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Abstract 

With the worldwide demand of graphite increasing, so the availability, cost and quality of graphite is 

under renewed scrutiny - with the vast majority of graphite being mined from primary mineral 

resources, and with these mines located in only a few significant countries, considerations of 

availability and sustainability have led to an increasing dependence on synthetic graphite to meet 

industrial needs.  However, the production of synthetic graphite is costly and time-consuming, so 

other potential sources are keenly sought after for strategic and economic reasons. 

One potential source is the recovery of ‘kish’ graphite from the steel making process:  It has been 

observed that present within the dust produced as waste in steel plants, graphite flakes are found in 

varying quantities, sizes and purity. Seven samples taken from different locations in Tata Steel’s 

Scunthorpe steel plant were analysed, and the two from the desulphurisation plant were found to 

contain enough graphite to warrant further testing.  This testing (broadly) consisted of two goals:  

Separating the kish graphite from the excess waste dust, and refining and purifying the separated 

graphite to a degree that renders it usable (typically >95% Carbon content). 

Froth flotation was found to be an extremely effective way of achieving this, with purities of >90% 

being achieved from a single flotation for the larger flake sizes (>500µm, under optimal frothing 

conditions).  For the smaller flake sizes (<500µm), multiple froth floats were found to be needed in 

order to achieve the desired purity, but due to impurities embedded on the flakes themselves, there 

was found to be a limit where an acid cleaning was needed in order to achieve a >90% graphite 

sample. 

A saleable product was produced and a technical-economic assessment was made for a 10,000 

tonne per year process plant. 
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Chapter 1 – Preliminaries and Background 

1.1 Introduction 

The demand on the world’s natural resources is constantly growing due to an ever increasing 

population and need for these materials in a number of growing markets (Schoolderman, 2011).  

One such market affected by this growth in demand is the minerals industry – with a finite amount 

of natural resources available and only a fraction of used materials being recycled (even once, let 

alone multiple times), there is a growing necessity to investigate alternate ways to harvest these 

resources and produce more sustainable methods of obtaining these material.  

In 2010, The British Geological Survey’s publication ‘Critical Raw Materials for the European Union’ 

highlighted a selection of minerals and metal resources which were considered highly critical to the 

European Commission (Table 1).  Alongside the expected platinum group minerals and the rare earth 

metals, graphite was listed (Note – for the remainder of this thesis whenever the country China is 

mentioned this is to be taken as the Peoples Republic of China, as opposed to Taiwan): 

 

Table 1:  Minerals and metal resources considered critical to the EU (The British Geological Survey, 

2010) 

 

Element   Relative R isk Index   Leading Producer   

Antimony   8.5   China   

Platinum   group elements    8.5   South Africa   

Mercury   8.5   China   

Tungsten   8.5   China   

Rare earth elements   8.0   China   

Niobium   7.5   Brazil   

Strontium   7.0   China   

Bismuth   7.0   China   

Thorium   7.0   India   

Bromine   7.0   USA   

Graphite    7.0   China   
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Indeed, the European commission included graphite among the 14 materials it considered high in 

both Economic importance and Supply risk (Fig 1.1): 

 

Figure 1.1: Diagram illustrating various materials and their corresponding supply risk and 

economic importance (European Commission, 2010: 6) 

Whilst graphite has been extensively used in a multitude of industries for a number of years, it is 

only relatively recently that it has been viewed as a key strategic material:  This is due to the growth 

of industries such as the development of electric cars (where graphite is an essential material used in 

the construction of the anode for the batteries), and the excitement and vast amount of research 

and development into the ‘super-material’ graphene (which is derived from graphite).  Due to this 

increased demand, the supply risk readily becomes apparent – the majority of the world’s graphite is 

mined in a few countries.  With this increased demand on these finite reserves of natural graphite, 

coupled with the great time, energy and cost associated with the creation of synthetic graphite 
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(Acheson (1896), Mersen), a heavy emphasis is placed on the development of alternative sources of 

graphite recovery at a manageable cost.   

This chapter will outline the micro and macro properties of graphite as a material, highlighting the 

important aspects to consider when putting the product to market, and then give a brief summary of 

the uses of graphite, which industries it is used in, and just why its properties make it so suited to 

these applications in industry. 

1.2 Graphite 

Graphite, alongside diamond, is one of the two principle naturally occurring forms of pure, 

crystalline carbon, located in different mineral deposits around the earth (other crystalline forms of 

carbon such as Buckminster fullerene do exist, but are found naturally in far less abundance (Kroto 

et al., 1985).   

The structure of graphite is essentially that of a stack of carbon ‘sheets’ (Dresselhaus et al., 1998).  

These single, one atom thick sheets are comprised of carbon atoms covalently bonded to each other 

in a honeycomb lattice.  This means that each carbon atom is bonded to three other carbon atoms 

(with the angle of separation being 120°), which when repeated forms the familiar honeycomb 

pattern (Fig 1.2): 
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Figure 1.2:  The Atomic Structure of Graphite (Battery Blog) 

Given carbon possesses six electrons (with four being located in its outer shell), when a carbon 

lattice is formed through covalent bonding one electron for each carbon atom present remains un-

bonded, and as such can be considered ‘free’.  This is of particular importance when the sheets of 

the lattice are ‘stacked’ - comprising the graphite as a whole (Graphene - the single sheet variant of 

graphite - is under particular scrutiny in the scientific community at present).  Once this stacking 

occurs, the sheets are held together by weak Van der Waal interactions, and the environment 

between the sheets allow the ‘surplus’ electron in each carbon atom to become delocalised and free 

to move in the plane between the sheets.  It is precisely due to this delocalisation that graphite has 

its effective, but specifically limited ability as an electrical conductor.  In fact, it is this stacking of 

layers in graphite that is the key factor responsible for its properties. 

 

1.3 Important properties of Graphite 

1.3.1 Flake Size and Aspect Ratio 

Whilst the core physical properties of graphite are dependent on its properties at an atomic level, 

the way in which graphite operates and performs as a functional material is equally dependent on 

the micro (and occasionally macro) properties of the material obtained.  
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First amongst these is that graphite is often found in the form of flakes (Figs 1.3 & 1.4). One of the 

main (and certainly most noticeable) properties of graphite is the variance in flake size.  In general, 

flake graphite ranges in size from 1mm to 25mm with an average size of 2.5mm (Mitchell, 1993).  

However, for use in industry, typical flake sizes are generally of the order of microns, with flake sizes 

of over 180µm being classified as coarse, and anything under being classified as fine.  The fine flake 

graphite is further divided into medium flakes (100-150µm), fine flakes (75-100µm) and powder 

(<75µm).  Flake graphite is typically not used when the flake sizes are less than 45µm in size – this is 

due to the increased difficulty in separating the graphite from the impurities, and the loss of 

performance due to flake size (Mitchell, 1993). 

 

Figures 1.3 and 1.4:  A variety of different flake sizes are used in industry, ranging from a few 

millimetres to a few microns in size (Canada Carbon/smokechemicals) 

As a general indicator, the larger the flake size the more pronounced the properties as the natural 

structure is preserved and not forced into an artificial arrangement.  For this reason, larger flake 

sizes typically retail at a higher price than their smaller counterparts as properties such as their 

thermal and electrical conductivity are better (something of importance in the refractory industry, 

where graphite’s thermal properties are of key importance in the building of components).  The 

industrial consumption of the different sizes of flake is varied as well – whilst almost all flake sizes on 

sale are used for refractory materials, brake linings and other lubricants, the smaller, powder 

graphite tends to be used as an additive for various materials, where the larger flake sizes tend to be 

http://www.google.co.uk/url?sa=i&rct=j&q=different+flake+sizes+of+graphite&source=images&cd=&cad=rja&docid=nDUfKWXpJXDChM&tbnid=HqUqFXnmQVcNAM:&ved=0CAUQjRw&url=http://www.canadacarbon.com/rs/what-is-graphite/&ei=uDB1Udr2G46R0QXBhIGICw&bvm=bv.45512109,d.d2k&psig=AFQjCNG93h7jM2YOYGKC0p0tBBfHXx_AJw&ust=1366721071294167
http://smokechemicals.com/shop/index.php?main_page=products_all
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used in for more specialised applications such as electronic components, pencil leads and explosives 

(Mitchell, 1993).  However, whilst there is a general increase in utility as the flake size increases, this 

can be offset with the ability to manipulate the flakes and put them towards the purpose intended – 

for instance, graphite is often used to create crucibles for the refractory industry:  For this to be 

done, the graphite needs to be pressed in a mould, and the flakes aligned to create the crucible.  For 

larger flake sizes (>1mm) (Fig 1.5), this alignment is harder to achieve, and as such the product is less 

stable.   For these types of considerations, graphite flakes are often milled to reach the size required, 

yet without sacrificing their intrinsic properties too much – there is a trade-off between the flake 

size and the ability to manipulate it that must be considered within industry. 

 

Figure 1.5:  A flake of kish graphite – note the shape is not uniform 

Related to their size is the aspect ratio of the graphite flakes.  This, too can be an important factor in 

the performance of the graphite product, and has its own considerations and uses within industry 

(Ledbetter and Datta, 1989).  The aspect ratio again can have a pronounced effect on the properties 

of the graphite, influencing factors such as the electrical and thermal conductivity, and mechanical 

properties such as the Young’s modulus and internal friction (Kuvardina et al., 2013).  For these 

reasons it is of paramount importance in industry to be able to effectively sort the graphite flakes 

into their corresponding sizes and geometries.  

 

~ 1 mm 
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1.3.2 Separation and Sorting 

A multitude of separation techniques that are standard practices in the minerals Industry can and 

have been used with variable degrees of success in graphite separation (a few notable examples are 

listed below): 

 Magnetic Separation:  Since graphite is non-magnetic, and the impurities present with it are 

generally non-magnetic as well, magnetic separation as a sorting technique is rarely used.  In 

fact, even when the graphite is encountered in amongst magnetic material (such as the case 

with kish graphite – see sections 3.2 and 5.2.4), magnetic particles can get embedded in the 

flake itself, rendering it a de facto magnetic particle, and the separation technique less 

efficient. 

 Electrostatic separation:   This works marginally better but there are some issues with the 

impurities which further limit the effectiveness of this technique (Lipson, 1942).  Principally, 

this is due to the relative softness of graphite, and the sometimes considerable flat surface 

area of the flakes – because of this it is quite easy for a flake to be ‘coated’ in impurities, 

rendering a purely mechanical separation as ineffective.  

 Centripetal separation:  Again, this technique (whilst effective in a general sorting) will not 

adequately separate the impurities which have ‘stuck’ to the flakes themselves. 

 Gravimetric separation:  Much the same issues are encountered here – a purely mechanical 

separation is ineffective at achieving the results desired. 

The common denominator for each of these methods is that the flakes are too readily ‘coated’ in 

impurities, and as such the flakes will not be separated adequately without some sort of cleaning 

element.  As such, the below method is often considered one of the most effective: 

 Froth Flotation:  This need for a cleaning element, combined with the high degree of 

hydrophobicity that graphite possesses renders froth flotation as the ideal technique to 
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further refine the graphite (Bennett et al., 1997).The method essentially works by mixing the 

graphite into a suspension, and then injecting air into the vessel.  Any hydrophobic materials 

(such as the graphite) will attach themselves to the air bubbles and float, whilst the rest of 

material will remain dispersed in the agitated suspension.  The aerated material floats to the 

surface as a froth, where it can be physically removed for further processing.  Not only is this 

extremely effective at separating the graphite (particularly smaller flake sizes) from the 

associated impurities (with it being the most widely used way of achieving this with graphite, 

and being used extensively in the minerals industry for other materials), the process actually 

includes a cleaning element (due to agitation form the cell rotor) which helps remove any 

impurities which may have attached themselves to the flake’s surface.  This process is 

discussed more thoroughly in the literature review (chapter 3). 

 

1.3.3 Types of Natural Graphite 

Given one of the main considerations of the use of graphite in industry is the purity of a given 

sample (with grades ranging from 70% to over 99% pure being needed for different applications 

(Mitchell, 1993)), an important requirement in processing the graphite is to ascertain the impurity 

content of the given sample.  As such, it is useful to know where the graphite comes from: The 

majority of the world’s graphite naturally occurs in metamorphic and igneous rocks and is also 

occasionally found in meteorites.  Although it is essentially a form of coal, it is relatively sparsely 

located, and is only significantly recovered (as a percentage of the world’s graphite) from mines 

from a few countries, such as China, India, Brazil, North Korea and Canada (Brown, 2011).  From 

these mines, graphite is normally recovered from three different types of ore deposit, and as such is 

generally split into three classifications (Mining Turkey, 2012): 
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The first is flake graphite (Fig 1.6) – this is where the graphite is found as isolated, hexagonal flakes, 

which are highly valued as the flake size directly influences the performance of the end product, and 

as such is treated appropriately to avoid size degradation. 

The second is amorphous graphite (Fig 1.7) – this is where the graphite is either irregular or 

‘misshapen’ in nature, or the flake size is so small as to not reap the benefits of being treated as fully 

fledged flake graphite.  This type of graphite is typically milled into a fine powder, to be used in a 

number of industries (see section 1.4). 

The third is lump (or vein) graphite (Fig 1.8) – this occurs as large deposits of material, and is a true 

vein mineral as opposed to a seam mineral.  As such, this is generally the most valuable form of 

natural graphite (Canada Carbon). 

 

 

Figures 1.6, 1.7 and 1.8 (clockwise from top left):  Examples of flake, amorphous and lump (vein) 

graphite (made-in-china/grupolandfer/saintjeancarbon) 
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All three of these types of graphite are mined and as such the purities obtained from the ore alone 

are rarely of a high enough grade to not require further purification (synthetic graphite can be 

produced but this is a very costly and time-consuming process – more on this in chapter 2 (Acheson, 

1896). As such, further refinement to the graphite flakes is often required due to the impurities that 

are present within a given graphite sample (see section 1.3.2).  Whilst a simple sorting can be 

performed (for example, by sieving the material), it is often not enough to achieve the higher 

purities and for the smaller flakes (such as powder graphite and fine graphite) the finer impurities 

are harder to separate because they are of a comparable size.   

 

1.3.4 Impurities within flakes and the Structure of Flake Edges 

Whilst the types of separation (and classification) detailed above goes some way to purifying the 

graphite by removing the impurities from a given sample of graphite, occasionally impurities can 

embed themselves within the graphite flake itself (both as a naturally included part of the flake, and 

also with the act of processing the flakes - this is especially true of kish graphite).  Given that the 

graphite flakes can and do have imperfections embedded within the surface of the flakes 

themselves, and that in order to achieve the desired purity of graphite these may need be removed, 

further issues are encountered.  Since these impurities can lower the overall grade of the graphite 

obtained, it is beneficial to remove them – the most effective (or at least widely used) method is to 

dissolve the impurities via acid leaching (Olson, 2004).  A major problem is that the acid damages the 

surface structure of the flakes altering the desirable characteristics i.e. electrical and thermal 

conductivity.  This is especially true of the edges of a graphite flake, which if damaged may further 

impact these characteristics, and other properties such as the packing of the flakes.  For this reason 

it is important to assess whether it is beneficial to further purify by this method, if a desirable grade 

has been reached. For instance, in Figs 1.9 & 1.10 (below), clear distortion of the edges of a graphite 



19 
 

flake and pores present in the surface of the flake can be seen – both could be a direct consequence 

of the acid leaching process. 

 

Figures 1.9 and 1.10: A graphite flake with distorted edges, and a graphite flake with pores in its 

surface 

When acid leaching is applied to remove particulate impurities a pore is created in the surface of the 

flake that disturbs the laminate structure and as a consequence its properties.  This disturbance at 

the surface not only affects the geometric properties, (i.e. shape, surface area, density etc.) but also 

affects its electrical, thermal and lubricating properties (though not as severe as when the impurity 

was present (Abel et al., 1999; Feiyu et al., 2002; Nishi et al., 2002; Giesche, 2006).  The pores can 

have an effect on the lubrication due to it changing the laminar nature of the graphite, and 

potentially allowing more liquid between layers.  For the electrical properties, having an effective 

gap in the sheet acts as an impedance to the flow of electrons, and as such lowers the electrical 

conductivity.  Likewise, the anisotropic properties of the graphite are affected when the hexagonal 

lattice is broken, effectively allowing heat to propagate through the layers.  Given this anisotropy can 

be fundamental to the performance of the graphite, identifying and quantifying these pores can be 

integral to the grade of obtained. 
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1.4 Uses of Graphite in Industry   

A breakdown of the industries in which graphite is utilised are presented in the following pie chart 

(Fig 1.11).  

 

Figure 1.11:  A proportional breakdown of the industries that use graphite (Mining Turkey, 2012) 

1.4.1 Graphite as a Writing Implement 

The most identifiable use of graphite is as the ‘lead’ in standard pencils to make marks.  The graphite 

derives its meaning from the ancient Greek ‘graphō’ which translates as ‘to draw/write’.  In this 

original form, blocks of natural graphite were literally carved from the natural reserve into a rod and 

inserted into the pencil linings (Fig 1.12).  The reason it is so effective in transferring marks is due to 

the layering of the material – since the layers are only held together by relatively weak Van der Waal 

forces, only a small shear stress need be applied in order to separate the layers, hence leaving a 

layer on the writing medium, making a mark. 

Steel and 
Refractories 

41% 

Automotive 
Parts 
14% 

Lubricants 
14% 

Carbon Brushes 
11% 

Batteries 
10% 

Other 
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Figure 1.12:  Graphite and a Pencil containing it (Wikipedia) 

With regards to the micro structure influencing the use of graphite in this manner, as has already 

been mentioned this requires a fairly specialised grade of graphite, with high purity and larger 

relative flake size – this is because the function of the lead in a pencil is highly dependent on the 

shearability of the graphite, which in turn will increase with flake size and the reduction of 

imperfections in a sample. 

This is a basic way of using graphite, as the greater utility that graphite affords spreads far further 

than this.  However, whilst the usages of graphite have greatly expanded since its discovery, it is still 

used for this purpose, with around 4% of natural graphite mined being used in this way (Mining 

Turkey, 2012).  

 

1.4.2 Graphite as a Lubricant 

Due to the ease with which graphite’s layers can be sheared, a natural extension for its uses is for it 

to be used as a lubricant.  Of particular interest is the fact that graphite is a dry lubricant and has the 

ability to self-lubricate – these properties make it ideal as a lining for moveable, mechanical parts 

such as gears, or as the coating for containers in high temperature environments, such as foundries 

(Mitchell, 1993) (the lubrication eases the separation of objects from the moulds, when cooled). 
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The lubricant properties have previously been attributed to the ease with which the Van der Waal 

interactions between layers can be overcome, but it has been shown (Lavraka, 1957) that in a 

vacuum environment the separation of graphite layers is not nearly as easy as in a standard 

environment.  This led to the conclusion that graphite’s ability to shear its layers is actually highly 

dependent on fluids (whether gaseous or liquid) being present between the layers via adsorption 

from the general environment, which aid the slipping effect that enables lubrication to take place.  

Whilst this strays from the traditional interpretation of graphite’s properties, the process is still 

highly dependent on the specific structure of graphite (in fact the specific way in which graphite has 

this property has been shown to be unlike other layered, dry lubricants, affording graphite a 

proportion of uniqueness on this front (Lavrakas, 1957), and as such still differentiates graphite from 

other lubricants.  With regards to the microstructure, this is perhaps where the largest variation of 

graphite quality comes in, with only particularly high performance mechanisms requiring the best 

grades of graphite. 

 

1.4.3 Graphite as a Conductor 

As mentioned in section 1.2, the layering effect gives graphite useful electrical properties.  In fact, it 

is classified as a semi-metal (Dreselhaus et al., 1988) - this is due to the fact that one electron from 

each carbon atom is delocalised, creating an extremely hospitable environment in which a current 

can run through.  Whilst graphite is an effective electrical conductor, this property is restricted to 

along the sheets that form the structure.  The passage of electrical current between the layers 

encounters significant resistance and as a consequence the flow of current, propagated by the 

delocalised electrons, occurs along the parallel layers.  This is why the importance of impurities 

embedded within the flake can have a pronounced effect on the performance of the electrical 

‘layers’ – with the breaking of the graphite sheets by the impurity (or pore if it has been removed), 

the electrical properties can be disrupted, and the performance of the graphite effected.  Due to 
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these electrical properties, graphite is often used as a semiconductor material, and as a major 

component of the anode on batteries, in particular of the Lithium ion variety (Li-ion batteries are a 

major component in the production of electric and hybrid cars.  As the demand for these types of 

cars increases – as is happening – so the demand for more readily available and affordable graphite 

increases also (Industrial Minerals, 2010)).  For use as a higher performance electrical component 

graphite of a higher grade and greater flake size is generally required (Deprez et al., 1988) (Fig 1.13). 

 

 

Figure 1.13:  A selection of graphite electrodes (robotroom) 

 

1.4.4 Graphite as a Thermal Resistor/Propagator 

As a consequence of graphite’s high thermal anisotropy in conjunction with high thermal 

conductivity, due to its layer like structure, it is an ideal material for certain high temperature 

metals, such as blast furnace linings.  The fact that the layers themselves are covalently bonded 

makes the graphite extremely durable with regards extreme heat – it has a high melting point 

(>3600°C (Dreselhaus et al., 1988)). Again, as with the electrical properties, the uniform nature of 

the layers and the packing of the graphite as it constitutes the constructed material is of paramount 

importance.  This durability combined with its anisotropic properties means it can be used in a way 
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that controls heat propagation, which is extremely useful if containing heated substances – by 

having the multiple layers of graphite sheets expanding radially out from the container, the heat is 

contained more efficiently as it encounters resistance crossing the layers, consequently making 

graphite highly suitable for blast furnace linings (Fig 1.14).  

 

Figure 1.14: A blast furnace such as this is likely lined with graphite (wikipedia) 

 

1.5 Summary 

The key properties that make graphite such a useful and sought after resource are fundamentally 

reliant on the atomic arrangement of the carbon atoms, and how they interact with each other – this 

in turn dictates the graphite’s thermal, mechanical and electrical properties that are characteristic of 

it.  However, with regards to the actual use of graphite within industry, it is the micro properties that 

are essentially modifying these characteristic properties that dictates how the graphite performs:  

The flake size and aspect ratio is first and foremost amongst these, but the performance and quality 

of the graphite is dictated by other factors such as flake graphite’s shape, adherence to other 

materials and hydrophobic nature.  To this end, it is essential that any processing of graphite 

designed for its marketability should ensure that the physical structure of the flakes is maintained 
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and therefore minimising their degradation whilst handling and processing – the limiting of 

destruction to the graphite flake is of paramount importance, and is treated as such with respect to 

this project. 
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Chapter 2 – Natural, Synthetic and Kish Graphite 

 

2.1 Types of Graphite 

Broadly speaking graphite can be split up into two categories:  Natural and synthetic.  However, 

whilst the variations in natural graphite have already been discussed, the variations in synthetic 

graphite have not been extensively covered.  Whilst it is beyond the scope of this project to analyse 

all these variations in detail, one such variation – namely ‘kish’ graphite – is central to this project’s 

aims. 

2.1.1 Natural Graphite 

As was previously mentioned in section 1.3.2, natural graphite is found in three forms:  Flake, 

amorphous and lump (vein), and is mined in bulk.  However, the exploitable graphite ore reserves 

are concentrated in only a few countries with 70% of the known reserves being located in the China.  

As a consequence of these countries domination of the reserves they are able to exert undue 

influence over the supply, and consequently price of graphite.  In the event that demand for graphite 

exceeds production due to manipulation of the market then alternative sources of graphite, such as 

synthetic and recycled, will become more important. 

2.1.2 Synthetic Graphite 

Synthetic graphite is essentially any graphite that has not been obtained through a mining process, 

whether it is from the direct creation of the graphite artificially, the harvesting and refining of 

graphite as a by-product of other industrial processes, or the actual recycling of graphite (including 

natural graphite) from processes and objects which are no longer needed. 

In general, there are a number of different ways in which synthetic graphite can be created (Fig 2.1), 

but all essentially rely on the same method.  
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Figure 2.1:  A sample of synthetic graphite (Graphiteproduct) 

This method typically takes the form of the superheating of carborundum (silicon carbide – Fig 2.2) – 

because this mineral is made up of silicon and carbon, when heated to above 2,600°C (Carolina 

Biological Supply Company) , the silicon vaporises, leaving behind only the carbon (Bellis, Mersen).  

This carbon in turn, takes the form of high-quality graphite that is almost pure in nature.  However, 

due to the high temperatures required, and the typically long periods of time that these 

temperatures need to be maintained, the energy consumption alone can seriously jeopardise the 

economic viability of producing graphite this way. 

 

Figure 2.2:   A sample of carborundum (Wikimedia) 

There are also inherent issues with regards the recycling of graphite, as most is taken from 

components such as graphite electrodes and crucibles.  Whilst some of this is reused into producing 
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more graphite (as detailed above), most is used as either a carbon raiser (literally something that 

when added increases the carbon content of a material to a specified level) in the steel making 

industry, or as a repair material for objects such as furnaces. 

In general, whilst there are many ways in which synthetic graphite can be produced, there are 

several issues with many aspects of the final product:  The quality may not be of a standard required 

for high-grade usage(as from the recycled graphite), the process may not be cost effective (it can 

take many months for the heating and storing to be completed, and at a significant cost due to the 

temperatures maintained over this time period), and the materials needed (such as the 

carborundum) can be extremely rare in themselves.  This is why there is a constant search for more 

cost effective ways of obtaining synthetic graphite of a high quality – if a way to produce high quality 

graphite that does not require rare materials or significant time and cost could be found, then this 

would be a major boon to the industry. 

