table 3.4-2. 
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 Number of 
samples 

Mean (±SD) CPA (%) Coefficient of 
variation 

MURAL-B-002 8 4.09 (±0.75) 0.56 
MURAL-B-006 15 19.70 (±7.55) 0.38 
MURAL-B-007 16 25.78 (±2.74) 0.11 
MURAL-B-011 8 21.08 (±3.03) 0.40 
MURAL-B-013 16 10.20 (±2.59) 0.25 
MURAL-B-017 16 16.98 (±3.98) 0.23 
MURAL-B-018 16 18.71 (±5.07) 0.27 
MURAL-B-020 15 14.66 (±2.02) 0.30 
MURAL-B-021 16 23.98 (±6.36) 0.27 
MURAL-B-022 15 18.39 (±10.51) 0.65 
 Sum 141 Mean (±SD) of coefficient 

of variation 
0.34 (±0.16) 

Table 3.4-2: Summary of collagen proportionate area analysis. 

 

For the 141 individual samples, CPA and Ishak stage had a strong relationship as shown in 

Figure 3.4-10.  
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Figure 3.4-10: Box plot demonstrating the relationship between Ishak stage and CPA. P-value 

from the Jonckheere-Terpstra test. 

 

The absence of significant variation in semi-quantitive scores across the different samples 

from each liver allows an overall histological opinion to be given for each explanted liver. 

Semi-quantitative scores for fibrosis, steatosis, siderosis and inflammation were as shown in 

Table 3.4-3.  

  

n=26 n=12 n=114 
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Ishak stage 
0-3 0 (0%) 
4 2 (20%) 
5 1 (10%) 
6 7 (70%) 
 
Brunt grade 
0 6 (60%) 
1 3 (30%) 
2 1 (40%) 
3 0 (0%) 
 
Scheuer grade 
0 3 (30%) 
1 3 (30%) 
2 1 (10%) 
3 3 (30%) 
4 0 (0%) 
 
Portal inflammation 
Minimal 0 (0%) 
Mild 6 (60%) 
Moderate 3 (30%) 
Severe 1 (10%) 
 
Lobular inflammation 
Minimal 3 (30%) 
Mild 6 (60%) 
Moderate 1 (10%) 
Severe 0 (0%) 

Table 3.4-3: Semi-quantitative histological assessment of liver tissue samples. 

 

Non-invasive markers of fibrosis do not correlate with histological assessment of fibrosis in 

this cohort with the exception of a strong relationship between APRI and CPA. Correlation 

coefficients are shown in Table 3.4-4. There was no statistically significant correlation 

between non-invasive markers.  
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Histological 
parameter  

AST:ALT 
Ratio APRI ELF FIB-4 Liver 

stiffness 

Overall Ishak 
Stage 

Rho 0.261 0.242 0.634 0.149 0.283 
p 0.498 0.530 0.067 0.702 0.496 
n 9 9 9 9 8 

Mean CPA 
Rho 0.400 0.700 0.383 0.583 0.587 
p 0.286 0.036 0.308 0.099 0.126 
n 9 9 9 9 8 

Table 3.4-4: Correlation between established non-invasive biomarkers of fibrosis and 

histological assessment of fibrosis. 

 

In this cohort, markers of liver disease severity (UKELD and Child-Pugh score) correlated 

strongly with each other (Spearman’s Rho = 0.71, p=0.02) but, as shown in Table 3.4-5, did 

not correlate with markers of fibrosis.  

 

  UKELD Child-Pugh Score 
Rho p n Rho p n 

AST:ALT Ratio 0.183 0.637 9 0.158 0.685 9 
APRI 0.367 0.332 9 0.474 0.197 9 
ELF -0.217 0.576 9 -0.061 0.875 9 
FIB-4 -0.133 0.732 9 -0.018 0.964 9 
Median liver stiffness -0.132 0.756 8 -0.051 0.904 8 
Ishak stage -0.166 0.646 10 -0.175 0.629 10 
CPA 0.188 0.603 10 0.052 0.886 10 

Table 3.4-5: No correlation between severity scores and markers of fibrosis. 

 

Multiparametric MRI assessment of whole liver 

cT1 values for the whole liver analysis are shown in Table 3.4-6. cT1 varies little between the 

different summary statistic used (mean, median or mode) with a trend towards higher values 

when using the mean. Exclusion of vascular structures before calculating the mode has little 

impact on the cT1 value.  
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ID number Mean cT1 
(msec) 

Coefficient 
of variation 

Median 
cT1 (msec) 

Mode cT1 
(msec) 

Mode cT1 - 
excluding 
vessels (msec) 

MURAL-B-002 784.3 0.13 760.3 740 743 
MURAL-B-006 943.2 0.10 917.3 900 897 
MURAL-B-007 1063.1 0.10 1015.0 980 982 
MURAL-B-011 820.2 0.11 808.3 780 793 
MURAL-B-013 811.0 0.11 782.3 740 748 
MURAL-B-017 838.6 0.11 822.3 820 808 
MURAL-B-018 865.9 0.11 843.3 820 807 
MURAL-B-020 1002.1 0.09 1001.0 1020 1002 
MURAL-B-021 1059.4 0.09 1050.0 1020 1035 
MURAL-B-022 763.7 0.16 738.9 700 704 
Table 3.4-6: cT1 values for whole liver analysis of each participant. Summarised by various 

summary statistics. 

 

For whole liver cT1 analysis the mode cT1 without vessel subtraction had the strongest 

correlation with overall Ishak stage (Rho 0.798, p=0.006). Mean, Median and Mode with 

vessel subtraction also had strong correlation with overall Ishak stage (Rho 0.791, p=0.006 for 

all). Only mean cT1 correlated with mean CPA in a statistically significant manner 

(Rho=0.636, p=0.048). None of the whole liver cT1 measures correlated with prognostic 

markers. These correlations are shown in Table 3.4-7 and the relationships between mean cT1 

and histology parameters can be seen graphically in Figure 3.4-11.   
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 Overall 
Ishak Stage 

Mean CPA UKELD C-P score 

mean cT1 whole 
liver 

Rho 0.791 0.636 -0.018 -0.169 
p 0.006 0.048 0.960 0.640 
n 10 10 10 10 

mode cT1 whole 
liver 

Rho 0.798 0.489 -0.153 -0.125 
p 0.006 0.151 0.673 0.731 
n 10 10 10 10 

mode (excluding 
vessels) cT1 
whole liver 

Rho 0.791 0.515 -0.030 -0.007 
p 0.006 0.128 0.934 0.986 
n 10 10 10 10 

median cT1 
whole liver 

Rho 0.791 0.624 -0.030 -0.078 
p 0.006 0.054 0.934 0.830 
n 10 10 10 10 

Table 3.4-7: Correlation of whole liver cT1 with overall Ishak stage, mean CPA, UKELD and 

Child-Pugh score. 
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Figure 3.4-11Scatter plots showing the relationship between (A) whole liver mean cT1 and 

Ishak stage and (B) whole liver mean cT1 and CPA. Correlation assessed with Spearman’s 

Rho. 
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Multiparametric MRI assessment of individual colocalised samples 

Due to the aforementioned difficulties in colocalising MRI and histology samples there are a 

limited number of paired samples for each participant. Overall, 54/160 (34%) samples have 

both histology and MRI data. Success in colocalising histology and MRI data was not 

uniform either between patients or between slices within individuals. This is summarised in 

Table 3.4-8. It can be seen that, in general, the problem with colocalising MRI and histology 

samples is worse for slices C and D than for A and B. The measurement used to position the 

slices was taken from the right lateral edge of the liver. This means that slices C and D are 

further from the origin of the measurement and it would be expected that they are more 

severely affected by the deformation of the liver. For MURAL-B-002 the left lobe of the liver 

was severely atrophied and therefor it was not possible to take histological samples from the 

left lobe. For MURAL-B-006 there were no sagittal plane images acquired and so it was not 

possible to match histology and MRI data for this participant.  

 

ID number Number of paired samples available 
Whole liver 
(max 16) 

Individual slices 
Slice A 
(max 4) 

Slice B 
(max 4) 

Slice C 
(max 4) 

Slice D 
(max 4) 

MURAL-B-002 6 4 2 Atrophic left lobe 
MURAL-B-006 No sagittal plane MRI images 
MURAL-B-007 0 0 0 0 0 
MURAL-B-011 6 3 3 0 0 
MURAL-B-013 4 2 2 0 0 
MURAL-B-017 6 3 3 0 0 
MURAL-B-018 10 4 4 2 0 
MURAL-B-020 7 2 3 2 0 
MURAL-B-021 10 3 4 2 1 
MURAL-B-022 5 2 3 0 0 

Table 3.4-8: Number of paired samples per participant 
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For individual colocalised samples there was moderate correlation between cT1 and Ishak 

stage (Rho=0.525, p<0.001). The Jonckheere-Terpstra test shows significant difference in cT1 

across the three Ishak stages seen (p < 0.001) with post hoc tests giving significant differences 

between Ishak stages 4 and 6 only (p < 0.001). This relationship is shown in Figure 3.4-12.   

 

 

 

Figure 3.4-12: Box plot showing the relationship between cT1 and Ishak stage for paired 

samples (n=54). Overall significance p<0.001 by the Jonckheere-Terpstra test. Inter-group 

differences from Dunn’s test. 

  

n=9 n=3 n=42 
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As noted above, the variation in Ishak stage across the 54 samples for which it was possible to 

place an MRI ROI was very low and, as shown in Table 3.4-9, the variation in cT1 is also 

low. Coefficient of variation was from 2-6%. The variation in CPA was much greater with 

coefficient of variation from 11-65%. The coefficient of variation for each participant is 

shown in Table 3.4-9. 

 

 Coefficient of Variation 
CPA (n=141) cT1 (n=54) 

MURAL-B-002 56% 6% 
MURAL-B-006 38% - 
MURAL-B-007 11% 4% 
MURAL-B-011 40% 6% 
MURAL-B-013 25% 2% 
MURAL-B-017 23% 4% 
MURAL-B-018 27% 5% 
MURAL-B-020 30% 6% 
MURAL-B-021 27% 4% 
MURAL-B-022 65% 4% 
Mean (±SD) of coefficient of 
variation 

34 (±16)% 4.5 (±1.3)% 

Table 3.4-9: Coefficient of variation for CPA and cT1 for colocalised samples. This shows 

that there was much greater variation in CPA between different areas of the liver than was 

evident from cT1 measurement. 

 

For individual colocalised samples, CPA has no significant correlation with cT1 (Rho = 

0.252, p = 0.077). The relationship can be seen in Figure 3.4-13. When cT1 is plotted against 

CPA, there appears to be two distinct groups. These are marked on Figure 3.4-13. 
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Figure 3.4-13: Scatter plot showing the relationship between CPA and cT1 for paired 

samples. The two ovals highlight what appear to be two distinct groups. 

 

In Figure 3.4-14 it can be seen that the presence of inflammation has an impact on cT1 that 

appears to be independent of CPA. The samples without inflammation (circles ●) show very 

little change in cT1 over the whole range of CPA seen in this cohort. Inflammation in either 

portal areas or lobules (crosses +) leads to a marked elevation in cT1 and extensive 

inflammation throughout the liver (triangles ▲) shows marked elevation in cT1 that is 

independent of the degree of fibrosis. 
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Figure 3.4-14: Scatter plot showing the relationship between CPA and cT1 stratified by the 

degree of inflammation. Samples with more significant inflammation show markedly higher 

cT1. 
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3.4.4 Discussion 

 

This experiment aims to further investigate the ability of cT1 to stage hepatic fibrosis using 

multiple histological samples from explanted livers as the reference standard. The explanted 

livers were taken from a cohort of patients on the liver transplant waiting list at University 

Hospitals Birmingham. The demographics of this cohort are typical of patients awaiting liver 

transplant in the UK except that UKELD and Child’s-Pugh score are lower due to the relative 

excess of patients in this cohort being transplanted for HCC. These patients tend to have less 

severe liver failure and so a lower UKELD than the majority of patients on the list. However, 

despite this driver towards less severe liver disease, it is clear from histology and non-

invasive biomarkers that all patients have advanced hepatic fibrosis with all but 2 patients 

having cirrhosis. In this cohort the established non-invasive biomarkers used do not 

differentiate between different histological stages of fibrosis and do not correlate with CPA. 

The blood biomarkers used in this experiment are designed to detect the presence of advanced 

fibrosis and are not designed to grade the ‘severity’ of fibrosis once advanced fibrosis or 

cirrhosis is established. In particular the indirect markers used (AST:ALT, APRI and Fib-4) 

are calculated from blood tests that reflect the consequences of portal hypertension rather than 

the volume of fibrosis per se. This is likely to explain why these tests do not correlate with 

CPA in this cohort. Non-invasive fibrosis markers also do not correlate with either of the 

prognostic markers used in this experiment. Many of the factors taken into account when 

calculating both UKELD and Child’s-Pugh score are the result of portal hypertension and 

thus are related to the architectural changes in the liver found in cirrhosis. These changes are 

not dependent on the volume of collagen in the liver and this may be why there is no 

correlation between markers of fibrosis and prognostic markers in this cohort. 
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When looking at whole liver assessment the summary statistic used has little effect on the 

recorded cT1. There is a trend towards higher values when the mean is used. The digital 

subtraction of vessels before calculation of the mode cT1 value has little impact. It should 

also be noted that cT1 values calculated from the whole liver analysis are markedly lower 

than was expected from previous data. In the experiment using biopsy as a reference standard 

(section 3.3) the mean cT1 for patients with Ishak stage 0 fibrosis was 851.7 msec. In this 

experiment, 5 of the patients (who all have advanced fibrosis or cirrhosis) have a mean cT1 

lower than this. This is particularly unexpected given that the cT1 of vascular and biliary 

structures is higher than that of liver parenchyma regardless of fibrosis stage. Unless 

specifically excluded, whole liver analysis leads to the inclusion of vascular structures and so 

it would be expected that whole liver analysis would give a higher cT1 value than a single 

ROI. The reason for this difference in the range of cT1 values seen is not clear. To date, 

comparison of single ROI measurement and whole liver analysis in a large cohort has not 

been conducted. In order to find if whole liver analysis improves the accuracy of 

multiparametric MRI assessment of liver fibrosis, further work comparing the cT1 value from 

single ROI and whole liver analysis should be performed in a larger cohort. 

 

Measurement of cT1 from whole liver assessment shows strong correlation between cT1 and 

overall Ishak stage regardless of the summary statistic used. Mean cT1 also shows a strong 

correlation with mean CPA and median cT1 has a moderate correlation with mean CPA that 

just fails to reach statistical significance. The correlation between mean CPA and mean cT1 is 

far stronger than the correlation between mean CPA and cT1 measured from a single ROI 

(Rho=0.333, p<0.001). As discussed in section 3.3, the use of human judgement to place the 

ROI and the inaccuracy this introduces is a potential source of error. The improved correlation 
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with whole liver analysis could support the use of mean cT1 measured on whole liver analysis 

rather than single ROI for fibrosis assessment. This is a potential avenue for further work in 

this field. 

 

cT1 from whole liver assessment has not been shown in this cohort to correlate with either 

UKELD or Child’s-Pugh score. This is however a small sample and the inability of cT1 to 

give prognostic information should be viewed in this context. Formal power calculations have 

not been performed but the study is almost certainly underpowered to detect this association.  

 

There is a clear theoretical advantage in matching the location of histology sample and cT1 

measurement. This should reduce sampling error in the reference standard and therefore 

improve the confidence in the reliability of our evaluation of multiparametric MRI. The 

variation in CPA demonstrated in Table 3.4-9 clearly demonstrates the variations in fibrosis 

severity across the liver and supports the need for colocalised samples. However, the 

assessment of colocalised samples in this cohort is limited by the difficulties with the 

technique as described in section 3.4.2. Although some shape change in the liver at the time of 

hepatectomy was anticipated it was far more marked than expected. It is difficult to be fully 

confident that supposedly colocalised samples are indeed assessing the same volume of liver 

tissue.  

 

MRI data were not assessed until after all patients had been transplanted and so the problem 

with rotation and deformation of the liver were not appreciated until it was too late to modify 

the methods of tissue collection. To avoid the need to re-format and rotate the MRI slices, the 

MRI slices could be acquired perpendicular to the posterior surface of the liver. To reduce 
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deformation of the liver it may be possible to reduce the time between hepatectomy and tissue 

sampling, however, I would expect that the two most significant factors in the shape change in 

the liver are the mobilisation of the liver from its supporting tissue and removal of vascular 

inflow causing the liver to become flaccid. Both of these events occur at the time of 

hepatectomy and therefore they are not possible to avoid.  It therefore may be that precise 

colocalisation of a MRI ROI and a histology sample is not technically possible. A better 

method may be to take cT1 measurements from each of the 8 anatomical segments of the 

liver. This anatomy is maintained after the liver is removed from the body and a histological 

sample could be taken from each segment. This would result in fewer samples per liver but 

seems more likely to give confidence that colocalised samples are accurately matched. 

