
 

 

 

 

 

MILLING/ROUTING OF CARBON FIBRE 

REINFORCED PLASTIC (CFRP) COMPOSITES 
 

 

 

by 

 

MOHAMED HASSAN EL-HOFY 
 

 

 

 

A thesis submitted to 

The University of Birmingham 

For the degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

School of Mechanical Engineering  

College of Engineering and Physical Sciences 

University of Birmingham  

May 2014 

 

 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



i 

 

ABSTRACT 

A literature review has been carried out to identify factors affecting the machinability of 

fibre reinforced plastics (FRP) composites in general and carbon fibre reinforced plastics 

(CFRP) in particular. This includes the use of different cutting tool materials, tool geometry, 

and process variables together with aspects such as cutting forces, tool wear/life, cut 

quality/defects, cutting temperature, and surface integrity in both experimental and modelling 

approaches.  

The experimental work was divided into 3 phases. The first phase dealt with the effect of 

cutting parameters such as tool material including different polycrystalline diamond (PCD) 

grades, cutting speed, feed rate, and cutting environment (dry/chilled air). The first phase 

aimed to identify the preferred range of parameters for the process. This was followed by 3 

sub phases to benchmark PCD grades, and chemical vapour deposition (CVD) diamond tools, 

to identify the possible wear mechanisms in physical vapour deposition (PVD) and CVD 

diamond coated Tungsten carbide (WC) tools and finally to study the use of PVD and CVD 

coated burr tools in terms of tool life and workpiece surface quality.  

The second phase of experiments dealt with the effects of varying the workpiece lay-up 

configuration on tool wear/life, cutting forces, and surface quality. This phase incorporated 3 

different workpiece lay-up configurations namely Type-1 [25/50/25], Type-2 [44/44/11], and 

Type -3 [15/70/15]. A full factorial experimental design was employed involving 12 tests. In 

addition, a test using a thermocouple implanted router was performed to evaluate the effect of 

different lay-up configuration on cutting temperature. 

The third and last phase investigated the influence of different tool geometry aspects 

(clearance angle, helix angle, and number of flutes) on measured responses in order to 

identify the most suitable geometry for the CFRP milling applications. Additionally, a sub 

phase focused on the effect of helix angle on various aspects including cutting temperature 

when milling CFRP. 

The results of Phase-1 indicated that slotting of CFRP using PCD allows reasonable 

surface quality without compromising productivity. Surface damage was dependent on ply 

orientation and cutting parameters and was thermal, mechanical or a combination of both. 

Severe tool wear resulted in a serrated cutting edge when using diamond like carbon (DLC) 

coated WC. In some cases when feed rate was high, the high cutting forces caused plastic 

deformation of the WC tools. Workpiece fuzz and uncut fibres occurred mainly on the up 

milling side due to flexing of fibres. The use of chilled air prevented the accumulation of dust 
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in the cut slot, eliminated the burning hazard and avoided poor surface finish as well as short 

tool life. Coarse grain PCD (CTM-302) proved to be susceptible to chipping especially at 

high feed rates. The finer CTB-010 proved to be the best in terms of tool life better than DLC-

coated WC especially at high cutting speed and high feed rates.  

Low cutting speed and high feed rate (200 m/min and 0.15 mm /tooth) are recommended 

for better surface integrity/roughness. Feed rate was the most significant factor affecting 

surface roughness with a 57.47% percentage contribution (PCR). The highly abrasion 

resistant CTM-302 PCD grade was the best tool for workpiece surface quality. 

None of the 2-fluted WC routers tested were suitable for the slotting operation. However, 

Dura-coated WC outperformed the DLC-coated and the uncoated WC in terms of tool wear 

due to its diamond structure. Moreover, workpiece surface roughness using Dura-coated 

tooling was better. Dura coated two fluted routers proved to be ideal for finishing. 

Benchmarking of uncoated and Dura (diamond) coated WC Burr routers showed that the 

uncoated Burr router produced a rough surface with no fuzz on either side due to its down 

cutting action which makes it an ideal choice for roughing. Fracture of the coating and 

subsequent substrate wear added to its higher cost made the coated router uneconomical. The 

wavy surface and high surface roughness ~ 250 µm St produced with the uncoated router 

necessitate a finishing pass at 0.3-0.5 mm radial depth of cut to remove the damaged layer. 

The results of Phase-2 showed that fibres at 0° were responsible for the highest cutting 

force (Fx), while those at 90° were responsible for the highest feed force (Fy). It was also 

possible to predict the maximum cutting force Fx for different layups with 2.5 -12% variation 

for 200 m/min cutting speed and 0.03 mm/tooth feed rate. Workpiece surface integrity was 

dominated by damage from 45° layer corresponding with the wavy surface. While Type-2 

lay-up exhibited the lowest surface roughness owing to the larger number of 0° layers, Type-3 

lay-up showed the highest surface roughness because of the larger number of 45° layers. The 

up-milling side had lower surface roughness compared to the down-milling side possibly 

because of the lower temperature on the former, hence it is recommended that any finishing 

pass adopt this mode for better quality. The layer at 45° was responsible for the highest 

cutting temperature and consequently high wear in these layers. Type-3 lay-up material 

generated greater levels of heat followed by Type-2 then Type-1. The use of neutral tool 

geometry generated the highest temperature. Down-cut router produced a ~5-8% temperature 

reduction while using the Up-cut was ~2.5-4%. Temperature during cutting ¾ engagement 

was ~ 85% of that in full engagement slotting. Moreover, dry cutting environment generated 

100°C higher temperature, while using chilled air with a single-nozzle was 20°C lower than 
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with a twin-nozzle. Tool cutting edges prepared using WEDM were more prone to chipping 

due to high initial cutting force spikes. The most significant factor affecting tool life was 

workpiece lay-up with 61.3% PCR. Type-3 lay-up material was the most difficult to cut 

causing severe chipping at locations of 45° layers. Not surprisingly the most significant factor 

affecting feed force was the feed rate with 49.4% PCR. The most significant factor affecting 

delamination and fuzz length was feed rate with PCR‟s of 50.1% and 57.8% respectively. The 

use of chilled air applied through a single-nozzle did not affect uniform abrasion wear of the 

tool but caused an increase in cutting forces. Furthermore, it did not affect fuzz length but 

reduced the delamination factor. Twin nozzle operations were better in terms of workpiece 

surface integrity.  

Phase-3 indicated that low helix angle (3°) did not affect tool life as PCD grade was the 

same. Down-cut geometry produced lower cutting temperature but the highest cutting force 

and workpiece surface roughness. The Neutral router produced the best surface roughness Sa 

owing to the high temperature that did not adversely affect the quality. Dynamic forces were 

observed using a single relief tool which appeared less stable however this improved with 

increasing tool wear while workpiece surface roughness using the twin relief angle was ~50% 

better than that using single relief.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 

 

 

 

 

 

 

 

 

 

 

DEDICATION 

To my parents, my wife Walaa, my daughter Zaina and my son Hassan 

 

 

 

 

 

 

 

 

 

 

 

 

  



v 

 

ACKNOWLEDGEMENTS 

The author would like to express his thanks and appreciation to the following people and 

organisations for their assistance and support over the duration of the project: 

 

Dr. Sein Leung Soo (Senior Lecturer and Head of the Machining Research Group) and Prof. 

David Aspinwall, both from the School of Mechanical Engineering for their academic 

supervision and guidance. 

Dr. Wei-Ming Sim, formerly Machining Technologist at Airbus Operations Ltd. (currently 

Lead Technologist at GKN Aerospace) for his guidance and motivation throughout the 

project. Special thanks to Airbus for the provision of CFRP workpiece material and financial 

support for the research. 

Dr. Peter Harden and Dr. Neels Pretorius, both formerly of Element Six for providing PCD 

tool materials and related technical advice. 

Mr. David Pearson and Mr. Mike Fleming of Seco Tools (UK) Ltd. for the supply of cutting 

tools and technical support. Additional thanks are due to Marcel Aarts, and Jeroen Huijs from 

Seco Jabro Netherlands and Dr. Rachid M‟Saoubi from Seco Tools AB, Sweden for their help 

and support with regard to tooling. 

The Overseas Research Student Award Scheme (ORSAS) and the School of Mechanical 

Engineering, University of Birmingham for the award of a research studentship.  

Richard Fasham, Andy Loat and Alan Saywell, Technical Engineers within the School of 

Mechanical Engineering for their invaluable assistance during the experimental work.  

Velnom Laurent from Actarus France, for his guidance, assistance and general advice relating 

to the temperature measurement trials. 

Eike Hasselberg (intern from the University of Hannover), Kelvin Cobb, Timothy Frost, 

Hugh Muir, Ted Johnston, Chris Bristol, Leif Williams, Richard Middleton, Chris Harper, 

Stewart Gaffney, Jason Workman and John Stenning for their valuable time and attention 

during the author‟s internship period at Airbus-UK‟s Composite Structure Development 

Centre in Filton, Bristol. 

Simon Groves from the National Composite Centre (NCC), Bristol for help and technical 

support with the lay-up, fabrication and sectioning of the CFRP samples used in the research.  



vi 

 

Paul Simons for providing training on the Matsuura FX-5 and Dr. Saad Mahmoud for his 

continuous encouragement throughout the project.  

Dr. Khalid Al-Ghamdi for his assistance and fruitful discussions relating to experimental 

design techniques.  

Prof. Paul Cooper and Michele Holder from the School of Dentistry, University of 

Birmingham for access and help with using the X-ray scanning facilities.  

Dr. Moataz Attallah and Dr. Khamis Essa for their help and support using the laser CMM at 

the School of Metallurgy and Materials, University of Birmingham.  

Colleagues in the Machining Research Group (past and present), in particular Dr. Richard 

Hood, Dr. Islam Shyha, Dr. Juri Saedon, Dr. Mohammed Antar, Alex Kuo, Debajyoti 

Bhaduri, Dr. Sarmad Ali Khan, Raul Munoz, Maojun Li and Dr. Rattanachai Rattanakit for 

their unwavering moral support and encouragement. 

 

Finally I would like to express my love and gratitude to my wife Walaa El-Kholy, my 

daughter Zaina, my son Hassan and my parents for their encouragement, support and 

motivation throughout this work. 

 

 

  



 

vii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................ xiv 

LIST OF TABLES ........................................................................................... xxiii 

LIST OF SYMBOLS ....................................................................................... xxvi 

LIST OF ACRONYMS .................................................................................. xxviii 

1 INTRODUCTION .............................................................................................. 1 

1.1 Background to project .................................................................................................... 1 

1.2 Aim and objectives .......................................................................................................... 2 

1.3 Project sponsors and collaborators ............................................................................... 3 

2 LITERATURE REVIEW ................................................................................... 5 

2.1 Composite material ......................................................................................................... 5 

2.1.1 Particulate reinforced composites .............................................................................. 6 

2.1.2 Fibre reinforced composites ....................................................................................... 7 

2.1.2.1 Glass fibres ........................................................................................................ 10 

2.1.2.2 Aramid fibres ..................................................................................................... 11 

2.1.3 Carbon Fibres ........................................................................................................... 11 

2.1.3.1 Types of carbon fibre composite ........................................................................ 11 

2.1.4 Matrix in FRP composites ........................................................................................ 13 

2.1.5 Fibre forms/architecture ........................................................................................... 15 

2.1.6 Laminates ................................................................................................................. 17 

2.1.7 Sandwich .................................................................................................................. 19 

2.1.8 FRP composite fabrication methods ........................................................................ 20 

2.1.9 Health and Safety ..................................................................................................... 21 

2.2 Machinability of fibre reinforced plastic (FRP) composites ..................................... 23 

2.2.1 Orthogonal cutting.................................................................................................... 23 

2.2.2 Turning of FRP composites ..................................................................................... 27 



 

viii 

 

2.2.3 Drilling of FRP composites ...................................................................................... 27 

2.3 Milling/routing of composites ...................................................................................... 29 

2.3.1 Process requirements ................................................................................................ 31 

2.3.2 Machinability study .................................................................................................. 32 

2.3.3 Chip formation ......................................................................................................... 33 

2.3.4 Cutting speed and workpiece feed ........................................................................... 35 

2.3.5 End mill geometry .................................................................................................... 36 

2.3.5.1 Fluted tools ........................................................................................................ 36 

2.3.5.2 Interlocking (burr) tools .................................................................................... 37 

2.3.5.3 Abrasive grit tools ............................................................................................. 39 

2.3.6 Tool material ............................................................................................................ 39 

2.3.7 Tool coatings ............................................................................................................ 41 

2.3.8 Tool wear.................................................................................................................. 45 

2.3.9 Cutting forces ........................................................................................................... 49 

2.3.10 Temperature/cooling .............................................................................................. 52 

2.3.11 Surface integrity ..................................................................................................... 55 

2.3.11.1 Delamination ................................................................................................... 55 

2.3.11.2 Surface roughness ........................................................................................... 61 

2.3.12 Modelling and simulation of the milling process ................................................... 65 

2.3.13 Cost analysis ........................................................................................................... 69 

2.4 Non-conventional machining ....................................................................................... 72 

2.5 Design of experiments ................................................................................................... 74 

2.6 Summary of literature review ...................................................................................... 75 

3 EXPERIMENTAL WORK .............................................................................. 78 

3.1 Workpiece material ...................................................................................................... 78 

3.2 Cutting tools routers/end mills .................................................................................... 82 

3.2.1 Tungsten carbide tools ............................................................................................. 82 



 

ix 

 

3.2.1.1 Two-fluted routers ............................................................................................. 82 

3.2.1.2 Burr type routers ............................................................................................... 83 

3.2.2 Polycrystalline diamond (PCD) routers ................................................................... 84 

3.2.2.1 Element 6 PCD grades ...................................................................................... 84 

3.2.2.2 Alternative PCD routers .................................................................................... 86 

3.3 Test and analysis equipment ........................................................................................ 88 

3.3.1 Machine tool ............................................................................................................. 88 

3.3.2 Tool holding ............................................................................................................. 89 

3.3.3 Work holding............................................................................................................ 90 

3.3.4 Force measurement .................................................................................................. 92 

3.3.5 Temperature measurement ....................................................................................... 92 

3.3.6 Tool wear/life evaluation ......................................................................................... 93 

3.3.7 Workpiece surface/slot quality ................................................................................. 94 

3.3.7.1 Laser scanning ................................................................................................... 94 

3.3.7.2 Optical microscopy imaging .............................................................................. 96 

3.3.7.3 Scanning electron microscope (SEM) imaging ................................................. 96 

3.3.7.4 Surface roughness evaluation ............................................................................ 97 

3.3.7.5 Calibration of Alicona optical system ............................................................... 98 

3.4 Experimental design, test procedure and test arrays ................................................ 99 

3.4.1 Phase-1: Effect of operating conditions, tool materials and cutter design ............... 99 

3.4.1.1 Phase-1A: Preliminary work ............................................................................. 99 

3.4.1.2 Phase-1B: Influence of operating conditions and tool materials .................... 101 

3.4.1.3 Phase-1C: Benchmarking of Element 6 PCD grades at preferred operating 

parameters ................................................................................................................... 105 

3.4.1.4 Phase-1D: Benchmarking of carbide tooling products ................................... 105 

3.4.2 Phase-2 Effect of workpiece material lay-up configuration ................................... 106 

3.4.2.1 Phase-2A: Preliminary testing and temperature measurement ...................... 106 



 

x 

 

3.4.2.2 Phase-2B: Effect of workpiece material lay-up configuration ........................ 108 

3.4.2.3 Phase-2C Effect of cutting environment .......................................................... 109 

3.4.3 Phase-3: Effect of varying tool geometry .............................................................. 110 

3.4.3.1 Phase-3A: Influence of router helix angle ....................................................... 110 

3.4.3.2 Phase-3B: Effect of secondary relief angle ..................................................... 111 

3.5 Cutting strategy ........................................................................................................... 111 

3.6 Summary of experimental work ................................................................................ 112 

4 RESULTS AND DISCUSSION ..................................................................... 113 

4.1 Phase-1A: Preliminary work ..................................................................................... 113 

4.2 Phase-1B: Influence of operating conditions and tool materials ............................ 118 

4.2.1 Cutting forces ......................................................................................................... 123 

4.2.2 Surface integrity/roughness .................................................................................... 127 

4.2.3 CTB-010 PCD confirmation test ............................................................................ 141 

4.3 Phase-1C: Benchmarking of Element 6 PCD grades at preferred operating 

parameters ......................................................................................................................... 143 

4.3.1 CTM-302 PCD ....................................................................................................... 143 

4.3.2 CMX-850 PCD ....................................................................................................... 143 

4.3.3 WPC-102 PCD ....................................................................................................... 144 

4.3.4 Tool wear summary ................................................................................................ 145 

4.3.5 Cutting forces ......................................................................................................... 145 

4.3.6 Surface integrity/roughness .................................................................................... 147 

4.3.7 Fuzz (uncut fibre) and delamination factor ............................................................ 150 

4.4 Phase-1D: Benchmarking of carbide tooling products ........................................... 152 

4.4.1 Two-fluted routers .................................................................................................. 152 

4.4.1.1 Tool wear ......................................................................................................... 154 

4.4.1.2 Cutting forces .................................................................................................. 159 

4.4.1.3 Surface integrity/roughness ............................................................................. 161 



 

xi 

 

4.4.2 Burr routers ............................................................................................................ 167 

4.4.2.1 Tool wear ......................................................................................................... 167 

4.4.2.2 Cutting forces .................................................................................................. 168 

4.4.2.3 Surface integrity/roughness ............................................................................. 168 

4.5 Phase-2A: Preliminary testing and temperature measurement ............................. 171 

4.5.1 Effect of workpiece lay-up on cutting force/surface integrity ............................... 171 

4.5.1.1 Cutting forces .................................................................................................. 171 