2.1.3 Kish Graphite 

In the initial stages of the steel making process, a large amount of powdered waste product, known 

as kish, is produced (Bennett et al., 1997).  Kish is a general term for the waste material that collects 

on the surface of molten iron, after it is tapped from a blast furnace (with the term ‘kish’ having 

thought to be derived from the German ‘kies’ for gravel (Dictionary.com)).  As steel cools it becomes 

supersaturated with carbon that then comes out of solution as flakes of graphite that float to the 

surface of the steel alongside iron, lime-rich slag and other trace materials.  So desulphurisation of 

hot metal by injecting a mixture of magnesium and lime or calcium carbide and lime produces a lime 

rich slag that mixes with the graphite resulting in kish graphite (Fig 2.3).  Through relatively non-

intensive refining, a relatively pure form of flake graphite can be obtained from this waste material 

(as will later be shown).  The way it is formed is due to similar processes as detailed in section 2.1.2, 

but due to the fact it is a by-product of an already essential process, a significant amount of cost is 

curtailed, rendering it economically viable.  Additionally kish graphite is a potential source of carbon 
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that is widely distributed geographically, the initial cost is low and the resource is not currently 

exploited. 

 

Figure 2.3:   Some flakes of kish graphite 

2.2 Summary 

The majority of the world is reliant on a finite resource of natural graphite (current estimates put 

this at over 800 million tonnes (Focus Graphite) that is controlled by only a few countries, with the 

remainder being produced by costly and time consuming synthetic methods.  However, as part of 

the steel making process, potential reserves of ‘kish’ graphite (produced via a similar mechanism to 

the synthetic graphite, but as a by-product) have been identified in the waste stream.  As such the 

different ‘types’ of graphite can be roughly represented by the schematic below (Fig 2.4): 

 

 

 

~0.5 mm 
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Figure 2.4:   A schematic representing the types of graphite resource 

 

The potential to exploit this untapped source of graphite represents the prospect of reducing the 

reliance on limited, potentially unreliable sources of natural graphite and expensive to produce 

synthetic graphite. 
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Chapter 3 – Extraction of Kish Graphite from Steel Wastage 

3.1 Project Brief  

The project’s main aim was to assess the physical and economic viability of obtaining market grade 

kish graphite from the dust produced (and currently largely considered a waste) as part of the steel 

making process.  In this instance, the figure given as typical kish dust wastage produced for the TATA 

steel plant in Scunthorpe was 10,000 tonnes per year.   This was undertaken by the isolation of the 

potential sources of graphite, and the refinement of the kish dust through physical separation, using 

methods such as wet and dry sieving, magnetic separation and froth flotation, which were 

considered due to their widespread use throughout the minerals processing industry.  Where further 

refinement was required, possible chemical cleaning via acid leaching was considered.   

It was intended that once this initial characterisation, testing and process development had been 

accomplished that a cost analysis would be conducted based upon the costs of a typical steel plant.  

This assessment was then to be used to evaluate the viability of constructing a pilot plant based 

upon the process developed.  

The characterisation of the dust samples was the first stage of the experimental process.  A total of 

seven different dust samples (all taken from different operational areas of the steel plant) were 

assessed for their graphite content.  Due to the fact that the graphite flakes desired are typically a 

number of orders of magnitude larger than the other constituents of the kish dust, and that the 

graphite is easily distinguishable from the kish dust, the process of mechanical separation via sieving 

was considered an effective method to assess whether a given dust sample had potential for future 

refinement.  Whilst qualitative assessment of the various dust samples was performed, dusts found 

to have potential underwent XRF analysis and loss on ignition testing to determine the elemental 

content and amount of graphite contained, respectively.  
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The samples that were found to have an acceptable graphite content underwent various physical 

tests to separate the graphite.  The various methods were assessed and appraised for their 

effectiveness, with promising methods undergoing further optimisation to maximise the yield.  Once 

a successful method for graphite extraction was developed that satisfied the desired purity 

specified, the final testing was to construct a process which produces the best way of extracting the 

graphite given the various considerations. 

3.2 Literature Review 

In terms of the methodology and the general goals of the project (namely the separation of the 

graphite from the kish dust as a whole), similar studies have been documented before.  What 

distinguishes this project from the remainder of the available literature is that this has the specific 

goal of producing a cost-effective and practical method of graphite recovery from a present and well 

defined starting product.  Also, whilst many of the methods used in this project are functionally 

similar to the already investigated methods, many of the specifics differ rendering this research as 

legitimately novel. 

There are very few academic papers detailing the specifics of liberating graphite from kish dust, and 

a number of different sources detailing the efficacy of some of the processes used in this project.  

The three specific papers considered are a study conducted by the US Bureau of Mines (Laverty et 

al., 1990), a US patent concerning the liberation of graphite from kish (Bennett et al., 1995), and a 

paper concerning the beneficiation of kish using froth flotation cells (Kazmi et al., 2008).  The other 

relevant literature primarily concerns the operation of flotation cells (which are of critical 

importance in this project), and will be mentioned in more detail below. 

The scope of the research by the US Bureau of Mines is wider in extent than that of this project, and 

as such is less concerned with the refinement of the processes involved in liberating the graphite 

from the kish dust, and more in detailing the relevant efficacies of various different methods with 
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regards their ability to liberate the graphite.  Their primary concern is the physical beneficiation of 

the graphite from the kish stream – the methods utilised included air and foam elutriation, magnetic 

separation, froth flotation, and hydraulic classification.  The air elutriation study examined the effect 

of changing air velocity on graphite recovery and grade:  It was found that by increasing the air 

velocity the amount of feed as overflow product (along with the coarse graphite content in the 

overflow) increased also.  However, it was also found that this increase directly lead to a decrease in 

carbon content and increased contamination in any specific fraction of the overflow.  Their data 

showed that there was a general decrease in carbon content with decreasing size of the product, 

and as such it was decided to discard any material below 149 microns (100 U.S. mesh), reasoning 

that at such purities, the amount of acid required to successfully leach the product to the required 

grade was too much, and as such the economics were untenable.  Reasoning that for the overflow 

above this size the method was successful, they would develop a secondary stage to complement 

this. 

Alongside the air elutriation, foam elutriation was considered as the primary process using kerosene 

and tetradecyltrimethyl ammonium bromide as conditioning reagents. Compared with the air 

elutriation, they observed that whilst a cleaner overall product was produced, the throughput for 

similarly sized systems was less than one fifth of the air version, making it economically less viable in 

comparison.  However, due to the improved cleaning capabilities, it was considered that combining 

the two processes (air elutriation to process the kish dust followed by foam elutriation to clean it) 

would produce a more attractive overall mechanism. 

The notion of combining processes was extended to magnetic separation as a consequence of the 

high iron content of the kish dust (typically upwards of 30%, according to initial XRF analysis 

(Appendix A)).  However, this was rejected as, in preliminary experiments, whilst a distinct 

separation was visually obtained the relative graphite concentrations of both the feed and products 

remained relatively unchanged.  A microscopic examination of the products revealed the presence 
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of particles of iron embedded in the surface of the graphite flakes rendering them de facto magnetic 

particles. 

Due to the known high hydrophobicity of graphite, froth flotation was also considered, with various 

frothing agents.  Initially considered was a standard pine oil frother, but due to the extremely 

hydrophobic nature of the graphite, iron rich slag with small, undesirable flakes of graphite attached 

were found in the resultant froth.  Using a more selective frother such as Methyl Isobutol carbinol 

(MIBC), the efficiency was increased with the addition of kerosene (Laverty et al., 1990). 

Using a Denver flotation vessel operating at 800rpm and varying the MIBC, kerosene and 

conditioning time, it was found that they could produce a concentrate high in carbon and low in 

contaminants.  Where low carbon recovery was encountered, this was attributed to the fact that 

only around 51% of the recoverable carbon was in the form of free graphite – the rest was locked in 

iron particles. In addition, it was found  that use of kerosene along with MIBC resulted in increased 

amounts of contaminants in the flotation concentrate, compared with the concentrate produced 

using only MIBC (Laverty et al., 1990).  

The purity of graphite they achieved was around 70% compared to a saleable grade of 94%, and 

consequently more purification was required.  To achieve this, they decided to put the feed through 

a chemical process, via acid leaching.  Originally they used sulphuric acid, but whilst this was 

successful in removing the majority of contaminants from the sample, any calcium present in the 

sample precipitates as gypsum, attaches to the graphite flakes, and as such lowers the potential 

purity (the purity they achieved was 88%).  As an alternative, hydrochloric acid was used – whilst it 

was thought that this alone would be enough to produce a carbon content of 95%, due to the flakes 

floating to the top of the surface (preventing total leaching of the flakes) the leaching needed to be 

performed in stirred vessels (25rpm for 2 hours).  This produced a 95%-97% product.  A further 2 

hour leaching stage using hydrofluoric acid raised this to >99%. 
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Whilst the U.S. Bureau of Mines study was fairly broad in scope (with the availability of resources 

and wider-reaching project aims enabling them to try a number of approaches), other work on the 

topic has been more focussed in its approach (as is this project).  The Bennett et al. (1996) text is a 

patent focussing on a process designed to chemically purify the kish dust post beneficiation.  The 

starting grade they were using for the process was a 35%-C kish concentrate.  The process involved 

taking the starting concentrate and froth floating it to upgrade the purity to 70%. This was then 

screened, selecting the +74 micron fraction.  Taking this fraction, it was milled for 5-20 minutes 

under conditions that were designed to further liberate the graphite from the kish dust, whilst 

minimising the damage done to the flakes themselves – this resulted in a concentrate containing 

95% C.  Reasoning that to further purify the graphite would require the removal of particles 

embedded on the flake itself, the flakes were then mixed with dilute acid (HCl being preferred, at 

<7.5% conc.) in order to weaken the bonds attaching the impurities to the flakes.  To remove the 

graphite from the acidic slurry, it was then fed into an attrition scrubber (essentially a machine that 

scrubs high solid density particles together, resulting in polishing and disintegration) to which silica 

sand as an attrition adjuvant (an additive that helps make the process more efficient) was added 

producing a slurry of 55% solid concentrate (the weight ratio of concentrate to attrition adjuvant to 

acidic water is approximately 1:2:2.5).  This material was then washed and further froth floated 

(again using fuel oil or MIBC) producing an eventual graphite product (when dried) of over 99% C 

content.   

The Kazmi paper focusses on the methodology of froth flotation on kish dust with regards to 

beneficiation.  Using a Denver D-12 flotation vessel, with 1-7 minutes of conditioning and 10-25 

minutes collecting the froth, the study showed that under simple ‘rougher’ conditions, a 65% C pre-

concentrate is upgraded to 81% C product at 97% recovery.  An additional concentration stage 

increased the grade to 92% C.  Using this as a starting point, the study then examined the various 

parameters that the flotation can be performed under, such as pH, pulp density, collector, frother, 

gangue, iron depressant, and impeller speed.  Testing the variance of these parameters, the ideal 
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conditions they found were a pulp pH of 7.5, pulp density of 15%, frothing aids of kerosene 

0.05kg/tonne and pine oil 0.05kg/tonne, sodium silicate 0.02kg/tonne and starch 1.5kg/tonne of the 

feed collectively.  The cleaning stages were performed with no further additives.  

As mentioned above, any other relevant literature largely concerns the operation of flotation cells in 

an industrial setting.  Foremost amongst these is Hydrodynamic characterisation of a Denver 

laboratory flotation cell (Sung-Su (2003)), which is a study of the performance of test flotation cells 

and the optimisation of them for an industrial setting.  Factors investigated were the effect of 

superficial gas velocity of the aspirated air, frother concentration, solids content, bubble size and 

impeller speed.  Focussing mainly on the scaling up of laboratory conditions to industrial 

specifications, it was shown that increasing the speed of the impellers in the flotation cells increased 

the amount of aspirated air – to the extent it was shown that higher impeller speeds than are usually 

encountered in test cells (1400-2300rpm as opposed to 800-1200rpm) reproduced a closer match to 

the gas velocities found in industrial practice (0.5-2.0 cm/s).  As such, it was concluded that in order 

to better represent industrial conditions in a laboratory setting, higher impeller speeds are 

recommended.  A number of other observations are made, with other studies (Schubert, 1978; Liu, 

Roper Jr 1991; Cho and Laslowski, 2002) fleshing out the nomenclature more – but for the purposes 

of this project, the main relevant points have been covered.  For more on the operation of a 

flotation cell, please see section 4.2.3. 

To summarise the existing literature, it is clear that not only has the use of flotation cells in an 

industrial setting (a key component of this project) been thoroughly researched, with the 

specification for their optimisation been investigated extensively, but the extraction of graphite from 

kish wastage has been previously attempted.  Of these attempts, it appears that there exist a 

number of methods which are successful in purifying the product (and consequently a number of 

unsuccessful methods), but regardless of the physical beneficiation it appears that in order to 

achieve a carbon concentration of over 99% some sort of chemical cleaning stage is needed. 
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Chapter 4 - Apparatus, Experimental Methods and Materials 

4.1 Initial samples 

Originally, seven different kish dust samples from around the Tata Steel Scunthorpe steel processing 

plant were selected for testing (these were selected by operators at the plant with considerations of 

areas where a large amount of kish dust was produced and particular focus on potential areas where 

high graphite levels are observed in the kish dust) – they were labelled as follows, in accordance with 

the area they were obtained:  

 Eastern Secondary Vent 

 Ladle arcs 1 & 2 

 Ladle arc 3 

 Ladle arc cyclone 

 Convector Additions  

Two samples were taken from the desulphurisation plant, Desulph fall out and Desulph dust – these 

were designated as (in respective order): 

 Desulph 1 

 Desulph 2 

The majority of the project was performed with these materials, but later in the project 

replacements for the Desulph fall out and Desulph Dust were received (denoted as Desulph 1β and 

Desulph 2β respectively), and a number of other samples for basic testing were received (with 

various names).  These, and the characterisation of the dusts will be discussed in length in the next 

chapter.  
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4.2 Primary Methodology 

This section details the methods and procedures used for the bulk of the project (Note – for 

considerations of reading, any mention of basic laboratory equipment has been omitted, and only 

unusual equipment or equipment used in an unconventional way has been listed). 

4.2.1 Sample Preparation 

The samples in general were very easy to handle with minimal dust issues.  Dust masks were used 

but not essential in the preparation of the samples, as it primarily consisted of pouring the dust into 

a container and having it weighed for further testing. 

Method 

The bulk dusts were stored in the bags they arrived in.  Smaller, more easily handled sample bags 

were collected and from these samples were taken to be weighed.  Using an accurate balance, a 

portion (normally 500g) of the dust was transferred into a glass beaker using spatulas for precision 

(Fig 4.1).  Whilst technically a grab sample was taken (for ease and speed of processing), the kish 

dust itself (barring any anomalous object found in the larger size ranges) was on visual inspection 

fairly homogenous, and as such it was decided that this was enough justification for sampling in this 

manner.  This reasoning was applied for all further sampling of the kish dust. 
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Figure 4.1 - Sample Preparation 

4.2.2 Mechanically Agitated Sieving   

Materials and Equipment 

 4 BS410 Endecotts lab test sieves (Aperture range: 1000µm, 500µm, 355µm, 180µm, later an 

additional 2500µm sieve; Stainless steel mesh material, brass frame) 

 BS410 Endecotts bottom collector pan  

 Smooth stainless steel beads (9mm diameter) 

 Retsch VS1000 Vertical agitator  

Method 

After the relevant sample had been weighed, it was placed at the top of a sieve tower (with sieves in 

descending aperture size and a collecting pan at the bottom, and approximately 10 agitation beads 

placed within the mesh layers).  This sieve tower was then placed on a mechanical agitator which 

operated at 30Hz vibrating at 30 second intervals.  The time period selected was 20 minutes per 

500g feed which was ascertained to be sufficient to size the sample as no further significant material 

discharged through the screen after this time (Fig 4.2). 
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Figure 4.2 - Agitated Dry Sieving Set-up 

4.2.2.1 Wet Sieving 

Materials and Equipment 

 4 BS410 Endecotts lab test sieves (Aperture range: 1000µm, 500µm, 355µm, 180µm; 

Stainless steel mesh material, brass frame) 

Method 

The tested sample was mixed in a large bucket with water to an approximate 1:3 ratio (by volume) 

to form a slurry.  This slurry was periodically passed through the relevant sieve aperture with 

constant flowing water to wash it, and the resultant underflow was then collected in another bucket 

(Fig 4.3).  The process was then repeated for the various aperture sizes.  The wet sample was then 

dried and collected as per the above methods. 
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Figure 4.3:  An example of the kish slurry formed 

4.2.2.2 Magnetic Separation 

Materials and Equipment 

 Wet High-Intensity Magnetic Separator (Boxing Mag BHW Separator) 

Method 

The sample to be tested was mixed with water to approximately 10% w/w suspension.  The 

magnetic separator was then turned on and the current adjusted to give the required magnetic field 

(0.04 Tesla/400 Gauss).  The suspension was then passed through the magnetised matrix and 

separated, whilst the paramagnetic particles were attracted to the matrix and retained.  The non-

magnetic particles pass through the matrix unaffected by the magnetic field and were collected in a 

beaker.  The external magnetic field was then switched off and the magnetics were flushed with 

water from the separator.  Both fractions were then filtered, dried and analysed for loss on ignition 

testing (Fig 4.4). 
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Figure 4.4:  The wet magnetic separator used 

4.2.3 Froth Flotation 

Materials and Equipment 

 Laboratory scale Denver D12 flotation cell (H:20cm, B: 13.5cm, W: 14cm; Fill height: 15cm) 

 Froth scraper (old credit card) 

 Tee frother (frothing agent) 

 Diesel oil (optional) 

Method 

In general, (unless there was a shortage of material) 50g of the kish sample was weighed out into a 

beaker and deposited in the flotation cell.  This was then filled almost to the brim with tap water and 

for the specific experiments the required amount of teefroth and diesel oil was measured with a 

pipette and deposited into the cell.  The impeller would then be carefully lowered into the cell and 

turned on (rotating at a rate of 1500rpm – as per the recommendations from the literature) – this 

was then left for around 2 minutes in order for the mixture to homogenise (this time was 

determined from observation).  In order to create the froth, the air sparger was turned on and the 



43 
 

valve gradually released until a froth naturally starts to form.  At this point the froth starts to 

overflow into the collection tray, and this assisted by actively scraping it.  This was carried out for 3 

minutes as it was observed that the majority of the visible graphite has been removed from the froth 

- this process was assisted with the use of a wash bottle to prevent graphite flakes from sticking to 

the cell walls.  Once the three minutes expired, the air sparger valve was closed, and the impeller 

turned off and removed.  What was collected was considered the graphite product and what 

remained in the flotation cell was considered to be the tailings (Fig 4.5). 

  

Figure 4.5: Left to Right - A Denver flotation cell; 2 minute froth conditioning; 3 minutes scraping 

 

4.2.4 Filtration 

Materials and Equipment 

 Vacuum filtration unit consisting of a 3000 ml vacuum filtering flask, electric vacuum pump, 

ceramic Buchner funnel, connection tubing and a rubber stopper.  
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Method 

The equipment was set up in the configuration as per Figure 4.6 and filter paper was placed on the 

funnel until it was completely covered.  The vacuum was turned on and the filter paper wetted in 

order to form a seal.  The post-froth flotation graphite product was then carefully poured in and 

allowed to drain.  Once completely drained any material stuck to the ceramic walls was removed 

with the wash bottle, the vacuum was turned off and the filter paper removed (with the graphite 

material on it) for drying.  The remaining liquid was then discarded and the process repeated for the 

tailings sample (Fig 4.6). 

 

Figure 4.6: Left - Vacuum Filtration Unit; Right - Graphite Froth in collection tray before filtration  

 

4.2.5 Drying 

Materials and Equipment 

 Small size paint brush 
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Method 

The coated filter paper from the filtration stage was placed on a tray and left to dry in a drying oven 

(operating temperature 20°C -240°C) at 80°C (preferably overnight, but a few hours was sufficient).  

Once completely dry, the trays were removed and left to cool and the resulting graphite product was 

transferred from the filter paper into a labelled sample bag using the trowel spatula and brush.  The 

paper was then discarded and the resultant product weighed. 

 

4.2.6 Acid Leaching   

Materials and Equipment 

 Dilute Hydrochloric acid, HCl (5% wt concentration)  

 Ultrasonic bath 

 Vacuum filtration unit consisting of a 500ml vacuum filtering flask, electric vacuum pump, 

ceramic Buchner funnel, connection tubing and a rubber stopper.  

Method 

Around 2g of the sample (enough so that a satisfactory amount for LOI testing could be retrieved) 

was placed in a beaker with enough acid (or water in case b) to fully submerge it and underwent one 

of three treatments: 

a. Magnetically stirred for 20 minutes 

b. Agitated in an ultrasonic water bath (water sample) for 20 minutes 

c. Agitated in an ultrasonic water bath (acid sample) for 20 minutes 

Once the time period expired, the samples cleaned with acid were washed with water to stop the 

reaction, and the all three samples were filtered, dried, and bagged as per the previous methods. 
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4.2.7 Loss on Ignition Test (LOI) 

 Materials and Equipment 

 Bench top Carbolite Burn-off Furnace (Maximum operating temperature: 1200 ºC) (Fig 4.7).  

Method 

Using a precision balance, the weight of a crucible was taken and around 0.2-0.5g of sample was 

added (enough to coat the bottom of the crucible).  This was then re-weighed and placed into the 

furnace.  This was then heated up to 900 ºC, and remained at this temperature for three hours (in 

order for all of the combustible material to be burnt).  Once this time period expired, the furnace 

was then turned off and the doors opened in order to allow it to cool.  Once the crucible(s) were 

cooled, they were re-weighed (in order to calculate the mass of burnt material) and the remaining 

sample bagged and labelled (Figs 4.7 & 4.8). 

 

Figure 4.7: Carbolite Burn-off Furnace with extractor hood 
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Figure 4.8:  LOI test furnace with door open to allow cooling of crucibles 

 

4.3 Characterisation Methods 

Whilst not essential to the project, a number of characterisation procedures were performed as 

described below. 

4.3.1 X-Ray Fluorescence (XRF) Spectrometry 

Materials and Equipment 

 University of Birmingham X-Ray Fluorescence Spectrometer 

 Powder Compressor 

 Powder binder 
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Method 

0.1g of the sample (enough to create the tablet) was mixed with a known amount of binder into a 

homogenous powder.  This powder was the placed into the powder compressor in order to create a 

tablet.  This tablet was then placed into the XRF spectrometer, which then analysed the elemental 

content.  Once completed the tablet was bagged for repeat testing (if required).  For a more in-

depth breakdown of the preparation of specimens for XRF analysis, please see Burhke et al. (1998).  

For an explanation as to the mechanisms behind XRF analysis, please see Appendix A. 

 

Figures 4.9 and 4.10:  An XRF spectrometer (left), and a typical XRF results display (right) 

(Carleton/Wikipedia) 

 

4.3.2 Thermal and Electrical Conductivity (Morgan PLC) 

A number of thermal and electrical conductivity tests were performed with selected samples by one 

of the project’s industrial partners, Morgan plc, details of which are presented in Appendix D. 
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Chapter 5 – Results 

5.1 As Received Reference Samples 

Note:  Unless otherwise specified, if a singular number for a size fraction is listed, it is to be taken that this 

represents the size fraction greater than that number, but less than the corresponding larger size fraction.  

For example, by 355µm, this is to be taken as the size fraction of +355µm,  -500µm. 

As specified in section 4.1, seven different dusts were sampled from Tata’s Scunthorpe steel 

processing plant (Fig 5.1), from different areas where the iron and steel (or rather the products that 

eventually become the steel) is processed:  These included samples taken from (and named after) 

the following locations:  

 Eastern Secondary Vent 

 Ladle arcs 1 & 2 

 Ladle arc 3 

 Ladle arc cyclone 

 Convector Additions  

And the two samples from the desulphurisation plant: 

 Desulph 1 

 Desulph 2 

These areas were singled out by site engineers as areas where the kish dust is likely to occur.  
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Figure 5.1: A schematic of the steel-making process, with manual additions as to where the kish 

dust was collected (provided by Tata Steel) 

Initial testing involved characterisation of the different dusts and their properties – after testing the 

carbon content and size distributions each would be assessed on their potential for graphite 

recovery.  The dusts were qualitatively assessed as follows: 

Eastern Secondary Vent – This was a fine brown powder with a relatively low cohesion.  Small 

impurities appeared to be present and flakes of kish graphite are noticeable, but occur in small 

quantities (Fig 5.2). 
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Figure 5.2:  A microscope image of the Eastern Secondary Vent sample 

Ladle Arcs 1 & 2 – A fine brown powder, but with a far higher cohesion causing the dust to clump 

together into agglomerates.  Possibly due to this clumping, the appearance of impurities and 

graphite flakes appear more sparsely under microscopic examination (Fig 5.3): 

 

Figure 5.3:  A microscope image of the Ladle Arcs 1 & 2 sample 

Ladle Arc 3 – largely indistinguishable from the collections taken from Ladle Arcs 1 & 2 (Fig 5.4). 

~ 0.5 mm 

 

~ 0.5 mm 
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Figure 5.4:  A microscope image of the Ladle Arc 3 sample 

Ladle Arc Cyclone – This was a largely grey, grit-like material with a varying degree of impurities and 

graphite flakes visible.  Low to no cohesion with the particles, but larger particles generally coated 

with a finer grey dust (Fig 5.4). 

 

Figure 5.5:  A microscope image of the ladle arc cyclone sample 

Convertor Ladle Additions – This was the densest material, and consisted of very fine black particles 

with little to no cohesion.  There did not appear to be many impurities present, rather each particle 

was roughly a small black ball in shape, but there did appear to be fairly significant amounts of 

graphite present.  However, this may have been emphasised by the contrast between the shiny 

graphite flakes and the black powder (Fig 5.6). 