 

When assessing the accuracy of fibrosis assessment from individual colocalised samples there 

is a moderate correlation between cT1 and Ishak stage. There is no significant correlation 

between CPA and cT1 in these colocalised samples. The very small numbers of samples with 

less than Ishak stage 6 fibrosis (Ishak 5: 3, Ishak 4: 9) should be kept in mind when looking at 

the correlation between cT1 and Ishak stage. 

 

In the CPA data presented here we have, as expected,191 demonstrated that the severity of 

fibrosis varies across the liver. The mean (±SD) coefficient of variation across a single liver 

was 34.0 (±16.0)%.  This variation is not reflected in variations in Ishak stage. The 

descriptive, nature of Ishak staging is not influenced directly by the volume of collagen and, 

once cirrhosis is established, there is no further capacity for Ishak stage to grade the severity 

of fibrosis. CPA however has been shown to add further relevant clinical information on top 

of the Ishak stage.186 In people with cirrhosis, CPA correlates with the severity of portal hyper 
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tension and predict the likelihood of clinical decompensation.26, 42 This would suggest that 

CPA is a more useful measure of fibrosis when assessing the performance of cT1. In contrast 

to CPA, cT1 shows very little variation across the liver. When performing whole liver 

analysis, the mean (±SD) coefficient of variation is 11.1 (±2.1)% and when looking at 

multiple ROIs, the mean (±SD) coefficient of variation is lower at 4.5 (±1.3)%. This implies 

that cT1 is not sensitive to small changes in fibrosis severity clearly demonstrated by 

variations in CPA. 

 

As noted previously, inflammation seems to have a major impact on cT1. Plotting cT1 against 

CPA for the colocalised samples shows 2 distinct groups as shown in Figure 3.4-13. It seems 

that the driver that differentiates these two distinct groups is inflammation. Samples are 

stratified by the presence of inflammation in Figure 3.4-14. No sample with anything less than 

moderate inflammation had a cT1 over 900 msec. There is a trend for samples with more 

extensive inflammation (▲) to have a higher cT1.  
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3.5 Conclusion 

 

These data show that cT1 calculated from LiverMultiscanTM analysis of multiparametric MRI 

data has the ability to stage hepatic fibrosis with accuracy comparable to most of the 

established non-invasive biomarkers of hepatic fibrosis included in this work. The initial pilot 

data163 for LiverMultiscanTM demonstrated a clear advantage for this technology over existing 

biomarkers, particularly in the identification of early stage fibrosis however this has not been 

replicated in this work. The reason for this is not clear but in this larger and more diverse 

cohort the confounding effects of inflammation and steatosis seem relevant. In particular the 

significant confounding effect of inflammation would make cT1 very difficult to interpret in 

clinical practice. There is a suggestion that the use of ‘whole liver analysis’ may improve the 

accuracy of LiverMultiscanTM for the identification of fibrosis however, this remains to be 

proven and is an interesting avenue for further work in this field.  

 

In this work cT1 is outperformed by liver stiffness measured with VCTE across all stages of 

fibrosis. Although the multiparametric MRI acquisition protocol can be completed in 

approximately 20 minutes, MRI remains an expensive and time consuming activity compared 

to all other evaluated non-invasive biomarkers. A formal assessment of cost effectiveness is 

beyond the scope of this thesis but this will need careful consideration if multiparametric MRI 

is to find a role in clinical practice.  

 

The value of matching multiparametric MRI ROI and histology samples is supported by the 

variation in fibrosis demonstrated with CPA analysis of these samples. Refinement of the 
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method to use the segmental anatomy of the liver should improve this technique and should 

allow the collection of more accurate data. 

 

cT1, clearly is not simply a marker of liver fibrosis and the multiple significant confounding 

factors make it a difficult parameter to interpret. It is possible that cT1 should be regarded as a 

marker of ‘fibro-inflammatory disease’. Whether fibro-inflammatory disease is clinically 

relevant remains to be seen however it is plausible that a technology that can identify, and 

perhaps more importantly exclude, fibrosis and/or inflammation may have a role in clinical 

practice. NAFLD is a highly prevalent liver disease where inflammation (non-alcoholic 

steatohepatitis) and fibrosis are relevant to the disease process. Chapter 4 examines the 

potential application of multiparametric MRI in NAFLD. 
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CHAPTER 4: THE ASSESSMENT OF NON ALCOHOLIC FATTY 

LIVER DISEASE WITH MULTIPARAMETRIC MRI  
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4.1 Non-Alcoholic Fatty Liver Disease 

 

Hepatic steatosis is the accumulation of fat within the liver and has been recognised since 

Thomas Addison’s description of “fatty degeneration of the liver” secondary to alcohol excess 

in 1836.192 Hepatic steatosis occurs most commonly as a result of alcohol excess and for most 

of the 19th and 20th centuries hepatic steatosis in the absence of alcohol excess was regarded 

as being of no clinical consequence. Through the 1960s and 1970s a pattern of liver disease, 

histologically identical to alcoholic liver disease but without associated alcohol excess, was 

increasingly recognised as a disease entity in its own right193-195 culminating in the seminal 

description by Ludwig et al in 1980 of a series of 20 patients with “liver disease that 

histologically mimics alcoholic hepatitis and that also may progress to cirrhosis”.196 This 

paper coined the term non-alcoholic steatohepatitis (NASH) and noted the strong association 

with obesity and type two diabetes.196  

 

Later work highlighted that the phenotype of non-alcoholic fatty liver disease (NAFLD) is a 

spectrum ranging from a relatively benign and non-progressive steatosis to a progressive, 

inflammatory and fibrotic liver disease that can lead to cirrhosis and hepatocellular carcinoma 

(HCC).197Today, NAFLD is recognised as the hepatic manifestation of the metabolic 

syndrome and due to the enormous prevalence of obesity and insulin resistance it is the most 

common chronic liver disease worldwide.198 Estimates of the prevalence of NAFLD vary 

widely due to differences in the populations studied and the different diagnostic tools used198 

but is thought to affect 20-30% of adults in western societies.199 The incidence of NAFLD 

rises dramatically in the obese and, in patients undergoing bariatric surgery, reaches 90%.200 
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A recent meta-analysis estimated the prevalence of NALFD to be 25.24% of the global 

popluation.201  

 

Although it is clear that the prevalence of NAFLD in the community is enormous, the 

progression to advanced liver disease is less well understood. Not all patients with NAFLD 

will develop the complications of advanced liver disease and identifying patients at risk of 

progressive disease and complications is vital to allow the focusing of limited resources. 

 

4.1.1 Non-Alcoholic Steatohepatitis and Simple Steatosis 

 

The spectrum of NAFLD is divided into two main diagnostic groups. Simple steatosis (SS) is 

hepatic steatosis without evidence of liver injury. It is widely accepted that SS leads to little 

or no progression of fibrosis and no increase in liver related mortality.197, 202-204 In stark 

contrast to SS is NASH, which is characterised histologically by hepatocyte ballooning and 

lobular inflammation. NASH is a source of ongoing liver injury, causes progressive fibrosis 

and cirrhosis in up to 20%205 and carries a HCC risk of 5.29 cases per 1,000 person-years.201 

A 2009 systematic review shows that the presence of NASH is an independent risk factors for 

progression of fibrosis in NAFLD.206 

 

Current clinical practice is focused on the identification of fibrosis in NAFLD80 however 

identification of NASH may identify patients at an earlier point in their natural history and 

allow intervention to prevent fibrosis.207 Identifying those with NASH may identify patients 

with more serious liver disease, guide the intensity of clinical follow-up and indicate 

prognosis.208 Another benefit in identifying patients with NASH is to enrich clinical studies. 
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In the current absence of effective and evidence based therapies for NASH,209 interventional 

trials are of great importance and the identification of NASH highlights patients eligible for 

clinical studies.210 
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4.2 Currently available techniques for the identification of NASH 

 

The distinction between SS and NASH is currently dependent on liver biopsy histology 

although insights into the mechanisms underpinning NASH have led to investigation into 

other, non-invasive, markers.  

 

4.2.1 Adipokines 

 

Adipokines are cell signalling hormones secreted by adipose tissue and include leptin, 

adiponectin, tissue necrosis factor alpha (TNF-α) and interlukin 6 (IL-6). These cytokines 

control diverse metabolic processes including satiety, fatty acid metabolism, glycaemic 

control and regulation of fat stores. Adipokines have been implicated in the mechanisms 

underlying insulin resistance and thus are potentially relevant in the pathogenesis of 

NAFLD.211 Adiponectin has been shown in small, single centre studies to be lower in patients 

with NASH when compared to those with SS212 and healthy controls.213 A combination panel 

of adipokines has also been shown to discriminate between healthy volunteers and 

NAFLD.214 These studies, although mechanistically interesting are small and do not support 

the routine use of adipokine measurements for the staging of NAFLD. 

 

4.2.2 Cytokeratin-18 

 

Cytokeratin (CK)-18 is a filament protein abundant in hepatocytes. During cellular damage or 

apoptosis CK-18 is released from cells. This can be as complete protein (M65 antigen) or as 

enzymatically cleaved fragments (M30 antigen). Several studies have investigated the 
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potential of CK-18 (both M65 and M30) to detect the presence of NASH. To date however 

studies are small and diverse in their methodology. A 2012 study including 146 patients with 

NAFLD found that CK-18 (M30) was significantly elevated in NASH compared to SS but 

sensitivity and specificity were modest at 66%.215 A 2013 meta-analysis found slightly 

improved performance with pooled specificity for both M65 and M30 of 71% while pooled 

sensitivity was higher for M30 (83%) than M65 (77%).216 However, this meta-analysis found 

significant heterogeneity and publication bias within the included studies.216 To date, the 

largest single study assessing the utility of CK-18 fragments has shown a modest AUROC 

(95% CI) of 0.65 (0.59–0.71) and the optimal cut off value gave sensitivity and specificity of 

58% and 68% respectively.217 

 

4.2.3 Liver biopsy 

 

The above mentioned disappointing results have cemented the position of liver biopsy 

histology as the gold standard test for the differentiation of NASH from SS. The diagnosis of 

NASH on biopsy is dependent on the identification of ballooned hepatocytes and lobular 

inflammation. These histological features can also be graded to give an overall diseases 

activity. One such scoring system in the NAFLD activity score (NAS).25, 188 NAS grades 

several histological features of NAFLD on a categorical scale. The sum of these scores gives 

the NAS. This score was designed to be used in research to monitor changes in disease 

activity and it is not a score by which NASH can be differentiated from SS. Indeed the 

diagnosis of NASH by expert pathologists has been shown to be independent of NAS.218 
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4.3 Assessment of fibrosis in NAFLD 

 

It is clear that the staging of fibrosis in NAFLD is a key indicator of clinical outcome.14, 21, 219 

Angulo and colleagues looked retrospectively at 619 patients with NAFLD who had 

undergone liver biopsy between 1975 and 2005. Their data show that the presence of NASH 

did not predict transplant free survival whereas the presence of fibrosis did.14 This is shown in 

Figure 4.3-1. Similar results were demonstrated by Ekstedt et al who showed that advanced 

fibrosis (Kleiner stage 3-4) was the only factor associated with increased risk of death.21 

Recent work from the same group using Swedish registry data shows that fibrosis stage 

predicts survival and the rate of progression of liver disease whereas the presence or absence 

of NASH does not.219  These studies are limited by their retrospective design and, in earlier 

work, the relatively small numbers of patients in some groups. However, the importance of 

fibrosis assessment in determining the prognosis for patients with NAFLD is now widely 

accepted.220 
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Figure 4.3-1: Kaplan-Myer plot demonstrating that transplant free survival is predicted by the 

presence of fibrosis at baseline (red and green lines) and not the presence of NASH (yellow 

and blue lines). Taken from Angulo P et al, Gastroenterology, 2015. 

 

4.3.1 Currently available techniques for fibrosis assessment in NAFLD 

 

Methods for invasively and non-invasively assessing hepatic fibrosis are discussed in detail in 

Chapter 1 and the performance of non-invasive biomarkers in patients with NAFLD is 

comparable to performance in other aetiologies. Overall, non-invasive tests of hepatic fibrosis 

have high accuracy for the diagnosis of advanced fibrosis and cirrhosis but do not have the 

sensitivity to reliably identify lower stage fibrosis whereas liver biopsy histology is limited by 

patient acceptance and sampling error. 
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One notable addition to the previously discussed biomarkers is the NAFLD fibrosis score 

(NFS). The NFS is an indirect fibrosis marker derived from, and validated in, a population of 

patients with NAFLD.221 It is comprised of readily available clinical and laboratory 

parameters (age, presence of insulin resistance, BMI, platelet count, albumin, AST and ALT) 

and is designed to predict advanced fibrosis (Kleiner stage ≥3). More recent evidence has 

emerged that high NFS also predicts mortality in patients with NAFLD.222 The use of a dual 

cut-off values allows the low cut off to achieve a very high negative predictive value of 88-

92%.103, 221, 223 The use of dual cut-off values is however a limitation of NFS in practice. 

Approximately 25% of cases fall between the cut-off values, are therefore indeterminate, and 

require alternative testing.221 

 

4.3.2 The need for novel biomarkers in NAFLD 

 

There is a clear need for the development of a novel biomarker for use in NAFLD that can 

identify patients with NAFLD and stratify patients in terms of fibrosis and the presence of 

NASH. Such a biomarker would be of value in clinical practice and as an endpoint in clinical 

trials. 

 

4.3.3 LiverMultiscanTM  

 

LiverMultiscan™ (Perspectum Diagnostics Ltd., Oxford, UK) is a proprietary multiparametric 

MRI technology used to quantify liver fat, iron and fibro-inflammatory liver injury by proton 

density fat fraction (PDFF), T2* mapping and corrected T1 (cT1)224 mapping respectively. 
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cT1 of the liver has previously been reported to stage hepatic fibrosis in NAFLD225 and an 

unselected population of patients undergoing liver biopsy.163 PDFF is measured using a 

modified Dixon sequence is a well-established and accurate technique for the assessment of 

hepatic fat content.226-228 Iron concentration was estimated from T2* according to a previously 

determined model.229 
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4.4 Aims 

 

LiverMultiscan™ has potential to be a useful biomarker in NAFLD for use in both clinical 

practice and as an endpoint in trials. We sought to determine how LiverMultiscan™ performed 

in terms of utility and comparative effectiveness, in the assessment of a prospective cohort of 

patients with NAFLD having routine liver biopsy as standard of care.  
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4.5 Methods 

 

4.5.1 Study Participants 

 

Our prospective study was undertaken at the Queen Elizabeth Hospital Birmingham and 

Royal Infirmary of Edinburgh between February 2014 and September 2015. The study 

protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, and was 

approved by the National Research Ethics Service (West Midlands – The Black Country; 

REC Ref: 14/WM/0010). The study was registered with the ISRCTN registry 

(ISRCTN39463479) and the National Institute of Health Research (NIHR) portfolio (15912). 

The study sponsor was the University of Birmingham. Male and female adult (≥18 years of 

age) patients booked for non-targeted liver biopsy for any indication were prospectively 

recruited to a validation study of LiverMultiScan™ (reported in Chapter 3). Those patients 

with a histological diagnosis of NAFLD were included in this sub-group analysis. Exclusion 

criteria were: biopsy of a distinct focal lesion, inability to give fully informed consent and any 

contraindication to MRI. Patients with a histologically confirmed diagnosis of NAFLD 

without secondary cause and without history of alcohol excess (men >21 UK units/week, 

women >14 UK units/week) were included in this sub-group analysis. 

 

Healthy volunteers were recruited from staff and students at the University of Birmingham. 

Exclusion criteria were obesity (Body mass index (BMI) >30kg/m2), current or previous 

history of liver disease, significant medical co-morbidity, family history of liver disease, 

excess alcohol intake or any contraindication to MRI. Participants gave written, informed 

consent and attended for a single study visit during which they underwent multiparametric 
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MRI, FibroScanTM examination, blood sampling and collection of clinical and demographic 

data. All study investigations were performed after a 4 hour fast. Patients undertook their 

study visit in the 2 weeks prior to liver biopsy. Healthy volunteers did not undergo liver 

biopsy. 

 

4.5.2 Study Investigations 

 

MRI scans were performed as described in Chapter 2 and analysed with LiverMultiscanTM to 

generate values for cT1, T2* and fat fraction (PDFF-Dixon). Patients also underwent MR 

spectroscopy as described in Chapter 2 to measure fat fraction (PDFF-MRS). 