4.5.1.2 Surface integrity .............................................................................................. 172 

4.5.2 Effect of workpiece lay-up on temperature ............................................................ 175 

4.5.2.1 Cutting forces .................................................................................................. 175 

4.5.2.2 Surface integrity/roughness ............................................................................. 176 

4.5.2.3 Cutting temperature ......................................................................................... 179 

4.6 Phase-2B: Effect of workpiece material lay-up configuration ................................ 183 

4.6.1 Tool life/cut length ................................................................................................. 183 

4.6.2 Cutting forces ......................................................................................................... 186 

4.6.3 Feed force ............................................................................................................... 189 

4.6.4 Surface roughness .................................................................................................. 190 

4.6.5 Delamination factor ................................................................................................ 194 

4.6.6 Fuzz length ............................................................................................................. 195 

4.7 Phase-2C: Effect of cutting environment .................................................................. 196 

4.7.1 Tool wear................................................................................................................ 196 

4.7.2 Delamination factor ................................................................................................ 197 

4.7.3 Surface integrity/roughness .................................................................................... 198 

4.8 Phase-3A: Influence of router helix angle ................................................................ 200 

4.8.1 Tool wear................................................................................................................ 200 

4.8.2 Tool temperature .................................................................................................... 201 

4.8.3 Cutting forces ......................................................................................................... 203 



 

xii 

 

4.8.4 Surface integrity/roughness .................................................................................... 204 

4.8.4.1 4.8.4.1 Slot quality ........................................................................................... 204 

4.8.4.2 4.8.4.2 Surface roughness................................................................................ 205 

4.9 Phase-3B: Effect of secondary relief angle ............................................................... 207 

4.9.1 Tool wear................................................................................................................ 207 

4.9.2 Cutting forces ......................................................................................................... 209 

4.9.3 Surface integrity/roughness .................................................................................... 211 

4.10 Cutting forces, cutting temperature and surface integrity ................................... 217 

4.11 Cost/benefit analysis ................................................................................................. 218 

4.12 Summary of results ................................................................................................... 220 

4.12.1 Phase-1: Effect of operating conditions, tool materials and cutter design ........... 220 

4.12.1.1 Phase-1A: Preliminary work ......................................................................... 220 

4.12.1.2 Phase-1B: Influence of operating conditions and tool materials .................. 220 

4.12.1.3 Phase-1C: Benchmarking of Element 6 PCD grades at preferred operating 

parameters ................................................................................................................... 222 

4.12.1.4 Phase-1D: Benchmarking of carbide tooling products ................................. 222 

4.12.2 Phase-2: Effect of workpiece material lay-up configuration ............................... 222 

4.12.2.1 Phase-2A: Preliminary testing and temperature measurement .................... 222 

4.12.2.2 Phase-2B: Effect of workpiece material lay-up configuration ...................... 223 

4.12.2.3 Phase-2C: Effect of cutting environment....................................................... 224 

4.12.3 Phase-3: Effect of varying tool geometry ............................................................ 224 

4.12.3.1 Phase-3A: Influence of router helix angle ..................................................... 224 

4.12.3.2 Phase-3B: Effect of secondary clearance angle ............................................ 224 

5 CONCLUSIONS & FUTURE WORK ........................................................... 226 

5.1 Conclusions .................................................................................................................. 226 

5.2 Recommendations for future work ........................................................................... 229 

6 REFERENCES ................................................................................................ 230 



 

xiii 

 

7 APPENDICES ................................................................................................. 244 

Appendix-A: Material properties .................................................................................... 244 

Appendix-B: Laminate fabrication procedure (lay-up) ................................................ 245 

Appendix-C: Material safety datasheet (sample) .......................................................... 249 

Appendix-D: Carbon fibre properties ............................................................................ 250 

Appendix-E: ANOVA analysis equations ....................................................................... 251 

Appendix-F: CNC program code .................................................................................... 252 

Slotting full engagement coupon..................................................................................... 252 

Tool life ¾ engagement ................................................................................................... 252 

Appendix-G: Fuzz and delamination measurements .................................................... 254 

Appendix-H: Routers unit cost ........................................................................................ 256 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiv 

 

LIST OF FIGURES 

Figure ‎2.1: Composites classification [6] ................................................................................... 6 

Figure ‎2.2: Fibre reinforced composite material properties in comparison to traditional 

composites and other materials [8] ............................................................................................. 7 

Figure ‎2.3: Use of fibre-reinforced polymer composites in the Airbus 380 [7] ......................... 7 

Figure ‎2.4: Filament and fibre [3] .............................................................................................. 8 

Figure ‎2.5: Modulus vs. strength [3] .......................................................................................... 9 

Figure ‎2.6: Properties and cost of different fibre materials [8] ................................................ 10 

Figure ‎2.7: Making Carbon fibre from PAN or pitch [7] ......................................................... 12 

Figure ‎2.8: Fibre architecture ................................................................................................... 15 

Figure ‎2.9: Weave patterns [8] ................................................................................................. 16 

Figure ‎2.10: Non-crimp fabric [9] ............................................................................................ 16 

Figure ‎2.11: Lamina fibres configurations [7] ......................................................................... 17 

Figure ‎2.12: Anatomy of laminated composite panel [15] ....................................................... 18 

Figure ‎2.13: Example laminate codes [17] ............................................................................... 18 

Figure ‎2.14: Quasi-isotropic vs. unidirectional lay-up [8] ....................................................... 19 

Figure ‎2.15: Honeycomb sandwich panel [13] ......................................................................... 19 

Figure ‎2.16: Most common fabrication methods of composites .............................................. 20 

Figure ‎2.17 Composite material manufacturing methods [14] ................................................. 21 

Figure ‎2.18: Factors/parameters affecting machinability of FRP composites [20] .................. 23 

Figure ‎2.19: Different fracture modes occur at different fibre orientations and tool rake angles 

[23] ........................................................................................................................................... 26 

Figure ‎2.20: (a) Primary and secondary fractures [28], (b) Bouncing back after cutting [29] . 26 

Figure ‎2.21: Acceptable damage (courtesy of Airbus) [134] ................................................... 27 

Figure ‎2.22: Drill geometries investigated (a) Conventional twist drill, saw, candle stick, core 

drill, and stepped drill, (b) Core-saw drill composed of the saw drill (inner) and core drill 

(outer), step core drills (twist, saw and candle-stick) drills [109], trepanning [119] ............... 28 

Figure ‎2.23: Kinematics of wobble milling [12] ...................................................................... 29 

Figure ‎2.24: Shoulder, groove and edge cutting [19] ............................................................... 30 

Figure ‎2.25: End mill in action performing end milling of a shoulder, and edge trimming [4]30 

Figure ‎2.26 : Down (climb) milling, and up (conventional) milling [19] ................................ 31 



 

xv 

 

Figure ‎2.27: Machine requirements for reliable, high quality machining of FRP, proper 

clamping is required as FRP are sensitive to compressive stresses [140]. ............................... 32 

Figure ‎2.28: Cutting speeds for HSM of different materials [143] .......................................... 32 

Figure ‎2.29: Cutting mechanisms for milling of CFRPs [140]. ............................................... 34 

Figure ‎2.30: Chip characteristics (powder, ribbon, brush) 45˚, 90˚, 0˚ [139] .......................... 34 

Figure ‎2.31: Edge routing, face milling, and Sturtz milling [12] ............................................. 35 

Figure ‎2.32: Geometry features of an end mill ......................................................................... 37 

Figure ‎2.33: Tapered shank as a solution for small diameter tools [172] ................................ 37 

Figure ‎2.34: Abrasive grit tools with various grit numbers 30, 50, 80 and 125 [153] ............. 39 

Figure ‎2.35: Difference between un-treated (left) and treated (right) AlTiN coating surface 

[187] ......................................................................................................................................... 42 

Figure ‎2.36: Interlocking layers of polycrystalline and nano-crystalline diamond [195]. ....... 45 

Figure ‎2.37: Interrupted cutting was simulated using a notched workpiece [154]................... 45 

Figure ‎2.38: Flank wear compared after 338 m cut length (calculated total distance travelled 

by tool) at 62 m/min cutting speed, 1270 mm/min feed rate (0.127 mm/tooth) [158] ............. 46 

Figure ‎2.39: Flank wear, chipping and catastrophic failure [145]............................................ 48 

Figure ‎2.40: Flank wear and wear area method [196]. ............................................................. 48 

Figure ‎2.41: Variation of flank wear with effective chip thickness (after cut length of 26 m) 

[162] ......................................................................................................................................... 49 

Figure ‎2.42: wear phenomena using abrasive grit tools [197] ................................................. 49 

Figure ‎2.43: Chip thickness for two different widths of cut [19] ............................................. 50 

Figure ‎2.44: Effect of tool material on cutting forces [163] ..................................................... 51 

Figure ‎2.45: Left: increasing axial feed at constant tangential feed, right: increasing tangential 

feed at constant axial feed [135] ............................................................................................... 51 

Figure ‎2.46: Different cooling options in milling [206] ........................................................... 53 

Figure ‎2.47: Effect of tool diameter and secondary clearance on temperature [155] .............. 53 

Figure ‎2.48: Relationship between tool material and cutting temperature [163] ..................... 54 

Figure ‎2.49: Schematic of the vortex tube [207] ...................................................................... 55 

Figure ‎2.50: Types of surface ply delamination [151] ............................................................. 56 

Figure ‎2.51: Factors affecting probability of delamination occurring [151] ............................ 57 

Figure ‎2.52: Down milling (left) prevents fibre separation [157]. ........................................... 57 

Figure ‎2.53: Calculation of delamination factor [176] ............................................................. 58 



 

xvi 

 

Figure ‎2.54: Delamination due to tool wear (V= 800 m/min, f = 0.03 mm/tooth, ae = D, ap = 

4mm) [171] ............................................................................................................................... 58 

Figure ‎2.55: Fibre orientation angle and cutting angle [171] ................................................... 59 

Figure ‎2.56: Delamination when slot milling at fibre orientation of 135° [171] ..................... 60 

Figure ‎2.57: Delamination and propagation of delamination [171] ......................................... 60 

Figure ‎2.58 Effect of average chip thickness on delamination depth, dark symbols cutting 2.5 

m. white symbols cutting 26 m [162] ....................................................................................... 61 

Figure ‎2.59: Surface roughness (profile height) as a function of the feed rate[19] .................. 62 

Figure ‎2.60: Effect of feed rate on quality in milling CFRP (cutter marks inclined by helix 

angle and spaced by approximately feed is visible on higher feeds [158]. .............................. 63 

Figure ‎2.61: Fingerprint of different diamond grit sizes (left), effect of grit size and feed rate 

on Ra (right) [153] .................................................................................................................... 64 

Figure ‎2.62: Wear indicator and feed load variation with contact length LC and tool diameter 

(V = 200 m/min, f = 0.05 mm/rev) [172] ................................................................................. 66 

Figure ‎2.63: Effect of varying feed and rotational speed on cutting forces [212] .................... 67 

Figure ‎2.64: Implicit and explicit FEM model of CFRP [215] ................................................ 68 

Figure ‎2.65: Calculated and measured cutting and thrust forces for 0° and 90° fibre orientation 

[215] ......................................................................................................................................... 68 

Figure ‎2.66: Instantaneous cutting angle (left) cutting force signal with sinusoidal response 

(right) [216] .............................................................................................................................. 69 

Figure ‎2.67: Variation of cutting forces within 1/2 rotation of the tool (for 0° fibres) ............ 69 

Figure ‎2.68: Cost reductions achieved by adjusting cutting parameters , specific cost £/m can 

be reduced by 9% by longer tool life, and 18% by proper selection of parameters (milling 

CFRP using an 8 mm PCD router at 800 m/min) [156] ........................................................... 72 

Figure ‎2.69: Different tool material cost analysis based on 250 m cut length at manufacturers 

recommended cutting speeds and feed rates [159]. .................................................................. 72 

Figure ‎2.70: Main effects plot of process parameters .............................................................. 75 

Figure ‎3.1: Wing structural part made of CFRP composites (courtesy of Airbus) .................. 78 

Figure ‎3.2: Schematic of Type-1, Type-2 and Type-3 lay-up configurations .......................... 79 

Figure ‎3.3: Diamond disc slitting saw and cutting operation ................................................... 80 

Figure ‎3.4 : Cutting of different specimen sizes from 600 × 550 mm cured panels ................ 81 

Figure ‎3.5: Geometry of 2-fluted WC routers from Seco......................................................... 82 

Figure ‎3.6: Uncoated and diamond coated (Dura) coated WC burr type routers ..................... 84 



 

xvii 

 

Figure ‎3.7: Geometry of PCD routers supplied by Seco .......................................................... 85 

Figure ‎3.8 (a) ITC 2 fluted PCD router, (b) Schematic of Exactaform 3 fluted PCD routers 

(courtesy of Exactaform) .......................................................................................................... 87 

Figure  3.9: (a) Matsuura FX-5 vertical CNC machine, (b) Filtermist extraction system ........ 89 

Figure ‎3.10: Various tool holders used in the experiments ...................................................... 89 

Figure ‎3.11: (a) VacMagic VM 300 vacuum pallet unit (b) safety valve ................................ 90 

Figure ‎3.12: Cutting force /surface integrity coupon clamped on dynamometer ..................... 90 

Figure ‎3.13: (a) NexFlow vortex tube twin nozzle chilled air outlet, (b) vortex tube working 

principle .................................................................................................................................... 91 

Figure  3.14: Implanted thermocouple in Exactaform router .................................................... 92 

Figure ‎3.15: Arrangement for simultaneous force and temperature signal capture using Sigma 

60 oscilloscope ......................................................................................................................... 93 

Figure ‎3.16: Wild M3z toolmaker microscope fitted with Canon EOS 400D ......................... 93 

Figure ‎3.17: Impact CMM with 3D laser scanner for slot quality/damage evaluation ............ 95 

Figure ‎3.18: Machined workpiece sample and corresponding STL scan ................................. 95 

Figure ‎3.19: Sectioning of workpiece coupons for slot wall analysis ...................................... 96 

Figure ‎3.20: Position in sample for optical microscopy imaging ............................................. 96 

Figure ‎3.21: JEOL 6060 scanning electron microscope (SEM) and sample mounting ........... 97 

Figure ‎3.22: Surface roughness tester and sample position during surface roughness 

measurement ............................................................................................................................. 98 

Figure ‎3.23: Alicona optical measurement system ................................................................... 98 

Figure ‎3.24: Full and ¾ engagement of router ....................................................................... 112 

Figure ‎4.1: Tool wear and matrix residues on ITC-PCD router ............................................. 113 

Figure ‎4.2: The effect of feed rate and cutting speed on force components (Fx, Fy, Fz) ...... 114 

Figure ‎4.3: Machined CFRP surface at different cutting parameters ..................................... 115 

Figure ‎4.4: 3D surface topography and roughness parameters using different cutting speeds116 

Figure ‎4.5: 3D surface topography and roughness parameters using different feed rates ..... 116 

Figure ‎4.6: 3D surface roughness parameter Sa (µm) vs. cutting speed and feed rate .......... 117 

Figure ‎4.7: Cutting temperature at different cutting parameters. ........................................... 117 

Figure ‎4.8: Tool wear vs. cut length (all tests) ....................................................................... 118 

Figure ‎4.9: Cut length at 0.1 mm flank wear .......................................................................... 119 

Figure ‎4.10: Main effects plot for tool life ............................................................................. 119 

Figure ‎4.11: (a) worn edge Test-1 (b) worn edge Test-4........................................................ 121 



 

xviii 

 

Figure ‎4.12: Chipping in CTM-302 PCD (Test-5) ................................................................. 121 

Figure ‎4.13: Worn CTB-010 following 28,000 mm cut length (Test-11) .............................. 122 

Figure ‎4.14: Cutting force components against cut length (Test-6) ....................................... 123 

Figure ‎4.15: Cutting forces at 0.1 mm flank wear .................................................................. 123 

Figure ‎4.16: Main effects plot for cutting force (Fx) ............................................................. 125 

Figure ‎4.17: Main Effects plot for Fy ..................................................................................... 126 

Figure ‎4.18: Burning of dust within slot Test-3 ..................................................................... 128 

Figure ‎4.19: 2D surface roughness parameters (Ra, Rt) vs. cut length .................................. 128 

Figure ‎4.20: Average surface roughness Ra (µm) at 0.1 mm VB flank wear ........................ 129 

Figure ‎4.21: Peak to valley roughness Rt (µm) at 0.1 mm VB flank wear ............................ 129 

Figure ‎4.22: Main Effects plot for surface roughness Ra, Rt ................................................. 131 

Figure ‎4.23: 3D surface roughness parameters Sa for all tests ............................................... 133 

Figure ‎4.24: 3D surface roughness parameters St for all tests ............................................... 133 

Figure ‎4.25: Main Effects plot for surface roughness Sa ....................................................... 134 

Figure ‎4.26: SEM micrographs of machined surfaces produced using DLC coated WC ...... 135 

Figure ‎4.27: 3D surface topography using DLC-coated WC ................................................. 135 

Figure ‎4.28: Optical microscope and SEM images of surfaces produced using CTM-302 PCD 

showing Test-6 feed marks on surface ................................................................................... 136 

Figure ‎4.29: SEM micrographs of surfaces obtained in Test-7 and Test-8 showing the 

common surface defects associated with slotting of CFRP .................................................... 137 

Figure ‎4.30: 3D Surfaces obtained using CTM-302 PCD ...................................................... 138 

Figure ‎4.31: 3D surface topography using CTB-010 PCD .................................................... 138 