~ 0.5 mm 

 

~ 0.5 mm 
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Figure 5.6:  A microscope image of the convertor ladle additions sample 

Desulph Fallout (Desulph 1) - This was immediately singled out as the most promising source of 

graphite from observation alone.  Taken from the sweepings of the desulphurisation plant, this 

sample mainly consisted of a largely grey dust of mid to low cohesion, with a wide range of grit-like 

impurities.  Also present was a high proportion of graphite flakes in the sample (Fig 5.7). 

 

Figure 5.7:  A microscope image of the Desulph 1 sample 

Desulph Dust (Desulph 2) – Also immediately recognised for its potential, this was again taken from 

the desulphurisation plant.  As opposed to Desulph 1 dust, this was largely brown in colour, and 

whilst the same sorts of large impurities were present, they appear to be less frequent.  Like the 

~ 0.5 mm 

 

~ 0.5 mm 
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Desulph 1, it appeared to have a mid to low cohesion, and a clearly promising concentration of 

graphite was present in the sample (albeit less than Desulph 1) (Fig 5.8). 

 

Figure 5.8:  A microscope image of the Desulph 2 sample 

 

5.2 Preliminary experiments 

In order to assess the different samples’ viability for the recovery of graphite, two key factors were 

determined:  The size distribution of the dust and the carbon content. It is evident there is no point 

in pursuing further a product with a low concentration (<10%) of Carbon (and consequently 

graphite).  However, the relative importance of the size distribution is less clear as for example, even 

if there were a high concentration of graphite, if it were all of the order of a few microns its 

desirability is severely reduced to industry (as detailed in Chapter 1, as a general rule of thumb, the 

larger the flake size the more desirable the graphite).  As such, for the initial stages of the project it 

was decided that in order for the dust to be worth investigating further, it needed a carbon content 

of over 10% and an appreciable proportion of its mass in the >180µm size range.  

5.2.1 Size Separation – Wet Sieving 

Due to its availability, ease of use and cost, it was decided that physical separation via sieving would 

be a suitable mechanism to separate the size fractions, with the distinction between wet and dry 

~ 0.5 mm 
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sieving yet to be decided.  The perceived benefits to wet sieving was that in addition to separating 

the size fractions, by converting the dust(s) into a suspension, it would minimise losses (and risk to 

health by inhalation) and would have the added bonus of acting as a cleaning agent to the graphite 

flakes.  To test its suitability, the wet sieving of one sample of dust was performed, but the results 

were found to be unsatisfactory due to the volumes of water used and the need for subsequent 

drying. 

Dry sieving was consequently tried, and found to be far more suited to requirements; the dust(s) 

were all found to be easy to handle (with minimal dispersion to the atmosphere), and whilst the 

effectiveness of separating the size fractions varied due to the cohesiveness of some of the dusts, it 

was shown to effectively liberate the graphite flakes from the wider mass of dust. 

 

5.2.2 Selection of the Dusts 

 The seven samples were placed on a sieve tower and mechanically agitated until no more 

separation was observed (the mesh sizes used were 1000µm, 500µm, 355µm and 180µm).  The 

distributions of masses in the samples are illustrated below in Fig 5.9: 
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Figure 5.9:  A graph detailing the particle size distribution of the samples received from Tata Steel 

As can be seen, the majority of the mass in the samples is found below the 355µm size range – the 

exceptions to this being the Ladle Arc samples.  However, this was a misleading result, as the Ladle 

Arc dusts were highly cohesive, and as such formed clumps that were not suited to sieving – as such, 

a more realistic result would likely show the majority of the mass of both of these samples to be in 

the sub 180µm fraction.  Given this additional information, the dusts of promise at this point were 

Desulphs 1 & 2, and the Ladle Arc Cyclone collections.  Even without the considerations of carbon 

content, the convertor ladle additions were rejected on the basis of the size of the particles, with 

99% of the mass belonging to the sub 180µm range. 

Loss on Ignition analysis was also performed on the dusts to ascertain their carbon content – the 

results were as follows (Table 2): 
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Table 2:  Loss on Ignition – Tata Steel samples 

Dust 
Sample 

Carbon 
Content 
(%) 

Eastern 
Secondary 
Vent 

3.9 

Ladle Arc 
1&2 

6 

Ladle Arc 
3 

4.5 

Ladle Arc 
Cyclone 

8.5 

Convertor 
Ladle 
Additions 

0 

Desulph 1 32.4 

Desulph 2 29.5 

 

Given these results, it was decided to solely focus on the Desulph 1 and Desulph 2 samples.  Whilst 

there is potential for graphite recovery (in both the mass distribution and carbon content) in the 

Ladle Arc Cyclone collections, for purposes of time and efficiency, it was decided to neglect this 

sample (along with the other 4 samples) for the remainder of the project. 

5.2.3 X-Ray Fluorescence (XRF) Analysis 

In order to better classify the samples, XRF analysis was also performed on the samples.  It was also 

hoped that this, in conjunction with the loss on ignition analysis could provide a more accurate 

representation of the overall character of the samples (LOI analysis is based on the loss in mass – 

assumed in this project to be solely comprised of carbon).  However, whilst the XRF spectrometer 

delivered a report detailing the elemental analysis of the number of powder, the spectrometer used 
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was unable to detect carbon as an element.  Due to this, it was abandoned as a primary analytic tool, 

but could be utilised as an analysis of the waste streams and ash samples from the LOI tests. 

As reflected in other literature, the two impurities present in both the Desulph 1 and 2 streams 

mainly consisted of calcium and iron with a varying degree of other elements (Magnesium, Sulphur, 

Silicon and Manganese for Desulph 1, Potassium, Magnesium, Sulphur, Sodium and Silicon for 

Desulph 2), with the remainder being composed of trace elements (less than 0.5% of the stream).  

For a more in depth analysis of the XRF spectroscopy, please see the Appendix A. 

5.2.4 Magnetic Separation 

Wet High Intensity Magnetic Separation was applied to a number of the samples.  The results were 

disappointing with very little concentration of graphite in the non-magnetic fractions.  As already 

discussed, this lack of graphite separation is attributed to ferromagnetic material (notably the iron 

particles) ‘carrying’ the graphite flakes with it, either by being embedded in the flakes themselves, or 

simply mechanically.  As such, any further testing with this method was abandoned.  

 

5.3 Primary Experiments 

Focussing on the Desulph 1 and 2 powders, the next (and main) stage of the project was to develop 

a method in order to isolate and refine the graphite found in the kish to a purity of 95% C.  This was 

done as part of a two stage process – physical beneficiation, and a likely chemical cleaning stage (Fig 

5.10): 
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Figure 5.10:  A representation of the processes needed to refine the graphite 

 

5.3.1 Physical Separation through Mechanically Agitated Dry Sieving 

Whilst initial testwork showed that the dry sieving was extremely successful in liberating the larger 

particle size graphite flakes from the kish dust.  However, upon additional analysis using LOI the 

purity of the flake samples was found to be lower than expected.  Whilst the larger flake sizes 

appeared to be of high purity the discrepancy highlighted by the LOI test can be attributed to the 

presence of atypical impurities, such as pieces of grit, ceramic etc. which could wildly skew result 

depending on the composition of the sample.  To this end, in the subsequent sieving stages (and as 

will be used when calculating the yields, purities etc.) an additional screen of 2.5mm was used to 

screen out the larger, non-standard impurities. 

With regards to the methodology employed with the dry sieving, the process underwent several 

iterations before a standardised procedure was decided upon that appeared to fully separate all the 

relevant fractions.  Initially the sieve tower was placed on the mechanical agitator and vibrated for 

10 minutes per 250g at 20Hz, and then by a series of optimization tests a standard procedure was 
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adopted that fulfilled the objectives.  This procedure was to sieve every 250g of material for 10 

minutes at a frequency of 30Hz with the addition of agitation beads.  Observational analysis showed 

that sieving for any longer than this did not appear to produce any significant change in the particle 

distributions.  Whilst there may be more efficient ways to separate the particles, once this method 

was adopted there were no further attempts to optimise it. 

Using this methodology, numerous fractions of the Desulph 1 and 2 dusts were produced, with the 

mass distributions as follows (Fig 5.11) (for a more in-depth analysis of particle size measurement, 

see Allen (1997)): 

 

Figure 5.11:  A Graph Detailing the Particle Size distribution after Sieving of Desulph 1 and Desulph 2 

The results show that whilst the majority of the dust mass is found in the particles that pass through 

the 180µm screen, a significant amount of the mass is found in the larger size fractions 

(approximately 45% in the Desulph 1 sample).  The waste fraction does contain graphite which could 

be further liberated, but due to the low amounts present, and the utility afforded from flakes of this 

size being lower than the other flakes (as detailed above), this fraction was treated as a discard at 
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the time of the experiments.  Subsequently this fraction was investigated for its potential also 

(section 5.4). 

For both of the samples, the majority of exploitable graphite was observed in the 500-1000µm and 

180-355µm fractions (Table 3) – whilst the highest quality flakes are present in the largest fractions, 

the mass percentage is skewed due to the presence of non-standardised impurities which are unlike 

the kish dust.  The purities of the fractions below 355µm tended to vary from between 40-60%, so it 

was clear that more refinement was definitely needed, with froth flotation undertaken on these 

fractions to raise the purity. 

 

Table 3:  The carbon content of the different size fractions 

SIZE FRACTION CARBON CONTENT (%) 

DESULPH 1 DESULPH 2 

1000µm 82.5 86.7 

500µm 50.6 69.1 

355µm 49.6 48 

180µm 39.0 54.8 

<180µm 14.9 73.6 

 

5.3.2 Physical Separation through Froth Flotation 

5.3.2.1 Desulph 1 

The initial froth flotation tests were undertaken on the fractions from 180µm to 500µm as the 

majority of the mass was in these fractions, and it was clear that in order to produce a marketable 
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product, further beneficiation was required.  The results for the individual fractions are as follows 

(Fig 5.12):  

 

 

Figure 5.12:  A Graph Detailing the effect of varying frother additions on yield for the  

+180µm, - 355µm Desulph 1 sample 

Whilst there is more of the mass present in the 180-355µm fraction, it is more comparable in size to 

the impurities so is harder to separate. As illustrated above (Fig 5.12), even without any additives the 

graphite separates effectively from the waste material – this is due to the extreme hydrophobic 

properties of the flakes, and their comparable size to the bubbles formed in the Denver cell.  With 

the addition of the teefroth (the frothing agent), the mass floated was significantly increased 

(increasing from around 45% to 75%).  However, with the teefroth dosage level being increased 

further (2ml, 3ml per 50g), this appeared to have a detrimental effect on the mass floated – this was 
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likely due to the additional teefroth being too effective, rendering the frothing process too violent.  

This results in the hydrophilic silicates and iron oxides being floated as well. 

With the addition of the diesel oil (acting as a collector), there was no appreciable difference in the 

mass floated (all diesel oil additions were done with a base level of 1ml teefroth also):  Varying the 

amount of diesel oil does not appear to have a pronounced effect on the mass floated, and since it is 

comparable to the mass obtained with no diesel oil additions it can be considered as superfluous to 

the optimisation of the process (at least for this size fraction).  

 

Figure 5.13:  A Graph Detailing the effect of varying frother additions on yield for the  

+355µm, - 500µm Desulph 1 sample 

Fig 5.13 (above) illustrates similar behaviour in the 355µm-500µm fraction.  In general, the same 

pattern was observed:  The addition of teefroth greatly increases the mass floated from the process, 
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but a detrimental effect can be observed if an over dosage occurs (resulting in the volume of 

bubbles mechanically entraining the hydrophilic iron oxides).  With regards to the addition of diesel 

oil to act as a collector to enhance graphite flotation, there was a marginal increase in the mass 

floated obtained, but due to the relatively low proportion of particles in this size range, it is unlikely 

this improvement is significant enough to make the addition cost effective.  Furthermore, whilst the 

addition of the diesel oil can result in an increase in the mass floated, there was a notable decrease 

in the carbon content when the samples underwent LOI testing (see Fig 5.14 and Fig 5.15).  The 

reason for this is thought to be that the diesel oil in these instances is too effective, and caused 

unwanted particles to become entrained in the resultant foam (Note that typical error level for the 

LOI tests performed was +/-2%). 

 

Figure 5.14:  A Graph Detailing the effect of varying frother additions to the Carbon Content for 

the 355µm and 180µm Desulph 1 sample 
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Figure 5.15:  A Graph Detailing the effect of varying diesel oil additions to the Carbon Content for 

the 355µm and 180µm Desulph 1 sample 

The above data shows the carbon content of the various flotations concentrates samples (note that 

in Fig 5.14 the results at 355 microns for 0 and 2 ml/50g of teefroth are missing due to lack of 

resources, and are not indicating 0% carbon content).  In general, an increase in the carbon content 

is observed when any kind of froth flotation is performed.  The variation of teefroth additive, whilst 

having a pronounced effect on the mass obtained, does not appear to have as pronounced an effect 

on the carbon content of the flotation concentrate.  Whilst the carbon content is improved by a 

considerable degree (up to around 80%), it is still not reaching the purity required from the project 

(+95%), and as such further processing is likely to be needed.  However, with regards the addition of 

diesel oil as a frothing aid, there was no increase in purity observed (and in some cases a sizeable 

decrease), so it was concluded that diesel oil was not needed in the froth flotation processing of the 

Desulph 1 sample. 

 

 

 

 



66 
 

5.3.2.2 Desulph 2 

 

Figure 5.16:  A Graph Detailing the effect of varying frother additions on yield for the 355µm and 

180µm Desulph 2 sample 

Fig 5.16 illustrates that similar results were found with the Desulph 1 sample.  The addition of 

frother greatly improved the mass floated obtained, but in general increasing beyond 1ml per 50g of 

sample had a detrimental effect on the mass floated - although the 3ml per 50g of sample does 

appear to have increased the mass floated, it is not by a sizeable amount, and as such seems unlikely 

to be worth economically pursuing on mass recovery alone. 

The addition of diesel oil appeared to not greatly increase the mass floated of the 355-500µm 

sample, but did appear to have increased the mass floated of the 180-355µm sample.  However, it is 
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unclear as to why such a pronounced effect occurred for such a specific sample, and as such the 

results may have been anomalous and repeated to ascertain for certain. 

 

 

Figure 5.17 & 5.18:  A Graph Detailing the effect of varying frother additions to the Carbon Content 

for the 355µm and 180µm Desulph 2 sample 
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From the above (Fig 5.17 and Fig 5.18), it can be seen that the froth flotation process has 

significantly improved the carbon content of the samples, and that again for the 180-355µm sample, 

the variance in teefroth does not have a pronounced effect on this carbon content.  With regards the 

355-500µm sample, whilst the diesel oil additions again show no positive net effect on the purities, 

the teefroth additions are less clear – due to the relatively low yields of the 355µm fraction, further 

tests would be recommended to verify this data. 

 

5.3.3 Chemical Cleaning through Acid Leaching 

With one froth flotation stage being unable to raise the required purity of Desulph 1 and Desulph 2 

to the >95% target, and the previous literature recommending the use of acid leaching as a final 

cleaning stage, a number of different cleaning methods were used (as detailed in the previous 

chapter).  Taking a froth-floated sample of the 180µm and 355µm fraction, and a non-treated 

sample of the 500µm and 1000µm fractions (given their relatively high purity already, it was 

reasoned that chemical cleaning alone would raise it to the desired purity, eliminating the need for a 

costly additional step), three treatments were used, with the ultimate purities as follows (Table 4): 
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Table 4:  The different Carbon Contents of the samples after varying cleaning treatments 

Sample Size 

fraction 

(microns) 

Carbon Content (%) 

Screened Flotation 

Conc. 

Acid bath Water bath 

and 

ultrasound 

Acid bath 

and 

ultrasound 

Desulph 1 +1000 85 N/A 95 93 91 

 -1000, +500 73 N/A 84 77 79 

 -500, +355 50 82 95 - - 

 -355, +180 39 88 90 - - 

Desulph 2 +1000 83 N/A >99 >99 87 

 -1000, +500 87 N/A >99 94 98 

 -500, +355 48 97 >99 97 96 

 -355, +180 55 78 97 79 96 

 

As detailed above, three different methods of chemically cleaning the graphite flakes were 

attempted (acid bath and mixing, water bath and ultrasound, and acid bath and ultrasound).  All 

three were successful in raising the purity of the graphite, to varying degrees (Table 4).  Whilst there 

was a clear difference between the water and sulphuric acid cleaning (acid being far more effective), 

there is less variation between the sulphuric acid ultrasound and sulphuric acid-mixing variants.  

Given there is a slight increase to the purities when the mixed, and that the ultrasound would be 

more expensive, the simple acid mixing variant is the more preferable of the two (5% w/w H2SO4, 

5ml/g ratio, ambient temperature). 

However, given the unsuccessful purification of the Desulph 2 +500µm – 1000µm sample, and 

undesirable consequences of the impurities still present in the feed (see the tertiary experiments 

section below), it was decided that the best course of action would be to in fact froth float any 
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fractions above 500µm also.  After this was performed on the Desulph 1 1000µm and 500µm 

samples, it appeared to remove all of the grit-like, heavy impurities – resulting in a more 

homogenous material – and raised the purities pre-acid leaching to 96% and 86% C respectively 

(Table 5): 

Table 5:  The revised Carbon Content of the larger flake sizes of Desulph 1 after froth flotation 

Sample Size fraction (microns) Carbon Content (%) 

As received Post froth-flotation 

Desulph 1 +1000 85 96 

-1000, +500 73 86 

 

Given the already high purity, and the effectiveness of the water bath and ultrasound on the flakes 

of higher size, it could be possible to purify the +100µm and -1000µm +500µm flakes to a 

marketable grade without exposing them to potentially expensive acid leaching. 

5.3.4 Top-up Bags (Desulph 1β & 2β) and Additional Samples 

As stocks ran low on the Desulph 1 and 2 dusts, replacement bags were delivered from the steel 

plant.  Whilst ostensibly these were the same as the original Desulph 1 and 2 samples (and should 

consequently possess largely the same characteristics), it soon became apparent that there were a 

number of discrepancies:  The new samples had a lower concentration of Carbon, different particle 

size distributions, and were more cohesive powders than their predecessors.  In order to distinguish 

these from the original samples, they were denoted Desulph 1β and 2β. 

Extensive testing on these powders was not performed (with the exception of the sub 180µm 

fraction of Desulph 2 β in the secondary experiment), but the mass distributions and relative purities 

were as follows (and comparing these results to the original samples) (Fig 5.19):  
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Figure 5.19:  Comparison of particle size distribution for Desulph 1 & 1β, 2 & 2β. 
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There is clearly more than just a superficial difference:  Whilst the Desulph 1 samples were largely 

consistent with regards the lower size fractions, there were considerable differences amongst the 

355µm and above fractions.  The Desulph 2/2β differences are more significant, most clearly with 

the 2β sample having a larger 180µm fraction, as this may indicate different plant operation 

conditions for the second samples or possibly a different sampling protocol by Tata Steel. 

The loss on ignition data also showed some variation (Table 6): 

Table 6:  The Loss on Ignition data comparison for Desulph 1 & 1β, 2 & 2β 

FLAKE SIZE (µm) CARBON CONTENT (%) 

DESULPH 1 DESULPH 1β DESULPH 2 DESULPH 2β 

RAW (as received) 32 38 30 10 

+1000,-2000 85 70 83 37 

+500, -1000 73 95 87 14 

+355, -500 50 53 48 35 

+180, -355 39 54 55 11 

-180 15 25 25 10 

 

From Tale 6 the difference in the β-sample purities is interesting.  Desulph 1β has in general a 

greater carbon content, but Desulph 2β has a significantly lower one.  In order to obtain an accurate 

picture of a plant’s potential ability to process graphite, a more comprehensive survey of the plant 

and materials over a period of time would be recommended. 

In addition to the β-samples, a number of other samples from other potential sources were received 

(having undergone varying treatments), with their purities calculated as follows (Table 7): 
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Table 7:  The Loss on Ignition of Miscellaneous samples Supplied by Tata Steel 

Sample Carbon Content (%) 

Desulph dust Bulk Sample, bag 5 (1/5/2013) 14.7 

Desulph dust Bulk Sample, bag 3 (1/5/2013) 8.3 

Bulk Sample (1/5/2013), bags 1+3+5+7, +180 - 

500 micron, acid washed 

57.7 

Desulph dust (March 2013), wet sieved 57.2 

Bulk Sample (1/5/2013), bags 1+3+5+7, + 500 

micron, acid washed 

92.7 

New Material 1 24.4 

New Material 2 12.9 

 

 

The analysis of the miscellaneous sample indicates that there are a number of other potential 

sources and sites for kish recovery on the Scunthorpe site, with varying degrees of success – in terms 

of the wider goals of the project, it shows that even simple processing of other sources can produce 

a high grade product (in particular the ‘New Material 1’ sample).   

5.4 Processing of minus 180 micron fraction 

In addition to the main experiment of processing the +180µm fractions of Desulph 1&2, a secondary 

experiment investigating the sub 180µm fraction of each was performed.  Using the same 

methodology employed in the main experiment, the previously rejected material was initially sieved 

into fractions of 150µm, 120µm, 90µm and 60µm.  Due to time constraints and considerations of 

feasibility, the 150µm and 120µm fractions were removed as the yield obtained from them was too 

low to be of any practical use.  Any material less than 60µm was treated as discard, as the Loss on 

Ignition testing indicated the carbon content was approaching (or had already dropped below) the 
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10% Carbon mark, and the flake sizes were becoming comparable to low-grade graphite dust, 

rendering the potential monetary reward as less appealing.  Froth flotation tests and acid (H2SO4) 

leaching were then performed on these remaining fractions in order to obtain the highest purity 

product possible. 

(Note: As has been mentioned previously, part-way through these experiments, the Desulph 2 

deposits ran out.  As such, the Desulph 2 β sample was used in the latter stages, and consequently 

the final analysis.) 

In general the results mirrored the results of the larger size fractions, but with a few key differences 

– the most prominent of these is that there appeared to be a different optimal amount of frother 

(namely around 2ml/50g) to attain both yield and purity.  This is likely due to the larger surface area 

of graphite per gram of feed material in the minus 180µm fraction.  Given this secondary experiment 

occurred later in the project’s lifecycle, there was more of a time constraint associated with it, so 

further verification would be needed for this.  Another possible reason for this result is that as the 

graphite flake sizes approach the actual size of the majority of the sample dust particles, it is harder 

for the graphite flakes to reach the froth without being impeded by the impurities (the lift resultant 

from the hydrophobicity of the graphite is not enough to migrate through the rest of the kish dust).  

With the additional frother, this creates a better mixing environment which enhances the probability 

of contact between an air bubble and a graphite flake, allowing the flakes that otherwise would not 

reach the froth to settle there.  

As a consequence of the low purity of the product after the first froth flotation stage it was 

subjected to a second stage with the aim of improving the purity.  The second stage of froth flotation 

successfully raised the purity which confirms the results obtained (section 3.4), as illustrated below 

(Table 8): 

 



75 
 

Table 8:  The Carbon Content of the non-treated sub-180 micron samples tested 

KISH SAMPLE CARBON CONTENT (%) 

SIZE FRACTION (MICRONS) 

-180, +90 -90, +63 -63 

DESULPH 1 80.6 63.0 38.1 

DESULPH 2β 69.5 31.8 10.4 

 

Finally, in order to raise their purity to the highest possible level, a number of the floated samples 

underwent acid leaching (specifically the Desulph 1 -180µm +90µm and -90µm +63µm fractions, due 

to their already high purity).  The highest purities obtained were 94.7% and 94.0% for the 90µm 

fraction and 63µm fraction, respectively (Table 9) (ff stands for ‘froth flotation’): 
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Table 9:  The final Carbon Content achieved on some of the sub-180 micron samples tested 

SAMPLE TEEFROTH 

(ml) 

CARBON 

CONTENT 

(%) 

Desulph 1 -180µm +90µm (ff) 1 78.0 

Desulph 1 -180µm +90µm (ff) 2 85.2 

Desulph 1 -90µm +63µm (ff) 1 93.0 

Desulph 1 -90µm +63µm (ff) 2 91.0 

Desulph 1 -90µm +63µm (ff) 3 93.1 

Desulph 1 -90µm +63µm (re-ff) 1 92.7 

Desulph 1 -63µm (ff) 1 88.2 

Desulph 1 -63µm (ff) 2 89.7 

Desulph 1 -63µm (ff) 3 91.9 

Desulph 1 -63µm (re-ff) 1 94.0 

Desulph 2 -180µm (ff) 1 77.8 

Desulph 2β -180µm +90µm (re-

ff) 

1 94.7 

 

Given these results, if the acid leaching (and previous processing) were to be optimised on the re-

floated samples, it is not unreasonable that the target purity of 95% could be achieved.  For a fuller 

breakdown of the results in the secondary experiments, please see the Appendix C. 

5.5 Thermal and Electrical Conductivity (Morgan PLC) 

A number of samples were sent for testing (with one of the project’s industrial partners) as part of 

their assessment for use in manufacturing graphite-based products.  For the most part, this 

consisted of pressing the flakes (with a binder) to form a block, and testing the electrical conductivity 



77 
 

of the block (with the thermal conductivity being derived from this result).  General findings were 

that whilst the kish flakes could be successfully used in these applications, the results were not as 

good as the standard material used (primary graphite) – as such,  it was concluded that for the 

industrial partner’s needs, only the fraction above 500µm would be suitable.  Using this fraction, it 

was found that whilst the sample was nominally >95% C, the impurities that were present would 

inhibit the creation of the block, rendering it difficult to fabricate.  Due to this, even though a high 

purity could be obtained from the ‘dry’ dust, froth flotation was performed in order to remove the 

grit-like impurities (this was detailed earlier).  It was concluded that the <500µm fraction would be 

best suited for other tasks (i.e. crucible manufacture etc.).  For a more detailed breakdown of the 

results in the secondary experiments, please see the Appendix D. 