 

FibroScanTM examinations were performed by trained operators (PJE and NM) in accordance 

with manufacture’s guidelines and validated local clinical practice.91 The decision on using 

the M probe or XL probe was made on the skin to liver capsule distance measured by the 

FibroScan machine. Examinations were regarded as ‘possible’ if at least 10 valid readings 

could be recorded and ‘reliable’ if they contained at least 10 valid readings and had 

interquartile range (IQR) to median ratio ≤30% (Boursier’s criteria).182 At the start of the 

study the Controlled Attenuation Parameter (CAP) was not available on the FibroScanTM XL 

probe. CAP on the XL probe was enabled during study recruitment so was recorded if 

available in addition to median liver stiffness (LS). 

 

Blood samples were analysed routinely for markers of liver disease. Simple blood biomarker 

panels including AST/ALT ratio, FIB-4 and NAFLD fibrosis score (NFS) were calculated 
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according to published formulae.49, 221 Sera were also analysed to determine the ELF score 

(iQur Limited, London, UK). 

 

4.5.3 Histological assessment 

 

Liver biopsy samples were taken with 16 gauge biopsy needles. Histology was assessed by 

experienced academic liver histopathologists blinded to the MRI, ELF and elastography 

findings. Biopsies that were less than 15mm in length or that contained fewer than 11 portal 

tracts were regarded as inadequate for histological assessment and were therefore excluded.30, 

41 Fibrosis and steatosis were staged according to the system described by Kleiner et al in 

2005 25, 188 and siderosis according the Scheuer grading system.189 

 

Biopsies were categorised as NASH based on the presence of lobular inflammation and 

hepatocyte ballooning.230 Overall disease activity was graded according to the NAFLD 

activity score (NAS).25 Biopsy sections were also stained with Picro Sirius Red and 

morphometry used to determine the collagen proportionate area (CPA, %) as previously 

described.26 

 

4.5.4 Statistical analysis 

 

Statistical analysis was carried out using IBM SPSS Statistics for Windows version 22 (IBM 

Corp, Armonk, NY). Variables are summarised with mean ± standard deviation (SD) if 

normally distributed and with median and range if not normally distributed. Comparisons 

between patients and healthy volunteers were performed using independent samples t-tests, 
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Mann-Whitney tests, or Fisher’s exact tests, as applicable.  Correlation between continuous 

variables was determined with Spearman’s correlation coefficient (Rho). Comparisons across 

variables with multiple groups were performed using Kruskal-Wallis tests for nominal 

variables, or Jonckheere–Terpstra tests for ordinal variables. Post-hoc pairwise comparisons 

between groups were performed using Dunn’s test. Diagnostic performance was compared by 

calculation of the receiver operating characteristic and determination of the area under the 

curve (AUROC) with 95% confidence intervals (CI). For all tests, a p-value <0.05 was taken 

to indicate statistical significance.  
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4.6 Results 

 

4.6.1 Patient demographics 

 

Of 54 patients with NAFLD recruited into the study 50 had sufficient data for analysis. 3 MRI 

data sets were unusable and 1 biopsy was judged too small for reliable fibrosis assessment. 7 

healthy volunteers were recruited. One volunteer was subsequently excluded from analysis 

due to the discovery of abnormal liver biochemistry. The study flow chart is shown in Figure 

4.6-1.  

 

 

Figure 4.6-1: Study flow chart. 

 

The characteristics of the 50 patients and 6 volunteers are outlined in Table 4.6-1. 

Comparisons between these groups found that the healthy volunteers were significantly 
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younger (median 32 vs. 54 years, p=0.011), had significantly lower BMI and lower waist to 

hip (W:H) ratio. Volunteers were more likely to consume alcohol than patients but there was 

no difference in the median consumption of drinkers and no patient or volunteer drank alcohol 

to excess. 

 

49/50 (98%) of patient FibroScanTM examinations were possible (≥10 valid readings) and 

47/50 (94%) were reliable by Boursier’s criteria.182 Non-reliable FibroScanTM examinations 

were excluded from further analysis. 16/47 (34%) of patient FibroScanTM examinations were 

completed with the M probe and the remainder with the XL probe. All volunteer FibroScanTM 

examinations were performed with the M probe and were reliable by Boursier’s criteria.  
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Patients 
n=50 

Healthy 
Volunteers 
n=6 p-Value 

Age (years) 54 (18-73) 32 (23-55) 0.011 
Male 28 (56%) 3 (50%) 1.000 
Caucasian 43 (86%) 6 (100%) 1.000 
BMI (Kg/m2) 33.6 ±5.1 24.0 ±2.5 0.001 
W:H ratio    
 Male  0.98 ±0.07 0.81 ±0.05 0.001 
 Female 0.90 ±0.06 0.72 ±0.03 0.001 
Post-transplant 5 (10%) n/a - 
Type 2 diabetes 26 (52%) n/a - 
Hypertension 25 (50%) n/a - 
Dyslipidaemia 26 (52%) n/a - 
Smoking Status   1.000 
 Non-smoker 26 (58%) 4 (67%) - 
 Ex-smoker 15 (30%) 2 (33%) - 
 Current smoker 6 (12%) 0 (0%) - 
Consume alcohol 13 (26%) 6 (100%) 0.001 
 UK units/week* 8 (1-20) 13 (1-15) 0.701 
Data reported as mean ±SD, with p-values from t-tests; median (range), with p-values 
from Mann-Whitney tests; or n (%), with p-values from Fisher’s exact tests, as 
applicable. 
Bold p-values are significant at p<0.05 
*In patients that consume alcohol 

Table 4.6-1: Baseline characteristics of patients with NAFLD and healthy volunteers. 
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4.6.2 Histology results 

 

The histological characteristics of the patients in the study are shown in Table 4.6-2. 

Characteristic n % 
Kleiner Fibrosis Stage 
0 6 12% 
1 10 20% 
2 9 18% 
3 20 40% 
4 5 10% 
Diagnosis 
SS 12 24% 
NASH 38 76% 
Brunt Steatosis Grade 
0 0 0% 
1 23 46% 
2 17 34% 
3 10 20% 
Lobular Inflammation (NAS) 
0 11 22% 
1 23 46% 
2 15 30% 
3 1 2% 
Hepatocyte Ballooning (NAS) 
0 10 20% 
1 15 30% 
2 25 50% 
Total NAS 
0 0 0% 
1-2 9 18% 
3-4 16 32% 
5-6 22 44% 
7-8 3 6% 
Scheuer Siderosis Grade 
0 42 84% 
1 7 14% 
2 1 2% 
3 0 0% 

Table 4.6-2: Liver histology characteristics of study participants 
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Median (range) length of liver biopsy samples was 25 (15-50) mm. Median (range) CPA was 

5.3 (0.6-34.2) %. CPA correlated strongly with Kleiner fibrosis stage (p<0.001) (Figure 

4.6-2). The characteristics of the histology and distribution of fibrosis stages in the cohort are 

shown in Table 4.6-2. 12 (24%) of the patients had SS and 38 (76%) had NASH.  

 

 

Figure 4.6-2: Box plot showing the association of CPA and Kleiner stage in the study cohort. 

P<0.001 by the Jonckheere-Terpstra test. 

  



 

163 
 

4.6.3 Grading of steatosis 

 

PDFF-Dixon data was available for 38/50 (76%) patients and all volunteers. Median PDFF-

Dixon for volunteers, grade 1, grade 2 and grade 3 steatosis were 1.8, 6.6, 15.3 and 21.4% 

respectively (p<0.001) (Figure 4.6-3 A). PDFF-MRS was available for 43/50 (86%) patients 

and 5/6 (83%) volunteers. Median PDFF-MRS for volunteers, grade 1, grade 2 and grade 3 

steatosis were 0.3, 11.3, 23.7, and 31.5% respectively (p<0.001) (Figure 4.6-3 B). AUROC 

(95%CI) for the identification of steatosis (Brunt grade ≥1) for both PDFF-Dixon and PDFF-

MRS was 1.00 (1.00-1.00). 

 

CAP was available in 24/50 (48%) patients and all volunteers. Median CAP for volunteers, 

grade 1, grade 2 and grade 3 steatosis were 246, 331, 361, 344dB/m respectively (p=0.002) 

(Figure 4.6-3 C). AUROC (95% CI) for CAP for the identification of steatosis (Brunt grade 

≥1) was 0.95 (0.87-1.00). 

 

There was a strong correlation between PDFF-Dixon and PDFF-MRS (n=38, Rho=0.975, 

p<0.001), between CAP and PDFF-MRS (n=27, Rho=0.682, p<0.001) and between CAP and 

PDFF-Dixon (n=26, Rho=0.712, p<0.001,). 
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Comparison 
Brunt vs. 
PDFF-Dixon 

Brunt vs. 
PDFF-MRS 

Brunt vs. 
CAP 

 
Comparison 

Scheuer 
vs. T2 

Overall <0.001 <0.001 0.002  Overall 0.016 
HV vs. 1 0.211 0.312 0.090  1 vs. 0 0.267 
HV vs. 2 <0.001 <0.001 <0.001  1 vs. HV 0.012 
HV vs. 3 <0.001 <0.001 0.277  0 vs. HV 0.116 
1 vs. 2 0.011 0.004 0.376    
1 vs. 3 0.002 <0.001 1.000    
2 vs. 3 1.000 1.000 1.000    

Figure 4.6-3: Box plots demonstrating the relationships between A) PDFF-Dixon and Brunt 

steatosis grade, B) PDFF-MRS and Brunt steatosis grade, C) CAP and Brunt steatosis grade 

and D) T2* and Scheuer siderosis grade. Overall significance calculated with the Kruskal-

Wallis test and inter-group differences assessed with Dunn’s tests. 



 

165 
 

4.6.4 Grading of siderosis 

 

7/50 (14%) patients had grade 1 siderosis on biopsy and only 1/50 (2%) patient had grade 2 

siderosis. Mean T2* in healthy volunteers, patients without siderosis on biopsy and patients 

with siderosis on biopsy (Scheuer grade ≥1) had mean T2* of 21.8 (±5.8), 16.7 (±3.7) and 

14.1 (±3.1) milliseconds (ms) respectively (p=0.016) (Figure 4.6-3 D). AUROC for the 

differentiation of patients with and patients without siderosis on biopsy was 0.705 (0.498-

0.912). Median serum ferritin for healthy volunteers, patients without siderosis and patients 

with siderosis was 52, 119 and 238 µg/L respectively (p=0.003). Serum ferritin significantly 

correlated with T2* (Rho=-0.374, p=0.005). Serum iron did not show a statistically significant 

relationship with histological assessment of siderosis (p=0.059) or correlation with T2* 

(Rho=0.029, p=0.834). 

 

4.6.5 Differentiation between NASH and simple steatosis 

 

Demographic characteristics and blood results presented in Table 4.6-3 showed no significant 

difference between patients with NASH and SS. cT1 showed a significant difference between 

SS and NASH and, although not validated for this purpose, LS and ELF also showed 

significant differences between patients with SS and those with NASH (Table 4.6-4). Whilst 

cT1 did differentiate between NASH and SS, the AUROC (95% CI) for cT1 0.69 (0.50-0.88) 

was inferior to ELF 0.87 (0.77-0.79) and LS 0.82 (0.70-0.94) (Figure 4.6-4). 
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NASH 
(n=38) 

Simple Steatosis 
(n=12) p-Value 

Age (years) 54 (18-73) 46 (23-69) 0.216 
Male 19 (50%) 9 (75%) 0.186 
Caucasian 34 (90%) 9 (75%) 0.337 
BMI (Kg/m2) 34.2 ±4.8 31.6 ±5.7 0.125 
Type 2 diabetes 22 (58%) 4 (33%) 0.190 
Hypertension 20 (53%) 5 (42%) 0.742 
Hyperlipidaemia 21 (55%) 5 (42%) 0.514 
Consume alcohol 8 (21%) 5 (42%) 0.256 
 Alcohol intake (UK units/week)*  7 (1-20) 12 (2-16) 0.831 
Bilirubin (µmol/L) 11 (4-45) 15 (5-50) 0.318 
Aspartate transaminase (AST) (U/L) 38 (19-119) 41 (16-112) 0.526 
Alanine transaminase (ALT) (U/L) 53 (18-153) 74 (15-176) 0.707 
Alkaline phosphatase (ALP) (U/L) 94 (45-251) 76 (50-149) 0.114 
Gamma-glutamyl transferase (gGT) (U/L) 78 (22-381) 58 (21-547) 0.071 
Albumin (g/L) 45 ±4 46 ±4 0.477 
Fasting glucose (mmol/L) 6.3 (2.8-17.3) 5.6 (4.6-11.4) 0.111 
Cholesterol (mmol/L) 4.8 ±1.5 5.2 ±1.2 0.470 
Triglycerides (mmol/L) 2.0 (0.7-5.8) 1.4 (0.9-2.7) 0.099 
Ferritin (µg/L) 115 (10-689) 177 (45-346) 0.159 
Transferrin saturation (%) 24.3 (7.5-49.6) 30.5 (14.7-43.7) 0.080 
Creatinine (µmol/L) 73 (46-143) 77 (52-97) 0.225 
Platelet count (x109/L) 219 ±71 197 ±37 0.172 
Data reported as mean ±SD, with p-values from t-tests; median (range), with p-values 
from Mann-Whitney tests; or n (%), with p-values from Fisher’s exact tests, as applicable. 
*In patients that consume alcohol 

Table 4.6-3: Demographic, clinical and laboratory parameters in patients with simple steatosis 

and NASH. 
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 NASH 
(n=38) 

SS 
(n=12) 

p-Value 

cT1 (ms) 1007 ±94 907 ±120 0.004 
Liver Stiffness (kPa)* 10.2 (4.9-27.7) 6.1 (3.6-9.1) <0.001 
ELF 9.3 ±1.0 7.8 ±0.8 <0.001 
AST:ALT ratio 0.76 (0.27-1.56) 0.62 (0.34-1.07) 0.077 
NFS -0.95 ±1.64 -1.78 ±1.99 0.150 
FIB-4 1.20 (0.40-5.80) 1.12 (0.38-4.61) 0.351 
Data reported as mean ±SD, with p-values from t-tests or median (range), 
with p-values from Mann-Whitney tests, as applicable. 
Bold p-values are significant at p<0.05 
*Based on reliable scans only (n=47) 

Table 4.6-4: cT1, LS and ELF showed significant differences between those with simple 

steatosis and those with NASH. 

 

 

 

Figure 4.6-4: ROC curve for the differentiation of patients with simple steatosis from those 

with NASH (n=47). 
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4.6.6 Grading of NAFLD disease activity 

 

In patients with NAFLD, semi-quantitative assessment of hepatocyte ballooning showed a 

statistically significant correlation with cT1 (p=0.045), LS (p=0.002), and ELF (p=0.011). 

Lobular inflammation was significantly associated with LS (p=0.005) and ELF (p=0.001) but 

not cT1 (p=0.588). Overall assessment of disease activity as defined by the total NAS showed 

significant correlation with cT1, LS and ELF score with p<0.001, p=0.005 and p=0.001 

respectively. These associations can be seen in Figure 4.6-5. AUROC (95% CI) to 

differentiate those with NAS <5 and NAS ≥5 was statistically significant for cT1, LS, ELF 

and FIB-4, 0.74 (0.59-0.88), 0.74 (0.59-0.89), 0.74 (0.59-0.89) and 0.73 (0.58-0.88) 

respectively. Statistical significance was not reached by AST:ALT ratio and NFS 0.60 (0.43-

0.77) and 0.63 (0.47-0.77) respectively. 
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Figure 4.6-5: Box plots showing the relationship between the individual components of NAS 

and non-invasive markers of liver disease. P-values calculated with the Jonckheere–Terpstra 

test. 
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4.6.7 Staging of liver fibrosis using multiparametric MRI 

 

Mean (±SD) cT1 for healthy volunteers was 791 (±42)ms. For patients with NAFLD with F0, 

F1, F2, F3 and F4 fibrosis mean (±SD) cT1 was 882 (±141), 969 (±115), 985(±93), 1016 

(±97) and 997 (±86)ms respectively as can be seen in Figure 4.6-6. Statistically significant 

differences were demonstrated between healthy volunteers and F2 fibrosis (p=0.048) and F3 

fibrosis (p=0.003). However, cT1 showed no significant trend across the fibrosis stages 

(p=0.068), with pairwise comparisons finding no evidence of significant differences between 

individual fibrosis stages in patients with NAFLD. As shown in Figure 4.6-7, there was no 

evidence of significant correlation between cT1 and CPA in patients with NAFLD 

(Rho=0.142, p=0.324).  

