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Abstract 

This thesis used simultaneous electroencephalogram (EEG) and functional magnetic resonance 

imaging (fMRI) to investigate both epilepsy and sleep. Initially, EEG-fMRI was used in a 

cohort of patients with complex epilepsy referred from a tertiary epilepsy clinic for both pre-

surgical evaluation and diagnostic reasons. The results suggest a limited utility of EEG-fMRI 

in the epilepsy clinic with a very complex patient group. Following on, investigation of early 

blood oxygen level dependent (BOLD) signal changes in a group of patients with focal epilepsy 

demonstrated potentially meaningful BOLD changes occurring six seconds prior to interictal 

epileptiform discharges, and modelling less than this six seconds can result in overlap of the 

haemodynamic response function used to model BOLD changes. The same analysis was used 

to model endogenously occurring sleep paroxysms; K-complexes (KCs), vertex sharp waves 

(VSWs) and sleep spindles (SSs), finding early BOLD signal changes with SSs in group data. 

Finally, KCs and VSWs were investigated in more detail in a group of participants under both 

sleep deprived and non-deprived conditions, demonstrating an increase in overall activation for 

both KCs and VSWs following sleep deprivation. Overall, we find early BOLD changes are not 

restricted to pathological events and sleep deprivation can enhance BOLD responses. 
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Chapter 1 

 

 

INTRODUCTION 

 

This chapter will introduce the main themes of epilepsy and sleep followed by the historical 

discussion of both the electroencephalogram (EEG) and functional magnetic resonance imaging 

(fMRI) and their simultaneous acquisition in both epilepsy and sleep. The progression from 

epilepsy to sleep is one of a practical progression, as clarified in section 1.2.3, rather than an 

investigation of their relationship. 
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1.1 EPILEPSY 

1.1.1 Overview: history and epidemiology of epilepsy 

Epilepsy, a disease characterised by habitual seizures, is a complex disease of many aetiologies, 

involving an interaction between dysfunctional neurons and aberrant brain networks, and of all 

diseases has one of the richest and most stigmatised histories across many cultures. The very 

first accounts of epilepsy can be traced back over 4000 years ago, circa 2000BC; documented 

in the Akkadian language, here the affliction was attributed to the god of the Moon 

(Magiorkinis, Sidiropoulou & Diamantis, 2010). Around 1000 years later the Babylonians 

produced the Sakikku, a medical text with descriptions of a variety of seizure disorders, both 

focal and generalised, offering instructions for diagnosis and treatment (Eadie, 1995). Perhaps 

the most famous early account of epilepsy however, came 500 years later from Hippocrates, a 

renowned Greek physician who penned the treaties On the Sacred Disease (Eadie, 1995). In 

this text Hippocrates was the first to differentiate between epilepsy as a “sacred disease” and 

one of natural causes like any other, and alongside his colleagues were astute enough to note 

the semiology of seizures following head injury would start contralateral to the side of the 

injury. The religious or supernatural pretext continued to be attributed as the underlying cause 

of epilepsy, with gospel writings in The New Testament from Mark (9:16), ascribing the cause 

of epilepsy in a child to the possession of an evil spirit that Jesus exorcised (DeToledo & Lowe, 

2003).  The supernatural origin of epilepsy persisted up until the 18th and 19th centuries where 

it slowly became accepted that there was an underlying physiological cause for epilepsy; though 

many misunderstandings still surrounded the disease, such as contagion (Masia & Devinsky, 

2000).  To this day the idea of a religious or supernatural basis of epilepsy still endures. A recent 

study conducted by Obeid and colleagues (2012) in Saudi Arabia, canvased university-educated 
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school teachers and undergraduate students on their knowledge of epilepsy, finding up to 50 

per cent of undergraduate students and 40% of teachers stating possession as a cause for 

epilepsy (Obeid, Abulaban, Al-Ghatani, et al., 2012).  There have also been published case 

reports of epilepsy as instigated by Voodoo spirit possession in Haitian patients (Cavanna, 

Cavanna & Cavanna, 2010). Despite these enduring ideas it is now widely accepted that 

epilepsy, as Hippocrates originally postulated, is the result of a physiological disease process 

rather than a supernatural one. 

Epilepsy is one of the most common neurological diseases that can affect individuals 

irrespective of age and it is estimated that the number of people worldwide with epilepsy stands 

at around 50 million (Anon, 2010). In Europe the annual incidence rate of epilepsy per year is 

around 50-55 per 100,000, though this varies between 30 and 100 per 100,000 depending on 

the age; in children and adolescents the incidence rate per 100,000 is 70, between the ages of 

20 and 64 the incidence rate is 30 and for the elderly, 65 years and older, the incidence rate is 

100 per 100,000 (Forsgren, Beghi, Oun, et al., 2005). The prevalence of active epilepsy in 

Europe is estimated at around 6 per 1000, of course this varies with age with a higher prevalence 

observed in the elderly (Forsgren, Beghi, Oun, et al., 2005). In comparison with the United 

States, the prevalence of active epilepsy is similar with a value of 6.8 per 1000 (Hauser, 

Annegers & Rocca, 1996). Some of the highest prevalence figures have been reported in 

developing countries with one study conducted in Chile reporting a prevalence of 17.6 per 1000, 

this was a more anomalous figure however, and not representative of developing countries 

where most reported a prevalence of less than 10 (Banerjee, Filippi & Allen Hauser, 2009). In 

the UK one of the largest community-based studies of neurological diseases was conducted by 

MacDonald and colleagues (2000), who prospectively determined the incidence of neurological 

diseases in 100,230 patients over an 18-month period (MacDonald, Cockerell, Sander, et al., 
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2000). They identified epilepsy as the 3rd most prevalent neurological disorder, behind strokes 

and transient ischaemic attacks, with an incidence of 46 per 100,000 and a lifetime prevalence 

of active epilepsy of 4 per 1000.  One of the most recent studies in the UK of 37.7 million 

patients found just over 304,000 had epilepsy, with a prevalence of 8 per 1000; though this 

study was not age or sex adjusted and relied heavily on the accurate GP coding of epilepsy in 

the Quality and Outcomes Framework from which the data were acquired (Steer, Pickrell, Kerr, 

et al., 2014). In this ecologic investigation they interestingly revealed a large geographical 

variation in prevalence of epilepsy; a prevalence of 4.3 per 1000 was found in areas such as 

Kensington and Chelsea with 11.6 per 1000 in Blackpool, highlighting a correlation with 

epilepsy various measures of socioeconomic deprivation. With the numbers of those with 

epilepsy being so high, epilepsy has the potential to represent a significant economic burden on 

health and social services and indeed it does.  

The total annual cost of epilepsy in the UK, based on data published in 2011, is an estimated 

€1.6bn, around £1.2bn (Gustavsson, Svensson, Jacobi, et al., 2011).  In young adults (18-25 

years old) health and social care outlays for epilepsy costs the budgets £715m per year with 

around £17,000 spent per individual (Beecham, Snell, Perkins, et al., 2010). The high costs of 

epilepsy can be a reflection of long term pharmacological treatment and recurrent hospital 

admissions. Of all the patients with epilepsy approximately 1 in 8 will develop a drug-resistant 

epilepsy, defined by inadequate seizure control through anti-epileptic medication, though 

figures of over 30% have also been reported (Kwan & Brodie, 2000; Picot, Baldy-Moulinier, 

Daurs, et al., 2008). The accurate prevalence is contentious owing to varying definitions of a 

drug-resistant epilepsy and study design (Abimbola, Martiniuk, Hackett, et al., 2011; Téllez-

Zenteno, Hernández-Ronquillo, Buckley, et al., 2014). In these cases, where a drug-resistant 

epilepsy has become established, it may be necessary to explore alternative treatment options, 
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in particular epilepsy surgery. The most common operative procedure for epilepsy is resective 

surgery, though neuromodulatory approaches, such as vagal nerve stimulation, are becoming 

more common, however, are not considered a curative option (Cascino, 2004; Ogbonnaya & 

Kaliaperumal, 2013). The hypothesis underlying resective surgery is the removal of the 

epileptogenic zone, the presumed site in which seizures initiate (Cascino, 2004; Rosenow & 

Lüders, 2001). The two key investigations for identifying the target for resection is the 

electroencephalogram (EEG) and magnetic resonance imaging (MRI), though other imaging 

modalities are also utilised (Rosenow & Lüders, 2001). The use of medical imaging such as 

MRI has increased rapidly over the years and has seen increased use in the pre-surgical 

evaluation of epilepsy (Hinde, Soares, Burch, et al., 2014). As diagnostically useful as the EEG 

is, it is limited in terms of spatial resolution and as such the MRI and EEG are viewed as 

complementary investigations; the primary purpose of the MRI is to identify a lesion that could 

potentially be epileptogenic and is concordant with the findings from scalp EEG. Unfortunately, 

not all epilepsies originate from a focal epileptogenic lesion and the odds of seizure freedom 

following resective surgery are up to two to three times greater if there is a lesion on the MRI 

than if no lesion is identifiable (Téllez-Zenteno, Ronquillo, Moien-Afshari, et al., 2010). In the 

absence of an identifiable lesion there may be a requirement of chronically implanted 

intracranial electrodes (sub-dural or intracerebral) to better identify and demarcate the 

epileptogenic zone and target of resection (Rosenow & Lüders, 2001). The advancement of 

imaging techniques over the last two decades has brought about the opportunity to use novel 

methods of delineating the seizure onset zone without the use of such invasive methods. The 

combination of EEG and functional-MRI (fMRI), a technique measuring changes in blood 

oxygenation, has been increasingly used to identify the brain regions responsible for the 

generation of interictal epileptiform discharges as recorded on EEG, with the aim of providing 
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non-invasive method to inform on potential resective targets (Gotman, Kobayashi, Bagshaw, et 

al., 2006; Zijlmans, Huiskamp, Hersevoort, et al., 2007).  

The initial work in this thesis applies similar methods, using EEG-fMRI in a cohort of 

complicated heterogeneous epilepsy patients to assess the utility of EEG-fMRI in a clinical 

setting, as if this were a technique available to the epileptologist. 

1.1.2 Definition of epilepsy 

Epilepsy is a difficult disorder to define, due in large part to the lack of a singular cause, but 

rather it is a reflection of brain dysfunction from many possible aetiologies. The International 

League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) have formed 

task groups with the role of defining epilepsy and producing a comprehensive classification 

system. In 2005, such a task force was charged with developing conceptual definitions of both 

epilepsy and an epileptic seizure; defining epilepsy as “… a disorder of the brain characterized 

by an enduring predisposition to generate epileptic seizures and by the neurobiologic, 

cognitive, psychological and social consequences of this condition. The definition of epilepsy 

requires the occurrence of at least one epileptic seizure” and an epileptic seizure as “… a 

transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous 

neuronal activity in the brain” (Fisher, van Emde Boas, Blume, et al., 2005). When published, 

these definitions and their further elaboration within the article met with some criticism from 

the wider community of epilepsy clinicians who felt they lacked clarity (Beghi, Berg, Carpio, 

et al., 2005). The criticism was primarily directed to the lack of a practical definition of epilepsy 

that could be applied readily in a clinical setting, with clear explanations of terms within the 

definition. Concern was expressed that diagnosing epilepsy by the presence of a single seizure 

could cause an erroneous increase in epilepsy incidence and misdiagnosis (Beghi, Berg, Carpio, 
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et al., 2005). One significant issue is that the definition does not state the requirement of an 

unprovoked seizure, thus a single acute symptomatic seizure (i.e. seizure following a stroke), 

under this new definition, could be classified as epilepsy; such scenarios could result in a 

number of patients being misdiagnosed. The previous definition outlined by the ILAE required 

at least two unprovoked seizures for a diagnosis of epilepsy (Commission on Epidemiology and 

Prognosis, International League Against Epilepsy, 1993); this definition has been more widely 

accepted by clinicians and epidemiologists (Berg, 2008; Hauser & Beghi, 2008). The risk of 

recurrence following a single unprovoked seizure has been studied in multicentre trials, both 

with and without follow-up treatment. For example, the MESS (Multicentre Epilepsy and 

Single Seizure study) trial involved 1847 patients, with the 1443 who consented randomised 

into immediate or deferred treatment groups (Marson, Jacoby, Johnson, et al., 2005). They 

found a 50% risk of a further seizure within 5 years following the first seizure when treatment 

was differed. These findings are similar to an earlier trial from the First Seizure Trial Group, 

1993, who found the risk was 51% of seizure recurrence after 2 years. The risk of recurrence 

following a single acute symptomatic seizure was actually found to be lower than an 

unprovoked seizure (Hesdorffer, Benn, Cascino, et al., 2009). Based on these findings if one 

adhered to the definition laid out by Fisher et al., 2005, a number of patients who may never 

have a recurrent seizure could be placed on treatment and diagnosed as epileptic. More recently, 

a “practical clinical definition of epilepsy” has been proposed that epilepsy can be established 

after a single unprovoked seizure where additional factors exist that could precipitate a high 

risk of recurrence, although in the absence of this the previous definition of two unprovoked 

seizures temporally separated by more than 24 hours still stands (Fisher, Acevedo, 

Arzimanoglou, et al., 2014). In reality it is apparent that following a single unprovoked seizure 

or even a single acute symptomatic seizure, there are those who will go on to have recurrent 
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seizures, and at present there is no clear way of knowing who will have a propensity for seizures 

in the absence of specific markers (Sirven, 2009). 

 

1.1.3 Classification of epilepsy 

After the diagnosis of epilepsy is made, the epilepsy subsequently needs to be classified in order 

to best treat the patient. Currently the most widely used classification system for epilepsy was 

produced by the ILAE in the 1980s (Commission on Classification and Terminology, 1989). In 

the context of an advancing field, it might seem unusual that the International Classification of 

Epilepsies and Epileptic syndromes (ICE) produced in the ‘80s still remains at the forefront. 

Attempts at revising and updating the classifications of epilepsy took place in 2001, 2006 and 

2010 (Engel 2001, Engel 2006, Berg 2010). Despite the changes and alterations to the ICE 

offered in the latest revision, the wider community of epilepsy specialists found the changes 

insufficient and are forced in many cases to refer to the ICE laid out in the ‘80s (Ferrie, 2010; 

Lüders, Amina, Baumgartner, et al., 2012; Panayiotopoulos, 2012, 2011; Wolf, 2010). 

Although the revised classification made in 2010 (Berg, Berkovic, Brodie, et al., 2010) has 

been the subject of criticism, some feel it is at least a move in the right direction, certainly with 

the inclusion of epilepsy as a network based disorder (Fisher, 2010; Shinnar, 2010). Producing 

a comprehensive and widely accepted classification based on the latest academic, clinical and 

epidemiological findings in epilepsy, would help unify and advance the field. Although no 

particular discussion to classification of epilepsies is made in the experimental body of this 

thesis, the classifications used are generally based on those from the 1980’s and in 2001; this is 

due to the epileptologists from whom patients were recruited. The classification of epilepsy of 

the recruited patients into this study are from the patient’s neurologist/epileptologist, and as 
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such based on the 1980’s and 2001 classification they referred to at the time of recruitment (see 

Table 1.1.1. for an example of classifications).  

Although there are various investigations available to the clinician in the diagnosis of epilepsy, 

the most prominent of which being the electroencephalogram (EEG), the diagnosis of epilepsy 

still remains clinically driven. Since the days of Hippocrates there have been detailed accounts 

of differing seizure manifestations based on careful observation of the seizure, the clinical 

presentation of which is referred to as the semiology of the seizure. The classification of a 

seizure disorder is generally based on clinical and EEG findings, though seizure semiology is 

viewed by some to be so fundamental as to warrant a classification system based on semiology 

alone (Lüders, Acharya, Baumgartner, et al., 1999, 1998). Relying solely on the semiology of 

a seizure, however, may lead to incorrect classification or misdiagnosis, between epileptic 

seizures, syncopal attacks and psychogenic seizures, and there is also the risk of hidden 

propagation, undetectable on non-invasive EEG recordings, that can lead to incorrect 

localisation and classification (Panayiotopoulos, 2005). Accurate seizure classification is better 

achieved when using the diagnostic techniques available to the clinician, and some believe the 

current classification system needs to be updated to include the advances made in diagnostics 

(Lüders, Amina, Baumgartner, et al., 2012). 
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Group of syndromes 

 

Specific syndromes with group 

Idiopathic focal epilepsies of infancy 

and childhood 

Benign infantile seizures (nonfamilial) 

Benign childhood epilepsy with centrotemporal spikes 

Early-onset benign childhood occipital epilepsy (Panayiotopoulos type) 

Late-onset childhood occipital epilepsy (Gastaut type) 

Familial (autosomal dominant) focal 

epilepsies 

Benign familial neonatal seizures 

Benign familial infantile seizures 

Autosomal dominant nocturnal frontal lobe epilepsy 

Familial temporal lobe epilepsy 

Familial focal epilepsy with variable focia 

Symptomatic (or probably 

symptomatic) focal epilepsies 

Limbic epilepsies 

  Mesial temporal lobe epilepsy with hippocampal sclerosis 

  Mesial temporal lobe epilepsy defined by specific etiologies 

  Other types defined by location and etiology 

Neocortical epilepsies 

  Rasmussen syndrome 

  Hemiconvulsion–hemiplegia syndrome 

  Other types defined by location and etiology 

  Migrating partial seizures of early infancya 

Idiopathic generalized epilepsies Benign myoclonic epilepsy in infancy 

Epilepsy with myoclonic astatic seizures 

Childhood absence epilepsy 

Epilepsy with myoclonic absences 

Idiopathic generalized epilepsies with variable phenotypes 

Juvenile absence epilepsy 

Juvenile myoclonic epilepsy 

Epilepsy with generalized tonic–clonic seizures only 

Generalized epilepsies with febrile seizures plusa 

Reflex epilepsies Idiopathic photosensitive occipital lobe epilepsy 

Other visual sensitive epilepsies 

Primary reading epilepsy 

Startle epilepsy 

Epileptic encephalopathies (in which 

the epileptiform abnormalities may 

contribute to progressive 

dysfunction) 

Early myoclonic encephalopathy 

Ohtahara syndrome 

West syndrome 

Dravet syndrome (previously known as severe myoclonic epilepsy in infancy) 

Myoclonic status in nonprogressive encephalopathiesa 

Lennox–Gastaut syndrome 

Landau–Kleffner syndrome 

Epilepsy with continuous spike–waves during slow-wave sleep 

Seizures not necessarily requiring a 

diagnosis of epilepsy 

Benign neonatal seizures 

Febrile seizures 

Reflex seizures 

Alcohol-withdrawal seizures 

Drug or other chemically induced seizures 

Immediate and early posttraumatic seizures 

Single seizures or isolated clusters of seizures 

Rarely repeated seizures (oligoepilepsy) 

Table 1.1.1. Overview of the classification of epilepsy syndromes and their respective group. 

Adapted from the 2001 classification, Engel, J., 2001. A proposed diagnostic scheme for people 

with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and 

Terminology. Epilepsia 42, 796–803. 
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1.1.4 Mechanisms in epilepsy 

This section covers the most common and well described mechanisms in epileptogenesis, with 

particular focus on the pathophysiology of childhood absence epilepsy and temporal lobe 

epilepsy, owing to their prevalence and well described mechanisms. 

 

Channelopathies 

As previously mentioned, epilepsy is a complex disease process of many aetiologies and 

consequently there is no single unifying model for pathogenesis, but rather several described 

models/mechanisms that best fit certain epilepsy types. A group of epilepsies termed idiopathic 

generalised epilepsy (IGE), are often associated with a genetic basis, and in most cases are the 

result of channelopathies (Badawy, Harvey & Macdonell, 2009; Mulley, Scheffer, Petrou, et 

al., 2003). A number of these idiopathic epilepsies, are inherited through Mendelian 

inheritance; these mutations in single genes in turn cause mutations of certain ion channels, 

resulting in said channelopathy (for review on genetics of channelopathies and a list of 

described channelopathies in epilepsy syndromes see George, 2004). Ion channels are a group 

of proteins found in the lipid bilayer of the cell membrane of all animals and are essential in 

coordinating activity in the central and peripheral nervous system. The cell membrane is 

relatively impermeable to ions, so to allow passage, these ion channels provide a door through 

which ions may pass into or flow out of the cell. These channels may be non-gated, allowing 

the free movement of ions in the presence of changing ion gradients, or gated, where upon an 

external signal is required, either from specific binding molecules (i.e. neurotransmitter), or 

from local changes to the membrane potential near the channel; these are known as ligand-gated 

and voltage-gated ion channels, respectively. Voltage gated channelopathies have been 
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described in a number of epilepsies, such as potassium gated channelopathies in benign familial 

neonatal epilepsy, epileptic encephalopathy and benign epilepsy (Abidi, Devaux, Molinari, et 

al., 2015; Maljevic & Lerche, 2014) and calcium gated channelopathies, in childhood absence 

epilepsy (Chen, Parker & Wang, 2014). Gamma aminobutyric acid (GABA) mediated ligand 

gated channelopathies have also been implicated in childhood absence epilepsy (CAE) and 

autosomal dominant juvenile myoclonic epilepsy (Baulac, Huberfeld, Gourfinkel-An, et al., 

2001; Cossette, Liu, Brisebois, et al., 2002). For review of channelopathies in epilepsy see 

(George, 2004; Noebels, Avoli, Rogawski, et al., 2012). 

 

Malformations of cortical development 

During the intrauterine development of the central nervous system, the neocortex is organised 

into six layers (Budday, Steinmann & Kuhl, 2015). This complex arrangement initiates with 

the migration of progenitor cells from the ventricular layer, occurring around week 5 of 

gestation, forming the sixth layer first with subsequent progenitor cells migrating through the 

forming layers (Budday, Steinmann & Kuhl, 2015). Disorders occurring as a result of abnormal 

development of this process were initially referred to as migration disorders, though now are 

better known as malformations of cortical development (MCD) (Aronica, Becker & Spreafico, 

2012). MCD are closely associated with epilepsy, as of those with MCD 75 per cent will 

develop epilepsy at some point in their lifetime (Leventer, Guerrini & Dobyns, 2008). There 

are numerous types of MCD including tuberous sclerosis complex (TSC), focal cortical 

dysplasia (FCD), heterotopias, lissencephaly, polymicrogyria, hemimegalencephaly, and 

schizencephaly (Aronica, Becker & Spreafico, 2012). In TSC, mutation of the TSC1 and TSC2 

genes have been implicated in this autosomal dominant disorder (Kandt, Haines, Smith, et al., 
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1992; van Slegtenhorst, de Hoogt, Hermans, et al., 1997), and it is associated with malady of 

the CNS in 90% of patients with TSC (Curatolo, Moavero & de Vries, 2015). Just over 85% of 

patients with TSC will have seizures, often developing multiple seizure types and a refractory 

epilepsy (Chu-Shore, Major, Camposano, et al., 2010). Like TSC, FCDs are also highly 

associated with epilepsy, as reported by Wyllie et al., 1998, who in a surgical series of paediatric 

epilepsy cases found 26% to have FCD (Wyllie 1998). It was in 1971 when Taylor et al., 

observed large dysmorphic neurons and enlarged balloon cells in 10 epilepsy patients who had 

undergone resective surgery and first defined FCD (Taylor, Falconer, Bruton, et al., 1971). The 

exact pathogenesis of FCD is not fully understood though it has been primarily linked to 

abnormalities in intrauterine neuronal migration but also both peri- and post-natal injury 

(Aronica, Becker & Spreafico, 2012; Coras, de Boer, Armstrong, et al., 2012; Rakic, 1988). 

The ILAE have developed an extensive classification system for FCDs which should help unite 

the field and further develop our understanding (Blümcke, Thom, Aronica, et al., 2011; Coras, 

de Boer, Armstrong, et al., 2012). 

 

Post-traumatic epilepsy 

Post traumatic epilepsy (PTE) is a complication of a traumatic brain injury (TBI), and it is 

estimated that in 5% of patients with epilepsy have PTE (Agrawal, Timothy, Pandit, et al., 

2006). Whether one develops PTE following a TBI is dependent on a number of factors, such 

as a depressed skull fracture, intracranial bleed, penetrating head injury or a Glasgow coma 

scale of ≤10, among others (Temkin, 2003) and the risk of seizures following a TBI is between 

approximately 2-5% in the non-military population (Asikainen, Kaste & Sarna, 1999). An 

important risk factor for developing PTE is when a post traumatic seizure (PTS) occurs in 
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relation to the TBI. Early PTSs, occur within one week of TBI, whereas late PTSs occur after 

that period, with the risk of developing PTE greater if an early PTS has occurred (Frey, 2003). 

However, the risk of developing PTE/recurrent seizures following the first late PTS is also quite 

high (Haltiner, Temkin & Dikmen, 1997). The exact pathophysiology underlying PTE is not 

fully understood and varies dependent on type and severity of head injury. In haemorrhagic 

injuries there can be resulting haemosiderin deposits and gliosis, as identified on MRI (Messori, 

Polonara, Carle, et al., 2005), which are known contributors to epileptogenesis  (Pekny, 

Wilhelmsson & Pekna, 2014; Ruan, Yu, Shrestha, et al., 2015). Ischemic injuries or penetrating 

injuries, for example, are likely to have separate mechanisms to a haemorrhagic injury, 

highlighting the complexity of epileptogenesis in this patient group (see Agrawal, Timothy, 

Pandit, et al., 2006 for review) 

 

Temporal lobe epilepsy 

Partial/focal seizure disorders account for about 68-75% of adult epilepsies, and given that 

around 75% of new cases of epilepsy are in adults, this makes partial seizures the prevailing 

seizure type (Forsgren, Beghi, Oun, et al., 2005). Of the partial epilepsies mesial TLE (mTLE) 

is the most prevalent type of epilepsy (Engel, 2001). It is becoming understood that mTLE is a 

progressive disorder and is often preceded by a traumatic event such as febrile convulsions, a 

period of status epilepticus, traumatic brain injury, or even encephalitis, with a several year 

latency period before seizure onset (Sharma, Reams, Jordan, et al., 2007; Yang, Zhou & Stefan, 

2010).  The hippocampus, among other structures such as the amygdala, form part of the mesial 

temporal structures, and changes in the hippocampus are the most common cause of mTLE 

(Engel, 2001). Hippocampal sclerosis (HS) is a common neuropathological finding in patients 
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with refractory mTLE (Blümcke, Beck, Lie, et al., 1999; Jefferys, 1999; Wieser, 2004). 

Neuronal loss in CA1, CA3 and CA4 regions of the hippocampus are well described in HS, as 

well as neuronal loss in the amygdala and neighbouring entorhinal cortex (Bernhardt, Kim & 

Bernasconi, 2013; Blümcke, Thom, Aronica, et al., 2013; Yilmazer-Hanke, Wolf, Schramm, et 

al., 2000). Aside from neuronal loss, other features are observed in both animal models and 

resected human tissue including gliosis and aberrant mossy fibre sprouting (O’Dell, Das, 

Wallace, et al., 2012; Yang, Zhou & Stefan, 2010). Gliosis, a common feature of HS, occurs 

after damage or loss of neurons, a prominent feature of which is astrogliosis, a local increase 

and hypertrophy of astrocytes. It has been hypothesised that this astrogliosis, through the release 

of trophic factors (molecules that help maintain connections between neurons), can contribute 

to epileptogenesis through axonal sprouting, neurosynaptogenesis and increased glutamate 

release, all of which may in turn lead to chronic hyperexcitability (Crespel, Coubes, Rousset, 

et al., 2002; Represa, Niquet, Pollard, et al., 1995; Takahashi, Vargas & Wilcox, 2010).  Gliosis 

has also been implicated in mossy fibre sprouting, a commonly observed feature across both 

animal models and human resected tissue (O’Dell, Das, Wallace, et al., 2012; Sharma, Reams, 

Jordan, et al., 2007; Thom, 2014). Mossy fibres, a form of axonal sprouting, originate from 

granule cells of the dentate gyrus and normally extend to pyramidal neurons (CA3 initially). 

However, as observed in HS, mossy fibres project inwards to the supra granular layer and inner 

molecular layer, possibly due to the loss of their original target neurons. These aberrant 

connections from mossy fibres potentially cause a form of short circuit, as, for example, they 

synapse with dendrites of other granule cells, facilitating recurrent excitatory loops, and are an 

integral part of the popular recurrent excitation hypothesis (Parent & Lowenstein, 1997; 

Pitkänen, Kharatishvili, Karhunen, et al., 2007; Pitkänen & Sutula, 2002; Sharma, Reams, 

Jordan, et al., 2007; Wuarin & Dudek, 1996). A contrasting hypothesis, the “dormant basket 
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cell hypothesis” revolves around the loss of hilar mossy cells, which are known to be vulnerable 

to excitotoxic damage. The hilar mossy cells usually provide input to inhibitory interneurons 

(basket cells) that inhibit granule cells. Loss of this inhibition essentially causes disinhibition 

of the dentate granule cells forming a dentate network that could be prone to seizures (Jinde, 

Zsiros & Nakazawa, 2013; Sloviter, 1991). This hypothesis is less commonly accepted due to 

various other experimental observations that have conflicting findings; including mossy hilar 

cells innervating granule cells rather than basket cells, and mossy hilar cell loss resulting in a 

reduction in granule cell excitability (for review see Sharma, Reams, Jordan, et al., 2007).  

The mechanisms underlying mTLE, although becoming increasingly understood, have yet to 

be fully elucidated. A recent focus of research has been the observed progression of mTLE, 

underpinning it as a progressive disorder. As previously mentioned, mTLE usually occurs 

sometime following a traumatic event, indicating a possible hidden progression towards 

seizures. Patients with TLE often become pharmacoresistant over time and present with 

worsening cognitive symptoms which may be related to the progression of mTLE through 

possible inflammatory mechanisms (Das, Wallace, Holmes, et al., 2012; Helmstaedter & Elger, 

2009; Marques, Caboclo, da Silva, et al., 2007; Yang, Zhou & Stefan, 2010). There are an 

increasing number of studies investigating the link between inflammation and progression of 

mTLE (for review see Yang, Zhou & Stefan, 2010), offering a potential new treatment pathway 

in halting inflammation to slow or stop disease progression and provide a better means for 

seizure control. 
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Childhood absence apilepsy 

Unlike mTLE, childhood absence epilepsy (CAE) is classified as a generalised epilepsy rather 

than a focal one, manifesting primarily in a transient cessation of function and impairment of 

consciousness (Matricardi, Verrotti, Chiarelli, et al., 2014). Accounting for about 10–12% of 

epilepsies in paediatrics and presenting in children primarily between the ages of four and eight, 

CAE is one of the most common presentations of generalised epilepsy in the paediatric 

population (Berg, Shinnar, Levy, et al., 1999; Callenbach, Geerts, Arts, et al., 1998; Hughes, 

2009). The favoured mechanism in the generation of these seizures is believed to come from a 

thalamocortical network that is integral to transitioning sleep states and the generation of sleep 

paroxysms (Futatsugi & Riviello, 1998; Matricardi, Verrotti, Chiarelli, et al., 2014; Steriade, 

2005). This thalamocortical circuit comprises primarily of three groups of neurons; pyramidal 

neurons of the neocortex, thalamic relay neurons and reticular thalamic neurons. Reticular 

thalamic neurons provide projections, mediated by GABAB receptors, to thalamic relay 

neurons, which then project onto cortical neurons, and both cortical neurons and thalamic relay 

neurons provide excitatory input onto reticular thalamic neurons. This thalamocortical circuit 

is also modulated by neighbouring thalamic relay neurons projecting inwards via GABAergic 

pathways (GABAA) and cortical interneurons (Chen, Parker & Wang, 2014; Steriade, 2006). 

Interaction between these groups of neurons enables activation of two firing modes of cortical 

pyramidal neurons; burst and tonic firing modes. The tonic mode is active during wakefulness 

and rapid eye movement (REM) sleep, and the burst mode is active during non-REM sleep 

(Domich, Oakson & Steriade, 1986; Fuentealba & Steriade, 2005; Steriade, 2005). The burst 

firing mode observed in non-REM sleep is a consequence of the T-type calcium channels that 

enable low threshold depolarisations and subsequently bursts of action potentials (Perez-Reyes, 

2003). These bursts are the underlying basis for sleep spindles, a sleep paroxysm observed in 
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non-REM sleep, mediated by thalamic reticular neurons which are considered the pacemaker 

for sleep spindles (Contreras & Steriade, 1996; Steriade, 2003).  Aberrations in this 

thalamocortical circuit, specifically in T-type calcium channels, are hypothesised to be the 

cause of absence seizures and the accompanying 3-4Hz spike and slow wave complexes (SWC) 

evident on the EEG during this ictal period (Chen, Parker & Wang, 2014; Pinault & O’Brien, 

2005). These T-type calcium channels are located at all nodes of the circuit, i.e. thalamic 

reticular, thalamic relay and cortical pyramidal neurons, though where in the circuit absence 

seizures are generated is not yet fully elucidated. There is evidence for both a thalamic origin 

(Seidenbecher, Staak & Pape, 1998) and a cortical origin (Meeren, Pijn, Van Luijtelaar, et al., 

2002; Polack, Guillemain, Hu, et al., 2007; van Luijtelaar, Hramov, Sitnikova, et al., 2011) for 

absence seizures though recently it has been shown that both cortex and thalamus are intrinsic 

in the generation of SWC and absence seizures, with recent findings also implicating thalamic 

and cortical glial cells (van Luijtelaar & Zobeiri, 2014). It is apparent that exact mechanisms of 

absence seizures and the generation of SWC are still yet to be clearly elucidated.  

 

Networks in epilepsy 

Much of the understanding of the mechanisms underlying epilepsy come from studies at the 

neuronal level, but how this translates into wider brain networks has become an evolving area 

of interest. The advancement in this area has prompted revisions in the ILAE classification and 

terminology including brain networks in epilepsy as a core component in the new revisions 

(Berg, Berkovic, Brodie, et al., 2010). An example of the importance of these networks lies in 

the thalamocortical networks as previously mentioned; absence seizures are often accompanied 

by characteristic 3-4Hz SWC, though SWCs are not seen exclusively with absence seizures or 
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at 3-4Hz, but variable in frequency, morphology, electrographic distribution and across 

different epilepsies, both focal and generalised. Differing pathological mechanisms and 

networks may give rise to SWCs as the ultimate result of this process (Blumenfeld, 2005). 