 

5.6 Cost Analysis 

(The calculations performed in this section are covered in much greater detail in Appendix B). 

Given the inherent limitations of the project (see section 6.3), the following cost analysis will be 

performed taking a relatively conservative estimate of the amount of >95% C graphite concentration 

and an estimate of the cost of setting up an adjoining plant for the processing.  As such, due to the 

two Desulph 1 samples being fairly consistent with one another, but the Desulph 2β sample having 

much lower purities, the ‘final’ product was taken to be a conservative approximation of the average 

of purity and size distribution between the two (it should be clear that even though these 

calculations are intentionally approximated – yet conservative - the eventual analysis will show that 

it is a probable profitable venture, so any additional income will be considered a bonus).  The cost of 

facilities and equipment etc. will be based on the higher end of comparable facilities. 

The figure supplied by the project’s industrial partner for the amount of kish dust produced (from 

the desulphurisation plants) was 10,000 tonnes a year, which roughly works out at around 6 tonnes 
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per hour.  Given 10,000 tonnes of Desulph dust a year, the amount of harvestable graphite from the 

findings of this project work out at around 1820 Kg per hour.  This means 3033 tonnes a year, which 

at a value of $900 per tonne delivers an income of $2.7 million per year.  Given the relatively simple 

equipment used in the purification, even the industrial sized versions top-end costs are of the order 

of around $950,000.  Coupling this with the operational, storage, handling and transportation costs, 

a typical plant designed for this application would be expected to generate an up-front cost of 

around $3.5 million dollars.  Factoring in these running costs, it would appear that on this fairly 

conservative view the income generated from the graphite would be sufficient to pay any large 

immediate outgoings off in around 18 months, and should generate a profit from there onwards.  

However, it should be taken into account that the graphite price used is subject to market variation 

(depending on supply and demand) but the TSB consortium that funded this thesis are sufficiently 

confident in the financial viability of the process as to look for investors for commercial 

development. This is however currently in hiatus due to the impending sale by TATA of the 

Scunthorpe site which the work is based on. The costings developed are based on IChemE guidelines 

and the payback period of 18 months is not unreasonable based on the simplicity of the plant 

proposed, high price of graphite per tonne and the fact that the plant would be based on site hence 

transport and waste disposal costs are minimalised.   This is particularly apparent when considering 

this was only calculated with considerations of a conservative estimate of the Desulph dust with 

flake size fractions over 180µm; it should be apparent from the project outcomes that not only are 

there numerous other potential sources of graphite available, but there is great potential in the 

<180µm fraction also.  Money is also being inherently saved by the recycling of previously-

considered waste material, and reducing the costs associated with landfill sites.   
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5.7 Results Summary 

To summarise, the results demonstrate that in a relatively non-invasive and simple manner it is 

possible to extract significant amounts of high-grade graphite from the kish dust found in steel-

plants, and that the location of the kish dust which provides the most promise is in the 

desulphurisation plants:  The aim of the project was to produce saleable grades of graphite (+95% C) 

and provide samples for application testing at Morgan Crucibles.  Of the samples provided by Tata 

Steel two contained sufficient graphite to warrant investigation (Desulph 1 at 32.4% C and Desulph 2 

at 29.5% C). 

The first process applied to these samples was screening to provide a +500 micron and +1000 micron 

fraction.  These fractions proved to be high in carbon content although the finer fractions required 

further processing in the form of froth flotation and H2SO4 leaching.  The testwork completed 

indicates that it is possible to produce +95% C concentrates from most size ranges of Desulph 1 and 

Desulph 2. 

Product grades ranging from 95-99% C have been made in the laboratory and selected samples of 

these have been sent to Morgan Crucibles for appraisal and comparison with their current primary 

(mineral) graphite feedstocks.  Their initial views are that the high aspect ratio of the kish graphite 

has not given any significant production advantages.  Also, the impurities in the kish graphite 

structures can create fabrication issues, meaning a froth flotation stage is recommended for the 

+500 microns fraction of the kish graphite flakes. 

Investigation into the finer fraction has indicated that all fractions above 63 micron can be processed 

into a saleable product (+95% C).  However, it would appear that a double froth flotation stage and 

leaching may be required to reach this goal. 
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Cost analysis showed that whilst there are a number of factors to consider, given the right conditions 

the creation of a pilot pant to recover kish graphite in an up-scaled version of this project to an 

industrial level is a venture worthy of serious consideration. 
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Chapter 6 – Future recommendations 

6.1 Post-results Outline 

Whilst the previous chapter has outlined the main findings of the project it is now worth evaluating 

the results as a whole and making recommendations for further research. 

6.2 Meta-analysis of Results 

For the purposes of processing, the findings from this project recommend that graphite wastes 

should be divided into 3 fractions:  Large flakes, Medium flakes and Small flakes.  The large flakes 

would correspond to those of a size 500µm and above, the medium flakes corresponding to the size 

range of 180µm-500µm and the small flakes corresponding to the size range of 63µm-180µm.  Any 

flake sizes smaller than 63µm should be treated as discard due to low graphite concentrations. 

Whilst this strategy does not map exactly to industry standards (generally flake sizes over 80µm are 

considered large) there is a clear distinction within these groups as to how a 95% C product can be 

obtained.  As such, if the liberation of graphite from kish dust is taken to an industrial standard using 

the methods utilised in this project, it is recommended combining the screen sizes to only separate 

for these fractions.  This would result in a screen tower consisting of a large mesh to remove any 

‘large’ impurities (a 3mm aperture size was used in this project), followed by a screen of 500µm, 

180µm and 60µm.  Once the large impurities are removed, and the feed is divided into these 

fractions, from the results of the project it is recommended that the following treatments are used 

in order to obtain a 95% C product: 

Large flakes:  This is the simplest and least costly process.  Since the separation from the sieves has 

already liberated the graphite to a high purity (82-85% C) the main concern is to eliminate the 

impurities that will prevent physical distortion of the flakes during fabrication.  To this end, one froth 

flotation stage with the addition of teefroth (to the ratio of 1ml per 50g of feed) would remove these 

grit-like impurities leaving a product which should be in excess of 90% Carbon.  Whilst 5% H2SO4 
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leaching would undoubtedly upgrade this product to >99% pure standard, it is proposed that 

exposure to ultrasonic waves in a water bath would be sufficient in raising the purity to over 95% 

(industry standard being 94%), without the potential damage to the flakes and specifically the flake 

edges that exposure to acid could cause. 

Medium flakes:  This is a slightly more involved process but again with a well-defined method in 

order to obtain a marketable product.  Unlike the large flakes, the impurities are not an issue with 

regards the physical manipulation of the product, rather they are an issue due to them lowering the 

purity.  Froth flotation is again recommended, with the additions of teefroth at the same dosage 

level.  Once a single froth flotation has been performed, there are two options:  Either the sample 

can undergo further froth flotation stages to raise the purity further, or it can undergo acid leaching 

to raise the purity.  Since from this fraction the purity is unlikely to rise to >95% C with froth flotation 

alone, it will need to undergo an acid cleaning stage anyway, and as such (for considerations of cost 

and yield) it is recommended putting the product straight through a 5% H2SO4 leaching phase once 

the first froth float is completed.  If scaling-up to an industrial scale mirrors the results from this 

project, this should deliver a product of >95% C (whether or not this is the case will be discussed 

further below). 

Small flakes:  This process is not finalised but a potential method of refinement can be deduced 

from the laboratory results.  Unlike the previous two methods, selection of the feeds may take a 

more important role in this process, as a number of the Desulph 2β fraction – even though they met 

the size specification – were judged to be too low in carbon content to undergo refinement.  This 

may not actually be the case, and they may well have responded well to the treatments, but it is 

something that will need to be investigated further should it be scaled up.  Regardless, the 

methodology here is very similar to the one recommended for the medium flakes, with the caveats 

that it would appear a higher dosage of teefroth would be needed in the froth flotation stages 

(around 3ml per 50g of feed), and it seems clear that multiple froth flotation stages would be 
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required before the product underwent acid leaching to raise the purity a final time.  Whilst a 

marketable purity was only just (but not reliably) obtained in the project itself (the best result being 

94.67%), it is likely that if the specified feed underwent the above process a >95% C product could 

obtained at these flake sizes. 

 

6.3 Scaling-up to industrial quantities 

The main criticisms with this project’s commercial relevance are mainly concerned with the veracity 

with which it mirror’s an industrial project:  As encountered in the previous chapter, it soon became 

apparent that whilst there was great promise in the two original Desulph samples received, when a 

top-up batch of both was received, there were discrepancies between the two – most noticeably 

there was a severe drop in the carbon content of the Desulph 2 sample, which could potentially 

undermine the project’s ultimate goals.  Conversely, the second bag of Desulph 1 actually appeared 

to offer more promise (albeit marginally), but regardless of whether or not there is a greater or 

lesser potential for the recovery of graphite than this project has shown, it is clear that the dusts 

which were tested (supplied by Tata) for this project were not truly representative of the types 

found in bulk in industry.  This is as much an issue with the quantities involved than anything – the 

amounts used in this project are in the order of kilograms whereas in industry it is of the order of 

thousands of tonnes.  Given it is a real and dynamic material, a truly representative sample would 

have been hard and impractical to obtain.  These sorts of issues are echoed elsewhere:  When 

performing the acid leaching, given the small samples used, the waste product has essentially been 

calculated as negligible.   This is clearly not the case, and when scaled up to the proportions required 

by industry will be fairly sizeable and unable to be ignored.  Loss on Ignitions analysis also is 

inherently flawed, in that it does not take into account any potential materials that can gain mass as 

a result of being heated, and it cannot be guaranteed that all the combustible material has been 

burnt up, as carbon could be completely encased in other particles (it is also worth taking the 
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inherent error into account - as mentioned in section 5.2.2.1 - of +/- 2%.  There could indeed be 

‘fringe’ cases where this tips the balance on the grade of graphite obtained).  Whilst it is a useful 

indicator of the purity, a more accurate method would be needed to ascertain these figures if scaled 

up.  As such, with regards the final evaluations and cost analysis, these can only be viewed as 

preliminary.  However, it still appears that the scaling-up of this project would be a profitable 

venture.  

 

6.4 Future Research and Conclusions 

So it is clear that there is great utility afforded from the harvesting of graphite outlined by the 

project’s methods, but as mentioned earlier, there are still plenty of avenues of enquiry to pursue, 

and methodologies to refine.  First and foremost amongst these is simply the scaling-up of the 

project to an industrial setting:  A more representative classification of the materials available and a 

more thorough methodology will need to be developed in order to truly glean the value that 

harvesting graphite form steel wastage offers.  However, what this project has conclusively shown is 

simply that it is possible to liberate a quality product, and using methods and processes that are 

simple and cost effective:  For this reason, whilst there is potential in other methods (such as cyclone 

technology or electrostatic separation), there appears to be no need - at least from a practical point 

of view – to have any need to research this further (not to mention the danger with electrostatic 

separation that there could be an explosion in the separator during the processing of finely divided 

graphite).  The use of screening and froth flotation are some of the most simple and cost-effective 

tools in industry; as such it seems counter-intuitive to complicate a process further when a high 

quality product is already achievable.  However, these simple methods are not without their own 

problems, such as the difficulty of screening at fine sizes (due to the unit capacity declining rapidly 

with size), and the recovery, handling and disposal of the relatively large amounts of water and 

reagents needed for froth flotation, to name a few. Ultimately however, this project has shown that 
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with the price and demand of graphite ever on the increase, there exists potential in setting up such 

processes to harvest kish graphite.  This, in turn, could indicate an exciting future for this new 

potential resource. 
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Appendix A: XRF Analysis 

Below is a brief aside on the mechanism behind XRF spectrometry, followed by the (limited) raw XRF data 

obtained as part of the project.  For reasons outlined in the main text, this was not pursued further (I am 

particularly grateful to Zubera Iqbal for her assistance in the performing of XRF analysis on the samples). 

An aside: How XRF spectrometry works 

Essentially, XRF analysis is the process where a sample is bombarded with high-energy X-rays.  These 

X-rays are in turn absorbed by the particles present in the sample, exciting the electrons in the 

orbitals of the atoms.  Once these electrons have been excited, they in turn emit a characteristic 

secondary X-ray (of unique frequency and amplitude) of its own which is picked up by a detector.  

These specific X-ray ‘fingerprints’ are well documented, so the XRF spectrometer can detect them, 

analyse the data, and report to a high degree of accuracy the chemical composition of the sample, 

and in what proportions these elements are to each other. 

More specifically, the radiation emitted from the XRF spectrometer hits the atoms in the sample 

causing an electron in one of the inner orbitals to be removed from the atom.  In order to achieve a 

lower energy state, an electron from an outer orbital lowers to replace it – the moving from one 

orbital to another constitutes a change in energy level.  This change in energy is facilitated by the 

release of a photon (the fluorescent effect) with a unique wavelength due to the specific structure of 

the element.  The wavelength, λ is equal to h.c/E (Planck’s law).  Since each atom has its own 

characteristic wavelength peaks for a given energy, XRF analysis can determine which elements are 

in a sample.  XRF analysis can determine the relative proportion of the elements in question by 

comparing the amplitudes of these peaks (Figs 4.9 & 4.10). 
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Raw Data 1: 

 

 

 

 

DESULP2RAW

Formula Z Concentration Status Line 1 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 2 Net int.

orig-g 0.51 Input

added-g 0.1 Input

Ca 20 45.94% XRF 1 Ca KA1-HR-Tr 66.72 1464 45.9 0.69% 113.2 PPM 19.1 um Ca KB1-HR-Tr 7.433

Fe 26 37.51% XRF 1 Fe KA1-HR-Tr 114.3 2491 37.51 0.53% 71.2 PPM 25.5 um Fe KB1-HR-Tr 20.22

K 19 2.71% XRF 1 K  KA1-HR-Tr 4.645 100.2 2.71 2.65% 80.2 PPM 16.1 um K  KB1-HR-Tr 0.5213

Mg 12 1.74% XRF 1 Mg KA1-HR-Tr 1.242 31.93 1.74 5.17% 160.8 PPM 1.38 um

S 16 1.27% XRF 1 S  KA1-HR-Tr 2.185 65.72 1.27 3.87% 56.3 PPM 6.3 um

Na 11 1.10% XRF 1 Na KA1-HR-Tr 0.1941 6.934 1.1 12.80% 0.88 um

Si 14 0.69% XRF 1 Si KA1-HR-Tr 0.4767 13.44 0.69 8.19% 3.1 um Si KB1-HR-Tr/El 0.031

Mn 25 0.26% XRF 1 Mn KA1-HR-Tr 0.5983 13.02 0.26 8.07% 85.9 PPM 20.5 um Mn KB1-HR-Tr 0.2525

Al 13 0.17% XRF 1 Al KA1-HR-Tr 0.09439 2.653 0.17 18.40% 2.05 um Al KB1-HR-Tr/El 0.00413

La 57 0.15% XRF 1 La LA1-HR-Tr 0.04175 0.9332 0.15 27.70% 11.0 um La LB1-HR-Tr 0.04402

Ti 22 0.10% XRF 1 Ti KA1-HR-Tr 0.09963 2.224 0.1 17.90% 10.2 um Ti KB1-HR-Tr 0.04941

P 15 0.08% XRF 1 P  KA1-HR-Tr 0.07354 2.212 0.076 20.90% 4.4 um

Sr 38 0.06% XRF 1 Sr KA1-HR-Tr 1.133 20.88 0.064 7.00% 30.7 PPM 111 um Sr KB1-HR-Tr 0.305

91.78%

Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 3 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer XRF %

163.1 43.4 2.08% 790.9 PPM 24.0 um 45.9

440.6 36.6 1.26% 398.4 PPM 33 um Fe LA1-HR 0.01994 40.10% 0.74 um 37.51

11.25 2.8 8.38% 720.3 PPM 20.0 um 2.71

1.74

1.27

1.1

0.8743 1.7 80.30% 3.5 um 0.69

-0.2419 -0.026 36.10% 714.2 PPM 26.4 um Mn LA1-HR 0.00097 454% 0.60 um 0.26

0.1159 0.79 220% 2.30 um 0.17

0.9841 0.22 27.00% 13.6 um La KA1-HR-Tr -0.00936 -0.1102 -0.004 603.3 PPM 1.35 mm 0.15

0.9915 0.31 63.60% 12.8 um 0.1

0.076

5.01 0.061 22.60% 147.0 PPM 152 um Sr LA1-HR 0.00821 0.2163 0.033 156% 3.4 um 0.064

DESULP2POSTDS

Formula Z Concentration Status Line 1 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 2 Net int.

orig-g 0.51 Input

added-g 0.1 Input

Ca 20 45.39% XRF 1 Ca KA1-HR-Tr 66.06 1449 45.4 0.70% 116.3 PPM 19.1 um Ca KB1-HR-Tr 8.253

Fe 26 37.96% XRF 1 Fe KA1-HR-Tr 116.2 2534 37.96 0.53% 66.9 PPM 25.6 um Fe KB1-HR-Tr 20.32

K 19 2.65% XRF 1 K  KA1-HR-Tr 4.547 98.14 2.65 2.65% 15.9 um K  KB1-HR-Tr 0.5333

Mg 12 1.72% XRF 1 Mg KA1-HR-Tr 1.223 31.44 1.72 5.20% 154.8 PPM 1.37 um

S 16 1.19% XRF 1 S  KA1-HR-Tr 2.052 61.74 1.19 3.95% 6.3 um

Na 11 1.07% XRF 1 Na KA1-HR-Tr 0.1886 6.74 1.1 13.00% 0.88 um

Si 14 0.51% XRF 1 Si KA1-HR-Tr 0.3502 9.877 0.51 9.56% 3.1 um Si KB1-HR-Tr/El 0.01391

Mn 25 0.27% XRF 1 Mn KA1-HR-Tr 0.631 13.73 0.27 7.69% 76.6 PPM 20.5 um Mn KB1-HR-Tr 0.2987

Cl 17 0.24% XRF 1 Cl KA1-HR-Tr 0.2366 7.117 0.24 13.60% 117.8 PPM 8.6 um

La 57 0.12% XRF 1 La LA1-HR-Tr 0.03388 0.7573 0.12 30.70% 11.0 um La LB1-HR-Tr 0.04229

Ti 22 0.08% XRF 1 Ti KA1-HR-Tr 0.08166 1.825 0.085 19.80% 10.2 um Ti KB1-HR-Tr 0.08004

Sr 38 0.06% XRF 1 Sr KA1-HR-Tr 1.102 20.3 0.063 7.29% 32.2 PPM 110 um Sr KB1-HR-Tr 0.2437

V 23 0.05% XRF 1 V  KA1-HR-Tr 0.06044 1.331 0.046 23.00% 13.0 um

91.31%

Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 3 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer XRF %

181.1 48.1 1.97% 23.9 um 45.4

442.9 36.6 1.26% 414.8 PPM 33 um Fe LA1-HR 0.01746 107% 0.74 um 37.96

11.51 2.8 8.38% 793.4 PPM 19.8 um 2.65

1.72

1.19

1.1

0.3922 0.76 120% 3.5 um 0.51

0.6445 0.069 12.70% 691.7 PPM 26.5 um Mn LA1-HR 0.00099 449% 0.60 um 0.27

0.24

0.9445 0.21 68.80% 13.6 um La KA1-HR-Tr 0.326 2.981 0.11 79.80% 545.2 PPM 1.33 mm 0.12

1.56 0.48 50.00% 12.8 um 0.085

4.185 0.051 26.20% 132.3 PPM 151 um Sr LA1-HR 0.04043 1.129 0.18 70.30% 3.4 um 0.063

0.046
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Normalised 1: 

 

 

Graph

Formula Z Concentration Status Line 1 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 33.67% XRF 1 Fe KA1-HR-Tr 114.2 2489 33.67 0.53% 62.1 PPM 32 um Fe KB1-HR-Tr 21

Ca 20 33.27% XRF 1 Ca KA1-HR-Tr 49.13 1078 33.3 0.81% 92.6 PPM 21.4 um Ca KB1-HR-Tr 5.868

K 19 2.34% XRF 1 K  KA1-HR-Tr 3.964 85.55 2.34 2.86% 53.1 PPM 18.0 um K  KB1-HR-Tr 0.4098

Mg 12 1.31% XRF 1 Mg KA1-HR-Tr 1.04 26.72 1.31 5.66% 137.1 PPM 1.57 um

Na 11 0.99% XRF 1 Na KA1-HR-Tr 0.1992 7.116 0.99 12.70% 1.00 um

S 16 0.91% XRF 1 S  KA1-HR-Tr 1.521 45.75 0.914 4.74% 64.1 PPM 7.2 um

Si 14 0.59% XRF 1 Si KA1-HR-Tr 0.4231 11.93 0.59 8.70% 3.5 um Si KB1-HR-Tr/El 0.05905

Cl 17 0.41% XRF 1 Cl KA1-HR-Tr 0.3916 11.78 0.41 10.40% 118.0 PPM 9.8 um

Mn 25 0.23% XRF 1 Mn KA1-HR-Tr 0.5881 12.8 0.23 8.26% 70.8 PPM 25.5 um Mn KB1-HR-Tr 0.2759

Al 13 0.17% XRF 1 Al KA1-HR-Tr 0.1065 2.994 0.17 17.30% 2.33 um Al KB1-HR-Tr/El 0.003

Ti 22 0.08% XRF 1 Ti KA1-HR-Tr 0.08906 1.991 0.081 24.40% 106.0 PPM 12.6 um Ti KB1-HR-Tr 0.02529

Sr 38 0.06% XRF 1 Sr KA1-HR-Tr 1.151 21.21 0.06 7.78% 32.5 PPM 126 um Sr KB1-HR-Tr 0.1232

As 33 0.03% XRF 1 As KA1-HR-Tr 0.257 5.388 0.028 20.60% 42.3 PPM 56 um As KB1-HR-Tr -0.02785

74.06%

Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 3 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer XRF %

457.7 34 1.24% 364.1 PPM 41 um Fe LA1-HR 0.01578 113% 0.92 um 33.67

128.7 33.6 2.35% 660.7 PPM 26.8 um 33.3

8.845 2.2 9.72% 636.1 PPM 22.3 um 2.34

1.31

0.99

0.914

1.665 3.1 23.30% 4.0 um 0.59

0.41

-0.629 -0.06 35.60% 614.1 PPM 33 um Mn LA1-HR 0.00149 367% 0.74 um 0.23

0.08434 0.53 258% 2.62 um 0.17

0.5652 0.15 197% 901.6 PPM 15.9 um 0.081

2.115 0.024 158% 144.1 PPM 173 um Sr LA1-HR 0.0223 0.6133 0.099 94.70% 3.8 um 0.06

-0.5838 -0.015 243.9 PPM 75 um As LA1-HR 0.1231 -0.7453 -0.19 48.10% 943.3 PPM 1.66 um 0.028

Raw

Formula Z Concentration Status Line 1 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 2 Net int.

orig-g 0.51 Input

added-g 0.1 Input

Ca 20 49.34% XRF 1 Ca KA1-HR-Tr 66.72 1593 49.3 0.69% 125.7 PPM 17.4 um Ca KB1-HR-Tr 7.433

Fe 26 41.34% XRF 1 Fe KA1-HR-Tr 114.3 2710 41.34 0.53% 78.6 PPM 23.5 um Fe KB1-HR-Tr 20.22

K 19 2.89% XRF 1 K  KA1-HR-Tr 4.645 109.1 2.89 2.65% 89.1 PPM 14.6 um K  KB1-HR-Tr 0.5213

Mg 12 2.00% XRF 1 Mg KA1-HR-Tr 1.242 34.74 2 5.17% 179.2 PPM 1.26 um

S 16 1.36% XRF 1 S  KA1-HR-Tr 2.185 71.51 1.36 3.87% 62.8 PPM 5.7 um

Na 11 1.28% XRF 1 Na KA1-HR-Tr 0.1941 7.544 1.3 12.80% 0.80 um

Si 14 0.77% XRF 1 Si KA1-HR-Tr 0.4767 14.63 0.77 8.19% 2.78 um Si KB1-HR-Tr/El 0.031

Mn 25 0.29% XRF 1 Mn KA1-HR-Tr 0.5983 14.17 0.29 8.07% 94.7 PPM 18.8 um Mn KB1-HR-Tr 0.2525

Al 13 0.19% XRF 1 Al KA1-HR-Tr 0.09439 2.887 0.19 18.40% 1.86 um Al KB1-HR-Tr/El 0.00413

La 57 0.16% XRF 1 La LA1-HR-Tr 0.04175 1.015 0.16 27.70% 10.1 um La LB1-HR-Tr 0.04402

Ti 22 0.12% XRF 1 Ti KA1-HR-Tr 0.09963 2.42 0.12 17.90% 9.4 um Ti KB1-HR-Tr 0.04941

P 15 0.08% XRF 1 P  KA1-HR-Tr 0.07354 2.407 0.083 20.90% 4.0 um

Sr 38 0.07% XRF 1 Sr KA1-HR-Tr 1.133 22.72 0.072 7.00% 34.2 PPM 101 um Sr KB1-HR-Tr 0.305

Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 3 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer XRF %