Figure ‎4.32: Deterioration of surface in absence of chilled air in Test-13 ............................. 139 

Figure ‎4.33: 3D surfaces using CMX-850 PCD ..................................................................... 140 

Figure ‎4.34: Tool surface of WEDM versus mechanical grinding ......................................... 142 

Figure ‎4.35: Worn CTB-010 PCD tool (confirmation test).................................................... 142 

Figure ‎4.36: Worn CTM-302 PCD router at 500 m/min cutting speed and 0.15 mm/tooth feed 

rate in chilled air environment ................................................................................................ 143 

Figure  4.37: Un-completed slot due to tool fracture .............................................................. 144 

Figure ‎4.38: Worn WPC-102 PCD tool following 28000 mm cut length .............................. 144 

Figure ‎4.39: Tool wear versus cut length for different PCD blades ....................................... 145 

Figure ‎4.40: Cutting forces Fx for benchmarked tools a) max b) mean ................................. 146 

Figure ‎4.41: Cutting forces Fy for bench marked tools a) maximum b) mean ...................... 146 



 

xix 

 

Figure ‎4.42: Force signals for different cutting tools ............................................................. 147 

Figure ‎4.43: Machined surface under toolmakers microscope ............................................... 147 

Figure ‎4.44: SEM images of surfaces obtained using new and worn tools ............................ 148 

Figure ‎4.45: Alicona 3-D scans of slot wall machined by different tools .............................. 149 

Figure ‎4.46: 3D surface roughness parameters using different tools ..................................... 150 

Figure ‎4.47: Fuzz length for different tools ............................................................................ 150 

Figure  4.48: Delamination factor for different tools .............................................................. 151 

Figure ‎4.49: Performance of benchmarked tools in slotting .................................................. 151 

Figure ‎4.50: Severely worn Dura coated WC tools at 500 m/min, 0.15 mm/tooth, and chilled 

air after 100 mm cut length .................................................................................................... 153 

Figure ‎4.51: Surface quality following 100 mm cut length using Dura-coated WC at 500 

m/min, 0.15 mm/tooth ............................................................................................................ 153 

Figure ‎4.52: Edge of a worn DLC-coated tool following 300 cut length ............................... 154 

Figure ‎4.53: Worn Dura-coated WC tool edge following 300 mm cut length and 8200 mm cut 

length ...................................................................................................................................... 154 

Figure ‎4.54: Worn uncoated WC tool following 300 mm cut length ..................................... 155 

Figure ‎4.55: Profile of machined surface and worn/serrated edge of the uncoated tool ........ 155 

Figure ‎4.56: Tool wear vs. cut length for different WC tools, tool wear ............................... 156 

Figure ‎4.57: Tool wear vs. cut length for different WC tools, tool wear ............................... 156 

Figure  4.58: SEM micrographs of worn edges ....................................................................... 158 

Figure ‎4.59: Alicona 3D surface vs. a hand sketch depicting different wear patterns ........... 158 

Figure ‎4.60: Cutting forces for different tools ........................................................................ 160 

Figure ‎4.61: SEM micrographs of coating surfaces of DLC coating and Dura coating......... 160 

Figure ‎4.62: Surface topography and 3D roughness values for different WC tools .............. 161 

Figure ‎4.63: Slot quality using DLC-coated tool ................................................................... 161 

Figure ‎4.64: Slot quality using Dura-coated WC ................................................................... 162 

Figure ‎4.65: Slot quality using uncoated WC tool ................................................................. 162 

Figure ‎4.66: 3D surface topography and roughness parameters using Talysurf .................... 163 

Figure ‎4.67: Optical microscope images of down milling side slot wall when tool was new 

and following 300mm cut length ............................................................................................ 164 

Figure ‎4.68: SEM micrographs of machined surface ............................................................. 165 

Figure ‎4.69: Alicona 3D scans of machined surface .............................................................. 166 



 

xx 

 

Figure ‎4.70: Router performance and suitability for the DLC-coated, Dura-coated and 

uncoated WC. ......................................................................................................................... 166 

Figure ‎4.71: worn WC Burr tool ............................................................................................ 167 

Figure ‎4.72: Cutting forces (2 fluted vs. burr routers) ........................................................... 168 

Figure ‎4.73: Slot quality for uncoated and coated burr type tools ......................................... 169 

Figure ‎4.74: Optical tool maker‟s microscope images (up) and SEM images (down) .......... 170 

Figure ‎4.75: 3D surface scans using uncoated and Dura coated WC burr routers ................. 170 

Figure ‎4.76: Router performance and suitability for the uncoated and Dura-coated WC Burr 

routers ..................................................................................................................................... 170 

Figure ‎4.77: Cutting forces when slotting unidirectional laminates 500 m/min cutting speed, 

0.15 mm/tooth feed rate, and using chilled air environment .................................................. 171 

Figure ‎4.78: Forces when slotting different unidirectional laminates (200m/min, 0.03 

mm/tooth) using ITC two fluted router .................................................................................. 172 

Figure ‎4.79: Fx and Fy when slotting unidirectional laminates using Exactaform Neutral and 

Down-cut. ............................................................................................................................... 172 

Figure ‎4.80: Slot quality when cutting slots in unidirectional laminates ............................... 173 

Figure ‎4.81: Machined surfaces obtained in different unidirectional laminates (down milling 

side) using ITC-PCD at 500 m/min cutting speed, 0.15 mm/tooth feed rate and CA (twin 

nozzle) .................................................................................................................................... 173 

Figure ‎4.82: 3D surface topography obtained using ITC-PCD at 500 m/min cutting speed, 

0.15 mm/tooth feed rate and twin-nozzle chilled air .............................................................. 174 

Figure ‎4.83: Values of surface roughness parameter Sa for different unidirectional layups . 174 

Figure ‎4.84: Slot quality when slotting Type-1, Type-2 and Type-3 laminates ..................... 176 

Figure ‎4.85: Machined surface (down milling side) Type-1, Type-2, and Type-3 ( ITC-PCD 

200 m/min 0.03 mm/tooth CA) .............................................................................................. 177 

Figure ‎4.86: 3D surface topography of the down milling side of slots in Type-1, Type-2 and 

Type-3 (Talysurf) ................................................................................................................... 178 

Figure ‎4.87: 3D surface of the up and down milling side of slots in Type-1, Type-2 and Type-

3 (Alicona) .............................................................................................................................. 179 

Figure ‎4.88: Temperature measured when slotting unidirectional laminates (200 m/min 

cutting speed, 0.03 mm/tooth and Twin-Nozzle CA) ............................................................. 180 

Figure ‎4.89: Temperature measured when slotting Type-1, Type-2 and Type-3 laminates (200 

m/min 0.03 mm/tooth, Twin-Nozzle CA) .............................................................................. 181 



 

xxi 

 

Figure ‎4.90: Temperature profile when slotting a 100mm slot (12.6 S) at 200 m/min cutting 

speed, 0.03 mm/tooth feed rate using Exactaform 3-fluted PCD router ................................ 182 

Figure ‎4.91: Slotting temperature when using single nozzle, twin nozzle, and dry environment 

(200 m/min, 0.03 mm/tooth) .................................................................................................. 182 

Figure ‎4.92: Temperature profile using Dry, Single-Nozzle CA and Twin-Nozzle in a 

continuous cut (200 m/min cutting speed, 0.03 mm/tooth feed rate in Type-3 material 

configuration. .......................................................................................................................... 183 

Figure ‎4.93: Cut length achieved in all tests .......................................................................... 184 

Figure ‎4.94: Main effects plot for tool life ............................................................................. 184 

Figure ‎4.95: Severe chipping associated with Type-3 layup configuration, increasing with 

feed rate .................................................................................................................................. 185 

Figure ‎4.96: Effect of material layup configuration on edge wear ......................................... 186 

Figure ‎4.97: Force traces during slotting different material lay-up ........................................ 187 

Figure ‎4.98: Cutting force Fx for all tests .............................................................................. 188 

Figure ‎4.99: Main effects plot for Fx (max) ........................................................................... 188 

Figure ‎4.100: Feed force Fx for all tests ................................................................................. 189 

Figure ‎4.101: Main effects plot for Fy ................................................................................... 190 

Figure ‎4.102: Average surface roughness Sa ......................................................................... 191 

Figure ‎4.103: Peak to valley surface roughness St ................................................................. 191 

Figure ‎4.104: Main effects plot for 3D surface roughness parameter Sa (µm) for new tools 192 

Figure ‎4.105: Main effects plot for 3D surface roughness parameter St (µm) for new tools 192 

Figure ‎4.106: 3D scans of first slot down milling side (new tool) ......................................... 193 

Figure ‎4.107: Main effects plot for delamination factor ........................................................ 194 

Figure ‎4.108: Main effects plot for fuzz length ...................................................................... 195 

Figure ‎4.109: Tool wear following 28 m cut length dry, twin nozzle, and single nozzle ...... 196 

Figure ‎4.110: Cutting forces (average) for different cutting environments ........................... 197 

Figure ‎4.111: Delamination factor and fuzz length ................................................................ 198 

Figure ‎4.112: Microscope images for down-milling side surfaces different environments. .. 199 

Figure ‎4.113: Alicona images different environments ........................................................... 199 

Figure ‎4.114: Flank wear against time for different router geometries .................................. 200 

Figure ‎4.115: Flank wear following 4100 mm cut length at 200 m/min cutting speed and 0.03 

mm/tooth feed rate in chilled air environment ....................................................................... 201 

Figure ‎4.116: Temperature vs. cut length using Exactaform routers ..................................... 202 



 

xxii 

 

Figure ‎4.117: Temperature using new and worn Exactaform routers .................................... 202 

Figure ‎4.118: Cutting force Fx using Up-cut, Neutral, and Down-cut ................................... 203 

Figure ‎4.119: Feed force Fx using Up-cut, Neutral, and Down-cut ....................................... 204 

Figure ‎4.120: Slot quality using different helix angle Exactaform PCD tools ....................... 205 

Figure ‎4.121: Machined surface using Up-cut, Neutral, and Down-cut routers (new tool) ... 206 

Figure ‎4.122: 3D surface topography obtained using Talysurf (left) and Alicona (right) ..... 207 

Figure ‎4.123: Effect of secondary relief on edge chipping .................................................... 208 

Figure ‎4.124: Tool wear against cut length at 500 m/min cutting speed and 0.15 mm/tooth 

feed rate and twin-nozzle chilled air environment ................................................................. 208 

Figure ‎4.125: Cutting forces Fx for benchmarked tools a) mean b) max ............................... 209 

Figure ‎4.126: Cutting forces Fy for bench marked tools a) mean b) max .............................. 210 

Figure ‎4.127: Effect of secondary relief on force signal ........................................................ 211 

Figure ‎4.128: Machined slots using different tool geometries ............................................... 211 

Figure ‎4.129: Machined surface under tool maker‟s microscope .......................................... 212 

Figure ‎4.130: SEM images of surfaces obtained using new and worn tools .......................... 213 

Figure ‎4.131: Alicona 3D scans of slot wall (down-milling side).......................................... 214 

Figure ‎4.132: 3D surface roughness parameters using different tool ..................................... 214 

Figure ‎4.133: 3D surface roughness parameters using different tool ..................................... 215 

Figure ‎4.134: Fuzz length for different tools .......................................................................... 216 

Figure ‎4.135: Delamination factor for different tools ............................................................ 216 

Figure ‎4.136: Performance of different PCD tools in slotting of CFRP ................................ 217 

Figure ‎7.1: Manual ply cutting (left), stitching of plies (right) .............................................. 245 

Figure ‎7.2: components of layup vacuum bag and a final layup under vacuum .................... 246 

Figure ‎7.3: Typical curing bag components (Courtesy of Airbus) ......................................... 247 

Figure ‎7.4: Vacuum bag prepared for autoclave curing ......................................................... 247 

Figure ‎7.5: Curing cycle pressure-temperature over time graph ............................................ 248 

Figure ‎7.6: Typical C-scan result showing a defect free panel .............................................. 248 

Figure ‎7.7: Router path in slotting of surface integrity coupon.............................................. 252 

Figure ‎7.8: Router path in milling of tool life coupon............................................................ 253 



 

xxiii 

 

LIST OF TABLES 

Table 1.1 Project collaboration details ....................................................................................... 4 

Table 2.1: Properties of Carbon fibre, Kevlar, E-glass and S-glass [4] ................................... 12 

Table 2.2 Health effects associated with epoxy type [15] ........................................................ 22 

Table 2.3: References relating to variables and responses studied in orthogonal, turning and 

drilling tests .............................................................................................................................. 24 

Table 2.4: Values and associated references for different machining process ......................... 25 

Table 2.5: Milling process parameters ..................................................................................... 30 

Table 2.6: Variables and responses studied in milling and sample references. ........................ 33 

Table 2.7 :Recommended parameters for roughing and finishing (using PCD tooling) from 

Sandvik [12] ............................................................................................................................. 36 

Table 2.8: Effect of different geometry features on machinability responses .......................... 38 

Table 2.9: Common coating material ....................................................................................... 41 

Table 2.10: Comparison between PVD and CVD coating deposition techniques ................... 43 

Table 3.1: Number of different plies within the lay-up for Type-1, Type-2 and Type-3 

material configurations ............................................................................................................. 79 

Table 3.2: CFRP materials used in the 3 main experimental work phases .............................. 81 

Table 3.3: Properties of WC substrates (courtesy of Seco) ...................................................... 83 

Table 3.4: Properties of coating materials (courtesy of Seco) .................................................. 83 

Table 3.5: Geometry details of burr type routers...................................................................... 84 

Table 3.6: Characteristics of Element 6 PCD grades ............................................................... 85 

Table 3.7: Mechanical and physical properties of Element 6 PCD grades .............................. 86 

Table 3.8: Summary of cutting tools/routers used in the various experimental phases ........... 88 

Table 3.9: Chilled air conditions in single and twin-nozzle arrangements .............................. 92 

Table 3.10: Comparison between standard samples and Alicona measurements .................... 99 

Table 3.11: Test array to evaluate the effect of cutting speed on forces and slot quality ...... 100 

Table 3.12: Test array to evaluate the effect of feed rate on cutting forces and slot quality .. 100 

Table 3.13: Test array to evaluate the effect of varying slot depth on cutting temperature ... 101 

Table 3.14: Test array to evaluate the effect of cutting speed and feed on temperature ........ 101 

Table 3.15: Fixed factors for Phase-1B experiments ............................................................. 102 

Table 3.16: Variable parameters and levels in Phase-1B experiments................................... 102 

Table 3.17: Standard L16 orthogonal array [227] .................................................................. 103 



 

xxiv 

 

Table 3.18: Modified Taguchi L16 orthogonal array ............................................................. 104 

Table 3.19: Fractional factorial test array for Phase-1B experiments .................................... 104 

Table 3.20: Confirmation test parameters for Phase-1B ........................................................ 105 

Table 3.21: Test array to evaluate the performance of Element 6 PCD grades ..................... 105 

Table 3.22: Test array to evaluate the performance of different WC routers ......................... 106 

Table 3.23: Test array to evaluate the effect of workpiece configuration .............................. 107 

Table 3.24: Test matrix to evaluate the effect of cutting environment on cutting temperature 

during slotting operation ......................................................................................................... 107 

Table 3.25: Test matrix to evaluate the effect of cutting environment on cutting temperature 

during a continuous edge routing operation ........................................................................... 108 

Table 3.26: Fixed factors for Phase-2B experiments ............................................................. 108 

Table 3.27: Variable parameters and levels for Phase-2B experiments ................................. 109 

Table 3.28: Full factorial test matrix for Phase-2B experiments ............................................ 109 

Table 3.29: Test matrix to evaluate effect of cutting environment ........................................ 110 

Table 3.30: Effect of helix angle on cutting temperature ....................................................... 110 

Table 3.31: Test matrix to evaluate the effect of secondary relief angle ................................ 111 

Table 4.1: ANOVA table for tool life..................................................................................... 120 

Table 4.2: ANOVA analysis for cutting force Fx .................................................................. 125 

Table 4.3: ANOVA analysis for cutting force Fy .................................................................. 126 

Table 4.4: ANOVA analysis for surface roughness parameter Ra ......................................... 131 

Table 4.5: ANOVA analysis for surface roughness parameter Rt ......................................... 132 

Table 4.6: Number of plies in 5 mm slot ................................................................................ 175 

Table 4.7: Experimental vs. calculated forces (using ITC at 200m/min, 0.03 mm/tooth, CA)176 

Table 4.8: ANOVA for tool life ............................................................................................. 185 

Table 4.9: ANOVA for cutting force Fx ................................................................................ 188 

Table 4.10: Calculated and experimental forces at 500 m/min cutting speed, 0.15 mm/tooth 

feed rate .................................................................................................................................. 189 

Table 4.11: ANOVA for Fy .................................................................................................... 190 

Table 4.12: ANOVA table for Sa ........................................................................................... 193 

Table 4.13: ANOVA table for St ............................................................................................ 194 

Table 4.14: ANOVA for delamination factor ......................................................................... 195 

Table 4.15: ANOVA for fuzz length ...................................................................................... 196 

Table 4.16: Cost and benefits comparison using PCD and WC ............................................. 219 



 

xxv 

 

Table 7.1: Properties of various fibres and whiskers [11] ...................................................... 244 

Table 7.2: CNC program for slotting ..................................................................................... 252 

Table 7.3: CNC program for milling tool life coupon ............................................................ 253 

Table 7.4: Benchmarking test at 500 m/min cutting speed 0.15 mm/tooth in Twin-Nozzle CA 

environment (Phase-1C) ......................................................................................................... 254 