Neuroimaging studies using modalities such as positron emission tomography (PET), single-

photon emission computed tomography (SPECT), MRI, diffusion tensor imaging (DTI) and 

fMRI allow for non-invasive investigation of brain regions, functional networks and structural 

networks that may be linked to ictogenesis (Gotman, 2008; Gotman, Kobayashi, Bagshaw, et 

al., 2006; Liu, Concha, Lebel, et al., 2012; Richardson, 2010; Scanlon, Mueller, Cheong, et al., 

2013). Theoretical work has demonstrated that seizure discharges can occur independently of a 

single abnormality in a brain region and occur from alterations in network structure (Terry, 

Benjamin & Richardson, 2012). Elaborations on this theoretical work, using graph theory, 

identify increased seizure susceptibility as a result of functional network structure (Schmidt, 

Petkov, Richardson, et al., 2014). In patients with TLE, structural changes in white matter 

tracts, as identified by DTI, have been reported in tracts beyond the temporal lobe, indicating 

different dysfunctional networks may be present and that TLE is a systemic disorder (Gross, 

2011; Liu, Chen, Beaulieu, et al., 2014; Liu, Concha, Lebel, et al., 2012). Functional studies 

using fMRI data have identified aberrations in well-defined functional brain networks, as well 

as functional connectivity changes in multiple brain regions with differing epilepsy types 

(Haneef, Lenartowicz, Yeh, et al., 2014; Lopes, Moeller, Besson, et al., 2014; Luo, Li, Lai, et 

al., 2011; Maneshi, Moeller, Fahoum, et al., 2012; Wei, An, Zeng, et al., 2015a). Computational 

models of neuronal systems, structural and functional imaging of brain regions and networks 

have broadened our understanding of epilepsy and may help elucidate the genesis of seizures 

from neuron to network. This is further elaborated on in section 1.5.2.  
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1.2 SLEEP 

Sleep, in one form or another, is ubiquitous across the animal kingdom and dominates a third 

of our lives. The function of sleep has long been the subject of debate and does not necessarily 

subserve the same functions, or is expressed in the same way, across species (Siegel, 2008). A 

popular theory on the function of sleep is the conservation of energy, a passive process 

unobtainable during waking states (Berger & Phillips, 1995). However, sleep is not a passive 

state, as demonstrated by the increased activity of the brain during rapid eye movement (REM) 

sleep (Braun, Balkin, Wesenten, et al., 1997; Madsen & Vorstrup, 1991; Maquet, 2000). If not 

conservation of energy, another common theory is that of restoration (Benington & Heller, 

1995), in which the brain can replenish glycogen stores  (Dworak, McCarley, Kim, et al., 2010; 

Petit, Burlet-Godinot, Magistretti, et al., 2015) and, in-line with restoration, clear potentially 

neurotoxic interstitial waste products (Xie, Kang, Xu, et al., 2013). There is also considerable 

evidence that sleep facilitates memory formation, consolidation and synaptic plasticity 

(Benington & Frank, 2003; Chauvette, Seigneur & Timofeev, 2012). Attempts have been made 

to create a unifying hypothesis of sleep, a hypothesis that neatly packages the functions of sleep; 

the energy allocation model, a model that focuses on an organisms need to optimally allocate 

limited energy resources (Schmidt, 2014) and the synaptic homeostasis hypothesis, which states 

“sleep is the price the brain pays for plasticity” (Tononi & Cirelli, 2014, 2006), are two such 

theories, though the latter has been challenged due to its poorly defined mechanisms and lack 

of empirical basis  (Frank, 2013). Ultimately sleep serves many functions and it is difficult to 

package into a single answer or hypothesis that fits everyone. Given the diversity of sleep 

research, functions and mechanisms in sleep, the focus of this section on sleep will be to give a 

general overview of some basic mechanisms in sleep and of the chief sleep paroxysms that 
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occur during non-REM (NREM) periods of the NREM-REM sleep cycle, discussed in the next 

section. 

 

1.2.1 Mechanisms of sleep 

Sleep-Wake Networks 

The transitions between sleep and wake states involve a number of brain regions and their 

complex interactions. It was Moruzzi and Magoun, in 1949, who described in detail the reticular 

activating system (RAS) as a mechanism of regulating wakefulness (Moruzzi & Magoun, 

1949), though it was later shown that the reticular formation was not solely responsible for 

arousal but also a number of specific cells groups are involved (Saper, Chou & Scammell, 

2001). The modern day idea of the ascending reticular activating system (ARAS) is a 

combination of these additional cell groups and the reticular formation (McGinty & Szymusiak, 

2011). The ARAS can be divided into two major constituent branches, one that projects to the 

thalamus and the other to the cortex, via the lateral hypothalamus and basal forebrain, 

circumventing the thalamus (Jones, 2003; Saper, Chou & Scammell, 2001). Input to the 

thalamus comes from two cell groups containing cholinergic neurons, the pedunculopontine 

nucleus (PPT) and the laterodorsal tegmental nucleus (LDT), both producing acetylcholine 

(ACh), a neurotransmitter (Saper, Chou & Scammell, 2001). These neurons fire most rapidly 

during both a waking state and during REM sleep (Kajimura, Uchiyama, Takayama, et al., 

1999; Kayama, Ohta & Jodo, 1992) and, when activated during NREM sleep, can initiate REM 

sleep periods (Van Dort, Zachs, Kenny, et al., 2015). The input of these neurons to the reticular 

thalamic nucleus decouples the synchronisation in the thalamocortical networks which produce 

sleep oscillations, thus allowing a state of cortical excitability necessary for wakefulness and 
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cognition (McCormick, 1989; Steriade, 1994). Although the PPT and LDT are the principle 

nuclei in wakefulness and arousal, other inputs to the thalamus also play a role in arousal; 

intralaminar and midline nuclei and parabrachial nucleus (see (Saper, Scammell & Lu, 2005) 

for review). The other branch that evades the thalamus, projecting primarily to the cortex, 

contains a number of cell groups, that, unlike the cholinergic neurons of the PPT and LDT, 

contain a number of different neurotransmitters (Jones, 2003; Kayama & Koyama, 2003). The 

noradrenergic neurons of the locus coeruleus (LC), the serotoninergic neurons of the raphe 

nuclei, the histaminergic neurons of the tuberomamillary nucleus (TMN), and the dopaminergic 

neurons of the ventral periaqueductal grey matter (vPAG) are the origin of the second branch 

providing input directly to the cortex, and comprising the monoaminergic system (Jones, 2003; 

Kayama & Koyama, 2003; Saper, Scammell & Lu, 2005). Additional input is provided by the 

basal forebrain, which contains both cholinergic and GABAergic neurons (Zaborszky & Duque, 

2003) and also the lateral hypothalamus with neurons contains melanin concentrating hormone 

(Monti, Torterolo & Lagos, 2013) and orexin (Alexandre, Andermann & Scammell, 2013). 

Unlike the previous branch containing the cholinergic PPT and LDT, the monoaminergic 

neurons of this branch are not active during REM sleep, but again fire at their highest rates 

during wakefulness (Jones, 2003).  

If there are systems that keep us awake, there also must be a system which facilitates sleep. The 

neurons of the ventrolateral preoptic nucleus (VLPO) send outputs to the hypothalamus, the 

TMN, LC, raphe nuclei, vPAG and the cholinergic cell bodies, essentially, the majority of the 

major components of the ARAS (Sherin, Elmquist, Torrealba, et al., 1998; Sherin, Shiromani, 

McCarley, et al., 1996). The galanin-positive neurons of the VLPO project in majority to the 

TMN but also to the LC and raphe nuclei, with extended regions of the VLPO, i.e. median 

preoptic nucleus (MnPO), providing GABAergic efferent projections to  the VLPO, vPAG, LC 
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and dorsal raphe nuclei (Gaus, Strecker, Tate, et al., 2002; Sherin, Elmquist, Torrealba, et al., 

1998; Uschakov, Gong, McGinty, et al., 2007). These projections to the major components of 

the ARAS inhibit said system, however, afferents from the monoaminergic systems that project 

to the VLPO provide inhibitory input; the interaction between the two systems provides the 

basis for a model of switching between sleep states, the flip-flop switch model (Saper, Fuller, 

Pedersen, et al., 2010). See figure 1.2.1. 
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Figure 1.2.1. Summary of the wake and sleep promoting regions of the brain and their 

interactions with the flip-flop switch model. The red arrows represent inhibitory projections 

and the green excitatory. The same monoaminergic arousal systems that promotes 

wakefulness through inhibition of the VLPO, provides inhibitory input to the “REM-on” 

neurons and excitatory input to the “REM-off” neurons, thus preventing the rapid switch 

from a state of wakefulness into REM sleep when sleep occurs. This system is stabilised by 

orexin (ORX) neurons, as demonstrated in narcolepsy, where loss of ORX signalling causes 

instability on both switches and thus permitting rapid transitions to REM sleep. Melanin-

concentrating hormone (MCH) neurons have the opposite profile of ORX neurons, they 

mainly fire during REM sleep, inhibit the same targets that ORX neurons excite.  

VLPO = ventrolateral preoptic nucleus, MnPO = median preoptic nucleus, LC = locus 

coeruleus, TMN = tuberomamillary nucleus, DR = dorsal raphe nucleus, PB = parabrachial 

nucleus, PC = precoeruleus area, vPAG = ventral periaqueductal grey, PPT = 

pedunculopontine nucleus, LDT = laterodorsal tegmental nucleus, SLD = sublaterodorsal 

region, vlPAG = ventrolateral periaqueductal grey, LPT = lateral pontine tegmentum 

Figure taken and modified slightly from Saper et al., 2010. 
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Switching between wake-sleep states 

The model of the flip-flop switch (Figure 1.2.1) is described in great detail in an excellent 

review by Saper, Fuller, Pedersen, et al., 2010. This mechanism of switching between sleep 

states enables a rapid transition from wake to sleep and vice-versa. The monoaminergic neurons 

of the LC, TMN and raphe nucleus, supported by orexin neurons, inhibit the VLPO, thus 

promoting a waking state. The sleep transition occurs when the VLPO inhibits the same 

monoaminergic cell groups it receives inhibition from, and consequently inhibits the orexin 

neurons, inhibiting their support of the monoaminergic cell groups; it is hypothesised that it is 

orexin neurons from the lateral hypothalamus that are the key to stabilising the switch 

(Mochizuki, Crocker, McCormack, et al., 2004; Peyron, Tighe, van den Pol, et al., 1998; Saper, 

Fuller, Pedersen, et al., 2010), a suggestion which comes from the observation that patients 

with narcolepsy, who experience uncontrollable state transitions, lack orexin neurons (De la 

Herrán-Arita, Guerra-Crespo & Drucker-Colín, 2011; Hara, Beuckmann, Nambu, et al., 2001). 

 

Homeostatic and circadian regulation of sleep 

The most prominent model of sleep-wake regulation comes from the interaction between a 

homeostatic process, a circadian process, and an ultradian process  (Borbély & Achermann, 

1992). The homeostatic process of sleep, termed process S by Borbély and colleagues 

(Achermann & Borbély, 2011), presumes some form of trigger for sleep that accumulates 

during wakefulness to enable the switch from wake to sleep states, i.e. allowing the VLPO to 

exert its influence and flip the switch, as in the flip-flop switch model (Saper, Scammell & Lu, 

2005). The exact process for this remains unclear, however an accumulation of the 

neuromodulator adenosine, particularly in the basal forebrain, occurs during wakefulness 
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(Boonstra, Stins, Daffertshofer, et al., 2007; Strecker, Morairty, Thakkar, et al., 2000) and has 

been shown to exert an influence on reducing inhibitory GABAergic inputs to the VLPO and 

the posterior/anterior hypothalamus (Chamberlin, Arrigoni, Chou, et al., 2003; Strecker, 

Morairty, Thakkar, et al., 2000) which may flip the switch towards sleep.  

The circadian process of sleep, termed “process C” (Achermann & Borbély, 2011), is separate 

from the homeostatic regulation of sleep and is influenced by the suprachiasmatic nucleus 

(SCN) of the hypothalamus, also referred to as the “master clock” of the brain (Reppert & 

Weaver, 2002). The SCN receives input from a direct retinohypothalamic tract and in turn 

modulates the timings in the cortex and in peripheral organs (LeSauter, Silver, Cloues, et al., 

2011; Liu & Reppert, 2000). The SCN projects to the VLPO, though the majority of its 

projections extend to the dorsomedial nucleus of the hypothalamus (DMH) and the 

subparaventricular zone (SPZ), while the SPZ extends projections to the DMH, and the DMH 

provides a significant input to the VLPO (Aston-Jones, Chen, Zhu, et al., 2001; Chou, 

Scammell, Gooley, et al., 2003). This circuit enables the transfer of light information to the 

VLPO. The two process model proposes an interaction of process S and process C, where 

ultimately both coincide to promote sleep at specific phases of the light-dark cycle (Borbély & 

Achermann, 1992).  

An ultradian rhythm refers to a rhythm that is less than 24 hours, and in the case of sleep 

specifically refers to the NREM-REM cycle observed in adult human sleep (Achermann & 

Borbély, 2011; Hobson, McCarley & Wyzinski, 1975). A model for this ultradian rhythm is the 

reciprocal-interaction model (Hobson, McCarley & Wyzinski, 1975), which proposed that the 

changes between NREM and REM sleep are facilitated by an interaction of aminergic and 

cholinergic cell groups at the mesopontine junction. Evidence supports cholinergic facilitation 

of REM sleep from the PPT, LDT and brainstem reticular formation, and aminergic inhibition 
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of REM sleep from raphe nuclei and the LC (Hobson & Pace-Schott, 2002; Pace-Schott & 

Hobson, 2002). The ultradian NREM-REM rhythm demonstrates an 80-120-minute periodicity 

(Figure 1.2.2) with a gradual increase in REM duration as sleep progresses (Achermann & 

Borbély, 2011; Blume, del Giudice, Wislowska, et al., 2015; Carskadon & Dement, 2011). The 

simplest graphical representation of the NREM-REM ultradian rhythm is the hypnogram 

(Figure 1.2.2), usually derived from the polysomnography (PSG), a specialised sleep recording 

(see section 1.3.4). The PSG, in short, stages sleep into, wake, 3 stages of NREM sleep (N1, 

N2, N3) and REM sleep, based on scoring criteria (Iber, Ancoli-Israel, Chesson, et al., 2007; 

Rechtschaffen & Kales, 1968). In the scoring criteria for the PSG, sleep paroxysms, K-

complexes (KCs), sleep spindles (SSs) and vertex sharp waves (VSWs) feature heavily, with 

the KC and SS forming the basis of the transition between stage N1 and N2 and VSWs, a solid 

indicator of N1 sleep.  
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Sleep Deprivation 

Sleep deprivation, the acute or chronic loss of sleep, has a profound negative effect on cognitive 

function and our physical and psychological wellbeing, and from a scientific point of view 

offers a unique means of studying the function of sleep (Killgore, 2010). Although variable 

between individuals the average sleep length is between 7 – 8.5 hours per day (Alhola & Polo-

Kantola, 2007) and, ideally, adults require a minimum of 7 hours sleep per night to maintain 

A 

B 

Figure 1.2.2. Ultradian rhythm of NREM-REM sleep and a normal hypnogram. A) Ultradian 

rhythm over a typical night, NREM decreases over the night and REM increases, this correlates 

with B) a normal hypnogram which demonstrates a gradual reduction in slow wave sleep and 

an increase in REM. 

A) modified from Borbély and Achermann, 1992, and B) modified from Blume, del Giudice, 

Wislowska, et al., 2015. 
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optimum health (Watson, Badr, Belenky, et al., 2015). Restriction of sleep, i.e. less than 7 hours 

per night, can have profound negative consequences on health, including obesity, diabetes, 

hypertension, depression,  and increased mortality (Watson, Badr, Belenky, et al., 2015). Sleep 

deprivation is also associated with impaired performance and cognitive function, with chronic 

sleep restriction of 6 hours or less demonstrating performance deficits in attention/alertness 

comparable to two nights of total sleep deprivation (Van Dongen, Maislin, Mullington, et al., 

2003). Additionally, sleep deprivation has also been shown to have a negative effect on the 

processes of learning and memory (Goel, Rao, Durmer, et al., 2009). In the United States, the 

National Commission on Sleep Disorders Research was tasked with investigating the economic 

impact of sleep deprivation and reported an impact of $43 to $56 billion (Leger, 1994). A large 

contributor to this economic impact is motor vehicle accidents, which are particularly prevalent 

in working populations associated with sleep deprivation, such as shift workers, airline pilots, 

and junior doctors  (Goel, Rao, Durmer, et al., 2009). This is further corroborated by 

neuroimaging studies, one of the first, using PET, demonstrated reduced metabolic activity in 

brain regions associated with attention  (Thomas, Sing, Belenky, et al., 2000). Additionally, 

fMRI studies have demonstrated reduced activation in frontal cortical controls systems and 

parietal attention regions following sleep deprivation (Chee & Chuah, 2008; Chee, Tan, Zheng, 

et al., 2008; Chee & Tan, 2010). Given the profound and diverse negative effect sleep 

deprivation has on our physical and mental wellbeing and its detrimental consequences on 

cognition (see Killgore, 2010 for review), it is clear how sufficient sleep is necessary in our 

daily lives, and the experimental investigation of the effects of sleep deprivation can help 

elucidate the many functions of sleep. 
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1.2.2 Sleep paroxysms 

The Slow Oscillation 

Although not defined as a sleep paroxysm, the slow oscillation (SO) is intimately linked to them 

and warrants discourse before moving onto discussing the specific sleep paroxysms themselves. 

The SO was first described by Mercia Steriade and colleagues in 1993, from intracellular 

recordings from cats and EEG recordings in humans. They demonstrated that delta waves had 

a periodicity of between 0.4 to 0.9 Hz and defined a <1Hz oscillation (Achermann & Borbely, 

1997; Steriade, Nunez & Amzica, 1993). Its cortical origin was established following studies 

in which the SO persisted in the cortex in the absence of a thalamus (Steriade, Nuñez & Amzica, 

1993) and was abolished in the thalamus when the cortex was disconnected (Timofeev & 

Steriade, 1996). Almost all cortical neurons participate in the SO, and although cortical in origin 

they also entrain and synchronise thalamic cells (Contreras & Steriade, 1997, 1995). There are 

two phases to the SO, an up-state and a down-state. The up-state is a depolarising phase, made 

up of synaptic activity, brought about by NMDA-mediated EPSPs, enhanced by a DC 

hyperpolarizing current, which results from non-NMDA dependent EPSPs and fast IPSPs 

within a local cortical circuit (Steriade, Nunez & Amzica, 1993). The hyperpolarising down-

state, defined by lack of activity in the network, occurs as the result of removal of synaptic input 

in intracortical and thalamocortical networks and depletion of extracellular calcium ions 

(Contreras, Timofeev & Steriade, 1996; Steriade, 2006). As sleep deepens the SO increases in 

frequency, brought about by the progressive hyperpolarisation of thalamocortical neurons and 

decrease in the depolarising phase duration, correlating with transition to slow waves observed 

during slow wave sleep (Amzica & Steriade, 2002, 1998). One of the key functions of the SO 

is its importance in grouping other brain rhythms, some of which are discussed in the next 
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section, during NREM sleep such as delta activity, sleep spindles, K-complexes and faster 

frequencies, i.e. beta and gamma (for review see Steriade, 2006).  

 

K-Complexes 

The K-complex (KC), was first defined by Alfred Lee Loomis in 1938, as a large positive-

negative-positive waveform (Loomis, Harvey & Hobart, 1938). The years following its 

discovery led to numerous investigations by means of evoked potentials in sleep, primarily 

eliciting KCs using auditory stimuli, but also inspiratory occlusion, leading to the definition of 

the N550 evoked response in sleep, intimately associated with the KC (Bastien, Crowley & 

Colrain, 2002; Colrain, Webster & Hirst, 1999; Colrain & Campbell, 2007; Halász, 2005). The 

KC is a biphasic waveform, consisting of an initial surface positive deflection followed by a 

large surface negative component (Amzica & Steriade, 1997). The underlying mechanisms for 

these two components are linked to the previously described SO. The initial surface positive 

potential reflects the depolarising phase of the SO and the large surface negative potential 

reflects the hyperpolarisation of cortical neurons (Amzica & Steriade, 2002). The KC occurs 

with the SO and is postulated to actually reflect a SO (Amzica & Steriade, 2002), supported by 

the fact that there is an increase in the occurrence of KCs in proximity to slow wave sleep as 

KCs give way to delta waves (De Gennaro, Ferrara & Bertini, 2000); which in themselves are 

likely in part to constitute KCs (Amzica & Steriade, 2002, 1997). One of the functional roles 

KCs play is in the grouping of other sleep rhythms, such as sleep spindles or delta oscillations, 

and they do this by providing a synchronous input onto the reticular nucleus of the thalamus 

(Contreras & Steriade, 1995). The KC is also theorised to provide a sleep protective mechanism; 

initially thought of as a mechanism of arousal (Ehrhart, Ehrhart, Muzet, et al., 1981), it was 
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later discovered that the KC protects the continuity of sleep (De Gennaro, Ferrara & Bertini, 

2000; Halász, 2005) and may allow for brief windows of information processing (Jahnke, von 

Wegner, Morzelewski, et al., 2012), though this has yet to be validated with behavioural data. 

 

Vertex sharp waves 

Observed on scalp EEG across the vertex, or regions contiguous to it, the vertex sharp wave 

(VSW) is a large surface negative potential that occurs during the early stages of sleep 

(Niedermeyer & Silva, 2005; Yasoshima, Hayashi, Iijima, et al., 1984). It can be seen to occur 

spontaneously in the EEG but can also be elicited by stimulation (Colrain, Webster, Hirst, et 

al., 2000) and contributes to the N350 evoked response in evoked potential studies of sleep 

(Bastien, Crowley & Colrain, 2002; Gora, Colrain & Trinder, 2001). The VSW occurs at around 

the same time the SO is seen, and at the cellular level is believed to be underpinned by similar 

mechanisms as the KC, and may also represent a similar phenomenon as the KC but at an earlier 

stage of development (Amzica & Steriade, 1998). VSWs are discussed further in Chapter 5.  

 

Sleep spindles 

As with KCs, sleep spindles (SSs) were also first termed by Loomis and colleagues (Loomis, 

Harvey & Hobart, 1935), and appear in the second stage of sleep (Iber, Ancoli-Israel, Chesson, 

et al., 2007). Previous mention has been made to the relationship between the KC in grouping 

SSs, though SSs can occur both with and without an associated KC (De Gennaro & Ferrara, 

2003). SSs can occur with a frequency of between 7 and 15 Hz (De Gennaro & Ferrara, 2003; 

Niedermeyer & Silva, 2005; Steriade, McCormick & Sejnowski, 1993) and have been divided 

into two categories, fast- (>13Hz) and slow- (<13Hz) spindles  (Anderer, Klösch, Gruber, et 
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al., 2001; Werth, Achermann, Dijk, et al., 1997). Their origin is located in the thalamus, as 

demonstrated by their absence in athalamic cats (Steriade, 1995). They are generated through 

the synchronous cortical input exerted by the SO onto GABAergic cells of the thalamic reticular 

nucleus (RE), which is transferred back to the cortex via glutamatergic thalamocortical neurons, 

which in turn also project back onto the RE producing a recurrent inhibitory circuit that shapes 

SSs (Amzica & Steriade, 2000; Contreras & Steriade, 1995). Fast and slow SSs are 

topographically distinct, with the former being primarily located over centro-parietal regions 

and the latter more frontally predominant (Anderer, Klösch, Gruber, et al., 2001; Werth, 

Achermann, Dijk, et al., 1997) and they occur at different phases of the SO, with fast spindles 

being linked with the upstate of the SO and slow spindles with transition between the up to 

down state of the SO (Klinzing, Mölle, Weber, et al., 2016; Mölle, Bergmann, Marshall, et al., 

2011). Investigation between these two spindle types has led to some controversy of the 

classically accepted mechanism of spindle generation, as previously described, as it may not 

necessarily underpin both spindle types, and, although it may be applicable to fast spindles 

(Ayoub, Aumann, Hörschelmann, et al., 2013; Timofeev & Chauvette, 2013), slow spindles 

may be generated in non-specific thalamic nuclei or even through intracortical mechanisms 

(Timofeev & Chauvette, 2013).  

The function of sleep spindles has been the topic of great interest over the last couple of decades 

with a focus on their role in learning and plasticity (Diekelmann & Born, 2010; Lindemann, 

Ahlbeck, Bitzenhofer, et al., 2016). A recent study has even demonstrated the temporal 

relationship between the SO, spindles and hippocampal ripples demonstrating the nesting of 

ripples in the troughs of spindles, presumably facilitating information transfer from 

hippocampus to neocortical structures (Staresina, Bergmann, Bonnefond, et al., 2015). It has 

also been postulated that SSs provide a sleep protective mechanism, originally the evidence for 
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this was not compelling (De Gennaro & Ferrara, 2003), though recent imaging studies have 

demonstrated that processing of sound is constrained by the presence of spindles (Dang-Vu, 

Bonjean, Schabus, et al., 2011; Dang-Vu, McKinney, Buxton, et al., 2010; Schabus, Dang-Vu, 

Heib, et al., 2012) which may serve to protect sleep. 

 

1.2.3 Epilepsy and sleep: the link 

The link between epilepsy and sleep has been well established throughout history. Since circa 

300BC the association between epilepsy and sleep has been documented, by both Aristotle and 

Hippocrates (Temkin, 1994). Deprivation of sleep is a well-documented precipitant of seizures 

in epilepsy (Méndez & Radtke, 2001) and is widely used in a clinical setting to provoke 

interictal epileptiform activity and improve sensitivity of the EEG in epilepsy diagnostics 

(Molaie & Cruz, 1988; Roupakiotis, Gatzonis, Triantafyllou, et al., 2000; Veldhuizen, Binnie 

& Beintema, 1983). Patients who suffer from both epilepsy and obstructive sleep apnoea 

(OSA), and are chronically sleep deprived as a result of the OSA, demonstrate an improvement 

in seizure control following OSA treatment (Vaughn, D’Cruz, Beach, et al., 1996). 

Additionally, the propensity for seizures to occur during sleep have been well described 

(Dinner, 2002; Shouse, da Silva & Sammaritano, 1996), especially with frontal lobe epilepsy 

(O’Muircheartaigh & Richardson, 2012), and continuous epileptiform discharges can occur 

during sleep, as in electrical status epilepticus of sleep (Nickels & Wirrell, 2008). Despite the 

clear intimate relationship between epilepsy and sleep the link presented in this thesis is not a 

direct investigation of their relationship but rather a practical progression from epilepsy to sleep, 

with development of a genuine interest in paroxysmal sleep activity and sleep in general. The 

link comes between chapter 3 and chapter 4, where the same experimental methodology is 
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applied to both pathological paroxysmal EEG events, i.e. IEDs (chapter 3), and non-

pathological endogenous paroxysms as observed in sleep (chapter 4), to ascertain if the results 

observed in chapter 3 are unique to pathological epileptiform paroxysms or if they are also a 

feature of normal paroxysmal activity observed in sleep. Owing in part to the constraints in 

recruiting patients with epilepsy and growing interest in the nature of these sleep paroxysms, 

chapter 5 is solely focused on sleep, specifically, the effect sleep deprivation has on KCs and 

VSWs.  
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1.3 ELECTROENCEPHALOGRAPHY 

In the mid 1870’s, a physician in Liverpool, Richard Caton, presented experimental findings of 

what were to be the first electroencephalographic recordings in animals, though later he lost 

interest in this line of research eventually moving on to become the mayor of Liverpool 

(Brazier, 1963). Some years later, in 1929, Hans Berger, a German neuropsychiatrist of little 

renown at the time, published the first report of EEG recordings in humans; a single channel 

bipolar recording from a Siemens galvanometer (Gloor, 1969; La Vaque, 1999). However, it 

wasn’t until 1935 that EEG would find its true calling in the clinical context of epilepsy, when, 

in America, Frederic Gibbs and colleagues recorded the EEG of a small cohort of 12 children 

with epilepsy, publishing the first accounts of 3 per second spike and wave activity (Gibbs, 

Davis & Lennox, 1968; Gibbs, Gibbs & Lennox, 1937). At the same time, in 1937, Alfred Lee 

Loomis and colleagues were using EEG from over 200 recordings to investigate sleep and were 

the first to identify the principal paroxysms of sleep (VSWs, KCs and SSs), and divided sleep 

into 5 stages (Loomis, Harvey & Hobart, 1937). Since the late 1930’s, the EEG has become a 

mainstay feature in both tertiary epilepsy centres, sleep clinics and general hospitals across the 

world, providing the gold standard in epilepsy diagnostics and a pivotal role in sleep 

diagnostics. The EEG is used in many different guises in the field of neurocognition, epilepsy 

and sleep, from dense array EEG employing hundreds of scalp electrodes to single unit 

recordings in animals and humans (Feng, Hu, Pan, et al., 2016; Miller, Neufang, Solway, et al., 

2013; Niedermeyer & Silva, 2005; Pisarenco, Caporro, Prosperetti, et al., 2014; Truccolo, 

Donoghue, Hochberg, et al., 2011). The following in this section will introduce EEG in more 

detail covering the technical aspects of scalp EEG and the origin of EEG signals; primarily in 

the context of epilepsy and sleep.  
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1.3.1 Technical aspects of EEG 

The bioelectric signals that constitute the EEG are usually recorded from the scalp via 

electrodes and a conductive medium (conductive gel or paste). In its simplest form only three 

electrodes are required to record these signals, an active electrode, a reference electrode and a 

ground electrode. The electrical activity originating from the brain has to traverse many layers 

of different tissue types, i.e. cerebral spinal fluid (CSF), dura, skin and bone, attenuating and 

blurring the electrical signal until all that remains is in the order of microvolts (µV). Given the 

scale of these signals, amplifiers are needed to bring the signals into a range where they can be 

converted into digital signals using an analog-to-digital converter. Two of the most important 

considerations for scalp EEG recordings are impedance and direct current (DC) offset voltage 

(Bronzino, 1999; Niedermeyer & Silva, 2005). A steady DC potential is generated between the 

site of the electrode and the connecting electrolyte junction, comprising the skin and conductive 

media; a formation of an electrical bilayer brought about by the flow of ions from the metal of 

the electrode to the conductive media and vice versa. Depending on the materials used i.e. 

properties of the electrode and of the conductive media, the DC offset voltage can be many 

times greater than the electrical activity derived from the brain. EEG amplifiers are designed to 

account for a DC offset voltage but if the materials used are unsuitable and generate a high DC 

offset voltage, brain signals may be abolished. The second issue is impedance, this is dependent 

on both the properties of the electrode used and the electrical resistance of the skin at the site 

of juncture between scalp and electrode via conductive media. Silver (Ag) electrodes with a 

silver chloride coating (AgCl) are usually used to minimise both the DC offset voltage and 

impedance at the electrode/conductive media junction, and skin, which has a naturally high 

resistance to electricity, needs to be prepared appropriately to lower impedance (Almasi & 

Schmitt, 1970; Kiloh, McComas & Osselton, 2013).  
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Placement of electrodes are important and most centres internationally use the international 10-

20 measurement system (Klem, Lüders, Jasper, et al., 1999; Sharbrough, Chatrian, Lesser, et 

al., 1991). This means electrodes are placed in standardised location based upon percentage 

measurements derived from measurements taken between anatomical landmarks (see Figure 

1.3.1). Theoretically as children grow and if EEGs are done elsewhere in the world, using this 

system means electrodes are generally placed over consistent anatomical locations.  

Electrodes carry the signals to amplifiers which amplify the potential difference between two 

electrodes, usually the referential electrode and the active electrode. The signal is digitised and 

stored electronically, enabling post hoc analysis and manipulation of the data. The resolution 

of the digitally converted signal is dependent on the sampling frequency and the quality is 

dependent on a number of factors, prominently organic and nonorganic artefacts (unwanted 

electrical information in the EEG data). EEG data can be viewed in either referential montages 

or in bipolar montages. Figure 1.3.1 gives an overview of the basic EEG montages, placement 

and potential artefacts.  
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Physiological Artefacts 

 Ocular artefacts – movements of the 

positively charged cornea create 

artefacts in surrounding electrodes. 

 Myogenic artefacts – electrical activity 

from surrounding activated muscles. 

 ECG artefact – electrodes pick up 

potentials generated by the heart, seen 

more commonly in obese patients with 

cardiomegaly or when there are large 

distances between electrodes. 

 Electrodermal artefacts – caused by 

patient perspiration creating slow 

potentials. 

Pulse artefacts – waveforms temporally 

coupled with the ECG caused by scalp 

arteries pulsating under/near an electrode 

Non-Physiological Artefacts 

 Mains interference – 50 or 60 Hz 

interference depending on country, 

generated by power lines in close 

proximity. More prominent with high 

impedance/mismatched impedances. 

 Implanted devices – devices such as 

pacemakers or deep brain stimulators 

may produce artefacts depending on 

parameters of device. 

 External devices – oscillating ventilators, 

infusion pumps, other nearby medical 

devices. 

 Electrode artefacts – movements of 

electrodes, poor construction, material 

construction (stainless steel electrodes 

more likely to generate artefact than 

Ag/AgCl electrodes) 

Figure 1.3.1. Diagram of electrode placement according to the international 10-20 system 

and examples of common montage configurations. Head in the top left shows 10-20 

electrode placements, middle head shows and example of a transverse bipolar montage and 

head on the right an example of an anterior-posterior bipolar montage. Although not 

displayed, referential montages are all electrode referred to a single reference electrode, 

and average-reference montages uses an average of all scalp electrodes (apart from frontals 

due to ocular artefacts) as a reference. Below head diagrams are two tables of the more 

commonly encountered physiological and non-physiological artefacts.  

Head diagram modified from Sharbrough et al., 1991.  
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1.3.2 Origin of EEG signals 

The basic understanding of the origin of EEG signals is essential to anybody using EEG in 

either a clinical or academic setting. Understanding some of the underlying mechanisms helps 

us to interpret and understand the EEG data we acquire. Signals recorded from scalp EEG are, 

in its simplest form, the summation of excitatory postsynaptic potentials (EPSPs) and inhibitory 

postsynaptic potentials (IPSPs). Postsynaptic potentials originate from an action potential (AP) 

which is generated at the cell body of a neuron. The AP was first defined by Hodgkin and 

Huxley in 1952, based on observation of ionic currents of a giant squid nerve axon (Hodgkin 

& Huxley, 1952). All cells have a resting membrane potential, though the AP only occurs at the 

cell membrane of cells containing the appropriate ion channels and ion pumps, meaning not all 

cells are capable of generating an AP. An AP occurs when the resting membrane potential, 

usually around -70mV, receives sufficient stimulus to reach a threshold potential; if the 

threshold is reached the membrane depolarises, becoming less negative, caused by the influx 

of sodium ions (Na+) into the cell. At the peak of the action potential all Na+ channels are open 

and this raised voltage triggers the closure and inactivation of said channels. The membrane 

potential falls back towards its resting potential as potassium ion (K+) channels open allowing 

the efflux of K+ ions. Once the membrane resting potential is reached K+ ion channels do not 

close immediately, with the continued efflux resulting in an afterhyperpolarisation period. 

