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Abstract 

 

Microbubble dynamics are associated with cavitation damage to pumps, turbines and 

propellers, as well as applications in biomedical ultrasonics, sonochemistry and 

cavitation cleaning. The compressible effects of liquid are essential, which are 

associated with acoustic radiation at the inception of a bubble and the end of collapse. 

Viscous effects are important for microbubbles. This thesis is concerned with 

microbubble dynamics in a viscous compressible liquid near a rigid boundary. The 

compressible effects are modelled by using the weakly compressible theory of Wang 

& Blake [103, 104]. The viscous effects are approximated using the viscous potential 

flow theory of Joseph & Wang [29], because the flow field is characterised as being 

an irrotational flow in the bulk volume but with a thin viscous boundary layer at the 

bubble surface. Consequently, the phenomenon is modelled by using the boundary 

integral method. The numerical results are shown in good agreement with the 

Keller-Miksis equation, experiments and computations based on the Navier-Stokes 

equations. Numerical studies were carried out for microbubble dynamics near a rigid 

boundary as well as subject to an acoustic wave. The bubble oscillation, topological 

transform, jet development and penetration through the bubble and the energy of the 

bubble system are simulated and analysed regarding the compressible and viscous 

effects.  
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Chapter 1 

 

INTRODUCTION 

 

 

 

1.1 Research Background  

The study of bubble dynamics in the neighbourhood of a rigid boundary is associated with 

cavitation erosion to propellers, turbines and pumps [84, 41, 110, 74, 44, 67]. The cavitation 

damage mechanism is believed to be associated with shock waves [87, 94] and bubble jetting 

[63, 83], both of which are formed at the end of collapse. Similarly, the damage mechanism of 

an underwater explosion is associated with a shock wave emitted at the inception of an 

underwater explosion bubble and bubble jetting formed at the end of collapse [52, 65, 59]. 

Gas-filled bubbles can be found not only in some natural processes such as fermentation, 

boiling and sedimentation but also within several aspects, for instance, fluidised beds and 

nucleate boiling reactors. 

 

Recent research on ultrasound cavitation bubbles is associated with several important medical 

applications, including extracorporeal shock wave lithotripsy [55, 64, 47, 60, 75, 76], tissue 

ablating [88, 53, 54], and oncology and cardiology [73]. In these applications, cavitation 

microbubbles absorb and concentrate a significant amount of energy from ultrasound, leading 

to shape oscillation, shock waves, violent collapsing and strong bubble jetting [22]. These 
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mechanisms are also associated with sonochemistry [91, 92] and ultrasound cavitation 

cleaning which is one of the most effective cleaning processes for electrical and medical 

micro-devices [86, 90]. 

 

In spite of their size (usually of the order 1 µm), cavitation bubbles demonstrate extreme 

physical feature with immense pressure and temperatures during collapse (although over tiny 

timescales). Their tendency of focusing and concentrating energy, focus and stresses as well 

as emission of shockwaves means they could potentially damage the nearby surface 

structures.When a bubble oscillates near a rigid boundary, the liquid jet can be formed when 

the bubble collapses in the asymmetry fluid flow. The parameters of the surface will 

determine the direction of the liquid jet. If the bubble is too close to the rigid boundary, it will 

lead to the direct impact of the jet on the rigid wall. When the bubble initially is a little bit far 

away from the rigid boundary the jet will impact on another side of the bubble and release a 

shockwave. Because the expanding and collapsing of the bubble occurs very abruptly in 

microseconds, it is difficult to observe this process and the exact mechanisms of cavitation 

damage are still unknown. According to the studies of Chen and Israelachvili [121], which 

have been shown that damage to a nearby rigid wall, can be more likely to take place during 

the formation of cavities. It is obvious that acquiring sufficient understanding of cavitation 

damage is vital to many biomedical, chemical and engineering applications. 

 

1.2 Previous works 

Controlling and understanding the dynamics of the bubbles, on the other hand, assists us to 

learn their ubiquitous nature, and on the other hand, facilitates their application in intensifying 

chemical or physical processes. The boundary integral method (BIM) is grid-free in the flow 
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domain and computationally efficient and is thus widely used in the field of bubble dynamics. 

It has been applied for bubble dynamics near a free surface or compliant surface in 

axisymmetric configuration [7, 41-43, 45, 56-58, 71, 77-78, 81, 105, 111-112] as well as in 

three dimensional configuration [36, 48-51, 65, 61-62, 98-99]. The axisymmetric BIM was 

employed to study acoustic bubble dynamics in an infinite fluid [64, 103-104] and close to a 

rigid boundary subject to ultrasound which propagates perpendicularly to the rigid boundary 

[18-19, 20-21, 7]. Dynamics of a bubble close to a rigid wall driven by ultrasound which 

propagating parallel to the wall were modelled by the three dimensional BIM [22].  

 

Compressible effects 

The BIM model is suitable for incompressible flow and does not account for the significant 

energy loss due to the emission of shock waves associated with bubble dynamics. Lee et al. 

[70] modified the BIM model by removing a part of the bubble potential energy empirically at 

the end of the first cycle of oscillation. 

 

A bubble initiated near a rigid boundary can be almost in contact with the boundary because 

of its expansion and migration to the boundary as a result of the attraction by the second 

Bjerknes force [82]. This leads to the direct impact of a liquid jet on the boundary once it 

penetrates through the bubble, the direct contact of the bubble at the minimum volume at high 

pressure and high temperature with the boundary, and the direct impingement of shock waves 

on the boundary once emitted. We believe that these phenomena have clear damage potential 

to the boundary. It is, therefore, very important to study bubble dynamics in near contact with 

a rigid boundary. 
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Prosperetti & Lezzi [72, 85] developed the weakly compressible theory for spherical bubbles. 

Further, Wang & Blake [103, 104] developed this theory for non-spherical bubbles using the 

method of matched asymptotic expansions. In the weakly compressible theory, the flow to 

second order in the outer region far away from the bubble satisfies the wave equation, and 

that is acquired analytically. The flow to second order in the inner region near the bubble 

satisfies Laplace’s equation and thus is modelled by using the BIM.    

 

Viscous effects 

The viscous effects of microbubble dynamics, may not be negligible as the Reynolds number 

associated may not be large. There are plenty of important medical applications of this 

phenomenon, such as extracorporeal shock wave lithotripsy [1, 47, 64, 60], oncology, 

cardiology [8] and tissue ablating [8, 6, 7]. Taking viscous effects into consideration is vital 

because the Reynolds number Re for the microbubble dynamics is relatively small. The 

Reynolds number Re is denoted as 
 












 p
R=Re m

, where p is the pressure difference of 

ambient pressure at infinity and vapour pressure, Rm is the maximum bubble radius,  is the 

density and  viscosity of the liquid. We can estimate the Reynolds number by given the 

following parameters for water: p = 100 kPa, σ = 0.07 N/m,  = 10
-3

 Pa s and ρ = 1000 kg/m
-3

. 

For Rm  10 µm, we have Re  10. An irrotational flow is in the bulk liquid domain but also a 

thin vorticity layer at the bubble surface for microbubble dynamics.   

 

The viscous bubble dynamics were modelled by using the Navier-Stokes equation with the 

finite element method or finite volume method [23, 27, 28]. Out of the demand of computation, 
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the domain approaches are normally used for one cycle oscillation. 

 

When a bubble is spherical, the viscous effect only enters the analysis through the normal 

stress on the bubble surface but no effect in the fluid domain, except viscous dissipation.  

This can be physically understood as extra work required to against the normal viscous force 

on the bubble surface during the expansion of the bubble [25, 84].  

 

The model of bubble dynamics with the viscous effect will formulate based on the viscous 

potential flow theory following [29, 24, 30]. Based on the above considerations, a bubble is 

approximately keeping spherical at the most time during its lifetime because of the surface 

tension. Comparing with the whole lifetime, there will be a quite short time when it may 

become non-spherical at the end of the collapse, and at that time, the viscous effects are not 

dominant during this period [22].  

 

1.3 Current works 

This thesis is concerned with microbubble dynamics in a viscous compressible liquid near a 

rigid boundary. The compressible effects are modelled by using the weakly compressible 

theory of Wang & Blake [103, 104], since the Mach number is small. The viscous effects are 

approximated using the viscous potential flow theory of Joseph & Wang [29], because the 

flow field is characterised as being an irrotational flow in the bulk volume but with a thin 

viscous boundary layer at the bubble surface. Consequently, the phenomenon is modelled by 

using the boundary integral method, in which the compressible and viscous effects are 
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incorporated into the model through including corresponding additional terms in the far field 

condition and the dynamic boundary condition at the bubble surface, respectively. 

 

The structure of the thesis is organised as follows. The modelling of the BIM for 

incompressible potential flow is introduced in details in Chapter 2. In Chapter 3, a bubble 

initiated near a rigid boundary is modelled by using the weakly compressible theory coupled 

with the BIM. The wall effects are modelled using the method of the image. The numerical 

instabilities caused by the near contact of the bubble surface with the boundary are handled by 

removing a thin layer of water between them and joining the bubble surface with its image to 

the boundary. Our computations correlate well with experiments for both the first- and 

second-cycle of oscillation. Some mechanisms of cavitation damage are discussed.  

 

In Chapter 4 we study microbubble dynamics using the viscous potential flow theory coupled 

with the BIM, where the viscous effects are approximated using the viscous correction 

pressure. This model agrees well with the Keller Miksis equation for spherical bubble 

damping in an infinite fluid with the viscous effects and the experiments for bubble dynamics 

near a rigid wall [86]. 

 

In Chapter 5, we model microbubble dynamics in a compressible viscous liquid near a rigid 

boundary using the viscous potential flow theory and the weak compressible theory. The 

numerical results are shown in good agreement with the Keller-Miksis equation, experiments 

and computations based on the Navier-Stokes equations. The bubble oscillation, topological 

transform, jet development and penetration through the bubble and the energy of the bubble 

system are simulated and analysed regarding the compressible and viscous effects.   
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In Chapter 6, we study microbubble dynamics subject to an ultrasound acoustic wave, using 

the model developed in Chapter 5. This phenomenon has important applications in 

sonochemistry, ultrasound cleaning and bioscience. The viscous compressible BIM is shown 

in good agreement with the Keller-Miksis equation for spherical bubble dynamics subject to 

an acoustic wave. The compressible viscous BIM is also shown in good agreement with the 

experiments for dynamics of non-spherical bubble subject to ultrasound. 
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Chapter 2 

 

BOUNDARY INTEGRAL METHOD FOR 

BUBBLE DYNAMICS 

 

 

Bubble dynamics have been successfully modelled for decades by using the incompressible 

potential flow theory coupled with the boundary integral method. The boundary integral 

method described in the research of Black, Taib and Doherty [12, 13, 43] who took a single 

axisymmetric cavitation bubble close to free surface and a rigid wall into consideration, 

respectively. Bubble dynamics near a rigid boundary [48, 58, 71, 111, 112, 117] or a free 

surface [13, 81, 118] were simulated by the axisymmetric BIM. The viscous effects and 

compressible effects were neglected by the authors because the large Reynolds number and 

small Mach number associated with bubble dynamics.  

 

Green’s formula has laid the foundation for the Boundary integral method which makes us 

reformulate the potential flow problem by using the Fredholm integral equation. The potential 

and its normal derivative on the boundary of the bubble surface occur in the equation. By 

using this formulation, the dimension of this problem is reduced by one. By integrating 

through the polar angle, two-dimensional integrals can be lowered to one-dimensional 

regarding axisymmetric potential problems. Complete elliptic integrals were involved in 

Green’s formula. 
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In this chapter, the boundary integral method is described for axisymmetrical bubble 

dynamics, which will be used in the subsequent chapters.  

 

2.1 Boundary integral equation 

In an axisymmetric configuration, we consider bubble dynamics near a free surface. Because 

of the Reynolds, the number associated is usually large, the water flow induced is assumed 

inviscid. The velocity potential  satisfies Laplace’s equation 

2 0  .                             (2.1.1) 

 

Using the second Green identity, the velocity potential thus satisfies the boundary integral 

equation as follows 

   
 

   
 

 
, ,

, , ,
S

t G
c t ,t G t dS

n n


 

  
  

  


q r q
r r r q q q ,            (2.1.2) 

where r is the field point, q is the source point, and n is the unit outward normal of the 

boundary surface S of the flow field. The Green function is  , 1G  r q r q . c(r, t) is the solid 

angle 

 
2     if    is at the bubble surface

,
4     if    is in the flow field

c t





 


r
r

r
 .               (2.1.3)  

The kinematic boundary conditions on the bubble surface S requires a liquid particle on the 

bubble surface remains on the bubble surface, i.e. 

D

Dt


r
 on S,                          (2.1.4a) 

the dynamic boundary condition on the bubble surface S is 

21

2

p pD
gz

Dt







     on S,                   (2.1.4b) 

which is the balance of the normal stress on the bubble surface. Here p is the ambient 
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pressure and g is the gravity acceleration. The coordinate system is set with the z-axis 

opposite to the gravity direction.   

 

The position vector r and q are the on the boundary of the fluid domain Ω which can be 

defined as  

 0 0,0,r zr ,  , ,r zq ,                  (2.1.5) 

where  , ,r z  is the cylindrical coordinates. By choosing r on the surface if, we know either 

φ or n  on the bubble surface the other can be found by equation (2.1.2). Once we know 

both φ and n  on the surface by using equation (2.1.2) can calculate φ at any point in the 

fluid domain.  

 

By using cylindrical polar coordinates, the Green function G(r, q) can be expressed as 

follows: 

     

   

1
2 2 2 2

0 0

1

2
2 2 2 2 2

0 0 0 0

2 2 2

0 0 0

1 1
( , )

cos sin

1

2 1 2cos 2
2

1

4 cos
2

G

r r r z z

r r r r z z z z

z z r r r r

 





 


    
 



  
       

  


 

   
  

r q
r q

.      (2.1.6) 

 

As it is an axisymmetric problem, we can express the surface using the two parameters (, ), 

where  is the parameter to express the intersection of the bubble surface with the plane  = . 

The surface element dS thus can be expressed as follows 



  

12 
 

d d
dS d d

d d
 

 
 

q q
. 

 

The partial different vector q with respect to ζ and θ can be obtained  

       ,
cos , sin ,

d dr dr dz

d d d d

    
 

   

 
  
 

q
, 

 
    

,
sin , cos ,0

d
r r

d

 
   


 

q
. 