Table 7.5: CTB-010 PCD confirmation test at 500 m/min cutting speed, 0.15 mm/tooth and 

CA Twin-Nozzle environment ............................................................................................... 254 

Table 7.6: Phase-2B tests delamination (new tool) ................................................................ 254 

Table 7.7: CTB-010 PCD (Phase-2 Test-10)   Single-Nozzle CA ......................................... 255 

Table 7.8: Benchmarking at 500 m/min cutting speed and 0.15 mm/tooth feed rate in Twin-

Nozzle CA environment (Phase-3B) ...................................................................................... 255 

Table 7.9: Routers, codes and unit cost .................................................................................. 256 

 

 

 

 

 

 

 

 

 

  



 

xxvi 

 

LIST OF SYMBOLS 

Symbol Definition Unit 

  Angle between the resultant force and cutting force Deg 

φi
 Instantaneous immersion angle Deg 

θ Fibre angle Deg 

ae Radial depth of cut or width of cut  mm 

ac Uncut chip thickness at laminate thickness mm 

aeff Chip thickness removed by burr router mm 

ap Axial depth of cut/ depth per helical rotation mm 

at Ply thickness mm 

C Taylor constant  

CH Chipping wear mm 

Cnew New tool cost  £ 

CL Labor cost £ 

Cm Machine cost £ 

Cr Tool regrinding cost £ 

Cscrap Worn tool selvage value £ 

Ct Tooling cost for a single product £ 

CT Tooling cost for a single tool £ 

D Diameter  mm 

Dc Diameter of cutter mm 

DF Delamination factor  

Dh Helical path diameter mm 

Fx  Cutting force  N 

Fy Feed force N 

Fz Axial force N 

Fm Resultant force N 

f Feed rate per tooth mm/tooth 

f Feed rate per revolution mm/rev 

fza Axial feed rate mm/tooth 

fzt Tangential feed rate mm/tooth 

H Height of profile µm 

hm Mean chip thickness mm 

Kc Tangential specific cutting energy  N/mm
2
 

Ks Specific cutting resistance  N/mm
2
 

Kt Normal specific cutting energy N/mm
2
 

MRR Material removal rate  mm
3
/min 

n Taylor exponent  

np Number of plies being cut   

ns Number of tool regrinds   

Ra Arithmetic average roughness  µm 



 

xxvii 

 

Rq Root mean square roughness  µm 

Rt Maximum peak to valley height  µm 

Rz Ten-point height  µm 

Sa Arithmetic average roughness (3D) µm 

St Maximum peak to valley height (3D)  µm 

tct Tool change time min 

tm Machining time per product min 

T Tool life min
 

Te Tool life for minimum cost min 

Tg Glass temperature 
o
C 

To Tool life for maximum production rate min 

VB Flank wear mm 

VBN Notch wear mm 

Vc Cutting speed m/min 

Vcr Critical cutting speed m/min 

Ve Cutting speed for minimum cost min 

Vf Feed speed  mm/min 

Vo Cutting speed for maximum production rate min 

W Nominal width mm 

Wmax Width of damage mm 

z Number of products in a tool life time  

Z Number of cutter teeth  

  



 

xxviii 

 

LIST OF ACRONYMS 

Acronym Description 

ACF Auto correlation function 

ACGIH American Conference of Governmental Industrial Hygienists  

ANOVA Analysis of variance  

ATL Automatic tape laying 

AWJ Abrasive water jet 

C Ceiling  

CA Chilled air  

CAMQL A mixture of chilled refrigerated air and oil mist  

CBN Cubic boron nitride  

CE Cyanate easter 

CFRP Carbon fibre reinforced plastic composite  

CHD Cumulative height distribution 

CMC Ceramic matrix composite  

CNC Computer numerical control  

CTE Coefficient of thermal expansion  

CVD Chemical vapor deposition 

CW Continuous wave  

DLC Diamond like carbon  

DOF Degree of freedom  

EDM Electrodischarge machining 

EDX Energy-dispersive X-ray 

EHM Equivalent homogenous material 

EP Epoxies 

FEA Finite element analysis 

FP Fibre placement 

FRP Fibre reinforced plastic composites  

GFRP Glass fibre reinforced plastic composite 

HAZ Heat affected zone  

HIPIC Hot isostatic pressure impregnation carbonization 

HLU Hand lay-up 

HM High modulus 

HSM High speed machining 

HSS High speed steel 

HT High strength  

HV Hardness Vickers 

IM Intermediate modulus  

IR Infra-red 

ISO International Standards Organisation  

IT Tolerance grade 



 

xxix 

 

LPI liquid phase impregnation  

MD Multidirectional 

MIS Manufacturing instruction sheet 

MMC Metal matrix composite 

MQL Minimum quantity lubricant  

MS Mean of squares 

MSDS Material safety data sheet 

MSE Mean square of error 

N Noise 

NCF Non-crimp fabrics  

NDM Nearly dry machining  

NDT Non-destructive test 

ND-YAG Neodymium-doped yttrium aluminum garnet 

OSHA Occupational Safety and Health Administration 

P Phenolics 

PAN Polyacrylonitrile  

PCD Polycrystalline diamond 

PCR Percentage of contribution 

PEEK Polyetheretherketone  

PEI Polyetherimide  

PEL Permissible limit of exposure  

PES Polyethersulfone  

PI Polyimide 

PM Pulsed mode  

PMC Polymer matrix composite 

PMI Besmaleimide 

PPS Polyphenylsulfide 

PSDF Power spectral density functions 

PVD Physical vapor deposition 

RFI Resin film infusion  

RMS Root mean square height  

RTM Resin transfer method 

S Signal 

SEM Scanning electron microscopy 

SS Sum of squares  

SST Sum of squares total  

STEL Short term exposure limits 

Ta-C Tetrahedral amorphous carbon 

TLV Threshold limit value  

TRS Transverse rupture strength 

TWA Time weighted average  

UD Unidirectional 

UHM Ultra-high modulus  



 

xxx 

 

UPR Unsaturated Polyester Resin  

USM Ultrasonic machining 

UV Ultraviolet  

VGCF Vapour grown carbon fibre  

WC Tungsten carbide 

WEDM Wire electrodischarge machining 

WJ Water jet 

 

 



 

1 

 

1 INTRODUCTION 

1.1 Background to project 

Advances in composite materials technology have made composites a viable alternative to 

traditional lightweight alloys such as aluminium and titanium for aerospace applications. 

Indeed, most of the world‟s aircraft component manufacturers including Airbus and Boeing 

have indicated that future commercial and military aircraft will increasingly use composite 

components to provide strength to weight ratio, leading to improvements in aircraft 

operational efficiency and fuel savings. The annual research and development expenditure in 

Airbus is £1.6 billion, 90% of which is directed towards technologies for lowering the 

environmental impact of their products. For example, the latest A380 consumes only 3 litres 

of fuel per passenger per 100 kilometres (20% lower than their nearest competitor) while 

emissions of the next generation A350 XWB‟s are 99% below the permitted hydrocarbon 

limit according to the Committee on Aviation Environmental Protection [1]. 

Optimisation of aircraft design necessitates extensive use of advanced materials such as 

CFRP composites in primary aircraft structures for parts such as wing spars, stringers, ribs, 

skin panels etc. In the 1980‟s use of composites in an aircraft was limited to secondary 

structures such as interior panels/trims. Traditionally, the machining of composites is 

considered to be significantly more difficult than their metallic counterparts due to the 

formers‟ material properties such as workpiece heterogeneity, abrasive / tough reinforcement 

phase and anisotropic orientation. Machinability data and recommendations for high speed 

milling of such materials are limited, hence the motivation for this project.  

During the R&D phase of the Airbus A350, Airbus needed to study the machinability of 

CFRP when end milling. Milling/routing processes are used to obtain the final shape of a 

panel produced to near-net-shape. The extent of literature concerning the milling of CFRP 

was limited compared to other processes such as drilling, which is very important for 

assembly process. It was also apparent that the process of identifying the best 

parameters/tools for milling carbon fibre panels is reliant on trial and error experimental 

approaches.  

At the outset of the present work, published milling research essentially dealt with edge 

trimming process, with only a few articles discussing slot milling (slotting) operations. The 

literature review highlighted the absence of data on the use of high cutting speeds and high 

feed rates especially in slotting using polycrystalline diamond (PCD) together with the use of  
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different PCD grades (with cutting edges manufactured by different grinding techniques) or 

various diamond coatings in the slotting of CFRP. Furthermore, there was no data covering 

tool temperature during slot milling or the influence of material configuration. The effect of 

different chilled air flow rates on machined surface quality had not been studied, despite 

equipment and data for vortex operated chilled air delivery being available with reference to 

other materials. In addition, delamination assessment using laser techniques was limited. In 

relation to tool geometry, no details could be found concerning the effect of geometry either 

on stability of cutting or cutting temperature and consequent effects on surface integrity when 

milling FRP composites. Cost analysis with respect to tooling when slotting CFRP was 

similarly not discussed. The overall aim and objectives of the present research reflect the 

above shortcomings in machinability data/understanding.  

 

1.2 Aim and objectives 

The overall aim of the project was to evaluate the machinability and develop improved 

strategies for the end-milling/routing of carbon fibre reinforced plastic composites (CFRP) of 

the type used for aerospace applications. Specific objectives were to: 

A- Undertake a comprehensive literature review on the machining of composite materials 

across different engineering applications, and in particular on the milling/routing of 

CFRP‟s. 

B- Identify preferred/optimum tool material, operating parameters and the cutting 

environment for the machining of specified carbon fibre reinforced composite material. 

This work to include evaluation of the following: 

- Effect of tool material, cutting speed, feed rate, cutting environment on 

machinability aspects such as cutting forces, cutting temperature, tool life and 

surface integrity when slotting CFRP. 

- Benchmarking of PCD grades.   

- Benchmarking of carbide tools and their coatings and identification of related wear 

types/modes with subsequent effects on workpiece surface quality.  

- Identify suitable advanced cutting tool materials (polycrystalline diamond “PCD”, 

WC, chemical vapour deposition “CVD” diamond etc.) to provide reasonable 

levels of productivity, tool life and workpiece quality. 
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C- Evaluate the effect of workpiece material variables (different unidirectional “UD”, and 

multidirectional workpiece layups etc.) on machinability performance and specifically  to 

study: 

- Effect of layup configuration on cutting forces, cutting temperature and surface 

integrity. 

- Effect of different tool geometries on cutting temperature when machining 

different layup configuration. 

- Effect of cutting environment on cutting temperature. 

D- Evaluate the effect of varying tool geometry on the machinability of CFRP with reference 

to the effect of helix angle and secondary clearance on slot milling performance and 

surface integrity. 

E- Identify operating approaches that minimise / eliminate workpiece surface defects such as 

delamination, fibre pull-out, matrix chipping / degradation, cracking etc. during 

milling/routing. 

F- Perform a cost benefit analysis on the proposed machining approach. 

 

The thesis is organised in 6 chapters. Chapter 1 provides a brief introduction to the 

background, aim and objectives in addition to project sponsors and collaborators. Chapter 2 

presents a comprehensive literature review for milling/routing CFRP. 

The experimental work is presented in Chapter 3 and covers work material, cutting tools, 

test equipment, and measuring devices. The chapter also details the experimental 

design/approaches taken, procedures and test arrays and outlines the experimental phases 

adopted to achieve the planned set of objectives. 

Chapter 4 presents the result and discussion for each experimental phase. Data for tool 

wear, tool life, milling forces, slot quality measures as well as cut surface quality are 

presented. The effects of cutting speed, work feed, work material, tool material, etc. are 

discussed. Conclusions drawn from the experimental work are detailed in Chapter 5 while 

recommendations for future work are shown in Chapter 6. 

 

1.3 Project sponsors and collaborators 

The present research work was undertaken in the Machining Research Group laboratories, 

School of Manufacturing & Mechanical Engineering, University of Birmingham. Airbus UK 

initiated the project which was led by Dr. Wei-Ming Sim, who was employed as a Machining 
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Technologist at Airbus and was responsible for A350 XWB wing assemblies. Details of 

industrial supervisors/contacts and funding sources are given in Table  1.1. 

 

Table ‎1.1 Project collaboration details 

Collaborator Contribution Contact 

Airbus Operations 

Ltd UK (Bristol, UK) 

 

£30k  

Workpiece material  

Technical support 

Dr. Wei-Ming Sim (Machining 

Technologist) 

Airbus operations Ltd UK 

New Filton House, Filton, Bristol, BS99 

7AR, U.K. 

Tel: +44(0)7706997494 

Email: WeiMing.Sim@airbus.com 

Element Six  

(Shannon, Ireland) 

 

£2k  

Tool materials  

Technical support 

Dr Peter Harden  

(Manager at Market Support Centre) 

Element 6, Shannon, Ireland. 

Tel: + 353 (0)61 460 048 

Email: peter.harden@e6.com 

Seco Tools UK  

(Alcester, UK) 

 

£2k  

Tool 

fabrication/supply  

Technical support 

Mr David Pearson  

(Business Development Manager – 

Aerospace) Seco Tools (UK) Ltd, Arden 

Forest Industrial Estate, Alcester, Warks, 

B49 6EL, UK.  

Tel: +44(0) 7970 764433 

Email: david.pearson@secotools.com 

Overseas Research 

Student Award 

Scheme (ORSAS) 

 

£ 27k (university fees) 

Scholarship support 

http://www.orsas.ac.uk/ 

University of 

Birmingham 

£39k  

Scholarship support  

Equipment/facilities 

Dr. S. L. Soo (Senior Lecturer and Head 

of the Machining Research Group) & 

Prof. D. K. Aspinwall  

School of Mechanical Engineering 

University of Birmingham, Edgbaston,  

B15 2TT, UK. 

Tel: +44(0) 121 414 4196 

Email : s.l.soo@bham.ac.uk 
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2 LITERATURE REVIEW  

2.1 Composite material 

Over the past 30 years there has been a significant increase in the use of composites in 

aerospace industry as a replacement for metal alloys owing to their high strength/stiffness-to-

weight ratios (specific strength and specific stiffness) which has increased fuel efficiency and 

payload. The Airbus A380 jumbo airliner employs a central wing box made of carbon fibre 

reinforced plastic composite which provides ~1.5 tons reduction in component weight without 

compromising strength. The planned Airbus A350 XWB incorporates nearly 53% of 

composites in its body. An aircraft that is lighter can travel further and have less impact on the 

environment [1]. Composites can also provide stealth benefits [2] such as the skin of 

Lockheed Martin‟s F-35 jet. 

Composite materials have existed since antiquity for example Japanese sword/blades 

made of soft iron sandwiched between steel have good resistance to flexure and impact [3]. 

There are some natural composites such as wood or bone [4] and other man made ones 

surrounding us in everyday life such as concrete or car tyres. Generally, a composite material 

is a mixture of two or more different constituents that are not soluble in each other and remain 

separate on the macro-scale. Each constituent is called a phase[4-6], the part that is 

continuous is called the matrix phase and surrounds and protects the dispersed phase 

(reinforcement) which provides enhanced mechanical properties. 

There are many classifications of composite materials. One of the broadest classifications 

identifies the dispersed phase which can be particles in the case of particulate reinforced 

composites (e.g. concrete) or fibres in the case of fibre-reinforced-composites. Here fibres 

made from glass (GFRP) and carbon (CFRP) are commonly employed, see Figure  2.1. 

Properties of composites depend on the phase materials, concentrations, distribution, form, 

orientation and its fabrication process [3]. Composites can be also classified according to their 

matrix phase material. A matrix material can be metal in the case of metal matrix composites 

(MMC), ceramic as in ceramic matrix composites (CMC), or polymer (PMC) [6]. In this 

work, the emphasis is on fibre reinforced polymer/plastic composites. Figure  2.2 identifies 

property comparisons for composites and more traditional composites and other materials. 

Additionally, predetermined properties can be obtained to suit function and the cost of 

manufacturing large components can be relatively low [5]. Reinforcement can augment other 

properties - chemical, thermal, and electrical. 
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Figure ‎2.1: Composites classification [6] 

 

Many areas/industries utilise composites including aerospace, defence, nuclear, 

automotive, marine (boats, yachts). Composites structures/components can be found in wind 

energy systems, machine tools, sports goods (golf clubs, tennis rackets, bicycles, arrows, 

surfing and skateboards) and biomedical products. Fibre reinforced polymer composites 

(FRP) and particularly those involving carbon fibre (CFRP) are the most widely used 

composite material in military and commercial aerospace systems, see Figure  2.3 for 

examples of FRP‟s in the Airbus A380 [7]. 

 

2.1.1 Particulate reinforced composites 

There are two different types of particulate reinforced composites, based on particle size. 

The first involves large particles where matrix/particle interaction cannot be treated on the 

atomic or molecular level, examples include concrete and cemented carbide cutting tools. The 

second type is dispersion strengthened where the particle/matrix interface can be treated on 

the atomic or molecular level with particles down to 0.01 µm e.g. carbon black dispersed in 

rubber matrix of car tyres. 
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Figure ‎2.2: Fibre reinforced composite material properties in comparison to traditional 

composites and other materials [8] 

 

 

Figure ‎2.3: Use of fibre-reinforced polymer composites in the Airbus 380 [7] 

 

2.1.2 Fibre reinforced composites 

Composites are stronger than steel and lighter than aluminium, they are also 

“heterogeneous”, and “anisotropic” which affect their machinability characteristics as will be 

discussed later. The whiskers or filaments within FRP composites are ~ 5-15 µm in diameter 

which is smaller than a human hair (40-120 µm) [4]. Fibres have an elongated form with 



 

8 

 

aspect ratios l/d of not more than 10 and a maximum cross-sectional area of 0.05 mm
2
. The 

term whisker is used if the fibre is a single crystal. A material is said to have maximum 

strength when it takes the form of a filament or a whisker because of enhanced purity and 

fewer surface defects compared to the bulk material [5, 6]. Filaments can be either continuous 

or discontinuous fibres, Figure 4. Many filaments packed together are termed a bundle or tow 

(untwisted) and the number of filaments in a bundle is referred to as the tow size which 

normally contain 1000‟s of fibres e.g. 3k, 6k, 12k, 24k, 40k, 48, 80k,160k, 320k, 400k and 

410k [9]. A smaller tow size provides easier formability of the composite to a complex shape 

with sharper corners/fillets. The smaller the tow size however the more expensive are the 

fibres [7, 9]. 