During this period of hyperpolarisation the membrane is inactivated, incapable of producing 

another AP until resting potential end equilibrium is reached (Hammond, 2015). The AP 

propagates down the axon of the neuron until it reaches a synapse where the AP triggers a 

release of a neurotransmitter across the synaptic cleft, from pre to post synapse. Whether the 

resulting synaptic potential is inhibitory or excitatory depends on the neurotransmitter. APs are 

very short lived, usually with a duration of less than a millisecond, whereas a postsynaptic 
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potential is longer in duration, several milliseconds and sometime much longer.  Although the 

amplitude of an AP is larger, the relatively short duration means they do not summate as well 

as postsynaptic potentials and thus contribute little, except under certain circumstances, to the 

electric potentials which are paramount and form the basis of EEG recordings. Electric 

potentials are often referred to as local field potentials (LFPs), and are recorded from within the 

cortex, whereas electric fields are recorded from scalp EEG, or the surface of the cortex, and 

are the difference between the electric potential and a reference point (Buzsáki, Anastassiou & 

Koch, 2012; Petsche, Pockberger & Rappelsberger, 1984) Depending on whether the AP 

reaches an excitatory or inhibitory synapse dictates whether an EPSP or a hyperpolarising IPSP 

occurs (Niedermeyer & Silva, 2005). Although PSPs provide the most ubiquitous contribution 

to electric fields, and ultimately the EEG, there are other mechanisms that also contribute to 

these fields, including; neuron-glia interactions, providing indirect contribution through 

enhancing neuronal synchrony; ephaptic effects, referring to the conducting properties of the 

extracellular space; calcium spikes, a non-synaptic contribution as calcium spikes can 

propagate within a cell, are large (10-50mV) and long lasting (10-100ms) and in some 

circumstances contribute significantly to extracellular fields; and spike after-

hyperpolarisations, which can be similar in size and duration to a synaptic potential  (Buzsáki, 

Anastassiou & Koch, 2012).  

Another important consideration is neuronal geometry. The majority of EEG signals that are 

recorded result from pyramidal cells, as not only are they the most abundant cell type, their long 

apical dendrites are aligned parallel to one another, generating an open field; an ideal condition 

for summation and synchrony of dipoles. The gyration of the cortex means the orientation of 

pyramidal cells and their dendrites may be radial, projecting the maximum voltage of the dipole 

towards the scalp, or tangential, where the polarities of the dipole fall on either side of the 
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recording site and the voltage recorded is comparatively low. In terms of dipoles and scalp 

potentials, when a negative wave (upward deflection on scalp EEG) is recorded at the scalp this 

can arise from either a superficial excitatory input or a deep inhibitory input; the deep inhibitory 

input will be smaller in size due to its distance from the scalp. The opposite is true for downward 

deflections, or positive scalp potentials, as they arise from either a superficial inhibitory input 

or a superficial excitatory one (Kirschstein & Köhling, 2009). However, much of the 

information on neuronal activity and local field potentials are lost to scalp recordings, given it 

takes electrical synchrony from at least several square centimetres of cortex for anything to be 

visible on scalp EEG (Ebersole, Husain & Nordli (Jr.), 2014). 

The normal human EEG comprises of five primary frequency bands; delta (below 3.5Hz), theta 

(4-7.5Hz), alpha (8-13Hz), beta (14-30Hz) and, of less clinical importance, gamma (above 

30Hz). Other high frequency and low frequency bands also exist, as do paroxysmal variations 

within a band, though in clinical EEG, paroxysmal activity excluded, the EEG is broken down 

into the four bandwidths of alpha, beta, theta and delta (see figure 1.3.2).  

Alpha activity is primarily recorded from the posterior derivations of EEG, maximal over the 

occipital regions, occurring during relaxed wakefulness, most prominently with eye closure. 

The cellular mechanisms that generate alpha activity are yet to be fully elucidated, it is a 

complex rhythm that is suppressed when the eyes are open but enhanced during certain tasks, 

such as anticipation of a visual stimulus when the stimulus presentation is controlled by the 

participant (Stenner, Bauer, Haggard, et al., 2014), and the individual cycles of the alpha 

oscillation have been linked to discrete windows of perceptual processing (Palva & Palva, 

2007). It has been shown however that both intracortical propagation across the neocortex and 

modulation by thalamic nuclei and thalamocortical high threshold bursting cells play a role in 

alpha generation (Hughes & Crunelli, 2005; Lopes da Silva, 1991).  
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The faster frequency range observed in the EEG is beta activity. Beta activity is present in 

almost every adult in one form or another and can be observed with an anterior, central, or 

posterior predominance, or indeed diffusely across both hemispheres. There has been 

considerable focus on beta oscillations in the somatomotor cortex, with links to tasks of fine 

motor control and attention (Brown, 2000; Engel & Fries, 2010; Kristeva-Feige, Fritsch, 

Timmer, et al., 2002). The origin of beta oscillations is not entirely clear, nor is the extent to 

which these oscillations in the somatomotor cortex relate to thalamic/subcortical activity (Lopes 

da Silva, 2009). There is evidence of beta oscillations originating in layer V of the 

somatosensory cortex from intrinsically bursting neurons, possibly the result of expectation of 

movement in response to sensory information (Roopun, Middleton, Cunningham, et al., 2006).  

Activity in the theta bandwidth can be divided into two broad categories; cortical theta activity 

(Niedermeyer & Silva, 2005) and theta oscillations in the hippocampus (Buzsáki, 2002; Colgin, 

2016). Cortical theta activity is frequently observed in the matured adult EEG in very small 

amounts, though it is seen abundantly during sleep and in the maturing brain. Differing 

underlying pathologies can also give rise to theta activity, focal structural lesions, non-specific 

general cerebral dysfunction (e.g. in an encephalitis, encephalopathy, anoxic brain injury), and 

epilepsy; as such the mechanisms of generation can differ with pathology.  Theta oscillations 

in the hippocampus are better described; generated through GABAergic cells of the medial 

septum, they play a pivotal role in learning and memory (Colgin, 2016).  

Delta waves, like theta, can have different underlying mechanisms dependent on underlying 

pathology, such as encephalopathies, lesions etc., though the mechanisms underlying delta 

oscillations are better described. As with theta activity there is a degree of distinction between 

waves and oscillations, with waves appearing in a more singular fashion and oscillations a 

repeated pattern of waves. Delta oscillations can be thalamic, generated by intrinsic currents of 
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thalamocortical cells, or cortical, from pyramidal neurons (the slow oscillation is discussed in 

more detail in Section 1.2.2)  
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Figure 1.3.2. Examples of EEG rhythms including A) epileptiform activity, sharp 

wave, spike and spike and wave complexes, and B) examples of alpha, beta, theta and 

delta activity. Below examples of EEG rhythms in the middle are examples of normal 

PSG recordings in 30 second epochs showing stage N2, N3 and REM sleep, including 

typical polygraphy, and C) is an example of sleep spindles, a vertex sharp wave and a 

K-complex. 
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1.3.3 EEG in epilepsy 

The diagnosis of epilepsy is best made as an electro-clinical diagnosis, and as such EEG plays 

a pivotal role in epilepsy management (Berg, Berkovic, Brodie, et al., 2010; Smith, 2005). The 

primary aim of the EEG in epilepsy diagnostics is the identification and localisation of interictal 

activity, the period between seizures, and/or ictal activity, the discrete period relating to a 

seizure. In the adult EEG, interictal epileptiform discharges (IEDs) synonymous with epilepsy 

(see figure 1.3.2) can be divided roughly into spikes, sharp waves and spike and slow wave 

complexes (Noachtar, Binnie, Ebersole, et al., 1999; Noachtar & Rémi, 2009). Focal IEDs, such 

as focal spikes and/or sharp waves can help localise an epilepsy to a lobe of the brain, e.g. 

temporal lobe epilepsy, and help both diagnostically and in pre-surgical evaluation, though 

focal ictal recordings can contribute significantly to a pre-surgical workup for epilepsy 

(Ebersole, Husain & Nordli (Jr.), 2014; Raghavendra, Nooraine & Mirsattari, 2012). 

Generalised IEDs can also contribute significantly to epilepsy diagnostics and classification, 

such as the characteristic pattern of 3 per second spike and wave activity synonymous with 

childhood absence epilepsy (Hughes, 2009). A strict criterion for defining an epileptic spike or 

sharp wave is lacking, and clinically is based on subjective opinion often dependent on the 

electroencephalographer's experience and expertise; as such, in reviewing EEGs, there can be 

generally low inter-observer reliability (Abend, Gutierrez-Colina, Zhao, et al., 2011; Azuma, 

Hori, Nakanishi, et al., 2003; Williams, Lüders, Brickner, et al., 1985) and even the most 

capable have a 21% chance of getting it wrong (Grant, Abdel-Baki, Weedon, et al., 2014). 

However, there are some defining characteristics of an epileptiform spike or sharp wave; a spike 

or sharp wave is generally observed on scalp EEG with a prominent surface negative polarity 

(Noachtar, Binnie, Ebersole, et al., 1999) and a duration of 70 – 200 ms for a sharp wave and 

20 - <70 ms for a spike (International Federation of Societies for Clinical Neurophysiology, 
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1974). The lack of a strict criterion is down to the variable nature of EEG and also the presence 

of normal electrographic paroxysms with a sharp morphology; some of these normal variants, 

such as wicket spikes and benign epileptiform transients of sleep (BETS), could be interpreted 

incorrectly as IEDs (Noachtar & Rémi, 2009).  

Correct identification of IEDs aside, one must capture these paroxysmal discharges on the EEG 

first. In most clinical settings a routine outpatient EEG is recorded for around 20 minutes and 

the general yield for recording an IED in a 20-minute period is around 37-45%  (Badry, 2013; 

Narayanan, Labar & Schaul, 2008), thus even in patients with epilepsy many can have a normal 

EEG, with repeated EEGs increasing diagnostic yield (Noachtar & Rémi, 2009). In order to 

increase the yield of the EEG, provocation techniques, such as hyperventilation, photic 

stimulation and sleep deprivation, are used in most clinical settings (Mendez & Brenner, 2006). 

The lack of abundant IEDs in clinical EEG may not be at all surprising given the volume of 

brain needed to produce a scalp spike. Intracranial-EEG recordings reveal IEDs that are not 

visible on scalp EEG, or are indistinguishable from the background EEG, and it is estimated 

that it requires 10-20 cm2 of synchronous/temporally overlapping gyral cortex to produce a 

scalp spike (Tao, Ray, Hawes-Ebersole, et al., 2005). The underlying mechanism in generating 

scalp spikes, termed the paroxysmal depolarising shift (PDS), is characterised by rapid bursting 

of action potentials superimposed upon a slow depolarising potential (de Curtis & Avanzini, 

2001). The localisation of interictal spikes or sharp waves can be informative, providing not 

only valuable diagnostic information but also providing a possible targeting strategy for 

intracranial recordings in pre-surgical evaluation.  

Spike and slow wave complexes (SWCs) are much easier to identify on the scalp EEG as 

compared to interictal spikes or sharp waves. Characterised electrographically by a surface 

negative spike followed by a surface negative slow wave, the SWC is maximal in frontal regions 
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though is generalised across both hemispheres. The negative spike has been associated with 

EPSPs of apical dendrites and the slow wave with IPSPs located at the soma of pyramidal cells 

(Niedermeyer & Silva, 2005). There are generally two hypotheses based around the generation 

of SWCs, both involving interactions between thalamus and cortex, and founded on animal 

experiments primarily investigating models of absence epilepsy; an epileptic syndrome 

synonymous with SWCs, notably the 3 per second SWC. According to the cortico-reticular 

theory (Kostopoulos, 2000), SWCs may be generated within the same circuits responsible for 

the generation of sleep spindles (see Section 1.2.2); initiated in the thalamus, thalamocortical 

volleys to cortical neurons pace spindles, increased output from cortex engages inhibitory 

feedback which transforms the sleep spindle to a SWC. This theory has been challenged by the 

more recent “cortical” theory, which proposes a cortical origin to SWCs with the thalamus 

playing a secondary role (Meeren, Pijn, Van Luijtelaar, et al., 2002). Despite the primary focus 

of SWCs around models of absence epilepsy, SWCs can be observed on the EEG in focal 

seizure disorders, not just generalised seizure disorders (Westmoreland, 1998). The frequency 

at which the SWCs occur is also important, given that 6 per second SWCs can be considered 

benign or at least of uncertain significance (Ebersole, Husain & Nordli (Jr.), 2014; Tatum, 

Husain, Benbadis, et al., 2006).  

As previously mentioned, intracranial recordings are done in the pre-surgical work up for 

epilepsy surgery, and can be necessary for delineation of the epileptogenic zone (EZ). The EZ 

is defined in surgical terms as “the minimum amount of cortex that must be resected (inactivated 

or completely disconnected) to produce seizure freedom” and must be considered in the context 

of other zones (Lüders, Najm, Nair, et al., 2006). A number of other zones are also defined; the 

irritative zone, “an area of cortex which generates interictal spikes”; the seizure onset zone, 

“area of cortex that initiates clinical seizures”; the symptomatogenic zone, “area of cortex 
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which, when activated, produces the initial symptoms or signs”, the functional deficit zone is 

the “area of cortex that is not functioning normally in the interictal period”, and finally, if 

present, the epileptogenic lesion (for more information see (Lüders, Najm, Nair, et al., 2006) 

from where these definitions originate). Determining the extent of these zones ultimately helps 

the epileptologist and the neurosurgeon in defining the resective target for epilepsy surgery. 

The contribution from EEG and intracranial EEG (icEEG) is to help determine the extent of 

both the irritative zone and the seizure-onset zone which in turn provides vital information in 

defining the EZ. In the absence of a lesion on MR imaging icEEG can provide vital information 

in order to progress with surgery, though even with an identifiable lesion icEEG may be used 

to prove, or disprove, the lesion as the EZ. Electrode can be placed on the surface of the cortex 

as a subdural grid following a craniotomy, or stereotactic placed depth electrodes which 

penetrate the cortex, and a number of implantation strategies have been described (Cardinale, 

Cossu, Castana, et al., 2013; Lachaux, Rudrauf & Kahane, 2003). The recorded voltages from 

icEEG compared to scalp EEG are quite large due to signals not having to pass through bone 

and scalp etc. (see figure 1.3.3). 

 

Figure 1.3.3 Visual representation of the difference in magnitude between a sharp wave 

recorded at the scalp level and intracranially. On the left is a sharp wave recorded from the 

hippocampus using a depth electrode, and on the right, is a sharp wave recorded from a 

scalp electrode, note these are not the same electrographic event. This is taken from the EEG 

data of patient #13, discussed in more detail in chapter 2. 
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1.3.4 EEG in sleep 

As with epilepsy the EEG has also become an integral part of sleep medicine and research, 

though generally utilised clinically in a slightly different manner (see below). The progression 

into and through sleep is accompanied by stark changes on the EEG, so much so that the EEG 

can be broken down into 30 second epochs and classified into one of five stages; wake, stage 

N1, N2, N3 and rapid eye movement (REM) sleep, with the “N” denoting a non-REM sleep 

stage (Iber, Ancoli-Israel, Chesson, et al., 2007). Previously, stage N3 sleep was divided into 

two separate stages, 3, and 4 (Hori, Sugita, Koga, et al., 2001; Rechtschaffen & Kales, 1968), 

though later consolidated into the one stage. Since its introduction in 2007, the American 

Academy of Sleep Medicine (AASM) scoring manual (Iber, Ancoli-Israel, Chesson, et al., 

2007), has become widely used and accepted, and continues to adapt to the needs of the sleep 

community (Grigg-Damberger, 2012). As such scoring guidelines used within this thesis will 

be limited to the AASM guidelines rather than the earlier Rechtschaffen and Kale, 1968 

guidelines.  

During the early stage of sleep, N1, the most notable change in the background rhythms of the 

scalp EEG is usually the dropout of alpha activity; the record can become quite low voltage 

before the more regular appearance of theta activity. It is in this light stage of sleep that vertex 

sharp waves (VSWs) make an appearance, usually following deeper progression into this stage 

(see section 1.2.2 for more on the VSW, KC, and SS). The background slowly starts to become 

more dominated by theta and delta activity with faster frequencies in the beta bandwidth 

commonly observed. However, the EEG is not recognised as stage N2 until the occurrence of 

a K-complex (KC) in the absence of any associated arousal (a paroxysmal shift to higher 

frequencies lasting longer than 3 seconds), or a train of sleep spindles (SSs). Stage N3, also 
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denominated as slow wave sleep (SWS), is defined as having at least 20 per cent of the 30 

second epoch being slow waves exceeding 75µV with a frequency of 0.5 – 2Hz. During REM 

sleep the EEG becomes desynchronised and moderately low amplitude with accompanying 

excessive ocular movements.  

Given the fairly clear distinctions made between each stage of sleep, visual scoring of sleep 

studies is easily performed. The investigation synonymous with sleep studies is the 

polysomnogram (PSG), an overnight investigation that utilises EEG recording, and a range of 

polygraphy, including electromyography (EMG), electrooculography (EOG) and sensors to 

monitor breathing and respiration (Iber, Ancoli-Israel, Chesson, et al., 2007). The EEG 

recordings are limited to frontal, central and occipital regions as not as many electrodes are 

required to stage sleep EEG as compared to localising IEDs in epilepsy. One principle end 

product of an overnight sleep study/PSG is the hypnogram, a graph that plots sleep stage as a 

function of time (see figure 1.2.2). The hypnogram can be used to evaluate quality of sleep and 

aid in diagnosis of sleep disorders, such as obstructive sleep apnoea that can demonstrate 

frequent transitions from sleep to wake on the hypnogram (Bianchi & Thomas, 2013; Swihart, 

Caffo, Bandeen-Roche, et al., 2008). As with the identification of IEDs on an EEG, sleep 

staging is also somewhat subjective, despite scoring guidelines, and can be staged incorrectly 

if the individual performing the staging is not experienced enough (Collop, 2002); with AASM 

scoring standards the overall interrater reliability is around 82% (Danker-Hopfe, Anderer, 

Zeitlhofer, et al., 2009). Despite this, when it comes to sleep diagnostics the PSG is still 

regarded as the gold standard (Kushida, Chang, Gadkary, et al., 2001). The PSG has also been 

indicated in the use of differentiating between nocturnal frontal lobe epilepsies and parasomnias 

(disorders of sleep that can manifest similar clinical presentations to frontal lobe seizures), by 
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using combined video PSG and EEG (for review see (Foldvary-Schaefer & Alsheikhtaha, 

2013). 
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1.4 MRI AND FUNCTIONAL MRI 

Magnetic resonance imaging (MRI) was pioneered by Peter Mansfield and Paul Lauterbur, 

mostly in the 1970’s, and they were subsequently awarded, in 2003, the Nobel prize in medicine 

for their discoveries (Mayor, 2003). Since its development MRI has become integral to both 

medical diagnostics and research and continues to play a pivotal role in both fields.  

 

1.4.1 Principles of MRI 

Almost all atoms/isotopes of atoms possess a nuclear spin, i.e. the nuclei of an atom/isotope 

will rotate aligned with a perpendicular axis to direction of rotation. Nuclei that possess spin 

are able to absorb and emit radio frequency (RF) energy when placed in a magnetic field. When 

wanting to image the human body, the most obvious choice of atom to use is hydrogen, or more 

specifically its isotope protium (1H) due to its high natural abundance. Tissues in the body 

primarily contain water and fat, and hydrogen is present in both. When a positively charged 

nucleus, as in 1H, spins, it creates a localised magnetic field, known as a magnetic moment. The 

orientation of hydrogen protons in a given body of tissue will be distributed randomly, i.e. spin 

vectors will be randomly orientated. This results in no net magnetisation of said tissue. Placed 

into a magnetic field (B0), the spin vectors from a proportion of the nuclei will precess parallel 

to B0 oriented along the z-axis. The frequency of this precession is proportional to B0 strength 

and referred to as the Larmor frequency. Whilst the z-component of the spin is now aligned to 

B0, the x and y components are still randomly distributed with no net magnetisation, but for the 

z-component we observe a Zeeman interaction, where the protium nucleus will either lie 

parallel to B0, in a low energy state, also referred to as spin-up, or antiparallel in a high energy 

state, referred to as spin-down. More protons will possess a spin-up orientation thus producing 
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an overall net magnetisation (M0) when in the magnetic field, thus whatever tissue (or 

otherwise) is in the field is said to be magnetised. The key to obtaining MR images is based on 

M0, and involves presentation of a radiofrequency (RF) energy pulse. The protons will absorb 

RF energy at the Larmor frequency, where if aligned parallel, in B0, in a low energy state will 

be excited to the higher energy state and those of high energy state will release energy and drop 

to a low energy state. As mentioned before, initially there are more protons in a low energy 

state, so the overall effect is that of energy absorption. Following the RF pulse, the direction of 

the of magnetisation can be rotated perpendicular to B0 and regarded as an additional field (B1), 

with rotation dependent on the RF pulses flip angle, i.e. a flip of 90º will rotate to the transverse 

plane, whereas a flip and of 180º will rotate in the opposite direction to the static field.   

After the RF pulse the energy is released and the protons return to previous energy states and 

equilibrium. The resulting free induction decay (FID) signal is dependent on M0. Relaxations 

times, based on the FID, refer to the time taken for the energy to be released, and are referred 

to as T1 and T2. T1 relaxation time is also referred to as the longitudinal magnetisation 

relaxation time, and, following an RF pulse, is the time required for the original magnetisation 

to return to 63% of its value prior to the RF pulse. Tissues have different relaxation times and 

thus their own T1 value (Akber, 1996), some have long T1 times, such as cerebrospinal fluid 

(CSF) and take a long time to relax, others have shorter T1 times such as cerebral grey matter, 

thus a contrast is formed between the two tissues. In the case of a clinical T1 MRI scan, CSF 

appears dark as it only returned to a relatively small percentage of its original magnetisation 

whereas grey matter will appear brighter, and white matter even brighter still as it has an even 

shorter T1 relaxation time than grey matter.  

During MRI acquisition an RF pulse is repeatedly administered with a fixed interval between 

pulses, this is called the repetition time (TR). The TR is generally always shorter than the 
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relaxation time of the tissue thus the second RF pulse will return less magnetisation, as will the 

third, though this effect plateaus after the first few pulses thus the returning magnetisation 

becomes stable. To accommodate this the first few RF pulses are not included. T1 weighted 

scans tend to have a short TR so as to maximise contrast.  

T2 relaxation time refers to the transverse magnetisation, and the time it takes for it to decay to 

37% of its initial value immediately following an RF pulse. Following a 90º RF pulse the net 

magnetisation (M0) is in the transverse plane, but loses coherence as protons realign to B0, 

producing FID, eventually losing all transverse magnetisation. A primary feature in the loss of 

transverse magnetisation is spin-spin relaxation, in which one proton transfers its energy to 

another. Efficient energy transfer within a tissue equates to a shorter T2. Other factors effect 

loss of coherence such as inhomogeneities in the magnetic field or imaging gradients. Again 

different tissues have different T2 relaxation times, for example in a 3 Telsa (3T) field (thus B0 

= 3T), the T2 relaxation time of grey matter is ~99ms, and ~69ms for white matter (Stanisz, 

Odrobina, Pun, et al., 2005), hence white matter appears darker on T2 weighted scans due to 

the shorter T2 relaxation time. The point in time that the data is acquired, as the RF energy is 

released, is dependent on the echo time (TE), in the case of T2 scans a long TE is required to 

get the best contrast between tissues.  

The spatial localisation of proton frequencies is determined by way of gradient fields, an applied 

linear distortion of B0, orientated around the isocenter of the scanners magnet. Three gradients 

x, y and z are used in order to put the data into 3-dimensional space and display the image, 

which is made up of numerous voxels, each containing volume intensity data from the protons 

within said voxel.  
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For a more detailed review of MRI physics and applications see (Dale, Brown & Semelka, 

2015). 

 

1.4.2 Functional MRI 

The basis for fMRI is the T2* relaxation decay of transverse magnetisation which is observed 

when using gradient echo (GRE) imaging. As previously mentioned, local inhomogeneities 

contribute to dephasing of transverse magnetisation, this can be eliminated by using a spin-echo 

sequence, a 180° RF pulse, which results in a “true” T2 relaxation time (Chavhan, Babyn, 

Thomas, et al., 2009). In GRE imaging, the T2* relaxation time is a combination of local 

inhomogeneities and this true T2 relaxation time. T2* relaxation times are shorter than the T2 

relaxation time given dephasing of transverse magnetisation is more rapid. This is fundamental 

to fMRI as the primary measure is based on blood oxygenation, i.e. haemoglobin (Hb) and 

whether the Hb is oxygenated and diamagnetic, or deoxygenated (dHb) and paramagnetic. Due 

to the unbound haem group in dHb a charge is present and thus a small magnetic field, which 

introduces local inhomogeneities and thus increases dephasing (a shorter T2* relaxation time) 

of surrounding water and tissue (Ogawa, Lee, Nayak, et al., 1990). For EEG fMRI studies, 

scanning parameters can vary from study to study, the TR could be 2-4 seconds, TE 30-50ms, 

30-50 slices, 80-90º flip angle, voxels from 2 x 2 x 2 mm to 5 x 5 x 5 mm, with the number of 

volumes captured depending on desired length of scan. 

It was the work of Ogawa and colleagues in 1990, who demonstrated an oxygen-dependent 

contrast in rodents under a high strength magnetic field (Ogawa, Lee, Kay, et al., 1990; Ogawa, 

Lee, Nayak, et al., 1990; Ogawa & Lee, 1990). In this work they defined the blood oxygenation 

level-dependent (BOLD) contrast in which the dHb is the contrast agent. The BOLD signal is 
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influenced by the level of blood oxygenation, cerebral blood flow (CBF), cerebral blood volume 

(CBV) and the cerebral metabolic rate of oxygen (CMRO2) (Huettel, Song & McCarthy, 2014). 

The haemodynamic response that encompasses these measures results from neurovascular 

coupling associated with increases in neuronal activity (Arthurs & Boniface, 2002; Logothetis 

& Wandell, 2004). The BOLD signal is believed to reflect local field potentials rather than 

action potentials, occurring at synapses rather than soma of neurons and is an indirect measure 

of neuronal activity (Lauritzen, 2005; Logothetis, Pauls, Augath, et al., 2001).  

Modelling the BOLD responses for analysis is generally done using a haemodynamic response 

function (HRF). The HRF is a model of the expected changes in the BOLD response to an 

evoked or endogenous neuronal event (see figure 1.4.1). There are different HRF models, such 

as the Glover HRF derived from sensorimotor and auditory BOLD responses (Glover, 1999), 

the statistical parametric mapping (SPM) canonical HRF implemented in SPM (Friston, 

Ashburner, Kiebel, et al., 2007) or even subject specific HRFs (Storti, Formaggio, Bertoldo, et 

al., 2013). Temporally the haemodynamic response is sluggish, with an initial dip or delay of 

1-2s, peaking at ~6s, and with post-stimulus undershoots that can last for 30s or more, 

dependent on stimulus duration (Buxton, Uludağ, Dubowitz, et al., 2004). Estimated parameters 

of the HRF, i.e. response height, peak latency and full width at half maximum (FWHM), may 

yield useful information, when accurately modelled, regarding the underlying neuronal activity 

(Lindquist & Wager, 2007). Accurate modelling of the haemodynamic response is important to 

minimise false positive and negative results; a poor fitting model will result in a loss of 

statistical power and reduce validity of results (Handwerker, Ollinger & D’Esposito, 2004; 

Lindquist & Wager, 2007).  

Most EEG-fMRI studies in epilepsy employ an event related design, where the timing of the 

IED is used and modelled in a general linear model (GLM) as a stick (zero-duration) or box-
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car (with a given duration) function with the HRF; in SPM the canonical HRF comprises of two 

gamma functions, one to model the peak and the other the undershoot of the response. Further 

basis functions can be added to the canonical HRF to account for variations in peak latency and 

duration of peak response; the temporal derivative and dispersion derivative, respectively.  The 

addition of the temporal and dispersion derivatives helps to account for any deviation from the 

predicted response (Friston, Fletcher, Josephs, et al., 1998). In SPM the model is constructed 

via a design matrix which will include the timing of the IED, possibly it’s derivatives, and any 

regressors of no interest, such as motion correction parameters, cardiac events, other 

paroxysmal EEG events of no interest etc. (see figure 1.4.2). The time course for each voxel is 

then analysed for fit of the predicted response (model) i.e. is there increased signal that occurs 

following an IED the is explained by the predicted response (HRF). A response that occurs 

outside the prediction will not be picked up, hence the reason for accurate modelling, this is 

especially pertinent in epilepsy due to the variable nature of BOLD responses to IEDs (for 

reviews see (Gotman, Kobayashi, Bagshaw, et al., 2006; Gotman & Pittau, 2011; Murta, Leite, 

Carmichael, et al., 2015b; van Graan, Lemieux & Chaudhary, 2015). 

Figure 1.4.1. Example of a haemodynamic response.  

Modified from Siero et al., 2013. 
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Figure 1.4.2. Flow diagram representing the various steps in pre-processing and 

modelling IEDs in EEG-fMRI studies. 

Modified from Murta et al., 2015. 
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1.4.3 Pre-processing of fMRI data 

The pre-processing of fMRI data is necessary for further analysis and largely consists of four 

steps; realignment or motion correction, slice timing correction, spatial normalisation and 

spatial smoothing. These processes allow correction for any displacements that occur during 

data acquisition and allow for spatially improved comparisons between subjects or for group 

analysis (for detailed reviews of these steps see (Huettel, Song & McCarthy, 2014; Aguirre, 

2006)). 

 

Realignment/Motion Correction 

During scanning, no matter how cooperative a participant is or how well their head is padded 

within the head coil, there will be some movements. Movement correction attempts to account 

for this by comparing each subsequent image of the brain to the first one acquired. The primary 

method for this uses a rigid-body correction with six motion parameters (three translations and 

three rotation). Although this realignment to the first image accounts for movements it does not 

remove for signal artefacts caused by said movements. Studies usually include the motion 

parameters as a covariate of no interest to account for the effects of these artefacts on the BOLD 

signal. 

 

Slice timing correction 

Slice-timing correction is done to account for the slight delays between slices obtained for a 

given volume of fMRI data. Multiple 2D slices are obtained in order to build a 3D volume, e.g. 

20 slices; as a slight delay is incurred for each slice the temporal shift is accumulated in the 3D 
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volume and thus in the haemodynamic response. As analysis of fMRI data is based on the fMRI 

time course, an event-related design, especially, would be compromised as the time of event 

would not match the haemodynamic response. Slice-timing correction is a necessary pre-

processing step, especially in event-related designs  (Sladky, Friston, Tröstl, et al., 2011). 

 

Spatial normalisation 

Spatial normalisation is done to warp a subject’s anatomical structure to a template. Putting a 

subject’s brain into standard space allows for testing and comparison of brain regions across 

subjects. This is particularly important for analysis of group data and even combining imaging 

modalities. The Montreal Neurological Institute (MNI) defined a standard brain space using a 

large number of MRI scans from normal controls, and this MNI brain space is used in SPM 

software packages. 

 

Spatial smoothing   

Finally, spatial smoothing reduces the statistical burden in fMRI analysis associated with the 

multiple statistical tests per voxel. The greater the number of statistical tests per voxel, the 

higher the false positive rate and thus the higher the statistical threshold needs to be. Spatial 

smoothing reduces the number of tests required. Too much smoothing however will reduce 

sensitivity for small areas of activation and too little will reduce for large areas. A FWHM 

Gaussian filter of at least 8mm or more is recommended for group data (Mikl, Marecek, Hlustík, 

et al., 2008). Though generally a smoothing of 2 times the maximum voxel size is used.  
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1.5 COMBINED EEG AND FMRI 

The first fMRI study in humans was performed in 1992 by Kenneth Kwong and colleagues who 

demonstrated increases in signal intensity in the visual cortex and motor cortex following flash 

stimulation and a hand squeezing task, respectively (Kwong, Belliveau, Chesler, et al., 1992). 

It was a year later in 1993 when John Ives and colleagues demonstrated it was possible to 

acquire EEG data in such a hostile environment. From these first steps into fMRI and combined 

recording of EEG and fMRI in humans, this has led to a plethora of studies investigating normal 

and pathological brain function. 

 

1.5.1 EEG data acquisition during fMRI 

The MRI scanner presents a hostile environment for recording the tiny voltages of scalp EEG, 

but also the materials used can have a detrimental impact on fMRI causing artefacts during 

scanning. Selecting the right equipment is essential for EEG-fMRI studies, for example 

Ag/AgCl electrodes produce more artefact on fMRI scans than carbon electrodes, whereas 

carbon composition resistors attached to electrodes produce much more artefact than cermet 

film resistors, thus poorly optimised equipment will lead to artefacts intruding into cortex 

(Krakow, Allen, Symms, et al., 2000). Rather than individually placed electrodes, the use of 

specialised MR-compatible EEG caps are also recommended (Bonmassar, Hadjikhani, Ives, et 

al., 2001). Due to the rise in popularity of EEG-fMRI, companies exist specialising in optimised 

equipment specifically designed for EEG-fMRI studies. Optimised equipment will minimise 

artefacts in the fMRI data but the EEG data will still be rendered uninterpretable by two 

significant contributors of artefacts; gradient artefacts and ballistocardiographic (BCG) 

artefacts. 
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Gradient artefacts are caused by the rapid switching of magnetic field gradients that occurs 

during scanning to give spatial information (see section 1.4.1). This high frequency artefact 

completely obscures the EEG data and can saturate amplifiers with insufficient dynamic range, 

but over the years several methods have been described in order to remove the artefact; the 

average artefact subtraction (AAS) method (Allen, Josephs & Turner, 2000); a variation of the 

AAS method, using principal component analysis (PCA) to define optimal basis sets (OBS) for 

artefact removal (Niazy, Beckmann, Iannetti, et al., 2005); the optimised moving-average 

filtering method (Ferreira, Wu, Besseling, et al., 2016); and the inclusion of any movements 

that occur during scanning into the artefact subtraction method (Freyer, Becker, Anami, et al., 

2009; Sun & Hinrichs, 2009). It has also been demonstrated that optimising the subject’s axial 

position can attenuate gradient artefacts (Mullinger, Yan & Bowtell, 2011). For most methods, 

to obtain optimal gradient artefact removal other additional conditions need to be satisfied; 

firstly, the synchronisation between MRI scanner and EEG acquisition clocks (Mandelkow, 

Halder, Boesiger, et al., 2006; Mullinger, Morgan & Bowtell, 2008), secondly, reducing the 

magnitude of the gradient artefact using a low-pass hardware filter, typically set to 250Hz 

(Mullinger, Castellone & Bowtell, 2013) and finally a sufficiently high sampling rate, ≥5KHz 

(Allen, Josephs & Turner, 2000).  