 

The cross product is calculated as  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

k

ji

k

ji
qq



































































































d

dr
r

d

dz
r

d

dz
r

d

dr
r

d

dr
r

d

dz
r

d

dz
r

d

d

d

d

sincos

sincos

sincos

22

. 

hence the first surface integral in (2.1.2) can be calculated as follows 

        

 

       

     
 

       

     

1
2 2 21

0

2

1

0 22 2 2

0 0 0

1
2 2 21

2 2

0 0 0

1

0 22 2 2

0 0 0

2 2

0 0

1 1

4 cos
2

1

4 cos
2

S

dz dr
dS r d

d d

d

z z r r r r

dz dr
r d

d d z z r r

d

z z r r r r

z z r r



 
 




  

 
   




  

 

    
     

       

 
   

  

    
     

       

 
   

 
 

   
 

 





r q r q

2


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     
 

 

     










































































2

0 2

1

2

0

2

0

2

0

1

0

2

0

2

0

2

1
22

2
cos4

1
rrzz

rr

d

dr
rrzz

d

dr

d

dz

.                    (2.1.7) 

 

We then define the variable k
2
 

 

     20

2

0

2

0
2 2

cos4






rrzz

rr

k


 ,                   (2.1.8) 

the integral in (2.1.7) in terms of  can be expressed as following by defining 
2


    

 
2 2

1 1 1
2 2 2 20 0 02 2 2

2 2

2 4 4

1 cos 1 cos
1 cos

2

d d d
K k

k k
k



 
  

  

  

         
  

   ,   (2.1.9) 

with K(k) is the first kind complete elliptic integral. Now the equation (2.1.7) can be written 

as  

 

     

1
2 2 2

1

1
2 20 2

0 0

1
4

S

dr dz
r

d d
dS d

r r z r


 



 

    
    

     


   
 

 r q
,          (2.1.10) 

similarly we have  

 

     

     
 

 

 

1

3
2 20 2

0 0

0 0 02 2

1
4

2

1

S

r d
dS

n
r r z z
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 kKr

d

dz

k
zzrr

dr
02

1

0 2

3
2

0

2

0

2
4









 ,          (2.1.11) 

with E(k) and 
 

21 k

kE


 are the second kind complete elliptic integral and the third kind 

complete elliptic integral, respectively. Hastings (1995) provided approximations for the first 

and second kind complete elliptic integral as follow 

           222 1ln11 kkQkPkK  ,        (2.1.12) 

           222 1ln11 kkSkRkE  ,         (2.1.13) 

where the function P(1-k
2
(ζ)), Q(1-k

2
(ζ)), R(1-k

2
(ζ)) and S(1-k

2
(ζ)) are tabulated polynomials. 

 

2.2 Numerical procedure  

2.2.1 Linear elements 

To proceed with the computation, we need to choose a representation for the surface, and also 

for the potential and its normal derivative on the surface. To some extent, these choices can be 

independent, but as the movement of the surface is computed using the potential and its 

normal derivative, the two should be considered together. In the description which follows, a 

plane section through the axis of symmetry of the surface is taken, rotational symmetry about 

the axis is understood, the potential and its normal derivative will be call functions. 

 

ϕi and 
n

i
i







  are assumed to be single-valued at the endpoints of the linear segments 

which approximate the surface. If the segment is parameterised by ζ in the range (0, 1) we can 

define 

 

 

1

2

1 ,

,

M

M

 

 

 




                        (2.2.1.1) 

and use the isoparametric approximations for both the surface and the functions. On a 
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segment Si we have,  

   

   

   

   

1

1

1

1

1

1

1

1

i i

i i

i i

i i

z z z

r r r

  

  

     

     









  


  


  
   

.                     (2.2.1.2) 

The collocation points are chosen at the ends of each segment, yielding N+1 equations in the 

N+1 unknowns. The integrals on each segment can be written N+1 

n
b

n
bdS

qpn

i
ij

i
ij

ijSi












 




2
1

1

1
,               (2.2.1.3) 

with  

 
 











2

0

1

0

1
,

1
qp

d
dSb

j

iij , 

 











2

0

1

0

2
,qp

d
dSb

j

iij , 

and 

iijiij

ijS

aadS
qpn

i

 211

1



















 ,              (2.2.1.4) 

with 

 
  

























2

0

1

0

1
,

1
1 d

qpn
dSa

j

iij , 

 

  
























2

0

1

0

2
,

1
d

qpn
dSa

j

iij . 

 

2.2.2 Calculation of the influence matrix 

To evaluate the elements of the matrices is carried out numerically. Guass Legendre 

quadrature is usually sufficient, except the collocation point is pi one of the endpoints. By 
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subtracting the logarithmic term to eliminate the singularity the singular integrals are 

performed. And then use a quadrature scheme collaborating the logarithm to fulfil the 

integration. 

 

Since we have  

 
 

     20

2

0

2

0
2 2

cos4







rrzz

rr

k


 ,                 (2.2.2.1) 

and then define y as  

 
     
     20

2

0

2

0

2

02
1






rrzz

rrzz
ky




 .             (2.2.2.2) 

 

For example if the singularity happens when       0 0, 1 , 1r z r z , we can use the Taylor 

expansions around it as following 

     
2

2

0 2

1
1 1

2

dr d r
r r

d d
  

 
         

     
2

2

0 2

1
1 1

2

dz d z
z z

d d
  

 
        . 

Now we can estimate y as  

 
 

2 22

2

2

0

1
1

4

dr dz
y k

r d d




 

     
       

     

,           (2.2.2.3) 

so that essential K(ζ) behaves like 

        2
ln 1K P x Q x A    .               (2.2.2.4) 

This information is sufficient to allow us to deal with the singularity. 

 

Singularity at ζ=0 
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This singularity occurs when r is the point       0,0, 00 zrzr  . If we define the equation 

E(ζ) and F(ζ) as follows: 

 
2

1
22
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d

dr
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dz
F ,                    (2.2.2.5) 

      2
1

2

0

2

0)(  rrzzG  .              (2.2.2.6) 

then equation (2.1.10) and (2.1.11) can be rewrite as 
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and 
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.    (2.2.2.8)                

By expressing ln(x) as two added parts 

   


ln2lnln
2










x
x                    (2.2.2.9) 

with equations (2.1.12) and (2.1.13) we can express equations (2.2.2.7) (2.2.2.8) as 
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Singularity at ζ=1 

For this case, the point r is given as       1,1, 00 zrzr  . By setting 
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we can express 
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In (2.2.2.10), (2.2.2.11), (2.2.2.13) and (2.2.2.14) the first integrals involve no singularity, 

therefore can be integrated by applying the standard Gauss Legendre quadrature. The 

remaining integral include an explicit singularity of log type which can be integrated by 

applying the quadrature scheme tabulated by Stroud and Secrest [122] for the integral: 
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.                        (2.2.5.18) 
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Chapter 3 

 

BUBBLE DYNAMICS IN A COMPRESSIBLE 

LIDUID 

 

 

In this chapter, a bubble initiated near a rigid boundary is modelled using the weakly 

compressible theory coupled with the boundary integral method. The wall effects are 

modelled using the method of the image. The numerical instabilities caused by the near 

contact of the bubble surface with the boundary are handled by removing a thin layer of water 

between them and joining the bubble surface with its image to the boundary. Our 

computations correlate well with experiments for both the first- and second-cycles of 

oscillation. Some mechanisms of cavitation damage are discussed.  

 

3.1 Weakly compressible theory  

Consider the dynamics of a gas bubble near a rigid flat boundary in an inviscid and 

compressible liquid. A Cartesian-coordinate system is set as illustrated in figure 3.1. The 

x-axis is on the rigid boundary, and the z-axis is along the axis of symmetry for the 

configuration.  
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Figure 3.1. Sketch of a bubble motion near a rigid boundary and the coordinates used. The 

standoff distance between the centre of the initial bubble and the rigid boundary is s, and S is 

the bubble surface. 

 

The liquid flow is described by the continuity equation 

  0



u



t
,                         (3.1.1) 

and the Euler equation 

1
p

t 


    



u
u u .                      (3.1.2) 

In bubble dynamics liquid compressibility usually important when the high-speed motion 

occurred. We can assume that the thermal effects in the fluid are unimportant. The speed of 

sound c and the enthalpy h of the fluid are as follows: 

d

dp
c 2

,    




p

p

dp
h


                   (3.1.3, 3.1.4) 

p is the ambient pressure in the undisturbed fluid. 
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As the flow is irrotational, the flow velocity can be expressed regarding the velocity potential 

φ using u . Substitute it into equation (3.1.1) we get the conservation of mass 

regarding the velocity potential as follows: 

0
1 2  



 Dt

D
, .                     (3.1.5) 

where D/Dt is the material derivative. 

By integrating (3.1.2) we obtain the Bernoulli equation 
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


.                     (3.1.6) 

Using (3.1.3) and (3.1.4), we can express the first term in (3.1.5) as follows:   
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As such the continuity equation (3.1.5) becomes  
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In order to find the formula to express the speed of sound c and the enthalpy h, we introduce 

the Tait model for the relationship between pressure and density as follows: 
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By rearranging the Tait model, the pressure p  can be expressed by p , B, ρ and ρ. We 
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substitute this expression of p  into equation (3.1.3) and rearrange it to get the expression of 

the speed of sound c as follows: 
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By rearranging the Tait model, the pressure ρ can be expressed by p, B, ρ and p. We 

substitute this expression of ρ into equation (3.1.3) and rearrange it to get the expression of 

sound as follows: 
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where c is the speed of the sound in the undisturbed fluid as. When the pressure of fluid 

doesn’t have a significant difference with p, we can use the Taylor expansion to express 1/ ρ 

around p then integrate with respect to p as follows [85]: 
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similarly we have  
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We choose maximum bubble radius Rm as the reference length, the density of the liquid  in 

the undisturbed liquid as the reference density. The pressure reference is chosen as p = p - 

pv, where pv is the partial pressure of vapour of the bubble. The reference velocity is thus 

obtained as  pU . The reference time is obtained as / /m mT R U R p   . The time 

reference obtained provides the scale of the oscillation period of a bubble. As an example, the 

collapsing time required for a cavity collapsing from R = Rm to R = 0, obtained by Rayleigh 

[87], is Rayleigh 0.915 /mT R p  .  

 

We perform non-dimensionalization to the problem using the reference parameters and denote 

dimensionless quantities by subscripts “*” as follows: 
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U
t

m

* , 
mR

r
r * ,                 (3.1.13a, b, c) 
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*

2hUh  , *ccc  , 
p

pp
p




  ,                  (3.1.13d, e) 

where the speed of sound c is normalized by its value in the undisturbed liquid c.  

 

The compressibility of the liquid flow can be measured by the Mach number defined in terms 

of the reference flow velocity U and the speed of sound c in the undisturbed liquid as 

follows: 




c

U
 .                            (3.1.14) 

We assume that the Mach number  is small, because the speed of sound in water is about 

1500 m s
-1

, whereas the velocity of the bubble jet is slower than 200 m s
-1

 at normal ambient 

pressure [39, 66, 89, 95-96, 68, 82, 79, 46 and 109].  

 

Expressing the equation (3.1.6, 3.1.7) in dimensionless variables as following: 
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By substituting the dimensionless variables into the equation (3.1.9, 3.1.10) we obtain the 

dimensionless enthalpy and sound speed in the liquid as follows: 
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Similarly, we have 
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By substituting non-dimensionless variables into equations (3.1.11, 3.1.12), we obtain the 

speed of sound and the enthalpy in the dimensionless form. The steps show details of 

non-dimensionalization are as following:  
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We divide the fluid domain into two asymptotic regions: the inner region near the bubble 

where (x, y, z) = O(Rm) and the outer region far away from the bubble where (x, y, z) = O(), 

with  = cRm/U being the wavelength of acoustic waves.  

 

We define the dimensionless inner region variable as   )1(,, **** Ozyxr  and the outer 
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 where we choose the T  as the 

time scale for a change of order of the bubble radius Rm. The outer expansions are as follows: 
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By using the outer variable, equation (3.1.15) and (3.1.16) become 

,                     (3.1.23) 
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Substituting the outer expansion into above equations, we obtain:  
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We obtain the first order outer solution by using the far field condition. The general solution 

for ϕ1 is the d’Alembert solution. We can obtain the outer solution for the first and second as 

follows: 
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where F1 needs to be decided by matching between the inner and outer solutions. The inner 

limits of the second order outer expansion are obtained by using the Taylor series expansion 

as follows:  
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Hence the inner limit of the outer expansion for the first two orders can be found as flowing: 

 
 

   2

*1

*

*1  OtF
r

tFi
  .                      (3.1.27) 

 

We define the inner expansion in terms of the inner variable as the follows:  
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By substituting the inner expansions into equations (3.1.15) and (3.1.16), we find the 

equations for first three terms in inner expansions as following:  
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The problem can be solved by finding the solutions for φ0, φ1 and φ2 The solutions for the 

order O(1) and O(ε) of the potential satisfy Laplace’s equation. The third order solution O(ε
2
) 

for potential satisfies the Poisson equation. Since the first two order solutions satisfy 

Laplace’s equations, we can give the general solution as follows: 
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              
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where we define S as the bubble surface, n is the normal unit vector on bubble surface, q is 

the integral variable on the bubble surface, and the Green’s function is given as follows: 
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When the bubble is near a flat rigid boundary, the Green function is given as follows: 
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where qimage is the reflection point of q to the rigid wall.  

 

By using the outer variable and the Taylor expansion we can obtain the following estimations: 
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Substituting (3.1.33) into (3.1.31) we find the first two order outer limits of the inner solutions 

as following: 
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 Vi(t*) are obtained as follows:   
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Hence the outer limit of the inner expansion is given as follows: 
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Matching the outer limit of the inner solution (3.1.34) with the inner limit of the outer solution 

(3.1.27), we obtain all the functions as follows: 
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Using the method of matched asymptotic expansions, the outer solution of the velocity 

potential outer to second order has been shown to satisfy the wave equation and obtained 

analytically as follows [100-101]: 
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where the overdot denotes the derivative in time. The outer solution is due to the acoustic 

radiation associated with the volume oscillation of the bubble.  

 

The inner solution of the velocity potential  to second order satisfies Laplace’s equation in 

the flow field and the kinematic and dynamic boundary conditions on the bubble surface S are 

as follows: 

 2

*

2

*  O ,                           (3.1.39a)  

 2

**

*

*  O
dt

d


r
 on S,                      (3.1.39b)  
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 2

*

2

**

*

*

2

1
1 


Op

dt

d
L   on S.                 (3.1.39c) 

 

The far-field boundary condition of the inner solution is obtained by matching with the outer 

solution as follows [105]: 

 
   2

*

**
**  

2

1



 O

r

tV
tV * 







 
  as r*,              (3. 1.39d) 

The initial condition on the bubble surface is given as 

*0*0*0
on     

**

RrR
tttn* 


 ,                   (3. 1.39e) 

where R0* is the initial radius of the bubble. 