 

Figure ‎2.4: Filament and fibre [3] 

 

Reinforcement not only offers a weight saving over metals but also provides enhanced 

mechanical properties such as strength and stiffness [5]. Therefore, fibres should be 

continuous and as long as possible because the load is carried only at the axial centre of fibres 

[6]. A combination of high strength and low modulus means the fibres are strong but flexible 

and can be used to obtain complex shapes. Figure  2.5 displays the difference between strength 

and modulus for a selection of the most common fibres used in industry [3]. The arrangement, 

orientation, concentration, and distribution of fibres affects the properties of fibre reinforced 

composites [6, 7]. For example, a 50% by volume unidirectional E-glass composite will have 

1.37 GPa tensile strength (along fibres) although the individual fibres have a strength of 2.75 
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GPa. If the load is perpendicular to fibres the tensile strength depends on the bonding between 

fibre and matrix [5]. 

 

Figure ‎2.5: Modulus vs. strength [3] 

 

There is an wide range of fibres including Alumina (Al2O3), Aramid (Ar), Boron (B) 

Carbon (C), D-Glass (DGl), E-Glass (EGl), Graphite (Gr), Lithium (Li), Polyacrylonitrile 

(PAN), Quartz (Q), Silicon (Si), Silicon carbide (SiC), S-Glass (SGl), Titanium (Ti) and 

Tungsten (W). Carbon, aramid and glass fibres are the most common. The properties/cost of 

different fibres are shown in Figure  2.6 while more fibre properties can be found in 

Appendix-A. Generally, fibres may require surface treatment to improve their adhesion to the 

matrix [3]. 
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Figure ‎2.6: Properties and cost of different fibre materials [8] 

 

2.1.2.1 Glass fibres 

Glass fibres were first introduced in 1930‟s and are widely used as the reinforcement 

material for composites [5]. They are used in applications requiring high corrosion resistance 

and have diameters 10-20 µm [4]. They have enhanced mechanical properties and low cost 

but their limitation is service temperature which is below 200°C[6]. Additionally, they have 

higher density and lower tensile strength in comparison to carbon fibres [7]. Glass fibres are 

mostly used in polymer matrix composites. The most common types include E-glass 

(electrical), S-glass (high strength), and C-glass. S-glass fibres are used for aerospace 

applications while C-glass fibres are used in applications requiring corrosion resistance. The 

abrasiveness of glass fibre causes excessive tool wear during machining [4, 7]. 
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2.1.2.2 Aramid fibres 

Aramid fibres have high strength and modulus and were introduced early the 70‟s. These 

light-weight fibres are used to increase toughness and impact strength as well as creep and 

fatigue resistance [4, 6]. The limitation of Aramid fibres is their sensitivity to degradation by 

acids and, a temperature ceiling of 200 °C. They are used in a polymer matrix and the most 

common commercial names are Kevlar and Nomex. Typical applications of aramid fibres 

include breakes/clutch linings, and bullet proof vests [6]. Aramid fibres have the advantage of 

negative coefficient of thermal expansion (CTE) in the longitudinal direction and the 

disadvantage of low compressive strength and difficulty in being cut during machining 

operations [4, 7]. 

 

2.1.3 Carbon Fibres 

Carbon fibre dates back to Thomas Edison who made a carbon filament for a bulb. The 

first high strength/modulus carbon fibre was developed in the 1960‟s [10]. It is considered the 

most important material for reinforcement because it possesses the highest specific 

strength/modulus among all fibre materials [6]. Its tensile modulus ranges from 207 GPa to 

1035 GPa [7]. Fibres are produced by the pyrolysis of organic (hydrocarbon) precursor fibres 

such as rayon (cellulose), polyacrylonitrile (PAN), or pitch in an inert (non-reactive) 

atmosphere. Figure 7 shows the typical steps used in making polyacrylonitrile (PAN) based 

carbon fibre. Although a pitch precursor (raw material) is cheaper than PAN [7], the produced 

pitch based carbon fibres cost more than PAN based carbon fibres [11]. PAN carbon fibres 

have lower electrical and thermal conductivity than pitch based ones[7]. Short carbon fibres 

can be grown also by chemical vapour deposition from carbonaceous gas and are known as 

vapour grown carbon fibres (VGCF) [11]. 

 

2.1.3.1 Types of carbon fibre composite 

Carbon fibre reinforced composites are classified according to their tensile strength and 

modulus into the following categories [11]: 

 Ultra-high modulus (UHM) if tensile modulus is > 500 GPa 

 High modulus (HM) fibre where modulus > 300 GPa and strength to modulus ratio < 0.01 

 Intermediate modulus (IM) when fibres have modulus up to 300 GPa and strength –to –

modulus ratio > 0.01 

 Low-modulus Carbon fibres with modulus as low as 100 GPa and low strength 
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 High strength (HS) if strength is > 3GPa and Strength-to- modulus ratio (0.015 – 0.02) 

The properties of different carbon fibres are shown in Table  2.1, see also Appendix-A for 

further data. Carbon filaments can be surface treated (sized or coated) in order to provide 

protection from the atmosphere and improve adhesion (bonding) to the matrix. The selection 

of the sizing material depends on the matrix material. 

 

 

Figure ‎2.7: Making Carbon fibre from PAN or pitch [7] 

 

Table ‎2.1: Properties of Carbon fibre, Kevlar, E-glass and S-glass [4] 

Characteristic 

PAN-based carbons 

Kevlar 49 E-glass S-glass 
High modulus  

(HM) 

High strength  

(HS) 

Diameter (µm) 5-8 6-8 8-14 10-20 10-20 

Density (kg/m3) 1.81 1.78 1.44 2.62 2.46-2.49 

Young’s‎modulus‎

(Gpa)  
 

 Parallel to fibre 400 230 131 80-81 88-91 

 Perpendicular  12 20 70 
  

Tensile strength (Gpa) 2.5-4.5 2.8-4.2 3.6-4.1 3.1-3.8 4.38-4.59 

Strain to failure (%) 0.6 2.0 2.8 4.6 5.4-5.8 

Coefficient of 

thermal expansion 

(10
-6

K
-1

)  
 

 Parallel to fibre -0.5 -0.6 -4.3 6.0 2.9 

 Perpendicular  7.0 10.0 41 
  

Thermal conductivity (W/m K) 70 11 0.04-1.4 10-13 1.1-1.4 

Specific heat (kJ/kgk) 0.7-0.9 
 

0.769 0.45 0.41 
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2.1.4 Matrix in FRP composites 

The matrix material protects the reinforcement fibres from abrasion or chemical reactions, 

keeps the fibre in place, distributes the load and determines the service temperature of a 

composite material [6]. Matrix materials should provide good adhesion to the fibre surface 

and compatible stress strain behaviour with fibres [5]. Generally, composites can be classified 

according to matrix material: polymer matrix composites (PMC), metal matrix composites 

(MMC), Carbon matrix as in Carbon-Carbon composites, or hybrid composites.  

Metal matrix composites have the advantage of high temperature resistance [6, 7, 11], 

high fire resistance, good transverse strength/modulus and high thermal/electrical 

conductivity [11]. Metals such as aluminium, copper, nickel, magnesium, steel, titanium or its 

alloys can be strengthened with carbon fibres. Carbon fibres are used in the metal matrix to 

reduce the density as well as the coefficient of thermal expansion (CTE). Fabrication of such 

composites is achieved by wetting fibres in the molten metal or infiltration of a preform by 

liquid metal under pressure [11]. The incorporation of carbon fibres in aluminium requires a 

high temperature of 500 °C, which may degrade the carbon fibres and necessitates the use of a 

coating [7].  

Ceramic matrix composites (CMC) can be used for high temperature applications [6]. The 

ceramic can be either an oxide or non-oxide and typically exhibits low density, high 

temperature resistance, high thermal shock resistance, high modulus but poor crack resistance 

(brittle) [7]. Fracture toughness can increase up to 6 times because the particles or fibres act as 

crack stoppers[6]. They are used in high-temperature applications for aerospace and engine 

components [11]. Glass, MgO, A12O3, SiC, Si3N4, and ZrO2 are other ceramic materials that 

have been used as matrix materials for carbon fibre composites that are made mainly by hot 

pressing[11]. 

Carbon-Carbon composites possess the highest temperature resistance among composites. 

Furthermore, their coefficient of thermal expansion is near zero. The main disadvantages 

relate to high fabrication cost, poor oxidation resistance and poor interlaminar properties. 

Fabrication methods include liquid phase impregnation (LPI), hot isostatic pressure 

impregnation carbonization (HIPIC), and hot pressing. Applications for carbon-carbon 

composites include aircraft brakes, heat pipes and heat sinks, re-entry vehicles, rocket motor 

nozzles, hip replacements, biomedical implants, tools and dies, and engine pistons [6, 11]. 

Polymer matrix composites (PMC) (commonly plastics) comprise long chain molecules 

containing repeating units of atoms[7]. They are easier to fabricate than other types of 
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composite because of low processing temperatures. They can be either a thermoplastic or a 

thermoset. In thermoplastic polymers the atoms are not chemically joined and the molecules 

have weak Van-Der-Waals bonds [7]. For the common thermoplastics such as 

polyethersulfone (PES), polyetheretherketone (PEEK), polyetherimide (PEI), and 

polyphenylsulfide (PPS), the processing temperature typically ranges from 300°C to 400°C. 

Thermoplastics offer greater ductility and processing speed compared to thermosets, and can 

withstand high temperatures. The higher processing speed of thermoplastics is due to the low 

glass transition temperature (Tg) above which the material is softened and easily shaped. 

Subsequent cooling completes the fabrication process [4, 7, 11]. 

In thermosets the molecules are chemically joined together (cross liked) by strong 

covalent bonds [7]. For thermosets, such as epoxy and phenolic, the processing temperature 

typically ranges from room temperature to about 200°C. Thermosets (especially epoxy) have 

long been used as the polymer matrix for carbon fibre composites. During curing, usually 

performed in the presence of heat and pressure, a thermoset resin hardens gradually due to the 

completion of polymerization and the cross-linking of the polymer molecules. The curing of a 

thermoset resin is a reaction which occurs gradually. Thermoset resins in the liquid state 

quickly wet the surface of carbon fibre [11]. Heating of thermoset material causes 

disintegration and burning [4]. Thermoset limitations include a short shelf life, long 

fabrication times, and low strain to failure [7]. Thermosets in the liquid state require cross 

linking and solidification which takes from 7 hours to several days after adding the relevant 

agents. Partially cross-linked epoxies can be used where crosslinking is interrupted by storing 

the material at -18 °C [4]. The most commonly used thermoset polymer matrices include: 

Epoxies (EP): Used for high quality high performance composites, normally a shiny  

amber/brown colour [12]. They exhibit excellent mechanical properties, toughness, and 

environmental resistance[13], however, their mechanical properties depend on the cure 

temperature of the epoxy (120 °C cure is used for moderate performance, while 180 °C cure is 

used in aerospace/military applications) with service temperature up to 155°C [8]. Nearly 

95% of aerospace composites are epoxy based because of their inherent advantages such as 

the variety in mechanical properties achievable with different resins/hardeners and good 

adhesion to fibres. On the other hand, epoxy can suffer from moisture absorption and 

degradation, produce toxic fumes if burnt, and require painting to resist ultraviolet (UV)[14]. 

Vinyle Easter: Has balanced properties between epoxy and polyester. 
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Phenolic (P): Is a relatively cheaper thermoset resin used for secondary aircraft structures 

and interiors [13]. Its main advantage is fire resistance [12] with low smoke and toxic 

emissions [8]. 

Besmaleimide (BMI) and Polyimide (PI): Exhibit high mechanical properties at elevated 

temperatures[13]. They can withstand up to 260 °C and are mainly used in aero engines [8] 

but are relatively expensive.  

CyanateEaster (CE): Exhibits temperature resistance up to 350 °C but absorbs moisture 

[13]. 

The term hybrid composites usually refers to composites containing more than one type of 

filler and/or more than one type of matrix [4, 11]. Hybrid composites can be cheaper than 

other types of composites depending on the required properties [6]. 

 

2.1.5 Fibre forms/architecture 

Fibre type, volume fraction, length, and orientation affect the properties of a laminate in 

terms of density, tensile strength and modulus, compressive strength, thermal and electrical 

conductivities, fatigue strength and cost. Fibre form identifies the arrangement of fibres in the 

composite [7] which may involve unidirectional tows (strands), yarns (twisted), roving tapes 

in one-dimensional composites, (bi-dimensional or bi-directional) woven or nonwoven fabrics 

(felts or mats) and tri-dimensional fabrics or multidimensional fabrics with fibres oriented 

along many directions (>2)[3, 7], see Figure  2.8.  

 

 

Figure ‎2.8: Fibre architecture 
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In unidirectional fabrics the fibres are held in place using an adhesive strip without 

weaving or fine weft to form non-woven UD fabrics alternatively the fibres can be woven [9]. 

Woven fabrics are more convenient for handling [11] see Figure  2.9. Fabric is made of fibres 

in two perpendicular directions namely warp and fill (weft). The fibres are woven together, 

which means the fill yarns pass over and under the warp yarns, following a fixed pattern of 

either plain weave or basket weave [4]. In 5-harness satin weave each fill yarn goes over 4 

warp yarns before going under the fifth. A twill weave is done by passing the weft yarn over 

one or more warp yarns and then under two or more warp yarns and so on, with a "step" or 

offset between rows to create the characteristic diagonal pattern. 

A drapeable fabric is easier to layup over complex shapes and drapeability is the ability of 

fibres to conform to the shape of the tool [4]. To obtain a fabric with maximum strength the 

fibres should be as straight as possible with minimum overlapping (i.e. low crimp). Knitting is 

a textile method used to obtain woven fabrics [7] but is not discussed in detail in this chapter. 

 

 

Figure ‎2.9: Weave patterns [8] 

 

Non-crimp fabrics (NCF) are produced by assembling unidirectional layers and stitching 

them together to prevent fraying of fibre bundles. They can be unidirectional, bidirectional, 

Tri-axial, or quad-axial, see Figure  2.10. NCF flexibility in lay-up (drapeability) depends on 

material, angle, and the number of plies. Although NCF is cheap, it sometimes suffers from 

waviness and gaps [14]. 

 

Figure ‎2.10: Non-crimp fabric [9] 

 

http://en.wikipedia.org/wiki/Weft
http://en.wikipedia.org/wiki/Warp_(weaving)
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Braiding is another textile weaving method [7] suitable for making composite tubes [11]. 

Prepregs (pre-impregnated fibres) are intermediate product consisting of fibres or tows 

aligned together in the form of sheet or tape coated with matrix (resin). The matrix material is 

usually not fully cured and is flexible enabling the laminate composite to be stored in a 

freezer and cured. The advantages of prepregs are as follows [15]: 

 Reduced handling damage to dry fibres. 

 Improved laminate properties by better dispersion of short fibres. 

 Allows the use of hard-to-mix or proprietary resin systems. 

 Allows more consistency because there is a chance for inspection before use. 

 Subsequent heat curing provides more time for the proper laydown of fibres and for 

the resin to move and degas before cure. 

 Enables increased curing pressure which reduces voids and improves fibre wetting. 

 Enables optimisation of individual systems to improve processing. 

 

2.1.6 Laminates 

Lamina describes a layer of composite material in which fibres are oriented in one or more 

directions to reinforce the matrix. Laminae is the plural of lamina and a laminate is a stack of 

bonded Laminae [16]. Lamina usually ranges from 0.1-1 mm thick and consist of fibres, 

matrix, coupling agent or fibre surface coating, fillers, and other additives. Layers or plies are 

stacked and consolidated to form a laminate [7]. Lamina fibre configurations are shown in 

Figure  2.11 alternatively they can comprise a hybrid arrangement. 

 

 

Figure ‎2.11: Lamina fibres configurations [7] 

 

Figure  2.12 shows the anatomy of a laminated composite panel. Accordingly, the x axis 

represents the 0° and positive angles are counter clockwise while the negative angles are 

clockwise. In this case angles of 135° and -45° define the same fibre orientation. The laminate 

code provides a simple and easy description of a laminate ply orientation and the stacking 
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sequence. The simplest code describing a laminate consisting of fibres at different angles such 

as 0°, 45°, 90° and 135°, uses brackets to indicate the percentage of different ply orientation 

in the laminate. Consequently a designation of (25/50/25) means 25% of plies are in 0°, 50% 

at 45° and 135° or -45° and 25% at 90°. Alternatively, the code may indicate the percentage 

of 45° and 135° plies separately, such that (25/25/25/25) means every ply orientation equally 

represents 25% of the laminate. These codes are not descriptive enough for the stacking 

sequence.  