 

In NAFLD patients there was a significant association between Kleiner fibrosis stage and ELF 

(p<0.001), Liver stiffness (LS) (n=47) (p<0.001), NFS (p=0.003), AST/ALT ratio (p=0.002) 

and FIB-4 (p=0.013) (Figure 4.6-6). CPA showed significant correlation with: ELF 

(Rho=0.404, p=0.004), LS (n=47) (Rho=0.511, p<0.001), NFS (Rho=0.306, p=0.030), 

AST/ALT ratio (Rho=0.453, p=0.001) and FIB-4 (Rho=0.292, p=0.039) (Figure 4.6-7).  
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Figure 4.6-6: Box plots showing the relationship between non-invasive markers of liver 

disease and Kleiner fibrosis stage in the study cohort. 
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Figure 4.6-7: Scatter plots showing the relationship between non-invasive markers of liver 

disease and collagen proportionate area (CPA) in the study cohort.  
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To diagnose clinically significant (defined as ≥F2) fibrosis in patients with NAFLD, the 

AUROC (95% CI) for ELF, LS, AST:ALT ratio, NFS and FIB-4 were statistically significant; 

0.90 (0.82-0.99), 0.90 (0.81-0.99), 0.78 (0.64-0.93), 0.72 (0.54-0.89) and 0.69 (0.52-0.86) 

respectively. cT1 did not reach statistical significance with AUROC (95%CI) of 0.63 (0.45-

0.81).  

 

To diagnose advanced (defined as ≥F3) fibrosis in patients with NAFLD, AUROC (95% CI) 

for LS, ELF, NFS were statistical significance; 0.88 (0.76-0.99), 0.80 (0.68-0.93) and 0.66 

(0.50-0.82) respectively. AST:ALT ratio, cT1 and FIB-4 did not reach statistical significance 

with AUROC (95%CI) of 0.63 (0.47-0.79), 0.62 (0.46-0.78) and 0.61 (0.45-0.78) 

respectively.  

 

It is proposed that the influence of inflammation on cT1 leads to the lack of correlation with 

fibrosis stage. Figure 4.6-8 shows the influence of disease activity on assessment of fibrosis. 

In patients with early stage fibrosis there was significant difference in cT1 between those with 

NAS <5 compared to those with a NAS ≥5. This distinction had a trend towards significance 

in higher stage fibrosis. 
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Figure 4.6-8: Box plot demonstrating that cT1 is elevated in patients with a high NAS 

implying that cT1 reflects NAFLD disease activity as well as fibrosis. This was statistically 

significant by the Mann-Whitney U test in those with early stage fibrosis only.  

 

4.6.8 Comparative utility of cT1 to exclude clinically significant liver disease 

 

10/50 (20%) of patients in the cohort were classified as being at low risk for progressive liver 

disease. This was defined as SS without clinically significant (>F1) fibrosis. cT1, LS, ELF, 

AST:ALT ratio and NFS showed statistically significant differences between healthy 

volunteers, low risk patients and high risk patients as shown in Table 4.6-5. 

 

  

n=16 n=9 n=9 n=16 
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 High risk 
patients* 
(n=40) 

Low risk 
Patients** 
(n=10) 

Healthy 
volunteers 
(n=6) p-Value 

cT1 (ms) 1007 ±93 890 ±122 790 ±42 <0.001 
Liver Stiffness (kPa)† 9.9 (4.9-27.7) 6.1 (3.6-9.1) 4.5 (3.6-6.8) <0.001 
ELF 9.2 ±1.0 7.7 ±0.8 7.9 ±0.3 <0.001 
AST:ALT ratio 0.76 (0.27-1.56) 0.65 (0.34-1.07) 1.02 (0.86-1.67) 0.018 
NFS -1.05 ±1.66 -1.54 ±2.09 -2.90 ±0.62 0.047 
FIB-4 1.15 (0.38-5.80) 1.23 (0.53-4.61) 0.87 (0.55-0.98) 0.158 
Data reported as mean ±SD, with p-values from one-way ANOVA or median (range), with p-
values from Kruskal-Wallis tests, as applicable. Bold p-values are significant at p<0.05 
* Patients with either NASH or >F1 fibrosis ** Patients with SS and ≤F1 fibrosis 
† Based on reliable scans only (n=53) 
Table 4.6-5: cT1, LS, ELF, AST:ALT ratio and NFS show significant differences between 

high risk patients, low risk patients and healthy volunteers. 

 

The AUROC (95% CI) to differentiate the different groups is shown inTable 4.6-6, and 

confirmed effective utility of cT1, LS and ELF to exclude significant liver disease. 

 

 Low risk patients* 
(n=10) 
vs 

High risk patients** 
(n=37) 

Healthy volunteers 
(n=6) 
vs 

All patients  
(n=47) 

Healthy volunteers and 
low risk patients (n=16) 
vs 

High risk patients  
(n=37) 

cT1 0.73 (0.53-0.93) 0.93 (0.86-1.00) 0.83 (0.69-0.96) 
LS† 0.82 (0.69-0.94) 0.89 (0.77-1.00) 0.86 (0.76-0.96) 
ELF 0.89 (0.80-0.99) 0.81 (0.69-0.92) 0.89 (0.81-0.98) 
AST:ALT 0.64 (0.45-0.84) 0.82 (0.67-0.97)†† 0.52 (0.34-0.70)†† 
NFS 0.55 (0.32-0.77) 0.79 (0.66-0.91) 0.64 (0.47-0.81) 
FIB-4 0.51 (0.31-0.71) 0.72 (0.59-0.85) 0.59 (0.43-0.75) 
Bold values were significant at p<0.05 
* Patients with SS and ≤F1 fibrosis ** Patients with either NASH or >F1 fibrosis 
† Based on reliable scans only (n=53) 
††Inverse relationship, i.e. AST:ALT ratio was higher in the healthy volunteers group 
Table 4.6-6: AUROC (95% CI) for stratification of low and high risk patients. cT1, LS and 

ELF showed statistically significant results across all comparisons. 
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Taking common cut off values for the three best performing tests, sensitivity, specificity, 

negative predictive value and positive predictive value for the diagnosis of high risk patients 

were calculated and are shown in Table 4.6-7.Negative predictive values, suggesting those 

patients for whom biopsy could potentially be avoided, were substantially higher for cT1 

(80.0-83.3%) compared to LS (39.1-42.9%) and ELF (26.3-57.1%). However, attention must 

be paid to the disconnection between NPV and sensitivity in this cohort due to the high 

prevalence of high risk patients in the study cohort. This is discussed further in section 4.7.  

 

  AUROC  
(95% CI) 

Cut off Sensitivity Specificity PPV NPV 

Low* 
vs high 
risk** 
patients 

cT1  0.73  822 
ms163 

97.5% 40.0% 86.7% 80.0% 

 (0.53-0.93) 875 
ms165 

97.5% 50.0% 88.6% 83.3% 

LS 0.82  5.8 
kPa103 

89.2% 30.0% 82.5% 42.9% 

 (0.69-0.94) 7.0 
kPa103 

75.7% 60.0% 87.5% 40.0% 

  7.9kPa103 64.9% 70.0% 88.9% 35.0% 
  9.0 

kPa103 
62.2% 90.0% 95.8% 39.1% 

ELF 0.89  7.762 92.5% 40.0% 86.0% 57.1% 
 (0.80-0.99) 9.862 30.0% 100% 100% 26.3% 

HV vs  
patients 

cT1  0.93 822 ms 90.0% 83.3% 97.8% 50.0% 
 (0.86-1.00) 875 ms 88.0% 100.0% 100% 50.0% 
LS 0.89 5.8 kPa 85.1% 66.7% 95.2% 36.4% 
 (0.77-1.00) 7.0 kPa 68.1% 100% 100% 28.6% 
ELF 0.81  7.7 86.0% 16.7% 89.6% 12.5% 
 (0.69-0.92) 9.8 24.0% 100% 100% 13.6% 

* Patients with SS and ≤F1 fibrosis 
** Patients with either NASH or >F1 fibrosis 
HV: healthy volunteers 

Table 4.6-7: Sensitivity, specificity, PPV and NPV at commonly accepted cut off values for 

the differentiation of low and high risk patients. 
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4.7 Discussion 

 

The global burden of NAFLD is increasing inexorably and validated non-invasive diagnostic 

tests are important for patients, clinicians and industry. This is not only the first independent 

validation study to assess the diagnostic accuracy of multiparametric MRI with 

LiverMultiscanTM in NAFLD, but also the first study to compare the performance and 

potential cost-effectiveness of this emerging methodology against more established non-

invasive biomarkers of liver disease.  In our prospectively recruited population we 

demonstrated the ability of multiparametric MRI to grade hepatic steatosis with a high degree 

of accuracy. Moreover, multiparametric MRI demonstrated accurate differentiation of patients 

with simple steatosis from those with NASH and also correlated in a highly significant 

manner with overall disease activity as defined by NAFLD activity score. However, in this 

cohort, multiparametric MRI did not predict the severity of histological liver fibrosis.  

Identifying those patients with NAFLD requires accurate detection of steatosis. In clinical 

practice, steatosis is typically assessed by visual grading of standard liver ultrasound 

images.32 Although the sensitivity of ultrasound in detecting moderate and severe steatosis is 

good, there is wide interobserver and intraobserver variability.231  Other non-invasive 

techniques for steatosis assessment such as the Fatty Liver Index have moderate to good 

accuracy but are significantly confounded by fibrosis stage and are unable to monitor changes 

in steatosis.232, 233 PDFF-Dixon has been shown in this study to have excellent accuracy in 

differentiating patients with steatosis on liver biopsy from healthy volunteers with AUROC of 

1.0. PDFF-Dixon also correlated strongly with PDFF-MRS (Rho=0.975, p<0.001), which is 

widely regarded at the most accurate method for non-invasive quantification of liver fat.228, 234 

Comparison of the accuracy of PDFF-Dixon and Controlled Attenuation Parameter for the 
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detection of steatosis must be made with caution due to the small numbers of patients in this 

study with both a PDFF-Dixon and Controlled Attenuation Parameter reading. Both 

techniques had very high accuracy for the detection of any steatosis. 

 

PDFF-Dixon demonstrated a clear, stepwise increase with advancing Brunt steatosis grade in 

patients with NAFLD suggesting that multiparametric MRI could be used as an accurate 

method of monitoring steatosis progression and regression and assessing the therapeutic 

response to lifestyle or drug interventions in the context of clinical trials. In this study, 

Controlled Attenuation Parameter did not demonstrate the same stepwise increase with Brunt 

grade observed with PDFF-Dixon measurement.  

 

A single test to reliably exclude NAFLD would be of considerable value in clinical practice. 

In this study multiparametric MRI showed a high degree of accuracy for differentiating 

between healthy volunteers and those with NAFLD with AUROC (95% CI) of 0.93 (0.86-

1.00). It should be recognised however, that the healthy volunteers and patients enrolled in 

this study were not well matched in terms of age, waist to hip ratio or BMI. Accepting this 

limitation, using a cT1 cut-off value of 875ms gave multiparametric MRI a sensitivity of 

88.0% with specificity of 100% for the detection of any liver disease. This was superior to all 

other non-invasive tests. In addition, the negative predictive value for excluding any liver 

disease was substantially higher than those for the other non-invasive techniques.  

 

Although the NPV is notably higher for cT1 than other tests, there are two key limitations that 

must be recognised. Firstly the relatively small number of patients included in this study 

means that small variations in how patients are classified by the various tests has a large 
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impact on the calculated sensitivity, specificity, NPV and PPV. For example cT1 and liver 

stiffness at the low cut-off of 5.8kPa have broadly similar sensitivities but for liver stiffness 

the NPV is half that of cT1. For cT1 the calculation (true negative / all negatives) is 5/6 = 

83.3% and for LS 3/7 = 42.9%. These changes in the classification of just one or two patients 

leads to the large variation in NPV and the disconnect between sensitivity and NPV seen in 

these data. Secondly, it must be recognised that PPV and NPV are influenced not only by the 

performance of the test but also the prevalence of the condition within the population being 

studied. Our study cohort is drawn from patients selected to undergo a liver biopsy as a 

routine part of their care within tertiary liver units. To reach the point where liver biopsy was 

requested it is very likely that the clinicians in charge of their care would be suspicious of 

advanced liver disease and the majority of these patients would already have failed attempts 

to stratify disease severity with non-invasive tests. For example most patients will have had a 

high or indeterminate value from the NAFLD fibrosis score and then either an unreliable or 

elevated reading from FibroScan. This leads to the low prevalence of low risk patients within 

our study cohort. This highly selected group is very unlikely to be representative of patients 

with NAFLD in the community, nor is it necessarily representative of the majority of patients 

with NAFLD seen in secondary care. This will have influenced the evaluation of the test and 

the applicability of the results; particularly in respect to NPV and PPV. 

 

An interesting opportunity to consider further work to would be to establish the ability of 

multiparametric MRI to be used as a single one-stop comprehensive MRI examination to 

screen for significant liver disease in patients with NAFLD. However, to be useful in this 

regard, multiparametric MRI would need to demonstrate its ability to reliably differentiate 

low and high risk patients in populations with a much lower prevalence of advanced liver 
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disease. The data presented in this thesis is unable to support this conclusion due, in part, to 

the strategy for patient recruitment.  

 

The differentiation of those with NASH from those with simple steatosis is an important 

distinction in clinical practice as our current understanding of NAFLD recognises NASH as 

the harbinger of progressive fibrosis and hepatocellular carcinoma.202, 203, 235 Identifying 

individuals with NASH stratifies patients at risk of significant disease and may do so at an 

earlier stage than tests that reflect fibrosis alone.207 Detection of NASH guides decision 

making about clinical management and follow-up intensity and identifies patients who may be 

eligible for recruitment to clinical studies.210 To date, the differentiation of simple steatosis 

and NASH has been reliant on liver biopsy. Liver biopsy has low patient acceptability due to 

its invasiveness and associated risk. Liver biopsy is also prone to sampling error and 

interobserver variation of histological assessment. These factors reduce the suitability and 

reliability of liver biopsy for disease stratification in NAFLD. Currently available methods to 

non-invasively differentiate NASH and simple steatosis are suboptimal. Conventional blood 

tests and imaging techniques have low accuracy for the differentiation of simple steatosis and 

NASH.210  

 

To determine the severity of disease, cT1 showed a highly significant, positive correlation 

with NAFLD activity score. The correlation between NAFLD activity score and cT1 was 

stronger than between NAFLD activity score and any other evaluated test, although the 

authors acknowledge that these tests are not designed to assess disease activity. This indicates 

the potential utility of multiparametric MRI as a sensitive diagnostic tool to monitor changes 

in disease activity. A NAFLD activity score of ≥5 is frequently used as a criterion to enrich 
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clinical trials with patients with more significant liver disease. The performance of cT1 to 

make this distinction was comparable to the other non-invasive markers evaluated in this 

study.  

 

Staging of fibrosis in NAFLD has been clearly shown to predict clinical outcomes 14, 21, 219 

and thus is an important part of the assessment of patients with NAFLD in clinical practice 

and for inclusion in current late stage clinical trials. Additionally both cT1 and ELF have also 

been reported to have utility in predicting clinical outcomes.165, 236 In this cohort, cT1 did not 

predict fibrosis defined by either Kleiner stage or collagen proportionate area whereas the 

other non-invasive markers assessed in this study performed in line with published work.237, 

238  

 

The lack of correlation between cT1 and fibrosis in this study was unexpected as previous 

work by Banerjee et al. in unselected patients163 and by Pavlides et al. in patients with 

NAFLD225 has shown a clear correlation between cT1 and fibrosis stage. It may be that our 

study is underpowered to detect this correlation, however, in our study it appears that the 

influence of disease activity on cT1 has hampered the ability of cT1 to detect stage 

differences in fibrosis; larger studies are needed to explore this further. Figure 4.6-8 shows the 

heavy confounding of disease activity on fibrosis assessment in this cohort. When grouped by 

fibrosis stage, the only statistically significant difference in cT1 is between low and high 

NAFLD activity score in patients with early stage fibrosis. This identification of a group of 

patient with early stage fibrosis and less severe disease as graded by NAFLD activity score 

characterises a group of patients at low risk of progressive liver disease. As shown in Table 

4.6-7, cT1 had comparable sensitivity, specificity and positive predictive value to ELF and 
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liver stiffness for the exclusion of significant disease (NASH or fibrosis ≥F1). As discussed 

above, the greater negative predictive value of multiparametric MRI is likely to represent the 

nature of the study cohort rather than the qualities of the test.  

 A limitation of this study is that the statistical power is limited by recruitment volume, which 

may have resulted in some of the more subtle associations between variables being missed. 