 

Here pL* is the liquid pressure on the bubble surface, which is given as, 

n *** BL pp  on S,                        (3.1.40a) 

κ

gvB
V

V
ppp 










*

*0
*0** ,                     (3. 1.40b) 

where pg0 and pg0* = pg0/p are the dimensional and dimensionless initial partial pressure of 

the non-condensable gases of the bubble; V0* is the initial bubble volume, and  is the ratio of 

the specific heats of the gases; n is the normal vector of the bubble surface, n  provides 

the surface curvature and * = /(Rmp) is the surface tension coefficient.  

 

We assumed in (3.1.39b) that the pressure inside the bubble is uniform since the density of 

gases is usually three orders of magnitude smaller than that of liquids. We also assume that the 

expansion and contraction of the bubble gases are adiabatic. Additionally, although there will 
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be heat and mass transfer between bubble and liquid from bubble surface [93], we will not 

consider it in this thesis. 

 

Examining the initial and boundary problem of (3.1.39), one can see that the compressible 

effects appear only in the far field condition (3.1.39d) to the second order approximation. As 

the basic equation is Laplace’s equation, this problem can be modelled using the BIM. The 

details on the numerical model using the BIM for the problem can be found in [40, 106-107].  

 

Bubble dynamics near a flat rigid boundary are modelled using the method of the image 

[108]. When the bubble surface is nearly in contact with the rigid boundary, simulations using 

the BIM are often associated with numerical instabilities. To avoid the numerical instabilities, 

we remove the thin layer of liquid between the bubble surface and the boundary, join the 

bubble surface with its image to the boundary and simulate “the combined bubble” [30]. In 

the simulations performed in this paper, the join takes place when the minimum distance min 

between bubble surface and the boundary is in the range of 0.01 to 0.04.  

 

A composite solution φc(r*, t*) of the inner and outer solutions for the entire domain can be 

given as follows: 

           
   

   2
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**
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*****

22
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

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



 rr .       (3.1.41) 

The mechanical energy of a bubble system consists of the potential energy and the kinetic 

energy of the bubble system. The potential energy EP is given as follows [22]: 

***

1

*

*0*0*0

*
1

VAσ
V

VVp
E

g

P 



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









,                  (3.1.42) 



  

34 
 

where A* is the area of the bubble surface. The reference energy is chosen as pRm
3

. 

 

For a bubble system in a compressible liquid, we introduce the local kinetic energy ELK of the 

liquid flow in the inner asymptotic region L near the bubble. L is bounded by the bubble 

surface S and a large sphere S (figure 3.2), with its centre at the centre of the initial bubble 

surface and with a radius being large compared to the bubble radius and small compared to 

the wavelength  of the acoustic wave. Since the flow in the inner region satisfies Laplace’s 

equation to second order, the local kinetic energy ELK is given as follows, by using Gauss's 

divergence theorem and the outer limit of the inner solution (3. 1.36) [105]: 

    





 S
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Lk OdS OdS 
n

 dVρE

L





2

1

2

1

2

1 2*
*

2

**** .    (3.1.43) 

The kinetic energy of the bubble gases is negligible since the density of gases is usually three 

orders of magnitude smaller than liquids. 

 

The local energy of a bubble system in a compressible liquid consists of the potential energy 

EP and the local kinetic energy ELK as follows [101-102]:  



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*** .        (3.1.44) 
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Figure 3.2. Illustration of the local liquid domain L bounded by the bubble surface S and a 

large sphere S, with its centre at the centre of the initial bubble surface and with a radius R.  

 

3.2 Numerical analyses  

The numerical model is based on the BIM. In the beginning, we have all information of 

bubble surface and the potential distribution φ on the bubble surface. For the rest of each time 

steps, we use this data to calculate the tangential velocity on the bubble surface. After having 

tangential velocity, we use the boundary integral method to obtain the normal velocity on 

bubble surface. The detail BIM model is referenced to Wang et al. [106, 107]. 

 

The calculations are carried out for dynamics of a laser generated gas bubble at the maximum 

radius Rm = 1.45 mm near a rigid boundary at the dimensionless standoff distance  = s/Rm = 

0.9, 0.6 and 0.3 respectively, to compare with the experimental data by [82]. Other 

computational parameters are chosen as  = 1.4,  = 0.013, * = 0.00051, R*(0) = 0.1, Rt*(0) = 

31 and pg0* = 127. The corresponding dimensional parameters are  
=

 
1000 kgm

-3
,  

=
 
0.07

 

Nm
-1

, p = 98.1 kPa, pv =
 
2.98

 
kPa, R(0)

 
= 1.45

 
mm, Rt(0)

 
=

 
307

 
ms

-1
, pg0

 
=

 
12.1

 
MPa.   

S 

Bubble 

S 

L 

R 
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Figure 3.3 shows the bubble shapes at  = 0.9 at various typical times. The bubble expands 

spherically, but its lower surface is flattened by the rigid boundary towards the end of the 

expansion (figure 3.3a). During collapse (figure 3.3b), water cannot flow from directly below 

into the collapsing volume, and the bubble remains in contact with the boundary 

subsequently. Near the end of the collapse, a liquid jet forms on the distal side of the bubble 

surface directed towards the boundary. Once it penetrates through the bubble at t* = 2.15 the 

jet impacts on the boundary immediately, which is associated with higher damage potential as 

compared to a jet formed away from the wall. For the latter, the jet momentum reduces while 

it penetrates through the liquid before impact on the wall. 

 

After the jet penetrates the bubble, a bubble rings forms. The jet pointing to the boundary is 

re-directed radially after it impacts on the boundary, which pushes the inner side of the 

bubble ring radially. As a result, the jet diameter increases causing a compression of the 

bubble volume from inside. In the meantime, the bubble ring collapses from other sides 

rapidly except the bottom, reaching its minimum volume in contact with the boundary at t* = 

2.30 (figures 3.3c), when the bubble reaches the maximum pressure and temperature. This is 

associated with a damage potential too. In addition, a shock wave is emitted at the minimum 

bubble volume with high-pressure amplitude [93], it impacts on the rigid boundary once it is 

emitted and has another clear damage potential.   

 

The bubble ring subsequently rebounds mainly upwards and externally along the boundary 

(figure 3.3d). It next recollapses mainly from the top and the external side (figure 3.3e). The 

radius of the bubble ring at the end of recollapse is smaller than at the end of collapse. The 

bubble is kept in contact with the boundary during the second cycle of oscillation.  
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Figure 3.3. The motion of a bubble near a rigid boundary characterized by  = 0.9,  = 1.4,  = 

0.013, * = 0.00051, R*(0) = 0.1, Rt*(0) = 31.0 and pg0* = 127. The bubble shapes are in (a) the 

first expansion phase, (b-c) the first collapsing phase in between singly- and 

doubly-connected form respectively, (d) during the second expansion phase, and (e) the 

second collapse phase. Both time and the bubble shape show in figures are in dimensionless. 
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Figures 3.4 and 3.5 show the bubble shapes at various times at  
= 0.6 and 0.3, respectively. 

As expected the lower part of the bubble surface starts being in contact with the boundary 

earlier than at  = 0.9, at the middle and early stage of the expansion phase at  = 0.6 and 0.3, 

as shown in figures 3.4a, 3.5a, respectively. In analogous to the case at  = 0.9, the lower part 

of the bubble surface keeps in contact with the boundary subsequently, and the liquid jet 

impacts the boundary once it penetrates through the bubble (see figures 3.4b, 3.5b). 

Comparing figures 3.3b, 3.4b and 3.5b, one can see that the jet is sharper at a larger standoff 

distance and its width decreases with the standoff distance.  

 

The jet is again redirected horizontally and pushes away the bubble from the inner side after it 

impacts on the boundary. The bubble ring collapses further from the all sides except for the 

part in contact with the boundary, reaching its minimum volume and maximum pressure and 

temperature in contact with the boundary t* = 2.32, 2.34 respectively (figures 3.4c, 3.5c), 

when a shock wave is emitted and impinges on the boundary once it emits.  

 

The bubble ring then further rebounds (figures 3.4d, 3.5d) and re-collapses (figures 3.4e, 

3.5e), predominately from the top and parts external of the bubble surface. The radius of the 

bubble ring at the end of the second cycle of oscillation is again smaller than at the end of the 

first cycle. The maximum volume of the bubble during the second cycle increases as the 

bubble is initiated closer to the boundary.  

 

Now we were considering how bubble behaved as the whole thing. In figure 3.6a we can see 

how the equivalent bubble radius 3
*4

3
* VReq 
  to be different for those three at  = 0.9, 0.6 

and 0.3, respectively. The maximum radius reduces significantly from the first to second 
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cycles of oscillation, so does the oscillation period. The maximum bubble radius at the 

second-cycle are decreased to 0.57 Rm, 0.59 Rm, 0.65Rm at  = 0.9, 0.6 and 0.3, respectively, 

increasing as the bubble initiated closer to the boundary.   

 

Figure 3.6b shows the corresponding time histories of the bubble centroid zcen*. The bubble 

migrates slightly away from the boundary during expansion but migrates to the boundary 

significantly during the collapse. The migration accelerates as the bubble is collapsing, 

reaching the maximum speed at the minimum volume. The migration towards the boundary is 

faster at a larger standoff distance during the first cycle of oscillation for the three cases at  < 

1.0. This is contrary to the trend at  > 1.0 [105], where the bubble migrates to the boundary 

faster at a smaller standoff distance. This is because the nearer part of the bubble surface is 

retarded by the boundary during the later stage of the expansion phase as  < 1.0 and the 

retarding effects start earlier at a smaller standoff distance .  

 

Figure 3.6c shows the histories of the local energy EL of the bubble system for the cases. The 

local energy reduces significantly and rapidly at the inception of the bubble and at the end of 

the collapse, when shock waves are emitted. It is almost a constant during the rest of time 

when the compressible effects are approximately negligible. After the shock wave is emitted 

at inception, about 59%, 60%, 65% of the initial energy is left at  = 0.9, 0.6 and 0.3, 

respectively [103-104]. After the shock wave is emitted at the end of the collapse, only about 

14%, 22% and 23% of the initial energy is left with the bubble system at  = 0.9, 0.6 and 0.3, 

respectively.     
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Figure 3.4. Bubble dynamics near a solid boundary at  = 0.6, with the other parameters the 

same as in figure 3.3. Shows the bubble form are during (a) the 1
st
 expansion phase, (b-c) the 

1
st
 bubble collapsing phase in a singly- and doubly-connected form respectively, (d) the 2

nd
 

expansion phase and (e) the 2
nd

 collapse phase. 
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Figure 3.5. Bubble dynamics near a solid boundary at  = 0.3, with the other parameters the 

same as in figure 3.3. The bubble appearances are during (a) the 1
st
 expansion phase, (b-c) the 

1
st
 for collapsing phase in a singly- and doubly-connected form respectively, (d) the 2

nd
 

expansion phase and (e) the 2
nd

 collapse phase. 
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Figure 3.6. Time histories of (a) the equivalent bubble radius Req*, (b) z-component of the 

bubble centroid zc*, and (c) local energy EL/EL0 of the bubble system, for the cases in figures 

3.3, 3.4 and 3.5, where EL0 is the initial local energy.  

 

3.3 Comparison with experiments 

Figure 3.7 shows the comparison of the bubble shapes obtained using the compressible BIM 

and the experiment [82], for cavitation gas bubble dynamics near a rigid boundary at Rm = 

1.45 mm and  = 0.9. The experimental and computational results are shown in the left and 

right columns, respectively. In addition, the computational results are added overlapped with 
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the experimental images for a direct comparison. The computation agrees very well with the 

experiment during the whole first cycle of oscillation (figure 3.7A). The expansion of the 

lower part of the bubble surface is retarded by the boundary at t = 34 s. It approximately 

takes the shape of half of a sphere at its maximum volume at t = 177 s, with the lower part of 

the bubble surface being flattened by the boundary. The upper part of the bubble surface then 

collapses down, assuming a cone shape at the middle stage of the collapse phase at t = 296 s. 

The jet shown in the computational results is not visible in the experimental images due to the 

opaqueness of the bubble surface. Nevertheless, the outer profiles of the bubble obtained in 

the computation and experiment agree well. The bubble ring of the computation at the end of 

collapse at t = 353 s agrees well with the experiment when the bubble reaches its minimum 

volume.  

 

Figure 3.7B shows the comparison during the second cycle of oscillation. The bubble surface 

in the experiment is not clear due to physical instabilities occurred. Nevertheless, the bubble 

shapes calculated correlate with the experimental data regarding the outer profile at various 

times. Both results show that the bubble rebounds and recollapses in contact with the 

boundary. They agree in terms of the external radius and height of the bubble ring. 

 

A thin circular layer of water exists between the flat boundary and the lower part of the 

bubble surface since the later stage of the expansion phase, as the bubble initiated with the 

standoff distance less than the maximum bubble radius. It becomes a thin annulus layer after 

the jet penetrates the bubble. The part of the bubble surface above the thin liquid layer is 

almost flat and the thickness of the liquid layer does not change significantly. This feature is 

shown in the images in figure 3.7 from t = 177 to 354 s. It can be estimated that the vertical 

acceleration az* is small in the thin layer,  
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   minmin0** 


OOaa
zzz

,                    (3.3.1)  

as az* = 0 on the rigid boundary. From the z-component of the Euler equation, we have 

*** / zpaz  .                           (3.3.2)  

The pressure in the gap can thus be estimated as follows:  

       2

min*

2

min*

2

min**min**  OpOpOpaOpp BBBzL  n ,    (3.3.3)         

where the surface tension term is neglected since the curvature radius n  is small on the 

flat part of the bubble surface.  