177.4 47.5 2.08% 875.2 PPM 21.8 um 49.3

479.5 40.9 1.26% 439.9 PPM 30 um Fe LA1-HR 0.01994 40.10% 0.68 um 41.34

12.24 3 8.38% 800.3 PPM 18.1 um 2.89

2

1.36

1.3

0.9513 1.9 80.30% 3.2 um 0.77

-0.3388 -0.037 36.10% 799.1 PPM 24.3 um Mn LA1-HR 0.00097 454% 0.55 um 0.29

0.1262 0.9 220% 2.09 um 0.19

1.071 0.24 27.00% 12.5 um La KA1-HR-Tr -0.00936 -0.1189 -0.005 670.2 PPM 1.22 mm 0.16

1.082 0.35 63.60% 11.8 um 0.12

0.083

5.46 0.07 22.60% 163.3 PPM 139 um Sr LA1-HR 0.00821 0.2351 0.036 156% 3.1 um 0.072
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Post DS

Formula Z Concentration Status Line 1 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 2 Net int.

orig-g 0.51 Input

added-g 0.1 Input

Ca 20 49.10% XRF 1 Ca KA1-HR-Tr 66.06 1551 49.1 0.70% 126.5 PPM 17.3 um Ca KB1-HR-Tr 8.253

Fe 26 41.91% XRF 1 Fe KA1-HR-Tr 116.2 2711 41.91 0.53% 72.5 PPM 23.4 um Fe KB1-HR-Tr 20.32

K 19 2.86% XRF 1 K  KA1-HR-Tr 4.547 105 2.86 2.65% 14.4 um K  KB1-HR-Tr 0.5333

Mg 12 1.96% XRF 1 Mg KA1-HR-Tr 1.223 33.65 1.96 5.20% 168.9 PPM 1.24 um

S 16 1.28% XRF 1 S  KA1-HR-Tr 2.052 66.08 1.28 3.95% 5.7 um

Na 11 1.23% XRF 1 Na KA1-HR-Tr 0.1886 7.214 1.2 13.00% 0.79 um

Si 14 0.56% XRF 1 Si KA1-HR-Tr 0.3502 10.57 0.56 9.56% 2.76 um Si KB1-HR-Tr/El 0.01391

Mn 25 0.30% XRF 1 Mn KA1-HR-Tr 0.631 14.69 0.3 7.69% 82.9 PPM 18.8 um Mn KB1-HR-Tr 0.2987

Cl 17 0.25% XRF 1 Cl KA1-HR-Tr 0.2366 7.616 0.25 13.60% 128.5 PPM 7.8 um

La 57 0.13% XRF 1 La LA1-HR-Tr 0.03388 0.8105 0.13 30.70% 10.1 um La LB1-HR-Tr 0.04229

Ti 22 0.09% XRF 1 Ti KA1-HR-Tr 0.08166 1.954 0.094 19.80% 9.3 um Ti KB1-HR-Tr 0.08004

Sr 38 0.07% XRF 1 Sr KA1-HR-Tr 1.102 21.73 0.07 7.29% 35.1 PPM 100 um Sr KB1-HR-Tr 0.2437

V 23 0.05% XRF 1 V  KA1-HR-Tr 0.06044 1.424 0.051 23.00% 11.9 um

Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 3 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer XRF %

193.8 51.8 1.97% 21.7 um 49.1

474 40.3 1.26% 449.4 PPM 30 um Fe LA1-HR 0.01746 107% 0.68 um 41.91

12.32 3 8.38% 863.8 PPM 17.9 um 2.86

1.96

1.28

1.2

0.4198 0.84 120% 3.2 um 0.56

0.589 0.065 12.70% 757.7 PPM 24.3 um Mn LA1-HR 0.00099 449% 0.55 um 0.3

0.25

1.011 0.22 68.80% 12.4 um La KA1-HR-Tr 0.326 3.19 0.13 79.80% 594.3 PPM 1.21 mm 0.13

1.665 0.53 50.00% 11.7 um 0.094

4.479 0.057 26.20% 144.2 PPM 137 um Sr LA1-HR 0.04043 1.208 0.19 70.30% 3.0 um 0.07

0.051

Graph 

Formula Z Concentration Status Line 1 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 46.73% XRF 1 Fe KA1-HR-Tr 114.2 3111 46.73 0.53% 81.1 PPM 23.7 um Fe KB1-HR-Tr 21

Ca 20 43.27% XRF 1 Ca KA1-HR-Tr 49.13 1347 43.3 0.81% 122.7 PPM 15.5 um Ca KB1-HR-Tr 5.868

K 19 3.02% XRF 1 K  KA1-HR-Tr 3.964 106.9 3.02 2.86% 70.6 PPM 12.9 um K  KB1-HR-Tr 0.4098

Mg 12 2.01% XRF 1 Mg KA1-HR-Tr 1.04 33.4 2.01 5.66% 184.1 PPM 1.13 um

Na 11 1.56% XRF 1 Na KA1-HR-Tr 0.1992 8.894 1.6 12.70% 0.73 um

S 16 1.17% XRF 1 S  KA1-HR-Tr 1.521 57.19 1.17 4.74% 86.0 PPM 5.1 um

Si 14 0.83% XRF 1 Si KA1-HR-Tr 0.4231 14.92 0.83 8.70% 2.50 um Si KB1-HR-Tr/El 0.05905

Cl 17 0.51% XRF 1 Cl KA1-HR-Tr 0.3916 14.73 0.51 10.40% 157.9 PPM 7.0 um

Mn 25 0.32% XRF 1 Mn KA1-HR-Tr 0.5881 16 0.32 8.26% 92.2 PPM 19.0 um Mn KB1-HR-Tr 0.2759

Al 13 0.26% XRF 1 Al KA1-HR-Tr 0.1065 3.742 0.26 17.30% 1.67 um Al KB1-HR-Tr/El 0.003

Ti 22 0.11% XRF 1 Ti KA1-HR-Tr 0.08906 2.489 0.11 24.40% 137.1 PPM 9.4 um Ti KB1-HR-Tr 0.02529

Sr 38 0.09% XRF 1 Sr KA1-HR-Tr 1.151 26.51 0.089 7.78% 43.3 PPM 91 um Sr KB1-HR-Tr 0.1232

As 33 0.04% XRF 1 As KA1-HR-Tr 0.257 6.735 0.04 20.60% 56.4 PPM 40 um As KB1-HR-Tr -0.02785

Used intensity Calc. concentration Stat. error LLD Analyzed layer Line 3 Net int. Used intensity Calc. concentration Stat. error LLD Analyzed layer XRF %

572.1 47 1.24% 476.1 PPM 31 um Fe LA1-HR 0.01578 113% 0.69 um 46.73

160.9 42.9 2.35% 868.3 PPM 19.4 um 43.3

11.06 2.8 9.72% 844.6 PPM 16.1 um 3.02

2.01

1.6

1.17

2.082 4.3 23.30% 2.87 um 0.83

0.51

-1.196 -0.13 35.60% 830.8 PPM 24.5 um Mn LA1-HR 0.00149 367% 0.55 um 0.32

0.1054 0.78 258% 1.88 um 0.26

0.7065 0.21 197% 0.12% 11.8 um 0.11

2.644 0.035 158% 192.0 PPM 125 um Sr LA1-HR 0.0223 0.7659 0.12 94.70% 2.76 um 0.089

-0.7298 -0.022 324.9 PPM 54 um As LA1-HR 0.1231 -1.565 -0.43 48.10% 0.13% 1.20 um 0.04
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Raw Data 2 – Sheet 1 

 

 

 

Desulpdust2ndbestpdspffwp

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 47.41% XRF 1 Fe KA1-HR-Tr 149.3 3255 47.41 0.27% 37.6 PPM 24.1 um Fe KB1-HR-Tr 26.12

Ca 20 42.53% XRF 1 Ca KA1-HR-Tr 65.71 1442 42.53 0.40% 54.8 PPM 17.4 um Ca KB1-HR-Tr 7.751

Mg 12 2.56% XRF 1 Mg KA1-HR-Tr 1.693 43.51 2.56 2.53% 81.8 PPM 1.11 um

Si 14 0.84% XRF 1 Si KA1-HR-Tr 0.543 15.31 0.842 4.43% 2.44 um Si KB1-HR-Tr/El0.00079

S 16 0.31% XRF 1 S  KA1-HR-Tr 0.5014 15.07 0.306 4.76% 28.2 PPM 5.0 um

Mn 25 0.30% XRF 1 Mn KA1-HR-Tr0.7373 16.03 0.305 4.06% 43.0 PPM 19.3 um Mn KB1-HR-Tr0.3834

K 19 0.21% XRF 1 K  KA1-HR-Tr 0.3542 7.645 0.206 5.80% 34.8 PPM 13.1 um K  KB1-HR-Tr0.05897

Al 13 0.13% XRF 1 Al KA1-HR-Tr 0.0683 1.919 0.13 14.70% 92.3 PPM 1.63 um Al KB1-HR-Tr/El0.00361

P 15 0.08% XRF 1 P  KA1-HR-Tr0.07136 2.146 0.079 14.60% 50.8 PPM 3.5 um

Pb 82 0.07% XRF 1 Pb LB1-HR-Tr 0.2187 4.586 0.067 13.20% 67.1 PPM 64 um Pb LA1-HR-Tr 0.2797

Sr 38 0.06% XRF 1 Sr KA1-HR-Tr 1.028 18.95 0.0634 4.16% 17.9 PPM 88 um Sr KB1-HR-Tr 0.3274

Zn 30 0.05% XRF 1 Zn KA1-HR-Tr 0.2492 5.368 0.051 9.05% 32.2 PPM 22.8 um Zn KB1-HR-Tr0.01174

Cr 24 0.04% XRF 1 Cr KA1-HR-Tr0.07045 1.533 0.037 17.50% 44.1 PPM 15.4 um Cr KB1-HR-Tr0.00839

As 33 51 PPM XRF 1 As KA1-HR-Tr0.2797 0.8606 0.005 9.10% 30.0 PPM 39 um As KB1-HR-Tr-0.01348

Zr 40 51 PPM XRF 1 Zr KA1-HR-Tr 0.3274 1.853 0.005 11.10% 19.1 PPM 119 um Zr KB1-HR-Tr0.04144

100%

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

569.2 46 0.64% 217.1 PPM31 um Fe LA1-HR 0.01468 67.40% 0.70 um 47.41

170 42.5 1.18% 377.1 PPM21.8 um 42.53

2.56

0.01122 0.023 1415% 0.23% 2.80 um 0.842

0.306

0.9351 0.096 15.40% 393.7 PPM25.0 um Mn LA1-HR 0.00627 41.30% 0.57 um 0.305

1.273 0.31 48.80% 397.9 PPM16.2 um 0.206

0.1014 0.75 328% 0.80% 1.83 um 0.13

0.079

5.178 0.09 9.10% 66.5 PPM 39 um Pb MA1-HR-Tr0.00681 0.2049 0.025 239% 138.7 PPM5.2 um 0.067

4.435 0.059 11.10% 87.2 PPM 121 um Sr LA1-HR 0.01128 0.3011 0.049 117% 148.5 PPM2.69 um 0.0634

0.2528 0.014 382% 206.9 PPM30 um Zn LA1-HR-Tr0.00971 0.2587 0.092 82.90% 0.66 um 0.051

0.05414 0.007 329% 309.0 PPM19.7 um Cr LA1-HR -0.00019 0.45 um 0.037

-0.2826 -0.008 137.7 PPM52 um As LA1-HR 0.2496 0.6155 0.17 17.30% 651.3 PPM1.17 um 0.005

0.7115 0.011 230% 107.8 PPM164 um Zr LA1-HR -0.00734 -0.2208 -0.026 145.5 PPM3.6 um 0.005

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 50.37% XRF 1 Fe KA1-HR-Tr 149.3 3434 50.37 0.27% 40.0 PPM 22.9 um Fe KB1-HR-Tr 26.12

Ca 20 44.40% XRF 1 Ca KA1-HR-Tr 65.71 1521 44.4 0.40% 58.5 PPM 16.3 um Ca KB1-HR-Tr 7.751

Mg 12 2.79% XRF 1 Mg KA1-HR-Tr 1.693 45.9 2.79 2.53% 87.6 PPM 1.04 um

Si 14 0.90% XRF 1 Si KA1-HR-Tr 0.543 16.16 0.902 4.43% 2.29 um Si KB1-HR-Tr/El0.00079

Mn 25 0.32% XRF 1 Mn KA1-HR-Tr0.7373 16.91 0.324 4.06% 45.7 PPM 18.3 um Mn KB1-HR-Tr0.3834

S 16 0.32% XRF 1 S  KA1-HR-Tr 0.5014 15.9 0.32 4.76% 30.2 PPM 4.7 um

K 19 0.22% XRF 1 K  KA1-HR-Tr 0.3542 8.066 0.216 5.80% 37.3 PPM 12.3 um K  KB1-HR-Tr0.05897

Al 13 0.14% XRF 1 Al KA1-HR-Tr 0.0683 2.025 0.14 14.70% 98.9 PPM 1.53 um Al KB1-HR-Tr/El0.00361

P 15 0.08% XRF 1 P  KA1-HR-Tr0.07136 2.265 0.084 14.60% 54.4 PPM 3.3 um

Pb 82 0.07% XRF 1 Pb LB1-HR-Tr 0.2187 4.838 0.07 13.20% 71.8 PPM 60 um Pb LA1-HR-Tr 0.2797

Sr 38 0.07% XRF 1 Sr KA1-HR-Tr 1.028 19.99 0.0681 4.16% 19.1 PPM 83 um Sr KB1-HR-Tr 0.3274

Zn 30 0.05% XRF 1 Zn KA1-HR-Tr 0.2492 5.664 0.055 9.05% 34.5 PPM 21.5 um Zn KB1-HR-Tr0.01174

Cr 24 0.04% XRF 1 Cr KA1-HR-Tr0.07045 1.617 0.039 17.50% 46.8 PPM 14.6 um Cr KB1-HR-Tr0.00839

As 33 59 PPM XRF 1 As KA1-HR-Tr0.2797 0.9654 0.006 9.10% 32.2 PPM 37 um As KB1-HR-Tr-0.01348

Zr 40 53 PPM XRF 1 Zr KA1-HR-Tr 0.3274 1.893 0.005 11.10% 20.5 PPM 112 um Zr KB1-HR-Tr0.04144
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Raw Data 2 – Sheet 2 

 

 

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

600.5 49.3 0.64% 231.0 PPM29.5 um Fe LA1-HR 0.01468 67.40% 0.66 um 50.37

179.4 44.9 1.18% 402.2 PPM20.5 um 44.4

2.79

0.01201 0.025 1415% 0.25% 2.63 um 0.902

0.9328 0.097 15.40% 422.9 PPM23.7 um Mn LA1-HR 0.00627 41.30% 0.54 um 0.324

0.32

1.343 0.33 48.80% 425.5 PPM15.3 um 0.216

0.1069 0.81 328% 0.86% 1.72 um 0.14

0.084

5.406 0.094 9.10% 71.5 PPM 37 um Pb MA1-HR-Tr0.00681 0.2162 0.026 239% 148.6 PPM4.9 um 0.07

4.703 0.064 11.10% 93.4 PPM 114 um Sr LA1-HR 0.01128 0.3175 0.052 117% 159.4 PPM2.53 um 0.0681

0.2668 0.015 382% 221.2 PPM28.4 um Zn LA1-HR-Tr0.00971 0.2694 0.099 82.90% 0.62 um 0.055

0.05603 0.007 329% 328.4 PPM18.7 um Cr LA1-HR -0.00019 0.42 um 0.039

-0.2982 -0.009 147.3 PPM49 um As LA1-HR 0.2496 0.4601 0.13 17.30% 709.8 PPM1.10 um 0.006

0.7507 0.012 230% 115.3 PPM155 um Zr LA1-HR -0.00734 -0.233 -0.027 155.9 PPM3.4 um 0.005

Desulp(2nd)pdspffgraph

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 29.50% XRF 1 Fe KA1-HR-Tr 134.4 2928 29.5 0.28% 22.9 PPM 51 um Fe KB1-HR-Tr 23.84

Ca 20 13.98% XRF 1 Ca KA1-HR-Tr 22.89 502.2 14 0.68% 20.2 PPM 25.8 um Ca KB1-HR-Tr 2.775

Mg 12 0.88% XRF 1 Mg KA1-HR-Tr0.8237 21.16 0.88 3.71% 62.6 PPM 1.76 um

Si 14 0.84% XRF 1 Si KA1-HR-Tr 0.6411 18.08 0.844 4.18% 42.7 PPM 3.9 um Si KB1-HR-Tr/El-0.00455

Cl 17 0.53% XRF 1 Cl KA1-HR-Tr 0.4772 14.35 0.53 5.08% 37.3 PPM 10.9 um

Mn 25 0.40% XRF 1 Mn KA1-HR-Tr 1.396 30.38 0.399 2.94% 24.4 PPM 41 um Mn KB1-HR-Tr0.5041

Na 11 0.39% XRF 1 Na KA1-HR-Tr0.1003 3.45 0.39 11.10% 132.2 PPM1.12 um

K 19 0.36% XRF 1 K  KA1-HR-Tr 0.6222 13.43 0.362 4.25% 16.8 PPM 19.8 um K  KB1-HR-Tr0.08301

Al 13 0.27% XRF 1 Al KA1-HR-Tr 0.1841 5.173 0.27 8.09% 47.0 PPM 2.60 um Al KB1-HR-Tr/El0.0041

S 16 0.20% XRF 1 S  KA1-HR-Tr 0.3149 9.474 0.2 6.38% 21.4 PPM 7.8 um

Ti 22 0.15% XRF 1 Ti KA1-HR-Tr 0.2134 4.77 0.15 8.62% 40.2 PPM 20.1 um Ti KB1-HR-Tr0.05276

Zn 30 0.06% XRF 1 Zn KA1-HR-Tr 0.4075 8.777 0.062 7.49% 24.7 PPM 37 um Zn KB1-HR-Tr0.04759

V 23 0.06% XRF 1 V  KA1-HR-Tr 0.112 2.411 0.056 15.80% 41.1 PPM 25.6 um

Sr 38 0.03% XRF 1 Sr KA1-HR-Tr 0.6425 11.84 0.028 8.09% 15.9 PPM 141 um Sr KB1-HR-Tr 0.5039

Cu 29 0.02% XRF 1 Cu KA1-HR-Tr0.1263 2.722 0.024 18.00% 27.0 PPM 30 um Cu KB1-HR-Tr0.00339

As 33 0.02% XRF 1 As KA1-HR-Tr0.2349 4.925 0.022 14.20% 20.0 PPM 63 um As KB1-HR-Tr-0.02283

Zr 40 0.01% XRF 1 Zr KA1-HR-Tr 0.5039 5.573 0.011 11.00% 15.5 PPM 190 um Zr KB1-HR-Tr 0.2785

100%

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

519.7 28.4 0.67% 140.3 PPM64 um Fe LA1-HR 0.01122 77.10% 1.47 um 29.5

60.88 14 1.97% 151.7 PPM32 um 14

0.88

-0.1282 -0.23 0.16% 4.4 um 0.844

0.53

0.7197 0.05 14.20% 226.6 PPM53 um Mn LA1-HR 0.00269 157% 1.21 um 0.399

0.39

1.792 0.44 34.20% 162.0 PPM24.5 um 0.362

0.1152 0.65 311% 0.47% 2.92 um 0.27

0.2

0.4506 0.091 74.90% 394.2 PPM25.3 um 0.15

1.025 0.041 139% 160.3 PPM48 um Zn LA1-HR-Tr0.01492 0.1981 0.052 66.90% 1.05 um 0.062

0.056

4.093 0.038 11.00% 77.2 PPM 192 um Sr LA1-HR 0.00417 0.08573 0.015 149% 118.6 PPM4.3 um 0.028

0.07299 0.003 1732% 172.0 PPM40 um Cu LA1-HR 0.00438 0.1565 0.08 123% 0.89 um 0.024

-0.4786 -0.01 114.1 PPM84 um As LA1-HR 0.09781 -1.151 -0.27 33.20% 404.6 PPM1.86 um 0.022

4.782 0.049 22.30% 92.3 PPM 262 um Zr LA1-HR 0.00151 0.0454 0.006 992% 81.8 PPM 5.7 um 0.011
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Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 64.99% XRF 1 Fe KA1-HR-Tr 134.4 5051 64.99 0.28% 46.4 PPM 25.1 um Fe KB1-HR-Tr 23.84

Ca 20 25.27% XRF 1 Ca KA1-HR-Tr 22.89 866.3 25.3 0.68% 42.4 PPM 11.6 um Ca KB1-HR-Tr 2.775

Mg 12 2.43% XRF 1 Mg KA1-HR-Tr0.8237 36.49 2.43 3.71% 136.2 PPM0.79 um

Si 14 1.92% XRF 1 Si KA1-HR-Tr 0.6411 31.19 1.92 4.18% 92.4 PPM 1.73 um Si KB1-HR-Tr/El-0.00455

Na 11 1.16% XRF 1 Na KA1-HR-Tr0.1003 5.909 1.2 11.10% 294.8 PPM0.51 um

Cl 17 0.92% XRF 1 Cl KA1-HR-Tr 0.4772 24.76 0.923 5.08% 80.5 PPM 4.9 um

Mn 25 0.85% XRF 1 Mn KA1-HR-Tr 1.396 52.41 0.849 2.94% 48.8 PPM 20.0 um Mn KB1-HR-Tr0.5041

Al 13 0.68% XRF 1 Al KA1-HR-Tr 0.1841 8.923 0.68 8.09% 101.8 PPM1.17 um Al KB1-HR-Tr/El0.0041

K 19 0.66% XRF 1 K  KA1-HR-Tr 0.6222 23.16 0.663 4.25% 35.7 PPM 8.9 um K  KB1-HR-Tr0.08301

S 16 0.37% XRF 1 S  KA1-HR-Tr 0.3149 16.34 0.37 6.38% 46.4 PPM 3.5 um

Ti 22 0.28% XRF 1 Ti KA1-HR-Tr 0.2134 8.229 0.28 8.62% 78.6 PPM 9.9 um Ti KB1-HR-Tr0.05276

Zn 30 0.16% XRF 1 Zn KA1-HR-Tr 0.4075 15.14 0.16 7.49% 52.6 PPM 16.7 um Zn KB1-HR-Tr0.04759

V 23 0.11% XRF 1 V  KA1-HR-Tr 0.112 4.16 0.11 15.80% 81.4 PPM 12.6 um

Sr 38 0.08% XRF 1 Sr KA1-HR-Tr 0.6425 20.43 0.075 8.09% 34.0 PPM 64 um Sr KB1-HR-Tr 0.5039

Cu 29 0.06% XRF 1 Cu KA1-HR-Tr0.1263 4.695 0.061 18.00% 57.6 PPM 13.9 um Cu KB1-HR-Tr0.00339

As 33 0.06% XRF 1 As KA1-HR-Tr0.2349 8.496 0.056 14.20% 42.6 PPM 28.4 um As KB1-HR-Tr-0.02283

Zr 40 0.03% XRF 1 Zr KA1-HR-Tr 0.5039 8.261 0.025 11.00% 34.5 PPM 86 um Zr KB1-HR-Tr 0.2785

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

896.4 65.6 0.67% 285.3 PPM32 um Fe LA1-HR 0.01122 77.10% 0.73 um 64.99

105 25.8 1.97% 317.5 PPM14.6 um 25.3

2.43

-0.2212 -0.51 0.34% 1.99 um 1.92

1.2

0.923

-0.3777 -0.033 14.20% 504.0 PPM26.0 um Mn LA1-HR 0.00269 157% 0.61 um 0.849

0.1988 1.6 311% 1.01% 1.31 um 0.68

3.09 0.8 34.20% 342.6 PPM11.0 um 0.663

0.37

0.813 0.18 74.90% 797.1 PPM12.5 um 0.28

1.768 0.11 139% 342.1 PPM21.9 um Zn LA1-HR-Tr0.01492 0.1084 0.043 66.90% 0.48 um 0.16

0.11

6.371 0.094 11.00% 171.2 PPM87 um Sr LA1-HR 0.00417 0.1449 0.026 149% 261.3 PPM1.91 um 0.075

0.1259 0.009 1732% 366.7 PPM18.1 um Cu LA1-HR 0.00438 0.2699 0.21 123% 0.40 um 0.061

-0.8256 -0.027 243.6 PPM38 um As LA1-HR 0.09781 -3.847 -1.2 33.20% 998.0 PPM0.84 um 0.056

8.248 0.14 22.30% 197.4 PPM119 um Zr LA1-HR 0.00151 0.07831 0.01 992% 177.5 PPM2.53 um 0.025
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Desulpbest.raw

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Ca 20 30.95% XRF 1 Ca KA1-HR-Tr 47.9 1051 30.95 0.47% 35.8 PPM 25.3 um Ca KB1-HR-Tr 5.787

Fe 26 30.07% XRF 1 Fe KA1-HR-Tr 106.1 2312 30.07 0.32% 29.7 PPM 35 um Fe KB1-HR-Tr 19.51

Mg 12 1.48% XRF 1 Mg KA1-HR-Tr 1.252 32.19 1.48 2.98% 73.4 PPM 1.73 um

S 16 1.22% XRF 1 S  KA1-HR-Tr 2.008 60.42 1.22 2.35% 29.5 PPM 7.7 um

Si 14 0.88% XRF 1 Si KA1-HR-Tr 0.648 18.27 0.876 4.06% 3.8 um Si KB1-HR-Tr/El0.01712

Mn 25 0.75% XRF 1 Mn KA1-HR-Tr 2.018 43.92 0.752 2.36% 32.7 PPM 27.9 um Mn KB1-HR-Tr 0.613