BCG artefacts are temporally coupled with the QRS complex of the ECG, occurring on the 

EEG with a slight delay, and are a combination of small movements of the electrodes as the 

scalp expands and contracts with the cardiac cycle (i.e. two phases, systolic and diastolic); small 

movements of the body and head related to cardiac cycle; and variation of the Hall voltage 

caused by changes in speed of the blood passing through arteries (Sijbers, Van Audekerke, 

Verhoye, et al., 2000). As with gradient artefact removal the same methods previously can be 

used to create a template to subtract BCG artefacts, i.e. AAS method (Allen, Josephs & Turner, 
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2000), or the OBS method (Niazy, Beckmann, Iannetti, et al., 2005). Field strength is an 

important consideration with regards to BCG artefact removal; as BCG artefact is a variable 

physiological artefact, when the magnetic field strength increases so does the amplitude and 

spatial variability of the artefact, making it increasingly difficult to remove (Debener, 

Mullinger, Niazy, et al., 2008). 

For a detailed overview of the practicalities of EEG-fMRI acquisition see Mullinger, Castellone 

& Bowtell, 2013 

 

1.5.2 EEG-fMRI in epilepsy 

The first EEG-fMRI experiments investigating epilepsy did not use fully simultaneous 

recording of EEG and fMRI, rather the EEG was used to trigger fMRI acquisition, with up to a 

few seconds delay in fMRI acquisition following IEDs (Krakow, Woermann, Symms, et al., 

1999; Seeck, Lazeyras, Michel, et al., 1998; Warach, Ives, Schlaug, et al., 1996). These studies 

successfully demonstrated regional increases in signal intensity associated with scalp IEDs. 

With the development of recording techniques and methods of artefact subtraction, as 

previously described, early studies using combined EEG-fMRI in epilepsy showed it was 

possible to implement this technique, again demonstrating regional increases in the BOLD 

signal associated with IEDs (Bénar, Gross, Wang, et al., 2002; Lemieux, Salek-Haddadi, 

Josephs, et al., 2001). From these initial studies, numerous have followed investigating focal 

epilepsies (Aghakhani, Kobayashi, Bagshaw, et al., 2006; Kobayashi, Bagshaw, Bénar, et al., 

2006; Lengler, Kafadar, Neubauer, et al., 2007; Liu, Yang, Yang, et al., 2008; Manganotti, 

Formaggio, Gasparini, et al., 2008), generalised epilepsies (Aghakhani, 2004; Benuzzi, 

Ballotta, Mirandola, et al., 2015; Hamandi, Laufs, Nöth, et al., 2008) and even recording ictal 
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events during EEG-fMRI (Chaudhary, Duncan & Lemieux, 2013; Di Bonaventura, Vaudano, 

Carnì, et al., 2006; Liu, Yang, Yang, et al., 2008; Salek-Haddadi, 2002; Sierra-Marcos, 

Maestro, Falcón, et al., 2013). The potential of EEG-fMRI to localise epileptic foci has led to 

its proposed primary clinical application in the work-up to epilepsy surgery (van Graan, 

Lemieux & Chaudhary, 2015; Zijlmans, Huiskamp, Hersevoort, et al., 2007), and where this 

places in the surgical pathway can be seen in figure 1.5.1 (Chapter 2 covers this in more detail).  

Since the early days of EEG-fMRI in epilepsy it was discovered that not all IEDs demonstrate 

a BOLD response that conforms to a canonical HRF shape (Bénar, Gross, Wang, et al., 2002; 

Lemieux, Laufs, Carmichael, et al., 2007; Masterton, Harvey, Archer, et al., 2010), and not all 

IEDs seem to be associated with BOLD changes (Aghakhani, Kobayashi, Bagshaw, et al., 2006; 

Salek-Haddadi, Diehl, Hamandi, et al., 2006). Two important factors may play a part in this, 

the modelling techniques used to model IEDs (discussed in section 2.5), and the neurovascular 

coupling that underpins the BOLD signal is potentially different in pathological neuronal 

events, such as an IED (Schwartz, 2007), as opposed to BOLD signal changes in response to a 

task in a normal brain, e.g. astrocytes that contribute significantly to CBF changes (Buxton, 

2012; Murta, Leite, Carmichael, et al., 2015a) are known mediators of epileptiform activity 

(Devinsky, Vezzani, Najjar, et al., 2013), with recent computational models demonstrating 

nonlinear contributions of astrocytes to CBF magnitudes in interictal events (Blanchard, Saillet, 

Ivanov, et al., 2016). As iterated in a review by Buxton, 2012, understanding of the 

physiological mechanisms behind the BOLD signal still requires further research (Buxton, 

2012), this is especially true of pathological brain events. 

The conceptual development of epilepsy as a condition involving large-scale brain networks, 

often spanning hemispheres and involving multiple brain lobes, has evolved over the last couple 

of decades (Halász, 2010a, 2010b), to the extent of being recognised in recent standards of 
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classification (Berg, Berkovic, Brodie, et al., 2010). The network basis of epilepsy has also 

been investigated with EEG-fMRI studies, using group analysis of patients with epilepsy to 

identify common regions across subjects (An, Dubeau & Gotman, 2015; Fahoum, Lopes, Pittau, 

et al., 2012; Kobayashi, Grova, Tyvaert, et al., 2009; Laufs, Richardson, Salek-Haddadi, et al., 

2011). From these studies, a common region of activation associated with IEDs, in a group with 

focal epilepsy, was identified in the ipsilateral frontal piriform cortex (Laufs, Richardson, 

Salek-Haddadi, et al., 2011); in a more homogenous group, of TLE patients, activation was 

reported in ipsilateral mesial temporal and bilateral neocortical-temporal structures and basal 

ganglia (Kobayashi, Grova, Tyvaert, et al., 2009); and a study by Fahoum et al., 2012, identified 

multiple brain regions associated with three distinct groups of frontal lobe epilepsy (FLE), TLE 

and posterior quadrant epilepsy. Group deactivations were also reported in regions of the default 

mode network (DMN) (Fahoum, Lopes, Pittau, et al., 2012; Kobayashi, Grova, Tyvaert, et al., 

2009), a resting state network of the brain (Raichle, MacLeod, Snyder, et al., 2001). 

The advent of fMRI, specifically the development of resting-state fMRI, has contributed 

significantly to the characterisation of numerous resting-state networks (RSNs) composed of 

often distant regions functionally correlated (i.e., demonstrating correlation of their time series) 

to form specific networks common between subjects (Damoiseaux, Rombouts, Barkhof, et al., 

2006; Fox, Corbetta, Snyder, et al., 2006; Raichle, MacLeod, Snyder, et al., 2001; Raichle & 

Snyder, 2007; Seeley, Menon, Schatzberg, et al., 2007). Alterations in the DMN (Gotman, 

Grova, Bagshaw, et al., 2005a; Haneef, Lenartowicz, Yeh, et al., 2012; Luo, Li, Lai, et al., 

2011), attention networks (Chen, Huang, Chen, et al., 2015; Zhang, Lu, Zhong, et al., 2009; 

Zheng, Qin, Dang, et al., 2012), fronto-parietal control network (Wei, An, Zeng, et al., 2015b), 

and executive control network (Vlooswijk, Jansen, Jeukens, et al., 2011) have been reported in 

various epilepsy syndromes. As well as disruption of well-defined RSNs caused by an 
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underlying epilepsy syndrome, recent research has also begun to utilise similar methods to 

investigate epilepsy specific fluctuations in resting state fMRI, i.e. regions implicated in the 

epilepsy. Changes in functional connectivity (FC), specifically a reduction, between affected 

amygdala/hippocampus and the DMN/contralateral homologous structures has been 

demonstrated in unilateral mesial TLE (Pittau, Grova, Moeller, et al., 2012). Additionally, 

amplitude of low frequency fluctuation (ALFF) measurements, which measures low frequency 

activity (0.01-0.08Hz) of BOLD signal data, presumably associated with the brain's 

spontaneous neuronal activity during rest (Zang, He, Zhu, et al., 2007; Zou, Zhu, Yang, et al., 

2008), has demonstrated regional increases in mesial TLE with moderate sensitivity and high 

specificity in lateralisation (Zhang, Lu, Zhong, et al., 2010), and may even aid in classification 

of TLE subtypes (Reyes, Thesen, Wang, et al., 2016). Such techniques, group analysis of 

homogenous epilepsies, investigating alterations in RSNs as a function of epilepsy, and changes 

in FC and ALFF, again allow for potentially clinically relevant information and may help in 

pre-surgical evaluation of epilepsy. Indeed, studies have begun to use resting state EEG-fMRI 

and FC measures as an assessment tool in pre-surgical workup for epilepsy. In an EEG-fMRI 

study by Negishi et al., 2011, computed FC maps, seeded from the concordant region of 

activation derived from spike related EEG-fMRI, demonstrated less lateralised FC in groups of 

patients with poor outcome following resective surgery, i.e. seizure recurrence, indicating this 

technique may potentially be used as a predictor of outcome (Negishi, Martuzzi, Novotny, et 

al., 2011). Seizure freedom following surgery is one outcome, another outcome to consider is 

potential neuro-deficits following surgery. Recent studies have also shown that resting state 

fMRI may help predict neurocognitive outcomes following surgery (Bonelli, Powell, 

Yogarajah, et al., 2010; Doucet, Rider, Taylor, et al., 2015). (Pittau & Vulliemoz, 2015). 
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Patient referred into tertiary epilepsy centre due to refractory epilepsy being established or for 

second opinion. Once epilepsy is established as refractory the patient is given the choice of 

advancing down the surgical pathway for further treatment options. 

First line investigations are carried out prior to discussion 

at multi-disciplinary team meeting (MDT): 

MRI, Video Telemetry, Neuropsychology 

Findings discussed in epilepsy MDT  

Investigations are 

concordant and a 

resectable target has 

been identified. 

Surgical plan is 

discussed in MDT 

and the patient is 

offered surgery. 

Resective surgery 

not an option. The 

patient is then 

offered 

neuromodulation 

(VNS) providing it is 

not contraindicated. 

First line investigations do not 

provide sufficient information to 

offer a resective option (i.e. normal 

imaging, discordant findings 

between investigations, bilateral 

EEG onset but clear imaging 

abnormality) and further 

investigations needed. 

Second line investigations undertaken, including PET, 

SPECT, MRS, MEG, and it is here that EEG-fMRI would be 

included in the pathway as an additional modality that could 

contribute to MDT decision making. This could lead to offer 

of surgery, contraindication of surgery or the formulation of 

a hypothesis that could be investigated with intra-

cranial/cerebral recordings. 

Patients undergo intra-cranial/cerebral EEG monitoring and results 

discussed at MDT in conjunction with previous investigations. 

Figure 1.5.1. Epilepsy surgery MDT pathway. A summary of the surgical pathway at 

the Queen Elizabeth Hospital Birmingham, Birmingham, UK, indicating where EEG-

fMRI might fit in. 

VNS = vagal nerve stimulator, PET = positron emissions tomography, MRS = magnetic 

resonance spectroscopy, SPECT = single positron emission tomography, MEG = 

magnetoencephalogram 
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1.5.3 EEG-fMRI in sleep 

Studies investigating cognitive processing of sensory stimuli during sleep have primarily 

focused on using EEG and the subsequent investigation of event related potentials (ERPs) to 

various acoustic paradigms (Bastuji, García-Larrea, Franc, et al., 1995; Colrain & Campbell, 

2007; Cote & Campbell, 1999). Acoustic stimuli are used in ERP studies preferentially, given, 

as an experimental variable, it is easier to manipulate, deliver and measure, as opposed to 

respiratory occlusion for example (for review of ERPs in sleep see Campbell, 2010). One of the 

earliest studies to use EEG-fMRI during sleep sought to do something similar, and presented 

auditory stimuli during NREM sleep, identifying increased activity in left amygdala and 

prefrontal cortex to novel stimuli, and concluding that the brain can process meaningful stimuli 

during sleep (Portas, Krakow, Allen, et al., 2000). A further EEG-fMRI study by Czisch et al., 

2002, using complex auditory stimulation of a recording of a Mark Twain story, demonstrated 

a reduction in activation in the auditory cortex and a deactivation in the visual cortex 

accompanying NREM sleep (Czisch, Wetter, Kaufmann, et al., 2002). This deactivation in the 

visual cortex was also corroborated by an fMRI and PET study (Born, Law, Lund, et al., 2002), 

and was interpreted as a mechanism of the brain to prevent arousal from external stimuli 

(Czisch, Wetter, Kaufmann, et al., 2002).  Czisch et al., 2004, later expanded on this work 

mapping the correlation between the fMRI response and the EEG changes associated with 

acoustic stimuli, i.e. delta power and KCs, demonstrating BOLD signal decreases that 

correlated with an increase in delta power and KCs and that were absent during SWS, indicating 

a stage-dependent sleep-protective mechanism (Czisch, Wehrle, Kaufmann, et al., 2004). It has 

also been shown, in a very recent study, that there is reduced auditory responses to stimuli with 

a hierarchy of language processing during sleep, with activation in regions related to higher 

order language processing absent during NREM (Wilf, Ramot, Furman-Haran, et al., 2016). 
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The processing of incoming auditory stimuli has also been studied in relation to sleep 

paroxysms, SSs (Dang-Vu, Bonjean, Schabus, et al., 2011; Dang-Vu, McKinney, Buxton, et 

al., 2010; Schabus, Dang-Vu, Heib, et al., 2012) and KCs (Dang-Vu, Bonjean, Schabus, et al., 

2011). Behavioural studies have demonstrated that responses to auditory stimulus in the 

presence of a SS are diminished and more variable as compared to responses outside the 

presence of a SS, indicating a disruption in the transmission of external stimuli to the cortex 

(Dang-Vu, Bonjean, Schabus, et al., 2011; Dang-Vu, McKinney, Buxton, et al., 2010). 

Auditory responses followed by a KC were enhanced as compared to auditory responses in the 

absence of a KC, also producing frontal activations similar to those seen with a SO (Dang-Vu, 

Bonjean, Schabus, et al., 2011). Similar findings were also demonstrated by Czisch et al., 2009, 

who observed stronger auditory responses associated with KCs than not (Czisch, Wehrle, 

Stiegler, et al., 2009). 

Aside from their interaction with incoming stimuli, SSs and KCs have also been a subject of 

study in their own right (Caporro, Haneef, Yeh, et al., 2012; Jahnke, von Wegner, Morzelewski, 

et al., 2012; Schabus, Dang-Vu, Albouy, et al., 2007) as have VSWs (Stern, Caporro, Haneef, 

et al., 2011), as investigation of these paroxysms using EEG-fMRI may yield information 

regarding function or networks involved in their generation. Activation associated with sleep 

spindles has been reported in the thalamus, anterior and posterior cingulate cortices, insula 

cortex, temporal lobes and paracentral cortex (Caporro, Haneef, Yeh, et al., 2012; Schabus, 

Dang-Vu, Albouy, et al., 2007), whilst activation associated with KCs has been reported in the 

thalamus, superior temporal lobes, paracentral gyri, occipital, parietal and frontal lobes 

(Caporro, Haneef, Yeh, et al., 2012), as well the brainstem and primary sensory regions 

(Jahnke, von Wegner, Morzelewski, et al., 2012). EEG-fMRI of VSWs demonstrated signal 

increases  predominating in primary sensory and motor regions (Stern, Caporro, Haneef, et al., 
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2011). Interestingly only one of these studies report negative BOLD changes, Jahnke et al., 

2012, in the anterior insula, this was interpreted as part of a mechanism to prevent higher order 

processing of any basic sensory information that may be processed during a KC. They also used 

dynamic causal modelling to support a cortical origin of the KC (Jahnke, von Wegner, 

Morzelewski, et al., 2012). In addition to these sleep paroxysms, the cerebral correlates of slow 

waves and delta waves have also been investigated linking several brain regions, including 

frontal cortical regions, posterior cingulate cortex and the precuneus, synchronised to the slow 

oscillation (Dang-Vu, Schabus, Desseilles, et al., 2008). 

The effect of sleep on established brain networks has also begun to unfurl with particular focus 

on the DMN (Horovitz, Braun, Carr, et al., 2009; Koike, Kan, Misaki, et al., 2011; Sämann, 

Wehrle, Hoehn, et al., 2011). The deepening of sleep has demonstrated the decoupling of the 

frontal cortical components of the DMN (Horovitz, Braun, Carr, et al., 2009), and a general 

reduction in corticocortical functional connectivity in the DMN, notably between the anterior 

and posterior node, and between the DMN and its anti-correlated network (Sämann, Wehrle, 

Hoehn, et al., 2011). The effects of sleep deprivation on the DMN has also been investigated 

with just fMRI, demonstrating reduced functional connectivity within the DMN with sleep 

deprivation (De Havas, Parimal, Soon, et al., 2012). For a review on the utility of EEG-fMRI 

in sleep and the relationship between sleep and brain networks, see Duyn, 2012, and Picchioni, 

Duyn & Horovitz, 2013.  
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1.6 THESIS OVERVIEW 

The first experiment in this thesis involved the recruitment of patients with a complex epilepsy 

from a tertiary epilepsy centre. The aim here was to assess the utility of EEG-fMRI in a clinical 

setting as if this investigation were freely available to the epileptologist or epilepsy 

neurosurgeon. The patients “referred” in for this theoretical service were primarily those who 

were on an epilepsy surgical pathway, though some were non-surgical complex diagnostic 

cases. Following on from this the second experiment expanded on previous work investigating 

BOLD signal changes preceding IEDs, this time applying a pre- and postspike analysis to both 

a subset of patients with focal epilepsy and a visual experiment in normal participants. In the 

next experiment this same analysis was then applied to sleep paroxysms (VSWs, KCs and SSs) 

from a group of sleep deprived participants who managed to sleep in the MRI scanner. The 

purpose of this experiment was to determine if early BOLD signal changes are unique to 

pathological paroxysmal activity or also observable in non-pathological paroxysmal activity. 

The initial hypothesis was that “prespike” changes might be absent and thus validate the 

findings of prespike changes in epilepsy. This experiment became quite orientated towards 

sleep and ultimately marked the point at which the thesis began to deviate towards the 

investigation of sleep. The final experiment focused solely on the investigation of sleep 

paroxysms, explicitly VSWs and KCs, this time re-recruiting previous sleep deprived 

participants who slept in the scanner, to achieve data reflective of “normal” rather than recovery 

sleep, and examine the effect of sleep deprivation on these transients. 
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2.1 ABSTRACT 

Epilepsy is one of the most common neurological disorders and onset can occur at any age. It is a 

complex disease of many aetiologies and can be challenging in its diagnosis, classification and 

management. In approximately 30 per cent of cases the epilepsy is not adequately controlled with 

pharmacological treatment and a subset of these patient may progress to epilepsy surgery as a 

potential curative option, an option that often requires a considerable work-up. The aim of this 

study was to assess the potential use of EEG-fMRI as a clinical tool if it were freely available to 

the epileptologists/neurosurgeon in the setting of a tertiary centre with a complex epilepsy service. 

In this study, 26 patients were recruited from epileptologists who “referred” in complex epilepsy 

patients. The primary aim for most patients was that of localisation for pre-surgical work-up but in 

some cases it was a diagnostic question that predominated. Of the 26 recruited only 13 

demonstrated any interictal epileptiform discharges on the EEG obtained within the scanner. Of 

those 13, two were primarily “referred” for more diagnostic reasons and the others for further 

localisation. In 3 (12%) of cases overall, the results from the EEG-fMRI were judged by the 

epileptologist to have been contributory to patient management or aid progression down a surgical 

pathway. These results suggest, deployed in its simpler form, EEG-fMRI has some limited use in 

the tertiary epilepsy clinic. 
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2.2 INTRODUCTION 

Epilepsy is a relatively common neurological disease affecting an estimated 50 million people 

worldwide, across all age groups (Anon, 2010). Of these patients approximately 20 - 30 per cent 

will develop a refractory epilepsy, one that is not amenable to pharmacological intervention 

(Arroyo, Brodie, Avanzini, et al., 2002; Sander, 1993). According to guidelines laid down by the 

National Institute for Health and Clinical Excellence (NICE), refractory epilepsy is established 

after 2 years of unsuccessful pharmacological treatment and after trial of at least two medications. 

Following this, patients are recommended to be referred to a tertiary centre for further management 

and possible entry on to an epilepsy surgery program (National Clinical Guideline Centre (UK), 

2012). For patients with refractory epilepsy who enter the surgical program, there are two surgical 

options; cranial surgery, usually resective, and neuromodulation, with resective surgery being the 

only potentially curative option (Fauser & Zentner, 2012). Given seizure freedom rates of between 

50 – 80 percent following resective surgery (de Tisi, Bell, Peacock, et al., 2011; Elwes, Dunn, 

Binnie, et al., 1991; Polkey, 2004) pursuing this option is indeed worthwhile for many. The 

decision on surgical treatments is only made following a battery of diagnostic tests; most 

commonly video-EEG, MRI, and neuropsychological testing (Bernstein, Prather & Rey-Casserly, 

1995; Uijl, Leijten, Parra, et al., 2005; Urbach, Mast, Egger, et al., 2015). Lack of concordance 

between diagnostic modalities, though not necessarily discordance, can often hamper progression 

to resective surgery and this is most notable in the presence of normal MR imaging (Alarcon, 2006; 

Scott, Fish, Smith, et al., 1999). In the absence of an MRI abnormality the use of more novel 

imaging techniques has increased in recent years with the particular aim of formulating a 

hypothesis on localising the epileptogenic zone (EZ), which may be amenable to further 
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investigation with intracranial electrodes (Nowell, Rodionov, Zombori, et al., 2015; Rodionov, 

Vollmar, Nowell, et al., 2013). The use of intracranial recordings has been shown to be effective 

in both MRI-negative and lesional epilepsies in equal measures, though formulating an implant 

strategy is still dependent on the information gained from non-invasive techniques (McGonigal, 

Bartolomei, Regis, et al., 2007). Given around 30 – 50 per cent of adult patients with focal epilepsy 

have no identifiable lesion on MR imaging (Nguyen, Mbacfou, Nguyen, et al., 2013; Toledo, 

Sarria-Estrada, Quintana, et al., 2013), further information regarding localisation is invaluable, and 

utilisation of multimodal imaging techniques can significantly alter decisions made regarding 

epilepsy surgery (Nowell, Rodionov, Zombori, et al., 2015). 

Combined EEG-fMRI is one such non-invasive imaging technique that has been developing over 

the last two decades and gaining more support for its potential role in epilepsy surgical work-up 

(Dorfer, Widjaja, Ochi, et al., 2015; Ramli, Rahmat, Lim, et al., 2015; van Graan, Lemieux & 

Chaudhary, 2015). Given the difficulties in formulating a hypothesis on resective targets for 

epilepsy surgery, any further information that could be provided by non-invasive techniques is 

welcome. Initially EEG-fMRI studies tended to report on case studies of a small group of, often 

heterogeneous, patients with epilepsy (Bénar, Gross, Wang, et al., 2002; Lemieux, Salek-Haddadi, 

Josephs, et al., 2001; Salek-Haddadi, Merschhemke, Lemieux, et al., 2002), only later focussing 

on more homogenous epilepsy forms, such as focal TLE (Kobayashi, Bagshaw, Bénar, et al., 2006; 

Morgan, Gore & Abou-Khalil, 2007), or generalised epilepsies (Aghakhani, 2004; Benuzzi, 

Ballotta, Mirandola, et al., 2015; Hamandi, Laufs, Nöth, et al., 2008; Hamandi, Salek-Haddadi, 

Laufs, et al., 2006). The utilisation of EEG-fMRI in the work-up for epilepsy surgery has already 

gained momentum, and is proving to be a useful addition in the battery of non-invasive 
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investigations available to clinicians and surgeons (Coan, Chaudhary, Grouiller, et al., 2016; 

Moeller, Tyvaert, Nguyen, et al., 2009; Thornton, Laufs, Rodionov, et al., 2010; Zijlmans, 

Huiskamp, Hersevoort, et al., 2007). The vast majority of these outcome studies focus on patients 

already entered onto an epilepsy surgery program rather than refractory patients who might be 

difficult to manage. How clinicians, who may not have any vested interest or working knowledge 

of EEG-fMRI, would utilise this test were it freely available to them is not fully reported. Would 

it be used in difficult to manage patients or exclusively for pre-surgical work-up where localisation 

is difficult with just basic modalities available?  

The aim of this study was to investigate the potential utility of EEG-fMRI in a group of 

heterogeneous patients with epilepsy, freely referred from the complex epilepsy service of a tertiary 

NHS Trust, and follow them up over a period of at least 3 years to see if EEG-fMRI made any 

contribution to patient management, surgical or otherwise.  

 

2.3 METHODS 

Patients 

Twenty-six patients (13 females, 37±19 years) with a diagnosis of epilepsy were recruited from 

Consultant Neurologists with a special interest in Epilepsy, from the University Hospital 

Birmingham NHSF Trust and The Barbary BSMH Trust in accordance with National Health 

Service ethical approval (REC reference 06/Q2702/69). Patients were referred in by Epileptologists 

with the expressed intent of gaining more information on clinically difficult to manage patients, 

not necessarily on any surgical program.  Patients were accepted on the basis of frequency of IED 
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(estimated rate more than 10 IEDs per hour based on routine outpatient EEG) and a seizure 

frequency of less than one per week to minimise the risk of a seizure occurring in the MRI scanner. 

Written and informed consent was obtained, and the patients were screened to ensure suitability 

for scanning. One subject was scanned twice on two separate occasions; the first dataset for this 

patient is included. Following scanning and presenting the results to the epileptologists who 

referred the patients for EEG-fMRI, they were asked whether they felt the additional information 

provided by the results was contributory to patient management. The neurologists/epileptologists 

were fully aware that EEG-fMRI, at the time, was not a clinically validated investigative technique 

and any results were treated as such. 

 

EEG-fMRI data acquisition 

EEG data were acquired at 5 kHz continuously during scanning using an MR compatible 64-

channel EEG cap (BrainProducts, Munich, Germany) and two 32 channel MR compatible 

amplifiers (BrainAmp MR Plus, Brain Products, Munich, Germany). The EEG recording cap 

consisted of 62 scalp electrodes distributed in accordance with the international 10-20 system, with 

a further 2 electrodes to record ECG and ocular movements. Electrode impedances were kept below 

10kΩ.  

A 3T Phillips Achieva MR scanner (Philips, Netherlands), with an 8-channel SENSE head coil, 

was used for the acquisition of echo-planar imaging (EPI) data (patients 1 – 8, 2.5mm isotropic 

voxel, TR 3000ms, TE 35ms, 50 slices, flip angel 80°, 120 volumes/run; patients 9 – 25, 3x3x4mm 

voxels, TR 2000ms, TE 35ms, 32 slices, flip angel 80°, 180 volumes/run) and a T1-weighted scan 
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(1mm isotropic voxels) for anatomical reference of fMRI data. Each run of fMRI lasted 

approximately 6 minutes, with the number of runs acquired dependent on patient cooperation and 

comfort. 

 

EEG processing 

Removal of MR gradient artefacts was performed offline using Brain Vision Analyser (Brain 

Products, Munich, Germany) using a template subtraction approach (Allen, Josephs & Turner, 

2000). Ballistocardiogram artefacts were removed using the Optimal Basis Set (OBS) plug-in 

(Niazy, Beckmann, Iannetti, et al., 2005) to EEGLAB (Delorme & Makeig, 2004). An experienced 

electroencephalographer marked the onset of any epileptiform electrographic discharges, 

categorising the events based on morphology, topography and duration. If a patient had more than 

one IED type, this was modelled within the same design matrix.  

 

fMRI processing 

EPI data were processed in SPM5 (Wellcome Department of Imaging Neuroscience, UCL, UK). 

Initially the images underwent realignment for motion correction, followed by slice timing 

correction, anatomical normalisation to MNI space and then finally the data were smoothed with a 

Gaussian kernel (6mm). Images were flipped so that the right side of the image represents the right 

side of the brain (i.e. images are presented according to neurological convention). The timings of 

the IEDs extracted from the EEG data  were modelled in an event related design as a stick function 

using a canonical HRF and its temporal derivative (Friston, Fletcher, Josephs, et al., 1998) 
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implemented in SPM5 (Friston, Ashburner, Kiebel, et al., 2007). Six motion correction parameters 

were also included in the analysis as multiple regressors. Statistical t-maps were created with a 

liberal thresholding of p<0.001, uncorrected. 

 

2.4 RESULTS 

Of the 26 patients initially recruited into the study only 13 (8 females, 22±18 years) were included 

in the final analysis. One patient was excluded due to having a seizure in the scanner before EPI 

acquisition, one due to excessive myogenic artefact on the EEG recording obtained within the 

scanner and one due to not wanting to go inside the scanner due to the feeling that the scanner 

environment was too uncomfortable. The remaining 10 patients were excluded due to having no 

IEDs whilst in the scanner (Table 2.4.1. outlines brief details on each patient and reason for 

exclusion). One patient (Patient 17) demonstrated only 8 irregular theta paroxysms with a slightly 

sharpened morphology occurring in the left temporal region during scanning. The clinical EEG, 12 

months prior to participation in this study, demonstrated well defined left temporal sharp waves; 

unfortunately, these were not evident during scanning. No significant activation was associated 

with the paroxysmal theta activity that was captured on the EEG during scanning.    

For patients who went on to have surgery or where the epileptologists felt that the results of the 

EEG-fMRI were contributory in patient management, the results are presented as short case studies.  

In addition, a summary of 5 patients who were included, but where the results were non-

contributory or did not progress to epilepsy surgery, can be found in Table 2.4.2. Coordinates and 
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anatomical locations highlighted in bold are the location of the maximum t-statistic in both the case 

studies and in Table 2.4.2. 

Patient Age/Sex Seizure type IEDs in scanner Included/Excluded 

1 40/M L arm FMS 137 R T SW Included 

2 20/M R TLS Nil recorded Excluded – no IEDs 

3 18/M GTCS 7 GSW Included 

4 35/F R TLS Nil recorded Excluded – no IEDs 

5 30/M R TLS, SPS 14 R T SW Included 

6 36/M L TLS, GTCS Nil recorded Excluded – no IEDs 

7 29/M GTCS Myogenic artefact Excluded - artefact 

8 24/F GTCS, SPS 15 R P Sp Included 

9 36/M L TLS, GTCS Refusal to be scanned Excluded 

10 18/F L TLS 21 L T SW Included 

11 47/M GTCS Nil recorded Excluded – no IEDs 

12 25/F L FLS 59 L F SW Included 

13 21/F L TLS 45 L T Sp Included 

14 18/F L TLS, GTCS 17 L T SW Included 

15 31/M GTCS, drop attacks Nil recorded Excluded – no IEDs 

16 49/F R TLS Nil recorded Excluded – no IEDs 

17 29/M L TLS 8 L T theta Included 

18 56/F L TLS, NEAD Nil recorded Excluded – no IEDs 

19 19/F L TLS, GTCS 19 L F-T SW Included 

20 55/M R TLS Nil recorded Excluded – no IEDs 

21 30/F FLS Nil recorded Excluded – no IEDs 

22 25/F FLS (hyperkinetic) Nil recorded Excluded – no IEDs 

23 33/F R FS 7 R T SW Included 

24 30/M L FMS 8 L F-C SW Included 

25 38/M FLS (hyperkinetic) Seizure in scanner Excluded 

26 37/F L TLS 4 L T SW Included 

 

Table 2.4.1. Summary of patients recruited into study. Patients recruited into the final analysis 

are highlighted and reasons given if not included in study. Most common reason for exclusion is 

lack of IEDs recorded in the scanner.  

Abbreviations: L = left, R = right, F = frontal, T = temporal, C = central, P = parietal, IED = 

interictal epileptiform discharge, FMS = focal motor seizures, TLS = temporal lobe seizures, 

GTCS = generalised tonic clonic seizures, SPS = simple partial seizures, FLS = frontal lobe 

seizures, SW = sharp waves, GSW = generalised spike and wave, Sp = spikes, NEAD = non-

epileptic attack disorder. 
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Patient Clinical MRI Seizure semiology EEG fMRI results fMRI activation 

1, 40/M Extensive right 

oligoastrocytoma 

 

Focal motor seizures of the 

left arm lasting only several 

seconds. Retained awareness. 

 

Small region of activation in 

left caudate (-6, 0, 8). Non-

contributory by view of 

consultant. 

 

5, 30/M No abnormality Epigastric aura, lip smacking, 

loss of awareness, lasting up 

to 2 minutes. 

 

Right inferior frontal (46, 38, 

-18), very small cluster anterior 

insula (40, 14, 7). Non-

contributory by view of 

consultant. 
 

8, 24/F No abnormality Paroxysmal episodes of 

parasthesia/dysthesia of right 

arm, with retained awareness. 

GTCS. 

 

Right perirhinal cortex (30, -

6, -40), right mid-cingulate 

region (18, -30, 43). Non-

contributory by view of 

consultant. 
 

10, 18/F No abnormality Complex visual hallucinations 

with retained awareness. 

Episodes of loss of awareness, 

lip smacking, speech arrest. 

 

Left fusiform gyrus (-36, -39, 

-24), left temporal pole (-36, 

18, -40), left hippocampus (-

37, -14, -16). Non-contributory 

by view of consultant.  

12, 25/F No abnormality 

 

 

 

 

 

Loss of awareness, dystonic 

posturing of right arm, 

infrequent nocturnal events 

with hyperkinetic semiology. 