 

The pressure in the thin layer of liquid between the bubble and the boundary is approximately 

constant and equal to the pressure of the bubble gas. The flow velocity within the thin circular 

layer must be close to zero. The bubble side of the thin layer remains flattened due to surface 

tension effects.  
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A. First cycle of oscillation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

354 μs 

 

35 μs 34 μs 

177 μs 177 μs 

300 μs 

 

296 μs 

 

318 μs 

 
316 μs 

336 μs 334 μs 

1 mm 

353 μs 

 



  

46 
 

B. Second cycle of oscillation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Comparison of the compressible BIM computation (in the right column) with the 

experiment (in the left column) (reproduced with permission from [82]) for the bubble shapes 

at various times for a cavitation bubble near a rigid boundary at Rm = 1.45 mm and  = 0.9, the 

frame width is 3.9 mm for both the computational and experimental results: (A) during the 

first-cycle of oscillation and (B) during the second-cycle of oscillation. The reminder 

parameters are the same as in figure 3.7.  
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A. First collapse 
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B. Second cycle of oscillation  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Comparison of the compressible BIM computation (in the right column) with the 

experiment (in the left column) [82] for the bubble shapes at  = 0.6: (A) during the first-cycle 

of oscillation and (B) during the second-cycle of oscillation. The reminder parameters are the 

same as in figure 3.7.  

 

Figures 3.8 shows the comparison between the computation and the experiment at  = 0.6. 

The computation again agrees very well with the experiment during the whole first cycle of 

oscillation (figure 3.8A). The bubble takes the shape of a half of sphere with the lower part 

being flattened by the wall at the middle stage of collapse at t = 247 s. A bubble jet starts at t 

= 285 s and fully develops at t = 302 s. The bubble ring at the minimum volume calculated 
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agrees well with the experiment at t = 321 s. Figure 3.8B shows the comparison during the 

second cycle of oscillation. The bubble shapes calculated correlate with the experiment 

images. They agree well in terms of the radius of the bubble ring at the end of re-collapse and 

the period of the second cycle.   

 

Figures 3.9 shows the comparison of the computation with the experiment for the bubble 

dynamics near a rigid boundary at  = 0.3, starting from the late stage of collapse at t = 280 s. 

The computation agrees very well with the experiment until the end of the collapse phase at t 

= 354 μs. The bubble ring calculated agrees well with the experiment during early rebounding 

phase to t = 389 μs. 
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A. First collapse 
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B Second expansion 

 

 

 

 

 

 

 

 

Figure 3.9. Comparison of the compressible BIM computation (in the right column) with the 

experiment (in the left column) [82] for the bubble shapes at  = 0.3: (A) during the first cycle 

of oscillation and (B) during the second-cycle of oscillation. The reminder parameters are the 

same as in figure 3.7.  
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Chapter 4 

 

MICROBUBBLE DYNAMICS WITH 

VISCOUS EFFECTS 

 

 

This chapter mainly investigates the bubble dynamics by using the VBIM on the basis of the 

viscous potential flow theory. The viscous effects are collaborated into the model through 

including the normal viscous stress of the irrotational flow in the dynamic boundary condition 

at the bubble surface. The implementation of viscous correction pressure is used to resolve the 

discrepancy between the physical boundary condition of zero shear stress and the non-zero 

shear stress of the irrotational flow at a free surface. When a spherical bubble oscillates in a 

viscous liquid for several cycles of oscillation for Re = 10, the model is in good agreement 

with the Rayleigh-Plesset equation. It is also in conformity with the experimental data and the 

simulation results based on the Navier-Stokes equation for transient bubble dynamics near a 

rigid wall. 

 

4.2 Mathematical model 

The continuity equation and the Navier-Stokes equations for the liquid flow surrounding the 

bubble are as follows: 

0 W ,                         (4.2.1) 
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

p
g

t
,                  (4.2.2) 

where W is the fluid velocity, t is time, P is pressure, ρ is the density of the liquid, g is body 

force and  = µ/ρ is the kinematic viscous coefficient. 

 

The velocity field W can be expressed as the sum of the irrotational velocity field w and a 

rotational velocity field v 

vvwW   ,                        (4.2.3) 

where the irrotational velocity w can be expressed as the gradient of the velocity potential φ. 

Substituting the total velocity W into the Navier-Stokes equation, we can get  
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.        (4.2.4) 

 

The viscous correction pressure can pvc is introduced in [29] as below: 
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Substituting pvc into equation (4. 2.4), yields  
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v .               (4.2.6) 

After integrating (4.2.6) we obtain the modified Bernoulli equation with the viscous 

correction pressure as follows: 

 21
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      


v ,                   (4.2.7) 

where p is the ambient pressure.  
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The kinematic condition of the bubble surface is 


dt

dr
,                              (4.2.8) 

the boundary conditions at infinity is 

0 .                                    (4.2.9) 

 

The dynamic boundary condition on the bubble surface is the balance of the normal stress as 

follows 

                      ,nbL pp                            (4.2.10) 

where pb the pressure of the bubble gas, pL is the pressure of the liquid at the bubble surface, τn 

is the normal viscous stress of the irrotational flow, κ is the local mean curvature of the bubble 

surface, and σ is the surface tension coefficient.  

 

Substituting equation (4.2.10) into equation (4.2.7) we obtain the dynamic condition on the 

bubble surface as follow: 

           gz
tPpp

nDt

D vcb 






 






 )(
2

2

1
2

2
2

.            (4.2.11) 

 

We chose the density  in the undisturbed liquid as the reference density and the maximum 

bubble radius Rm as the reference length. The reference velocity is thus obtained as 

 pU . The reference pressure is p = p - pv. Where pv is the partial pressure of vapour 

of the bubble and p is the hydrostatic pressure in the undisturbed liquid. We introduce 

dimensionless quantities indicated by asterisks as follows, 
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            (4. 2.12a, b, c)           
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
* , kRk m*  , 

p

p
p vc

*vc


 , 
mR

z
z * ,         (4.2.12d, e, f, g) 

where r is the position vector,  is the velocity potential of the liquid, t is the time, and p is the 

pressure. 

 

The dimensionless dynamic condition on the bubble surface is obtained as follows. 

Substituting (4.2.12) into (4.2.11) yields,  
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Substituting (3. 1.40b) into (4.2.11) yields, expressing bubble pressure as the following:  

 



















vc

gv

m

m

m
m

p
tP

V

V
pp

Rgz
R

pRp
R

npDt

D

p
































0

0

*
**

2

*

2
2

*

*

* 2
2

1

      (4.2.14) 

Substituting the viscous correct pressure from (4.2.20) into the above equation, we get:  
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Dividing by the factor ρ/p yields 
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or 
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where pg0* = p0/p is the strength parameter, 
 












 p
R=Re m  is the Reynolds number,  

mgR

p
=Fr




 is the Froude number. 

 

As the relatively low viscosity of the gas inside the bubble, the tangential stress of the liquid 

flow at the bubble surface should be negligible. However, there is shear stress on the bubble 

surface because the irrotational velocity is not zero. In order to deal with this difference, a 

viscous pressure correction is proposed at the free surface. Joseph and Wang [29] introduced a 

viscous pressure correction that performs the same energy from the liquid to the gas as that by 

the shear stress of the irrotational flow. The energy to be used for the viscous pressure 

correction Pvc on each surface element dS is dSPvdW n vc  and the work produced by 

the liquid to the gas by the shear stress of the irrotational flow is dSdW sτv   . Thus, 

we have, 

snPu τu  vc .                                (4.2.18) 

 

The pressure correction thus satisfies the following relation on the bubble surface 

dSdS)p(u
S

s

S

n   τuvc .                        (4.2.19) 
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This model is termed as the viscous correction of VPF model (VCVPF) [29].  

 

To avoid singularity at un = 0, we make the following change to (4.2.18) 

         for  0.01 ,

0                 for  0.01 .

s
n

nvc

n

u
- u

uP

u




 
 

.                       (4.2.20) 

According to Boulton & Blake [115] τs is given as follows: 
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where κ1=1/R1 is planar curvature, and R1 is principal radii of curvature. The term 
n

un




 

needed in (4.2.18) can be calculated as following 
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Following Boulton & Blake [115] τn is given as follows: 

2

2

2
n

n






 .                         (4.2.23) 

After obtaining τs using (4.2.21) and 
n

un




 from (4.2.22), we then obtain the viscous 

correction pressure from (4.1.20). 

 

4.2 Validating the numerical model and comparing with 

experiment  

4.2.1 Comparison with the Keller-Miksis equation 
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We first compare the viscous BIM model with that of the Keller-Miksis equation (KME) by 

considering a spherical bubble oscillating in an infinite fluid. The parameters used are R0 = 4.5 

μm, p0 = 101.3 kPa, ρ = 1000 kg/m
3
, ε = 100, σ = 0.073 N/m, κ = 1.67 and pa* = 0. The Reynolds 

number for the case is Re = 45. Figure 4.2 shows the comparison of the bubble radius histories 

calculated using the viscous BIM model and the Keller equation. From the figure, we can see 

that the viscous BIM model agrees well with the KME for the six cycles of bubble oscillation. 

The maximum bubble radius decreases and the minimum radius increases with the cycle of 

oscillation. The amplitude and period reduce significantly with the cycle of oscillation due to 

the viscous effects. For microbubble dynamics, the viscous effects are significant for multiple 

cycles of oscillation. 

 

 

 

 

 

 

 

 

Figure 4.2. Comparison of the time histories of the bubble radius calculated from the viscous 

BIM model and the Keller-Miksis equation (KME). The parameters are used R0 = 4.5 μm, ε = 

100, κ = 1.67, p0 = 101.1 kPa, ρ = 1000 kg/m
3
, pa* = 0, σ = 0.073 N/m and Re = 45.  
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4.2.2 Comparison with the experiment 

Ohl et al. [11] carried out an experiment for cavitation gas bubbles generated by a laser beam 

near a rigid boundary for the dimensionless standoff distance of the bubble from the wall   =  

1 and the maximum bubble radius Rmax = 1 mm. All the details of this experiment were well 

controlled and recorded by a high-speed camera. Another computational result used for 

comparison was provided using an axisymmetric model based on the Navier-Stokes equations 

[28]. The parameters for the case are pg0 = 42 bar, R0 = 0.2 mm, Tamb = 300 K and Tc0 =1998 K, 

in which Tc0 is the difference between the temperature at the centre of the bubble and the 

ambient temperature and Tamb is the ambient temperature in the liquid fluid. We will compare 

our results obtained from the viscous BIM model with the results from both the experiments 

[11] and the numerical model based on the Navier-Stokes equation [28]. 

 

Although we chose the same initial pressure with [28] in the viscous BIM model, we used a 

slightly bigger initial radius R0 = 0.224 mm to make sure that bubble radius to reach 1 mm at 

the first maximum. This is because the Navier-Stokes model [28] considers the effects of heat 

transfer, which is neglected in the viscous BIM model. Following Best and Kucera’s [40], the 

ratio of specific heat is chosen κ = 1.4, and other parameters are ρ = 1000 kgm
-1

, p0 = 101.3 

kpa and μwater = 0.001 kgm
-1

 s
-1

. 

 

Both the visous BIM model and Navier-Stoke model agree well with the experiments in terms 

of bubble expansion and collapse and jet formation, as shown in figure 4.3. The rigid 

boundary is allocated at the bottom of the picture. During the first expansion, most part of the 

bubble surface keeps spherical except for the bottom of it is flattened by the rigid boundary 

when it gets close to the boundary (figure 4.3a). After reaching the maximum radius, it 

collapses with the bubble surface keeping approximately spherical, except for the bottom part 
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has no significant movement (figure 4.3b). At the end of collapsing, a liquid jet develops 

rapidly from the top of the bubble surface towards the rigid boundary (figure 4.3c). Although 

we can see both computation models providing good agreements with the experiment, the 

time sequence and the jet shape obtained from the viscous BIM model agrees better with the 

experiment. 

 

a. Expansion phase 

 

 

 

 

 

 

 

b. Collapse phase 

 

 

 

 

 

 

 

 

194 μs 157 μs 122μs 

9 μs 106 μs 

 

52 μs 
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c. Collapse phase: jet formation 

 

 

 

 

 

 

 

 

Figure 4.3. Comparison of the bubble shapes as obtained from the experiment ([11] in the first 

row of each phase), a computational model based on the Navier-Stokes equation ([28], in the 

second row) and the visous BIM (in the third-row together with dash line bubble shape from 

experiment). The bubble shapes are shown during (a) the expansion phase, (b) the collapse 

phase and (c) the jet formation. The rigid boundary is located at the lower borders of frames. 

The parameters in the BIM model are chosen as R0 = 0.224 mm, pg0 = 42 bar, = 1.0, μwater = 

0.001 kg(m s)
-1

, p∞ = 101.3 Kpa, ρ = 998 kgm
-1

, and κ = 1.4. 
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Chapter 5 

 

BUBBLE DYNAMICS IN A 

COMPRESSIBLE LIQUID WITH 

VISCOUS EFFECTS 

 

 

This chapter considers bubble dynamics in a compressible and viscous liquid. The viscous 

effects are modelled using the viscous potential flow theory. The compressible effects are 

modelled using the weakly compressible theory. The numerical results are shown in good 

agreement with the Keller-Miksis equation, experiments and computations based on the 

Navier-Stokes equations. 

 

5.1 Physical and mathematical model 

Consider the dynamics of a gas bubble near a rigid flat boundary in a viscous and 

compressible liquid. A Cartesian-coordinate system is set, with the x-axis at the rigid 

boundary and the z-axis along the axis of symmetry for the configuration, as illustrated in 

figure 1. It is assumed that it is a potential flow in the bulk volume of the fluid except for a 

thin viscous boundary layer at the bubble surface.  
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Figure 5.1. Illustration of a bubble near a rigid boundary, with a standoff distance, s from the 

centre of the initial bubble surface to the boundary, and the coordinates used. 

 

The reference length, density and pressure are chosen as the maximum bubble radius Rmax, the 

density of the liquid  in the undisturbed liquid, and p = p - pv, respectively, where p and 

pv are the ambient pressure and vapour pressure of the liquid, respectively. The reference 

velocity is therefore defined as  pU . Dimensionless quantities are denoted by 

subscripts “*”, as follows: 

* * *,     ,     ,
max max max

U
t t

R R R U


  

r
r  

*

p p
p

p


 ,           (5.1)                                

where r = (x, y, z), t is the time,  the velocity potential and p the pressure of the liquid flow.  

 

The highest speed of the liquid flow inducing by bubble dynamics is usually related with the 

velocity of the bubble jet, which is often lower than 200 m s
-1

 at normal ambient pressure, 

according to the observation of experiments Benjamin & Ellis [39], Brujan & Matsumoto [46], 

Lauterborn & Bolle [66], Lauterborn & Ohl [68], Lindau, & Lauterborn [79], Philipp & 

Lauterborn [82], Shima et al. [89],  Tomita & Shima [95], Vogel et al. [96, 97], Yang et al. 