Although liver biopsy remains the gold standard, as a comparator it has known limitations of 

sampling error and interobserver variation.30, 239  However, in our study we demonstrated that 

semi-quantitative histology scores correlated strongly with collagen proportionate area and 

other biomarkers performed as per previous publications. Despite these limitations, our 

independently collected data confirms the opportunities for new non-invasive biomarkers in 

liver disease severity assessment.   
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4.8 Conclusion 

 

In conclusion, multiparametric MRI with LiverMultiscanTM has the ability to identify patients 

with NAFLD and to quantify steatosis and overall disease activity (by NAFLD activity score). 

Additionally, it stratified between healthy volunteers and patients with NAFLD as well as 

between patients at low risk and those at high risk of progressive liver disease. When 

evaluated alongside existing biomarkers, multiparametric MRI was superior for the grading of 

steatosis, grading of NASH severity, and for excluding disease, but in this cohort was inferior 

for the staging of fibrosis. The potential application of multiparametric MRI in clinical and 

research settings thus remains of great interest and further studies in appropriate clinical 

populations will facilitate improved understanding of the opportunities for applying MR 

imaging in evaluation of liver disease. 
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CHAPTER 5: In Vivo Proton Magnetic Resonance Spectroscopy for the 

Diagnosis and Assessment of Non-Alcoholic Fatty Liver Disease 

 

  



 

186 
 

5.1 Preamble 

 

Insulin resistance and the associated alterations in lipid metabolism are mechanistically 

important in the development of non-alcoholic fatty liver disease (NAFLD).240 These 

metabolic differences lead to an altered lipidome between health, simple steatosis (SS) and 

non-alcoholic steatohepatitis (NASH).241 Proton magnetic resonance spectroscopy (1H-MRS) 

is a technique used widely in biochemistry and medical imaging to analyse the chemical 

composition of substances or tissues. In vivo, 1H-MRS can identify metabolites present within 

tissues and thus characterise different tissues. The most common clinical application of 1H-

MRS is the characterisation of brain tumours based on their metabolite content.242 In addition 

to this established clinical application, 1H-MRS has been shown to characterise lipids within 

adipose tissue and the liver. Thus, in vivo 1H-MRS could potentially be used as a non-

invasive biomarker to identify the lipidomic difference within hepatic tissue that characterise 

health, SS and NASH.180, 243-245  

 

In the work presented here we investigate the feasibility of using in vivo 1H-MRS to 

characterise the hepatic lipids profile of patients with NAFLD with a view to establishing the 

potential as a biomarker to detect NAFLD and assess disease severity. 
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5.2 Rationale for the investigation of 1H-MRS as a biomarker of NAFLD 

 

5.2.1 Lipotoxicity in NAFLD 

 

The term lipotoxicity refers to inflammation and cellular damage within the liver of patients 

with NAFLD due to the toxic effects of fatty acids and their metabolites; the central driver for 

which is insulin resistance and a high carbohydrate diet.246 Lipid metabolites implicated in 

this process include phosphatidic acid, choline, ceremides and diacylglycerols.246 Insulin 

resistance leads to increased lipolysis in adipose tissue and the release of free fatty acids into 

the circulation. Circulating free fatty acids are then taken up by the liver 247 and de novo 

generation of lipid within the liver due to dietary carbohydrate excess further contributes to 

increased flux of free fatty acids into hepatocytes.240 The increased movement of fatty acids 

into hepatocytes overwhelms the normal mechanism of fatty acid excretion as very low 

density lipoprotein. This fatty acid excess generates reactive oxygen species, which contribute 

to cellular injury, cytokine production and tissue inflammation. In addition free fatty acids and 

particularly saturated fatty acids can directly activate Toll like receptors leading to activation 

of the innate immune system, release of pro-inflammatory cytokines and activation of 

apoptotic pathways.  

 

The lipotoxicity theory of the pathogenesis of NASH outlined in Figure 5.2-1 indicates that 

the accumulation of triglyceride droplets within hepatocytes is a by-product of the 

pathological process and is not hepatotoxic per se.240, 246  
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Figure 5.2-1: Schematic representation of the increase in fatty acid uptake by the liver and the 

associated lipotoxicity in the pathogenesis of NASH. Taken from Peverill W et al, Int. J. Mol. 

Sci, 2014. 

 

5.2.2 Defining the lipidomic differences between health, SS and NASH 

 

With the understanding of the metabolic pathways involved in NAFLD and NASH come 

attempts to define the metabolic profile of a patient with NAFLD with a view to the 

identification of diagnostic and prognostic markers. Studies using analytical biochemistry 

techniques such as mass spectrometry and gas chromatography to analyse liver tissue samples 

have identified some clear differences between health, SS and NASH. 
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In 2007 Puri P et al showed that, as might be expected, the total amount of triacylglycerol 

(TAG) in liver tissues increases from controls to those with NAFLD. Although cholesterol 

esters (CE) remain fairly constant, free cholesterol shows a stepwise increase from healthy 

controls to SS to NASH with statistically significantly lower levels of choline in those with 

NAFLD compared to controls.241 This work also showed that, in patients with NAFLD, fatty 

acid chains showed a trend towards being more saturated with a statistically significant 

decrease in amount of TAG containing poly-unsaturated fatty acid (PUFA) chains. In line 

with previous work248 there was also a trend for progressive decrease in PUFAs within the 

hepatic free fatty acid (FA) pool of patients with NAFLD. However, in this small study (9 

patients per group) this change in PUFA concentration did not reach significance between SS 

and NASH.  

 

The finding that, in NASH, liver tissue contains fatty acids that are more saturated than the 

liver tissue of controls is supported by Yamada K et al who found a reduction in the 

C16:1/C16:0 ratio (indicating an increase in the saturation of FAs) that was specifically 

associated with lobular inflammation, a key feature of NASH.249 In addition, FA chain length 

was shown to be shorter in NASH than controls (reduced C18:0/C16:0 ratio). 249 

 

In 2015 Gorden D and colleagues have presented a very carefully conducted analysis of tissue 

and plasma metabolomics in a much larger cohort than previously studied and looked 

specifically at metabolomic biomarkers that could differentiate SS and NASH. This study 

found that clear differences were evident in both lipid and aqueous metabolites between 

patients with SS and those with NASH.250 When looking at the metabolomic analysis of liver 

tissue the main differences were that the FA chains making up TAG were shorter and more 
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saturated in NASH than SS. There were also fewer TAGs containing PUFA chains and a 

reduction in some CE species. 20 lipid species were shown in this paper to differentiate SS 

and NASH including several phosphatidylcholines (PC), phospholipids of various classes, 

CEs, ceremides and aqueous metabolites involved in the Krebs cycle. 250 

 

5.2.3 The identification of lipids with 1H-MRS  

 

1H-MRS is able to non-invasively characterise fatty acids (FAs) in lipid phantom experiments 

and in vivo adipose tissue243 and liver.180, 251, 252 These measurements have been shown to be 

highly repeatable.253 Therefore it can be concluded that 1H-MRS can accurately measure 

several parameters relating to the fatty acid composition of the liver in vivo. 
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5.3 Aims 

 

As outlined above it is plausible that 1H-MRS will be able to characterise hepatic lipids and 

that this information can be used to identify the differences that exist in the hepatic lipidome 

in health, SS and NASH. 

 

To my knowledge, no previous work looks specifically at the differentiation of SS and NASH 

with 1H-MRS. Here, we investigate the ability of 1H-MRS to characterise hepatic FAs with a 

view to identifying patients with NAFLD and differentiating those with SS from those with 

NASH.  

 

To this end the aim is to calculate the following parameters from the 1H-MRS data using the 

method described in Chapter 2: 

 

 Fat fraction (FF) 

 Mean FA chain length (mCL) 

 Number of double bonds per FA chain (nDB) 

 Number of diacyl groups per chain – indicating polyunsaturated fatty acids (PUFAs) 

 Concentration of choline 
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5.4 Method 

 

Study participants described in Chapter 3 all had 1H-MRS sequences acquired during their 

research MRI. These 1H-MRS spectra were acquired and analysed as described in Chapter 2 

to characterise the hepatic lipidome. Here presented are the data from the patients with biopsy 

proven NAFLD as well as 6 healthy volunteers and 7 patients with chronic viral hepatitis as 

controls.  
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5.5 Results 

 

5.5.1 Participants 

 

54 patients with NAFLD, 7 patients with chronic viral hepatitis and 6 healthy volunteers (HV) 

underwent 1H-MRS. As shown in Figure 5.5-1, 1 patient with NAFLD was excluded due to 

an inadequate liver biopsy and 9 were excluded due to the MR spectrum failing visual quality 

control. One patient with chronic viral hepatitis and one healthy volunteer had an MR 

spectrum unsuitable for analysis due to very low fat fraction and one patient in the viral 

hepatitis group had an inadequate biopsy.    

 

 

Figure 5.5-1: Study flow chart for the 1H-MRS study 
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5.5.2 1H-MRS correlates strongly with histological assessment of steatosis 

 

1H-MRS derived fat fraction correlated strongly with semi-quantitative histological 

assessment of hepatic steatosis (Brunt grade) with Spearman’s Rho of 0.837 (p<0.001). Mean 

(±SD) fat fraction for HVs and Brunt stages in patients are shown in Table 5.5-1 and this 

relationship is shown in Figure 5.5-2.  

 

 n Fat fraction 
(%) 

HV 5 0.53 (±0.50) 
Brunt grade 
 0 2  (all viral) 1.88 (±0.25) 
 1 24  (21 NAFLD, 3 viral) 10.97 (±5.45) 
 2 14  (all NAFLD) 23.53 (±6.97) 
 3 9  (all NAFLD) 32.38 (±9.01) 
Data reported as mean ±SD. 
 

Table 5.5-1: Fat fraction as measured by 1H-MRS for HVs and each Brunt steatosis grade. 
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Figure 5.5-2: Box plot demonstrating the strong relationship between Brunt grade and fat 

fraction. 

 

5.5.3 Differentiation between aetiologies with 1H-MRS 

 

The characteristics of the participants in each group are outlined in Table 5.5-2. There is a 

statistically significant difference in mean BMI between the groups. However, post-hoc tests 

show that there is no significant difference between healthy volunteers and patients with viral 

hepatitis. Healthy volunteers were more likely to drink alcohol than other participants. No 

participant drank alcohol to excess.   
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 Patients with 
NAFLD 
n=44 

Patients with 
chronic viral 
hepatitis  
n=5 

Healthy 
Volunteers 
n=5 

p-value 

Age (years) 49.3 ±13.4 48.6 ±15.1 37.6 ±10.3 0.186 
Male 26 (59%) 5 (100%) 2 (40%) 0.128 
Caucasian 37 (84%) 5 (100%) 5 (100%) 1.000 
BMI (Kg/m2) 33.3 ±5.2 26.3 ±2.5 24.1 ±2.8 <0.001 
Post-transplant 5 (11%) 2 (40%) n/a 0.143† 
Type 2 diabetes 22 (50%) 1 (20%) n/a 0.215† 
Smoking Status  0.063 
 Non-smoker 24 (55%) 3 (60%) 4 (80%) 
 Ex-smoker 14 (32%) 2 (40%) 1 (20%) 
 Current smoker 6 (14%) 0 (0%) 0 (0%) 
Consume alcohol 10 (23%) 0 (0%) 5 (100%) 0.007 
 UK units/week* 6 (1-20) n/a 12 (1-15) 0.679† 
ALT (U/L) 57 (15-488) 40 (19-550) 20 (9-35) 0.003 
Bilirubin (µmol/L) 12 (4-50) 9 (4-19) 7 (3-21) 0.234 
Albumin (g/L) 45 (34-53) 47 (40-50) 49 (44-55) 0.072 
Sodium (mmol/L) 140 (134-146) 141 (136-146) 140 (138-141) 0.958 
INR 1.0 (0.9-1.4) 1.00 (0.9-1.2) 1.0 (0.9-1.0) 0.261 
*In participants that consume alcohol 
† Comparing valid groups only 
Data reported as mean ±SD, with p-values from one way ANOVA; median (range), with p-
values from Mann-Whitney U or Kruskal-Wallis tests; or n (%), with p-values from Fisher’s 
exact tests, as applicable. Bold p-values are significant at p<0.05 
 
Table 5.5-2: Demographic and baseline characteristics of the three aetiology groups 

 

Fat fraction correlated with BMI (Rho=0.440, p=0.001), waist circumference (Rho=0.494, 

p<0.001) and waist:hip ratio (Rho=0.504, p<0.001 ). There was no statistically significant 

correlation between fat fraction and serum total cholesterol (Rho=0.155, p=0.269) or serum 

triglycerides (Rho=0.255, p=0.065). 
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As shown in Figure 5.5-3 there were clear differences in median (range) fat fraction between 

patients with NAFLD (18.75 (3.79-47.31)% and other groups (viral: 2.06 (1.52-9.84)% and 

HV 0.31 (0.08-1.34)%). The difference between the fat fraction of healthy volunteers and 

patients with viral hepatitis was not statistically significant.  

 

 

Figure 5.5-3: Box plot demonstrating the relationship between diagnosis and fat fraction. 

Overall p<0.001 by the Kruskal-Wallis test. Post hoc tests show significant differences 

between patients with NAFLD and other groups as indicated above. 

 

Although fat fraction can be calculated for HVs the very low fat content makes further 

analysis of the 1H-MRS spectrum unreliable and it was not possible to further characterise the 

FAs present. HVs are therefore excluded from analysis of FA characteristics.  
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In patients with NAFLD compared to those with chronic viral hepatitis there fewer double 

bonds per chain (1.57 vs 3.94 arbitrary units) and shorter fatty acid chains (25.52 vs 19.89 

arbitrary units) but this did not reach statistical significance. In patients with NAFLD there 

was a statistically significant reduction in the concentration of PUFA (0.00 vs 0.28 arbitrary 

units) and choline (0.00076 vs 0.018%). This is shown in Figure 5.5-4. None of the calculated 

fatty acid parameters showed a statistically significant difference between patients with and 

without type 2 diabetes. 

 

To differentiate chronic viral hepatitis and NAFLD, AUROC (95% CI) for PUFA and choline 

were 0.88 (0.74-1.00) and 0.88 (0.78-0.98) respectively as shown in  

Figure 5.5-5. 
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Figure 5.5-4: Box plots demonstrating the relationships between fatty acid characteristics of 

patients with chronic viral hepatitis and those with NAFLD. Significant differences are seen 

in the amount of PUFA and the amount of choline. nDB and mCL were non-significantly 

lower in patients with NAFLD. p-values calculated with the Mann-Whitney U test. 
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Figure 5.5-5: ROC curve for the differentiation of chronic viral hepatitis and NAFLD with the 

two 1H-MRS parameters to show a statistically significant difference. 

 

5.5.4 Differentiation of SS and NASH 

 

The characteristics of the patients with NAFLD divided into those with SS and those with 

NASH are shown in Table 5.5-3. Other than a higher NAS score in the patients with NASH 

there were no statistically significant differences between the two groups. 
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 Patients with SS 
n=11 

Patients with NASH  
n=33 

p-value 

Age (years) 46.2 (±13.5) 47.6 (±17.5) 0.248 
Male 9 (82%) 17 (52%) 0.076 
Caucasian 3 (27.3%) 4 (12.1%) 0.341 
BMI (Kg/m2) 30.3 (±5.2) 34.4 (±5.8) 0.217 
Waist:hip ratio 0.97 (±0.06) 0.89 (±0.07) 0.993 
Post-transplant 2 (18%) 3 (9%) 0.276 
Type 2 diabetes 4 (36%) 18 (54.5%) 0.163 
Smoking Status  0.154 
 Non-smoker 7 (64%) 17 (52%) 
 Ex-smoker 3 (27%) 11 (33%) 
 Current smoker 1 (9%) 5 (15%) 
Consume alcohol 4 (36.4%) 6 (18.2%) 0.237 
 UK units/week* 7 (2-16) 6 (1-20) 0.914 
Bilirubin (units) 21.6 (±16.0) 15.7 (±3.9) 0.251 
Albumin (units) 42.2 (±2.6) 40.1 (±3.7) 0.537 
Fasting glucose (units) 7.0 (±2.9) 6.5 (±1.7) 0.135 
Brunt grade  0.491 
 0 0 (0%) 0 (0%) 
 1 7 (63.6%) 14 (42.4%) 
 2 2 (18.2%) 12 (36.4%) 
 3 2 (18.2%) 7 (21.2%) 
NAS  0.001 
 1 3 (27.3%) 0 (0%) 
 2 3 (27.3%) 2 (6.1%) 
 3 3 (27.3%) 4 (12.1%) 
 4 2 (18.2%) 7 (21.2%) 
 5 0 (0%) 13 (39.4%) 
 6 0 (0%) 4 (12.1%) 
 7 0 (0%) 3 (9.1%) 
Data reported as mean ±SD, with p-values from t tests; median (range), with p-
values from Mann-Whitney U tests; or n (%), with p-values from Fisher’s exact 
tests, as applicable. Bold p-values are significant at p<0.05 
 
Table 5.5-3: Characteristics of patients with NAFLD divided into SS and NASH 
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There is no statistically significant difference between the two groups in any of the 1H-MRS 

derived FA parameters. In patients with NAFLD, none of the calculated fatty acid parameters 

showed a statistically significant difference between patients with and without type 2 diabetes. 