  

Left hippocampus (-27, -6, -

20), left temporal pole (-27, 12, 

-28), left middle frontal gyrus 

(-30, 48, 4). Non-contributory 

by view of consultant 
 

 

Table 2.4.2. Summary of patients included in the study but who did not progress to surgery or where it was felt by medical team that 

the EEG-fMRI results were non-contributory to patient management.  
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History. Right handed, 18-year-old male with onset of seizures at the age of 13 years.  

Typical seizure burden of GTCS, though possibly hyperkinetic, about once every 2-

4 weeks. Witness description of daytime seizures compatible with GTCS though 

possible thrashing around at night. A mixture of nocturnal and daytime seizures. 

Provisional diagnosis of idiopathic generalised epilepsy (IGE). 

Medicated with Phenytoin and Lamotrigine. 

Clinical diagnostics. Routine outpatient clinical EEG demonstrated bursts of SWC 

activity with a right sided emphasis. 

Clinical MR imaging revealed a right frontal cyst. 

EEG-fMRI. Patient recruited into the study via epileptologist who expressed a 

specific interest on whether the right frontal cyst could be epileptogenic or not, i.e. 

was the patient’s epilepsy truly an IGE or of focal origin. 

EEG recording during fMRI scanning demonstrated seven bursts of SWC activity, 

maximal in amplitude over the right anterior quadrant.  

fMRI results showed widespread activation in the frontal lobe, bilaterally in posterior 

middle temporal gyrus, precuneus, bilateral thalamus, anterior/mid-cingulate 

cortices. No activation was observed in the region of the cyst.  

Outcome. Epileptologist satisfied that both clinical history, EEG and EEG-fMRI 

sufficient to rule out cyst as cause of epilepsy and felt that the EEG-fMRI results 

were contributory to this decision. Epilepsy went into remission following changes 

in pharmacological therapy. 

CASE 1. PATIENT 3 
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History. Right handed, 21-year-old female with onset of seizures at the age of 13 

years.  Typical seizure burden of one complex partial seizure (CPS) a week; loss of 

awareness, aphasic, occasional lip smacking and fear. Patient had previous excision 

of left temporal oligoastrocytoma for oncological reasons. Seizure free for 6 months 

following surgery but seizures started again. 

Medicated with Levetiracetam and Lamotrigine. 

Clinical diagnostics. Routine outpatient clinical EEG demonstrated fairly frequent 

left temporal sharp waves and occasional independent right temporal sharp waves. 

Video-EEG captured a single seizure arising from the left hemisphere. 

Clinical MRI revealed site of previous excision of left temporal oligoastrocytoma 

(highlighted with green circles). No primary/secondary features of hippocampal 

sclerosis. 

EEG-fMRI. Patient recruited into the study via epileptologist who expressed a 

specific interest in whether the hippocampus that remained following tumour based 

surgery could be epileptogenic. 

EEG recording during fMRI scanning demonstrated 45 left temporal spikes.  

fMRI results showed a single small cluster of activation in the left parahippocampal 

gyrus (-30, -21, -24).  

CASE 2. PATIENT 13 

Outcome. Despite small region of activation, the epileptologist and neurosurgeon 

felt justified in offering a period of intracerebral video-EEG which revealed seizure 

onset from left hippocampus. Plan was for second surgery, this time an anterior 

temporal lobe resection and hippocampectomy, however patient’s epilepsy went into 

remission so any surgical interventions were suspended. The patient is now >2 years’ 

seizure free. 
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History. Right handed, 18-year-old female with onset of seizures at the age of 15 

years. Seizure semiology described as episodes of loss of awareness (described by 

carer as absences) and GTCS; “absences” occurring once a week and GTCS every 

month. 

Medicated with Lamotrigine. 

Clinical diagnostics. Routine outpatient clinical EEG demonstrated both left and 

right temporal sharp waves, with a greater preponderance in the left. Video-EEG 

following aggressive medication withdrawal demonstrated generalised EEG changes 

with GTCS.  

Clinical MR Imaging showed possible left temporal dysembryoplastic 

neuroepithelial tumour (DNET).  

CASE 3. PATIENT 14 

EEG-fMRI. Patient recruited into the study via epileptologist given discordance 

between ictal EEG and potentially highly DNET. 

EEG recording during fMRI scanning demonstrated 17 left temporal sharp waves.  

fMRI results showed clusters of activation in the left temporal pole (-42, 18, -36), 

left middle frontal gyrus (-36, 45, 20), left thalamus (-7, -20, 3), posterior middle 

temporal gyrus (-43, -61, -1). 

Outcome. Results of EEG-fMRI (left sided activations) prompted epileptologist to 

redo video-EEG without aggressive medication withdrawal. Patient had two ictal 

events during second video-EEG which revealed a left temporal onset. Patient had 

left temporal lobe resective surgery though did not become seizure free. 
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History. Right handed, 19-year-old female with onset of seizures at the age of 4 

years. Seizure semiology described as right sided sensory symptoms, loss of 

awareness, right hand grasping the left, dysphasia. 

Medicated with Lamotrigine and Oxcarbazepine 

CASE 4. PATIENT 19 

Clinical diagnostics. Routine outpatient clinical EEG demonstrated left temporal 

sharp waves, occasionally independent right temporal sharp waves. Video-EEG 

demonstrated 8 seizures with a left temporal onset. 

Clinical MR Imaging showed left hippocampal sclerosis (circled in green).  

EEG-fMRI. Patient recruited into the study via epileptologist as a further 

investigation for pre-surgical work up.  

EEG recording during fMRI scanning demonstrated 19 left temporal sharp waves.  

fMRI results showed activation in left insula (-36, 15, -4), left mid cingulate (0, 15, 

44), left anterior cingulate (3, 30, 20), left inferior temporal gyrus (-42, -12, -20), 

right amygdala (30, 6, -25). 

Outcome. Results of EEG-fMRI (left sided activations) viewed, by epileptologist, as 

neither concordant or discordant and in this case viewed as non-contributory as other 

routine diagnostics were concordant (i.e. video-EEG, MRI and neuropsychometry).  

Patient had left temporal lobe resective surgery and became seizure free (>2 years). 
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History. Right handed, 33-year-old female with onset of seizures at the age of 22 

years.  Two main seizure types; out of body experiences lasting a few seconds and 

focal motor seizures of mainly the right foot, occasionally progressing to GTCS. 

Medicated with Lamotrigine. 

Clinical diagnostics. Routine outpatient clinical EEG demonstrated right sided 

paroxysmal theta activity. Video-EEG captured 3 seizures with bilateral slowing at 

onset, more prominent on the right. 

Clinical MR imaging revealed a right parietal astrocytoma (WHO 1). 

EEG-fMRI. Patient recruited into the study via epileptologist given the seemingly 

bilateral onset of seizures recorded on the video-EEG 

EEG recording during fMRI scanning demonstrated seven right temporal sharp 

waves. 

fMRI results showed activation mainly in the right inferior frontal gyrus (pars 

orbitalis) (42, 48, -12), right precuneus (12, -63, 56) and a small cluster in the right 

thalamus (12, -18, 0)  

CASE 5. PATIENT 23 

Outcome. Decided at multi-disciplinary meeting to remove tumour for mainly 

oncological reasons but using electrocorticography (ECoG) to ascertain 

epileptogenicity of tumour. Acute ECoG revealed frequent spiking around tumour; 

following resection spikes remained and margin of resection increased slightly. 

Following this no spikes were evident. Unfortunately, the patient was not seizure free 

following surgery. 
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History. Right handed, 30-year-old male with onset of seizures at the age of 21 years.  

Seizures were frequent focal motor seizures involving the right arm occasionally 

hyperkinetic seizures in sleep. 

Medicated with Lacosamide, Levetiracetam and Carbamazepine. 

Clinical diagnostics. Routine outpatient clinical EEG demonstrated left 

central/fronto-central sharp waves. Video-EEG captured 4 focal motor seizures a left 

sided onset, most prominent in the left fronto-central region. 

Clinical MR imaging revealed a left focal cortical dysplasia next to the motor strip. 

CASE 6. PATIENT 24 

EEG-fMRI. Patient recruited into the study via epileptologist given the left 

hemispheric onset of seizures to see if more localisation in relation to the dysplastic 

region could be obtained. EEG recording during fMRI scanning demonstrated eight 

left centro-parietal sharp waves. 

fMRI results showed activation in the left precuneus (-3, -78, 44). 

Outcome. Results from the fMRI deemed by epileptologist and neurosurgeon to be 

non-contributory. Patient went for ECoG guided resective surgery. Motor strip was 

mapped intraoperatively using cortical stimulation and ECoG. Dysplastic region 

demonstrated frequent spiking. Following resection, the patient became seizure free 

(>2 years). 

T1 scan was corrupted. 

Activation map is 

superimposed over the 

normalised T1 scan of a 

patient in the study with 

no MRI abnormality. 
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History. Right handed, 37-year-old female with onset of seizures at the age 19 years. 

Patient retains some degree of awareness during typical seizure, flexor posturing of 

right arm, ictal retching; seizures last about ½ minute with rapid recovery. 

Medicated with Carbamazepine and Lamotrigine. 

Clinical diagnostics. Routine outpatient clinical EEG demonstrated left temporal 

sharp waves. Video-EEG captured 5 stereotypes seizures as described above. One 

event showed a clear left temporal onset, three were obscured by myogenic artefact 

and one demonstrated possible bilateral changes at onset though this was uncertain 

due to myogenic artefacts. No independent IEDs were found in the right hemisphere. 

Clinical MR imaging revealed no clear abnormality. PET scan showed hypo-

metabolism in left temporal lobe, particularly mesial temporal lobe. 

CASE 7. PATIENT 26 

EEG-fMRI. Patient recruited into the study via epileptologist given the ambiguity 

of the video-EEG results and lack of clear MRI abnormality. Further localisation was 

required. 

EEG recording during fMRI scanning demonstrated only 4 left temporal sharp waves. 

fMRI results showed activation in the left rolandic operculum (-63, -3, 12), left 

superior temporal gyrus (-45, -3, -8) and the right rolandic operculum/superior 

temporal gyrus (63, -6, 8) 

Outcome. With or without the EEG-fMRI results the consensus from the 

epileptologist and neurosurgeon was to proceed with intracranial-EEG recordings. It 

was felt however that the EEG-fMRI results were concordant with this decision. 

Intracranial-EEG with bilateral mesial temporal strip electrodes found seizures 

originating from the left. Patient went on to have surgery for left temporal lobe 

epilepsy and is now seizure free (>2 years). Histology of resected hippocampus 

revealed histological evidence of hippocampal sclerosis. 
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2.5 DISCUSSION 

In this study 26 patients were recruited from local tertiary epilepsy services via epileptologists who 

specifically expressed an interest in utilising EEG-fMRI as an investigation that may provide 

further useful information to guide patient management. It was down to the opinion of the patient’s 

primary care team (mainly neurologist but on a few occasions also their neurosurgeon) to determine 

if EEG-fMRI had contributed at all to patient management. This is a very subjective measure in 

which to report results, but also a very real one. Epilepsy, as with many other medical conditions, 

is managed and diagnosed primarily though the expertise of the patient’s primary care team, most 

notably their neurologist, with less attributed to diagnostic interventions (Engel Jr, 2005; Nunes, 

Sawyer, Neilson, et al., 2012; Smith, 2005). As such, it makes sense to base the clinical 

“usefulness” of EEG-fMRI on clinical opinion. In this present study of the 26 patients recruited, 

only 13 (50%) were recruited into the final analysis, and of the 26 initially recruited, EEG-fMRI 

was deemed to be contributory to patient management in 3 (12%) of the patients. Of the 13 patients 

in the final analysis only 2 had an underlying diagnostic question, patient #1 and patient #3, the 

others were related to progression down the surgical pathway for epilepsy.  

The results for patient #1, which were deemed to have not contributed, demonstrated a very small 

region in the left caudate. The query from the “referring” epileptologist was related to discrepancy 

between ictal semiology and interictal EEG findings. Clinical EEG findings demonstrated clear 

temporal lobe spikes/sharp waves but the patient had focal motor seizures, rarely with any loss of 

awareness. The epileptologists sought to clarify any temporal origin of seizures or a secondary 

focus. The results ultimately did not help answer this question. The remaining 4 patients where 

results were deemed non-contributory were in the context of possible surgical consideration. The 
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results for these patients did not aid entry or progression down the surgical pathway and thus did 

not aid in any way in patient management.  

The first patient in the individual cases reported in the current study (Case 1, Patient #3) was 

recruited from their epileptologist who had a genuine diagnostic question as to whether this patient 

had an IGE or a focal frontal lobe epilepsy. Clinical presentation was of seizures both nocturnal 

and during the day with a description fitting GTCS during the day but with an unclear description 

of the nocturnal events; possibly even hyperkinetic. The term IGE covers a number of electro-

clinical epilepsy syndromes, often including GTCS as a primary seizure type, and was originally 

classified in the absence of any focal features (Commission on Classification and Terminology, 

1989). This was decided as too rigid criteria and later amended (Berg, Berkovic, Brodie, et al., 

2010); indeed IGE has been shown to demonstrate some features akin to focal seizure disorders 

which can potentially lead to a misdiagnosis of IGE as a focal disorder (Seneviratne, Cook & 

D’Souza, 2014). Frontal lobe seizures can present with a variety of different semiology including 

GTCS and hyperkinetic seizures, and it is often difficult to localise a focal onset based on 

semiology alone (O’Muircheartaigh & Richardson, 2012). Even though frontal lobe epilepsy is a 

focal epilepsy it can also present with generalised spike and wave activity (Niedermeyer, 1998; 

Westmoreland, 1998), which is commonly observed in an IGE (Commission on Classification and 

Terminology, 1989), and was seen in this patient's case. The patient's MRI demonstrated a right 

frontal cyst which raised some diagnostic doubt over the diagnosis of IGE. The EEG-fMRI results 

demonstrated activation in the frontal regions as well as the thalamus, a typical pattern observed in 

spike and wave  (Aghakhani, 2004; Gotman, Grova, Bagshaw, et al., 2005b), with these findings 

tending to be homogenous in patients with IGE (Gotman, Grova, Bagshaw, et al., 2005b). No 



Chapter 2 – Utility of EEG-fMRI in patients referred from the tertiary epilepsy clinic  

 

92 

 

activation was observed near the cyst; this, together with the pattern of activation observed from 

the fMRI results, helped the epileptologist decided to remain with the original IGE diagnosis. 

Pharmacological therapy was optimised and the patient’s epilepsy went into remission. This also 

helped to abate the patient's and family’s concerns over the involvement of the cyst and also 

whether resective surgery of the cyst would be an option in the future. The epileptologist decided 

that the EEG-fMRI in this case was contributory to the patient’s management, not from the point 

of view of a pre-surgical evaluation, but in the context of a clear diagnostic question.  

In many EEG-fMRI studies of epilepsy the focus has been on pre-surgical evaluation, given the 

localising potential of EEG-fMRI, and the primary benchmark which has been used to validate 

findings has been comparison with surgical outcome (An, Fahoum, Hall, et al., 2013; Coan, 

Chaudhary, Grouiller, et al., 2016; Thornton, Laufs, Rodionov, et al., 2010; van Houdt, de Munck, 

Leijten, et al., 2013; Zijlmans, Huiskamp, Hersevoort, et al., 2007). In the present study, of the 26 

patients initially recruited five patients went on to have resective surgery and one had an offer of 

surgery before becoming seizure free on pharmacological therapy. Of those five who underwent 

surgery three became seizure free for a period of at least 2 years.  

In the six patients considered for surgery the EEG-fMRI results were deemed contributory by the 

patient’s epileptologist/neurosurgeon in two (Case 2 and Case 3). Where Case 2 did not ultimately 

progress to surgery, Case 3 did and this resulted in a failure to gain seizure freedom. In Case 4, the 

request was made for EEG-fMRI as part of the pre-surgical work-up despite the 

epileptologists/neurosurgeon having a hypothesis of resectable left mTLE with HS, aside from 

IEDs also originating from the contralateral temporal region, which can be a common feature of 

unilateral TLE (Schulz, Lüders, Hoppe, et al., 2000; Steinhoff, So, Lim, et al., 1995), other non-
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invasive diagnostics were concordant with left mTLE with HS. In this case the results from the 

EEG-fMRI, although demonstrating the most significant and preponderant activation in the left 

hemisphere, there was a small region of activation in the right amygdala. The consensus from the 

epileptologist and neurosurgeon was this did not dissuade them from offering surgery and the left 

predominant activation, was not deemed localised enough to the hypothesised EZ, to be relevant, 

thus EEG-fMRI in this case was deemed to have not contributed to this particular case. Surgical 

intervention in Case 5 was prompted mainly due to oncological reasons with epilepsy surgery a 

secondary objective. Bilateral-onset seizures on video-EEG prompted referral for EEG-fMRI, as 

hypothesised EZ was the lesion and possibly surrounding tissue. The predominant cluster from the 

EEG-fMRI results was located in the right inferior frontal region, distant to the presumed EZ. 

ECoG during surgery revealed the epileptogenic nature of the tumour, and a full resection, 

including the margin of the tumour was done, achieving abolition of epileptic activity identified on 

ECoG. Unfortunately, the patient was not seizure free following surgery. Despite the confirmed 

epileptogenicity of the lesion it could be that the patient developed secondary epileptogenesis in an 

ipsilaterally connected region. Although the exact mechanisms are disputed, development of an 

epileptogenic foci, secondary to a primary focal lesion has been well documented (see Cibula & 

Gilmore, 1997; Morrell, 1989 for review). Whether the activation on EEG-fMRI could reflect an 

area of secondary epileptogenesis is purely speculative at best, though ultimately the EEG-fMRI 

results were regarded by the epileptologist and neurosurgeon to have not contributed to this 

patient’s work-up, primarily due to the lack of activation around the tumour, or a very clear and 

convincing region that could have prompted the generation of a hypothesised region outside the 

lesional zone. In Case 6, the EEG-fMRI results were deemed by the epileptologist and 

neurosurgeon to have not contributed to the final decision, primarily as the strongly favoured 
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hypothesis of the dysplastic region near the motor strip as being the EZ, was distant to the activation 

which was located in the left precuneus. The desire from the surgeon was a clear area of activation 

to outline the EZ to help demarcate the potential area of resection from the motor strip, which was 

perhaps an unrealistic expectation of the EEG-fMRI study. The final case, Case 7, was requested 

in the context of normal MR imaging and slightly ambiguous results from video-EEG, namely a 

possible bilateral onset seizure. An implantation strategy for intracranial-EEG was formulated 

based on video-EEG results, seizure semiology, and neuropsychometry, at this point EEG-fMRI 

was also decided upon. The consensus from the epileptologist and neurosurgeon was the results 

from the EEG-fMRI, maximal activation in the left rolandic operculum/superior temporal gyrus 

but similar in the right, reflected the ambiguous video-EEG results and supported the implant 

strategy. 

The contributions made by EEG-fMRI in the two patients (Case 2 and 3) were in the context of 

progression down the surgical pathway where otherwise progression may have been difficult. In 

Case 2 the only activation present was in the parahippocampal gyri, so focal to encourage the 

progression onto intracranial-EEG which demonstrated the hippocampus to be the seizure onset 

zone. It is impossible to say whether resection would have resulted in seizure freedom but it did 

certainly result in an offer of surgery. In Case 3 the contribution was subtler, with the results 

prompting a second video-EEG which ultimately encouraged progression onto surgery.  

Is there any information in the fMRI results that may indicate why some patients gained seizure 

freedom and some did not? A recent study by An et al., 2013, investigated 35 patients who had 

undergone EEG-fMRI, had significant activation and progressed to surgery (An, Fahoum, Hall, et 

al., 2013). They formed four groups depending on how localised the cluster with the maximum 
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statistical response was to the site of resection, and found, in those where the maximum cluster was 

within the area of resection, a good outcome was much more likely than in those where the cluster 

was distant from the area of resection. In the present study, in the two patients who failed to become 

seizure free following surgery the cluster with the maximal statistical value was distant to the site 

of resection. Though this was also observed in the patients who became seizure free. From the 

observations in the current study, prediction of surgical outcomes based on EEG-fMRI is not at all 

straight forward and should be viewed with caution.  

In the first study to utilise EEG-fMRI as a clinical tool in a cohort of complex adult surgical cases, 

Zijlmans et al., 2007, analysed the BOLD responses from 29 patients who had entered a surgical 

pathway and were rejected for various reasons (Zijlmans, Huiskamp, Hersevoort, et al., 2007). 

From these patients, four had new surgical prospects open to them as a result of the added 

investigation. These results somewhat mirror the findings here, with EEG-fMRI opening an 

otherwise closed door for surgery to a few patients. As an imaging modality it is one that is not yet 

utilised readily in the UK (Mouthaan, Rados, Barsi, et al., 2016). Other imaging studies, such as 

positron emission tomography (PET) and single photon emission computed tomography (SPECT) 

are more readily utilised in pre-surgical assessment to aid in localisation (Mouthaan, Rados, Barsi, 

et al., 2016), with a very recent study quoting a sensitivity of ~63% and ~49% respectively 

(Lascano, Perneger, Vulliemoz, et al., 2016). In cases where more readily available imaging such 

as PET and SPECT are unable to contribute EEG-fMRI may help progress surgery in a small 

number of cases. 

One of the most significant issues that is highlighted in the results of this study is the lack of IEDs 

recorded during scanning in a large proportion of patients (50%). Despite the most recent clinical 
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EEG being used to determine the frequency of IEDs per hour, the EEG may well be out of date, 

and IED rates high enough for EEG-fMRI are relatively uncommon. Given the underlying ethos 

of treating the patient and not the EEG, following diagnosis, repeat EEGs are not often indicated 

(Smith, 2005). In a clinical setting EEG-fMRI should ideally follow a recent EEG or video-EEG 

to ascertain a current IED load. The lack of IEDs is not an issue restricted to just this study and 

comparable figures of 40% have been reported before of no IEDs being recorded in the scanner 

(Salek-Haddadi, Diehl, Hamandi, et al., 2006). In order to improve IED detection and increase IED 

yield, studies have used novel means of analysis, including, independent component analysis (ICA) 

and wavelet analysis of the EEG recorded in the scanner to improve IED identification (Formaggio, 

Storti, Bertoldo, et al., 2011); using voltage maps derived from epilepsy specific averaged IEDs 

obtained from prolonged EEG recordings outside the scanner and applying them to data obtained 

during scanning (Grouiller, Thornton, Groening, et al., 2011); and using ICA in the decomposition 

of fMRI data to identify epileptic independent components related to the seizure onset zone that 

are not dependant on scalp IEDs, thus removing dependence on identification of scalp IEDs 

(Maziero, Sturzbecher, Velasco, et al., 2015; Rodionov, De Martino, Laufs, et al., 2007; van Houdt, 

Ossenblok, Colon, et al., 2015). If they are able to overcome the limitation of the number of IEDs, 

and potentially remove the reliance on IEDs altogether, these type of approaches could 

considerably improve the clinical utility of EEG-fMRI.  

Lack of IEDs recorded in the scanner is one problem, another is lack of significant BOLD responses 

even in the presence of IEDs. In the present study one patient (Patient #17) did not demonstrate 

any significant activation linked to sharpened paroxysmal theta discharges recorded during 

scanning. This is not an uncommon finding in epilepsy EEG-fMRI studies where IEDs are 
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identified on scalp EEG during scanning but fail to show any significant BOLD responses 

(Aghakhani, Kobayashi, Bagshaw, et al., 2006; Salek-Haddadi, Diehl, Hamandi, et al., 2006). 

Additionally, some results reported in the present study, although demonstrating significant 

responses, only showed very small regions of activation (e.g. patient #1) which could easily not be 

present with less liberal thresholding. In order to improve the sensitivity of EEG-fMRI, several 

studies have advocated the inclusion of various physiological artefacts and measurements into the 

design matrix, incorporating; eye blinks, swallowing, chewing, and motion artefacts identified by 

video (Chaudhary, Rodionov, Carmichael, et al., 2012; Ruggieri, Vaudano, Benuzzi, et al., 2015); 

any sleep paroxysms recorded during scanning (Moehring, Coropceanu, Galka, et al., 2011); 

cardiac related noise (Liston, Lund, Salek-Haddadi, et al., 2006); and respiration related noise as 

variations in pulse height derived from photoplethysmogram (van Houdt, Ossenblok, Boon, et al., 

2010). Aside from improving sensitivity by inclusion of various sources of noise into the design 

matrix, IEDs have been shown not to conform to the haemodynamic response function (HRF) 

commonly used to model BOLD signal changes related to IEDs (Bénar, Gross, Wang, et al., 2002; 

Lemieux, Laufs, Carmichael, et al., 2007) and improved sensitivity can be achieved by using a 

patient specific HRF (Kang, Bénar, Al-Asmi, et al., 2003; Storti, Formaggio, Bertoldo, et al., 

2013), voxel-specific HRFs (Lu, Grova, Kobayashi, et al., 2007; Lu, Bagshaw, Grova, et al., 2006) 

or by using alternate peak times of the HRF (Bagshaw, Aghakhani, Bénar, et al., 2004; Jacobs, 

Levan, Moeller, et al., 2009; Rollings, Assecondi, Ostwald, et al., 2015). One of the most recent 

studies, using topographical maps derived from data outside of the scanner, demonstrated a 

sensitivity of 81% in identifying patients (with TLE) with good surgical outcome where the BOLD 

response overlapped with the area of resection (Coan, Chaudhary, Grouiller, et al., 2016).  
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2.6 CONCLUSION 

In the present study, EEG-fMRI was deployed in a heterogeneous and complex group of epilepsy 

patients. The patients were referred in by epileptologists who felt further diagnostic tests were 

required; in most cases, for surgical evaluation, in others for answering more diagnostic related 

questions. This group of patients was very representative of the patients one would likely see 

referred for EEG-fMRI if the investigation was freely available. The aim of this study was just that, 

to ascertain how useful, from a clinical point of view, EEG-fMRI could be to a referring clinician. 

In 12% of patients included in the study, EEG-fMRI was deemed by the epileptologists to be 

contributory in patient management. One of the most significant issues hampering the study was 

the lack of IEDs in 50% of patients.  If IEDs were recorded in all patients this figure could well be 

higher; though this is the reality of EEG-fMRI in epilepsy. In this study EEG-fMRI was delivered 

in its simplest form as this would represent the minimum needed for a centre to deploy the test. 

Application of more advanced methods, some of which have been discussed, would no doubt 

improve clinical relevance. However, the more complex and time consuming an investigation the 

less likely it is to make it to a clinical setting, primarily due to cost. Some studies have already 

begun to address this by combining multiple imaging modalities which can potentially minimise 

time and cost of complex imaging investigations (Grouiller, Delattre, Pittau, et al., 2015; Shin, 

Jewells, Sheikh, et al., 2015). Developing these techniques into a package that could be 

implemented in a time efficient and cost effective way is key to transition from academic settings 

to a clinical one. Implemented here in its simplest form, the results presented here show EEG-fMRI 

has some limited use in a clinical setting, though this is in the context of a very difficult to manage 

patient group.  
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3.1 ABSTRACT 

The objective of this study was to investigate whether previously reported early blood oxygen 

level dependent (BOLD) changes in epilepsy could occur as a result of the modelling techniques 

rather than physiological changes. EEG-fMRI data were analysed from seven patients with 

focal epilepsy and six control subjects undergoing a visual experiment. In six separate analyses 

the event timing was shifted by either -9,-6,-3,+3,+6 or +9 seconds relative to the onset of the 

interictal epileptiform discharge (IED) or visual stimulus. The visual dataset demonstrated an 

overlap between modelled haemodynamic response function (HRF) at event onset and at +/-3s 

relative to onset, which diminished at +/-6s. In the epilepsy dataset, pre-spike analysis at -6s 

improved concordance with the assumed IED generating lobe relative to the standard HRF in 

43% of patients. The visual dataset findings indicate a form of “temporal bleeding”, an overlap 

between the modelled HRF at time 0 and at +/-3s which is attenuated at +/-6s, suggesting that 

this form of analysis should be performed at 6 seconds prior to onset of IED to minimise the 

temporal bleeding effect.  In the epilepsy dataset, the results also support the presence of 

relevant BOLD responses occurring prior to IEDs and prespike analysis may improve 

concordance. 
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3.2 INTRODUCTION 

Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance 

imaging (fMRI) is a non-invasive technique (EEG-fMRI) that allows the indirect investigation 

of epileptiform neuronal activity in the human brain (for a review see Gotman et al., 2006). 

This method exploits the haemodynamic changes associated with interictal epileptiform 

discharges (IED) that are identified on the EEG. The concurrent blood oxygenation level 

dependent (BOLD) signal changes that accompany this activity are typically modelled with a 

haemodynamic response function (HRF) that peaks 5 – 6 seconds after the electrographic 

discharge (Friston, Fletcher, Josephs, et al., 1998; Glover, 1999). This HRF, which for example 

may be derived from auditory responses in healthy volunteers (Glover, 1999), has previously 

been shown to be suitable for modelling BOLD changes related to IEDs (Bénar, Gross, Wang, 

et al., 2002). However, studies have also demonstrated that the haemodynamic response in 

epilepsy is subject to variability in both peak timing and shape (Kang, Bénar, Al-Asmi, et al., 

2003; Lemieux, Laufs, Carmichael, et al., 2007; Lu, Bagshaw, Grova, et al., 2006), and that the 

sensitivity of EEG-fMRI to detect regions of activation can be improved by shifting the timing 

of the HRF relative to the IED (Bagshaw, Aghakhani, Bénar, et al., 2004; Hawco, Bagshaw, 

Lu, et al., 2007; Jacobs, Kobayashi, Boor, et al., 2007). 

In a study by Hawco et al., 2007, they shifted the HRF to peak at 3 and 1 seconds prior to the 

onset of the IEDs, and successfully demonstrated BOLD responses with a similar degree of 

concordance to later peaking HRFs (Hawco, Bagshaw, Lu, et al., 2007). These findings 

suggested the presence of metabolically-demanding neuronal activity, not visible on the EEG, 

but preceding the electrographically evident spike. The notion that haemodynamic responses 

might occur prior to electrographic epileptic activity was previously suggested by observations 

during the transition from the interictal to the ictal state by Federico, 2005, who observed BOLD 
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changes several minutes prior to ictal onset (Federico, 2005). Makiranta et al., 2005, were also 

able to demonstrate BOLD changes preceding IEDs in an animal model following penicillin 

injection (Mäkiranta, Ruohonen, Suominen, et al., 2005). They observed BOLD changes 

occurring several seconds prior to onset of the IED. For a review of other studies which have 

observed pre-ictal or pre-interictal haemodynamic changes, see Schwartz, Hong, Bagshaw, et 

al., 2011. It has been suggested that these early BOLD responses are potentially more 

representative of the epileptogenic zone, resulting in improved localisation, since they may 

represent activity prior to propagation. For example, Jacobs et al., 2009, found that pre spike 

BOLD changes that occurred in nine of thirteen patients yielded more focal results than later 

responses with a strong degree of concordance with the electrographic spike field (Jacobs, 

Levan, Moeller, et al., 2009). 

Given the clinical potential of EEG-fMRI recordings in patients with epilepsy, and the frequent 

difficulty in interpreting the results, any improvement in methodology and in the basic 

understanding of the technique would be welcome. However, the analysis strategy whereby 

HRFs are shifted to investigate haemodynamic activity prior to electrographic activity, while 

being relatively common in epilepsy studies, has not previously been applied to EEG-fMRI 

data from control subjects in task conditions. This leaves open the possibility that the 

observations made in patients with epilepsy regarding early peaking HRFs could be an artefact 

of the methodology. In order to address this issue, and to determine whether these observations 

are exclusive to spontaneously occurring, endogenous epileptiform events, early and late 

peaking HRFs were investigated in a control group participating in a visual task, as well as a 

group of patients with focal epilepsy. Since it is reasonable to assume that no such early BOLD 

changes would occur to random exogenous stimuli, their absence in an analysis with shifted 
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HRFs would add validity to the pre-interictal BOLD responses that have been previously 

reported. 

 

3.3 METHODS 

Subjects 

Visual experiment data 

Six healthy volunteers (3 females, 3 males, mean age 21.8 years) were randomly selected from 

a group of fourteen subjects who had taken part in a previously reported experiment (Ostwald, 

Porcaro & Bagshaw, 2010; Porcaro, Ostwald & Bagshaw, 2010). All participants had normal 

or corrected to normal visual acuity. Informed and written consent was obtained from the 

volunteers, and they were paid for their participation. The study was approved by the research 

ethics committee of the University of Birmingham. 

 

 

 

 

 

 

 

 

Figure 3.4.1. Experimental design of the visual experiment. Onset of checkerboard 

presentation at time 0 with reversal occurring at 500 ms, with offset of checkboard after a 

further 500ms. A subset of trials presented an × in place of the fixation cross to which 

participants were asked to press a button to indicate. (Modified from Ostwald et al., 2010). 
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The experiment, in brief, consisted of a sparsely presented 2Hz reversing checkerboard pattern 

in the left hemi-field (ISI 16.5–21s, discretised to 1.5s, spatial frequency 2 cycles per degree of 

visual angle, two contrast levels, high (CMichelson=1) and low (CMichelson=0.25)). Stimuli 

were presented with a central fixation cross for 1s (i.e. one checkerboard reversal), contrasts 

were randomized, and in total 85 trials of each contrast were presented (paradigm summarised 

in figure 3.4.1). For full details see (Ostwald, Porcaro & Bagshaw, 2010; Porcaro, Ostwald & 

Bagshaw, 2010). 

 

Epilepsy patient data 

Fifteen patients with a diagnosis of focal epilepsy were recruited from Consultant Neurologists 

with a special interest in Epilepsy, from the University Hospital Birmingham NHSF trust and 

The Barbary BSMH trust in accordance with National Health Service ethical approval (REC 

reference 06/Q2702/69). Patients were selected on the basis of frequency of IED (more than 10 

IEDs per hour) and a seizure frequency of less than one per week. Written and informed consent 

was obtained, and the patients were screened to ensure suitability for scanning. Five subjects 

were excluded due to lack of IEDs during the scanning session, and three were excluded due to 

excessive movement in the scanner resulting in poor data quality. The seven patients included 

in the study had an age range of 18 – 40 years (mean 25.3 years, 5 females). 