[109] and Zhang et al. [114].  

z 

S 

Initial 

Bubble 
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s 



  

64 
 

The flow induced by the bubble dynamics is assumed to be associated with a low Mach 

number, ε, since the speed of sound in water is about 1500 m s
-1

, defined as follows: 

1
U

c
   ,                            (5.2)                                                                       

where c is the speed of sound of liquid. A newly formed laser bubble’s surface expands with 

an initial velocity of about 2450 ms
-1

 is observed by Lauterborn & Vogel [69], which reduces 

rapidly to about 250 ms
-1

 within 140 ns. 

 

We divide the bulk fluid domain of the inviscid flow into two regions: the inner region near 

the bubble where (x, y, z) = O(Rmax) and the outer region far away from the bubble where (x, y, 

z) = O(), where  = cRmax/U is the wavelength of acoustic waves. Using the method of 

matched asymptotic expansions, the outer solution was shown to satisfy the linear wave 

equation to second order in terms of the Mach number and an analytical solution was obtained 

as follows Wang [105, 109]: 

 
 * * * 2

* 0

*

V t r
C O

r


 


   ,                   (5.3)                                                  

where V is the transient bubble volume and C0 is a given constant with 1/(2) for a bubble in 

an unbounded liquid and near a rigid boundary and a value of 1/(4), respectively. 

 

By following Wang & Blake [103, 104], the inner solution to second order satisfies Laplace’s 

equation and the kinematic boundary condition on the bubble surface S, as following: 

 2 2

* * O   ,                          (5.4a)                                                               

 2*
* *

*

D
O

Dt
  

r
  on S ,                   (5.4b)                                                    

The far-field boundary condition of the inner solution is obtained by matching with the outer 

solution as follows Wang [102]: 
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 

  as  r*.              (5.4c) 

                                

The initial condition on the boundary is given as 

0*t0*tn RrR 
 *0*

*

  on    ,                      (5.4d)                                                         

where n is the unit normal at the bubble surface pointing to the gas side, R0* and Rt0* are the 

initial radius of the bubble and its initial rate of change, respectively. 

 

A thin viscous boundary layer exists at the bubble surface if the associated Reynolds number is 

O(10) or larger Boulton-Stone & Blake [115]. In the viscous potential flow theory, the normal 

stress balance at the bubble surface and the surface tension is given as follows: 

vcL n Bp p p     n , 

2

2
2n

n


 





,                     (5.5)                                                   

where pL is the liquid pressure at the bubble surface,  surface tension, n the normal viscous 

stress, pvc viscous pressure correction and μ is the viscosity of the liquid.  

 

Due to the relatively low viscosity of the gas inside the bubble, the tangential stress at the 

bubble surface is supposed to be zero. However, the shear stress is non-zero because of 

potential flow. The viscous correction pressure carried out by Joseph and Wang [29] to resolve 

this discrepancy. A rational model for the viscous correction is unavailable in the case. We 

assume that the viscous correction pressure pvc is proportional to the normal stress vc np C   

Manmi & Wang [123]: 

                  
2

2
2 1L Bp C p

n


 


    


n .                       (5.6) 
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The constant C is to be determined as follows. In order to satisfy energy conservation for the 

liquid flow, the viscous correction pressure is provided to fulfil the equal power done by the 

shear stress at the free surface, which is introduced by Joseph & Wang [29] and the relation is 

given by the follows, 

dSdSpu
S

s

S

n    τu)( vc ,                           (5.7)                                                               

where s is the shear stress at the bubble surface.  

  

Using the Bernoulli equation, the dynamic boundary condition at the bubble surface can be 

written as 

 
 
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p z O
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 
n  on S,     

(5.4e) 

where , * = /(Rmaxp) the surface tension, /maxgR p    the buoyancy parameter, pg0* 

= pg0/p is the initial partial pressure of the bubble gases inside the bubble,   the polytropic 

index of the bubble gas, V0* is the initial bubble volume and
0Re R p /    is the 

Reynolds number. The expanding and collapsing of the gases bubble is assumed adiabatic. 

The thermal effects related to this phenomenon will not be considered which may reference to 

Szeri et al. [93]. We assumed in (5.4e) that the expansion and contraction of the bubble gases 

are adiabatic. We do not consider the thermal effects associated with this phenomenon, which 

may reference to Szeri et al. [93].  

 

Examining the initial and boundary value problem of (5.4), one can see that the compressible 

effects to second order appear only in the far field condition (5.4c), and the viscous effects 

appear in the dynamic boundary condition at the bubble surface (5.4e), since it is the modified 
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Laplace’s equation, which can be simulated by using the boundary integral method (BIM). 

Curtiss et al. [54], Wang [105] and Wang et al. [106] developed the numerical model by using 

BIM for this problem.  

 

The collapse of a non-spherical bubble is often resulting in the formation of a high-speed 

liquid jet. Subsequently, the jet impacts on the opposite bubble surface and thus penetrates the 

bubble, hence the liquid domain transformed from a singly connected to a doubly connected 

domain. There is a non-unique solution for a potential problem in a doubly connected domain. 

By using a vortex sheet by
 
Zhang, Duncan & Chahine [111]

 
and Zhang & Duncan [112] or a 

branch cut by Best [40] the doubly connected domain can be transferred to singly connected 

domain. 

 

A bubble torus has been modelled with a vortex ring inside. A vortex ring initially locates in 

the cross-section of the bubble. Pedley [124] and Lundgren & Mansour
 
[125] described this 

method. Based on the earlier ideas to simulate the transformation of singly connected bubble 

to a toroidal bubble Wang, et al.
 
[107, 108]

 
developed a vortex ring model to handle this 

problem. By using the vortex ring model once the liquid jet penetrates through the bubble a 

vortex ring will insert to the toroidal bubble. The jump of the potential * across the contact 

point at the time of jet impact is equal to the circulation of the vortex ring as follows: 

* * * * *N S

C

d        r ,                     (5.8)                                                        

where S* and N* are potentials at the impact point. The assumption is the liquid jet impact 

on a single point on the bubble surface. Here we assume jet impact occurs at a single point.  
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The potential * is then broke down into two parts as follows:  

* vr    ,                             (5.9)                                                                    

where vr is the potential of the vortex ring, which can be got by using the Biot-Savart law 

Wang et al. [107, 108]. Since in the flow field the remnant potential  is continuous which can 

be solved by using the BIM model. By using (5.9) the potential jump due to the jet impact is 

accounted by the potential of the vortex ring.  

 

The mechanical energy of a bubble system consists of the potential energy and the kinetic 

energy of the bubble system. The potential energy EP is given as follows Wang & Manmi 

[105]  
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,                  (5.10) 

where A* is the area of the bubble surface. The reference energy is chose as 3

maxR p . 

 

The kinetic energy in the bubble gases is negligible since the density of gases is usually three 

orders of magnitude smaller than liquids. Wang [102] introduced the local kinetic energy ELK 

of the liquid flow in the inner asymptotic region L near the bubble. L is bounded by the 

bubble surface S and a large sphere S, with its centre at the centre of the initial bubble 

surface and with a radius being large compared to the bubble radius and small compared to 

the wavelength  of the acoustic wave. The local kinetic energy ELK is given as follows Wang 

[102]: 
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The local energy of a bubble system in a compressible liquid consists of the potential energy 

EP and the local kinetic energy ELK as follows:  
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5.2 Validations of numerical model 

5.2.1 Comparison with the Keller Miksis equation  

Figure 5.2 shows the comparison between the viscous compressible BIM (VCBIM) and the 

Keller Miksis equation (KME) by simulating a spherical bubble damping in an infinite liquid. 

The parameters in calculations are Rm = 6.0 µm,  = 1.667,  = 100, p0 = 101.1 kPa, ρ = 1000 

kg/m
3
, pa* = 0, σ = 0.073 N/m and Re = 60. As shown in figure 5.2, the viscous compressible 

BIM has the good agreement with the Keller Miksis equation during the five cycles of bubble 

oscillations. Due to the compressible and viscous effects, the bubble undergoes a damped 

oscillation, with the maximum radius decreasing with time and the minimum radius increases 

with time. For the microbubble dynamics and inertial collapse bubble, both viscous and 

compressible effects are essential. 
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Figure 5.2. Comparison of the CVBIM and Keller-Miksis equation (KME) for the time 

histories of the radius R* for a bubble oscillating in an infinite fluid for Rmax = 6.0 µm,  = 

1.667,  = 100, p0 = 101.1 kPa, ρ = 1000 kg/m
3
, pa* = 0, σ = 0.073 N/m and Re = 60.   

 

5.2.2 Comparison with the numerical model based on the Navier-Stokes equation 

We now compare the computational results of the VCBIM and a numerical model based on 

the Navier-Stokes equation Minsier et al. [28]. The case considered is for a bubble collapsing 

near a rigid boundary with the dimensionless standoff distanceγ= s/Rm = 0.9, in oil with 

viscosity μ = 0.05 kg/(m s). The Reynolds number for the case is Re = 224. Figure 5.3 and 5.4 

show the bubble shapes in the collapse phase at typical times, which are noted at the 

upper-left and upper-right corners of each frame for the numerical model based on the 

Navier-Stock equation and the VCBIM, respectively. The two models agree well in terms of 

the bubble shape during the whole cycle of oscillation. A large part of the bubble surface is 

flattened against the rigid boundary at the maximum volume (see frame 1) and is kept in 

Req* 

 

t * 

 



  

71 
 

contact with the boundary subsequently. The top part of the surface collapses down and a jet 

forms subsequently. 

 

Figure 5.3 shows the bubble shapes in the collapse phase at typical times in water while figure 

5.4 shows that in oil. The two models agree well in terms of the bubble shape during the 

whole cycle of oscillation in both liquids. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. The comparison of the bubble shapes near a rigid boundary at = 0.6 calculated 

using the VCBIM and the numerical model based on the Navier-Stock equation [83] (dash 

line), in the liquid with viscosity μwater = 0.001 kg(ms)
-1

. The rigid boundary is located at the 

bottoms of the frames. Other parameters used are Rm = 1.45 mm,  = 1.4,  = 0.013, * = 

0.00051, R*(0) = 0.1, Rt*(0) = 31.0 and pg0* = 127. 
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Figure 5.4. The comparison of the bubble shapes near a rigid boundary at  = 0.6 calculated 

using VCBIM and numerical model based on the Navier-Stock equation [83] (dash line), in 

the liquid with viscosity μoil = 0.05 kg(m s)
-1

. The rigid boundary is located at the bottoms of 

the frames. The other remaining parameters the same as in figure 5.3. 

 

5.2.3 Comparison with experiment results 

The numerical simulations using the VCBIM are carried out for the dynamics of a laser 

generated gas bubble at the maximum radius Rm = 1.45 mm near a rigid boundary at the 

dimensionless standoff distance  = s/Rm = 0.9, 0.6 and 0.3 respectively, to compare with the 

experimental data [82]. Other computational parameters are chosen as * = 0.00051,  = 1.4, 

Rt*(0) = 31,  = 0.013, pg0* = 127, and R*(0) = 0.1. The corresponding dimensional parameters 
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are p = 98.1 kPa, pv =
 
2.98

 
kPa,  

=
 
1000 kgm

-3
,  

=
 
0.07

 
Nm

-1
, R(0)

 
= 1.45

 
mm, Rt(0)

 
=

 
307

 

ms
-1

 and pg0
 
=

 
12.1

 
MPa.  

 

Figure 5.5 shows the comparison of the bubble shapes obtained using the VCBIM and the 

experiments [82], for cavitation gas bubble dynamics near a rigid boundary at Rm = 1.45 mm 

and  = 0.9. The experimental and computational results are shown on the left and right 

columns, respectively. In addition, the computational results are added overlapped with the 

experimental images for a direct comparison. The computation agrees very well with the 

experiments during the whole first cycle of oscillation (figure 5.5A). The expansion of the 

lower part of the bubble surface is retarded by the boundary at t = 34 s. It approximately 

takes the shape of half of a sphere at its maximum volume at t = 177 s, with the lower part of 

the bubble surface being flattened by the boundary. The upper part of the bubble surface then 

collapses down, assuming a cone shape at the middle stage of the collapse phase at t = 296 s. 

The jet shown in the computational results is not visible in the experimental images due to the 

opaqueness of the bubble surface. Nevertheless, the outer profiles of the bubble obtained in 

the computation and experiment agree well. The bubble ring of the computation at the end of 

collapse at t = 353 s agrees well with the experiment when the bubble reaches its minimum 

volume. 

 

The computational results for  = 0.6 and 0.3 are shown in good agreement with the 

experimental images in figures 5.6 and 5.7. The results of the VCBIM shown in figures 5.5, 

5.6 and 5.7 are very similar to that of the compressible BIM shown in figures 3.7, 3.8 and 3.9. 
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The viscous effects are insignificant in this case since the Reynolds number associated, Re = 

1450, is large. 
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A. First cycle of oscillation 
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B. Second cycle of oscillation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Comparison of the viscosity compressible BIM computation (in the right column) 

with the experiment (in the left column) (reproduced with permission from [82]) for the 

bubble shapes at various times for a cavitation bubble near a rigid boundary at Rm = 1.45 mm 

and  = 0.9, the frame width is 3.9 mm for both the computational and experimental results: 

(A) during the first-cycle of oscillation and (B) during the second-cycle of oscillation. The 

motion of a bubble near a rigid boundary characterized by  = 0.9,  = 1.4,  = 0.013, * = 

0.00051, R*(0) = 0.1, Rt*(0) = 31.0 and pg0* = 127. 
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A. First collapse 
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B Second expansion 

 

 

 

 

 

 

 

 

Figure 5.6. Comparison of the viscous compressible BIM computation (in the right column) 

with the experiment (in the left column) [82] for the bubble shapes at  = 0.6: (A) during the 

first-cycle of oscillation and (B) during the second-cycle of oscillation. The remaining 

parameters are the same as in figure 5.5. 
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A. First collapse 
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B. Second cycle of oscillation  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Comparison of the viscous compressible BIM computation (in the right column) 

with the experiment (in the left column) [82] for the bubble shapes at  = 0.3: (A) during the 

first cycle of oscillation and (B) during the second-cycle of oscillation. The remaining 

parameters are the same as in figure 5.5. 
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5.3 Numerical analyses 

Figure 5.8 shows the bubble shapes for  = 0.9 at various typical times. The bubble expands 

spherically while its lower surface is flattened by the rigid boundary at the end of the 

expansion (figure 5.8a). As figure 5.8b shows, water cannot penetrate through the rigid 

boundary so that the lower part of the bubble surface remains on the boundary subsequently 

during the collapse. During the later stage of collapse, a liquid jet forms on the distal side of 

the bubble surface directing towards the rigid boundary. Once it penetrates though the bubble 

at time of t* = 2.11, the jet impacts on the rigid boundary immediately. This is associated with 

higher damage potential as compared to the damage caused by a bubble jet formed away from 

the rigid boundary. For the latter case, the jet momentum reduces while it penetrates through 

the liquid before reaching the rigid boundary. 