 

 Patients with SS 
n=11 

Patients with NASH 
n=33 

p-value 

FF 0.11 (0.06-0.42) 0.20 (0.04-0.47) 0.226 
nDB 1.72 (1.02-3.99) 1.57 (0.63-4.28) 0.487 
PUFA 0.01 (0.00-0.34) 0.00 (0.00-0.19) 0.702 
mCL 22.29 (16.07-29.87) 19.84 (13.69-30.10) 0.470 
Choline 2.6x10-5 (0.0-4.5x10-4) 2.2x10-6 (0.0-6.9x10-4) 0.600 
Data reported as median (range), with p-values from Mann-Whitney U tests. 
Bold p-values are significant at p<0.05 
 
Table 5.5-4: 1H-MRS parameters show no statistically significant differences between SS and 

NASH. 

 

  



 

203 
 

5.5.5 Assessing disease activity in NAFLD  

 

Within patients with NAFLD, fatty acid characteristics correlate with hepatic steatosis but do 

not correlate with histological markers of disease activity as shown in  

Table 5.5-5. 

 

 FF nDB PUFA mCL Choline 

Steatosis grade 
(Brunt) 

Rho 0.811 -0.421 -0.404 -0.659 -0.360 
p <0.001 0.005 0.007 <0.001 0.018 
n 44 43 43 43 43 

Lobular 
inflammation 
(NAS) 

Rho -0.05 -0.20 0.24 -0.05 0.02 
p 0.77 0.21 0.12 0.74 0.91 
n 44 43 43 43 43 

Hepatocyte 
ballooning 
(NAS) 

Rho 0.28 -0.28 -0.01 -0.24 -0.17 
p 0.07 0.07 0.93 0.12 0.28 
n 44 43 43 43 43 

Total NAS 

Rho 0.497 -0.478 -0.087 -0.474 -0.224 
p 0.001 0.001 0.579 0.001 0.148 
n 44 43 43 43 43 

 

Table 5.5-5: Spearman’s correlation coefficient for the relationship between histological 

markers of NASH and FA characteristics 
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5.5.6 Staging of fibrosis in NAFLD 

 

By both histological and non-invasive assessment, there was more severe fibrosis in the 

NASH group compared to the SS group. This is shown in Table 5.5-6.  

 

 Patients with 
SS 
n=11 

Patients with 
NASH 
n=33 

p-value 

Kleiner fibrosis stage  0.002 
 0 4 (36%) 1 (3%) 
 1 5 (46%) 5 (15%) 
 2 0 (0%) 8 (24%) 
 3 2 (18%) 16 (49%) 
 4 0 (0%) 3 (9%) 
ELF 7.36 (±0.99) 8.47 (±1.05) <0.001 
Median liver stiffness (kPa) 7.0 (±1.4) 11.4 (±5.7) <0.001 
CPA (%) 1.81 (±0.45) 5.27 (±4.32) <0.001 
Data reported as mean ±SD, with p-values from t tests or n (%), with p-values 
from Fisher’s exact tests, as applicable. Bold p-values are significant at p<0.05 
 
Table 5.5-6: By all assessment methods there was more severe fibrosis in those with NASH 

than those with SS. 

 

There was no statistically significant difference in any fatty acid parameter between different 

fibrosis stages.  
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 Kleiner Stage 0-1  
(n=15) 

Kleiner Stage 2-3 
(n=26) 

Kleiner Stage 4 
(n=3) 

p-value 

FF 0.19 (0.06-0.47) 0.20 (0.05-0.34) 0.16 (0.04-0.22) 0.582 
nDB 1.73 (1.02-3.99) 1.48 (0.63-4.28) 1.57 (1.42-3.53) 0.604 
PUFA 0.0 (0.0-0.34) 0.0 (0.0-0.19) 8.6x10-4 (0.0-0.03) 0.714 
mCL 22.1 (16.1-29.9) 19.5 (13.7-25.9) 21.7 (19.2-30.1) 0.523 
Choline 0.0 (0.0-4.52x10-4) 7.58x10-6  

(0.0-6.91x10-4) 
2.18x10-5  
(2.20x10-6-1.50x10-4) 

0.472 

Data reported as median (range), with p-values from the Jonckheere-Terpstra test.  
 
Table 5.5-7: Characteristics of the lipidome in patients with NAFLD grouped by fibrosis 

stage. 
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5.6 Discussion  

 

The data presented in this chapter demonstrates that the measurement and characterisation of 

hepatic lipids is feasible with in vivo 1H-MRS at 3 Tesla. FF measured with 1H-MRS has been 

shown in this study to have a strong correlation with histological assessment of steatosis. This 

is in line with published literature that supports 1H-MRS as a reliable and reproducible 

method of non-invasively quantifying liver fat.171, 254 Although it was possible to measure FF 

across the whole range of FF seen in patients and HV, it was not possible to characterise the 

lipidome if FF was less than approximately 1%. In cases with FF < 1%, even after water 

suppression, there is insufficient signal from fat to reliably fit the individual peaks on the 

spectrum.  

 

Patients with NAFLD and patients with chronic viral hepatitis were well matched for all 

demographic and clinical parameters except for BMI and alcohol consumption. Patients with 

NAFLD had a significantly higher BMI and were more likely to consume alcohol. No patient 

consumed alcohol to excess. Routine blood tests showed no significant difference between 

patients with NAFLD and chronic viral hepatitis. HV had a significantly lower BMI and were 

more likely to consume alcohol than either patient group.  

 

For the differentiation of chronic viral hepatitis and NAFLD there were significant differences 

in both the concentration of PUFA and choline. Published work using analytical chemistry 

techniques on liver biopsy samples to characterise the lipidome of patients with NAFLD have 

shown low PUFA and choline to be typical on NAFLD.241, 249, 250, 255 These findings are also 

mechanistically plausible. It is proposed that the insulin resistance driven changes in lipid 
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metabolism in NAFLD lead to depletion of PUFA and this in turn is a driver for the de novo 

lipogenesis and reduced elimination of FAs from hepatocytes seen in NAFLD.255-258 Choline 

deficiency is associated with increased de novo hepatic lipogenesis, alterations in membrane 

function and enhancement of inflammatory pathways, which are key features of models of 

NAFLD pathogenesis.259-261  Indeed a choline deficient diet is a common way of inducing a 

NAFLD phenotype in animal models. It is also possible that the difference in FF between 

aetiologies is secondary to the pathological process of NAFLD rather than the cause. The 

lipotoxicity model of the pathogenesis of NAFLD (as described in section 5.2.1) places the 

accumulation of hepatic lipid as a consequence of NAFLD rather than the cause.240, 246 

 

Insulin resistance is a major driver for the development of NAFLD and is of itself associated 

with altered lipid metabolism. It was investigated if type 2 diabetes influenced the lipidome of 

patients. Non-parametric tests have shown no statistically significant differences in the 

calculated lipid parameters between patients with and without type 2 diabetes suggesting the 

lipidomic changes are due to NAFLD and not insulin resistance without NAFLD.  

 

As can be seen in Table 5.5-3, patients with SS and NASH patients were well matched in all 

demographic and blood parameters and this highlights the difficulty of differentiating NASH 

from SS without liver biopsy histology. Brunt grade was not different between SS and NASH 

but NAS was significantly higher in patients with NASH. This would be consistent with the 

increased disease activity in patients with NASH.  

 

As shown in Table 5.5-4, the calculated lipid parameters did not show statistically significant 

differences between patients with SS and those with NASH. Studies such as those discussed 
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in section 5.2241, 248-250 have characterised the hepatic lipidome in great detail by applying 

analytical chemistry techniques to liver tissue obtained at biopsy. These studies have 

suggested that lipidomic changes do exist and the inability of this study to demonstrate this 

difference suggests that the relatively crude measures that are possible with 1H-MRS are not 

sufficiently sensitive to detect the subtle changes in lipidome between SS and NASH.  

 

Fatty acid parameters correlate strongly with Brunt grade ( 

Table 5.5-5) with more severe steatosis being assosciated with increased fatty acid saturation, 

shorter fatty acid chains and a reduction in the concentration of both PUFA and choline. 

Although the correlation between hepatocyte ballooning and nDB approaches significance, 

there was no statistically significant correlation between any fatty acid parameter and either 

hepatocyte ballooning or lobular inflammation. The total NAS score is the sum of the score 

for steatosis, lobular inflammation and ballooning and the strength of the correlation with 

Brunt grade leads to nDB and mCL correlating with total NAS score. With the lack of 

significant correlation with ballooning or lobular inflammation it is not reasonable to say that 

any of the calculated fatty acid parameters truly correlate with disease activity. 

 

As would be expected from natural history of NAFLD, fibrosis is more prevalent and more 

advanced in patients with NASH than SS. In this cohort no fatty acid parameter was 

statistically significantly different between histological fibrosis stages nor correlated with 

ELF, liver stiffness or CPA.  

 

Although this technique has been shown to be feasible, there is a high failure rate with 11/67 

(16.4%) spectra not suitable for analysis. This was due to a range of technical problems with 
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the 1H-MRS acquisition leading to the collection of data that were of insufficient quality for 

analysis. The 1H-MRS acquisition is very sensitive to artefact, patient movement during and, 

in particular, the homogeneity of the magnetic field. Tuning of the magnetic field to ensure 

homogeneity (a process called shimming) is, to a degree, dependant on the skill of the 

operator. For these reasons 1H-MRS is likely to have a moderate failure rate. However, the 

assessment of hepatic lipids with 1H-MRS is not a well-established technique and increasing 

familiarity with the technique is likely to reduce the failure rate over time. 

 

The method of data analysis used in this study is based on previous work 180, 252, 253, 262, 263 and 

has been developed in conjunction with Mr Robert Flintham and Dr Nigel Davies in the 

medical physics department at Queen Elizabeth Hospital Birmingham. The use of automated 

spectrum analysis with TARQUIN264 is novel, allows automated analysis and has been 

presented as an oral abstract at the ISMRM annual meeting in 2016.265 

 

Although our method is based on previous work, there are a number of different approaches 

to the description of the lipidome with 1H-MRS. These include using different acquisition 

techniques, using different peaks on the spectrum to define a particular chemical group and 

using different calculations to derive the fatty acid parameters. In this study the STimulated 

Echo Acquisition Mode (STEAM) sequence is used due to the smaller effect of T2 on the 

spectroscopy and water suppressed spectra are used for measurements due to the improved 

accuracy of fitting that is possible on water suppressed spectra. However, all methods are a 

compromise and have alternatives. We feel that the calculation of lipid characteristics in this 

work is robust and allows the characterisation of the hepatic lipidome with more detail and 

accuracy than with some other methods. 
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For example, to estimate the concentration of unsaturated fatty acids, Van Werven et al used 

the ratio of the area under the 5.3ppm peak and the area under the 1.3ppm peaks.263 This 

simple approach has the advantage of making fewer measurements and therefore reducing the 

opportunity for measurement errors however; it ignores the signal from part of the lipid 

molecule and will tend to overestimate the amount of unsaturated fatty acid. Our calculation 

of chain length and number of fatty acid chains, although more complex accounts for the 

entire length of the fatty acid chain and should provide a more accurate estimate of fatty acid 

saturation.  

 

As mentioned in Chapter 2, one potential source of error is the use of water suppression. This 

becomes relevant when attempting to measure the number of double bonds. Protons at 

5.3ppm are found in the olefinic group (-CH=CH-) and protons at 2.0ppm are found in the 

groups alpha to the olefinic group (-CH2-CH=CH-CH2-) so either can be used to define a 

double bond. The use of the 2.0ppm peak avoids the potential reduction in measurement 

accuracy due to water suppression however, at 3 Tesla the 2.0ppm peak is small and overlaps 

the peak 2.8ppm. Indeed in many cases it is not possible to separate the 2.0 and 2.8ppm peaks. 

During development of the analysis method, it was found that calculations based on the 

2.0ppm peak varied wildly depending on the quality of the fitting (data not shown) and so this 

peak was not used. 

 

There are a number of possible improvements that could be made to the method of this study. 

A larger cohort of patients and controls would provide greater statistical power and therefore 

reduce the risk of error. The ability of 1H-MRS to characterise the hepatic lipidomic could 

potentially be improved by using a more powerful MRI system. Resonant frequency is 
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dependent on field strength and the effect of this is that the 1H-MRS spectrum at higher field 

strength shows more separation of the individual peaks. This improves the quality of fitting 

and thus increases the accuracy of measurement. This study was conducted using a 3 Tesla 

MRI system and the use of a more powerful 7 Tesla system should improve the accuracy of 

1H-MRS measurement. However, very high field strength systems are rare and certainly are 

not in routine clinical use. Lastly, the control group in this study are significantly different in 

several demographic aspects. This has the potential to introduce variations in the hepatic 

lipidome that are not due to the presence or absence of NAFLD. It would provide more 

reliable control if this study could be repeated with control subjects that are matched to 

patients with NAFLD in terms of age and obesity.  

 

In summary, a method for characterising the hepatic lipidome with 1H-MRS has been 

developed that appears to be robust and has demonstrated mechanistically plausible 

differences in the hepatic lipidome between patients with NAFLD and control subjects. In this 

study, calculated lipid parameters were not associated with disease activity or fibrosis and did 

not differentiate SS from NASH.  
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CHAPTER 6: MULTIPARAMETRIC MRI FOR THE ASSESSMENT OF 

PRIMARY SCLEROSING CHOLANGITIS 
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6.1 Primary Sclerosing Cholangitis 

 

Primary sclerosing cholangitis (PSC) is a chronic immune mediated disease of intra and 

extrahepatic bile ducts characterised by cholestasis, bile duct inflammation and bile duct 

stricturing. The prevalence of PSC varies between populations but overall it is a rare 

condition. The greatest prevalence is in northern Europe where it can reach up to 16.2 cases 

per 100,000 people.266, 267 There is a male preponderance and a median age of diagnosis of 41 

years of age.268  

 

There is a strong association with inflammatory bowel disease and in particular ulcerative 

colitis (UC). Up to 80% of patients with PSC have associated IBD266 and there are several 

overlapping genetic risk loci.269 Although PSC is known to be immune mediated the 

patholophysiology and aetiology of PSC is not well understood. It is proposed that, in 

individuals with a genetic susceptibility, intestinal inflammation leads to the creation of 

effector T lymphocytes that can migrate to the biliary epithelium and drive inflammation.270, 

271 This immune-mediated damage is perpetuated by the action of toxic bile salts and 

translocated bacterial toxins to cause ongoing and progressive biliary inflammation and 

stricturing. 

 

In early stage disease a cholestatic pattern of liver enzymes derangement may be the only sign 

of disease and histological examination of liver tissue at this stage shows only portal 

inflammation focused around bile ducts. The histological lesions typically progress to form 

concentric periductal fibrosis of small, medium or large bile ducts leading to bile duct 

strictures. Strictures may be visualised with cholangiography either via endoscopic retrograde 
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cholangiopancreatography (ERCP) or magnetic resonance cholangiopancreatography 

(MRCP). The high sensitivity, specificity and patient acceptance of MRCP has made this a 

key diagnostic test in PSC.272 Disease progression causes further bile duct stricturing that 

manifests as progressive biochemical derangement, jaundice, puritis and an increased risk of 

bacterial cholangitis.  Inflammation and fibrosis of bile ducts leads to duct loss and hepatic 

fibrosis leading ultimately to a biliary cirrhosis with all the associated complications of 

cirrhosis and portal hypertension.  