 

EEG-fMRI data acquisition 

The same EEG acquisition protocol and equipment were used for the control subjects and the 

epilepsy patients. Continuous 64-channel EEG data were acquired at 5 kHz during scanning 

using MR-compatible EEG equipment (BrainAmp MR Plus, Brain Products, Munich, 
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Germany). The EEG recording cap (Brain Products, Munich, Germany) consisted of 62 scalp 

electrodes distributed in accordance with the international 10-20 system, with a further 2 

electrodes to record ECG and ocular movements. Electrode impedances were kept below 10kΩ. 

A 3T Philips Achieva MR Scanner (Philips, Netherlands) with an 8-channel SENSE head coil 

was used for the acquisition of echo-planar imaging (EPI) data, and a T1-weighted scan (1mm 

isotropic voxels) used for anatomical localisation of superimposed statistical parametric maps. 

For the visual experiment, EPI data were acquired from 20 slices covering occipital cortex in 

five runs of approximately 11 minutes (2.5x2.5x3mm voxels, TR 1500ms, TE 35ms, flip angle 

80°, 441 volumes/run). For the data acquired from epilepsy patients, multiple scans of 6 minutes 

were acquired dependent on patient cooperation and comfort (patients 1 – 3 2.5mm isotropic 

voxels, TR 3000ms, TE 35ms, 50 slices, flip angle 85°, 120 volumes/run; patients 4 – 7, 

3x3x4mm voxels, TR 2000ms, TE 35ms, 32 slices, flip angle 80°, 180 volumes/run). 

 

EEG processing 

Removal of MR gradient artefacts was performed offline using Brain Vision Analyser (Brain 

Products, Munich, Germany) using a template subtraction approach (Allen, Josephs & Turner, 

2000). Ballistocardiogram artefacts were removed using the Optimal Basis Set (OBS) plug-in 

(Niazy, Beckmann, Iannetti, et al., 2005) to EEGLAB (Delorme & Makeig, 2004). For the 

epilepsy data, an experienced electroencephalographer marked the onset of any epileptiform 

electrographic discharges, categorising the events based on morphology, topography and 

duration. If a patient had more than one IED type, this was modelled within the same design 

matrix. Interictal events occurring within 15 seconds of each other were excluded from the 
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analysis. No EEG processing was necessary for the visual dataset as only the stimulus event 

markers were needed. 

Given the aim of this experiment was not to report solely on the localising potential of EEG-

fMRI, but rather to ascertain the validity of the early BOLD changes, concordance between 

EEG and fMRI was based on localisation to the same brain lobe as identified from the surface 

EEG recording. If activation was seen in the concordant lobe in the pre-event maps but absent 

in the standard HRF map then this was considered as an improvement in concordance. 

 

fMRI processing 

EPI data were processed in SPM5 (Wellcome Department of Imaging Neuroscience, UCL, 

UK). Initially the images underwent realignment for motion correction, followed by slice timing 

correction, anatomical normalisation to MNI space and then finally the data were smoothed 

with a Gaussian kernel (5mm for the visual data, 6mm for the epilepsy data). Images were 

flipped so that the right side of the image represents the right side of the brain (i.e. images are 

presented according to neurological convention).  

The experimental data were modelled using a general linear model (GLM) in an event related 

design convolved with a canonical HRF implemented in SPM5 (Friston, Ashburner, Kiebel, et 

al., 2007). The canonical HRF was modelled with time derivatives, and six motion correction 

parameters were also included in the analysis as multiple regressors. To change the peak of the 

HRF, the timing of the events in both the epilepsy and visual datasets were shifted by -3, -6 and 

-9 seconds for pre-event analysis and +3, +6 and +9 for post-event analysis. For both the visual 

and epilepsy datasets a threshold of p<0.001 uncorrected for multiple voxels was used but 

Bonferroni corrected to take account of the use of multiple HRFs. 
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ROI analysis 

For each GLM analysis, performed on all data sets, a 5mm radius spherical region of interest 

(ROI) was defined around the activated voxel with the maximal t-statistic. The time course for 

each event was extracted over a 40/42 second time window, depending on the TR of the EPI 

acquisition, with 20/21 seconds pre and post event. These single event HRFs were then 

averaged for each analysis of a data set. 

 

3.4 RESULTS 

3.4.1 Visual dataset 

GLM results 

In all subjects, as expected given the stimulation paradigm, maximal activation was seen in the 

right primary visual cortex using the canonical HRF. Significant activation was also seen in the 

same region across all pre- and post-stimulus HRFs at the relatively liberal threshold of p<0.001 

that is often used in interictal epilepsy studies. The maximum t statistics were associated with 

the standard peaking canonical HRF and the lowest with HRF-6 (Figure 3.4.2). Shifting the 

peak time of the HRF by 3 seconds either pre- or post-stimulus resulted in moderately robust 

activation, with the areas of maximal activation mostly confined to the visual cortex (Figure 

3.4.3). As would be expected, when the peak of the HRF was shifted further from the stimulus 

event, less activation was noted and the T-statistic was reduced. The only exception was when 

the peak was shifted 9 seconds pre-stimulus, which resulted in a marginal increase in the 

average T-statistic and the number of activated clusters. This is likely to be a result of the 
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timings of the stimulus presentation. This analysis suggests that a considerable amount of 

residual, artefactual activation is able to survive the statistical threshold often used in epilepsy 

studies (i.e., uncorrected p<0.001), but that this activity is minimised when shifting the event 

times by 6s. 

 

 

 

 

 

 

 

 

 

ROI analysis 

As expected, the extracted time course showed a very consistent canonical response for each 

trial when modelled with the standard HRF, with the maximal signal change peaking at about 

5 seconds post stimulus (Figure 3.4.3). A canonical response could also be seen at HRF-3 and 

HRF+3, although as expected the peak signal change fell at around 7 seconds and 4 seconds 

respectively, in line with the idea that these analyses were sampling the actual response to the 

stimuli presented at time zero. There was no convincing canonical shaped response seen in any 

of the other pre- or post-event analyses. 

Figure 3.4.2. Maximum t statistic across all HRF analysis for the 6 visual 

datasets. Greatest dip in T value occurs 6 seconds pre/post stimulus. 
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Figure 3.4.3. Visual dataset. Example from a randomly selected participant. Statistical 

t map (t>3.6, Bonferroni corrected for analysis with multiple HRFs, with no cluster 

threshold) for HRF and HRF-3,+3 superimposed over subject specific T1 anatomical 

scan normalised to MNI space. Axial slice through HRF focused on maximally activated 

voxel. No clusters of activation were observed in the visual cortex at HRF-6,-9,+6,+9 

with activated clusters here being random and distant. Extracted time course from ROI 

shows a plot for each event and mean (black line). 

 

 HRF  HRF-3  HRF+3 

-15 -10 -5 0 5 10 15
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (s)

S
ig

n
a
l 
C

h
a
n
g
e
 (

%
)

-15 -10 -5 0 5 10 15
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (s)

S
ig

n
a
l 
C

h
a
n
g
e
 (

%
)

-15 -10 -5 0 5 10 15
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (s)

S
ig

n
a
l 
C

h
a
n
g
e
 (

%
)



Chapter 3 – Early haemodynamic changes observed in patients with epilepsy and 

in a visual experiment 

110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HRF 

HRF-9 

HRF-6 

Figure 3.4.4. Epilepsy dataset. Example from two patients showing maximally 

activated clusters (t-contrast, t>3.6 Bonferroni corrected threshold, no cluster extent 

threshold) for standard HRF and pre event maps; HRF-6,-9. Bi- inferior temporal 

activation seen in the pre event maps of patient 2 at HRF-6 and HRF-9 to sharp 

waves in the right temporal region. Left frontal sharp waves of patient 5 

demonstrated clear activation evident in the left inferior frontal gyrus at HRF-6 and 

HRF -9. Extracted time course from ROI shows a plot for each event and mean 

(black line). Note, right side of MRI image represents the right side of the brain 

(neurological convention). 
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Patient 5 
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3.4.2 Epilepsy dataset 

Patients 

The demographics and clinical details of the seven patients included in the study are 

summarised in Table 3.4.1. Patient 4 had two distinct IED types, although the right temporal 

sharp waves recorded from this patient failed to demonstrate any significant activation. The 

IEDs occurred randomly as isolated events in the EEG in all patients, with four IEDs excluded 

from analysis in patient 1 due to close proximity of the discharges. 

 

 

 

 

 

 

Patient Age/Sex Epilepsy/Seizure type EEG MRI IED (#) 

1 40/M TLE/CPS R T SW R Oligoastrocytoma 137 

2 30/M TLE/CPS R T SW Normal 14 

3 25/F PLE/SPS,CPS & GTCS  R P Sp Normal 15 

4 18/F TLE/CPS L T SW Normal 56 

5 25/F FLE/CPS L F SW Normal 59 

6 21/F TLE/CPS L T Sp Previous excision of L T 

Oligoastrocytoma 

45 

7 18/F TLE/CPS L T SW L T DNET 17 

Table 3.4.1. Summary of patients. Abbreviations: FE = focal epilepsy, TLE = temporal 

lobe epilepsy, FLE = frontal lobe epilepsy, PLE = parietal lobe epilepsy, SPS = simple 

partial seizures, CPS = complex partial seizures, GTCS = generalised tonic clonic 

seizures, R = right, L = left, F = frontal, T = temporal, P = parietal, SW = sharp wave, Sp 

= spike.  
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PATIENT HRF HRF-3 HRF-6 HRF-9 HRF+3 HRF+6 HRF+9 

1 n/a R Sup Med Gyrus 

(3.86), L 

Hippocampus, L 

Sup Med Gyrus 

R Inf T gyrus 

(3.87), R rolandic 

operculum 

L caudate (4.08),  

L fusiform gyrus. 
L caudate 

(4.16) 

L Fusiform 

gyrus (3.97),  R 

Fusiform Gyrus 

R Inf T Gyrus 

(4.20), R Sup T 

Gyrus,  L 

Fusiform Gyrus,  

2 R Inf F Gyrus  

(4.00), R Sup F 

Gyrus. 

R Rectal Gyrus 

(3.69) 

R Hippocampus 

(4.64), L 

Fusiform Gyrus. 

L Fusiform 

Gyrus (6.03), R 

Parahippocampal 

Gyrus. 

R Mid F 

Gyrus (4.52), 

R Rolandic 

Operculum  

R Mid F Gyrus 

(5.16), R Insula, 

R Precentral 

Gyrus 

R Insula (4.64), 

R Inf F Gyrus, R 

Putamen 

3 R Fusiform 

Gyrus (4.85) 

n/a n/a n/a R 

Hippocampus 

(6.21) 

L Lingual 

Gyrus (3.83) 

L Inf T Gyrus 

(6.09), R 

Cingulate, R Inf 

F Gyrus. 

4 L Hippocampus 

(4.44), L Med T, 

L Mid F Gyrus 

R Sup F Gyrus 

(4.31), L 

Parahippocampal 

Gyrus, L Amygdala 

R Inf T Gyrus 

(4.17), R Sup P 

R Inf P (4.47), R 

Inf T Gyrus, L 

Mid F Gyrus 

R Fusiform 

Gyrus (3.77) 

L Insula (3.75) R Sup F Gyrus 

(3.97), L T Pole, 

L Sup Orbital 

Gyrus. 

5 L Hippocampus 

(3.63), L T Pole, 

L Mid F Gyrus 

L Mid F Gyrus 

(4.02) 

L Inf F Gyrus 

(4.46), L Sup F 

Gyrus, L Rectal 

Gyrus. 

L Mid Orbital 

Gyrus (4.41), L 

Inf F Gyrus, R 

Sup Orbital Gyrus 

L Mid Orbital 

Gyrus (4.22), 
L Mid F 

Gyrus, L Sup 

Orbital Gyrus 

L Mid F Gyrus 

(4.61), L Inf F 

Gyrus 

L Sup F Gyrus 

(4.11), L Inf F 

Gyrus 

6 n/a n/a R Thalamus 

(3.99), L 

Fusiform Gyrus 

R Paracentral 

(3.70) 

n/a L Mid T Gyrus 

(3.82) 

R Thalamus 

(4.39), L Med T 

Pole 

7 L Inf F Gyrus 

(4.08), L Mid T 

Gyrus, L Mid F 

Gyrus 

L Caudate (3.94) n/a Genu of Corpus 

Callosum (3.65) 

L Sup Med 

Gyrus (3.93), 

R Mid F gyrus, 

L Mid F Gyrus 

R Sup Med 

Gyrus (4.90), L 

Mid F Gyrus 

L Inf O Gyrus 

(4.26), L Inf F 

Gyrus, L Mid T 

Gyrus 

Table 3.4.2. Anatomical locations of activations across all HRF analyses. Regions highlighted in bold represent cluster with maximum t statistic 

for each analysis and the t value in parentheses.  

 Abbreviations: “n/a“ = no activation survived threshold,  R = right, L = left, F = frontal, T = temporal,  P = parietal, O = occipital, Inf = inferior, 

Sup = superior, Med = medial, Mid = middle 
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GLM results: HRF 

Using a threshold of p<0.001 uncorrected for multiple voxels but Bonferroni corrected to take 

account of the use of multiple HRFs (height threshold t>3.6), patients 1 and 6 did not show any 

significant activation associated with the standard peaking HRF (Table 3.4.2). Concordance with 

the electrographic spike field and the maximally activated region was seen in patient 4 (left 

temporal sharp waves and activation evident in left hippocampus and left medial temporal gyrus) 

with the standard peaking HRF. Concordant activation was also seen in patient 5 (left frontal sharp 

waves with activation in left middle frontal gyrus) and patient 7 (left temporal spikes with 

activation in the left middle temporal gyrus); however, these were not the clusters with the greatest 

T statistic. With the standard HRF, areas of deactivation were noted in 6 of the 7 patients but they 

were not concordant with the spike field in any of the patients. 

 

GLM results: early HRF 

In line with the results from the visual data set, analysis focused on events shifted by 6s prior to 

the real IEDs (i.e., HRF-6). For patient 1 at HRF-6, there was an increase in BOLD signal in the 

inferior aspect of the superior temporal gyrus and the right rolandic operculum, showing a degree 

of concordance with the spike field (right temporal sharp waves). Right and left inferior temporal 

activation was seen in patient 2 when the right temporal IEDs were modelled with HRF-6. In patient 

3 no prespike activation survived statistical threshold. Patient 4 demonstrated an increase in BOLD 

signal in the right inferior temporal gyrus into the supramarginal gyrus at HRF-6; this was 

contralateral to the electrographic IEDs. Data from patient 5 yielded similar results between the 
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three pre-spike analyses, with more robust activation seen in the left inferior frontal region with 

HRF-6, concomitant with the spike field of left frontal sharp waves. No activation was noted when 

using HRF or HRF-3 models for patient 6, however at HRF-6, activation was noted in the 

electrographically concordant lobe, although this was not the maximally activated cluster.  

A small area of deactivation in the left hippocampus, concordant with the spike field, was evident 

in patient 3 at HRF-6. The only other dataset to demonstrate deactivation near the region of the 

spike field was patient 5 with changes in the left rectal/midorbital gyrus at HRF-3,-6,-9 with 

additional deactivation seen in the left hippocampus at HRF-9. 

From this group of patients, concordance was evident in 4/7 (57%) when shifting the HRF to peak 

6 seconds earlier, including patients 1, 2 and 6 where no concordant activation was evident in the 

standard HRF analysis. 

 

GLM results: late HRF 

Post event analyses for all patients demonstrated significant activation at HRF+6, however only 

patient 5 demonstrated activation concordant with the electrographic spike field. This activation 

was observed in the most rostral area of the left superior frontal gyrus at HRF+6, with this 

activation moving more left lateral at HRF+9. Deactivations were observed in five patients at 

HRF+6, with left inferior frontal and middle orbital deactivation seen in patient 5 at HRF+6, which 

was concordant with the electrographic spike field of this patient. 
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ROI analysis 

There was considerable variability in the haemodynamic responses to individual IEDs for each 

patient, and this was common across all HRF analyses (Figure 3.4.4). This variability resulted in a 

mean time course which did not show a clear canonical shaped response in the majority of the data, 

with only a few exceptions. In the original HRF analysis the mean time course from patient 3 was 

the only one to show maximum signal change at around 5-6 seconds, an observation which was 

not evident in the other patients. The prespike analysis for patient 2 demonstrated a clear maximum 

signal change at 3 seconds and 6 seconds for HRF-6 and HRF-9 respectively, and had a 

resemblance of a canonical shape. This was not the case in any of the other prespike analysis. The 

mean time course for patient 2 (Figure 3.4.4) showed peak signal change at 3 seconds when 

modelled with HRF -6 and peaked at 6 seconds when modelled with HRF-9. 

 

3.5 DISCUSSION 

The primary aim of this study was to ascertain if the event related GLM design used in most EEG-

fMRI studies of patients with epilepsy is appropriate in modelling pre-spike BOLD changes. To 

this end the same pre- and post-spike analysis was applied to a control group who participated in a 

visual experimental paradigm. Pre and post-spike activation was observed in the visual dataset 

despite the exogenous stimuli where one would not expect any pre event signal changes. The most 

notable changes occurred at HRF-3 and HRF+3, where significant activation was noted in the 

visual cortex in all datasets. The area of activation was similar to that activated when modelled 

with the standard canonical HRF. These findings are explained in terms of a simple overlap of the 
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HRFs used to model these responses. The HRF shifted by +/-3s overlaps with the increase signal 

in the fMRI time course associated with the event, resulting in a pattern of activation similar to the 

HRF at time 0, as in essence the same event is being modelled. This effect has been termed 

“temporal bleeding” as the rise and fall in the fMRI time course “bleed” into HRFs modelled at -

3s and +3s respectively (Rollings, Assecondi, Ostwald, et al., 2015). The results from the time 

series extraction from the visual dataset highlight signal changes in the time series that overlap 

with the modelled canonical HRF. The study by Rollings et al., 2015, to which this chapter 

contributes in majority, gives further corroboration for this interpretation from simulated data 

showing a gradual rather than an abrupt drop in T-value from event onset, thus allowing some 

overlap in pre and post event analyses; demonstrating from a simulation of a physiological 

scenario, only slight variations in timing when using different TRs, indicating differing TRs do not 

substantially alter the results. Based on these findings, when using this method of analysis, shifting 

event timings by seconds, rather than number of TRs, would be a valid approach. 

In the present study, pre-spike analysis at HRF-6 demonstrated activation in 5 of the 7 (71%) 

epilepsy patients, with activation occurring in the spike field in 4 of the 7 (57%) datasets. However 

not all the concordant clusters contained the maximum T value. In these findings, 3 (43%) of the 7 

patients showed activation clusters concordant with the spike field in addition to containing the 

maximally activated voxel in prespike analysis. In a study by Jacobs et al., 2009, prespike BOLD 

responses were observed in 11 of the 13 (85%) studies, comparable to the present study (Jacobs, 

Levan, Moeller, et al., 2009). They demonstrated focal activations concordant with the spike field 

in 4 studies, with the HRF peaking -9 to -5 seconds, and in 7 of the studies when the HRF peak 

was -3 to +1 seconds; this increased concordance observed closer to the actual event time may 
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reflect the overlap in the models as previously discussed. One of the first studies to investigate 

early BOLD changes was conducted by Hawco et al., 2007, who demonstrated BOLD signal 

changes prior to scalp discharge (Hawco, Bagshaw, Lu, et al., 2007). The degree of concordance 

between these early activations and the spike field was comparable to the present study and that of 

Jacobs et al., 2009, with 5 of the 7 patients showing concordance in those that had early HRFs. 

From the present study, one patient (#2) demonstrated clear signal changes in the time course 

peaking at 6 seconds when modelled with HRF-9 and at 3 seconds when modelled at HRF-6 

without a clear change in signal with the standard HRF. From the observations made in the visual 

dataset shifting the event time forwards caused the peak signal change in the time course to be 

shifted backwards, i.e. from 6 seconds to 3 seconds. This would indicate that the response from 

patient 2 at HRF-9 could be the genuine BOLD response and the signal changes seen at HRF-6 

would result from this temporal bleeding effect. Given these findings it is possible that the BOLD 

signal changes observed 9 seconds prior to the IEDs could represent genuine pre spike activation. 

While electrophysiologically this is a considerable amount of time, it is consistent with previous 

work and suggestive of metabolically-demanding processes occurring considerably before a scalp 

discharge. 

A clear distinction between the time courses observed for the visual and epilepsy datasets is the 

absence of consistent responses on an event-by-event basis from the epilepsy data. Figure 3.4.3 

shows obvious and robust responses to brief visual stimuli, whereas the responses to IEDs are much 

more variable. Non-canonical HRFs have been commented upon previously (Lemieux, Laufs, 

Carmichael, et al., 2007; Lu, Bagshaw, Grova, et al., 2006), and data in this study also highlights 

that not all IEDs, despite being morphologically similar in the EEG, are associated with BOLD 
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signal increases consistent with a canonical HRF. This variability in the BOLD signal between 

individual IEDs within the same subject may explain why EEG-fMRI studies in focal epilepsy are 

often plagued by low statistical values. It is not clear why IEDs of the same type within a subject 

vary in their BOLD response so much, but this may suggest variability in metabolic demand or in 

the mechanisms of generation. 

The activity driving the early BOLD response does not appear to result in an identifiable 

electrographic discharge (Jacobs, Levan, Moeller, et al., 2009), but given the substantial area of 

synchronized cortex required to generate an electrographic discharge visible on scalp EEG (Ray, 

Tao, Hawes-Ebersole, et al., 2007; Tao, Baldwin, Hawes-Ebersole, et al., 2007), this is hardly 

surprising. This prespike activity has been shown to be more focal than later modelled responses 

(Jacobs, Levan, Moeller, et al., 2009) and thus prespike activations could potentially be more 

representative of the epileptogenic zone. The mechanism that drives these early BOLD changes 

has been the subject of considerable debate since they were first observed. In order to investigate 

the mechanisms underlying this phenomenon, Pittau et al., 2011, conducted an EEG-fMRI study 

comparing early observed BOLD activations to intracerebral EEG recordings. In their study of 4 

patients they found electrical discharges in the prespike period which corresponded to the early 

BOLD response in only one patient (Pittau, Levan, Moeller, et al., 2011). They concluded that 

these commonly observed BOLD responses that precede epileptiform discharges are due to 

metabolic events starting prior to scalp spikes resulting from both neuronal and non-neuronal 

mechanisms. These findings demonstrating little electrical activity preceding scalp spikes aid in 

the explanation of the absence of prespike EEG power changes noted by Jacobs et al., 2009. 

Overall, these early BOLD responses are evidently a consistent phenomenon that is reproducible 
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across studies in a variety of epilepsy subtypes in both adults and children (Schwartz, Hong, 

Bagshaw, et al., 2011). Despite these observations it is not currently possible to reliably predict 

which IED or epilepsy type will demonstrate early BOLD changes. In this study of heterogeneous 

patients, no reliable and consistent pattern was evident. 

Deactivations in epilepsy have been reported for both generalised and focal seizure disorders 

(Aghakhani, 2004; Bagshaw, Aghakhani, Bénar, et al., 2004; Hamandi, Salek-Haddadi, Laufs, et 

al., 2006; Hawco, Bagshaw, Lu, et al., 2007; Jacobs, Levan, Moeller, et al., 2009; Kobayashi, 

Bagshaw, Grova, et al., 2006; Moeller, Siebner, Wolff, et al., 2008; Rathakrishnan, Moeller, 

Levan, et al., 2010; Stefanovic, Warnking, Kobayashi, et al., 2005). The present study observed 

pre-spike and post-spike deactivations, with deactivations notably less common than activations. 

Deactivations concordant with the spike field were evident in only two patients across all analyses 

(patients 3 and 5). Deactivations observed using the standard canonical HRF were often distant 

from the electrographic spike field and inconsistent given the heterogeneity of the group. A study 

by Rathakrishnan et al., 2010, noted a partial overlap between areas of deactivation with preceding 

activation (Rathakrishnan, Moeller, Levan, et al., 2010). This observation was not evident in the 

findings here apart from one patient (#5) who demonstrated deactivation concordant with both 

spike field, pre-spike activations and at +3, +6 and +9 seconds post-spike. The findings reported in 

the present study are also less consistent than those found by Jacobs et al., 2009, who found 

concordant deactivation precipitated by pre-spike activation in three of their subjects. The 

observations in the present study could be due to the heterogeneity of the patient group and 

consequently suggest that IED type plays a pivotal role in the patterns of deactivation observed, 

both pre- and post-spike. 
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The primary limitations of this study are both subject numbers and the heterogeneity of the patients 

recruited into the study. A greater number of patients and more homogenous groups (i.e. unilateral 

TLE) would have enabled a more thorough investigation and any early BOLD responses. 

 

3.6 CONCLUSION 

In summary, reliability of pre-spike changes observed in IEDs is highly variable and likely varies 

between subjects and IED types, and thus any improved concordance observed from this type of 

analysis should be viewed with caution. From the visual data the results of this study suggest that 

any pre/post-event analyses need to be restricted to approximately 6 seconds either side of event 

onset. Although unlikely to eliminate the effects completely, this will serve to minimise the 

likelihood of temporal bleeding between models. Rollings et al., 2015, report a relatively small 

influence of TR and suggest that restricting analyses to 6 seconds rather than a specified number 

of TRs (i.e., four to five TRs if TR=1.5s, two TRs if TR=3s) would be sufficient. More extensive 

studies with more homogenous groups of patients showing single IED types may yield more 

information about the factors which contribute to the observation and reliability of pre-spike fMRI. 
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4.1 ABSTRACT 

Sleep paroxysms such as vertex sharp waves (VSWs), K-complexes (KCs) and sleep spindles 

(SSs), are spontaneously occurring endogenous graphoelements of sleep and are entirely non-

pathological. Interictal epileptiform discharges (IEDs) are also paroxysmal, spontaneously 

occurring endogenous EEG events however they are pathological. Studies have previously reported 

early BOLD signal changes preceding IEDs that may be meaningful, though the same analysis has 

not been previously applied to sleep paroxysms. In this study, the aim was to investigate if early 

BOLD signal changes are unique to pathological IEDs or if they can also be observed in non-

pathological paroxysmal activity. Nineteen participants underwent a period of EEG-fMRI 

following a night of sleep deprivation. Thirteen managed to achieve sleep in the scanner. A group 

analysis of VSWs, KCs and SSs were done using the onset times of the evens marked in the EEG 

during scanning and a second group analysis using the event times -6 seconds. No early BOLD 

responses were observed in VSWs or KCs, however early BOLD changes were observed for SSs, 

in the bilateral superior temporal gyri and Heschl’s gyri, anterior cingulate cortex, supplementary 

motor cortex, cuneus, and posterior insula. This is the first account of early BOLD changes 

occurring in SSs, or any non-pathological, paroxysmal sleep activity, though the significance of 

these changes are unclear. 
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4.2 INTRODUCTION 

Interictal epileptiform discharges (IEDs) are spontaneously occurring abnormal paroxysmal 

events, recorded on intracranial or scalp electroencephalography (EEG), requiring a large area of 

synchronised cortical activity of up to 20 cm2 of cortex to be visible on the scalp (Tao, Baldwin, 

Hawes-Ebersole, et al., 2007). This interictal activity is one of the hallmarks of epilepsy and used 

in the diagnosis and/or the classification of an epileptic disorder (Fisher, Scharfman & deCurtis, 

2014; Smith, 2005). The morphological features of these IEDs enable a broad classification of IED 

type, i.e. a spike, sharp wave or a spike and wave complex (International Federation of Societies 

for Clinical Neurophysiology, 1974). These transient epileptiform events are not unique in terms 

of paroxysmal electrographic discharges in the brain, as during the early stages of sleep, and its 

progression, several paroxysmal events can be observed; most consistently, vertex sharp waves, 

sleep spindles and K-complexes (Bastien, Crowley & Colrain, 2002; Halász, 2005; Jankel & 

Niedermeyer, 1985). Consistently observed during sleep in the normal brain, these paroxysms are 

distinct from the background EEG, just like IEDs, and vary in their morphology. The sleep spindle 

(SS) is a brief train of rhythmical 12 – 15 Hz activity lasting between 0.5 and 3 seconds originating 

in the thalamus and transferred to the cortex via thalamocortical and corticothalamic circuits 

(Bonjean, Baker, Lemieux, et al., 2011; Contreras & Steriade, 1996; De Gennaro & Ferrara, 2003; 

Jankel & Niedermeyer, 1985). A K-complex (KC) is a large, frontally predominant, biphasic slow 

wave complex originating from a highly synchronised cortex, mediated by corticothalamic and 

thalamocortical circuits, that can occur spontaneously or be evoked (Amzica & Steriade, 2002, 

1998; Halász, 2005). Although morphologically dissimilar to IEDs both SSs and KCs are 

spontaneously occurring endogenous paroxysms, like IEDs, and provide a reliable basis for 
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investigating paroxysmal events in the human brain. The vertex sharp wave (VSW) or the vertex 

sharp transient (Yasoshima, Hayashi, Iijima, et al., 1984), is again an entirely normal feature of 

early sleep yet, unlike the SS or KC, its morphological appearance is strikingly similar to an 

epileptiform sharp wave. The duration of an epileptic sharp wave is briefer than a VSW, defined 

as between 70ms and 200ms (Noachtar, Binnie, Ebersole, et al., 1999), whereas a VSW is a broader 

complex often with a duration of around 200ms (Yasoshima, Hayashi, Iijima, et al., 1984). 

Additionally, the VSW occurs across the vertex of the head and/or regions contiguous to it, whereas 

an IED can occur anywhere on scalp-EEG dependent on the location of the epileptogenic zone. 

Spontaneously occurring VSWs coincide with the onset of the cortical slow oscillation during 

sleep, and are likely to reflect the emerging synchronization of cortical networks that occurs during 

sleep progression (Amzica & Steriade, 1998). Unlike the VSW, KC and SS which are generated 

through an arrangement of thalamocortical, corticocortical and corticothalamic circuits. the 

mechanisms proposed to underlie the epileptiform spike or sharp wave result from an intrinsic 

feature of the epileptic neuron, a paroxysmal depolarisation shift (PDS). This is an excessive 

depolarisation that allows for a burst of action potentials (Gorji & Speckmann, 2009; McCormick 

& Contreras, 2001).  

For about two decades combined EEG-fMRI has been used to investigate the blood oxygenation 

level dependent (BOLD) signal changes in response to spontaneous IEDs as recorded on scalp EEG 

(Warach, Ives, Schlaug, et al., 1996). The vast majority of these studies used an event related 

design, taking the onset of the IED as the event time, and a canonical haemodynamic response 

function (HRF) to model BOLD changes (Lemieux, Salek-Haddadi, Hoffmann, et al., 2002; 

Gotman, Kobayashi, Bagshaw, et al., 2006; Gotman, 2008). The results from such studies have 
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demonstrated the BOLD correlates of focal IEDs, such as spikes and sharp waves, are quite variable 

between subjects and even demonstrate non-canonical responses (Grouiller, Vercueil, Krainik, et 

al., 2010; Lemieux, Laufs, Carmichael, et al., 2007; Storti, Formaggio, Bertoldo, et al., 2013). To 

improve the sensitivity of this method some epilepsy EEG-fMRI studies have shifted the time used 

in this analysis to precede the actual timing of IED to investigate the presence of prespike activity 

(Bagshaw, Aghakhani, Bénar, et al., 2004; Hawco, Bagshaw, Lu, et al., 2007; Jacobs, Kobayashi, 

Boor, et al., 2007; Pittau, Levan, Moeller, et al., 2011; Rollings, Assecondi, Ostwald, et al., 2015). 

Evidence from these studies suggests that there are meaningful BOLD signal changes that precede 

the electrographic scalp IED. However, the origin of these changes is not clear. Presumably they 

are the result of metabolically demanding activity that is not visible on scalp EEG, which has some 

support (Pittau, Levan, Moeller, et al., 2011) and is consistent with the observation of pre-ictal 

haemodynamic phenomena observed with a variety of methods (Schwartz, Hong, Bagshaw, et al., 

2011). The question of whether pre-event BOLD responses occur as a result of pathological, 

epileptic neurophysiological events, or simply because IEDs are internally generated, paroxysmal 

discharges, remains to be answered.  

These sleep paroxysms, KCs, VSWs and SSs, are the only reliably occurring paroxysmal 

discharges that are present on the normal EEG, and as such represent an opportunity to understand 

more about how BOLD responses are coupled with paroxysmal discharges in the absence of 

pathology. Imaging studies using EEG-fMRI have also been conducted to investigate the BOLD 

signal correlates of VSWs, KCs and SS (Caporro, Haneef, Yeh, et al., 2012; Jahnke, von Wegner, 

Morzelewski, et al., 2012; Schabus, Dang-Vu, Albouy, et al., 2007; Stern, Caporro, Haneef, et al., 
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2011), but no previous imaging studies have used the method of shifting the peak timing of the 

HRF when modelling these sleep paroxysms.  

The aim of this study was to investigate any potential early BOLD signal changes related to sleep 

paroxysms, or whether these early signal changes are unique to IEDs.  

 

4.3 METHODS 

Subjects & Procedure 

Nineteen participants (10 females, 29±9 years) were recruited into this study. Subjects were 

without known abnormal neurology and screened for excessive daytime sleepiness which may have 

indicated possible sleep disorders using the Epworth Sleepiness Scale (Johns, 1991). Subjects were 

asked to wear an Actiwatch (Philips Respironics) and keep a sleep diary for 1 week prior to 

scanning, to ensure no obviously disordered sleep was evident. They were requested to refrain from 

alcohol and caffeine consumption 24 hours prior to scanning. 

Subjects underwent a session of EEG-fMRI under fully sleep deprived conditions in which they 

were asked to remain awake for 24 hours prior to scanning. They attended for the scanning session 

at approximately 07:00hrs. During the scanning session, subjects were given earplugs and 

headphones to minimise the noise from MRI acquisition. The study was approved by the University 

of Birmingham Research Ethics Committee. Subjects gave written informed consent and were paid 

for their participation.   
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Data acquisition 

EEG data were acquired continuously with a sampling rate of 5 KHz using a 64-channel EEG cap 

(Brain Products, Munich, Germany), connected to two 32-channel MR-compatible amplifiers 

(BrainAmp MR Plus, Brain Products, Munich, Germany). Placement of single electrodes on the 

left shoulder and sub-mandibular suprahyoid muscles ensured recording of the ECG and proximal 

myogenic activity. Electrode impedances were kept below 10kΩ.   