 

 

Figure ‎2.12: Anatomy of laminated composite panel [15] 

 

In order to have a better description of the ply stack sequence, another code is used in 

which the orientation of each lamina is represented by the angle of orientation. The lamina 

code shows the order from the first ply to the last one between brackets. Orientation of 

successive layers is separated by a slanting line as long as they are of different orientation. If 

two or more adjacent plies are in the same direction, they will be put in parentheses and a 

number is indicated by a subscript. In the case of symmetric layups, a subscript of S is used 

while for non-symmetric laminates a subscript T outside the bracket denotes the total laminate 

definition code. If a layer is a weave fabric a subscript f is used. In hybrid composites, the ply 

material is represented by a subscript after the ply angle, see Figure  2.13 [17].  

 

 

Figure ‎2.13: Example laminate codes [17] 
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For a quasi-isotropic laminate, there are three or more layers [15] with a middle plane that 

separates two half thicknesses of the laminate. Mid plane symmetry means stacking the plies 

on both sides starting from the middle plane. During cooling, the plies have a tendency to 

contract differently depending on their orientations causing thermal residual stresses, but 

using mid plane symmetry prevents deformation of the part [3], see Figure  2.14.  

 

 

Figure ‎2.14: Quasi-isotropic vs. unidirectional lay-up [8] 

 

2.1.7 Sandwich 

A sandwich composite structure, see Figure  2.15, comprises a thin composite laminate 

skin bonded to a thicker core made from honeycomb, foam or balsa. The sandwich structure 

has very low weight, high stiffness, and typically production costs are low [8, 13]. 

 

 

Figure ‎2.15: Honeycomb sandwich panel [13] 
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2.1.8 FRP composite fabrication methods 

Generally, a composite component can have either monolithic, self-stiffened, sandwich 

structures or a combination of these. A monolithic component consists of parts or laminates 

without a core partly stiffened by stringers and stiffeners held together by fasteners [14] an 

example of which is the primary structure of an aircraft wing (shown in the next chapter). A 

self-stiffened component is designed to be stiffened by its own geometry and moulded as one 

part that may have stiffening features such as u-shaped elements [18]. A sandwich structure 

consists of two monolithic parts with a core (e.g. honeycomb or foam) between two surface 

layers [19].The most common fabrication methods are shown in Figure  2.16. 

 

 

Figure ‎2.16: Most common fabrication methods of composites 

 

Prepreg lay-up is used to produce high performance composites. The process can involve 

manual hand lay-up (HLU) or automatic layup using a robot or CNC machine as in the 

automatic tape laying (ATL) process. The prepregs require a vacuum bag and curing in an 

autoclave in order to harden the matrix. The curing process can be done in an oven for marine 

and railway applications while most high performance aerospace composites are cured in an 

autoclave [8]. Fabrication of material used in this research by HLU process is detailed in 

Appendix-B. A diagram summarising the process which is used for primary and secondary 

aircraft structure parts is shown in Figure  2.17 [14] .  

Inspection of fibre reinforced composite parts typically focuses on the fibre arrangement 

and defects such as matrix cracks (voids, porosities), fibre cracks, interface cracks 

(debonding), delamination (splitting between laminae and a laminate) or inclusions which 

may significantly affect its properties [11]. Inspection methods include metallographic 

examination, X-ray analysis, infrared thermal imaging, and the C-scan techniques.  
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Figure ‎2.17 Composite material manufacturing methods [14] 

 

2.1.9 Health and Safety 

Machining carbon fibre can affect human health and machine condition. The person using 

composites can be exposed to hazardous material through skin and eyes by contact or 

inhalations of solvent fumes or dust, ingestion, or injection of fibres which enter the body by 

puncturing the skin. Skin protection requires the use of gloves while masks and extraction 

systems are required to remove dust and hazardous volatiles. Abrasive fibres cause wear to 

machine tool guideways, and conductive fibres cause short circuiting [4]. Abrasive dust may 

also cause spindle wear, hence, there is a need for dust extraction systems [12]. Material 

toxicity in relation to human health is a function of the exposure times. The probability of this 

hazard being harmful is called the risk. For every material which poses a hazard to human 

health there are permissible limits of exposure. Occupational Safety and Health 

Administration (OSHA‟s) permissible exposure limits (PEL) and ACGIH‟s threshold limit 

value (TLV) are the most common recommended exposure limits for airborne concentration 

of a material [15]. 
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There are common terminologies to describe exposure limits which are time weighted 

average (TWA), short term exposure limits (STEL), and ceiling (C). The first is based on the 

8 hr work period done by the majority of workers, the second is the exposure permitted for 

short times, while the third one is the exposure not to exceed a specific level. Data for each 

case appears as PEL-TWA or TLV-STEL etc.[15].  

There are hazards which relate to the matrix material and the fibres. For example a carbon 

fibre/epoxy composite material may have some health effects as seen in Table  2.2 [15]. 

Normally, the material supplier provides a material safety data sheet (MSDS) which includes 

toxilogical information to be used for risk assessment of a material. The MSDS of the 

material used in this thesis can be found in Appendix-C. 

Machining of composite materials is necessary to obtain accurate geometries and surfaces 

to facilitate a precision fit of components during assembly. It also improves surface quality 

and eliminates inherent shrinkage problems from previous composite processing.  

Machining of composites represents a challenge owing to the inhomogeneous and 

anisotropic nature of the material. Machining of such materials depends largely on the cutting 

direction with respect to fibres. As a result, the large machinability database relating to 

metals, alloys and plastics are not appropriate/relevant for composite machining.  

 

Table ‎2.2 Health effects associated with epoxy type [15] 

Material Known‎health‎effects Key‎notes 

Bisophenol A 

based 
Possible skin senstiser; low order 

of acute toxicity; slightly to 

moderately irritating 

Insufficient evidence to classify as a 

carcinogenic according to IARC. 
Considering the many studies as a 

whole, the evidence does not show the 

resins to be carcinogenic 
Carbon or 

graphite 

fibres 

Mechanical abrasion and irritation 

of the skin; possible dermatitis; 

physico-mechanical properties of 

the fibres rather than a toxico-

chemical reaction. 
Possible reaction from the 

fibersising.  

PEL-TWA is 15 mg/m
3 

total dust, and 

PEL-TWA of 5 mg/m
3 

for synthetic 

graphite respirable dust. ACGIH has a 

TLV-TWA of graphite except fibres. 
There are no limits for carbon fibre, 

through the US Navy has set 3 carbon 

fibres/cc. EPA did not classify the 

potential carcinogenic properties of 

carbon fibres due to insufficient data 
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2.2 Machinability of fibre reinforced plastic (FRP) composites  

Machinability is not a single measureable characteristic of a material nor is it universally 

defined but it describes the level of difficulty encountered in cutting a material [19, 20]. The 

assessment of machinability involves measurement/evaluation of cutting tool performance 

(tool wear/life), cutting forces and power, cutting temperature, surface integrity 

(delamination/roughness etc.), and chip formation. Figure  2.18 shows factors affecting the 

machinability of FRP composites during cutting operations [20]. In the following sections, the 

machinability of FRP undergoing machining by various cutting processes with emphasis on 

milling will be discussed to highlight research trends. 

 

 

Figure ‎2.18: Factors/parameters affecting machinability of FRP composites [20] 

 

2.2.1 Orthogonal cutting 

Researchers have studied the orthogonal cutting of composites since the early 1980‟s to 

understand the behaviour of the composites when machined. Research on turning and drilling 

has increased with the increased application of composites in industry. Table  2.3 gives 

references relating to variables and responses. Research on drilling represents the majority of 

machinability literature. Despite the fact that in orthogonal cutting (two dimensional 
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arrangements) there are few cutting parameters compared with industrial machining (three 

dimensional), it is felt noteworthy to detail values and associated references, see Table  2.4. 

 

Table ‎2.3: References relating to variables and responses studied in orthogonal, turning and 

drilling tests 

Process Variables Responses 

 

O
rt

h
o

g
o

n
al

 c
u

tt
in

g
 

Tool geometry [21-33] 

Fibre orientation [21-25, 27-29, 32, 33] 

Depth of cut [21, 23-27, 29, 30, 32, 33] 

Tool material/coating [21, 33] 

Workpiece material [29] 

Cutting speed [21, 23-25] 

Chip formation [21-25, 27-29, 33] 

Cutting force [21-25, 27-34] 

Tool performance [21, 22, 31] 

Surface roughness [21, 23-25, 29] 

 

 

T
u

rn
in

g
 

Feed rate [35-53] 

Cutting speed [35-40, 42-44, 47-54] 

Depth of cut [37, 39, 40, 43, 47, 49-53] 

Tool material/coating [38-44, 47, 48, 55, 

56] 

Tool geometry [40, 41, 44, 45] 

Workpiece material [35, 36, 38, 39, 41, 

45, 46, 57] 

Fibre orientation [37, 48-51] 

Cutting force [35, 36, 39-43, 45-48, 58] 

Tool performance [38-41, 43, 44, 47-50, 

55, 56].  

Temperature [43, 47] 

Chip formation [43, 48] 

Surface roughness [37, 39-42, 44] 

[45, 48, 51-54, 56, 58] 

 

 

D
ri

ll
in

g
 

Feed rate [59-103], 

Cutting speed [59, 61-65, 67-70, 72, 74, 

76-86, 88, 90-100, 102, 103], 

Tool geometry [59-61, 64, 65, 67-71, 73, 

78-84, 87, 92, 94, 96, 97, 99, 104-114], 

Tool material performance [62, 82, 88, 

91, 93, 95, 96, 99, 108, 113, 115, 116],  

Drill diameter [68, 71, 72, 95, 98, 101, 

107, 117-119], 

Workpiece material [72, 74, 95, 100, 

102, 107] 

Fibre orientation [60, 66], 

Delamination [59-61, 64-67, 69-80, 86, 

87, 90, 91, 93, 96-98, 100, 103, 106-111, 

116-118, 120-126] 

Thrust force/torque [59-75, 82-93, 96, 99-

111, 116-128] 

On surface roughness [68, 91, 93, 95, 

100, 102, 103, 113, 114] 

On roundness / circularity size [60, 92, 

93] 
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Table ‎2.4: Values and associated references for different machining process  

Factor  Orthogonal 

cutting 

Turning Drilling 

Material CFRP [21-29, 33, 34] [36, 38, 39, 41, 43, 

44, 47, 48, 55, 56, 

58] 

[59-64, 66-73, 76-79, 

81-85, 96-99, 104-108, 

112, 114, 116-118, 120-

126, 128, 129] in epoxy, 

[100, 103] ABS matrix 

GFRP [30-32, 130] [35, 37, 40, 42, 45, 

46, 49-51, 53, 57] 

[74, 75, 80, 87-90, 94, 

95, 101, 102, 114, 115, 

119] 

Aramid -  [72, 95, 114] 

Tool geometry Rake -10° [27] to 

40°[32] 

-5° [47] to 20° 

[41] 

- 

Relief 5° [21] to 30°[30] 5° [39] to 12° [56] - 

Helix -  - 

Cutting speeds m/min 0.46 m/min [31] 

to 48 m/min [21] 

11 [48] to 800 [38] 1.9 m/min [100] to 877 

m/min [88] 

Feed rate mm/min --- 0.025 mm/rev [38] 

to 0.5 mm/rev [49] 

0.001 mm/rev (1.5 

mm/min) [124] to 0.7 

mm/rev 700 mm/min 

[117] 

Depth of cut mm 0.025 [29] to 0.4 

[31] 

0.05   [58] to 2   

[41] 

 

Force 

components 

N/ N.m Fc, Ft Fc, Ft, Fr Fz, Mz 

 

A large number of published papers dealing with the orthogonal cutting of composites 

focuses on chip formation using the quick-stop technique [21-26]. Accordingly it was found 

that when cutting unidirectional composites with fibres tilted towards the cutting direction at 

45°, the fibres encounter compression and bending, and are broken by shear. In the case 

where fibres are tilted away at 135°, they encounter tension and bending and easily broken 

due to their brittle nature, the resulting fibre pull-out providing a smoother machined surface 

[22, 29]. When cutting multi-directional composites, the response of fibres at angles ≥ 90° is 

improved by the support of the adjacent layers yet material removal is governed by the most 

difficult to cut rigid layers [24] see Figure  2.19 [23] . Chip shape, cutting forces, and surface 

roughness are also dependent on fibre orientation. 
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Figure ‎2.19: Different fracture modes occur at different fibre orientations and tool rake angles 

[23] 

 

Arola et al. suggested that chip fracture occurs in two stages due to primary and secondary 

fractures [27, 28] as shown in Figure  2.20 (a). Wang and Zhang [29] reported a „bounce-back‟ 

phenomena which tended to increrese rubbing between the tool and workpiece, see 

Figure  2.20 (b). However, there were no equations presented to describe neither the bouncing 

back nor the primary/secondary fractures phenomena. The coefficient of friction between a 

WC tool and CFRP composite is ~ 0.25 [21] compared to 0.5-0.8 in the case of WC with 

metals [131]. Only few researchers have compared the performance of different tool materials 

[21, 33] and there have been relatively few attempts to model the process using either 

Merchant‟s model [22] or FEA [27, 28, 32-34, 130]. 

 

 

Figure ‎2.20: (a) Primary and secondary fractures [28], (b) Bouncing back after cutting [29] 

 

Published research work on turning has covered the effect of fibre length (i.e. long or 

short) [39], the machining of an unreinforced matrix in comparison to a fibre reinforced one 

[41, 45], and the effect of different composite processing methods [57]. Reinforcing glass 

fibres were found to be responsible for the brittle behaviour and lowering of the cutting forces 

[46]. Testing has also included the use of brittle cutting tools like ceramics [39, 44]. The use 

of tools with a sharp corner is not recommended for achieving good surface roughness [45]. 

Vibration assited cutting helped minimise workpiece surface roughness even in the most 

difficult cutting conditions with fibres at 90˚ orientation. 
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Sreejith et al. reported a cutting temperature ranging from 200-450 °C depending on 

cutting speed and feed rate [43]. In the case of PCD tools, the temperature was less than WC 

due to the higher thermal conductivity of the PCD (~560 W/mK) compared to WC (85-100 

W/mK) [56]. 

 

2.2.2 Turning of FRP composites 

Turning research has highlighted operational aspects such as low dynamic forces which 

result mainly from the alternating fibre direction with workpiece rotation and provided an 

understanding of the effect of different parameters on workpiece quality with moderate levels 

data on tool performance and tool wear. Despite the good performance and long tool life 

reported, some of the tools detailed may not be applicable in milling as will be discussed later. 

Little or no data appears to have been published concerning tool temperature when using 

coolants. 

  

2.2.3 Drilling of FRP composites 

Hole making represents 90% of the carbon fibre machining in the aerospace industry 

[132]. Tool performance is characterised by the number of holes drilled. The effect of thrust 

force and torque have been extensively studied as they affect delamination and hole quality 

aspects. Delamination represents the main concern associated with drilling of composites as it 

affects the fatigue life due to splitting cracks [129] and is responsible for rejection of drilled 

parts which are very expensive [133]. Delamination in the top ply is typically lower than in 

the bottom ply which is why permitted drill damage at the entrance surface should be less 

than 1.5 mm measured from the edge of the hole, and be not deeper than 0.25 mm while the 

damage permitted at the exit surface depends on the diameter as specified in Figure  2.21.  

 

 

Figure ‎2.21: Acceptable damage (courtesy of Airbus) [134] 
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Delamination can be quantitatively measured using different techniques such as ultra-

sonic C-scan [59, 61, 62, 64, 65, 69, 118], imaging analysis [74, 76, 81, 82], radiography [97, 

104, 120, 121] or, laser "Shadow Moire", as presented by Seif et al. [77]. Radiography (X-ray 

computerised tomography) and laser techniques have the capability of detecting surface and 

sub-surface defects, without contact or using liquid mediums compared to C-Scan which can 

affect the properties of composites [59]. 

Researchers have used different methods to obtain dimensional and non-dimensional 

delamination measures. Khashaba studied delamination size (Rmax-R) which was measured 

using imaging [74]. Tsao and Hocheng [59] calculated a delamination factor by dividing the 

diameter of the damaged zone by the hole diameter from C-Scan images. A more accurate 

delamination factor based on damage area was used by Davim et al. [76]. Delamination was 

found to be affected by drill diameter [59] and feed rate, and reduced with cutting speed [74, 

77, 80, 81, 98], eccentricity [110], and point angle [81]. It was also noted that the chisel edge 

was responsible for more than 50% of the thrust force [101]. For optimum results, the use of 

special tool designs rather than the conventional twist drills have been adopted to minimise 

damage [97], see Figure  2.22.  

 

 

Figure ‎2.22: Drill geometries investigated (a) Conventional twist drill, saw, candle stick, core 

drill, and stepped drill, (b) Core-saw drill composed of the saw drill (inner) and core drill 

(outer), step core drills (twist, saw and candle-stick) drills [109], trepanning [119] 

 

Delamination can be minimised or prevented using trepanning (16 times higher feeds, 

50% less thrust and 10% less torque) [119], a woven or random fibre orientation compared to 

unidirectional laminates [74], a pilot hole to neutralise chisel edge effects [71, 72], backup[75, 

77], peel ply layers [82, 96], variable feed rate (decaying feed) [60, 74, 122], vibration 

assisted drilling (small amplitude < 6 µ and high frequency > 300 Hz ) to reduce the thrust 

force and torque by 20-30% [88-90], helical feed or orbital drilling (65% of conventional drill 
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force) [86, 108, 135], or by using hybrid process (ultrasonic assisted helical drilling)[136]. 

Most recently, an ingenious technique for minimizing both entry and exit delamination was 

developed by Schulz et. al [137] involving a 5-axis wobble milling technique where the 

material acts as self-backup as shown in Figure  2.23. Alternatively drilling can be replaced 

with moulded-in holes [115]. 