 

Despite the relatively low prevalence of PSC in the population, there is a significant burden of 

morbidity and mortality with more than 50% of patients progressing to liver transplantation 

within 15 years of diagnosis.266 In addition to the disease burden of progressive fibrosis, 

patients with PSC have a markedly increased risk of colorectal carcinoma and 

cholangiocarcinoma compared to the general population. For cholangiocarcinoma the relative 

risk (95% CI) is 1560 (780-2793).273  The cholangiocarcinoma risk is not linked to severity of 

fibrosis or disease duration.273 

 

There are no established treatments for PSC that have been consistently shown to improve 

transplant free survival. Data do not support the use of immunosuppression and the use of 

ursodeoxycholic acid (UDCA) remains controversial. At high dose it has been shown to be 

harmful and at lower dose, despite an improvement in liver biochemistry, it has not 

demonstrated a survival advantage.266 Some data suggest UDCA may offer some protection 

from colonic malignancy but studies are conflicting and no major guideline on the 

management of PSC recommends routine use of UDCA.274-276 
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With the absence of effective pharmacological therapy that halts the progression of PSC there 

is clear need for effective monitoring of disease severity to guide clinicians and patients about 

prognosis and allow timely intervention including liver transplantation. The variable clinical 

course of PSC makes accurate prognostication difficult however, several strategies have been 

proposed. These prognostic markers are explored below and further to this we assess 

multiparametric MRI for its ability to assess disease severity in PSC.  
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6.2 Current methods for assessment of disease severity in PSC 

 

6.2.1 Alkaline phosphatase 

 

Alkaline phosphatase (ALP) is an enzyme found in many human tissues including 

cholangiocytes. Elevation in ALP is seen in hepatic and biliary disease and is a hallmark of 

PSC. Indeed it is often an early indicator of disease and may be the first recognised 

abnormality. As well as being a clue to diagnosis ALP levels are known to be prognostically 

significant. Those with ALP levels less than 1.5 x the upper limit of normal at baseline have 

improved survival when compared to those with higher levels.277, 278 In addition, those with 

elevated ALP at baseline who demonstrate a reduction in ALP to less than 1.5 x the upper 

limit of normal have been shown to have an improved transplant free survival compared to 

those whose level remains elevated.277, 279-281 Despite the proven benefits of UDCA in primary 

biliary cholangitis (PBC), the use of UDCA remains controversial in PSC. There is some 

work to suggest that a response to UDCA (defined by reduction in ALP) is prognostically  

favourable.280 However this conclusion is not universally recognised and other studies show 

that transplant free survival is independent of the use of UDCA.277  

 

It can therefore be seen that ALP levels and the change in ALP levels over time are useful to 

clinicians to inform about prognosis. However, ALP measurements are labile and can be 

transiently elevated by complications of PSC such as episodes of cholangitis or in the 

presence of a dominant biliary stricture. This lability means that ALP levels must be viewed 

in context and changes may not necessarily reflect progression of disease.  
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6.2.2 Mayo PSC score 

 

The revised Mayo Clinic natural history model was developed in 2000 with the aim of 

defining the risk of survival in PSC using readily available clinical data.18 It built on previous 

models for defining natural history that all included histological assessment of fibrosis stage 

as part of the model.282-285 The model includes age, bilirubin, aspartate transferase, serum 

albumin and the occurrence of variceal bleeding. This revised score has the clear advantage 

that is can be calculated without requiring liver biopsy. In the validation group from the initial 

study patients were categorised by the model as low, medium and high risk. For these 3 

groups there was no significant difference between predicted and actual survival.18  

 

Subsequent work with the Mayo PSC score has shown it to be superior to Child’s-Pugh score 

in predicting death in patients with PSC.286 However, the Mayo score performs best in 

predicting events in later stage disease.287 and it does not entirely predict the risk of 

hepatobiliary or colonic cancer associated with PSC.288 

 

6.2.3 Model for end stage liver disease  

 

The model for end stage liver disease (MELD) score was developed to predict risk of death 

following transjugular intrahepatic portosystemic shunts (TIPSS)289 but has found acceptance 

as a prognostic index more generally and for liver transplant organ prioritisation.290, 291 It is 

not specific to PSC but has been shown to predict the risk of adverse outcomes in patients 

with PSC 266, 278 and also to predict short term survival following liver transplant.292 
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6.2.4 Cholangiography 

 

Visualisation of the biliary tree with either ERCP or MRCP is a key diagnostic test in PSC. 

The two modalities are of equivalent accuracy in the detection of biliary strictures with 

significantly reduced risk with MRCP.293 In addition to use as a diagnostic tool; 

cholangiography has relevance to prognosis. This association has been recognised since at 

least 1995 when a retrospective study of 94 patients with PSC demonstrated worse outcome in 

patients with extensive intrahepatic structuring.294  

 

A scoring system for classifying cholangiographic abnormalities was developed in 1991 by 

Majoie et al.295 This was initial developed as a diagnostic tool however, worsening of the 

score over time was demonstrated by the same group in 2001.296 Cholangiographic scoring 

was further developed and its use to predict radiological progression and clinical outcomes 

has been demonstrated.297-299 

 

6.2.5 Non-invasive markers of fibrosis 

 

Fibrosis stage is prognostically important in PSC as the majority of morbidity and mortality in 

PSC is as a result of progressive fibrosis and the complications of cirrhosis.300, 301 Fibrosis 

stage assessed by biopsy is a component of several PSC risk models282-284 and clearly predicts 

the risk of hepatic decompensation and death.285 However, liver biopsy is not commonly 

indicated for the diagnosis of PSC and the patchy nature of histological changes in PSC make 

sampling error a major concern. This, coupled with the inherent risk of biopsy, make biopsy 

unattractive for prognostication in PSC. Several non-invasive markers of liver fibrosis have 
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emerging evidence for a role in assessing prognosis in PSC and avoid many of the potential 

problems with biopsy to stage fibrosis. 

 

Vibration controlled transient elastography 

Vibration controlled transient elastography (VCTE) as measured by FibroScan has been 

shown to accurately predict fibrosis stage in a range of chronic liver diseases. A large study of 

patients with PSC looked at baseline liver stiffness measurements and change in liver stiffness 

over time for their ability to predict outcomes. Both a low baseline liver stiffness and slow 

progression were associated with improved survival.302 The finding that a single liver stiffness 

reading can predict histological fibrosis stage and outcome have been replicated in more 

recent work.303 The prediction was strongest for advanced disease. 

 

Enhanced liver fibrosis test 

Enhanced liver fibrosis (ELF) test has been shown to predict outcomes in PSC with higher 

scores having worse prognosis.304, 305 AUROC for the prediction of adverse events 

(transplantation or death) in these studies was between 0.78 and 0.81.304, 305 ELF test is 

attractive as it is based on blood tests and is therefore simple to perform and is not influenced 

by the variability in fibrosis across the liver seen in PSC. It should however be borne in mind 

that the data to date regarding ELF in PSC is retrospective and from a single centre. Further 

prospective validation would increase confidence in its reliability. 

 

Magnetic resonance elastography 

Only one large retrospective study has assessed the ability of magnetic resonance 

elastography (MRE) to stage fibrosis and predict outcome in PSC.306 This 2016 study shows 
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that MRE can stage fibrosis with performance comparable to other aetiologies.  It also seems 

to provide additional prognostic information in that those with high scores were at greater risk 

of decompensation.306 The authors note several cases with variations in liver stiffness across 

the liver reflecting the patchy nature of PSC. Further work assessing the use of MRE in PSC 

prospectively is ongoing (NCT02446665) and should be useful in defining the role of this 

promising technique. 
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6.3 Aims 

 

As discussed above, the variability in the clinical course of PSC and the current paucity of 

tests that predict clinical endpoints both contribute to the difficulty in effectively assessing, 

prognosticating and monitoring of disease progression or regression in PSC.  

 

Multiparametric MRI has been shown in Chapter 3 to be useful in the assessment of 

fibroinflammatory liver disease. This study will investigate if multiparametric MRI can be 

used to assess PSC and monitor progression over time.  

 

Specifically the aim of this study is to assess the ability of multiparametric MRI to: 

 Evaluate the severity of PSC when compared to established markers of disease 

severity 

 Track changes in PSC severity over time 
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6.4 Methods 

 

6.4.1 Study overview 

 

Participants were invited to attend for two study visits 18 months apart. Patients underwent  

multiparametric MRI, FibroScan and blood tests at each visit. Throughout the study, 

participants continued with their routine standard of care. 

 

This prospective study was undertaken at the Queen Elizabeth Hospital Birmingham (QEHB). 

Patients were recruited between March and September 2014. The study protocol conforms to 

the ethical guidelines of the 1975 Declaration of Helsinki, and was approved by the National 

Research Ethics Service (West Midlands – The Black Country; REC Ref: 14/WM/0010).  

 

6.4.2 Study Participants 

 

Male and female adult (≥18 years of age) patients with PSC were recruited from the specialist 

PSC clinic at QEHB. Patients seen in the clinic with PSC and without contraindication to 

MRI received a written invitation and information sheet. Those who responded gave written 

informed consent and underwent baseline study investigations. Those who completed baseline 

investigations were invited to attend for repeat evaluation 18 months after their baseline 

investigations. 
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6.4.3 Study Investigations 

 

All MRI scans were performed and analysed as described in Chapter 2 with the exception that 

due to the noticeable heterogeneity of PSC a single, user defined, region of interest (as used in 

chapters 3 and 4) did not give a representative assessment of cT1 values across the liver as a 

whole. Figure 6.4-1 shows representative images that demonstrate this variability. Because of 

this variability, values for mean, median and mode cT1 across a whole liver slice were 

recorded.  

 

FibroScanTM examinations were performed by one trained operator (PJE) in accordance with 

manufacture’s guidelines. The decision on using the M probe or XL probe was made on the 

skin to liver capsule distance measured by the FibroScan machine. Examinations were 

regarded as ‘possible’ if at least 10 valid readings could be recorded and ‘reliable’ if they 

contained at least 10 valid readings and had interquartile range (IQR) to median ratio ≤30% 

(Boursier’s criteria).182  

 

Blood samples were analysed routinely for markers of liver disease. Simple blood biomarker 

panels including AST/ALT ratio, FIB-4, MELD and Mayo revised PSC score were calculated 

according to published formulae.18, 49, 289 Serum was also analysed to determine the ELF score 

(iQur Limited, London, UK). 
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6.4.4 Clinical events 

 

At the second clinical visit history was taken about a range of clinical events. The occurrence 

and date of: death, liver related death, liver transplant, variceal bleeding, decompensation of 

cirrhosis, new diagnosis of cholangiocarcinoma, episode of cholangitis, flare of IBD, 

emergency hospital admission due to liver disease and emergency hospital admission not 

related to liver disease was recorded. If the event occurred multiple times the date of the first 

occurrence was recorded. 

 

 

Figure 6.4-1: Representative cT1 maps showing the heterogeneity seen in PSC. A: Marked 

difference in cT1 between Right and left lobes of the liver. B: Liver with largely uniform cT1 

values except for one area of high cT1 (*) that may represent focal scaring.  
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6.5 Results 

 

6.5.1 Cohort at baseline 

 

21 patients were consented to take part in the study and underwent baseline investigations. 

The characteristics of the cohort at baseline are shown in Table 6.5-1. 

 

 Baseline cohort 
n=21 

Age (years) 50 (18 – 73) 
Male gender 15 (71%) 
Caucasian 14 (95%) 
BMI (kg/m2) 23.8 (±2.8) 
Small duct only phenotype 5 (24%) 
Duration of disease (years) 5.8 (±3.8) 
Co-existent inflammatory bowel disease (IBD) 19 (91%) 
Use of azathioprine 3 (14%) 
Use of UDCA 10 (48%) 
 UDCA dose (mg/kg)* 13.5 (±3.5) 
Smoking status 
 Current 1 (5%) 
 Previous 5 (24%) 
 Never 15 (71%) 
Consume alcohol 7 (33%) 
 Alcohol intake (UK units/week)** 6 (1 – 20) 
* In patients taking UDCA 
** In patients who consume alcohol 
Data presented as mean (±SD), median (range) or n (%) as appropriate. 
 

Table 6.5-1: Patient characteristics at baseline. 

 

Baseline values for established non-invasive markers of fibrosis and PSC severity are shown 

in Table 6.5-2. Missing data was due to one patient not having a FibroScan or AST measured. 
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Another patient did not have a platelet count available due to a clotted sample. A summary of 

cT1 values at baseline is shown in Table 6.5-3 

 

Test n Median (range) Risk groups 
ALP (U/L) 21 225 (41 – 708) ≤1.5 x ULN 277 8 (38%) 

Mayo PSC score 20 -0.53 (-1.87 – 2.13) 

< 0 15 (75%) 

0-2 4 (20%) 

>2 286 1 (5%) 

MELD 21 6.0 (6.0 – 14.6) 

 

AST:ALT ratio 20 0.86 (0.44 – 1.70) 

APRI 19 0.61 (0.08 – 2.50) 

Fib-4 19 1.37 (0.30 – 5.37) 

Liver stiffness (kPa) 20 9.8 (3.0 – 36.8) 

ELF test 21 9.92 (8.50 – 13.25) 
Data presented as median (range) or n (%) as appropriate. 
ULN: upper limit of normal ULN for ALP in the QEHB lab: 130 U/L 
 
Table 6.5-2: Summary of measures of disease severity in the cohort at baseline. 

 

 

Test n Median (range) 

Mean cT1 (msec) 21 917 (736 – 1135) 

Median cT1 (msec) 21 848 (697 – 1108) 

Mode cT1 (msec) 21 802 (657 – 1080) 

Table 6.5-3: Summary of cT1 values at baseline. 

 

Histological assessment of PSC was not included in the study however, 8 (38%) of patients 

had undergone a standard of care liver biopsy prior to study entry. These liver biopsies were 

performed from 1 to 12 years before study recruitment and so their relevance is limited. 
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Histological assessment of fibrosis was: none/minimal in 2 patients, portal fibrosis only in 1 

patient, bridging fibrosis in 4 patients and cirrhosis in 1 patient. 

 

6.5.2 Correlation between non-invasive markers in PSC 

 

The correlation between non-invasive markers of fibrosis and disease severity described in 

section 6.5.2 was presented as a poster at the European Association for the Study of the Liver 

International Liver Congress 2016.307 cT1, ALP, AST:ALT ratio and MELD score did not 

significantly correlate with any other marker of fibrosis or disease severity. Analysing ELF, 

liver stiffness, APRI and FIB-4 in a pairwise fashion revealed statistically significant, positive 

correlation in all six parings (Table 6.5-4). The strongest association was between liver 

stiffness and ELF score (rho=0.706, p=0.001) (Figure 6.5-1). Mayo PSC score showed 

statistically significantly correlation with ELF (rho=0.592 p=0.006), liver stiffness (rho=0.559 

p=0.010) and FIB-4 (rho=0.733 p<0.001). 

 

  ELF Fib-4 Liver stiffness 

APRI Rho 0.602 0.616 0.565 
p 0.006 0.005 0.012 
n 19 19 19 

ELF Rho  0.572 0.706 
p  0.011 0.001 
n  19 20 

Fib-4 Rho   0.639 
p   0.003 
n   19 

Table 6.5-4: Correlation between non-invasive markers of fibrosis in PSC 
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Figure 6.5-1: Scatter plot showing the correlation between ELF and liver stiffness at baseline 

 

cT1 did not correlate with any non-invasive marker of fibrosis in a statistically significant 

manner. The only statistically significant correlation with a marker of disease severity was a 

modest negative correlation between ALP and mode cT1 (Rho = -0.447, p = 0.042) and 

between ALP and median cT1 (Rho = -0.444, p = 0.044). The fact that this is a negative 

correlation is unexpected as it would be expected that both ALP and cT1 would rise with PSC 

severity. 
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6.5.3 Cohort at time of follow-up 

 

17 patients attended for their 2nd scan after a median (range) follow up of 18.4 (18.2-19.1) 

months. The reasons for dropping out of the study were withdrawal of consent: 1 patient, 

inability to contact patient to book 2nd scan: 2 patients, liver transplantation before 2nd scan: 1 

patient. Fibrosis and diseases severity markers at the time of follow-up are shown in Table 

6.5-5. The change in ALP correlates quite strongly with the change in Mayo score with Rho = 

0.659, p=0.006 (Figure 6.5-2). 

 

 Baseline Follow-up 

Test n Median (range) n Median (range) 

Mean cT1 (msec) 21 917 (736 – 1135) 17 898 (810 – 1006) 

Median cT1 (msec) 21 848 (697 – 1108) 17 822.6 (754 – 934) 

Mode cT1 (msec) 21 802 (657 – 1080) 17 780 (715 – 881) 

ALP (U/L) 21 225 (41 – 708) 17 242 (52 – 655) 

Mayo score 20 -0.53 (-1.87 – 2.13) 16 -0.37 (-2.85 – 0.58) 

MELD 21 6.0 (6.0 – 14.6) 17 6.0 (6 – 11.1) 

AST:ALT 20 0.86 (0.44 – 1.70) 16 0.89 (0.47 – 2.44) 

APRI 19 0.61 (0.08 – 2.50) 16 0.60 (0.11 – 4.65) 

Fib-4 19 1.37 (0.30 – 5.37) 16 2.00 (0.30 – 6.05) 

Liver stiffness (kPa) 20 9.8 (3.0 – 36.8) 17 10.3 (3.3 – 35.3) 

ELF test 21 9.92 (8.50 – 13.25) 17 10.09 (7.96 – 12.39) 
Data presented as median (range) or n (%) as appropriate. 
Table 6.5-5: Fibrosis and diseases severity markers at baseline and the time of follow-up. 
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Figure 6.5-2: Scatter plot showing the correlation between the change in ALP and the change 

in Mayo PSC score.  
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6.5.4 Incidence of clinical events 

 

Information on clinical events during follow up was available from 18 of the 21 patients who 

consented to take part in the study. During follow up 12 different patients had a total of 16 

clinical events as outlined in Table 6.5-6. 