 

A bubble ring forms after the jet penetrating through the bubble. The jet pointing to the 

boundary re-directs radically after it impacting on the boundary, which forces the inner side 

of the bubble ring moving outwards. Consequently, the jet diameter increases which causing 

a compression of the bubble volume from inside to outside. Meanwhile, the bubble ring 

collapses from all sides rapidly except for the bottom. When it reaches its minimum volume 

at t* = 2.24 (figure 5.8c), the bubble ring in contacting with the rigid boundary reaches the 

maximum pressure and temperature. This gives rise to another damage potential. In addition, 

a shock wave is emitted at the minimum bubble volume with high-pressure amplitude [93], it 

impinges on the rigid boundary once it is emitted and has clear damage potential.   

 

Afterwards, the bubble ring rebounded upwards and outwards along the boundary (figure 

5.8d). It then re-collapses from top to bottom and from the external to the internal. The radius 
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of the bubble ring at the end of re-collapse is smaller than that at the end of collapse. The 

bubble keeps in touch with the boundary during the second cycle of oscillation. 

 

Figures 5.9 and 5.10 show the bubble shapes at various times for  
=

 
0.6 and 0.3, respectively. 

As expected, the lower part of the bubble surface starts to be on the boundary earlier than that 

for  = 0.9 (as shown in figure 5.9a and 5.10a respectively), in the middle and early stage of 

expansion respectively. In analogous to the case for  = 0.9, figures 5.9b and 5.10b show that 

the lower part of the bubble surface keeps in contact with the boundary afterwards and the 

liquid jet clashes on the boundary immediately after it penetrates through the bubble. 

Comparing figures 5.8b, 5.9b and 5.10b, it comes to a conclusion that the larger the standoff 

distance is, the sharper the jet becomes.  

 

After impacting on the rigid boundary, the liquid jet again redirects horizontally and pushes 

away the bubble from the inner side. The bubble ring then collapses from all sides except for 

the part in contact with the boundary (figures 5.9c and 5.10c). The bubble ring takes its 

minimum volume, maximum pressure and maximum temperature at t* = 2.29 and t* = 2.30 for 

 = 0.6, 0.3 respectively, when a shockwave is emitted and impacts on the boundary.   

 

As figures, 5.9d, e and 5.10d, e present, the bubble ring further rebounds and recollapses, 

predominately from the top and external parts of the bubble surface. The radius of the bubble 

ring at the end of the second cycle of oscillation is again smaller than at the end of the first 
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cycle. The maximum volume of the bubble during the second cycle increases as the bubble is 

initiated closer to the boundary.  

 

Now, how the bubble changed as a whole should be taken into consideration. Figure 5.10a 

presents how the time histories of the equivalent bubble radius 3
*4

3
* VReq 
  be different for 

 = 0.9, 0.6 and 0.3, respectively. The maximum radius reduces significantly from the first to 

the second cycles of oscillation, so does the oscillation period. The maximum bubble radius at 

the second-cycle are decreased to 0.56 Rm, 0.58 Rm, 0.62Rm when  = 0.9, 0.6 and 0.3, 

respectively, increasing as the bubble initiated closer to the boundary. By comparing figures 

5.5a and 3.6a the maximum bubble radius in the second cycle of oscillation further reduced 

about 2%, 1% and 2% due to the viscous effects, with the bubble system for  = 0.9, 0.6 and 

0.3, respectively. 

 

Figure 5.11b shows the time histories of the local energy EL of the bubble system for the three 

cases. In the beginning of the first and second cycle of oscillation, when shock waves are 

emitted, the local energy reduces significantly and rapidly. While for the rest of time, it is 

almost a constant value, when the compressible effects are approximately negligible. After the 

shockwave is emitted at the inception of the bubble, about 56%, 58% and 62% of the initial 

energy remains with the bubble system for  = 0.9, 0.6 and 0.3, respectively. After the 

shockwave is emitted at the end of the collapse, only around 13%, 15% and 18% of the initial 

energy is left with the bubble system for  = 0.9, 0.6 and 0.3, respectively. By comparing 

figure 5.11b and 3.6c at the end of first collapsing, about 2%, 1% and 2% of more energy lost 

due to the viscous effects, with the bubble system for  = 0.9, 0.6 and 0.3, respectively.  
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Figure 5.8. The motion of a bubble near a rigid boundary characterized by R*(0) = 0.1,  = 0.9, 

 = 1.4, * = 0.00051,  = 0.013, Rt*(0) = 31.0, Re = 1450 and pg0* = 127. The bubble shapes are 

in (a) the first expansion phase, (b-c) the first collapsing phase in between singly- and 

doubly-connected form respectively, (d) during the second expansion phase, and (e) 

the second collapse phase. 
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Figure 5.9. Bubble dynamics near a rigid boundary for  = 0.6 and the parameters are 

the same as in figure 5.8. The bubble shapes are during (a) the 1
st
 expansion phase, (b-c) 

the 1
st
 bubble collapsing phase in a singly- and doubly-connected form respectively, (d) 

the 2
nd

 expansion phase and (e) the 2
nd

 collapse phase. 
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Figure 5.10. Bubble dynamics near a solid boundary at  = 0.3, with the remaining parameters 

the same as in figure 5.8. The bubble shapes are during (a) the 1
st
 expansion phase, (b-c) the 

1
st
 for collapsing phase in a singly- and doubly-connected form respectively, (d) the 2

nd
 

expansion phase and (e) the 2
nd

 collapse phase. 
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Figure 5.11. Comparison for time histories of (a) the equivalent bubble radius Req* and (b) 

local energy EL/EL0 of the bubble system for a cavitation bubble near a rigid boundary for  = 

0.9, 0.6 and 0.3. Other parameters used are Rm = 1.45 mm,  = 1.4,  = 0.013, * = 0.00051, 

R*(0) = 0.1, Rt*(0) = 31.0 and pg0* = 127. 

 

There are small differences between the results obtained from the inviscid and viscous 

compressible BIM, i.e. ICBIM and VCBIM. Figure 5.12 illustrates the comparison of the 

results obtained from the ICBIM and VCBIM for the radius history and energy history. As 
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shown in figure 5.12a, the maximum radius during the second cycle for the VCBIM is slightly 

below that for the ICBIM, which is because a small amount of energy has been lost due to 

viscosity effects.  

 

In figure 5.12b, the energy history of the ICBIM is almost the same as that of the VCBIM 

during the first cycle of bubble oscillation. However, during the second cycle the energy of 

the VCBIM is slightly below the ICBIM. The differences of the dimensionless energy of the 

two models are 0.01, 0.025 and 0.035 during the first, second and third cycle, respectively. 

This is because the longer time the bubble oscillate the more energy of the bubble system is 

lost due to viscous effects.  
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Figure 5.12. Comparison of the ICBIM and the VCBIM for time histories of (a) the equivalent 

bubble radius Req* and (b) local energy EL/EL0 of the bubble system for a cavitation bubble 

near a rigid boundary for Rm = 1.45 mm,  = 0.6,  = 1.4,  = 0.013, * = 0.00051, R*(0) = 0.1, 

Rt*(0) = 31.0 and pg0* = 127. 
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In the above cases, the Reynolds number, Re = 1450, is large and viscous effects are negligible. 

To consider the viscous effects, we repeat the case in figure 5.8 with a smaller Reynolds 

number, Re = 60 (corresponding to a bubble for Rm = 6.0 μm). Figure 5.13 shows the bubble 

shapes at various times by using the VCBIM. The bubble dynamics for Re = 60 are similar to 

that for Re = 1450 as shown in figure 5.8. The bubble first expands spherically before it being 

flattened by the rigid boundary (figure 5.13a). The bubble surface kept on the boundary when 

the bubble subsequently collapses. At the end of the collapse, a liquid jet penetrated the 

bubble and impacted on the rigid boundary. It pushed the bubble ring moving outwards. Then 

the jet expanded on the horizontally. Afterwards, the bubble expanded again as a bubble ring 

and then re-collapsed. 

 

However, the following viscous effects are observed. The dimensionless oscillation period 

decreases significantly for the smaller Reynolds number at  = 0.6, jet impact happening at t* = 

1.55, 2.11, reaching the minimum volume at t* = 1.69, 2.29, and the second minimum volume 

at t* = 2.59, 3.69, for Re = 60, 1450, respectively.  

  

Figure 5.13b and 5.9b show while collapsing the bubble ring radius is narrower than the 

bubble with radius Rm = 1.45 mm. By comparing figure 5.13e with 5.9e, when it is reaching 

the minimum radius the bubble radius is larger than the bubble with Rm = 1.45 mm and the 

liquid jet is narrower than the bubble with Rm = 1.45 mm. Because of the large viscosity 

effects, the bubble with Rm = 6.0 μm lost more energy during first oscillation, during the 

second collapsing the minimum bubble volume is larger than the bubble with Rm = 1.45 mm. 
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Figure 5.14 and 5.8 illustrate the bubble shapes for a bubble oscillation near a rigid boundary 

when  = 0.9 jet impact on the rigid boundary at t* = 1.67, 2.11, attaining the minimum volume 

at t* = 1.69, 2.24, and collapsing the second minimum volume at t* = 2.21, 3.63, for Re = 60, 

1450, respectively. 

 

Figure 5.13b and 5.14b illustrate that the bubble with  = 0.9 collapses longer with much 

wider jet than the bubble with  = 0.6 during the first collapsing. Figure 5.13c and 5.14c show 

the bubble reaching the minimum volume at the same time for both two cases. By comparing 

figure 5.13e with 5.14e, the bubble with  = 0.9 reaches it second minimum volume earlier 

than the case when  = 0.6. Since the bubble with  = 0.9 has a longer time to expand and 

collapse, the bubble collapses strongly in the first cycle of oscillation than the bubble with  = 

0.6. The bubble with  = 0.9 loses more energy after the first collapse subsequently has 

weaker expansion and collapsing during the second cycle of oscillation. 

 

As shown in figure 5.15 the equivalent bubble radius for  = 0.6 and 0.9, the bubble Rm = 6.0 

μm (blue dash line) always has less radius than the bubble with Rm = 1.45 mm (red solid line) 

in the whole two cycles of oscillation. The bubble oscillation period with Rm = 6.0 μm is much 

shorter than the bubble with Rm = 1.45 mm. The reason is that the viscous effects is not 

negligible for the smaller bubble. Due to the high viscosity, the bubble with Rm = 6.0 μm 

expands slower and weaker than the bubble with Rm = 1.45 mm.  

 

Figure 5.16 illustrates the energy history of the bubble when standoff distance  = 0.6 and 0.9. 

For the bubble, Rm = 6.0 μm (blue dash line) the continuous energy decreases during the first 

cycle of the oscillation, and at the end of the first collapsing reduced significantly. During the 
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second cycle of the oscillation, the energy history moves up and down a little bit for  = 0.6, at 

the end of the second collapsing the small amount of energy released from the bubble. For the 

bubble with Rm = 1.45 mm (solid red line) the energy history almost stays the same during the 

first cycle of the oscillation. At the end of the first collapsing due to the liquid jet penetrates 

through the bubble significantly amounts of energy released from the bubble. During the 

second cycle of oscillation, the energy almost keeps constant except at the end of second of 

collapsing significantly go down a little bit.  

 

For the standoff distance  = 0.9 the bubble Rm = 6.0 μm (blue dash line) energy history almost 

maintains the same but slowly go down during the first cycle of oscillation. After the jet 

penetrates the bubble the energy history, remain coherent for the rest of the time. Because of 

the large standoff distance, the first collapsing is strong, and during the second cycle of 

oscillation, the rest of the energy remained in the bubble may form a very weak jet. For the 

bubble with Rm = 1.45 mm (solid red line) the energy history behaves similarly to  = 0.6. 
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Figure 5.13. Bubble dynamics near a solid boundary at  = 0.6, with the remaining parameters 

Rm = 6.0 μm,  = 1.4,  = 0.013, * = 0.00051, R*(0) = 0.1, Rt*(0) = 31.0, ρ = 1000 kg/m
3
, pg0* = 

127, and Re = 60. The figures show the bubble shapes during (a) the 1
st
 expansion phase, (b-c) 

the 1
st
 bubble collapsing phase in a singly- and doubly-connected form respectively, (d) the 

2
nd

 expansion phase and (e) the 2
nd

 collapse phase. 
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Figure 5.14. Bubble dynamics near a solid boundary at  = 0.9, with the remaining parameters 

same as figure 5.13. The figures show the bubble shapes during (a) the 1
st
 expansion phase, 

(b-c) the 1
st
 bubble collapsing phase in a singly- and doubly-connected form respectively, (d) 

the 2
nd

 expansion phase and (e) the 2
nd

 collapse phase. 
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Figure 5.15. Comparison of the ICBIM and the VCBIM for time histories of the equivalent 

bubble radius Req* for a cavitation bubble near a rigid boundary for  = 0.6 and  = 0.9. The 

rest of the parameters are Rm = 6 µm,  = 1.4,  = 0.013, * = 0.00051, R*(0) = 0.1, Rt*(0) = 31.0, 

Re = 60 and pg0* = 127. 
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Figure 5.16. Comparison of the ICBIM and the VCBIM for time histories of local energy 

EL/EL0 of the bubble system for a cavitation bubble near a rigid boundary for  = 0.6 and  = 

0.9. The rest of parameters are Rm = 6 µm,  = 0.6,  = 1.4,  = 0.013, * = 0.00051, R*(0) = 0.1, 

Re = 60, Rt*(0) = 31.0 and pg0* = 127. 
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Chapter 6 

 

MICROBUBBLE DYNAMICS IN AN 

ULTRASOUND FIELD 

 

 

In this chapter, we study microbubble dynamics subject to an ultrasound acoustic wave. This 

phenomenon has important applications in sonochemistry, ultrasound cleaning and bioscience. 

We first describe the Keller-Miksis equation for spherical bubble dynamics subject to 

ultrasound. We then describe the physical and mathematical model for the dynamics of 

nonspherical microbubble dynamics, using the viscous potential flow theory, weakly 

compressible theory and BIM. The viscous compressible BIM is shown in good agreement 

with the Keller-Miksis equation for spherical bubble dynamics. The viscous compressible 

BIM is also shown in good agreement with the experiments for dynamics of non-spherical 

bubble subject to ultrasound. 