 

 

Figure ‎2.23: Kinematics of wobble milling [12] 

 

With regard to modelling of the critical thrust force to onset of delamination in different 

situations, a summary of equations of critical thrust force and delamination factor can be 

found in Liu et al. [138]. Recently drilling hybrid structures or stacks (FRP and other 

materials such as Ti or aluminium) represent the current research focus [86, 91-93, 113]. Burr 

formation is a major challenge in the drilling of stacks.  

 

2.3 Milling/routing of composites 

Milling is one of the most frequently used machining processes for FRP composites. It 

can be used for deburring, slotting, and routing/edge trimming of composite components 

produced to near–net-shape [139]. Milling of FRP composites is characterised by low 

material removal rates as compared to metal cutting operations. The process is used to obtain 

the required level of surface quality and accuracy [140]. In addition to trimming and 

contouring operations, milling can also be used for producing 3D details.  

There are two main types of milling operation namely face milling and peripheral milling. 

This section deals mainly with routing and slotting operations (which are milling processes 

most of the time). The main process parameters in milling are given in Table  2.5. Based on 

the shape of the surface required, a variety of milling operations can produce flat surfaces, 

shoulders, groves, edges, pockets, contours, slots, cut-offs or chamfers, see Figure  2.24. In 
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composite machining there is not as much material removal as when machining conventional 

materials/alloys because the material is already cured to near-net-shape. Milling operations 

such as shouldering, grooving, cutting-off and edge trimming represent the most common 

operations for composites, see Figure  2.25. In the following sections the machinability of 

composites using end milling is discussed.  

 

Table ‎2.5: Milling process parameters  

Spindle speed N (rpm)  Cutting speed   
     

    
 (m/min)  

Feed per minute or feed speed Vf (mm/min Feed per revolution (mm/rev) 

Feed per tooth   
  

   
 (mm/tooth) Axial depth of cut ap (mm) 

Radial depth of cut or width of cut ae (mm) Material removal rate MRR (mm
3
/min) 

 

 

Figure ‎2.24: Shoulder, groove and edge cutting [19] 

 

 

Figure ‎2.25: End mill in action performing end milling of a shoulder, and edge trimming [4] 

 

There are two different modes of milling namely; up milling and down (climb) milling, 

see Figure  2.26. Climb milling is preferred because it does not require strong workpiece 

fixation but it may be affected by table feed backlash necessitating a backlash eliminator 

[141]. When milling composites there is controversy about which milling mode is best, as 
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different materials respond differently to the cutting action depending on fibre orientation. 

Generally, climb (down) milling helps prevent fibre separation. 

 

 

Figure ‎2.26 : Down (climb) milling, and up (conventional) milling [19] 

 

2.3.1 Process requirements 

Cutting CFRP requires high stiffness machine tools in order to avoid vibration and 

deflection resulting from the high cutting forces[142]. Machine requirements to provide 

efficient high quality machining of FRP are detailed in Figure  2.27 [140]. Milling CFRP 

requires control of the small particles of fibres and matrix material which are abrasive (harm 

slide ways) and conductive (harm electronic circuits). The hazardous and abrasive dust like 

chips together with any fumes produced during machining, necessitate the use of an extraction 

system [139].  

 High speed machining (HSM) can provide advantages in terms of reduced machining 

time and burr formation and increased productivity, improved accuracy and product quality. 

Schulz noted that the definition of HSM varies from one material to another as shown in 

Figure  2.28 [143]. HSM reduces cutting forces, tool deflection, and temperature, however, it 

requires operating higher skills, and greater control of tool balancing, and runout (restricted to 

≤ 10 µm [144] compared to 30-50 µm in case of normal machining [145]). Runout causes a 

torchoidal motion of the cutter teeth that affects machining stability and produces increased 

surface roughness in end milling [146]. Additionally the machine tool requires appropriate 

rigidity, dynamic behaviour, and kinematics [147]. 
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Figure ‎2.27: Machine requirements for reliable, high quality machining of FRP, proper 

clamping is required as FRP are sensitive to compressive stresses [140]. 

 

 

Figure ‎2.28: Cutting speeds for HSM of different materials [143] 

 

2.3.2 Machinability study 

Since the knowledge acquired in cutting metals/alloys cannot readily/easily be transferred 

to composites, studying the milling of composites becomes necessary. The majority of 

published research has addressed edge trimming operations, only a few papers have dealt with 

full immersion or slotting operations. Research work on milling of composites has involved a 

wide range of materials including aramid fibre reinforced plastics [140, 148-150], carbon 
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fibre reinforced plastics in a thermoset resin matrix [139, 140, 142, 148-174] or in 

thermoplastic resin [175], or even stacks [135], together with glass fibre reinforced plastics 

[140, 148-150, 176-178]. CFRP is the most common composite material used in military and 

commercial aerospace systems [152]. Relevant components are subject to specific 

requirements relating to surface roughness, edge angularity, size, and allowable top and 

bottom surface ply delamination. Table  2.6 presents variables and responses studied in milling 

together with sample references. 

 

Table ‎2.6: Variables and responses studied in milling and sample references. 

Variables Responses 

Parameters 

 Cutting speed [139, 142, 150, 154, 160, 

161, 165, 167-170, 172, 175-177, 179, 

180] 

 Feed rate [135, 139, 142, 151-153, 158, 

160, 161, 165, 167-170, 172, 175-177, 

179, 180] 

 Radial depth of cut [142, 167-169, 171, 

175, 179, 180] 

 Axial depth of cut [173, 174] 

 Up milling/down milling [151-153, 157, 

171] 

Workpiece  

 Material [140, 148, 176, 177] 

 Fibre orientation [139, 140, 151, 152, 

157, 164, 171, 173, 181] 

 Tool diameter [155, 172] 

 Tool geometry [140, 148, 150-153, 155, 

156, 159, 160, 170, 172] 

  Tool material [148-152, 154-156, 158, 

159, 163, 172, 178] 

Cutting environment 

 Coolant [151, 152, 175] 

 Chip formation [139, 140, 157] 

 Cutting forces [135, 139, 140, 150, 153, 157, 

161, 163, 165, 167, 168, 170, 172-176, 178-181] 

 Delamination [139, 142, 150-153, 157, 163, 165, 

169-171, 176, 177]  

 Surface roughness [139, 140, 142, 153, 156-

158, 160-165, 169, 170, 175-177, 179, 180] 

 Tool performance [139, 140, 142, 148, 150, 

154-156, 158, 159, 161-163, 165, 172, 175, 178-

180] 

 Cutting temperature [155, 161, 163, 175]  

 

 

 

 

 

 

 

 

 

 

2.3.3 Chip formation  

In milling CFRPs the fibre orientation with respect to the cutting edge, is always varying. 

Cutting mechanisms can be described with respect to different fibre orientation as shown in 

Figure  2.29. Accordingly, fibres of 0˚ orientation laminates are subjected to forces parallel to 

the fibre orientation causing buckling, material fails due to delamination in front of the cutting 

tool edge. At fibre angles between 0˚ and 90˚, fibres break as a result of bending and 

compression, fibre fracture extending beyond the surface such that surface quality is poor 
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(least favourable). Fibres at 90˚ are subjected to bending loads causing interfacial fractures 

extending under the surface. Fibres at approximately 135˚ are subjected to bending and tensile 

stresses and are removed in bundles. Fibres are sometimes ripped off where there is 

insufficient adhesion to the matrix [140]. The cutting mechanism also depends on fibre type 

such that glass and carbon fibres show brittle fracture failure when subjected to shearing, 

tension or bending stresses. In contrast, aramid fibres show resistance to bending or shearing 

but fail due to tension, producing some fuzz in the axial direction [140]. Tool life is reported 

to be dependent on fibre type [156]. The common chip form in milling of composites is 

„powder like‟, however, when milling unidirectional composite the chip type can be either 

powder, ribbon, or brush-like depending on fibre orientation as shown in Figure  2.30.  

 

 

Figure ‎2.29: Cutting mechanisms for milling of CFRPs [140]. 

 

 

 

Powder                               Ribbon                           Brush 

Figure ‎2.30: Chip characteristics (powder, ribbon, brush) 45˚, 90˚, 0˚ [139] 
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2.3.4 Cutting speed and workpiece feed 

As previously detailed there are several machining techniques that can be used to generate 

surfaces on composite parts such as edge trimming, face milling, and Sturz milling (Sandvik 

Coromant), see Figure  2.31. Sturtz milling involves the use of an end mill to generate a 

complex surface by tilting the tool (2o-10o) relative to the component surface to create an 

elliptical cutter path. It can replace machining with ball end mills for profiling of CFRP 

workpiece and is 3 times faster than a ball nose tool as the number of passes per square meter 

are reduced [12]. In milling of CFRP composites using routers ranging from 6-12 mm 

diameter, the recommended cutting speeds and feed rates varied from manufacturer to another 

and also according to the application (i.e. slotting or edge trimming) and the suitable tool 

geometry and tool material. For example, SECO Tools recommended a 100-200 m/min 

cutting speed and a 0.018 to 0.036 mm/tooth feed rate for slotting using WC tooling. The use 

of higher cutting speeds and feed rates is favourable for higher productivity but however was 

still under feasibility investigation. Carbon fibre composites are normally cut at a cutting 

speed of 244-762 m/min using PCD [15]. Table  2.7 shows recommended cutting speeds and 

workpiece feeds for roughing and finishing of CFRP using PCD tooling. Researchers have 

used a wide range of cutting speeds from 25 m/min [153] to 1000 m/min [140], and feed rates 

from 0.01 mm/tooth [168] to 0.3 mm/tooth [157]. In the case of helical milling (mix between 

face milling and drilling) the tool has two feed parameters (axial and tangential). The helical 

path can be achieved using a CNC code with helical interpolation. The kinematics of the 

process are detailed by Denkena et al. [135].  

 

 

Figure ‎2.31: Edge routing, face milling, and Sturtz milling [12] 

 

http://sedlns18.sandvik.com/__C125699900612033.nsf/0/FFBDF4F3B6D3B12AC12576620044DA82?Open
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Table ‎2.7 :Recommended parameters for roughing and finishing (using PCD tooling) from 

Sandvik [12] 

Edge routing Face milling Sturtz milling 

200 m/min , 0.15 mm/tooth 

For high removal rate and 

good surface finish 

Roughing 

314 m/min 

0.03-0.08 mm/tooth 

Roughing 

300 m/min 

ap 0.1  

0.16 mm/tooth 
5 degrees Sturtz angle 

2 mm depth of cut 

1800 mm/min 

0.2 mm/tooth 
Finishing 

314 m/min  

0.02 – 0.04 mm/tooth 

Finishing 

300m/min 

ap 0.5  

0.1 mm/tooth 

 

2.3.5 End mill geometry 

A variety of cutter shapes/configurations are available for milling of FRP. The most 

commonly used geometries are fluted tools, burr routers, and diamond grit routers. The 

selection of router geometry can be material oriented such that some tools are recommended 

to deal with specific work materials. For example straight fluted tools are recommended for 

carbon fibre composites, burr tools are preferred for glass fibre, while serrated tools are best 

suited for aramid fibres or sandwich structures [19].  

 

2.3.5.1 Fluted tools 

Fluted tools have many detailed features, the most important of which are the relief angle, 

rake angle, and helix angle. The relief angle is required to reduce the friction between the tool 

and the machined surface, the rake angle facilitates chip flow, and the helix angle is beneficial 

in distributing the cutting load, reducing temperature or minimising tool damage. The cutting 

edge can have a secondary relief angle which is advantageous for material spring-back after 

cutting [155] and ensures machining stability [156]. When milling composites, helical flutes 

help reduce the heat input per unit length of the cutting edge [182]. However, cutting is more 

stable using a tool with low helix angles such that the tool life was longer with 2° resulting in 

1800 m cut length compared to 850 m using 30° helix [183]. While more flutes reduces the 

pressure on the tool and keeps it cooler, Davim and Reis found that 2 flutes were better than 6 

in relation to delamination [160]. End mill geometry is detailed in Figure  2.32 while the 

effects of different geometry features on machinability for different FRP machining process 

are tabulated in Table  2.8. 
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Figure ‎2.32: Geometry features of an end mill 

 

2.3.5.2 Interlocking (burr) tools  

Burr routers have teeth with a pyramidal shape (knurled shape) resulting from the 

interlocking between right hand and left hand helices. Burr routers are most commonly used 

with glass fibre composites [149]. The complex shaped teeth require special techniques to 

characterise tool wear. Tool geometry has been shown to have an impact on tool wear as the 

number of right/left helices change, open design 14-11 being better than 14-12 [178]. The 

powder like chips may fill the spaces between the teeth hence open teeth are recommended 

with such materials. Clogged teeth in the closed design reduces tool life [172]. In the case of 

small diameter tools which are prone to breakage due to deflection at high feed rates, Iliescu 

et al. introduced an optimised design that increased tool life by a factor of 10, see Figure  2.33 

[172].  

 

Figure ‎2.33: Tapered shank as a solution for small diameter tools [172] 
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Table ‎2.8: Effect of different geometry features on machinability responses 

Geometry 

 feature 

 

Response 

 

Relief angle Rake angle Helix angle 

Tool wear Flank wear generally 

decreased at larger 

relief angles [31, 184] 

Higher positive rake angle 

tool makes the tool more 

fragile and susceptible to 

higher amount of wear 

[44].  

Negative rake angles are 

not favourable in terms of 

tool life [184] 

An increase in helix 

angle decreases the 

amount of heat per 

edge length [182] 

 

Workpiece 

surface 

integrity/ 

roughness 

Larger relief angle 

reduces/eliminates 

workpiece surface 

defects causes by tool 

wear.  

Larger rake angles 

produce finer chips and 

promote high quality 

machined surfaces [26, 30, 

31, 44].  

For fibres at 90˚ and 

above, the dependency of 

surface quality on rake 

angle is high [29, 130] 

The level of workpiece 

delamination decreases 

with larger helix angles 

while the position of 

greatest surface 

delamination (top or 

bottom) is dependent 

on helix direction. 

[151] 

Use of a double helix 

milling cutter reduces 

the occurrence of 

fuzzing and improves 

workpiece surface 

quality [151, 185] 

Forces Increasing the 

clearance angle 

reduced contact 

between the tool and 

workpiece and 

consequently reduces 

cutting forces [23, 24, 

30] 

Specification of a 

secondary relief angle 

is recommended to 

reduce cutting forces 

because of bouncing 

back fibres [29] 

Negative rake angle 

generally enhances tool 

strength and heat capacity 

but conversely leads to 

higher cutting forces [182] 

Forces are lower at larger 

positive tool edge rake 

angles due to easier chip 

flow [26-28, 30, 32]. 

Use of double helix 

tool directs axial 

cutting forces towards 

the centre of the 

workpiece , which in 

turn minimises surface 

damage [151, 185]. 

 

Recommended 

values 

17˚ [23, 24, 30] 0˚ and 7˚ [140], 6˚-7˚ [26] 

15˚ for low cutting forces, 

10˚ for better surface [28] 

0˚-20˚ [29] 

10˚- 30˚ 

Smaller is better for 

tool life [183] 
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2.3.5.3 Abrasive grit tools 

In abrasive machining of composites the tools are smaller (6-25 mm) than conventional 

applications where wheels can reach 1000 mm in diameter. The cutting speeds and feed rates 

when using abrasive tools are lower compared to grinding and moreover, the large effective 

chip thickness makes material removal higher than that in grinding [4]. The abrasive grit is 

typically held in a metal matrix. In this case tool geometry is represented by the grit mesh 

number. Figure  2.34 shows such tools with different grit sizes, used by Colligan and Ramulu 

[153]. In comparison to fluted tools, abrasive cutters are normally used at lower feed rates 

below 0.15 m/min [152]. Ideally, for higher productivity tools should be held in modular tool 

holders rather than jaw chuck holders to facilitate rapid tool change and reduced idle time. 

The most common modular tool holders are the SK (or ISO), BT, HSK (mostly in Europe) 

and CAT (most common in USA). The HSK, or the hollow shank, was developed in Germany 

in the 1980‟s and helped overcome the unbalance associated with higher rotational speeds. 

Adapters can help interchangeablity between different systems. 

 

 

                                                                      30              50            80           125    

Figure ‎2.34: Abrasive grit tools with various grit numbers 30, 50, 80 and 125 [153] 

 

2.3.6 Tool material 

Unlike turning, milling is an intermittent machining process in which the cutting forces 

vary. Additionally, changes in fibre orientation with respect to cutting direction causes 

dynamic forces [22]. Such fluctuations of force cause flaking of cutting tool coatings by 

accelerated fatigue [186], which makes the milling of composites a challenging process. 

Generally, a cutting tool is subjected to mechanical loads and high temperature, with friction 

between chips as well as against the machined surface. A tool should possess special 

characteristics such as high toughness to resist fracture, high hardness at elevated temperature, 

chemical stability, and high wear resistance [187]. Tool materials suitable for machining 

composites [18, 154, 155, 159, 186, and 187] include the following:  

Sintered carbides: The hardness of the material at room temperature depends on the 

carbide type such that tungsten carbide (WC) is ~ 2000 HV, titanium carbide TiC is ~ 3000 
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HV, tantalum carbide TaC is ~1700 HV, and niobium carbide NbC is ~ 2000 HV [19]. TiC 

and TiCN products are usually called cermets. The performance of WC is affected by: 

 WC/cobalt ratio (typically 6–12%), increasing cobalt decreases hardness, but increases 

toughness and impact resistance. When testing three different substrates for coated and 

uncoated burr tools 6%, 8% and 12% Co micro grain, Lopez de Lacalle [178] found 

that the 6% cobalt was better in terms of tool life. 