 

Event n 
Death  0 
Liver transplant 1 
Variceal bleeding 0 
Decompensation of cirrhosis 0 
New diagnosis of cholangiocarcinoma  0 
Episode of cholangitis 6 
Emergency hospital admission due to liver disease 
(All for treatment of cholangitis) 

3 

Flare of IBD 4 
Emergency hospital admission not related to liver disease 
(For treatment of IBD flare) 

1 

Other  
(elective admission for colectomy due the high grade dysplasia) 

1 

Table 6.5-6: Clinical events during follow-up. 

 

Only one patient encountered a significant event (liver transplant,). This patient had 

significantly raised severity and fibrosis markers but near normal cT1 at baseline as shown in 

Table 6.5-7.  
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Test Value at baseline 
Bilirubin (<22 µmol/L) 161 

ALP (40-130 U/L) 708 

Mayo PSC score 1.77 

MELD 15 

UKELD 56 

Child’s-Pugh score 7 

AST:ALT ratio 1.16 

APRI 0.88 

FIB-4 1.37 

ELF 13.25 

Liver stiffness (kPa) 16.8 

Mode cT1 (msec) 690 

Median cT1 (msec) 738.25 

Mean cT1 (msec) 829.9 
Normal range and units shown if applicable 
 

Table 6.5-7: Baseline investigations for LAMP-B-002 

 

When the definition of an event was expanded to include an episode of cholangitis no severity 

or fibrosis marker showed a statistically significant difference between those having an event 

than those who did not. There was a trend towards a higher ALP in those having an event, 

however this difference did not reach statistical significance (median: 192 vs 300U/L, p = 

0.056). Excluding episodes of cholangitis that did not require a hospital admission shows a 

significant difference in ALP between groups (median: 188.5 vs 350U/L, p = 0.040). All 

patients meeting this endpoint had ALP greater than 1.5 times the upper limit of normal 

(Figure 6.5-3).  
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Neither baseline cT1, change in cT1 during follow up nor other fibrosis or severity marker 

showed a statistically significant difference between those with and without a clinical event 

regardless of the definition of an event 

 

 

Figure 6.5-3: ALP levels in those encountering a liver related event during follow-up. Events 

encountered were liver transplant or cholangitis requiring hospital admission. Groups are 

statistically significantly different by the Mann-Whitney U test (p = 0.040). 1.5 x ULN (upper 

limit of normal) = 1.5 x 130 U/L = 195 U/L  
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6.6 Discussion 

 

In this chapter is described a pilot study assessing the utility of multiparametric MRI in the 

assessment of PSC. The cohort of 21 patients with PSC has typical demographics of patients 

attending the PSC clinic at QEHB. No patient had evidence for an additional aetiology for 

chronic liver disease other than PSC. IBD is prevalent and approximately half of participants 

take UDCA, generally at a modest dose.  

 

Non-invasive markers of disease severity give mixed results. The majority (75%) of patients 

have a Mayo score in the low risk group however, this is contradicted by ALP. The majority 

of patients have an ALP value >1.5x ULN indicating an increased risk of events. ALP was 

noted to not correlate with any other fibrosis or disease severity marker in this cohort whereas 

Mayo score correlated well with ELF, liver stiffness and Fib-4. Across the cohort as a whole 

fibrosis markers are generally modestly elevated at baseline. The median of both ELF and 

liver stiffness indicate moderate fibrosis. The majority of fibrosis markers correlate with each 

other. This good correlation between non-invasive markers of fibrosis supports their use to 

stratify risk in PSC for the long term follow up of patients, as well as in the clinical trial 

settings. Baseline cT1 however, does not correlate in any meaningful way with any other 

fibrosis or disease severity marker. The negative correlations between ALP and mode cT1 and 

ALP and median cT1 are unexpected. Both cT1 and ALP would be expected to increase with 

worsening disease and as these correlations are negative and only just reach significance they 

are likely to be spurious. I would expect that in a larger cohort it would not be statistically 

significant. 
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A notable feature of the baseline cT1 values shown in Table 6.5-3 is how low they are. The 

reason for this discrepancy is not clear but it can be seen across the whole cohort of patients 

with PSC that their cT1 values tend to be lower than seen in other cohorts studied. Despite 

several patients in the cohort having robust evidence of significant fibrosis, the mean (±SD) of 

median cT1 values in this cohort is 849.6 (±89.1) msec. In the work described in Chapter 3 

patients with Ishak stage 1-2 fibrosis had median cT1 of 851.7 msec and in the published 

work by Banerjee et al median cT1 for patients with Ishak stage 1-2 fibrosis was 870.163 It is 

possible that an unexpectedly low cT1 may be a feature of PSC although the mechanism for 

this is not clear. The study comparing biopsy data and cT1described in Chapter 3 contain only 

2 patients with PSC and so it is not possible to show if cT1 is lower than in other aetiologies. 

 

Over the period of follow-up, most markers showed a small increase in the median, which 

would suggest some progression of disease. However, within individuals there was little 

agreement between severity markers. The magnitude and often direction of change varied 

between markers. Of note, the cT1 values fell over the period of follow up. In all other 

situations so far examined, cT1 has risen with increasing inflammation and worsening fibrosis 

and so it was expected that cT1 values would rise in line with the other non-invasive markers 

of disease severity. It is unclear why cT1 has not behaved as expected in this cohort. This may 

be result of the a statistical quirk given the small sample size or it may be reflection of the 

behaviour of cT1 in PSC.  

 

It has been shown that  cT1 does not correlated with any other surrogate marker of fibrosis or 

disease severity but these markers have their own limitations. Assessing the ability of cT1 to 

predict clinical events is a more robust way of assessing the utility of cT1 in PSC. Clinical 
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events were recorded for patients in the study however, with so few patients who were mostly 

at an early stage in their disease, there were few significant events. This makes the assessment 

of clinical events difficult. Mayo score has been designed to identify patients at risk of death 

or transplant18 and not cholangitis so it is not unexpected that there is no difference between 

those encountering an episode of cholangitis and those who did not. Again, the ALP cut off of 

<1.5x ULN has been shown to identify patients at risk of serious events in PSC (death, liver 

transplantation, or diagnosis of cholangiocarcinoma)277, 278 and not cholangitis. However, 

those with an ALP value ≥1.5x ULN had an increased risk of cholangitis that required 

hospital admission. This may reflect that patients with more advanced liver disease are more 

severely affected by an episode of cholangitis rather than an increase in frequency. 

 

As noted above, detailed statistical analysis is unlikely to provide robust results in a small 

cohort such as this with few events. It is worth considering if the participant who did go on to 

have a significant event can be instructive. The one patient in the cohort who underwent liver 

transplantation during follow-up had the study number LAMP-B-002. Non-invasive markers 

would place them in a high risk group for disease progression and requiring transplantation. 

Baseline investigations for this patient are shown in Table 6.5-7. It is striking from these data 

that the cT1 values are within the normal range and so suggest the absence of significant 

fibro-inflammatory liver disease. This clearly contradicts the other non-invasive markers and 

histological examination of the hepatectomy specimen showed significant inflammation. 
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6.7 Conclusions  

 

cT1 values, as they have been measured in this experiment, have not shown significant 

correlation with other surrogate markers and have not behaved as expected from other work. 

The absolute values have been lower than expected and cT1 appears to have fallen as other 

severity markers have risen. It is not clear why this has occurred and it open and interesting 

avenue for further work. 

 

It is possible that the unexpected cT1 results are due to the way cT1 has been summarised 

with mean, median and mode. This may not be an appropriate way of looking at cT1 in PSC. 

It was noted that the pattern of cT1 was different between patients with PSC and those with 

‘parenchymal’ liver diseases such as chronic viral hepatitis. Measuring an ‘average’ cT1 value 

may be missing valuable information such as the distribution or pattern of cT1. Figure 6.7-1 

demonstrates the heterogeneity and generally lower value of cT1 in LAMP-B-002 compared 

to the higher and more uniform cT1 values in a patient with chronic hepatitis C infection. 

Both patients were cirrhotic and similar in terms of non-invasive markers of fibrosis. Further 

investigation of the importance of cT1 distribution is currently underway. 



 

239 
 

 

Figure 6.7-1: Representative images of: A. Patient with PSC and B. Patient with chronic 

hepatitis C infection. Both patients have similar stage fibrosis based on histology and non-

invasive markers but cT1 is markedly different between them both in terms of distribution and 

average value.  
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6.8 Opportunities for further work – cT1 distribution 

 

By visual inspection of cT1 maps it can be seen that the variability in cT1 values across the 

liver in patients with PSC is markedly different to healthy controls and patients with a 

‘parenchymal’ liver disease such as chronic viral hepatitis or autoimmune hepatitis (AIH). It 

is proposed that by measuring cT1 distribution it may be possible to discriminate PSC from 

other liver disease and to risk stratify PSC. 

 

The variation in cT1 values can be expressed as a histogram as seen in Figure 6.8-1. The 

shape of the histogram or kurtosis can be quantified as can the skewedness of the distribution 

(Figure 6.8-2). It is currently under investigation if the distribution of cT1 values is a more 

useful metric to assess the severity of PSC. 

 

 

Figure 6.8-1: Liver slice and cT1 histogram from a patient with PSC. 
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In an extension to the current study a further 180 patients with autoimmune liver disease 

(PSC, AIH and primary biliary cholangitis (PBC)) stratified into low and high risk groups are 

being recruited to see if cT1 distribution can differentiate these diseases and assess severity.  

 

 

Figure 6.8-2: A. The curve on the right shows a greater kurtosis than the curve on the left. B. 

A skewed distribution on the right compared to a more symmetrical distribution on the left. 

 

In addition; the inclusion of MRCP in the protocol for this extension to the existing study will 

allow the co-localisation of cT1 values and bile ducts to assess how cT1 values immediately 

adjacent to bile ducts varies between PSC, AIH and PBC. Recruitment to this extension study 

is currently underway. 
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CHAPTER 7: OVERALL CONCLUSIONS 

 

 

 

  



 

244 
 

7.1 Summary 

 

Chronic liver disease is a major source of morbidity and mortality and with increasing 

prevalence there is an urgent need to find safe, accurate and cost effective methods to assess 

and stage chronic liver disease. This thesis presents a comprehensive assessment of the 

performance and utility of multiparametric MRI in several different situations with a view to 

establishing whether multiparametric MRI has a role is evaluating chronic liver disease 

severity. 

 

A review of the current literature in Chapter 1 highlights the need for the development of 

biomarkers. Although liver biopsy is a valuable technique there are inherent risks and 

limitations that make it a less than ideal tool for the staging of hepatic fibrosis. The reviewed 

literature demonstrates that current non-invasive biomarkers have many strengths and can 

identify cirrhosis with a high degree of accuracy. However, the performance in identifying 

moderate fibrosis is less good and performance is generally poor for the identification of early 

stage fibrosis. I would suggest that the ideal biomarker is not currently available and there is a 

need for the development of biomarkers that can accurately and reproducibly stage fibrosis 

and track progression and regression of fibrosis over time. 

 

In Chapter 2 the multiparametric MRI and 1H-MRS techniques used in this work are outlined. 

It has been demonstrated that cT1 measured with multiparametric MRI is reproducible, does 

not require fasting and, in healthy individuals, is stable over time. These are important 

findings in the further investigation and evaluation of multiparametric MRI. 
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In Chapter 3 two studies are described that evaluate multiparametric MRI analysed with 

LiverMultiscanTM in the staging of hepatic fibrosis. Data from a large two centre study show 

that cT1 has demonstrated utility in staging fibrosis with performance comparable to 

established non-invasive biomarkers of fibrosis. In a separate study, the use of multiple 

histology samples from hepatectomy specimens were used as the reference standard with the 

aim of reduce the sampling error inherent in liver biopsy histology. Unfortunately the method 

for this study encountered difficulties that have reduced the ability of this experiment to 

provide robust data. However, there are data to support the use of averaged cT1 across the 

whole liver rather than from a single region of interest to stage fibrosis.  

 

It is clear from the data in this chapter that inflammation is a major confounder of fibrosis 

assessment with multiparametric MRI. Indeed cT1 should be thought of as a marker of ‘fibro-

inflammatory disease’ rather than a marker of either fibrosis or inflammation individually. 

This raises the possibility that multiparametric MRI may be useful for applications other than 

staging fibrosis. The sensitivity to inflammation could be used to monitor response to 

treatment in autoimmune hepatitis or as an indication for treatment in chronic hepatitis B 

infection. In both situations there is potential to avoid liver biopsy and thus reduce risk to the 

patient and cost to health services. 

 

Another aetiology where assessment of both fibrosis and inflammation would have the ability 

to give insight into the disease process is non-alcoholic fatty liver disease (NAFLD). Non-

invasive assessment of NAFLD is evolving and has been highlighted as a key goal for 

research.80 The diagnosis of non-alcoholic steatohepatitis (NASH) and assessment of disease 

activity with non-invasive means would have significant impact in clinical practice and as a 
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surrogate endpoint in research studies. Based on the data presented in Chapter 4, there is 

potential for multiparametric MRI to diagnose NASH, however, cT1 did not correlate with 

fibrosis in this study and, given the recent work confirming the crucial role for fibrosis 

assessment in NAFLD219 this is a major drawback of assessment with multiparametric MRI. 

 

In Chapter 5 a novel application of 1H-MRS was investigated for its ability to diagnose 

NAFLD and differentiate simple steatosis and NASH. This work has developed a novel 

approach to the processing and analysis of 1H-MRS data from the liver. This small study 

suggested that there were differences in the lipid profile between patients with NAFLD and 

controls but could not differentiate simple steatosis and NASH. This work has potential to 

provide further interesting insights into the lipid abnormalities underlying NAFLD. To draw 

more definitive conclusions the study could be repeated at higher field strength in a larger 

cohort with better matched controls. With further refinement, the ability of 1H-MRS to define 

the hepatic lipidome will increase and this may become a clinically useful technique. 

 

In Chapter 6 the ability of cT1 to stage fibrosis and evaluate disease severity in PSC was 

investigated. In this study cT1 did not predict fibrosis or disease severity at baseline. cT1 was 

noted to be lower than would have been expected from the data resented in Chapter 3 and cT1 

appeared to fall as disease severity worsened. If this finding can be repeated then it is contrary 

to the rise in cT1 that would be expected in the presence of worsening fibrosis and 

inflammation. Visual inspection of the cT1 maps from patients with PSC shows striking 

differences compared to the cT1 maps of patients with other aetiologies. The distribution of 

cT1 values across the liver may be useful in the diagnosis and assessment of PSC. An 
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extension to this study is currently underway and should provide further interesting 

information on the applicability of multiparametric MRI in PSC. 
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7.2 Added value and limitations of multiparametric MRI 

 

In this thesis it has been demonstrated that cT1 correlates with histological assessment of liver 

fibrosis but that this ability to stage fibrosis is less good than in previous work by Banerjee et 

al.163 The reason for this remains unclear and, in addition it has become clear through this 

work that cT1 is heavily confounded by other factors such as inflammation, steatosis and 

aetiology. This confounding makes a cT1 value difficult to interpret and so whether or not 

multiparametric MRI can find a clinical role remains to be seen. A further limitation of the 

current technique is the use of a single region of interest (ROI) for cT1 calculation. This 

technique relies on human judgement and has potential for variability and error. Data 

presented in Chapter 3 suggests that the average cT1 value throughout the whole liver may 

better predict fibrosis and this should be investigated further. 
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7.3 Suggested avenues for future work 

 

The evaluation of whole liver analysis would be of value as initial data from Chapter 3 

suggests this may be a more reliable marker of fibrosis. I would propose a further study 

comparing cT1 measured from a single ROI and from the whole liver against histological 

assessment of fibrosis. In this proposed study the use of a single liver disease aetiology would 

allow a validated score for the histological assessment of inflammation to be used (such as the 

Ishak grading of necro-inflammation in chronic viral hepatitis) to further define the influence 

of inflammation of cT1.  

 

The work described in Chapter 6 looking at the evaluation of autoimmune liver disease has 

already been extended and a larger cohort of patient has been recruited with a range of 

autoimmune liver disease. As described in Section 6.8 this study aims to look more closely at 

the distribution of cT1 to evaluate if these parameters are clinically useful in evaluating 

autoimmune liver disease.  
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