A 3T Phillips Achieva MR Scanner (Phillips, Netherlands) with an 8-channel SENSE head coil 

was used for the acquisition of EPI data (3x3x4mm voxels, TR 2000ms, TE 35ms, 32 slices, flip 

angle 80°, 450 dynamics per scan), and a T1-weighted scan (1mm isotropic voxels) used for 

anatomical localisation. Following the T1-weighted scan, subjects were instructed to remain still 

with eyes closed. Each EPI scan was 15 minutes in duration, with a 1-minute period between each 

run of EPI acquisition to allow time for the subject to terminate scanning if required. Subjects 

remained in the scanner between 45 and 90 minutes.  

 

Data pre-processing & analysis 

EEG data. 

 Removal of MR gradient artefacts was performed offline using Brain Vision Analyzer software 

(version 1, Brain Products, Munich, Germany) implementing a template subtraction approach as 

described by (Allen, Josephs & Turner, 2000). The data were then downsampled to 200Hz and 

ballistocardiogram artefacts were removed using the Optimal Basis Set (OBS) plug-in (Niazy, 

Beckmann, Iannetti, et al., 2005) to EEGLAB (Delorme and Makeig, 2004). All events (VSW, KC 

and SS), were marked by an experienced electroencephalographer in accordance with guidelines 

laid out by the American Association of Sleep Medicine (Iber, Ancoli-Israel, Chesson, et al., 2007). 
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To allow unambiguous identification of the activation specifically associated with VSW, KC or 

SS, any events overlapped by 10 seconds either side of the event (e.g. a VSW occurring within 10 

seconds of a KC or a SS occurring within 10 seconds of a KC etc.), or linked, i.e. KC associated 

with a SS, were excluded from the analysis. 

 

fMRI data.  

EPI data were processed in SPM5 (Wellcome Department of Imaging Neuroscience, UCL, UK). 

Initially the images underwent realignment for motion correction, followed by slice timing 

correction, anatomical normalisation to MNI space and smoothing with a Gaussian kernel (6mm, 

FWHM). All marked events were convolved with a canonical HRF and its first temporal derivative 

using a general linear model (GLM) in an event related design. To account for noise contribution 

from cardiac rhythms and associated motion artefacts, six motion parameters and the timings for 

the Q-peaks, derived from the single lead ECG, were included as regressors in the design matrix. 

An additional GLM analysis was performed to investigate any potential BOLD changes that 

preceded the onset of the sleep paroxysms. In this case the peak of the HRF was changed by 

deducting 6 seconds from the timing of the onset of the sleep paroxysms used in the original GLM, 

in accordance with a previous investigation of early peaking HRFs in epilepsy (Rollings, 

Assecondi, Ostwald, et al., 2015). 

Group analyses including each paroxysm (VSW, KC and SS) were performed in SPM5. A 

Bonferroni corrected threshold of p<0.0005 (P<0.001/2) was used to take account of the use of two 

different peaking HRFs used. 
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4.4 RESULTS 

4.4.1 EEG results 

Of the 19 participants recruited into the study, 13 (7 males, 30 years ± 8 years) were able to achieve 

sleep in the scanner and demonstrate recordable sleep paroxysms (i.e. VSWs, KCs and/or SS), and 

thus were included in further analysis. Not all participants exhibited all paroxysms on the EEG 

during the scanning session; all 13 demonstrated VSWs, with KCs and SSs only observed in 7 of 

the participants. A total of 112 VSWs, 53 KCs, 34 SSs were recorded across all included subjects 

and scanning sessions. Previous studies have identified two distinct spindle types, fast- and slow-

SSs (Anderer, Klösch, Gruber, et al., 2001; Schabus, Dang-Vu, Albouy, et al., 2007; Werth, 

Achermann, Dijk, et al., 1997), however in this study it was decided to focus on investigating 

common generators/regions between both spindle types. Additionally, since the total number of 

SSs recorded was relatively low, separating them out would have reduced the numbers even further 

with 21 fast-SSs and only 13 slow-SSs. Topographical distribution of the sleep paroxysms on the 

EEG was as expected with VSWs maximal across the vertex, KCs showed a fairly widespread 

distribution across scalp electrodes but maximal in the frontal derivations, and SSs either occurred 

in frontal regions predominantly or in the central/parietal region depending on whether it was slow 

or fast spindles respectively.  

 

4.4.2 fMRI results 

Only positive t values were considered further as no negative responses where observed at the 

single or group level. With the standard HRF, group fMRI data for VSWs (n=13) demonstrated 
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widespread activation across several cortical and subcortical structures (Figure 4.4.1.a.). Activation 

was observed across anterior, middle and posterior cingulate cortices, pre- and post-central gyri, 

superior temporal gyri, inferior, middle and superior frontal gyri, and in primary visual cortices. 

Subcortical activation was also noted in the thalamus bilaterally and in the brainstem. The group 

data for the shifted HRF occurring 6 seconds prior to VSW onset did not demonstrate any 

significant activation. 

 

With actual event times, the group data for KCs (n=7) demonstrated several regions of cortical 

activation as well as subcortical activation (Figure 4.4.1.b.). A large cluster of activation was 

observed in the middle cingulate cortex and into primary motor and sensory cortices. Activation 

was present bilaterally in the superior temporal gyrus, calcarine cortex, precuneus, some in the 

A 

B 

C 

Figure 4.4.1. Fixed effects group responses for the total A) 112 VSWs (n=13), B) 53 KCs 

(n=7), and C) 34 SSs (n=7). Activation maps (p<0.0005, uncorrected, no cluster threshold) 

superimposed on to a normalised T1 (MNI space) from one of the participants. 
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posterior cingulate cortex and also in the prefrontal cortex. Subcortical activation was evident in 

bilaterally in the thalamus, some in the rostral brainstem and also the left putamen/globus pallidus. 

Again, shifting the HRF to peak 6 seconds prior to the onset of the KC did not demonstrate any 

significant activation.  

In the group data for SSs (n=7) using the actual event times, activation was observed in both cortical 

and subcortical structures (Figure 4.4.1.c.). Cortical regions involved included bilateral superior 

and middle temporal gyri, bilateral posterior insula, precuneus, anterior cingulate cortex (ACC), 

middle frontal gyrus, and supplementary motor area. Bilateral thalamic activation was also noted. 

The group map for the shifted HRF demonstrated activation in a number of cortical regions (Figure 

4.4.2.): bilateral superior temporal gyri and Heschl’s gyri, anterior cingulate cortex, supplementary 

motor cortex, cuneus, and posterior insula; most notably the right insula.  

 

Figure 4.4.2. Group results for early BOLD responses for SSs (n=7).  Activation maps 

(p<0.0005, uncorrected, no cluster threshold). Regions include posterior insula, anterior 

cingulate, Heschl’s gyrus, and superior temporal gyrus. 
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4.5 DISCUSSION 

The primary aim of this study was to ascertain if early BOLD signal changes that have been 

observed in EEG-fMRI studies in epilepsy are also observed in spontaneously occurring sleep 

paroxysms. Early BOLD changes in epilepsy have been observed in both focal and generalised 

epilepsy (Jacobs, Kobayashi, Boor, et al., 2007; Moeller, Siebner, Wolff, et al., 2008; Rollings, 

Assecondi, Ostwald, et al., 2015). It has been postulated they result from neurons or glial structures 

involved in the generation of focal IEDs that are yet unsynchronised (Pittau, Levan, Moeller, et al., 

2011). Given this, it would be unlikely to observe any early BOLD responses in spontaneously 

occurring sleep paroxysms; KCs, VSWs and SSs.  

The areas of activation observed in the group data for VSWs and KCs were fairly widespread and 

consistent with previous studies (Caporro, Haneef, Yeh, et al., 2012; Jahnke, von Wegner, 

Morzelewski, et al., 2012; Stern, Caporro, Haneef, et al., 2011). For both KCs and VSWs, no 

significant activation was observed in the analysis of early BOLD signals, at the group or single 

subject level. Given the potential pitfall of “temporal bleeding”, or an overlap in the HRF models 

(Rollings, Assecondi, Ostwald, et al., 2015), using this type of analysis to investigate early BOLD 

signals, it is reassuring to find early BOLD responses are not observed in VSWs and KCs despite 

having such extensive activation; especially as seen with VSWs. If early responses were a result of 

an overlap between the HRF models, then one would certainly expect to see such overlap when the 

responses are so significant and widespread. Thus the early BOLD changes observed in epilepsy 

studies become even more convincing, and less likely to occur as a result of modelling techniques. 
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At the group level using the canonical HRF SSs demonstrated regions of activation including 

bilateral superior temporal gyri, posterior insula, precuneus, anterior cingulate cortex, middle 

frontal gyrus, supplementary motor area and thalamus. These regions are similar to previous EEG-

fMRI studies of SSs (Andrade, Spoormaker, Dresler, et al., 2011; Schabus, Dang-Vu, Albouy, et 

al., 2007). Of particular note, significant early BOLD signal changes were observed in SSs. No 

previous study has investigated early BOLD changes in sleep paroxysms and as such this is the 

first report of early activation preceding the scalp SS. The regions that demonstrate early increases 

in BOLD signal include bilateral superior temporal gyri and Heschl’s gyri, anterior cingulate 

cortex, supplementary motor cortex, cuneus, and posterior insula; most notably the right insula. 

Although similar regions of activation are observed between both the standard and early HRF 

models for SSs, there are clear distinctions between the two maps (Figure 4.4.2.), suggesting that 

temporal bleeding is an unlikely explanation.  Given that no early responses were observed in either 

VSWs or KCs, and the BOLD responses with the canonical HRF were greater and more extensive, 

it is unlikely that the early responses observed in SSs are a result of the modelling techniques used, 

but rather they are genuine BOLD signal increases that precede the SS. The origin of these early 

activations and their significance are the palpable questions that arise from such results.   

Spindles originate in the thalamus as thalamic reticular (RE) neurons enact rhythmic inhibitory 

post synaptic potentials (IPSPs) upon thalamocortical (TC) cells which can lead to rebound spike 

bursts transferring to the cortex, resulting in spindles through rhythmical interaction between RE 

and TC neurons (Contreras & Steriade, 1996; Steriade, 1995). The thalamic origin of SSs is 

supported by in vivo recordings in decorticated cats (Morison & Bassett, 1945; Steriade, 1995) and 

synchronisation though the cortex is potentiated by the neocortex and reciprocal interactions 
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between TC and RE neurons (Contreras & Steriade, 1996; Destexhe, Contreras & Steriade, 1998). 

Given that the evidence indicates clearly a thalamic origin of spindles, it appears counter intuitive 

that early BOLD changes would not involve the thalamus and rather purely cortical structures. 

Recent research, using computational models and in vivo recordings from both the thalamus and 

cortex, indicate that initiation of spindle sequences may occur via pyramidal neurons through 

recruiting bursts in RE neurons (Bonjean, Baker, Lemieux, et al., 2011). This suggests that spindles 

arise through a complex interaction between the thalamus and cortex and are heavily influenced by 

corticothalamic involvement. Recent studies of slow SSs and fast SSs suggest that they are 

generated through different mechanisms, and slow SSs may have an intracortical origin (Ayoub, 

Aumann, Hörschelmann, et al., 2013; Timofeev & Chauvette, 2013). In this present study both 

slow and fast SSs were included in the same analysis, and as such it is unclear as to what the 

contributions from each spindle type to the overall results are. These findings in part may lend 

explanation as to why early BOLD changes in SSs, observed in this present study, are purely 

cortical. Why these responses occur in the first place remains elusive and a topic for further 

investigation. It is feasible that preceding changes in cortical activity may indicate the development 

of a favourable substrate for spindle generation when initiated by the thalamus; one such substrate 

is the slow oscillation.   

The slow oscillation (SO) originates in the cortex (Timofeev, Grenier, Bazhenov, et al., 2000), 

oscillates between ~0.3 – 1 Hz (Steriade, McCormick & Sejnowski, 1993). It reflects the highly 

synchronous activity of nearly all cortical neurons between a depolarising upstate, consisting of 

inhibitory and excitatory postsynaptic potentials, and a hyperpolarising downstate, in which 

neuronal firing is silenced (Steriade, McCormick & Sejnowski, 1993; Volgushev, Chauvette, 
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Mukovski, et al., 2006; Amzica & Steriade, 2000). SSs are temporally linked to the phase of the 

SO; specifically fast spindles are associated with the upstate and slow spindles in the transition 

from upstate to downstate (Klinzing, Mölle, Weber, et al., 2016; Mölle, Marshall, Gais, et al., 

2002). Imaging studies using positron emission tomography (PET) have demonstrated, among 

other regions, anterior cingulate and insular cortices involvement in the SO (Dang-Vu, Desseilles, 

Laureys, et al., 2005; Maquet, 2000). Similar findings have been reported in an EEG-fMRI study 

by Kaufmann et al., 2006, who demonstrated decreased brain activity in several regions correlated 

with deepening of sleep, most notably the involvement of the cingulate and insular cortices 

(Kaufmann, Wehrle, Wetter, et al., 2006). In PET studies, regional cerebral blood flow (rCBF) is 

found to be lowest in regions most involved in slow sleep oscillations, likely associated with 

synchronised hyperpolarisation of the neurons in these regions (Maquet, 2000). This interpretation 

is also applied to decreases in BOLD signal and increases in delta power observed with deepening 

sleep (Czisch, Wehrle, Kaufmann, et al., 2004; Kaufmann, Wehrle, Wetter, et al., 2006). A study 

using high density-EEG reported that spontaneous slow waves during sleep occurred in numerous 

distributed cortical sites, but preferentially in the insula and cingulate cortex (Murphy, Riedner, 

Huber, et al., 2009). The involvement of the insula and ACC in the generation of slow activity, 

which is inextricably linked to the SO, is therefore evident across different imaging modalities, and 

is consistent with the early BOLD changes observed in relation to SSs in the current study. 

However, despite the activation of similar regions and the temporal relationship between the SO 

and SSs, it is perplexing as to why early BOLD responses 6 seconds before the SS would occur. 

This explanation therefore remains speculative.  
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In addition to the early BOLD signal changes observed in the insula and ACC, the results in this 

study demonstrated early activation in superior temporal gyri and Heschl’s gyri. A possible 

explanation for this lies in the role of SSs. Spindles have been described as having a sleep protective 

role (Dang-Vu, McKinney, Buxton, et al., 2010; De Gennaro & Ferrara, 2003) which can inhibit 

responses to incoming stimuli (Elton, Winter, Heslenfeld, et al., 1997; Schabus, Dang-Vu, Heib, 

et al., 2012; Steriade, McCormick & Sejnowski, 1993) and may even represent the inhibition of 

information processing by the thalamus (Cote, De Lugt, Langley, et al., 1999). Auditory stimuli 

during NREM sleep can elicit fMRI activation at any phase of the SO in the auditory cortex but 

activation in the STG is phase dependent; i.e. the negative to positive slope of the SO (Schabus, 

Dang-Vu, Heib, et al., 2012). Given that spindles are temporally related to the phase of the SO, 

and auditory responses can occur during any phase of the SO, one possible explanation is that the 

early activation observed in this present study is related to auditory stimulation resulting from 

scanner noise. This is probably unlikely however given the response to the noise would essentially 

be occurring with a delay of six seconds.  

Given the relationship between the SO and SSs and the reported contribution of both the insula and 

ACC, and the early BOLD response reported here in this present study, it is plausible that the insula 

and ACC may play a meaningful role in spindle generation. The involvement of auditory cortex 

may be related to incoming stimuli from scanner noise, though this is not possible to establish in 

this study. This could be investigated by use of tone stimulation during scanning to ascertain if 

these early BOLD responses are most evident during stimulus delivery. In this study SSs were 

coalesced and not analysed separately as fast and slow spindles. It is thus unknown whether one 

spindle type or another is the main contributor to the early BOLD responses observed here, or 
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whether this is a feature of both fast and slow SSs. A larger cohort and greater numbers of SSs 

would allow for separation of the two spindle types to investigate this further. 

 

4.6 CONCLUSION 

The aim of this study was to ascertain if early BOLD signal changes observed in epilepsy studies 

were also evident in sleep paroxysms; notably VSWs, KCs and SSs. The absence of early BOLD 

responses in VSWs and KCs gives supports that the findings of prespike activity observed in IEDs 

is a genuine phenomenon rather than an effect of the modelling used (i.e. shifting HRF peak time). 

This is the first study to report early BOLD signal responses in SSs, and indeed in relation to any 

normal paroxysmal brain activity. As this has not been previously investigated or reported their 

significance and meaning remain unclear and warrant further investigation. These changes could 

represent an emerging network involved in the generation and propagation of sleep spindles. 

Further studies are needed with the specific aim of investigating these responses to elucidate their 

validity and significance.  
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5.1 ABSTRACT 

The K-complex (KC) and vertex sharp wave (VSW) are two major graphoelements that are unique 

to sleep. Their relationship has been established in event related potential (ERP) studies during 

sleep though their characterised roles have been both described as similar and divergent at one time 

or another. At present both are postulated to provide a sleep maintenance role. The aim of this 

EEG-fMRI experiment was to further elucidate the relationship between the two paroxysms and to 

further elucidate the functional role by manipulating homeostatic sleep pressure through sleep 

deprivation. Group data from six subjects who were scanned under bother sleep deprived (SD) and 

non-deprived (ND) conditions demonstrated widespread regions of cortical activation in both KCs 

and VSWs. Regions of interest (ROI) were defined from this data and beta values extracted. This 

data were used in a generalised linear mixed model (GLMM). From the GLMM there was a 

significant overall increase in the BOLD response when under SD conditions, indicating sleep 

deprivation increases the BOLD response. In KCs specific regions (bilateral middle frontal and 

middle temporal gyri) demonstrated a decrease, rather than increase following SD; these regions 

associated with attentional networks may represent reduced attentional activation when SD. 

Widespread activation was present in primary sensory regions more so with VSWs than KCs, 

indicating the VSW may be priming the cortex for a rapid transition from a sleep to wake state 

should the need arise. Overall these results suggest the KC has a more sleep protective role than 

the VSW though the two may indeed be related with the VSW perhaps a precursor of the KC. 

Additionally, sleep deprivation has been shown to increase the BOLD response and this should be 

taken into account when using sleep deprivation to study sleep using EEG-fMRI. 
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5.2 INTRODUCTION 

The progression through the stages of human sleep is heralded by stark electrographic features 

unique to each brain state. The vertex sharp wave (VSW), observed late in drowsiness into stage 1 

sleep, and the K-complex (KC), first evident during the transition from stage 1 to stage 2 sleep, are 

two such graphoelements. While both VSW and KC have been observed for several decades, and 

are included in standard protocols for sleep staging (Iber, Ancoli-Israel, Chesson, et al., 2007) the 

brain regions that generate them and their functional significance are yet to be fully elucidated.   

The VSW is topographically observed most prominently over the vertex (Yasoshima, Hayashi, 

Iijima, et al., 1984) comprising of a large surface negative potential preceded by a small positive 

wave and is often associated with the N350 component of event related potentials (ERP) in sleep 

studies (Colrain, Webster, Hirst, et al., 2000; Harsh, Voss, Hull, et al., 1994). First described in 

1938 by Loomis and colleagues, the KC is a fundamental landmark of stage 2 sleep, occurring 

spontaneously or evoked by exogenous/endogenous stimuli (Colrain, 2005; Loomis, Harvey & 

Hobart, 1938). The KC is predominantly associated with a prominent surface negative component, 

in ERP studies occurring at 550 ms (N550), with an initial preceding positive deflection. A negative 

peak at 300 – 350 ms can often be observed associated with the KC though is not considered to be 

a primary component of that KC but rather attributed to the VSW (Bastien & Campbell, 1992; 

Bastien, Crowley & Colrain, 2002; Colrain, Webster, Hirst, et al., 2000; Halász, 2005).   

Due largely to the work of Amzica and Steriade, the electrophysiological basis of KCs is well 

understood (Amzica & Steriade, 2002, 1998, 1997). The two phases of the biphasic KC, the initial 

positive deflection, representing synchronous neuronal excitation, and the more electrographically 

prominent negative components resulting from a period of hyperpolarisation, cause widespread 
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cortical synchronisation. Subsequent triggering of sleep spindles or delta oscillations has been 

proposed as a consequence of the synchronous input into thalamic neurons (Amzica & Steriade, 

2002, 1998). This is corroborated by the frequently observed presence of sleep spindles following 

KCs (Halász, 2005). While similar mechanisms are thought to subserve the generation of VSWs, 

their electrophysiology has received less attention (See section 1.2 for more details on sleep 

paroxysms).  

Initial research suggested that the functional significance of KCs was limited to an arousal 

mechanism (Ehrhart, Ehrhart, Muzet, et al., 1981; Roth, Shaw & Green, 1956). However, more 

recent indications favour a sleep protective mechanism rather than that of a simple arousal response 

(Bastien, Ladouceur & Campbell, 2000; Colrain, 2005; Forget, Morin & Bastien, 2011; Peszka & 

Harsh, 2002).  This theory has been further substantiated by recent studies using functional imaging 

methods to identify brain regions and networks associated with KCs (Caporro, Haneef, Yeh, et al., 

2012; Jahnke, von Wegner, Morzelewski, et al., 2012). Both Copporo et al., 2012, and Jahnke et 

al., 2012, identified activation in primary sensory regions in addition to other cortical and 

subcortical regions. From this it has been inferred that there may be a degree of information 

processing, allowing the sleeper to monitor environmental changes potentially requiring action, but 

also to maintain uninterrupted sleep should no arousing response to the environmental stimuli be 

required.  

The sensory regions identified in these imaging studies are remarkably similar to those seen in 

response to VSW (Stern, Caporro, Haneef, et al., 2011). The VSW has received far less attention 

than the KC despite its stark morphology and consistently observed appearance during the early 

stages of sleep. The primary component of the VSW, the large surface negative potential, is 

observed maximal in amplitude across the midline and can be elicited by both auditory and 
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inspiratory occlusion stimuli (Colrain, Webster, Hirst, et al., 2000; Bastien, Crowley & Colrain, 

2002). Despite differing topographical distribution of the primary components of the VSW and the 

KC, it has been proposed that the VSW may also contribute a sleep protective mechanism, possibly 

sharing similar neural generators with the KC (Amzica & Steriade, 1998; Colrain & Campbell, 

2007). A relationship between the VSW and KC is possible given the presence of the N350 across 

both sleep paroxysms in studies investigating ERPs in sleep. It was initially suggested that the 

N350 may act as a trigger for the N550 once a threshold had been reached, though subsequently it 

was demonstrated that there was no significant difference in amplitudes between the N350 

occurring independently or in conjunction with the N550 (Bastien & Campbell, 1992; Gora, 

Colrain & Trinder, 2001). A functional relationship between VSWs and KCs remains probable, but 

at present the evidence is ambiguous.   

The VSW and KC have both been implicated in providing a sleep protective role, possibly via 

gating of external stimuli in order to maintain sleep. Under sleep deprived conditions, which 

increases sleep drive, Nicholas et al., 2002, identified a significant increase in both spontaneous 

and evoked KCs compared with normal sleep (Nicholas, Trinder & Colrain, 2002). They concluded 

a sleep maintenance role for KCs, though no change in density was noted for VSW. Subsequent 

studies have failed to show significant changes in KC density following sleep deprivation (Curcio, 

Ferrara, Pellicciari, et al., 2003; Sforza, Chapotot, Pigeau, et al., 2004) and the effect of sleep 

deprivation on VSW has been neglected.  

In this study we used EEG-fMRI to investigate the brain regions involved in the generation of 

VSWs and KCs under both sleep deprived and non-deprived conditions. The study had two primary 

aims: 1) to investigate the relationship between the two sleep transients in normal and recovery 

sleep and 2) to use manipulation of homeostatic sleep drive via sleep deprivation to observe any 
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potential effect on VSWs and KCs and whether this may help to further elucidate the function of 

these sleep transients.  

 

5.3 METHODS 

 

Subjects & Procedure 

Eight participants (5 males, mean age 32±6 years) were recruited into this study. Subjects were 

without known abnormal neurology and screened for excessive daytime sleepiness which may have 

indicated possible sleep disorders using the Epworth Sleepiness Scale (Johns, 1991). Subjects were 

asked to wear an Actiwatch (Philips Respironics) and keep a sleep diary for 1 week prior to 

scanning, and to keep a regular sleep onset time. They were requested to refrain from alcohol and 

caffeine consumption 24 hours prior to scanning. 

Subjects initially underwent a session of EEG-fMRI under fully sleep deprived conditions in which 

they were asked to remain awake for 24 hours prior to scanning. They attended for the scanning 

session at approximately 07:00hrs (sleep deprived (SD) condition). Subjects were asked to return 

for a second scanning session, separated by at least 2 weeks, this time under non-deprived 

conditions (start of scanning session approximately 23.00hrs depending on subjects’ normal 

bedtime, non-deprived (ND) condition)).  

During both scanning sessions, subjects were given earplugs and headphones to minimise the noise 

from MRI acquisition. The study was approved by the University of Birmingham Research Ethics 

Committee. Subjects gave written informed consent and were paid for their participation.   
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Data acquisition 

EEG data were acquired continuously with a sampling rate of 5 KHz using a 64-channel EEG cap 

(Brain Products, Munich, Germany), connected to two 32-channel MR-compatible amplifiers 

(BrainAmp MR Plus, Brain Products, Munich, Germany). Placement of single electrodes on the 

left shoulder and sub-mandibular suprahyoid muscles ensured recording of the ECG and proximal 

myogenic activity. Electrode impedances were kept below 10kΩ.   

A 3T Phillips Achieva MR Scanner (Phillips, Netherlands) with an 8-channel SENSE head coil 

was used for the acquisition of EPI data (3x3x4mm voxels, TR 2000ms, TE 35ms, 32 slices, flip 

angle 80°, 450 dynamics per scan), and a T1-weighted scan (1mm isotropic voxels) used for 

anatomical localisation. Following the T1-weighted scan, subjects were instructed to remain still 

with eyes closed and not to resist sleep. Each EPI scan was 15 minutes in duration, with a 1-minute 

period between each run of EPI acquisition to allow time for the subject to terminate scanning if 

required. Subjects remained in the scanner between 45 and 90 minutes.  

 

Data preprocessing & analysis 

EEG data. Removal of MR gradient artefacts was performed offline using Brain Vision Analyzer 

software (version 1, Brain Products, Munich, Germany) implementing a template subtraction 

approach as described by Allen et al., 2000 (Allen, Josephs & Turner, 2000). The data were then 

downsampled to 200Hz and ballistocardiogram artefacts were removed using the Optimal Basis 

Set (OBS) plug-in (Niazy, Beckmann, Iannetti, et al., 2005) EEGLAB (Delorme & Makeig, 2004). 

All electrographic transients of sleep (VSW, KC and sleep spindles), were marked by an 

experienced electroencephalographer in accordance with guidelines laid out by the American 

Association of Sleep Medicine (Iber, Ancoli-Israel, Chesson, et al., 2007). To allow unambiguous 
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identification of the activation specifically associated with VSW or KC, VSW associated with a 

sleep spindle or KC were excluded from analysis as were KCs associated with sleep spindles or 

delta waves. As this occurred very infrequently these few events were not included as regressors. 

KCs closely preceded by a VSW were also excluded to avoid any potential overlap in activation or 

contamination between the two paroxysms. 

 

fMRI data  

EPI data were processed in SPM5 (Wellcome Department of Imaging Neuroscience, UCL, UK). 

Initially the images underwent realignment for motion correction, followed by slice timing 

correction, anatomical normalisation to MNI space and smoothing with a Gaussian kernel (6mm, 

FWHM). All marked events were convolved with a canonical HRF and its first temporal derivative 

using a general linear model (GLM) in an event related design. To account for noise contribution 

from cardiac rhythms and associated motion artefacts, six motion parameters and the timings for 

the Q-peaks were included as regressors in the design matrix. Sleep spindles were also included in 

the design as a regressor of no interest, though sleep spindles and KCs occurring concurrently were 

excluded.  

A group analysis including each condition (ND and SD) and paroxysm (VSW and KC) was 

performed in SPM5. An F-contrast was created in SPM including both conditions and paroxysms 

and the resulting statistical map (FWE corrected, p < 0.05) was used to formulate regions of interest 

(ROI) for later analyses (see Figure 5.4.1.). From the largest observed clusters, the voxel with the 

maximum t-value was selected and a 10 mm spherical ROI was defined around this coordinate in 

the MarsBaR plugin (Brett, Anton, Valabregue, et al., 2002) to SPM (Table 5.3.1). The beta values 

for each subject were extracted for each paroxysm and condition giving a total of four beta values 
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per subject for each ROI. The beta values were then used in a generalised linear mixed-model 

(GLMM) implemented in SPSS (IBM SPSS Statistics, version 22, Chicago, IL) modelling the fixed 

effects of sleep type, sleep transient, ROI and also the two-way (sleep-transient, sleep-ROI, 

transient-ROI) and three-way (sleep-transient-ROI) interactions. The model also included the 

random-effects of subject.  

 

ROI  Anatomical Abbreviation Anatomical location MNI coordinates 

1 R MFG Right middle frontal gyrus 27, 57, 0 

2 L MFG Left middle frontal gyrus -33, 54, 8 

3 MOG Mid-Orbital gyrus -3, 54, -4 

4 R In Right insula 36, -18, 12 

5 L In Left insula -33, -18, 8 

6 ACC Anterior cingulate cortex 6, 24, 24 

7 MCC Mid-cingulate cortex 0, -21, 44 

8 PCC Posterior cingulate cortex 3, -49, 30 

9 PC Precuneus 6, -66, 52 

10 L PrCG Left pre-central gyrus -39, -24, 58 

11 R PrCG Right pre-central gyrus 39, -24, 64 

12 L PoCG Left post-central gyrus -33, -39, 64 

13 R PoCG Right post-central gyrus 36, -36, 64 

14 R STG Right superior temporal gyrus 57, -33, 8 

15 L STG Left superior temporal gyrus -60, -39, 16 

16 L MTG Left middle temporal gyrus -48, -60, 8 

17 R MTG Right middle temporal gyrus 51, -60, 8 

18 L LG Left lingual gyrus -6, -69, 8 

19 R LG Right lingual gyrus 18, -63, 0 

20 L Th Left thalamus -9, -21, 4 

21 R Th Right thalamus 9, -21, 4 

22 Pons Brainstem (Pons region)  -3, -30, -40 

 

Table 5.3.1.. Anatomical location and MNI coordinates of each defined 10mm spherical ROI 

with identifier. 
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5.4 RESULTS 

5.4.1 EEG results 

All but one subject reached at least stage N2 sleep in both sleep deprived (SD) and non-deprived 

(ND) scanning sessions. The subject who failed to reach stage N2 sleep in both conditions was 

excluded. A further subject was excluded due to corrupted EPI data, despite reaching stage N2 

sleep. From the 6 subjects (4 males, 29 years ± 4 years) included in the analysis, the combined 

scanning time for EPI acquisition of the ND group was 435 minutes, and 420 minutes for SD group. 

A total of 60 VSWs were recorded during the ND session and 67 during the SD session. In the ND 

group 40 KCs were recorded and 49 from the SD group. Although slightly more of the sleep 

paroxysms were recorded during the SD session, paired t-tests showed there was no significant 

difference between the two groups in the number of VSW (p = 0.64) or KC (p = 0.18) and no 

difference between the mean amplitudes between the two conditions for VSW (p = 0.09) and KC 

(p = 0.23). The electrode site demonstrating maximal amplitude varied between subjects but was 

consistent within subjects. The maximal amplitude for VSWs was located at the vertex or 

contiguous to it, with the maximal amplitude for the KCs located more anteriorly.  
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Figure. 5.4.1. Group results showing regions of activation in relation to (A) VSW under non-sleep 

deprived conditions, (B) VSW under sleep deprived conditions, (C) KCs under non-sleep deprived 

conditions and (D) KCs under sleep deprived conditions. Activations maps (displayed at p < 0.001, 

uncorrected) superimposed on normalised anatomical T1 scan from one subject. The final “Overall” 

map at the bottom is an F-contrast including both VSW and KC under both ND and SD conditions 

(p < 0.05, FWE corrected). 
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5.4.2 fMRI results 

For both conditions and sleep paroxysms, no deactivations at group or single subject level were 

observed, so only positive BOLD responses are discussed.  

Group analysis for VSW under ND conditions (n=6) demonstrated BOLD signal increases in 

widespread regions (Figure 5.4.1.). Large clusters of activation were observed in anterior cingulate 

cortex, middle frontal and superior frontal gyri bilaterally, insula cortices, cuneus and bilaterally in 

superior and middle temporal gyri. Most of the primary sensory and motor regions also 

demonstrated an increase in BOLD signal. Sub cortical activation was also noted bilaterally in the 

thalamus and in the brainstem at the level of the pons. Under SD conditions similar regions of 

activation were observed though more abundant activation was seen across the cortex as compared 

to the ND group. Posterior temporal regions bilaterally also demonstrated BOLD signal increases 

that were not evident in the ND group. Subcortically, bilateral thalamic activation was noted as 

was bilateral caudate.  

For the KC group under ND conditions, increased BOLD signal changes were observed bilaterally 

in the inferior frontal gyrus, middle frontal gyrus, middle temporal gyrus and inferior parietal 

cortices (Figure 5.4.1.). Additionally, signal increases were seen in the posterior cingulate cortex, 

precuneus and cuneus. Primary sensory (auditory, visual, somatosensory) and motor regions were 

also involved as were bilateral thalamus and medial brainstem at the level of the pons. Under SD 

conditions, KC activation patterns were similar to those observed under ND conditions with more 

activation in the posterior cingulate cortex, cuneus, thalamus and brainstem. Increases in BOLD 

signal compared to the ND condition were observed in the prefrontal cortex and to a lesser extent 

the posterior temporal region. 
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The F-contrast including both paroxysm types across both ND and SD conditions, performed to 

investigate the overall effects of sleep paroxysm and sleep type and on which the ROI analysis was 

based, on can be seen in Figure 5.4.1. (D).  

 

 VSW     KC    
Region Std t df Sig.  Std t df Sig. 