 

6. 1 Spherical bubble theory  

Rayleigh developed a theoretical model to describe the spherical oscillation of gas bubbles 

[87]. A bubble in a liquid is an oscillatory system. For a spherical bubble oscillation, the 

bubble size and the shape are defined as the bubble radius R and, which is depended on time t. 

The rest of parameters are used in the model described in figure 6.1. Those parameters are 

defined in previous chapters, which are liquid pressure pL, and the internal bubble pressure pB. 
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κ, ρ, µ and σ are the specific heat parameters of the bubble gas, density and dynamics 

viscosity of the liquid, and surface tension, respectively. The model was further developed as 

the Gilmore model, which combines sound radiation and the fluid field [25]. Keller and 

Miksis developed the model, which considers sound radiation in the fluid field with a slowed 

down time t-r/c in the equations. We will compare the viscous compressible BIM with the 

Keller-Miksis model. 

 

 

 

 

 

 

  

Figure 6.1. Sketching of a bubble in liquid and the parameters used in the calculation. The 

bubble radius is R(t). The liquid pressure from outside liquid is pL, and the pressure inside the 

bubble is pB. The remaining parameters are specific heat parameter κ of the bubble gas, the 

density of liquid ρ and the dynamics viscosity µ of the liquid, and surface tension σ. 

 

The Rayleigh-Plesset equation is described as following. The continuity equation for 

incompressible flow in spherical coordinates reads 

  0
1 2

2





rur

rr
,                        (6.1.2) 

Liquid outside bubble 

pB 

pL 

R 

μ 

ρ 

σ 
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integrating equation (6.1.2)  

 
2r

tC
ur  ,   2C t R R ,                     (6.1.3) 

where “” denotes derivative in t.   

 

The Navier-Stokes equation reads 
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where  = µ/ρ is the kinematic viscosity. Substituting (6.1.3) into (4.14) yields 
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Integrating (6.1.5) concerning r from R to  gives 

 2

2 4

1

2

L
C tC p p

R R 


 
   .                    (6.1.6) 

Substituting C(t) from equation (6.1.3) into equation (6.1.6) yields 

2 23

2

Lp p
R R R


    .                       (6.1.7) 

The dynamic boundary condition on the bubble surface is 

Brr p
R


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
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,                         (6.1.8) 

where 
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u
pLrr
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Substituting ur form (6.1.3) into (6.1.9) gives 

BL p
RR

R
p 


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


2
4 .                     (6.1.10) 

Substituting (6.1.10) into (6.1.7) yields the Rayleigh-Plesset equation as following:   
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Keller and Miksis developed the Rayleigh-Plesset equation to consider compressible effects, 

which resulted in the Keller and Miksis equation 

dt

dpRp

c

R

c

R
RRR

c

R Ll










 








 








 
 11

2

3
1 2

,          (6.1.12) 

where 

   tppp
RR

R

R

R
pp iavgL ,

24
3

0
0 r











 




,              (6.1.13) 

the reference length is chosen as the initial bubble radius R0, and the reference velocity is 

/U  , vpp   , we introduce the following asterisk to describe the dimensionless 

variables, 

 
*0RRR  ,   ,*

0
* t

U

R
Ttt                           (6.1.14a, b, c) 

 *aa pp ,  *0 gg pp ,  
c

U
 .                      (6.1.15a, b, c) 

 

Using the above dimensionless variables, we get the first and the second order of  

differentiation of the bubble radius with respect to time t in dimensionless variables, and the 

differentiation of the liquid pressure pL as following; 
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The dimensionless surface tension can be expressed as following; 
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By substituting the dimensionless variables from (6.1.14a, b, c) and (6.1.15a, b, c) into the 
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Keller equation, then replacing the differentiation of the radius and liquid pressure in 

dimensionless from (6.1.16) and (6.1.17), we get the Keller equation in dimensionless 

variables as following: 

    ,1
3

1
1

2

3
1 *****

2
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
                  (6.1.19) 

with the dimensionless liquid pressure and initial partial pressure of the non-condensable 

gases of the bubble are given as follows:  
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6.2 The viscous compressible BIM for acoustic bubbles 

 

 

  

 

 

 

Figure 6.2. Sketch of a bubble motion in an infinite fluid subject to an ultrasound wave and 

the coordinates used.  

 

Consider the dynamics of a microbubble in an infinite fluid subject to an ultrasound wave, as 

shown in figure 6.2. A Cartesian coordinate system O-xz is adapted to the origin at the centre 

of the initial spherical bubble; the x-axis is along the wave direction. The ultrasound wave is 

described as a plane harmonic acoustic wave as follows:   

   0, sinap x t p p kx t    ,                   (6.2.1) 

where p0 is the hydrostatic pressure, t is time, and k, pa and  are the wave number, pressure 

amplitude and angular frequency of the acoustic wave, respectively.  

 

We choose initial bubble radius R0 as the reference length, and the density of the liquid  in 

the undisturbed liquid is chosen as the reference density. The pressure reference is chosen as 

p = p - pv, where pv is the partial pressure of vapour of the bubble. The reference velocity U 

pa 

 

Acoustic wave 

 

x 

z 

O 
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is  pU . 

 

By using (3.1.13a, b, c, d, e) and the following dimensionless parameters to perform 

non-dimensionalization to the problem: the dimensionless quantities denote by subscripts “*” 

as follows:  
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

0

*


 , 

p
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


0
 , 

p

pp
p




  ,             (6.2.2a, b, c) 

p
R





 0* , 

p

p
p a

a


* , kRk 0*  ,             (6.2.2d, e, f) 

where ω* and k* are the dimensionless angular frequency and wave number. 

 

The governing equations for the ultrasound wave driving a bubble in the compressible liquid 

are provided by Wang [103, 104]. The velocity potential φ satisfies the kinematic and 

dynamic conditions on the bubble surface S and Laplace’s equation in the flow field as 

following: 
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           (6.2.3c)    

here pL* is the liquid pressure on the bubble surface which is defined in equations (3.1.40a, b). 

The details on the derivation for considering viscous effect in (6.2.3c) are provided in Chapter 

4. 
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6.3 Validation  

6.3.1 Comparison with the Keller-Miksis equation 

Figure 6.3 compares the results obtained from the VCBIM (solid red line) with the 

Keller-Miksis equation (KME) (blue dash line). The bubble is with an initial diameter of 26 

µm is driven by eight-cycles of acoustics wave with pressure amplitude of 20 kPa and 

frequency of 130 kHz. The two results agree for the first three cycles, but discrepancy occurs 

subsequently.  

  



  

105 
 

 

 

 

 

 

 

 

 

 

Figure 6.3. Comparison between results obtained from the VCBIM (red solid line) and the 

Keller Miksis model (blue dotted line) radius history R(t) curves of a bubble with a resting 

diameter of 26 µm insonified at 130 kHz and 20 kPa for eight cycles. The other parameters 

are  = 1.4, σ = 0.073 N/m, p0 = 101 kPa, pv = 98.02 kPa and ρ = 1000 kgm
-3

. 

 

6.3.2 Comparison with experiment for bubble shapes 

Versluis et al. [119] carried out a series of carefully controlled experiments for dynamics of a 

gas bubble driven by an ultrasound wave. They observed shape oscillation for various mode 

number n = 2 to 6 of microbubbles. They found that the mode number n is dependent on the 

bubble radius but is independent of the pressure amplitude. To compare with the experiments, 

we consider the experimental case for a gas bubble having an initial radius 36 μm subject to 

an acoustic wave with the frequency of 130 kHz and pressure amplitude of 120 kPa. The 

bubble shapes are shown in figure 6.4 with the left column for the experimental images and 

the right column for the computational results. The computation results are also plotted in 

R (µm) 

 

t (µs) 

KME 

VCBIM 
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dashed lines over the experimental images for quantitative comparison. The bubble shapes are 

shown roughly at the maximum and minimum bubble volumes.  

 

Figure 6.4a shows the bubble shapes from the beginning to the 5th cycle of oscillation. The 

bubble is in equilibrium state before the arriving of the acoustic wave. In the first frame, the 

bubble starts to collapse as the acoustic wave defined by (6.2.1) arrives, since the acoustic 

pressure is positive at t = 0 and x = 0. During the first five cycles, the bubble vibrates in a 

spherical shape (n = 0), and the bubble shape and radius agree well with the experimental 

images in the very closing time with experiment results.  

 

Figure 6.4b shows the bubble shapes from the 6
th

 to 9
th

 cycles of oscillations. As the bubble at 

the 6
th

 maximum volume, the left side part of the bubble surface is slightly oblate and the 

right part is slightly elongated. At the 6
th

 minimum, its cross section takes a square shape with 

rounding corners and a jet forming on the left side. The jet develops as the bubble expands 

until the end of the expansion (the 7
th

 maximum). The surface mode n = 4 becomes obvious at 

and after the 7
th

 minimum volume.  

 

The computational results agree excellently with the experimental images for all nine cycles 

of oscillation, with all features reproduced by the computations. However, the jet is not visible 

in the experimental images due to the opaqueness of the bubble. 

  



  

107 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 μs 

 

0 μs 

 

13.85 μs 

 

14.04 μs 

 

17.54 μs 

 

17.74μs 

 

21.05 μs 

 

21.73 μs 

 

1
st
 maximum 

 

1
st
 minimum 

 

2
nd

 maximum 

 



  

108 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3
rd

 maximum 

 

24.56 μs 

 

25.34 μs 

 

28.95 μs 

 

29.25 μs 

 

32.46 μs 

 

32.93 μs 

 

36.59 μs 

 

35.96 μs 

 

4
th

 maximum 

 

3
rd

 maximum 

 



  

109 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5
th

 maximum 

 

40.35 μs 

 

40.67 μs 

 

44.74 μs 

 

45.02 μs 

 

48.81μs 

 

48.25 μs 

 

51.75 μs 

 

52.23 μs 

 

6
th

 maximum 

 

5
th

 maximum 

 



  

110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7
th

 maximum 

 

56.14 μs 

 

56.55 μs 

 

66.67 μs 

 

67.72μs 

 

60.11 μs 

 

59.65 μs 

 

63.16 μs 

 

63.70 μs 

 

8
th

 maximum 

 

7
th

 maximum 

 



  

111 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Comparison between the bubble shapes of the VCBIM (in the right column) and 

the experiments (in the left column Veraluis et al. [119]) for a gas bubble of a radius 36 μm 

subject to an acoustics wave with the frequency 130 kHz and pressure amplitude 120 kPa: (a) 

spherical oscillation for the first five cycles of oscillation and (b) the development of a surface 

mode n = 4 from the 6
th

-9
th

 cycles of oscillation. The frame width is 56 μm. The remaining 

parameters are  = 1.4, σ = 0.073 N/m, p0 = 101 kPa, pv = 98.02 kPa and ρ= 1000 kgm
-3

. 
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6.4 Numerical results and discussions   

6.4.1 Effects of the pressure amplitude of ultrasound pa 

In this section, we perform the numerical analyses of microbubble dynamics driving by an 

ultrasound wave, propagating from the left side to the right side. To study the effects of the 

pressure amplitude, we consider three cases for the pressure amplitude pa = 40, 47 and 50 kPa, 

respectively, with the remaining parameters keep the same as in figure 6.5.  

 

Figure 6.5 shows the bubble shapes for pressure amplitude pa = 40 kPa at its successive 

maximum and minimum volumes after its 18 cycles of oscillation. It keeps being spherical for 

subsequent five cycles. The driving pressure amplitude is lower than the critical pressure 

threshold; the bubble keeps spherical during the whole oscillation period. This is consistent 

with the observation of Versluis et al. [119]. 

 

Figure 6.6 shows the bubble shapes for pressure amplitude pa = 47 kPa at its successive 

maximum and minimum volumes after its first 14 cycles of spherical oscillation. The bubble 

is approximately spherical at the 15
th

 minimum and maximum volumes, but hits left side is 

slightly flattened. From the next oscillation, the right side is flattened at the 16
th

 minimum and 

maximum volumes. A jet forms at the 17
th

 and 18
th

 minimum volumes at the left side right 

side alternatively. Surface mode n = 3 becomes obvious subsequently. 

  

Figure 6.7 shows the bubble shapes for pressure amplitude pa = 50 kPa after eight cycles of 

spherical oscillation. The bubble is slightly oblate and the right part elongated at the 9
th
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minimum and maximum volumes. The jet forms at the right side at the 10
th

 minimum volume, 

and it changes to the left side at the 11
th

 minimum volume. Surface mode n = 3 develops 

obviously subsequently. As compared to figure 6.6 for pa = 47 kPa, the ultrasound at larger 

amplitude generates shape mode earlier and at large amplitude.  

 

Figure 6.5, 6.6 and 6.7 show pressure amplitude pa = 40, 47 and 50 kPa, and the bubble keeps 

spherical oscillations for twenty-four, fourteen and eight cycles, respectively. When the 

bubble is subject to the larger pressure amplitude of the ultrasound wave, it becomes 

non-spherical earlier as it is under a larger Bjerknes force.  
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Figure 6.5. Dynamics of a bubble with an equilibrium radius R0 = 30 µm driving by an 

acoustic wave for pressure amplitude pa = 40 kPa and frequency f = 130 kHz. The remaining 

parameter are σ = 0.073 Nm
-1

, p0 = 101 KPa, pv =98.02 kPa, ρ = 1000 kg/ m
3
 and κ = 1.4. The 

dimensionless time is shown on the right-up corner in each frame.  
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Figure 6.6. Dynamics a bubble driving by an acoustic wave of pressure amplitude pa = 47 kPa. 

The remaining parameters are the same as in figure 6.5.  
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Figure 6.7. Dynamics of a bubble driving by an acoustic wave for pressure amplitude pa = 50 

kPa. The remaining parameters are the same as in figure 6.5.   
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6.4.2 Effects of the driving frequency of ultrasound  

To consider the effects of the driving frequency, we repeat the case shown in figure 6.6 for 

acoustic pressure amplitude pa = 47 kPa and frequency f = 85, f0, where 5

0 1.1 10 Hzf    is 

the natural frequency of the bubble obtained from 

2

0

0
0

3

2

1

R

p
f






 .                        (6.4.2.1) 

 

Figure 6.8 shows the bubble shapes at the time of reaching its maximum and minimum 

volumes for each cycle of oscillation for 5

0 1.1 10 Hzf f   . The bubble is spherical during 

most of the time of the first cycle of oscillation but a jet forms at the left side at the end of the 

first collapse phase, as shown in frames a-c. The bubble re-takes a spherical shape at the 2
nd

 

maximum volume (frame f) and the jet re-appears at the end of the 2
nd

 minimum volume 

(frame g). The bubble at the 3
rd

 and 4
th

 maximum volumes (frames h, j) become oblate along 

the wave direction. Two contour jets develop at the 4th minimum volume (frame k) and 

impacts each other during the subsequent expansion becoming toroidal (frames l, m). The 

bubble then rejoins before reaching the 5
th

 maximum volume. The singly connected bubble 

further oscillates.    