Cl 17 0.41% XRF 1 Cl KA1-HR-Tr 0.3878 11.67 0.413 5.81% 53.2 PPM 10.4 um

Al 13 0.32% XRF 1 Al KA1-HR-Tr 0.2072 5.822 0.32 7.70% 68.0 PPM 2.55 um Al KB1-HR-Tr/El0.02315

Na 11 0.31% XRF 1 Na KA1-HR-Tr0.06961 2.407 0.31 12.40% 1.10 um

Ti 22 0.26% XRF 1 Ti KA1-HR-Tr 0.2977 6.655 0.26 6.50% 52.0 PPM 13.9 um Ti KB1-HR-Tr0.04862

K 19 0.16% XRF 1 K  KA1-HR-Tr 0.2657 5.734 0.16 6.71% 22.5 PPM 19.0 um K  KB1-HR-Tr0.03373

Zn 30 0.05% XRF 1 Zn KA1-HR-Tr 0.2949 6.353 0.05 8.71% 26.2 PPM 35 um Zn KB1-HR-Tr0.01103

P 15 0.04% XRF 1 P  KA1-HR-Tr0.03471 1.044 0.035 24.20% 35.9 PPM 5.4 um

Sr 38 0.03% XRF 1 Sr KA1-HR-Tr 0.6512 12 0.032 6.38% 14.4 PPM 138 um Sr KB1-HR-Tr 0.3153

Zr 40 58 PPM XRF 1 Zr KA1-HR-Tr 0.3153 2.613 0.006 12.80% 14.4 PPM 187 um Zr KB1-HR-Tr0.06836

100%

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

126.9 31.4 1.36% 253.0 PPM32 um 30.95

425.3 30.6 0.74% 182.6 PPM44 um Fe LA1-HR 0.01569 26.10% 1.00 um 30.07

1.48

1.22

0.4827 0.88 92.20% 0.16% 4.4 um 0.876

6.768 0.623 4.73% 301.5 PPM36 um Mn LA1-HR 0.00292 151% 0.82 um 0.752

0.413

0.6507 3.9 21.50% 2.87 um 0.32

0.31

1.087 0.29 69.80% 524.8 PPM17.5 um 0.26

0.728 0.18 72.40% 267.8 PPM23.7 um 0.16

0.2375 0.011 462% 160.9 PPM47 um Zn LA1-HR-Tr0.01748 0.4123 0.12 61.70% 1.02 um 0.05

0.035

3.491 0.037 12.80% 68.8 PPM 189 um Sr LA1-HR 0.00917 0.2328 0.038 144% 110.1 PPM4.2 um 0.032

1.174 0.014 158% 82.3 PPM 257 um Zr LA1-HR -0.00062 -0.01857 -0.002 101.9 PPM5.6 um 0.006

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 46.81% XRF 1 Fe KA1-HR-Tr 106.1 3157 46.81 0.32% 43.1 PPM 23.5 um Fe KB1-HR-Tr 19.51

Ca 20 43.78% XRF 1 Ca KA1-HR-Tr 47.9 1435 43.78 0.47% 52.9 PPM 16.3 um Ca KB1-HR-Tr 5.787

Mg 12 2.63% XRF 1 Mg KA1-HR-Tr 1.252 43.96 2.63 2.98% 110.0 PPM1.11 um

S 16 1.70% XRF 1 S  KA1-HR-Tr 2.008 82.52 1.7 2.35% 44.5 PPM 4.9 um

Si 14 1.39% XRF 1 Si KA1-HR-Tr 0.648 24.96 1.39 4.06% 2.43 um Si KB1-HR-Tr/El0.01712

Mn 25 1.17% XRF 1 Mn KA1-HR-Tr 2.018 59.98 1.17 2.36% 47.3 PPM 18.8 um Mn KB1-HR-Tr 0.613

Na 11 0.58% XRF 1 Na KA1-HR-Tr0.06961 3.276 0.58 12.40% 0.71 um

Cl 17 0.56% XRF 1 Cl KA1-HR-Tr 0.3878 15.93 0.561 5.81% 79.9 PPM 6.6 um

Al 13 0.55% XRF 1 Al KA1-HR-Tr 0.2072 7.952 0.55 7.70% 102.5 PPM1.63 um Al KB1-HR-Tr/El0.02315

Ti 22 0.40% XRF 1 Ti KA1-HR-Tr 0.2977 9.089 0.4 6.50% 74.4 PPM 9.3 um Ti KB1-HR-Tr0.04862

K 19 0.22% XRF 1 K  KA1-HR-Tr 0.2657 7.831 0.22 6.71% 33.6 PPM 12.2 um K  KB1-HR-Tr0.03373

Zn 30 0.08% XRF 1 Zn KA1-HR-Tr 0.2949 8.676 0.083 8.71% 39.1 PPM 22.9 um Zn KB1-HR-Tr0.01103

Sr 38 0.05% XRF 1 Sr KA1-HR-Tr 0.6512 16.39 0.055 6.38% 21.5 PPM 89 um Sr KB1-HR-Tr 0.3153

P 15 0.05% XRF 1 P  KA1-HR-Tr0.03471 1.426 0.053 24.20% 54.2 PPM 3.4 um

Zr 40 85 PPM XRF 1 Zr KA1-HR-Tr 0.3153 3.092 0.009 12.80% 22.1 PPM 120 um Zr KB1-HR-Tr0.06836



100 
 

 

Raw Data 2 – Sheet 4 

 

 

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

580.8 48 0.74% 265.8 PPM29.7 um Fe LA1-HR 0.01569 26.10% 0.67 um 46.81

173.4 44.4 1.36% 372.0 PPM20.4 um 43.78

2.63

1.7

0.6592 1.4 92.20% 0.24% 2.79 um 1.39

8.652 0.905 4.73% 461.8 PPM24.3 um Mn LA1-HR 0.00292 151% 0.55 um 1.17

0.58

0.561

0.8887 6.6 21.50% 1.83 um 0.55

1.484 0.44 69.80% 750.8 PPM11.7 um 0.4

0.9942 0.25 72.40% 398.5 PPM15.2 um 0.22

0.3244 0.018 462% 240.3 PPM30 um Zn LA1-HR-Tr0.01748 0.4959 0.18 61.70% 0.66 um 0.083

4.817 0.064 12.80% 104.4 PPM122 um Sr LA1-HR 0.00917 0.3162 0.051 144% 168.0 PPM2.67 um 0.055

0.053

1.603 0.024 158% 123.1 PPM166 um Zr LA1-HR -0.00062 -0.02536 -0.003 153.8 PPM3.6 um 0.009

Desulpfallout(best)pds500ym

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 37.36% XRF 1 Fe KA1-HR-Tr 178.3 3887 37.36 0.25% 24.0 PPM 50 um Fe KB1-HR-Tr 31.55

Ca 20 10.14% XRF 1 Ca KA1-HR-Tr 16.82 369.1 10.1 0.80% 19.2 PPM 21.0 um Ca KB1-HR-Tr 2.12

Mn 25 0.67% XRF 1 Mn KA1-HR-Tr 2.52 54.81 0.669 2.15% 26.0 PPM 40 um Mn KB1-HR-Tr0.7929

Mg 12 0.51% XRF 1 Mg KA1-HR-Tr0.4385 11.27 0.511 5.05% 43.0 PPM 1.34 um

Si 14 0.43% XRF 1 Si KA1-HR-Tr 0.3117 8.792 0.43 6.15% 48.4 PPM 3.00 um Si KB1-HR-Tr/El0.00438

S 16 0.37% XRF 1 S  KA1-HR-Tr 0.5726 17.22 0.372 4.64% 27.9 PPM 6.2 um

Cl 17 0.33% XRF 1 Cl KA1-HR-Tr 0.2908 8.748 0.33 17.40% 47.1 PPM 8.5 um

Ti 22 0.23% XRF 1 Ti KA1-HR-Tr 0.3662 8.185 0.23 6.06% 33.5 PPM 19.9 um Ti KB1-HR-Tr0.06466

Na 11 0.16% XRF 1 Na KA1-HR-Tr0.03795 1.314 0.16 16.80% 0.85 um

Al 13 0.11% XRF 1 Al KA1-HR-Tr 0.0717 2.015 0.11 14.70% 62.1 PPM 2.01 um Al KB1-HR-Tr/El0.01244

P 15 0.05% XRF 1 P  KA1-HR-Tr0.04508 1.355 0.048 20.10% 32.2 PPM 4.3 um

Cr 24 0.02% XRF 1 Cr KA1-HR-Tr0.09128 1.519 0.024 18.80% 27.2 PPM 32 um Cr KB1-HR-Tr 0.0231

Zn 30 0.02% XRF 1 Zn KA1-HR-Tr 0.1395 3.004 0.023 17.30% 26.4 PPM 28.0 um Zn KB1-HR-Tr0.01334

Zr 40 0.01% XRF 1 Zr KA1-HR-Tr 0.4694 6.69 0.015 9.26% 13.1 PPM 144 um Zr KB1-HR-Tr 0.1602

Sr 38 0.01% XRF 1 Sr KA1-HR-Tr 0.293 5.4 0.014 12.80% 13.5 PPM 107 um Sr KB1-HR-Tr 0.2813

100%

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

687.7 36.57 0.59% 150.4 PPM63 um Fe LA1-HR 0.00656 101% 1.44 um 37.36

46.52 10.5 2.26% 146.6 PPM26.3 um 10.1

4.009 0.26 10.80% 235.1 PPM52 um Mn LA1-HR 0.00169 198% 1.23 um 0.669

0.511

0.1235 0.23 354% 0.18% 3.4 um 0.43

0.372

0.33

0.9698 0.18 62.60% 336.4 PPM25.1 um 0.23

0.16

0.3495 2.1 73.20% 2.26 um 0.11

0.048

-0.1803 -0.015 70.90% 165.7 PPM41 um Cr LA1-HR 0.00173 196% 0.98 um 0.024

0.2874 0.013 171% 163.0 PPM37 um Zn LA1-HR-Tr0.00782 0.1569 0.045 92.30% 0.80 um 0.023

2.751 0.032 29.30% 80.2 PPM 199 um Zr LA1-HR -0.00288 -0.08677 -0.012 90.5 PPM 4.5 um 0.015

-0.5303 -0.006 36.60% 69.1 PPM 146 um Sr LA1-HR 0.00179 0.03536 0.006 828% 130.1 PPM3.3 um 0.014
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Raw Data 2 – Sheet 5 

 

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 76.95% XRF 1 Fe KA1-HR-Tr 178.3 6369 76.95 0.25% 46.1 PPM 26.4 um Fe KB1-HR-Tr 31.55

Ca 20 16.86% XRF 1 Ca KA1-HR-Tr 16.82 604.7 16.9 0.80% 37.8 PPM 10.1 um Ca KB1-HR-Tr 2.12

Mg 12 1.32% XRF 1 Mg KA1-HR-Tr0.4385 18.47 1.32 5.05% 86.9 PPM 0.65 um

Mn 25 1.32% XRF 1 Mn KA1-HR-Tr 2.52 89.81 1.32 2.15% 49.6 PPM 21.1 um Mn KB1-HR-Tr0.7929

Si 14 0.93% XRF 1 Si KA1-HR-Tr 0.3117 14.41 0.93 6.15% 98.3 PPM 1.44 um Si KB1-HR-Tr/El0.00438

S 16 0.65% XRF 1 S  KA1-HR-Tr 0.5726 28.22 0.652 4.64% 56.7 PPM 2.96 um

Cl 17 0.55% XRF 1 Cl KA1-HR-Tr 0.2908 14.33 0.55 17.40% 95.3 PPM 4.1 um

Na 11 0.45% XRF 1 Na KA1-HR-Tr0.03795 2.142 0.45 16.80% 0.41 um

Ti 22 0.39% XRF 1 Ti KA1-HR-Tr 0.3662 13.41 0.39 6.06% 62.1 PPM 10.4 um Ti KB1-HR-Tr0.06466

Al 13 0.27% XRF 1 Al KA1-HR-Tr 0.0717 3.302 0.27 14.70% 125.9 PPM0.97 um Al KB1-HR-Tr/El0.01244

P 15 0.09% XRF 1 P  KA1-HR-Tr0.04508 2.22 0.094 20.10% 65.6 PPM 2.07 um

Zn 30 0.06% XRF 1 Zn KA1-HR-Tr 0.1395 4.922 0.055 17.30% 53.3 PPM 13.6 um Zn KB1-HR-Tr0.01334

Cr 24 0.04% XRF 1 Cr KA1-HR-Tr0.09128 2.544 0.04 18.80% 51.3 PPM 16.8 um Cr KB1-HR-Tr 0.0231

Sr 38 0.04% XRF 1 Sr KA1-HR-Tr 0.293 8.849 0.035 12.80% 27.3 PPM 52 um Sr KB1-HR-Tr 0.2813

Zr 40 0.03% XRF 1 Zr KA1-HR-Tr 0.4694 10.48 0.035 9.26% 27.3 PPM 70 um Zr KB1-HR-Tr 0.1602

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

1127 78.95 0.59% 290.6 PPM33 um Fe LA1-HR 0.00656 101% 0.76 um 76.95

76.22 17.8 2.26% 287.3 PPM12.7 um 16.9

1.32

4.978 0.4 10.80% 491.8 PPM27.4 um Mn LA1-HR 0.00169 198% 0.65 um 1.32

0.2024 0.49 354% 0.36% 1.65 um 0.93

0.652

0.55

0.45

1.648 0.32 62.60% 637.4 PPM13.2 um 0.39

0.5727 5 73.20% 1.09 um 0.27

0.094

0.4709 0.03 171% 328.5 PPM17.8 um Zn LA1-HR-Tr0.00782 0.1807 0.078 92.30% 0.39 um 0.055

-0.3408 -0.03 70.90% 315.7 PPM21.6 um Cr LA1-HR 0.00173 196% 0.52 um 0.04

-2.371 -0.038 36.60% 147.2 PPM71 um Sr LA1-HR 0.00179 0.05617 0.01 828% 267.1 PPM1.59 um 0.035

4.507 0.081 29.30% 161.8 PPM96 um Zr LA1-HR -0.00288 -0.1422 -0.019 183.8 PPM2.14 um 0.035

Desulpfallout.bets.ps.1000ym -Errors (thus will repeat)

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 14.46% XRF 1 Fe KA1-HR-Tr 92.86 2024 0.34% 106 um Fe KB1-HR-Tr 17.5

Ca 20 5.94% XRF 1 Ca KA1-HR-Tr 9.199 201.8 1.08% 51 um Ca KB1-HR-Tr 1.174

Mn 25 0.66% XRF 1 Mn KA1-HR-Tr 3.179 69.17 1.91% 85 um Mn KB1-HR-Tr0.8099

Cl 17 0.47% XRF 1 Cl KA1-HR-Tr 0.4161 12.52 14.10% 21.6 um

Si 14 0.30% XRF 1 Si KA1-HR-Tr 0.2632 7.422 6.75% 7.7 um Si KB1-HR-Tr/El0.00397

Ti 22 0.25% XRF 1 Ti KA1-HR-Tr 0.3874 8.659 6.27% 43 um Ti KB1-HR-Tr 0.1689

S 16 0.23% XRF 1 S  KA1-HR-Tr 0.3648 10.98 5.95% 15.7 um

Mg 12 0.21% XRF 1 Mg KA1-HR-Tr0.2709 6.964 6.73% 3.5 um

Al 13 0.12% XRF 1 Al KA1-HR-Tr 0.1038 2.918 11.50% 5.2 um Al KB1-HR-Tr/El0.0016

P 15 0.03% XRF 1 P  KA1-HR-Tr0.03617 1.088 23.10% 11.0 um

Zn 30 0.02% XRF 1 Zn KA1-HR-Tr 0.186 4.006 16.90% 72 um Zn KB1-HR-Tr0.01967

Sr 38 0.02% XRF 1 Sr KA1-HR-Tr 0.276 5.087 18.90% 276 um Sr KB1-HR-Tr 0.1174

100%
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Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

0.79% 127 um Fe LA1-HR 0.00231 170% 2.93 um

3.06% 64 um

4.49% 110 um Mn LA1-HR 0.00443 123% 2.56 um

390% 8.9 um

13.40% 54 um

719% 5.9 um

413% 95 um Zn LA1-HR-Tr0.00485 117% 2.06 um

118% 0.38 mm Sr LA1-HR 0.00284 535% 8.5 um

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 72.82% XRF 1 Fe KA1-HR-Tr 92.86 6035 72.82 0.34% 55.4 PPM 26.5 um Fe KB1-HR-Tr 17.5

Ca 20 17.00% XRF 1 Ca KA1-HR-Tr 9.199 601.8 17 1.08% 35.4 PPM 10.2 um Ca KB1-HR-Tr 1.174

Mn 25 3.07% XRF 1 Mn KA1-HR-Tr 3.179 206.3 3.07 1.91% 56.3 PPM 21.1 um Mn KB1-HR-Tr0.8099

Mg 12 1.46% XRF 1 Mg KA1-HR-Tr0.2709 20.77 1.5 6.73% 120.1 PPM0.68 um

Cl 17 1.43% XRF 1 Cl KA1-HR-Tr 0.4161 37.33 1.4 14.10% 97.2 PPM 4.2 um

Si 14 1.41% XRF 1 Si KA1-HR-Tr 0.2632 22.13 1.4 6.75% 97.4 PPM 1.50 um Si KB1-HR-Tr/El0.00397

Ti 22 0.75% XRF 1 Ti KA1-HR-Tr 0.3874 25.82 0.75 6.27% 84.0 PPM 10.5 um Ti KB1-HR-Tr 0.1689

S 16 0.75% XRF 1 S  KA1-HR-Tr 0.3648 32.73 0.75 5.95% 52.8 PPM 3.0 um

Al 13 0.69% XRF 1 Al KA1-HR-Tr 0.1038 8.702 0.69 11.50% 119.9 PPM1.01 um Al KB1-HR-Tr/El0.0016

P 15 0.14% XRF 1 P  KA1-HR-Tr0.03617 3.245 0.14 23.10% 62.3 PPM 2.13 um

Zn 30 0.13% XRF 1 Zn KA1-HR-Tr 0.186 11.95 0.13 16.90% 70.6 PPM 14.2 um Zn KB1-HR-Tr0.01967

Sr 38 0.06% XRF 1 Sr KA1-HR-Tr 0.276 15.17 0.059 18.90% 39.9 PPM 54 um Sr KB1-HR-Tr 0.1174

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

1138 82.1 0.79% 375.3 PPM31 um Fe LA1-HR 0.00231 170% 0.72 um 72.82

76.78 18.2 3.06% 294.3 PPM12.7 um 17

12.65 1.04 4.49% 621.9 PPM27.5 um Mn LA1-HR 0.00443 123% 0.65 um 3.07

1.5

1.4

0.3335 0.8 390% 0.36% 1.72 um 1.4

11.26 2.2 13.40% 761.5 PPM13.3 um 0.75

0.75

0.1344 1.2 719% 1.01% 1.13 um 0.69

0.14

1.264 0.08 413% 461.8 PPM18.6 um Zn LA1-HR-Tr0.00485 0.1848 0.078 117% 0.40 um 0.13

6.011 0.095 118% 171.6 PPM74 um Sr LA1-HR 0.00284 0.1704 0.031 535% 275.2 PPM1.65 um 0.059

Repeated run on same sample

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 14.64% XRF 1 Fe KA1-HR-Tr 93.23 2032 0.34% 105 um Fe KB1-HR-Tr 17.22

Ca 20 6.07% XRF 1 Ca KA1-HR-Tr 9.391 206 1.07% 50 um Ca KB1-HR-Tr 1.153

Mn 25 0.64% XRF 1 Mn KA1-HR-Tr 3.093 67.3 1.93% 84 um Mn KB1-HR-Tr0.7712

Cl 17 0.56% XRF 1 Cl KA1-HR-Tr 0.4957 14.91 5.10% 21.4 um

Si 14 0.34% XRF 1 Si KA1-HR-Tr 0.2953 8.328 6.33% 7.7 um Si KB1-HR-Tr/El0.00167

S 16 0.25% XRF 1 S  KA1-HR-Tr 0.401 12.06 5.68% 15.7 um

Mg 12 0.23% XRF 1 Mg KA1-HR-Tr0.2997 7.704 6.25% 3.4 um

Ti 22 0.20% XRF 1 Ti KA1-HR-Tr 0.3182 7.112 7.30% 42 um Ti KB1-HR-Tr 0.1501

Al 13 0.11% XRF 1 Al KA1-HR-Tr0.09566 2.689 11.80% 5.2 um Al KB1-HR-Tr/El0.00324

Zn 30 0.03% XRF 1 Zn KA1-HR-Tr 0.2304 4.963 14.10% 71 um Zn KB1-HR-Tr0.04533

100%
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Raw Data 2 – Sheet 6 

 

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

0.80% 126 um Fe LA1-HR 0.00516 114% 2.90 um

3.09% 63 um

4.62% 109 um Mn LA1-HR 0.00216 176% 2.53 um

355% 8.8 um

15.10% 53 um

368% 5.8 um

74.30% 94 um Zn LA1-HR-Tr0.00744 94.60% 2.04 um

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 72.44% XRF 1 Fe KA1-HR-Tr 93.23 5999 72.44 0.34% 54.6 PPM 26.5 um Fe KB1-HR-Tr 17.22

Ca 20 17.25% XRF 1 Ca KA1-HR-Tr 9.391 608.2 17.3 1.07% 36.4 PPM 10.2 um Ca KB1-HR-Tr 1.153

Mn 25 2.96% XRF 1 Mn KA1-HR-Tr 3.093 198.7 2.96 1.93% 53.7 PPM 21.2 um Mn KB1-HR-Tr0.7712

Cl 17 1.69% XRF 1 Cl KA1-HR-Tr 0.4957 44.02 1.69 5.10% 100.4 PPM4.2 um

Mg 12 1.59% XRF 1 Mg KA1-HR-Tr0.2997 22.74 1.6 6.25% 102.1 PPM0.68 um

Si 14 1.56% XRF 1 Si KA1-HR-Tr 0.2953 24.59 1.6 6.33% 96.4 PPM 1.51 um Si KB1-HR-Tr/El0.00167

S 16 0.82% XRF 1 S  KA1-HR-Tr 0.401 35.61 0.816 5.68% 55.0 PPM 3.1 um

Al 13 0.63% XRF 1 Al KA1-HR-Tr0.09566 7.937 0.63 11.80% 105.0 PPM1.02 um Al KB1-HR-Tr/El0.00324

Ti 22 0.62% XRF 1 Ti KA1-HR-Tr 0.3182 21 0.62 7.30% 90.0 PPM 10.5 um Ti KB1-HR-Tr 0.1501

Zn 30 0.16% XRF 1 Zn KA1-HR-Tr 0.2304 14.65 0.16 14.10% 71.3 PPM 14.3 um Zn KB1-HR-Tr0.04533

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

1108 79.9 0.80% 382.0 PPM31 um Fe LA1-HR 0.00516 114% 0.73 um 72.44

74.68 17.8 3.09% 300.6 PPM12.8 um 17.3

10.28 0.844 4.62% 617.1 PPM27.5 um Mn LA1-HR 0.00216 176% 0.65 um 2.96

1.69

1.6

0.1391 0.33 355% 0.36% 1.73 um 1.6

0.816

0.2688 2.3 368% 1.00% 1.14 um 0.63

9.907 2 15.10% 794.7 PPM13.3 um 0.62

2.883 0.18 74.30% 471.1 PPM18.8 um Zn LA1-HR-Tr0.00744 0.4629 0.19 94.60% 0.41 um 0.16

Desulpfallout(best)pds355ym

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 32.54% XRF 1 Fe KA1-HR-Tr 160.9 3507 32.54 0.26% 21.5 PPM 55 um Fe KB1-HR-Tr 28.77

Ca 20 9.98% XRF 1 Ca KA1-HR-Tr 16.72 366.7 9.98 0.80% 17.4 PPM 23.7 um Ca KB1-HR-Tr 2.084

Mn 25 0.76% XRF 1 Mn KA1-HR-Tr 2.937 63.9 0.763 1.97% 22.9 PPM 44 um Mn KB1-HR-Tr0.8308

Mg 12 0.50% XRF 1 Mg KA1-HR-Tr0.4552 11.7 0.498 4.99% 45.6 PPM 1.54 um

Si 14 0.44% XRF 1 Si KA1-HR-Tr 0.3322 9.37 0.44 5.93% 42.9 PPM 3.4 um Si KB1-HR-Tr/El0.0093

S 16 0.40% XRF 1 S  KA1-HR-Tr 0.6268 18.86 0.403 4.36% 22.6 PPM 7.0 um

Cl 17 0.38% XRF 1 Cl KA1-HR-Tr 0.341 10.26 0.38 15.60% 40.4 PPM 9.7 um

Ti 22 0.23% XRF 1 Ti KA1-HR-Tr 0.3742 8.366 0.23 6.04% 33.2 PPM 21.6 um Ti KB1-HR-Tr0.06321

Al 13 0.16% XRF 1 Al KA1-HR-Tr 0.1092 3.069 0.16 9.88% 2.30 um Al KB1-HR-Tr/El0.00239

Na 11 0.14% XRF 1 Na KA1-HR-Tr0.04335 1.262 0.14 15.70% 0.98 um

Zn 30 0.14% XRF 1 Zn KA1-HR-Tr 0.9135 19.68 0.144 4.05% 22.4 PPM 32 um Zn KB1-HR-Tr 0.138

V 23 0.05% XRF 1 V  KA1-HR-Tr 0.1152 2.396 0.05 15.50% 34.4 PPM 27.6 um

P 15 0.04% XRF 1 P  KA1-HR-Tr0.04296 1.292 0.044 20.80% 28.5 PPM 4.9 um

K 19 0.04% XRF 1 K  KA1-HR-Tr0.07453 1.609 0.043 14.30% 16.0 PPM 17.7 um K  KB1-HR-Tr0.02662

Sr 38 0.01% XRF 1 Sr KA1-HR-Tr 0.2514 4.634 0.011 14.90% 12.3 PPM 123 um Sr KB1-HR-Tr 0.125