R MFG 0.603 0.329 19 0.746  0.603 2.584 19 0.018 

L MFG 0.611 -0.349 19 0.731  0.611 2.800 19 0.011 

MOG 0.617 -2.746 20 0.013   0.617 -3.197 20 0.005 

R In 0.581 -2.187 19 0.041  0.581 0.000 19 1.000 

L In 0.409 -3.268 19 0.004  0.409 0.000 19 1.000 

ACC 0.730 -2.924 20 0.008   0.703 -2.806 20 0.011 

MCC 0.779 1.764 19 0.093  0.779 -2.707 19 0.014 

PCC 0.836 -2.715 20 0.013   0.836 -4.067 20 0.001 

PC 0.753 -1.733 19 0.099  0.753 1.859 19 0.078 

L PrCG 0.663 -0.420 20 0.679  0.663 0.035 20 0.972 

R PrCG 0.369 -0.190 18 0.852  0.369 0.000 18 1.000 

L PoCG 0.547 -0.615 19 0.546  0.547 1.340 19 0.196 

R PoCG 0.541 0.897 20 0.381  0.541 1.587 20 0.129 

R STG 0.769 -3.242 20 0.004  0.769 -0.241 20 0.812 

L STG 1.183 -2.927 20 0.008   1.183 -4.556 20 0.000 

L MTG 0.435 -6.160 19 0.000   0.435 3.114 19 0.006 

R MTG 0.565 -5.211 19 0.000   0.565 2.970 19 0.008 

L LG 1.635 -1.613 20 0.123  1.635 -2.547 20 0.019 

R LG 1.688 -2.161 20 0.043   1.688 -2.165 20 0.043 

L Th 0.849 -2.151 19 0.044   0.849 -5.396 19 0.000 

R Th 0.872 -2.290 20 0.033   0.872 -5.372 20 0.000 

Pons 0.522 0.000 19 1.000  0.522 -3.669 19 0.002 

 

Table 5.4.1. Results of the three-way effects within the GLMM. Rows highlighted indicated 

regions that are significant across both sleep transients, where as individual highlighted p-values 

are regions significant for that particular sleep transient. 
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5.4.3 ROI results 

The GLMM demonstrated that the main effect of sleep type was significant (F(1,161 = 20.637, p 

< 0.001), with greater beta values observed in the SD group when compared to the ND group. The 

main effect of transient type was also significant (F(1,161) = 39.713, p < 0.001) with higher beta 

values observed in VSW compared to KCs, and similarly the main effect of region was significant 

(F(8,34) = 6.594, p< 0.001). There was a significant interaction between sleep type and region 

(F(21,39) = 7.118, p < 0.001), and between transient type and region (F(21,39) = 27.383, p < 0.001); 

a breakdown of the individual regions can be seen in Figure 5.4.2. Sleep and transient type did not 

show a significant interaction (F(1,206) = 1.103, p = 0.295), initially indicating sleep type, ND or 

SD, did not have a significant effect on sleep transient. A three-way fixed effect interaction, 

however, between sleep type, transient type and region was significant (F(21,39) = 5.500, p < 

0.001) indicating that the interaction between sleep type and transient that was region dependent 

(Figure 5.4.3). 

In Table 5.4.1 several regions are highlighted as showing significant increases or decreases in beta 

value as an effect of sleep type; some were common to both VSWs and KCs, and others exclusive 

to each transient. Regions that were commonly activated and showed a significant effect of sleep 

type included pre-frontal cortex, anterior and posterior cingulate cortex, left superior temporal 

gyrus, bilateral posterior middle temporal gyri and bilateral thalamus.  

Under SD conditions VSWs demonstrated increases in beta values across all significant regions 

when compared to ND conditions. Although the majority of significant regions for KCs showed an 

increase in beta value in SD, there were some regions that showed a decrease: bilateral middle 

frontal gyri and bilateral posterior middle temporal gyri. 
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There were some instances where regions had no activation in the defined ROI but there was 

activation present in the general region. This was most notable in the brainstem (ROI 22), where 

activation was observed more caudally in the brainstem for VSW compared to the defined ROI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 5.4.2. Results from the GLMM showing the two-way fixed effects between sleep 

type and region and transient type and region. Highlighted ROIs on the graph are where the 

effect is significant (p < 0.05). 
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Figure. 5.4.3. Results from the GLMM 

showing the three-way fixed effects for each 

region. T1-weighted image below each graph 

shows anatomically where each ROI is located. 
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5.5 DISCUSSION 

This study investigated the BOLD signal correlates of VSWs and KCs in healthy subjects under 

both ND and SD conditions. Positive BOLD signal changes were observed in widespread regions 

for both VSWs and KCs, including primary sensory and motor regions, cingulate cortices, 

precuneus and prefrontal cortex. Increased BOLD signal changes were also found in subcortical 

structures (thalamus, basal ganglia and brainstem). No significant BOLD deactivations at the single 

subject or group level were observed.  

 

5.5.1 The relationship between VSWs and KCs 

In the present study the maximal amplitude of the VSW was located at the vertex or regions 

contiguous to the vertex in surface EEG recordings, as demonstrated in other studies (Bastien, 

Crowley & Colrain, 2002; Colrain, Webster, Hirst, et al., 2000). Despite the electrographic 

distribution, the BOLD signal increases associated with VSWs demonstrate widespread 

involvement of cortical and subcortical regions. The regions of activation noted in the present study 

are similar to those presented by Stern et al., 2011, who analysed two hundred VSWs from seven 

partially sleep deprived subjects (Stern, Caporro, Haneef, et al., 2011). From a group analysis they 

identified several regions of increased signal, explicitly in the medial and lateral central regions, 

cuneus and lingual gyrus, superior temporal regions, cingulate and precuneus. Contrary to the 

current study, the authors noted that there was no signal increase in certain subcortical regions; 

thalamus and superior brainstem. Despite some differences, the regions of increased signal are 

comparable between studies. It is noteworthy that a number of the cortical regions involved are 
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also components of well-established resting state networks (RSN); all nodes of the sensorimotor 

network (Biswal, Yetkin, Haughton, et al., 1995; van de Ven, Formisano, Prvulovic, et al., 2004), 

involving primary somatosensory and motor cortex and premotor cortex; the auditory cortex 

network (Biswal, Van Kylen & Hyde, 1997), involving primary auditory cortex bilaterally; the 

primary visual network (van den Heuvel & Hulshoff Pol, 2010), involving primary and secondary 

visual cortex; the frontal attention network, involving the insula and middle frontal gyri (Corbetta, 

Patel & Shulman, 2008; Corbetta & Shulman, 2002); and nodes of the default mode network 

(Raichle, MacLeod, Snyder, et al., 2001), involving prefrontal cortex, posterior cingulate cortex 

and precuneus (for an overview of RSNs see (Damoiseaux, Rombouts, Barkhof, et al., 2006), are 

encompassed in the pattern of activation associated with VSWs. The elevation of activity observed 

in all these network regions (notably the primary motor and sensory cortices) certainly suggest the 

VSW may act as a priming mechanism, perhaps readying the sleeping individual to wake and 

orientate quickly should the need arise.  

The KC, although a larger electrographic paroxysm, demonstrated less widespread activation than 

the VSW. The pattern of activation of KCs, although exhibiting a number of similarities, differed 

conspicuously from the overall pattern of VSWs. Less widespread activation as observed in the 

frontal regions, auditory, sensory and motor cortices, and no activation in the insula cortex, whilst 

there was more widespread activation observed in the posterior cingulate cortex and brainstem. 

The regions of activation observed in KCs are similar to those reported in other studies. Caporro et 

al., 2012 investigated the BOLD signal correlates of KCs in seven partially sleep deprived 

participants (Caporro, Haneef, Yeh, et al., 2012).  They found BOLD signal increases in several 

cortical regions; paracentral gyri, temporal regions, posterior cingulate cortex, precuneus, insula 



Chapter 5 – The effect of sleep deprivation on vertex sharp waves and K-complexes 

 

156 

 

and, although not specifically stated, the cuneus/occipital regions. In the same year, Jahnke et al. 

demonstrated BOLD signal changes in primary sensory regions (auditory, visual, paracentral and 

postcentral gyri, supplementary motor area), prefrontal cortex, cingulate cortices (anterior and 

mid), precuneus and inferior parietal regions, amongst others (Jahnke, von Wegner, Morzelewski, 

et al., 2012). They also noted signal increases subcortically in the thalamus and brainstem. Jahnke 

et al., 2012, interpreted their results as the KC having two roles, protecting sleep whilst also 

monitoring the environment and allowing basic information processing. The KC has been well 

established as serving a sleep protective mechanism (Amzica & Steriade, 2002; Halász, 2005) and 

has long been associated with the VSW (Bastien, Crowley & Colrain, 2002). Despite the link 

between the KC and VSW the widespread involvement of the cortex, primary sensory regions in 

particular, suggests that the VSW provides a more favourable substrate for vigilance during early 

sleep, creating a window of opportunity in which sensory information can be processed and if 

needed acted upon. This theoretically would facilitate the transition from light sleep to wake 

allowing one to orientate to the environment quickly and act upon any relevant environmental 

change. This is particularly pertinent given that the appearance of VSWs has been indicated as the 

herald of the transition from wake to sleep (Tanaka, Hayashi & Hori, 2000). Perhaps, as sleep 

progresses and deepens, priming of sensory regions in environmental monitoring is reduced, and 

less activation of primary sensory regions observed with KCs reflects the deepening of sleep and 

gradual reduction in responsiveness to environmental stimuli.  
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5.5.2 ROI analysis and the effects of sleep deprivation 

In this study significantly greater BOLD responses were observed under SD conditions when 

compared to ND conditions. When observing the individual group maps (Figure 5.4.1.) this is 

visually apparent with more widespread activation noted under SD conditions, especially for 

VSWs. One of the first questions that arises from this is, why is there more activation present under 

SD conditions? The augmentation of activation observed under sleep deprivation may be a result 

of the progressive hyperpolarisation of thalamocortical cells that occurs at sleep onset (Amzica & 

Steriade, 2002; Steriade, McCormick & Sejnowski, 1993) producing a favourable substrate for the 

generation of low frequency activity, such as VSWs and KCs, as well as widespread 

synchronisation. Following a period of prolonged wakefulness there is a progressive accumulation 

of extracellular adenosine, a neuromodulatory transmitter with an inhibitory effect on cholinergic 

neurons (Boonstra, Stins, Daffertshofer, et al., 2007; Strecker, Morairty, Thakkar, et al., 2000). 

This inhibitory effect, that also induces a reduction in cortical levels of acetylcholine, has been 

shown to increase slow wave activity (Benington & Heller, 1995; Boonstra, Stins, Daffertshofer, 

et al., 2007) Studies using EEG have demonstrated slow wave activity during sleep is altered as a 

function of increased homeostatic sleep pressure, with increases in slow wave activity 

accompanying greater sleep pressure which reduces during the course of sleep (Bersagliere & 

Achermann, 2010; Borbély, Baumann, Brandeis, et al., 1981). The slow oscillation (SO), a cortical 

event occurring at <1 Hz, is characterised by depolarizing upstates and hyperpolarising downstates 

(Mölle, Marshall, Gais, et al., 2002; Steriade, McCormick & Sejnowski, 1993; Timofeev, Grenier, 

Bazhenov, et al., 2000), and has also been shown to be modified as a function of sleep deprivation 

(Bersagliere & Achermann, 2010; Perrault, Carrier, Desautels, et al., 2013). Increases in the density 

of the SO (Perrault, Carrier, Desautels, et al., 2013), and its frequency and amplitude (Bersagliere 
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& Achermann, 2010), have been reported with increased sleep pressure. This correlates with animal 

studies that demonstrate more synchronous and stable entry of neurons into up- and downstates 

with sustained wakefulness (Vyazovskiy, Olcese, Lazimy, et al., 2009). Additionally, the slow 

oscillation is implicated in the grouping and temporal arrangement of sleep paroxysms such as 

sleep spindles, KCs and possibly VSWs (Amzica & Steriade, 1998; Mölle, Marshall, Gais, et al., 

2002). Greater synchronisation across the cortex implicates increased recruitment of neurons which 

may contribute to the increased BOLD signal observed in the present study following sleep 

deprivation. Exactly how this increased cortical synchronisation that occurs following increased 

homeostatic sleep pressure effects the BOLD signal is speculative, and requires further 

investigation. 

In addition to increased cortical synchronisation during sleep following sleep deprivation, animal 

studies have demonstrated increased cortical excitability with wakefulness and increasing with 

extended period of wakefulness, both in vitro (Liu, Faraguna, Cirelli, et al., 2010) and in vivo 

(Vyazovskiy, Olcese, Lazimy, et al., 2009). In the study by Lui et al., 2010, the amplitude and 

frequency of miniature excitatory post-synaptic currents increased following wakefulness in 

cortical slices from SD rats. In a study of live rats, Vyazovskiy et al., 2009, found that cortical 

firing rates increased following sustained wakefulness, and continued to increase, to a point, during 

sleep deprivation. This increase in cortical excitability has also been demonstrated in humans using 

combined transcranial magnetic stimulation (TMS) and EEG (Huber, Maki, Rosanova, et al., 

2013). In this TMS-EEG study the slope and amplitude of the EEG response to TMS was 

progressively increased with prolonged wake time, concluding that ongoing wakefulness is 

concomitant with increased cortical excitability (Huber, Maki, Rosanova, et al., 2013). This 
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increase in cortical excitability following sustained wakefulness, reported in both animals and 

humans, could well expound the overall increase in activation observed following sleep deprivation 

in this present study. In fact, there is recent evidence demonstrating that sleep deprivation causes 

an increase in the whole brain signal in fMRI data (Yeo, Tandi & Chee, 2015). The increase in 

BOLD signal and the increased involvement of more cortical areas observed in both VSWs and 

KCs in the present study (see Figure 5.4.1.) may be explained by both or a combination of these 

processes, i.e. increased cortical excitability following prolonged wakefulness and increased 

cortical synchronisation during recovery sleep. 

The underlying changes in neuronal substrate brought about by sleep deprivation may be 

responsible for the overall increase in activation reported in this study, however this does not 

explain why some regions in KCs show a decrease; namely, middle frontal gyrus (MFG) and 

middle temporal gyrus (MTG) bilaterally. The changes in these four regions could purport to a 

specific feature of KCs, alternatively these regions may be differentially affected by increasing 

sleep pressure/prolonged wakefulness. Given that these regions, together with all other regions, 

show an increase following SD conditions when investigating VSWs, it is unlikely that these 

regions are affected differently following sleep deprivation. It is therefore more plausible that the 

decreases in these four regions, rather than an increase, indicate these regions are specifically 

affected by KCs. The question then remains as to why these four regions behave differently 

compared to all the others? The reason behind this may be postulated when considering the function 

of the brain regions involved and/or their relation to brain networks. The MFG and MTG have both 

been associated with attentional brain networks, notably the ventral attention network (VAN) 

(Corbetta, Patel & Shulman, 2008; Corbetta & Shulman, 2002; Japee, Holiday, Satyshur, et al., 
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2015; Shulman, Astafiev, Franke, et al., 2009), and it has been demonstrated that there is activation 

in regions associated with the VAN when presented with an unexpected and potentially meaningful 

stimulus (Corbetta, Patel & Shulman, 2008; Downar, Crawley, Mikulis, et al., 2000). The 

temporoparietal junction (TPJ) and the ventral frontal cortex (which involves parts of the MFG) 

form primary nodes of the VAN (Corbetta, Patel & Shulman, 2008). The exact anatomical 

correlates of the TPJ and its function are still subject of ongoing investigation, though there is 

evidence that the TPJ can be subdivided based on functional and structural connectivity (Mars, 

Sallet, Schuffelgen, et al., 2012). In the study by Mars et al., 2011, the TPJ was subdivided into 

anterior and posterior components and it was demonstrated that the posterior aspect of the TPJ was 

functionally connected with the MTG and MFG, among other areas. It is therefore possible that the 

regions identified in the present study that show a decrease in activation may fall within the regions 

associated with the VAN. In this case these findings may suggest that there is a decreased 

attentional response to stimuli when homeostatic sleep pressure is increased, in line with the notion 

that the KC acts in part as a sleep protective mechanism, perhaps exhibiting a dampened response 

to external stimuli in favour of sleep preservation. These hypotheses remain to be tested with 

explicit stimulation during sleep, although this is technically challenging in the MRI scanner.  

 

5.5.3 Limitations 

There are a number of considerations to be taken into account. Firstly, the number of subjects 

included in the final analysis is low, and thus the number of paroxysms included in the group 

analysis. The findings reported here would benefit from validation by a similar study using a larger 

cohort. Secondly, the MRI scanner does not produce a favourable environment for sleep, both in 
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terms of comfort and noise. It is unknown how much scanner noise and discomfort would 

contribute to the results given both VSWs and KCs can be evoked by various stimuli. Apart from 

the technical limitations of the scanner and low participant numbers, there are also physiological 

considerations. Sleeping in the scanner is an unfamiliar and foreign environment and likely subject 

to the first night effect (FNE). The FNE is characterised by poorer sleep in the first night when 

sleeping in a novel environment and can increase sleep latency, decrease the time asleep and 

increase arousals (Curcio, Ferrara, Piergianni, et al., 2004; Tamaki, Bang, Watanabe, et al., 2016; 

Tamaki, Nittono, Hayashi, et al., 2005). The FNE is also associated with a more vigilant brain 

(Tamaki, Bang, Watanabe, et al., 2016). It is unknown as to what influence the FNE would have 

on these results and would need to be investigated further, though a scanner environment is unlikely 

to be an environment one could habituate to. A further potential confound is the times in which the 

scanning commenced. Scanning at 07:00hrs (SD session) in the morning and 23:00hrs (ND session) 

at night falls at two very different phases of the circadian rhythm. In the morning at around 07:00hrs 

would be the trough of the circadian phase, with the lowest sleep pressure and at 23:00hrs would 

be towards the peak of the circadian phase with highest sleep pressure (Schmidt, Collette, 

Cajochen, et al., 2007). Circadian phase has been shown to alter the BOLD response in task related 

fMRI studies (Schmidt, Peigneux, Leclercq, et al., 2012) and also shows alterations in resting state 

fMRI (Shannon, Dosenbach, Su, et al., 2013). Phase advanced sleep (sleeping earlier than usual) 

and phase delayed sleep (sleeping later than usual) has been shown to have an impact on sleep 

architecture, with an advance associated with decreased REM and SWS, and an delay increasing 

REM and decreasing stage 2 (Gonnissen, Mazuy, Rutters, et al., 2013). How this impacts on this 

study is unclear, and in any future studies it is advisable to scan at the same time to avoid any 

potential influence of circadian misalignment.   
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5.6 CONCLUSION 

This study is the first to compare VSWs and KCs between SD and ND conditions. The findings 

indicate that although sharing similarities, VSWs and KCs are separate entities likely sharing 

analogous and deviant functions. Whilst both could be attributed to having a sleep protective 

mechanism, the findings in this study suggest that the VSW provides a favourable substrate to 

waking should it be necessary.  

The involvement of several nodes of different RSNs indicate that VSWs and, to a lesser degree, 

KCs activate multiple brain networks. The significance of this would need to be explored in the 

future, with this specific purpose in mind. 

The effect of sleep deprivation on both VSWs and KCs reported in this present study may well be 

explicated by the progressive excitability of the cortex caused by prolonged wakefulness, the 

increased synchronisation of the cortex during sleep following sleep deprivation, or a combination 

of both. Studies investigating sleep using fMRI should pay careful attention to the effects of sleep 

deprivation on the underlying neuronal substrate and how this may alter the BOLD signal. Further 

comparative studies between SD and ND conditions are needed to fully understand this effect.  
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6.1 THESIS SUMMARY 

6.1.1 EEG-fMRI in epilepsy 

The initial aim of this thesis was to investigate the use of EEG-fMRI as a clinical tool in epilepsy. 

With the objective of recruiting homogenous groups of patients with particular epilepsy syndromes, 

e.g. groups with IGE, TLE, FLE, the plan was to explore the value of EEG-fMRI in these groups. 

However, recruitment was difficult and it soon emerged that recruitment was biased towards 

patients of a complex nature in whom further investigations were needed to assist in management. 

This shifted the aim of the initial investigation to assess how useful EEG-fMRI could be from a 

clinical point of view in the very group of patients who would most likely be referred; thus 

recruitment became more akin to referrals into this theoretical EEG-fMRI service. The principal 

reason for referral was related to pre-surgical evaluation though in some cases the question was 

more diagnostic. Overall EEG-fMRI was found to be clinically contributory in 12% of cases. This 

demonstrated a quite a limited value of EEG-fMRI in this clinical setting, with complex epilepsy 

patients where other more standard diagnostic modalities may have been inadequate, though the 

investigation was implemented in its simplest form, one that, with the right equipment, could be 

deployed in a clinical setting with relative ease (discussed in more detail in chapter 2).  

Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) 

are specialist imaging investigations that are generally used in epilepsy tertiary centres, 

predominately in pre-surgical evaluation (la Fougère, Rominger, Förster, et al., 2009; Mouthaan, 

Rados, Barsi, et al., 2016). The sensitivity of PET, specifically F-18 fluorodeoxy-glucose (18FDG) 

PET, in identifying the EZ depends on the epilepsy type, i.e. 18FDG-PET is quite sensitive in TLE, 
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at around 71-89% (Burneo, Poon, Kellett, et al., 2015), which drops in extratemporal epilepsies, 

such as FLE to 55% (Kim, Lee, Lee, et al., 2002). The sensitivity of interictal SPECT is on the 

lower side, around 50% (Spanaki, Spencer, Corsi, et al., 1999), which increases to 70-90% for ictal 

SPECT, depending on epilepsy type (Ergün, Saygi, Yalnizoglu, et al., 2016). A recent EEG-fMRI 

study demonstrated a sensitivity of 81% of concordant BOLD responses, to area of resection in a 

group of TLE patients who underwent surgery, and good surgical outcome (Coan, Chaudhary, 

Grouiller, et al., 2016). In terms of utility, the results reported in chapter 2 suggest a more limited 

use of EEG-fMRI, though the results reported in chapter 3 suggest this could potentially have been 

improved by modelling earlier HRFs. Increasing the complexity of data modelling or introducing 

multiples of the same model but at different peak times (as described in chapter 3) decrease the 

likelihood of EEG-fMRI making it into a clinical setting from an academic on unless packaged in 

software that could be used with ease. Given the high sensitivity reported by Coan et al., 2016, one 

would wonder why this technique not readily implemented in the tertiary epilepsy centre, and 

complexity of modelling may be one such hurdle. Coan et al., 2016, used similar methods described 

by Grouiller et al, 2011, who created topographical EEG maps from interictal data obtained from 

long term monitoring outside the scanner, and used these maps to investigate associated 

haemodynamic changes, consequently significantly increasing the yield of interictal activity 

recorded in the scanner (Grouiller, Thornton, Groening, et al., 2011). The methods applied in 

chapter 2 where simpler and unable to model interictal activity in its observable absence. Again, 

as to why EEG-fMRI isn’t implemented more readily there may be a number of contributing 

factors. The more complex a method becomes the harder it becomes to implement in a clinical 

setting; the required expertise, extra specialised equipment, time taken to perform an investigation 

and to analyse the data, these all impart a cost. In the face of  NHS over spends (Triggle, 2015) and 
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a reduction in the capital budget to repair and replace equipment (Broomfield, 2016), it is unlikely 

that an expensive imaging investigation is going to become a mainstay in epilepsy tertiary centres. 

One of the largest areas in growth in activity for diagnostics is for MRI scans with an average 

monthly growth of 1.1% and a yearly increase of 0.7%, from 2015 to 2016, of patients waiting over 

6 weeks (NHS England, 2016). In addition to this, The Royal College of Radiologists report a 

shortage in staff numbers and warn about the overuse of MRI scanners in delivering a 24/7 service 

(The Royal College of Radiologists, 2016). This demand on imaging services does not lend itself 

to the delivery of a service (EEG-fMRI) that requires possibly 2 hours of scanning time, especially 

as there has been an emphasis on optimising MRI protocols to reduce scan times (Hollingsworth, 

2015; Mekle, Wu, Meckel, et al., 2006). This is not to say fMRI cannot become a principal tool in 

the diagnostic arsenal of the epileptologist/neurosurgeon. Indeed, fMRI has seen an increasing 

presence in the work-up for epilepsy surgery but in lateralising language and memory (Duncan, 

2009) rather than identifying the EZ, and has a definite role in replacing the invasive Wada test for 

lateralising language (Dym, Burns, Freeman, et al., 2011; Kashida, Otsubo, Hanaya, et al., 2016). 

With the continued advancement of resting state fMRI (see Pittau & Vulliemoz, 2015 for review), 

and as tertiary epilepsy centres will already have an MRI scanner available, it may only be a matter 

of time before this modality becomes more widely implemented. This will be dependent to a degree 

on whether analysis can be automated and neatly packaged into software that does not require a 

heavy research background to operate. Although there was an incidence reported in chapter 2 of 

EEG-fMRI being diagnostically useful, the principal use of EEG-fMRI is in pre-surgical 

evaluation. It is unlikely that this method will see clinical use outside this setting. Given many of 

the larger NHS Trusts who house a tertiary epilepsy centre are affiliated with Universities with an 

academic based imaging centre, many of the hurdles regarding the use of EEG-fMRI in an epilepsy 
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setting may be addressed. This would largely depend on the mutual cooperation and interest 

between the two establishments, which is not always easy to achieve (Cooksey, 2006). If available 

EEG-fMRI should be used and has the potential to provide the necessary information that could 

ultimately result in a patient with refractory epilepsy becoming seizure free.  It is unlikely that 

EEG-fMRI will move outside of a cooperative academic-clinical setting into a purely clinical one 

in the near future, but in tertiary epilepsy centres with access to academic imaging centres and the 

necessary expertise there-in, every effort should be made to produce a mutually beneficial 

arrangement in both the advancement of science and best treatment and care for the patient.  

 

6.1.2 EEG-fMRI in sleep 

The jump from epilepsy to sleep in this thesis came about for two main reasons, firstly, the 

difficulty in recruiting patients with epilepsy and secondly the interest behind sleep paroxysms 

themselves, in which there was a dearth of EEG-fMRI studies. The initial logic was to apply the 

analysis in chapter 3 to sleep paroxysms; VSWs, KCs and SSs, with the hypothesis that little would 

be evident in terms of early BOLD signal changes. This is not the first time sleep paroxysms have 

been a focus in EEG-fMRI studies in epilepsy, Moehring et al., 2011, specifically included VSWs, 

KCs, and SSs in their model to improve sensitivity to IED associated BOLD signal changes 

(Moehring, Coropceanu, Galka, et al., 2011). In chapter 4, the first study of early BOLD signal 

changes in sleep paroxysms, it was originally thought that early BOLD changes observed with 

IEDs were more likely pathological rather than a feature of paroxysmal activity. We discovered 

early BOLD signal changes occurring in SSs, which suggest early BOLD changes are not 
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specifically related to pathological phenomenon but now also observable in both pathological and 

non-pathological paroxysmal activity. Understanding the early responses associated normal 

paroxysmal activity may help further our understanding of the prespike activity observed with IEDs 

and may provide a better understanding between the link between epilepsy and sleep; especially 

given sleep paroxysms have an intimate relationship with epilepsy, such as the more recently 

challenged hypothesis that SWCs are a transformation of SSs (Leresche, Lambert, Errington, et al., 

2012; Sitnikova, Hramov, Koronovsky, et al., 2009), or the initiation of frontal lobe seizures by 

KCs (El Helou, Navarro, Depienne, et al., 2008). The lack of early BOLD changes in VSWs and 

KCs were reassuring that modelling effects are actually minimised 6 seconds prior to onset, and 

lend some weight to the validity of the results observed in the epilepsy data (chapter 3). The real 

issue became how to interpret the early changes now observed with SSs. A thalamic origin of SSs 

has been well established (Steriade, 1995), so why would activation in cortical regions precede 

thalamically generated sleep spindles? As discussed in chapter 3 this could potentially be the result 

of the contribution of slow SSs to the group analysis which may yet have a cortical origin 

(Timofeev & Chauvette, 2013). These results need further investigation and may have an impact 

on the significant community with a particular interest in SSs. 

In the final experimental chapter KCs ad VSWs were examined in more detail, due in part to their 

relationship as evoked responses during sleep (Bastien, Crowley & Colrain, 2002). Here, sleep-

deprivation was used as a mechanism to increase sleep pressure in order to examine the effect this 

would have on these two sleep paroxysms. Overall there was a significant increase in the BOLD 

response following sleep deprivation. Discussed in detail in chapter 5, these results do have a wider 

implication on EEG-fMRI/fMRI studies into sleep, in that BOLD responses do alter as a function 
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of increased sleep pressure, and when using sleep deprivation simply as a mechanism to encourage 

sleeping in the scanner there may be an influence on the BOLD response. The patterns of activation 

noted for both VSWs and KCs demonstrated some overlap, but there was noticeably less 

involvement of primary sensory regions with KCs as compared to VSWs; this was interpreted as a 

gradual loss of response to external stimuli as sleep progresses, where sleep is favoured over a 

preparation to transition from sleep to wake. Additionally, although all regions included in the 

analysis demonstrated an increase in BOLD signal when sleep deprived as compared to non-

deprived for VSWs; in the case of KCs four regions demonstrated a decrease in BOLD signal, i.e. 

a greater BOLD signal was observed in the non-deprived condition to the sleep deprived condition. 

These four regions, located in the bilateral middle frontal gyrus and bilateral middle temporal 

gyrus, fall within attention networks (Corbetta & Shulman, 2002) and may represent a reduced 

attentional response to stimuli, keeping in-line with the notion that KCs play a role in sleep 

maintenance (discussed further in chapter 5).  

 

6.2 FUTURE DIRECTIONS 

Our findings show EEG-fMRI implemented in its simplest form is limited when deployed in the 

setting of a complex epilepsy service, though this is very dependent on the nature of the patients 

referred; as previously mentioned the patients referred for EEG-fMRI were both very complex and 

lacked IEDs in the scanner. It is worth noting EEG, the primary diagnostic test in epilepsy, only 

has a sensitivity of 25-56% (Smith, 2005). There are many studies, one of the most recent being 

Coan et al, 2016, which have demonstrated the potential of EEG-fMRI as being of high value in 
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localising the EZ. The need for specialised MR-compatible equipment to record EEG in the 

scanner, scanner time required, and cost pressure within the NHS are likely reasons why EEG-

fMRI hasn’t become more prevalent in tertiary epilepsy centres, despite the growing body of 

evidence of its potential. Streamlining analysis into easy to implement software packages or 

identifying IEDs from the fMRI data alone (Hamandi, Salek Haddadi, Liston, et al., 2005), thus 

removing the need for extra specialised equipment, are possible means to improve the 

availability/accessibility of EEG-fMRI/fMRI in the epilepsy clinic in the UK.  

The early BOLD signal changes observed in epilepsy (chapter 3), have yet to be validated by 

surgical outcome in a sufficient cohort of epilepsy surgery patients. The improved concordance 

described in chapter 3 and elsewhere (Jacobs, Kobayashi, Boor, et al., 2007), may improve 

localisation of the EZ. Previous studies have correlated EEG-fMRI with surgical outcome (Coan, 

Chaudhary, Grouiller, et al., 2016; Thornton, Laufs, Rodionov, et al., 2010; van Houdt, de Munck, 

Leijten, et al., 2013) or used EEG-fMRI to predict surgical outcome (An, Fahoum, Hall, et al., 

2013), and have shown a high sensitivity and predictive value, but none have done the same with 

early haemodynamic changes in epilepsy. Inclusion of prespike investigation in such studies may 

further improve the sensitivity and specificity of EEG-fMRI but also extend our understanding of 

these prespike changes, as to whether they are more localising of the EZ or not. 

The early BOLD responses observed in SSs certainly warrants further investigation. Similar 

analysis applied to a greater number of participants with separation of slow- and fast-SSs will 

elucidate as to whether the contributor to these early BOLD signal changes are slow or fast-SSs, 

or whether they are both contributors. There are limited studies investigating functional 

connectivity (FC) in relation to sleep spindles. In a study of FC in the human hippocampus during 
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sleep, increased FC between the hippocampal formation and neocortical regions was observed in 

the presence of SSs (Andrade, Spoormaker, Dresler, et al., 2011). A more recent study, specifically 

investigating functional connectivity in relation to SSs, used the magnetoencephalogram (MEG) to 

identify specific patterns of connectivity related to both fast and slow spindles, indicating strong 

intrahemispheric connectivity during fast spindles with slow spindles more associated with a 

stronger connectivity between long range and interhemispheric connections (Zerouali, Lina, 

Sekerovic, et al., 2014). A seed based correlation analysis FC approach could be used to further 

investigate SSs, perhaps seeding from regions identified in the early BOLD signal activation maps 

which may uncover a specific network relating to SSs. The same could be said for VSWs and KCs, 

as there have been no studies to investigate the FC of these paroxysms. Given the widespread 

activation observed with these paroxysms, it may be possible they recruit multiple brain networks. 

Many previous studies have used auditory stimulus to study these sleep paroxysms (Schabus, 

Dang-Vu, Heib, et al., 2012; Colrain, 2005; Bastien, Crowley & Colrain, 2002), future studies 

could also use these methods during EEG-fMRI to investigate VSWs and KCs in more detail; for 

example differences in evoked and spontaneous paroxysms in the fMRI, and if this influences 

patterns of activation or FC, and perhaps including more accurate characterisation of EEG features 

(e.g. amplitude, latency, topography) and how these relate to the BOLD response. Further studies 

may help understand their function beyond what we already know. 
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6.3 CONCLUSION  

In this thesis of two halves we first demonstrated a limited use of EEG-fMRI as a 

diagnostic/presurgical investigation when deployed in its simplest form in a group of complex 

epilepsy patients, rather than more straightforward homogenous group of patients, TLE for 

example. Patient selection is important for EEG-fMRI studies, as lack of any IEDs can hamper 

these studies, and development of software packages to automate a lot of the analysis would be 

needed for the transition to a clinical setting. Though the greatest hurdle is potential cost, given the 

most cost effective strategies include video-EEG, MRI, PET, and icVT and not other modalities 

such as SPECT, MEG, DTI, which often need individual funding requests, it is unlikely EEG-fMRI 

will become available in all tertiary epilepsy centres (Burch, Hinde, Palmer, et al., 2012). Fostering 

the relationship between academic imaging centres and epilepsy tertiary centres is likely the best 

way to make this investigation available to patients who could benefit greatly from it. The early 

BOLD signal changes we report are best studied at 6 seconds prior to IEDs when using a GLM 

based approach, to avoid overlap in models, and this can improve concordance.  

In the second half of this thesis we demonstrate for the first time haemodynamic changes that 

precede SSs, which may open an avenue for further investigation and understanding of this sleep 

transient. We also find some evidence to support the sleep protective role of KCs and show an 

enhanced BOLD response following sleep deprivation which may have an impact on other studies 

using sleep deprivation as a method to study sleep.  
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