 

Figure 6.9 shows the bubble shapes after 20 cycles of oscillation for f = 85 kHz. The bubble 

oscillates spherically from 21
st
 to 24

th
 cycles. The bubble undergoes obvious non-spherical 

oscillation as the driving frequency is equal to the natural frequency of the bubble 0f f . It 

oscillates spherically as 0f f  (figure 6.9) and 0f f  (figure 6.6).  
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Figure 6.8. Bubble dynamics subject to an acoustic wave with the pressure amplitude pa = 47 

kPa and frequency Hz101.1 5

0  ff . The remaining parameters are the same as in figure 

6.5. 
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Figure 6.9. Bubble dynamics subject to acoustic wave for f = Hz1058 4. . The rest of the 

parameters are the same as in figure 6.5.  

 

Figure 6.10 illustrates the histories of the bubble volume (3/4π)v*  and centroid xcen* for the 

three cases shown in figures 6.6, 8 and 9. When the driving acoustic wave is equal to the 

natural frequency of the bubble, the amplitude of oscillation and translation is much larger 

than the other two cases.  
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Figure 6.10. Time histories of (a) the bubble volume (3/4π)v* and (b) the centroid xcen* for the 

cases shown in figures 6.7, 8 and 9. 
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6.4.3 Driving frequency equal to parametric resonance frequency 

The natural frequency ωn of shape modes n of bubbles is given as [119] 

   
3

0

2 211
R

nnnn



  ,                   (6.4.3.1) 

For R0 = 39, σ = 0.073 Nm
-1

, ρ = 1000 kg/ m
3
 and κ = 1.4, the natural frequencies for shape 

modes for n = 3, 4, 6 are 4

3=7.0623 10 Hzf  , 5

4=1.4473 10 Hzf   and 5

6=1.9427 10  Hzf  . 

 

Figure 6.11 shows the bubble shapes at the maximum and minimum volumes for the driving 

pressure amplitude pa = 40 kPa and frequency 4

3=7.0623 10 Hzf  . The bubble oscillates for 

cycles in spherical volumetric mode and the Figure 6.11 (a), (b) present the first cycle, the 

bubble developed the surface mode n = 3 when it reaches the end of collapsing and when it 

expands to the maximum volume, the left part of the bubble has been flattened. The bubble 

oscillates as the surface mode n = 3 for the rest of oscillations. Figure 6.11 (c), (d) show the 

thirteenth oscillation of the bubble whose minimum and maximum volume are roughly same 

as the previous cycle, the difference is that the jet is oppositely directed at the end of collapse 

and the right part of the bubble has been flatten in the end of the expansion. The next four 

cycles of the oscillation are similar to the Figure 6.11 (a)-(d) with it repeats for every two 

cycles of oscillation. 

 

Figure 6.12 shows the bubble shapes for driving pressure pa = 75 kPa and frequency 

5

4=1.4473 10 Hzf   at its maximum and minimum volumes for each cycle of oscillation. The 

bubble becomes non-spherical at the 3
rd

 minimum volume. In the fourth oscillation, the 

bubble is elongated along the wave direction. The bubble becomes square shape in both 5
th
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and 8th minimum and maximum volumes, displaying the surface mode n = 4. During the 9th 

cycle, two counter jets develop along the wave direction and impacts each other at the end of 

the 9
th

 collapse. 

 

Figure 6.13 shows the bubble shapes for driving pressure amplitude pa = 235 kPa and 

frequency 5

6=1.9427 10  Hzf  . The bubble oscillates for thirteen cycles in spherical volumetric 

mode and the Figure 6.13 (a), (b) present the first cycle, the bubble developed the surface 

mode n = 6 at the end of the collapsing, and is formed as the square shape at the end of the 

expansion. For the next three cycles of the oscillation, the bubble oscillates as the surface 

mode n = 4 but in the different shapes of mode 4. Figure 6.13 (i), (j) show the eighteenth cycle 

of the oscillation when the bubble reaches the minimum volume surface mode n = 6 formed 

again. For the next cycle of oscillation the bubble forms as the surface mode n = 4. In the end 

Figure 6.13 (m)-(p) present the bubble development of the surface mode n = 6 in both 

maximum and minimum volumes.  
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Figure 6.11. The motion of a bubble with the initial steady state radius R0 = 39 µm driving 

by an acoustic wave the driving pressure amplitude pa = 40 kPa and frequency

4

3=7.0623 10 Hzf  . The remaining parameters are the same as in Figure 6.5.  
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Figure 6.12. The motion of a bubble with the initial steady state radius R0 = 39 µm driving 

by an acoustic wave for pa = 75 kPa and 5

4=1.4473 10 Hzf  . The remaining parameters are the 

same as in Figure 6.5.  
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Figure 6.13. The motion of a bubble with the initial steady state radius R0=39 µm driving by 

an acoustic wave for pa = 235 kPa and frequency 5

6=1.9427 10  Hzf  . The remaining 

parameters are the same as in Figure 6.5.  

 

Figure 6.14 illustrates the convergence of the numerical results in terms of the mesh size for m 

= 51, 61 and 71, for the time history of the bubble equivalent radius Req*. The numerical 

results for m = 61 and 71 agree excellently for nine cycles of oscillation. Most of the 
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calculations in this thesis were done for m = 61. 

 

 

 

 

 

 

 

 

 

Figure 6.14. Convergence test in terms of the mesh size m for the time histories of the 

equivalent bubble radius Req* using the CVBIM for R0 = 36 µm, Pa102.1 5ap and f =

Hz101.3 5 . The remaining parameters are the same as in Figure 6.5. 

 

Figure 6.15 presents the comparison of the computational results between the compressible 

inviscid BIM (ICBIM) and VCBIM for the bubble radius history for the case in figure 6.14. 

The amplitude of the oscillation predicted by the VCBIM considering the viscous damping 

effects is lower than that of CIBIM. The VCBIM is more stable and its calculation lasts longer 

time. 
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Figure 6.15. Comparison of the computational results between the CIBIM and VCBIM for the 

bubble radius history for the case in figure 6.5. Dynamics of a bubble with an equilibrium 

radius R0 = 30 µm driving by an acoustic wave for pressure amplitude pa = 40 kPa and 

frequency f = 130 kHz. The remaining parameters are the same as in Figure 6.5. 
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Chapter7 

 

SUMMARY, CONCLUSIONS AND FUTURE 

WORKS 

 

 

7.1 Summary 

The boundary integral method (BIM) based on the incompressible potential flow theory is 

widely used in simulating bubble dynamics. Using the VCBIM the dimension of the problem 

reduces by one, and it thus is grid free in the flow domain and costs less CPU time as 

compared to the domain approaches. However, the compressible effects of liquid are 

essential, which are associated with acoustic radiation at the inception of a bubble and the end 

of collapse. Viscous effects may be important for very small bubbles since the Reynolds 

number associated is often O(10) or larger, and the flow is potential in the bulk volume of the 

liquid except for a thin viscous boundary layer at the bubble surface.  

 

This thesis is concerned with microbubble dynamics in a viscous compressible liquid near a 

rigid boundary. The compressible effects are modelled by using the weakly compressible 

theory of Wang & Blake [103, 104], since the Mach number is relatively small. The viscous 

effects are approximated using the viscous potential flow theory by Joseph & Wang [29], 

because the flow field is characterised as being an irrotational flow in the bulk volume but 

with a thin viscous boundary layer at the bubble surface. Consequently, the phenomenon is 

modelled by using the viscous compressible boundary integral method, in which the 

compressible and viscous effects are incorporated into the model through including 

corresponding additional terms in the far field condition and the dynamic boundary condition 
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at the bubble surface, respectively.  

  

The following new developments have been carried out in the thesis: 

 We developed the compressible viscous BIM for microbubble dynamics using the 

weakly compressible flow theory and viscous potential flow theory.  

 We show that the compressible viscous BIM are shown in good agreement with the 

Keller-Miksis equation, experiments and computations based on the Navier-Stokes 

equations.  

 Numerical studies were carried out for microbubble dynamics near a rigid wall as well 

as subject to an acoustic wave. The bubble oscillation, topological transform, jet 

development and penetration through the bubble and the energy of the bubble system 

are simulated and analysed in terms of the compressible and viscous effects. 

 

 

7.2 Conclusions 

Some of important features of the bubble dynamics near a rigid boundary have been noticed. 

A bubble initiated near a rigid boundary may be nearly in contact with the boundary because 

of its expansion and migration to the boundary, where a thin layer of water forms between the 

bubble and the boundary thereafter. The pressure in the thin layer of liquid is presented to be 

approximately constant and equal to the pressure of the bubble gas. The bubble side of the 

thin layer remains flattened because of surface tension effects. The flow velocity within the 

thin layer is close to zero. 

 

The bubble starts nearly touching the rigid boundary during the expansion period when  < 1, 
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where  is the dimensionless standoff distance of the bubble from the boundary in terms of the 

equivalent maximum bubble radius. This leads to (i) the direct impact of a high speed liquid 

jet on the boundary once it penetrates through the bubble at the end of collapse, (ii) the direct 

contact of the bubble ring at high temperature and high pressure at its minimum volume with 

the boundary, and (iii) the direct impingement of a shock wave on the boundary once it is 

emitted at the end of collapse. These phenomena have clear potential to damage the boundary. 

We believe these are possible new mechanisms of cavitation damages. 

 

At the inception of a bubble, the energy of a bubble system loses significantly for a very short 

time period, which is associated with the emission of a shockwave. This part of energy loss 

does not depend on the viscous effects and the presence of a rigid boundary. If the Reynolds 

number is large, the energy remains constant during the most part of oscillation period, where 

the compressible effects are negligible. The loss of the local energy at the end of collapse 

increases with the standoff distance. If the Reynolds number is not large, the energy loses 

gradually due to the viscous effects. At the end of the collapse, the energy decreases rapidly 

and significantly, when another shockwave emits. For a large Reynolds number, a stronger 

shockwave emits at the end of collapse. 

  

When subject to an acoustic wave, a microbubble oscillates spherically. Beyond a critical 

threshold of the acoustic pressure amplitude, surface modes can be produced by acoustic 

wave after several acoustic cycles. The threshold decreases as the acoustic frequency are 

equal to the natural frequency of the bubble. As the pressure amplitude increases, the shape 

mode develops earlier as the bubble is under a larger Bjerknes force. The shape mode of a 

bubble is activated if the driving acoustic frequency is equal to the natural frequency of the 
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shape mode. 

 

 

7.3 Future works 

This study is concerned with microbubble dynamics in a compressible viscous liquid for an 

axisymmetric configuration, using the viscous potential flow theory and weakly compressible 

theory coupled with the boundary integral method. This modelling can be developed for a 

three-dimensional configuration since the methodology is suitable for the latter. Another 

development is to model the heat and mass transfer associated with microbubble dynamics. 

Heat and mass transfer across the bubble surface can be included in the model Szeri et al. [93]. 

Other possible important topics in the field include the interaction of multi-bubbles, 

interaction of a microbubble and a particle, etc. 

 

It is also possible to develop a VCBIM for 3D bubble dynamics. Although the viscous effects 

have been considered in 3D bubble dynamics, there is no 3D model, which considers both 

compressible and viscous effects. This could be very useful when the bubble is not 

axisymmetric, but the compressible effects are not negligible. There could be an important 

application for cancer detection by using the bubble driving by ultrasound acoustic wave. The 

difference between the cancer cell and the normal cell is the cancer cell is much harder than 

the normal cell. Observing the bubble driven by an acoustic wave oscillates near a cell, which 

could show the different types of oscillations. Then analysing this it could be very useful to 

detect a cancer cell. 
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Appendix 

A. Calculation of ∂
2
φ/∂n

2
 

To calculate normal stress τn, ∂
2
φ/∂n

2
 needed can be calculated as follows: We assume a fixed 

Cartesian coordinate system O-xyz and a cylindrical coordinate system O-rθz. We define a 

curve (C) in the O-rθ plane parameterised by the arc length s. At a given point (N) on the 

curve (C), we denote a local Cartesian set by the direct orthonormal basis (en, es, eθ) where en, 

es and eθ are the normal, tangential and circumferential unit vector respectively on the curve. 

The azimuthal angle along the curvilinear abscissa s in the plane O-rθ is β. 

 

If we consider a curved surface at each point on a given surface two radii of curvature are 

need to describe the shape. We can determine these radii at point P the normal to the surface at 

this point is constructed through the surface containing the normal which will intersect the 

surface in a plane curve. The radius of the curvature of the curve at P is defined by R1. If we 

construct a second plane through the surface which containing the normal and perpendicular 

to the first plane. This line intersects with surface and the second radius of the curvature R2 at 

point P. These two radii define the curvature at P. It is can be shown the mean curvature of the 

surface
21

11

RR
  is constant which is independent of the choice of the planes.  
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Figure A1. Illustration of the two perpendicular planes cut the surface at a fix point on the 

plane P. The two radius of the curvature R1 and R2 determined the curvature at P completely  

We give the expression of the curvature κ in the axisymmetric model. According to the 

definition of mean curvature and Young-Laplace equation, the local curvature of a certain 

point on the surface is defined as:  

 
11

21

21
RR

  ,                     (A.1.1) 

where R1 and R2 are corresponding to principle radius of curvature. From the definition of the 

principal curvature, one has
s

1






 . Let the plane curve be given by Cartesian parametric 

equation r = r (t) and z = z (t).  

2'2'22
1  

yx

dtd

dt
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d
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






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 , 

where the β is the tangential angle and s is the arc length. The derivation for the dβ/dt can be 

found using the identity 

'

'

tan
z

r

dzdr

dtdr

dz

dr
 , 



  

134 
 

hence 
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Then we combine the above equations gives 
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The other principle radius of curvature is obtained by extending the normal of the curve to 

intersect with the z-axis. From analytical geometry, the principle radius of curvatures can be 

represented by the following equations for an axisymmetric surface: 

    2/12222/3221

z'r'r

z'-
   ,

''

''''''







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zr

rzzr
,                 (A.1.3) 

where   r'   z' and   'r'   'z' denote the first and second derivatives with respect to t 

respectively. 
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                   and         when   
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