100%
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Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

626.9 32.1 0.61% 136.2 PPM67 um Fe LA1-HR 0.00919 85.20% 1.55 um 32.54

45.72 10.2 2.28% 133.7 PPM29.7 um 9.98

5.567 0.347 4.15% 212.6 PPM57 um Mn LA1-HR 0.00163 202% 1.33 um 0.763

0.498

0.2623 0.48 71.70% 0.16% 3.9 um 0.44

0.403

0.38

0.6214 0.11 63.70% 325.5 PPM27.3 um 0.23

0.0672 0.39 446% 0.40% 2.59 um 0.16

0.14

2.974 0.12 18.70% 147.2 PPM42 um Zn LA1-HR-Tr0.00874 0.1903 0.051 87.40% 0.92 um 0.144

0.05

0.044

0.5746 0.14 30.90% 152.7 PPM22.0 um 0.043

2.146 0.02 78.80% 53.4 PPM 167 um Sr LA1-HR -0.0041 -0.132 -0.023 116.6 PPM3.8 um 0.011

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 74.45% XRF 1 Fe KA1-HR-Tr 160.9 6114 74.45 0.26% 45.4 PPM 26.2 um Fe KB1-HR-Tr 28.77

Ca 20 17.98% XRF 1 Ca KA1-HR-Tr 16.72 639.2 18 0.80% 37.7 PPM 10.3 um Ca KB1-HR-Tr 2.084

Mn 25 1.66% XRF 1 Mn KA1-HR-Tr 2.937 111.4 1.66 1.97% 47.7 PPM 20.9 um Mn KB1-HR-Tr0.8308

Mg 12 1.44% XRF 1 Mg KA1-HR-Tr0.4552 20.4 1.44 4.99% 102.1 PPM0.67 um

Si 14 1.05% XRF 1 Si KA1-HR-Tr 0.3322 16.33 1 5.93% 96.4 PPM 1.48 um Si KB1-HR-Tr/El0.0093

S 16 0.76% XRF 1 S  KA1-HR-Tr 0.6268 32.87 0.755 4.36% 50.7 PPM 3.0 um

Cl 17 0.69% XRF 1 Cl KA1-HR-Tr 0.341 17.88 0.69 15.60% 90.5 PPM 4.2 um

Na 11 0.44% XRF 1 Na KA1-HR-Tr0.04335 2.106 0.44 15.70% 0.43 um

Ti 22 0.43% XRF 1 Ti KA1-HR-Tr 0.3742 14.58 0.43 6.04% 67.3 PPM 10.3 um Ti KB1-HR-Tr0.06321

Al 13 0.43% XRF 1 Al KA1-HR-Tr 0.1092 5.351 0.43 9.88% 0.99 um Al KB1-HR-Tr/El0.00239

Zn 30 0.38% XRF 1 Zn KA1-HR-Tr 0.9135 34.3 0.379 4.05% 49.9 PPM 14.0 um Zn KB1-HR-Tr 0.138

P 15 0.10% XRF 1 P  KA1-HR-Tr0.04296 2.253 0.095 20.80% 64.1 PPM 2.12 um

V 23 0.09% XRF 1 V  KA1-HR-Tr 0.1152 4.2 0.092 15.50% 70.6 PPM 13.2 um

K 19 0.08% XRF 1 K  KA1-HR-Tr0.07453 2.804 0.08 14.30% 35.2 PPM 7.7 um K  KB1-HR-Tr0.02662

Sr 38 0.03% XRF 1 Sr KA1-HR-Tr 0.2514 8.079 0.032 14.90% 27.3 PPM 53 um Sr KB1-HR-Tr 0.125

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

1093 77.5 0.61% 288.8 PPM32 um Fe LA1-HR 0.00919 85.20% 0.75 um 74.45

79.7 18.8 2.28% 288.1 PPM12.9 um 18

7.778 0.638 4.15% 494.1 PPM27.1 um Mn LA1-HR 0.00163 202% 0.64 um 1.66

1.44

0.4572 1.1 71.70% 0.36% 1.70 um 1

0.755

0.69

0.44

1.189 0.23 63.70% 679.6 PPM13.1 um 0.43

0.1172 1 446% 0.91% 1.12 um 0.43

5.184 0.33 18.70% 328.0 PPM18.4 um Zn LA1-HR-Tr0.00874 0.254 0.11 87.40% 0.40 um 0.379

0.095

0.092

1.002 0.26 30.90% 334.9 PPM9.6 um 0.08

3.74 0.059 78.80% 119.2 PPM73 um Sr LA1-HR -0.0041 -0.2315 -0.043 265.5 PPM1.63 um 0.032
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Raw Data 2 – Sheet 7 

 

 

 

Desulpfallout(best)pds 180ym

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 28.65% XRF 1 Fe KA1-HR-Tr 139.1 3031 28.65 0.28% 21.3 PPM 55 um Fe KB1-HR-Tr 25.97

Ca 20 11.70% XRF 1 Ca KA1-HR-Tr 19.69 431.9 11.7 0.74% 16.9 PPM 26.9 um Ca KB1-HR-Tr 2.333

Mn 25 0.80% XRF 1 Mn KA1-HR-Tr 2.979 64.82 0.8 1.95% 22.7 PPM 44 um Mn KB1-HR-Tr0.8869

Cl 17 0.50% XRF 1 Cl KA1-HR-Tr 0.4506 13.55 0.502 5.32% 38.2 PPM 11.1 um

S 16 0.49% XRF 1 S  KA1-HR-Tr 0.7698 23.16 0.488 3.90% 21.1 PPM 8.1 um

Si 14 0.40% XRF 1 Si KA1-HR-Tr 0.3066 8.646 0.4 6.20% 39.9 PPM 4.0 um Si KB1-HR-Tr/El0.00262

Mg 12 0.37% XRF 1 Mg KA1-HR-Tr0.3556 9.141 0.371 5.67% 39.8 PPM 1.76 um

Na 11 0.35% XRF 1 Na KA1-HR-Tr0.09215 3.211 0.35 10.80% 1.13 um

Ti 22 0.27% XRF 1 Ti KA1-HR-Tr 0.4202 9.393 0.271 5.63% 35.0 PPM 22.0 um Ti KB1-HR-Tr 0.1002

Al 13 0.13% XRF 1 Al KA1-HR-Tr0.09547 2.683 0.13 11.80% 44.1 PPM 2.65 um Al KB1-HR-Tr/El0.00113

K 19 0.07% XRF 1 K  KA1-HR-Tr 0.1301 2.807 0.075 10.10% 15.3 PPM 20.2 um K  KB1-HR-Tr0.03894

Zn 30 0.04% XRF 1 Zn KA1-HR-Tr 0.2526 5.441 0.038 10.30% 21.4 PPM 37 um Zn KB1-HR-Tr0.01643

Sr 38 0.02% XRF 1 Sr KA1-HR-Tr 0.3606 6.646 0.015 10.70% 11.2 PPM 141 um Sr KB1-HR-Tr 0.1692

100%

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

566 29.4 0.65% 136.3 PPM68 um Fe LA1-HR 0.00574 108% 1.56 um 28.65

51.17 11.3 2.15% 132.4 PPM34 um 11.7

8.266 0.533 3.98% 210.2 PPM57 um Mn LA1-HR 0.00096 263% 1.33 um 0.8

0.502

0.488

0.07391 0.13 576% 0.15% 4.5 um 0.4

0.371

0.35

2.241 0.43 43.60% 308.7 PPM27.7 um 0.271

0.03171 0.18 874% 0.36% 2.98 um 0.13

0.8404 0.2 57.30% 144.4 PPM25.1 um 0.075

0.354 0.014 348% 134.3 PPM49 um Zn LA1-HR-Tr0.01096 0.07456 0.019 78.00% 1.05 um 0.038

2.906 0.026 22.80% 47.3 PPM 193 um Sr LA1-HR 0.00153 0.0273 0.005 973% 108.3 PPM4.4 um 0.015

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Fe 26 69.42% XRF 1 Fe KA1-HR-Tr 139.1 5496 69.42 0.28% 46.8 PPM 25.2 um Fe KB1-HR-Tr 25.97

Ca 20 22.35% XRF 1 Ca KA1-HR-Tr 19.69 783.3 22.4 0.74% 38.4 PPM 11.1 um Ca KB1-HR-Tr 2.333

Mn 25 1.85% XRF 1 Mn KA1-HR-Tr 2.979 117.6 1.85 1.95% 49.2 PPM 20.2 um Mn KB1-HR-Tr0.8869

Na 11 1.17% XRF 1 Na KA1-HR-Tr0.09215 5.793 1.2 10.80% 0.46 um

Mg 12 1.14% XRF 1 Mg KA1-HR-Tr0.3556 16.58 1.14 5.67% 93.7 PPM 0.72 um

Si 14 0.98% XRF 1 Si KA1-HR-Tr 0.3066 15.68 0.98 6.20% 94.4 PPM 1.61 um Si KB1-HR-Tr/El0.00262

S 16 0.94% XRF 1 S  KA1-HR-Tr 0.7698 42 0.94 3.90% 49.9 PPM 3.3 um

Cl 17 0.92% XRF 1 Cl KA1-HR-Tr 0.4506 24.58 0.923 5.32% 89.6 PPM 4.5 um

Ti 22 0.54% XRF 1 Ti KA1-HR-Tr 0.4202 17.03 0.544 5.63% 73.7 PPM 10.0 um Ti KB1-HR-Tr 0.1002

Al 13 0.38% XRF 1 Al KA1-HR-Tr0.09547 4.866 0.38 11.80% 104.3 PPM1.08 um Al KB1-HR-Tr/El0.00113

K 19 0.15% XRF 1 K  KA1-HR-Tr 0.1301 5.092 0.15 10.10% 35.2 PPM 8.3 um K  KB1-HR-Tr0.03894

Zn 30 0.11% XRF 1 Zn KA1-HR-Tr 0.2526 9.868 0.11 10.30% 49.9 PPM 15.2 um Zn KB1-HR-Tr0.01643

Sr 38 0.05% XRF 1 Sr KA1-HR-Tr 0.3606 12.05 0.046 10.70% 26.3 PPM 58 um Sr KB1-HR-Tr 0.1692
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Raw Data 2 – Sheet 8 

 

 

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

1027 75.3 0.65% 301.7 PPM31 um Fe LA1-HR 0.00574 108% 0.71 um 69.42

92.8 22.3 2.15% 297.7 PPM13.9 um 22.4

12.89 1.11 3.98% 512.8 PPM26.1 um Mn LA1-HR 0.00096 263% 0.61 um 1.85

1.2

1.14

0.134 0.31 576% 0.35% 1.85 um 0.98

0.94

0.923

4.064 0.87 43.60% 650.4 PPM12.6 um 0.544

0.05751 0.49 874% 0.84% 1.21 um 0.38

1.524 0.39 57.30% 331.3 PPM10.3 um 0.15

0.6419 0.04 348% 314.2 PPM20.0 um Zn LA1-HR-Tr0.01096 -0.1207 -0.05 78.00% 0.43 um 0.11

5.269 0.081 22.80% 111.0 PPM79 um Sr LA1-HR 0.00153 0.04825 0.009 973% 259.3 PPM1.77 um 0.046

Desulpfallout(best)pds <180ym

Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Ca 20 39.80% XRF 1 Ca KA1-HR-Tr 60.25 1322 39.8 0.42% 49.4 PPM 22.1 um Ca KB1-HR-Tr 7.322

Fe 26 33.91% XRF 1 Fe KA1-HR-Tr 110.1 2400 33.91 0.31% 36.4 PPM 29.0 um Fe KB1-HR-Tr 19.61

Mg 12 2.60% XRF 1 Mg KA1-HR-Tr 2.007 51.58 2.6 2.35% 108.1 PPM1.53 um

S 16 1.79% XRF 1 S  KA1-HR-Tr 2.96 89.03 1.79 1.91% 28.8 PPM 6.7 um

Si 14 1.46% XRF 1 Si KA1-HR-Tr 1.025 28.92 1.46 3.28% 65.9 PPM 3.3 um Si KB1-HR-Tr/El0.00696

Mn 25 0.81% XRF 1 Mn KA1-HR-Tr 1.985 43.2 0.807 2.39% 42.3 PPM 23.3 um Mn KB1-HR-Tr 0.581

Al 13 0.50% XRF 1 Al KA1-HR-Tr 0.2957 8.312 0.5 6.25% 71.9 PPM 2.23 um Al KB1-HR-Tr/El0.0018

Ti 22 0.23% XRF 1 Ti KA1-HR-Tr 0.242 5.41 0.23 7.07% 51.1 PPM 11.6 um Ti KB1-HR-Tr0.06678

Na 11 0.17% XRF 1 Na KA1-HR-Tr0.03495 1.175 0.17 21.00% 187.0 PPM0.97 um

Cl 17 0.13% XRF 1 Cl KA1-HR-Tr 0.1275 3.836 0.13 10.90% 51.4 PPM 8.9 um

K 19 0.10% XRF 1 K  KA1-HR-Tr 0.1716 3.703 0.1 8.60% 27.4 PPM 16.5 um K  KB1-HR-Tr0.01472

Zn 30 0.05% XRF 1 Zn KA1-HR-Tr 0.3016 6.498 0.054 8.07% 27.5 PPM 31 um Zn KB1-HR-Tr0.05211

P 15 0.04% XRF 1 P  KA1-HR-Tr0.03528 1.061 0.037 24.20% 44.8 PPM 4.7 um

Sr 38 0.04% XRF 1 Sr KA1-HR-Tr 0.682 12.57 0.0367 5.87% 15.6 PPM 122 um Sr KB1-HR-Tr 0.2938

V 23 0.04% XRF 1 V  KA1-HR-Tr0.05228 1.103 0.036 19.10% 46.5 PPM 14.7 um

As 33 0.02% XRF 1 As KA1-HR-Tr 0.165 3.458 0.018 14.50% 20.3 PPM 54 um As KB1-HR-Tr0.08018

Zr 40 57 PPM XRF 1 Zr KA1-HR-Tr 0.2938 2.356 0.006 13.00% 16.0 PPM 165 um Zr KB1-HR-Tr0.07519

100%

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

160.6 41 1.21% 323.7 PPM27.7 um 39.8

427.3 33.5 0.74% 215.0 PPM37 um Fe LA1-HR 0.01226 73.70% 0.83 um 33.91

2.6

1.79

0.1964 0.37 231% 0.24% 3.8 um 1.46

6.642 0.669 4.88% 365.4 PPM30 um Mn LA1-HR 0.00193 186% 0.68 um 0.807

0.05048 0.33 749% 0.79% 2.51 um 0.5

1.287 0.37 16.00% 431.1 PPM14.5 um 0.23

0.17

0.13

0.3177 0.08 160% 359.6 PPM20.5 um 0.1

1.122 0.054 37.70% 172.3 PPM41 um Zn LA1-HR-Tr0.01031 0.2701 0.084 80.40% 0.90 um 0.054

0.037

3.452 0.04 13.00% 76.0 PPM 167 um Sr LA1-HR 0.01922 0.5064 0.081 38.70% 182.5 PPM3.7 um 0.0367

0.036

1.681 0.044 31.30% 118.8 PPM72 um As LA1-HR 0.2722 -0.3029 -0.075 17.90% 754.0 PPM1.62 um 0.018

1.291 0.017 136% 91.5 PPM 228 um Zr LA1-HR -0.00232 -0.06981 -0.009 126.2 PPM4.8 um 0.006
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Formula Z ConcentrationStatus Line 1 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 2 Net int.

orig-g 0.5 Input

added-g 0.1 Input

Ca 20 47.46% XRF 1 Ca KA1-HR-Tr 60.25 1542 47.46 0.42% 59.8 PPM 17.6 um Ca KB1-HR-Tr 7.322

Fe 26 42.39% XRF 1 Fe KA1-HR-Tr 110.1 2799 42.39 0.31% 43.6 PPM 23.8 um Fe KB1-HR-Tr 19.61

Mg 12 3.48% XRF 1 Mg KA1-HR-Tr 2.007 60.16 3.48 2.35% 131.8 PPM1.23 um

S 16 2.12% XRF 1 S  KA1-HR-Tr 2.96 103.8 2.12 1.91% 35.2 PPM 5.3 um

Si 14 1.85% XRF 1 Si KA1-HR-Tr 1.025 33.73 1.85 3.28% 80.5 PPM 2.65 um Si KB1-HR-Tr/El0.00696

Mn 25 1.01% XRF 1 Mn KA1-HR-Tr 1.985 50.38 1.01 2.39% 50.6 PPM 19.0 um Mn KB1-HR-Tr 0.581

Al 13 0.65% XRF 1 Al KA1-HR-Tr 0.2957 9.695 0.65 6.25% 87.8 PPM 1.78 um Al KB1-HR-Tr/El0.0018

Ti 22 0.29% XRF 1 Ti KA1-HR-Tr 0.242 6.31 0.29 7.07% 60.8 PPM 9.5 um Ti KB1-HR-Tr0.06678

Na 11 0.23% XRF 1 Na KA1-HR-Tr0.03495 1.366 0.23 21.00% 229.3 PPM0.78 um

Cl 17 0.16% XRF 1 Cl KA1-HR-Tr 0.1275 4.474 0.16 10.90% 62.7 PPM 7.1 um

K 19 0.12% XRF 1 K  KA1-HR-Tr 0.1716 4.319 0.12 8.60% 33.3 PPM 13.2 um K  KB1-HR-Tr0.01472

Zn 30 0.07% XRF 1 Zn KA1-HR-Tr 0.3016 7.579 0.07 8.07% 33.4 PPM 25.2 um Zn KB1-HR-Tr0.05211

Sr 38 0.05% XRF 1 Sr KA1-HR-Tr 0.682 14.66 0.0474 5.87% 19.0 PPM 98 um Sr KB1-HR-Tr 0.2938

P 15 0.05% XRF 1 P  KA1-HR-Tr0.03528 1.237 0.046 24.20% 54.8 PPM 3.7 um

V 23 0.04% XRF 1 V  KA1-HR-Tr0.05228 1.284 0.045 19.10% 55.7 PPM 12.0 um

As 33 0.02% XRF 1 As KA1-HR-Tr 0.165 4.034 0.023 14.50% 24.6 PPM 43 um As KB1-HR-Tr0.08018

Zr 40 69 PPM XRF 1 Zr KA1-HR-Tr 0.2938 2.588 0.007 13.00% 19.7 PPM 133 um Zr KB1-HR-Tr0.07519

Used intensityCalc. concentrationStat. error LLD Analyzed layerLine 3 Net int. Used intensityCalc. concentrationStat. error LLD Analyzed layerXRF %

187.4 48.4 1.21% 390.7 PPM22.1 um 47.46

498.4 41.7 0.74% 258.0 PPM30 um Fe LA1-HR 0.01226 73.70% 0.68 um 42.39

3.48

2.12

0.2291 0.47 231% 0.29% 3.0 um 1.85

7.504 0.804 4.88% 449.1 PPM24.6 um Mn LA1-HR 0.00193 186% 0.56 um 1.01

0.05888 0.43 749% 0.97% 2.00 um 0.65

1.493 0.46 16.00% 519.5 PPM11.9 um 0.29

0.23

0.16

0.3705 0.094 160% 436.8 PPM16.4 um 0.12

1.309 0.069 37.70% 209.3 PPM33 um Zn LA1-HR-Tr0.01031 0.3023 0.11 80.40% 0.73 um 0.07

4.038 0.052 13.00% 93.0 PPM 134 um Sr LA1-HR 0.01922 0.5894 0.093 38.70% 224.0 PPM2.92 um 0.0474

0.046

0.045

1.961 0.056 31.30% 144.4 PPM58 um As LA1-HR 0.2722 -1.11 -0.3 17.90% 956.3 PPM1.30 um 0.023

1.506 0.022 136% 111.2 PPM183 um Zr LA1-HR -0.00232 -0.08142 -0.009 154.3 PPM3.9 um 0.007
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Appendix B:  Cost-analysis 

Below is a more in-depth analysis in the cost-assessment of building a pilot plant at the Scunthorpe site than 

presented in the main text, complete with the sorts of processing the Desulph samples would undergo (I am 

particularly grateful to my supervisor Neil Rowson for his input on these calculations). 

Plant Costings 

Desulph 2:  10,000 tonnes per year (260 days, 29.5% Carbon) equates to 6 tonnes per hour of graphite feed. 

 

 

Income: 

Prices accessed: 01/10/2013 

Screen Assembly

6 tonnes

per hour _______________ 1000µm +1mm 60kg/hr Combine for float 

_______________ 500µm +500 650kg/hr and Sulphuric acid

_______________ 355µm +355 120kg/hr leach

_______________ 180µm +180 3336kg/hr Total 4176 kg/hr

-180 1836kg/hr

15% by wt

Double float and leach

1836 kg/hr` - - - - - - - - - - - - - 63 microns mass 275kg/hr

waste 85% by wt

1560kg/hr
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Industrial Minerals 

 

Graphite Flake 94-97% C 

-100 mesh CIF (Europe) - $900 per tonne 

 

Saleable graphite 1820 Kg/hr 

      3033 Tonnes per year = $ 2.7 million per year. 

 

Cost of Plant: 

 

Equipment Costs from Matche.com: 

Four Deck Screen   $22,000 

Storage Bins x5    $2,300 each 

Centrifugal Pump   $4,500 

Dewater Screen    $17,500 

Reactor (glass lined) 400 gallon  $26,000 

Froth Flotation Tank   $13,500 

 

Total (x10)    $950,000 
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Total Capital Investment: 

(Based on Plant Design Economics, I Chem E Handbook, Solid/Fluid Processing Plant) 

 

DIRECT COSTS: 

Purchased Equipment    $950,000 

Purchased Equipment Installation (39%)  $370,000 

Control + Instruments (13%)   $123,500 

Piping (31%)     $294,500 

Electricals (10%)    $95,000 

Buildings (29%)     $275,500 

 

Total Plant Direct Cost    $2,108,500 

 

INDIRECT COSTS: 

Engineering + Supervision (32%)   $304,000 

Construction Expenses (54%)   $323,000 

 

Total Indirect Cost    $627,000 

 

Contingency (10% of direct + indirect)  $273,550 
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Total Erected Cost    $3,009,050 

Working capital of cost (15%)   $451,357 

 

TOTAL CAPITAL INVESTMENT   $3,460,407 

 

Conclusion: 

Plant Build     2 months 

Land and waste disposal   Free (carried out at Scunthorpe) 

Payback Time     ≈ 18 months 

 

PROJECT:  Worthy of serious consideration 
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Appendix C:  Sub-180 micron Raw Results 

Below is a selection of the raw results pertaining to the investigation of the sub-180 micron Desulph material.  

As with Appendix A, whilst not exhaustive, it should give the reader a better idea of the real numbers obtained 

in this stage of the experiment (I am particularly grateful to Rajesh Gurung for his help in obtaining this data). 

Sieving Sizes 

 

Total Mass In (g): 1200

SN Mesh Size (µm) Bag Size(g) Product + Bag (g) Product (g)

1 1000 3.6 27.6 24

2 500 3.6 22 18.4

3 355 3.6 25.4 21.8

4 180 3.6 150.7 147.1

5 90 3.6 215.2 211.6

6 63 3.6 282 278.4

7 < 63 3.6 500.2 496.6

1223.1 1197.9

Mass Lost: (g) 2.1

SEIVING DONE FOR DESULPH1, DESULPH2 & DESULPH2 (BETA) 

from 06/05/2013 till 03/07/2013           

Total Mass Collected:

Sieving done for Desulph 2 (Beta)
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Total Mass In (g): 1000

SN Mesh Size (µm) Bag Size(g) Product + Bag (g) Product (g)

1 1000 3.8 29.4 25.6

2 500 3.8 75.4 71.6

3 355 3.8 62.4 58.6

4 180 3.8 181.6 177.8

5 90 3.8 167.6 163.8

6 63 3.8 85.2 81.4

7 < 63 3.8 422 418.2

1023.6 997

Mass Lost: (g) 3

Sieving done for Desulph 1

Total Mass Collected:

Total Mass In (g): 500

SN Mesh Size (µm) Bag Size(g) Product + Bag (g) Product (g)

1 1000 0.7 11 10.3

2 500 0.7 15.1 14.4

3 355 0.7 15.3 14.6

4 180 3.7 97.4 93.7

5 < 180 3.7 368.6 364.9

507.4 497.9

Mass Lost: (g) 2.1

Sieving done for Desulph 1

Total Mass Collected:
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Total Mass In (g): 150

SN Mesh Size (µm) Bag Size(g) Product + Bag (g) Product (g)

1 150 0.8 5.3 4.5

2 125 0.8 8.2 7.4

3 90 0.8 19.4 18.6

4 72 0 0 0

5 63 0.8 16.3 15.5

6 < 63 3.7 107 103.3

156.2 149.3

Mass Lost: (g) 0.7

Sieving done for Desulph 1

Total Mass Collected:
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Mass Balance 

 

Product Mass(g) + Bag Tee-froth Used: 1 ml

DeSulph 1 [<180 µm] 50 Small Bag (g): 0.9 g

DeSulph 2 [<180 µm] 50 Big Bag (g): 3.6 g

Product Mass(g) + Bag Mass (g) Product Mass(g) + Bag Mass (g)

DeSulph 1 [Froth] 22.9 19.3 DeSulph 2 [Froth] 10 9.1

DeSulph 1 [Waste] 26.2 25.3 DeSulph 2 [Waste] 32.3 31.4

TOTAL 49.1 44.6 TOTAL 42.3 40.5

Product Mass(g) + Bag Tee-froth Used: 1 ml

DeSulph 1 [<180 µm] 50 Small Bag (g): n/a

DeSulph 2 [<180 µm] 50 Big Bag (g): 3.6

Product Mass(g) + Bag Mass (g) Product Mass(g) + Bag Mass (g)

DeSulph 1 [Froth] 14.6 11 DeSulph 2 [Froth] 10 6.4

DeSulph 1 [Waste] 36.2 36.2 DeSulph 2 [Waste] 32.3 28.7

TOTAL 50.8 47.2 TOTAL 42.3 35.1

Raw product

MASS BALANCE FOR DESULPH1, DESULPH2 & DESULPH2 (BETA) 
from 06/05/2013 till 03/07/2013           

MASS BALANCE DATA 1 [13/06/2013]

After Froth-FlotationAfter Froth-Flotation

MASS BALANCE DATA 2 [15/06/2013]

Raw product

After Froth-Flotation After Froth-Flotation
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Product Mass(g) + Bag Tee-froth Used: 2 ml

DeSulph 1 [<180 µm] 50 Small Bag (g): 0.7

DeSulph 2 [<180 µm] 50 Big Bag (g): n/a

Product Mass(g) + Bag Mass (g) Product Mass(g) + Bag Mass (g)

DeSulph 1 [Froth] 20 19.3 DeSulph 2 [Froth] 11.2 10.5

DeSulph 1 [Waste] 26.1 25.4 DeSulph 2 [Waste] 32.8 32.1

TOTAL 46.1 44.7 TOTAL 44 42.6

Product Mass(g) + Bag Tee-froth Used (ml)

DeSulph 1 [90 µm] 50 1

DeSulph 1 [63 µm] 25 0.5 Small Bag (g): 0.7

DeSulph 1 [<63 µm] 50 1 Big Bag (g): n/a

Product Mass(g) + Bag Mass (g) Product Mass(g) + Bag Mass (g)

DeSulph 1 [90 µm] 30.8 30.1 DeSulph 1 [90 µm] 18.8 18.1

DeSulph 1 [63 µm] 9.8 9.1 DeSulph 1 [63 µm] 14.5 13.8

DeSulph 1 [<63 µm] 18.4 17.7 DeSulph 1 [<63 µm] 26.5 25.8

TOTAL 59 56.9 TOTAL 59.8 57.7

MASS BALANCE DATA 3 [18/06/2013]

Raw product

After Froth-Flotation After Froth-Flotation

MASS BALANCE DATA 6 [18/06/2013]

Raw product

After Froth-Flotation After Froth-Flotation
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Product Mass(g) + Bag Tee-froth Used (ml)

Sample A 50 1 Small Bag (g): n/a

Sample B 50 2 Big Bag (g): 0.8

Sample C 50 3

Sample D 50 1

Product Mass(g) + Bag Mass (g) Product Mass(g) + Bag Mass (g)

Sample A 6.9 6.1 Sample A 39.9 39.1

Sample B 7.4 6.6 Sample B 38.6 37.8

Sample C 7.9 7.1 Sample C 39.4 38.6

Sample D 2.9 2.1 Sample D (Waste 1) 37 36.2

TOTAL 25.1 21.9 Sample D (Waste 2) 4.9 4.1

TOTAL 119.9 116.7

Product Mass(g) + Bag Tee-froth Used (ml)

Sample A 50 1 Small Bag (g): n/a

Sample B 50 2 Big Bag (g): 0.8

Sample C 50 3

Sample D 50 1

Product Mass(g) + Bag Mass (g) Product Mass(g) + Bag Mass (g)

Sample A 2.9 2.1 Sample A 41.5 40.7

Sample B 2.5 1.7 Sample B 43.4 42.6

Sample C 2.6 1.8 Sample C 43.2 42.4

Sample D 1.8 1 Sample D (Waste 1) 42.2 41.4

TOTAL 9.8 6.6 Sample D (Waste 2) 2.6 1.8

TOTAL 172.9 128.2

Product @ <63 µm

Froth after Froth-Flotation Waste after Froth-Flotation

MASS BALANCE DATA 9  @ 63 µm [25/06/2013]

Product @ 63 µm

Froth after Froth-Flotation Waste after Froth-Flotation

MASS BALANCE DATA 8  @ <63 µm [25/06/2013]
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Product Mass(g) + Bag Tee-froth Used (ml)

Sample A 50 1 Small Bag (g): n/a

Sample B 50 2 Big Bag (g): 0.8

Sample C 50 3

Sample D 50 1

Product Mass(g) + Bag Mass (g) Product Mass(g) + Bag Mass (g)

Sample A 6.9 6.1 Sample A 39.9 39.1

Sample B 7.4 6.6 Sample B 38.6 37.8

Sample C 7.9 7.1 Sample C 39.4 38.6

Sample D 2.9 2.1 Sample D (Waste 1) 37 36.2

TOTAL 25.1 21.9 Sample D (Waste 2) 4.9 4.1

TOTAL 119.9 116.7

MASS BALANCE DATA 10  @ 90 µm [25/06/2013]

Product @ <63 µm

Froth after Froth-Flotation Waste after Froth-Flotation
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LOI 

 

 

DATA 1

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Desulph 1 A: [Raw] 18.4566 18.9831 0.5265 18.8494 0.3928 25.39%

2 Desulph 1 B: [Raw] 13.7587 14.3362 0.5775 14.1895 0.4308 25.40%

3 Desulph 2 A: [Raw] 12.5621 13.0891 0.527 12.9598 0.3977 24.54%

4 Desulph 2 B: [Raw] 22.3282 22.8153 0.4871 22.6945 0.3663 24.80%

5 Desulph 1 A: [<180, FF] 24.9852 25.4984 0.5132 25.228 0.2428 52.69%

6 Desulph 1 B: [<180, FF] 15.2797 15.8327 0.553 15.5697 0.29 47.56%

7 Desulph 2 A: [<180, FF] 24.8982 25.2389 0.3407 25.0702 0.172 49.52%

8 Desulph 2 B: [<180, FF] 17.6072 18.1604 0.5532 17.9049 0.2977 46.19%

Post-Furnance

Loss & Emission data for  " Desulph1 & Desulph2 "  samples @ <180 microns
Raw and froth floated samples of Desulph 1 and 2 with 1ml teefroth                       

Pre- Furnance

LOSS AND EMISSION DATA FOR DESULPH1, DESULPH2 & DESULPH2 (BETA) 
from 06/05/2013 till 03/07/2013           

DATA 2

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Desulph 1 A: [FF] 13.748 14.2971 0.5491 13.9965 0.2485 54.74%

2 Desulph 1 B: [FF] 18.4577 18.9558 0.4981 18.6946 0.2369 52.44%

3 Desulph 2 A: [FF] 17.5929 18.1799 0.587 17.9061 0.3132 46.64%

4 Desulph 2 B: [FF] 22.3254 22.8732 0.5478 22.6128 0.2874 47.54%

5 Desulph 1 A: [WASTE] 15.2688 15.8359 0.5671 15.8004 0.5316 6.26%

6 Desulph 1 B: [WASTE] 12.5534 13.1113 0.5579 13.0762 0.5228 6.29%

7 Desulph 2 A: [WASTE] 24.8934 25.4366 0.5432 25.3339 0.4405 18.91%

8 Desulph 2 B: [WASTE] 24.9874 25.4429 0.4555 25.3537 0.3663 19.58%

Froth floted samples of Desulph 1 and 2 with 1 ml teefroth                       

Loss & Emission data for  " Desulph1 & Desulph2 "  samples @ <180 microns

Pre- Furnance Post-Furnance
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DATA 3

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Desulph 1 A: [FF] 18.4543 18.9724 0.5181 18.7035 0.2492 51.90%

2 Desulph 1 B: [FF] 17.5949 18.1049 0.51 17.8503 0.2554 49.92%

3 Desulph 2 A: [FF] 13.723 14.2891 0.5661 14.242 0.519 8.32%

4 Desulph 2 B: [FF] 24.983 25.5445 0.5615 25.4979 0.5149 8.30%

5 Desulph 1 A: [WASTE] 15.2644 15.7539 0.4895 15.5256 0.2612 46.64%

6 Desulph 1 B: [WASTE] 24.8829 25.4123 0.5294 25.1621 0.2792 47.26%

7 Desulph 2 A: [WASTE] 12.5632 13.0764 0.5132 12.9802 0.417 18.75%

DATE: 18/06/2013

Loss & Emission data for  " Desulph1 & Desulph2 "  samples @ <180 microns
Froth floted samples of Desulph 1 and 2 with  2 ml teefroth                       

Pre- Furnance Post-Furnance

DATA 4

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Desulph 1 A: [150 µm] 18.4563 19.0174 0.5611 18.602 0.1457 74.03%

2 Desulph 1 B: [150 µm] 12.5655 13.1015 0.536 12.6974 0.1319 75.39%

3 Desulph 1 A: [125 µm] 22.3202 22.8484 0.5282 22.5772 0.257 51.34%

4 Desulph 1 B: [125 µm] 15.2642 15.8421 0.5779 15.5329 0.2687 53.50%

5 Desulph 1 A: [90 µm] 24.9892 25.5596 0.5704 25.2816 0.2924 48.74%

6 Desulph 1 B: [90 µm] 17.5976 18.1572 0.5596 17.882 0.2844 49.18%

7 Desulph 1 A: [63 µm] 13.7234 14.2807 0.5573 14.078 0.3546 36.37%

8 Desulph 1 B: [<63 µm] 24.89 25.4554 0.5654 25.3728 0.4828 14.61%

Loss & Emission data for  " Desulph1 "  samples @ 150 µm,  125 µm, 90 µm, 63 µm, < 63 µm
Raw samples of Desulph 1 with  1 ml teefroth                       

Pre- Furnance Post-Furnance
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DATA 5

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Desulph 2 A: [150 µm] 18.4553 19.2186 0.7633 18.7324 0.2771 63.70%

2 Desulph 2 B: [150 µm] 22.3222 22.8638 0.5416 22.5369 0.2147 60.36%

3 Desulph 2 A: [125 µm] 24.8893 25.4608 0.5715 25.0638 0.1745 69.47%

4 Desulph 2 B: [125 µm] 24.9854 25.5418 0.5564 25.1739 0.1885 66.12%

5 Desulph 2 A: [90 µm] 13.7168 14.1889 0.4721 13.9526 0.2358 50.05%

6 Desulph 2 B: [90 µm] 17.5923 18.1505 0.5582 17.8785 0.2862 48.73%

7 Desulph 2 A: [<90 µm] 15.2571 15.8258 0.5687 15.6997 0.4426 22.17%

8 Desulph 2 B: [<90 µm] 12.5582 13.134 0.5758 13.0066 0.4484 22.13%

Loss & Emission data for  " Desulph2 "  samples @ 150 µm, 125 µm, 90 µm, < 90 µm
Raw samples of Desulph 2 with  1 ml teefroth                       

Pre- Furnance Post-Furnance

DATA 6

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Desulph 1 A: [90 µm] 12.5657 13.2252 0.6595 12.9239 0.3582 45.69%

2 Desulph 1 B: [90 µm] 24.8812 25.431 0.5498 25.194 0.3128 43.11%

3 Desulph 1 A: [63 µm] 24.9905 25.4229 0.4324 25.3204 0.3299 23.70%

4 Desulph 1 B: [63 µm] 13.7232 14.2838 0.5606 14.1544 0.4312 23.08%

5 Desulph 1 A: [<63 µm] 17.5961 18.1399 0.5438 18.0657 0.4696 13.64%

6 Desulph 1 B: [<63 µm] 15.2664 15.8409 0.5745 15.7619 0.4955 13.75%

DATE: 20/06/2013

Loss & Emission data for  " Desulph1 "  samples @ 90 µm, 63 µm, < 63 µm
Raw samples of Desulph 1 with  1 ml teefroth                       

Pre- Furnance Post-Furnance
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DATA 7

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Desulph 2 A: [90 µm] 15.2644 15.8302 0.5658 15.7904 0.526 7.03%

2 Desulph 2 B: [90 µm] 12.5658 13.1564 0.5906 13.1195 0.5537 6.25%

3 Desulph 2 A: [63 µm] 24.9929 25.5311 0.5382 25.4987 0.5058 6.02%

4 Desulph 2 B: [63 µm] 13.721 14.3166 0.5956 14.2804 0.5594 6.08%

5 Desulph 2 A: [<63 µm] 17.5997 18.1555 0.5558 18.127 0.5273 5.13%

6 Desulph 2 B: [<63 µm] 24.8796 25.4573 0.5777 25.4285 0.5489 4.99%

DATE: 24/06/2013

Loss & Emission data for  " Desulph2 (Beta) "  samples @ 90 µm, 63 µm, < 63 µm
Raw samples of Desulph 2 (Beta) with  1 ml teefroth                       

Pre- Furnance Post-Furnance

DATA 8

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Sample A [Froth] 15.3018 15.8746 0.5728 15.7957 0.4939 13.77%

2 Sample A [Waste] 12.624 13.18 0.556 13.1283 0.5043 9.30%

3 Sample B [Froth] 25.0018 25.5279 0.5261 25.4678 0.466 11.42%

4 Sample B [Waste] 24.8868 25.3936 0.5068 25.344 0.4572 9.79%

5 Sample C [Froth] 17.6346 18.2074 0.5728 18.1186 0.484 15.50%

6 Sample C [Waste] 13.7499 14.3383 0.5884 14.2825 0.5326 9.48%

7 Sample D [Re-Froth] 18.4538 18.9447 0.4909 18.8937 0.4399 10.39%

8 Sample D [Waste 1] 21.7478 22.2712 0.5234 22.2212 0.4734 9.55%

9 Sample D [Waste 2] 17.9209 18.5293 0.6084 18.4686 0.5477 9.98%

DATE: 25/06/2013

Loss & Emission data for  " Desulph2 (Beta) "  samples @ < 63 µm
Froth Floated data of Desulph 2 (Beta)  with  varying ml of teefroth @ <63 µm                       

Pre- Furnance Post-Furnance
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DATA 9

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Sample A [Froth] 18.4503 19.0448 0.5945 18.8877 0.4374 26.43%

2 Sample A [Waste] 17.6478 18.1751 0.5273 18.1218 0.474 10.11%

3 Sample B [Froth] 13.7517 14.3112 0.5595 14.1025 0.3508 37.30%

4 Sample B [Waste] 15.2958 15.8341 0.5383 15.7851 0.4893 9.10%

5 Sample C [Froth] 25.0027 25.6167 0.614 25.4307 0.428 30.29%

6 Sample C [Waste] 17.923 18.5242 0.6012 18.4652 0.5422 9.81%

7 Sample D [Re-Froth] 24.8862 25.5002 0.614 25.3047 0.4185 31.84%

8 Sample D [Waste 1] 21.7398 22.3365 0.5967 22.2804 0.5406 9.40%

9 Sample D [Waste 2] 12.6197 13.1431 0.5234 13.0385 0.4188 19.98%

DATE: 27/06/2013

Loss & Emission data for  " Desulph2 (Beta) "  samples @ 63 µm
Froth Floated data of Desulph 2 (Beta)  with  varying ml of teefroth @ 63 µm                       

Pre- Furnance Post-Furnance

DATA 10

SN Products Crucible Crucible + Product (g) Crucible + Graphite (g) Graphite (%)

1 Sample A [Froth] 18.4514 18.9719 0.5205 18.7018 0.2504 51.89%

2 Sample A [Waste] 24.9978 25.5745 0.5767 25.547 0.5492 4.77%

3 Sample B [Froth] 17.6735 18.2265 0.553 17.9354 0.2619 52.64%

4 Sample B [Waste] 13.7525 14.2843 0.5318 14.2632 0.5107 3.97%

5 Sample C [Froth] 17.932 18.4822 0.5502 18.2052 0.2732 50.35%

6 Sample C [Waste] 15.3095 15.9183 0.6088 15.8776 0.5681 6.69%

7 Sample D [Re-Froth] 12.613 13.5813 0.9683 12.9082 0.2952 69.51%

8 Sample D [Waste 1] 24.8828 25.4583 0.5755 25.4379 0.5551 3.54%

8 Sample D [Waste 2] 21.7398 22.2902 0.5504 22.1855 0.4457 19.02%

9 Sample D [Waste 3] 12.8386 13.3556 0.517 13.2827 0.4441 14.10%

DATE: 03/07/2013

Pre- Furnance

Loss & Emission data for  " Desulph2 (Beta) "  samples @ 90 µm
Froth Floated data of Desulph 2 (Beta)  with  varying ml of teefroth @ 90 µm                       

Post-Furnance
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DATA 11

SN Products
Crucible 

(g)

Crucible + 

Product
Product (g)

Crucible + 

Product (g)
Graphite (g) Graphite (%)

1 Desulph 1 A: [90 µm] 24.8896 25.7765 0.8869 25.1521 0.2625 70.40%

2 Desulph 1 B: [90 µm] 13.745 14.312 0.567 14.2765 0.5315 6.26%

3 Desulph 1 A: [63 µm] 17.616 18.2769 0.6609 17.8961 0.2801 57.62%

4 Desulph 1 B: [63 µm] 15.2838 15.7978 0.514 15.7856 0.5018 2.37%

5 Desulph 1 A: [<63 µm] 25.0014 25.8482 0.8468 25.67 0.6686 21.04%

6 Desulph 1 B: [<63 µm] 12.577 13.1278 0.5508 13.0818 0.5048 8.35%

DATE: 25/06/2013

Loss & Emission data for  " Desulph1 "  samples @ 90 µm, 63 µm, < 63 µm
Froth Floated data of Desulph 1 with  1 ml teefroth                       

Pre- Furnance Post-Furnance
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Appendix D: Morgan PLC Data/Communications 

Below is a selection of messages and data pertaining to how the samples performed thermally and 

electronically when undergoing industrial processing into crucibles (as outlined in the main text) (I am 

particularly grateful to Alex Daily and his colleagues at Morgan PLC for all of the information below).  The full 

correspondences and presentation slides are available on request. 

Morgan PLC Processing Notes 

Determination of Ash of routine samples 

Equipment 

Platinum lid  

Scales (0.1mg resolution) 

Muffle Furnace 

 

Method 

Ignite lid in muffle furnace at 850°C for 10 min  

Remove and cool  

Weight lid: (A ) 

Add ~1g kish graphite flakes 

Weigh lid + graphite: (B ) 

 

Then either: 

Place in muffle furnace at 850°C for 24h  

Remove and cool 

Weigh lid (C ) 

Or 

Place in muffle furnace at 850°C for 2 hours,  

Remove and cool,  

Weigh lid,  
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Return lid and sample to furnace for further hour,  

Repeat until mass no longer decreases (C ) 

Calculation: 

% 𝐴𝑠ℎ =
𝐶 − 𝐴

𝐵 − 𝐴
 𝑋100 

 

Notes: 

The method is an internal testing procedure, with minor modifications. 

The original method suggested cooling the samples in a desiccator however this appears to have negligible 

effect on the results so was not used. 

For the graphite samples received from MIRO (ash content 2.5-8.5%) the samples were usually completed 

after 4 hours.  

24h was used in some cases to reduce the number of steps required   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

Key Presentation Slides 
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Appendix E:  Lab Safety Documentation 

Please see attached. 
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THE UNIVERSITY OF BIRMINGHAM    

  SCHOOL OF CHEMICAL ENGINEERING 

CHEMICAL HAZARD AND RISK ASSESSMENT 

 

School/Dept 

Chem. Eng. 
 Assessment Number  

     

Assessor  

 (Plus Supervisor  for 

Undergraduate 

Assessor) 

Neil Rowson  Date of Assessment 7/11/2012 

 

Notes Guidance on making an assessment is given in Chemical Hazard and Risk Assessment 

(GUIDANCE/22/CHRA/03). 

Guidance is also available from the attached Guidance on Completing the Chemical Hazard and Risk Assessment 

Form. 

Substance data is available in HAZDAT.  Use a continuation sheet or word processor to expand any section of this 

form. 

 

1  LOCATION OF THE WORK  or 

ACTIVITY 

 G7 in chem. eng 

     

 

2  PERSONS WHO MAY BE AT 

RISK 

    

List names where possible Rob Frost MRes Student 

 

 

3  ACTIVITY 

ASSESSED 

 Kish Graphite recovery from steel waste 

  

State whether specific (the 

default) or generic 
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4  MATERIALS 

INVOLVED 

You may wish to attach copies of data sheet(s) or  to indicate the source of your information: you are 

stongly recommended to consult the University Hazdat database, which is kept as up-to–date as possible 

concerning hazardous chemicals and the like, and with information on correct procedures and methods as 

appropriate. 

    

NAME AND CAS NUMBER 

 OF MATERIAL 

AMOUNT 

and FORM 

HAZARD 

 

RISK PHRASES 

(use text only) 

REPORTABLE ? 

(Y/N) 

Note:  you must check to see whether any of the materials you use are subject to regulations concerning ozone 

depletion, are covered by Chemical Weapons laws, or are sensitisers or carcinogens. Many such materials are 

‘reportable’ through the University Health and Safety Unit. Consult the HAZDAT database for details. 

Steel waste products from 

Corus: mainly iron oxides 

Kg of fine 

powder 

Avoid dust  Avoid inhalation 

Avoid contact with skin/eyes 

n 

     

Diesel oil Few ml irritant Avoid contact with skin/eyes n 

Alcohol frother Few ml - Avoid contact with skin/eyes n 

Dilute Hydrochloric acid 

1% 

100 ml corrosive Avoid contact with skin/.eyes n 

     

     

     

 

If one or more of the materials is reportable, have you notified the University Health 

and Safety Unit?                      Yes          No   x   see note 

 

5  INTENDED USE and JUSTIFICATION (where appropriate) 

    

Give brief details and attach protocol/instructions. Justification is needed for exceptionally hazardous substances (see note 5)  

Physical separation and dilute HCl leaching will be used to produce kish graphite concentrate from 

steel waste streams 
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6  RISKS to HEALTH and SAFETY from INTENDED 

USE 

    

From personal exposure or hazardous reactions.  Refer to OELs, flash points, etc., as appropriate. Are pregnant women, breast-feeding mothers 

especially at risk? 
 

 

Good chemical practice 

HCl leach will be done in fume cupboard 

Graphite analysis will be carried out on furnace- this will be in fume cupboard 

 

 

 

 

7  CONCLUSIONS ABOUT 

RISKS 

    

Is level of risk acceptable?  Can risk be prevented or reduced by change of substance/procedure?  Are control measures necessary? 

 

Acceptable 

 

 

  

8  CONTROL 

MEASURES 

    

In addition to Good Chemical Practice, eg., fume cupboard, etc. Any special requirements, eg., glove type, etc.   
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Engineering controls: indicate that in your view,  the risk is acceptable if the procedure is carried out in: 1) the 

open laboratory ( n.b. this is now rare);    2) a recirculating fume cupboard;  3) a ducted fume cupboard;  4) a 

glove box;    5)  only in  a purpose built facility;     6) Another specialised enclosure (please specify what you 

intend)   You must select at least one of these, and use at least that level of containment, or not conduct the 

procedure. 

These options represent an increasing level of containment. For further guidance on deciding the appropriate 

control measures to use consult Hazardous Substances Policy Schedule 3.11 and 3.13 

        1 x            2           3   x         4            5      

       6   Specify        ……………………….       
 
SPECIAL REQUIREMENTS: e.g. special glassware; no vibration; Fluoro-plastic apparatus; no dry 

chemicals on heated surfaces; must be in the dark. 

 

None 

 

 

9  INSTRUCTION/TRAININ

G 
    

Specify course(s) and/or special arrangements.  

Will be given by NAR 

LOCAL WARNINGS: On occasion a procedure will necessitate warning workers nearby, and instructing them 

in particular or special emergency actions which may be required. 

Is this necessary for this procedure?                 Yes                        No     X 
 

10  
MONITORING        

       

Performance of control measures, eg fume 

hood flow rates required 
 

 

Personal exposure 

If in doubt, seek advice from 

the University Health and 

Safety  unit 

Health Surveillance 

Specify measures agreed 

with the Health and Safety 

Unit 
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11  WASTE DISPOSAL PROCEDURE 

      

 

HAZARDOUS WASTES REQUIRING SPECIAL MEASURES FOR DISPOSAL (specify waste and 

disposal method see Hazardous Sustances Policy Schedule 7) Include name, 6 digit code and H numbers if to 

be sent away for disposal. 

  N/A 

 

 

DISPOSAL OF WASTE SOLVENTS   (The School Code of Practice for the Disposal of Waste Solvents 

must be observed) 
 

Halogenated                     Non-Halogenated       

 

 

 

 

12  REVIEW 

   
Enter the date or circumstances 

for review of assessment 

(maximum review interval is 

now 1 year) 

 AFTER ONE MONTH 

 

13  EMERGENCY 

ACTION 

    

TO CONTROL 

HAZARDS 

To stabilize situation eg spread absorbant on liquid spill; eliminate sources of ignition, etc. 
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TO PROTECT 

PERSONNEL 

Evacuation, protection for personnel involved in clean-up, Special First Aid  

 

 

 

TO RENDER SITE OF EMERGENCY 

SAFE 

Clean-up/decontamination 

requirements and protocols 

 

 

 

 

 

 

14  EMERGENC

Y CONTACT 

NAME(S) NEIL ROWSON PHONE(S) X45298 

     (Home and School 

contacts, please) 
 

 

Signed .......................................................................................... (Assessor)    Date 

........................ 

 

Signed ....................NEIL ROWSON................................... (Supervisor)    Date 

........8/11/12................ 

 

 

 