 Grain size can be <1µm , the smaller the grain the harder the WC 

 

The most commonly used carbide is WC made as integral tools (for better balancing) or 

inserts (for rapid tool change). The different WC grades are P, M, K, H, S, and N and are 

intended for different applications. The most common commercial grades are P, M, and K. 

The P (1-50) grade is used for long chipping materials like steels, M (1-40) grade is used for 

more demanding alloys, while K (1-40) grades are recommended for short chipping materials 

such as cast iron or plastics [19]. A two digit number after the letter (1- 40) represent the 

hardness and toughness and the lower the number the harder the grade and the opposite for 

toughness. For example, in K grades which is the most common grade used in machining of 

composites the K10 is harder than K30 [187]. 

Diamond: Mono-crystalline or natural diamond is the hardest material on earth with 

hardness ~ 9000 HV. This single crystal diamond is normally used to obtain mirror surface 

machining required in high end applications [187]. 

Polycrystalline diamond (PCD): PCD provides 60 – 100 times the tool life of WC when 

machining composites [15]. The PCD segment thickness ranges from 0.2–2 mm bonded to a 

WC substrate [159]. The properties of PCD vary to some extent with grain size. Coarse 

products (50 µm) are more abrasion resistant than medium grades (10-25 µm) while fine (1-5 

µm) or ultra-fine-grain (< 0.5 µm) products provide high sharpness and toughness [187]. PCD 

wear stabilises (longer uniform zone) compared to WC which results in longer tool life. Fine 

grain products (1-2 µm) have been shown to have lower wear resistance in milling of CFRP 

compared to 6-7 µm products as noted by Klocke and Wurtz [156]. At elevated cutting 

temperature, the brazing joint holding the PCD to any substrate material is susceptible to 

failure. In tests by Ramulu and Rogers [154] tool life for carbide tooling was less than 10 

seconds as it sustained severe wear due to the interrupted cutting and repeated impacts 

resulting in a rough surface, PCD was more economical. It was found to be 10 times better 

than carbides in terms of tool life [155].  
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During fabrication of PCD tools use of wire EDM, electro-discharge grinding, or 

mechanical grinding will influence the surface roughness of the PCD and may affect 

performance of the tool. Mechanical grinding is extensively used in preparing cutting edges 

producing flank surfaces of 0.12 µm Ra compared to 0.53 µm Ra in the case of WEDM [188]. 

Laser cutting is reported to leave lower damage on PCD [189]. Veined PCD is made by 

packing the diamond powder into groves formed in the carbide body and sintering under high 

pressure and temperature to provide more complex geometries compared to the segmental 

PCD an added benefit is the elimination of braze joint failures [159]. 

 

2.3.7 Tool coatings  

Towards the end of 1960‟s tool coatings were introduced which are applied using physical 

or chemical vapour deposition (PVD) or (CVD). One or more layers (usually 2-15 µm thick) 

are deposited and bonded to the substrate to provide a hard wear resistant surface capable of 

increasing performance and ensuring chemical stability [187]. The most common coating 

types are titanium carbide TiC (3000 HV), aluminium oxide Al2O3 (2300 HV) and titanium 

nitride TiN (2200 HV) [19]. A list of the commonly used coating materials and relevant 

references on milling CFRP are shown in Table  2.9. 

 

Table ‎2.9: Common coating material 

Coating 

Materials 

Colour Thickness 

(µm) 

Coefficient of f 

friction 

Max temperature 

(°C) 

Reference 

TiN Gold 1-7 0.55 600 [140, 155, 161] 

TiCN Blue-Grey 1-4 0.2 400  

CrN Metal-Silver 1-7 0.3 700  

CBC Grey 0.5 0.15 400  

AlTiN Black 1-4 0.7 900 [150, 163, 172] 

µAlTiN Black 1-4 0.3 900  

TiAlCN Burgundy-violet 1-4 0.3 500  

ZrN White-gold 1-4 0.4 550  

AlCrN Blue-grey 1-4 0.6 900 [150] 

nACo Violet-Blue 1-4 0.45 1200  

 

Milling of CFRP using Al2O3 coated carbide is detailed by Kauppinen [149] while CVD 

diamond was used by Sheikh-Ahmad and Sridhar [158] ,and Lopez de Lacalle et al. [178]. 

The smoothness of the coating surface affects the friction forces between the tool and the 

workpiece. The deposited coating layer may have a rough surface resulting from spattered 
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coating droplets. This can be removed or enhanced by surface treatment as shown in 

Figure  2.35. 

 

 

Figure ‎2.35: Difference between un-treated (left) and treated (right) AlTiN coating surface 

[187] 

 

Coating performance depends on the coating material and its adhesion to the substrate. 

For example, when using an Al2O3 coated burr router tool life was ~ 10 min compared with 1 

min in the case of a cermet coated router (at 1400 m/min cutting speed and 0.007 mm/tooth) 

[155]. A thicker coating retards tool wear, however, thicker coatings are prone to brittle 

fracture and flacking.  

The rounding of the cutting edge with thicker coatings was noted by Wurtz et al. [155] 

who tested different coating materials and reported that coating performance was found to be 

a function of hardness and adhesive force. Chemical etching, ultrasonic scratching with 

diamond particles, and the use of an intermediate layer are possible means of surface 

treatment of the substrate material prior to coating. All these methods are used to improve 

adhesion and nucleation. Good adhesion permits predictable uniform abrasive wear [190-

192]. Etching of the surface was reported as being helpful in roughing the surface and 

providing good adhesion thus preventing peeling of the coating [150]. Treating the surface 

with a chemical agent roughens the surface by removing cobalt to improve the adhesion of the 

coating [150]. The application of coatings using physical vapour deposition (PVD) has been 

the focus of research from 1980‟s. Table  2.10 is a comparison between PVD and CVD 

coating deposition techniques. 
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Table ‎2.10: Comparison between PVD and CVD coating deposition techniques 

Coating deposition 

process 

PVD CVD 

Process description PVD process is atomisation or 

vaporisation of solid material 

and depositing on a substrate. 

No chemical reaction occurs 

between coating and substrate. 

Easily recoated and 

resharpened. Cracking resistant. 

Condensing an element 

from a gas in reaction 

chamber. Interact with the 

substrates, and sometimes 

producing brittle carbides 

at the interfaces. 

Susceptible to cracking at 

impact. 

Sharp edge Possible Difficult 

Process temperature 

(°C) 

400-500 900- 1000 

Common substrates HSS, WC WC 

Common coating 

material 
 TiN 

 DLC 

 Al2O3 

 TiC 

 TiCN 

 Diamond 

 

Forces are generally lower in the case of coated tools (low friction coefficient) [150]. 

Diamond coated carbides compete with polycrystalline diamond (PCD), the former being 

30% lower in cost and easier to manufacture with complex geometries [41]. There are two 

types of diamond coating, the first is diamond like carbon (DLC) which has similar properties 

to natural diamond (optical, chemical, mechanical, and electrical) but does not have the 

crystalline lattice structure [192]. This type of coating is deposited using PVD techniques. 

Diamond like carbon contains less Sp3 and a mixture of Sp2/Sp which makes the structure 

amorphous. In contrast CVD diamond contains more Sp3 within the structure and may be the 

reason why CVD diamond is better than the amorphous DLC coating in terms of abrasion 

resistance [192].  

Chemical vapour deposited diamond coatings were developed in the 1980‟s, the process 

involving precipitation of carbon atoms from a hydrocarbon gas onto a substrate [159]. Two 

distinct types of diamond coating based on coating thickness can be produced, namely “thin 

film” where the coating thickness is ~5- 50 µm, and “thick film” involving 0.5 µm layer CVD 

diamond. Both have polycrystalline structure [192] but contain no binder phase. Chemical 

vapour deposited diamond coatings have good properties such as high hardness (6000-9000 

HV), low coefficient of friction (as low as 0.05), high thermal conductivity (up to 2200 
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W/mK), and moderate chemical stability. The polycrystalline structure of the CVD diamond 

makes it tougher than the mono-crystalline diamond (~5.5 compared to 3.4 MPa/m
2
) [193]. 

The hardness of the CVD diamond (described as pure PCD) is higher than PCD because the 

later contains cobalt and porosity [194]. Horman et al. [159] compared WC, CVD diamond, 

and PCD when milling CFRP. Accordingly, the tool life ratio was 1:10:15 respectively. On 

the other hand the cost ratio was 1:7:13 which highlights the cost effectiveness of CVD 

diamond. The superior wear resistance of the CVD diamond may be because of the crystalline 

tetrahedral Sp3 covalent bond structure [192]. Improved CVD coatings were produced by 

Shen et al. [150]. They found that a modified hot filament CVD with a spiral heat source 

provide better and uniform thermal distribution of 2-3 µm grain diamond particles than the 

conventional horizontal filament CVD. In the case of thick film, edge preparation is not 

important as these CVD films are brazed to a substrate then ground to required geometry 

[194]. Stephan et al. found that thick film CVD had an advantage over WC 15:1 in terms of 

flank wear [194].  

A new coating technique involves interlocking layers of polycrystalline and nano-

crystalline diamond, see Figure  2.36. This provides high resistance to abrasion and is also 

capable of diverting the direction of crack growth [195]. Nanostructure coatings are said to be 

the future of coatings, being harder, tougher, and more chemically stable than 

previous/existing coatings [4]. Lopez de Lacalle et al. [178] found that a micro-grained 

carbide tool with a cobalt content of 6% coated with nanostructures had a cost advantage over 

PCD. A nano coating of AlTiN did not show any significant advantage in milling of CFRP 

[178]. Using a diamond interlocked tool, coating provides a barrier against high abrasion. 

Once the top of the pyramid shaped tooth is lost in the initial wear stage, it leaves behind 

exposed substrate. An improved composite coating described as naCo or nano-composite, was 

noted by Lopez De Lacalle. It was obtained by embedding nano-crystalline AlTiN or AlCrN 

grains in a Si3N4 honeycomb matrix to improve the coating characteristics. Testing of AlCrN 

against AlTiN in milling CFRP showed that thicker layers of AlTiN (more than 4 µm) were 

advantageous [172, 178]. 
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Figure ‎2.36: Interlocking layers of polycrystalline and nano-crystalline diamond [195]. 

 

2.3.8 Tool wear  

Wurtz et al. [155] stated that the most suitable tools are determined by mechanical load 

from the abrasive fibres and thermal stresses due to insufficient thermal conductivity of the 

polymer matrix. Under such harsh conditions milling tools encounter various sorts of wear 

during cutting of FRP composites including; flank wear, rounding of edges, burns, cracks, 

pitting on cutting edges, chipping, failure of brazing joint, or deposited material on flank/rake 

faces. Additionally, milling of FRP composites expose the tool to dynamic forces. In order to 

understand the wear mechanisms in milling, a simulation of the router cutting action was 

introduced by Ramulu and Rogers [154]. It allowed differentiation between the wear caused 

by abrasion against that resulting from intermittent cutting. Because routing is an interrupted 

process, they used a CNC lathe programmed to maintain constant cutting speed to cut a 90˚ 

notched circular disc using a single insert as shown in Figure  2.37. They concluded that tool 

life in the case of interrupted cutting is shorter than that in continuous cutting as impact 

produced more damage. 

 

 

Figure ‎2.37: Interrupted cutting was simulated using a notched workpiece [154]. 

 

The main tool wear mechanisms in milling of FRP are abrasion, attrition, and micro 

fracture/ chipping. When using carbide tools, Santhanakrishnan et al. [11] noted that brittle 
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fracture was responsible for tool failure due to the carbon fibres reacting with cobalt and 

forming a harder compound which was subsequently pulled out. Energy-dispersive X-ray 

spectroscopy (EDX) analysis showed less cobalt content in the worn tools [155]. Sheikh-

Ahmad and Sridhar [158] studied edge trimming of CFRP using uncoated and two CVD 

diamond coated carbide tools (thin 10 µm and thick film 20 µm). When using the CVD coated 

tools at high feed rates, chipping and delamination of the coating occurred due to the high 

cutting forces, while abrasion wear of both the coating film and the substrate was dominant at 

low feed rates. The thicker CVD coating showed better resistance to abrasion as shown in 

Figure  2.38 [158].  

There is no common criterion used for judging the end of tool life, however, a tool is 

considered to warrant-replacement if adhesion of resin, flames or workpiece delamination is 

observed [150]. Tool life can be evaluated qualitatively, i.e. based on deterioration of 

workpiece quality and evidence of uncut tufts which result only if cutter sharpness decreases 

and/or rounding of the cutting edge increases [156]. When edge trimming, tool life is 

normally 100-200 m cut length depending on depth of cut and tool material. In contrast, 

slotting operations are generally subject to a shorter tool life of ~ 30m due to the harsh cutting 

action [150]. Tool wear takes many forms depending on tool geometry (fluted, burr, or 

abrasive), tool material, and cutting conditions. The following section describes the common 

tool wear phenomena associated with standard flute tools, as well as burrs and abrasive tools.  

 

 

Figure ‎2.38: Flank wear compared after 338 m cut length (calculated total distance travelled 

by tool) at 62 m/min cutting speed, 1270 mm/min feed rate (0.127 mm/tooth) [158]  
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The ISO 8688 standard [145] describes the main wear patterns in milling and their 

locations on a fluted milling cutter. Figure  2.39 shows the most common wear types seen 

when milling composites. Wear such as crater wear, flacking, and cracking are not mentioned 

because they rarely occur. A mean flank wear size is the usual tool life criterion, due to it 

causing a change in tool dimension and therefore the size of the machined part. Values of 0.3 

mm and 0.5 mm are the maximum accepted for finishing and roughing respectively. Chipping 

of greater than 0.5 mm is also a further tool life criterion. Flank wear (VB) is characterised by 

loss of particles along the cutting edge and is measured on the clearance face of end milling 

tools. Three different measurements are possible: uniform flank wear VB1 which is the mean 

wear, non-uniform flank wear VB2 which is irregular wear in several zones of the cutting 

edge, and the localized flank wear VB3, found at specific points. Notch wear (VBN) is 

located at the depth of cut line when cutting materials susceptible to mechanical hardening. 

Chipping (CH) is said to occur when irregular flaking of the cutting edge occurs at 

random points, this is very difficult to measure and prevent. It consists of small tool portions 

breaking away from the cutting edge caused by mechanical impact and transient thermal 

stresses due to cyclic heating and cooling in interrupted machining operations. Two different 

measurements are possible: Uniform chipping CH1 which appears as small edge breaks of 

approximately equal size along the cutting edge engaged on material. Non-uniform chipping 

CH2 is random chipping located at some points of the cutting edge, but with no consistency 

from one edge to another, see Figure  2.39. Interlocked tools are not mentioned in the ISO 

standard. Recently Lopez de Lacalle et al. [150] used the measure “wear percentage” to 

evaluate the wear in pyramidal shaped teeth as follows : 

 

Wear % = (Worn surface area/ area of the pyramid base) × 100                             Equation ‎2.1 

 

The wear associated with a burr or an interlocked tool is complex and results from 

superposition of tip fracture and flank wear. Prashanth [196] introduced a new technique 

based on image processing software to measure the complex tool wear with diamond 

interlocked tools. Fractures of the pyramids increased with a decrease of cutting speed and 

increase of feed rate, see Figure  2.40. Depth of cut affects tool life such that using a burr tool, 

Kauppinen [149] reported that tool life was only 5 min at a radial depth of cut ae = 2 mm 

however this increased to 20 min by reducing the depth of cut to 1 mm. Surprisingly flank 

wear was found to decrease with the increase of the effective chip thickness and the 
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phenomena was explained as a possible result of self-grinding of such tools, see Figure  2.41 

[162]. The wear phenomena associated with abrasive grit tools are similar to the grinding 

process. Figure  2.42 shows wear flats (abrasion), grit loss, and grit fracture [197]. 

 

 

Figure ‎2.39: Flank wear, chipping and catastrophic failure [145] 

 

 

Figure ‎2.40: Flank wear and wear area method [196]. 
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Figure ‎2.41: Variation of flank wear with effective chip thickness (after cut length of 26 m) 

[162] 

 

 

Figure ‎2.42: wear phenomena using abrasive grit tools [197] 

 

2.3.9 Cutting forces 

In milling, chip thickness is an important factor that determines cutting forces. Chip 

thickness varies with the radial immersion and the width of cut ae as shown in Figure  2.43. 

Average chip thickness hm is calculated using the following equation:  

 

    √
  

 
                                                                                                               Equation ‎2.2 

 

Where f is the feed per tooth, and D is the cutter diameter. In case of slotting, full 

immersion occurs (i.e. ae = D is equal to the maximum chip thickness). The chip size removed 

by the burr router is very small, similar to that in the grinding process, and is calculated using 

the following equation [162]. 
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                                                                                                         Equation ‎2.3 

 

 

Figure ‎2.43: Chip thickness for two different widths of cut [19] 

 

The milling forces include the main cutting force (tangential), the radial force (towards the 

centre of the cutter), and an axial component when using helical milling cutters. These are 

generally detailed as; Fx, Fy, Fz where Fz is the axial force. Davim and Reis [176] and Azmi 

et al. [179] used a resultant workpiece force Fm calculated by;  

 

    √                                                                                                 Equation ‎2.4           

 

Milling forces are affected by matrix material [176] however feed rate is the most 

significant factor affecting cutting forces, higher feed rates equating with higher forces [165]. 

When Sheikh Ahmad and Sridhar increased feed rate by 100%, forces increased by 78% 

causing premature tool failure in the form of chipping and thin coating delamination [158]. 

Forces, generally, decrease with cutting speed [175] then increase due to tool wear [165]. 

Cutting forces also increase with length of cut as a result of progressive tool wear [161]. Inoue 

et al. [163] studied slotting and face milling of CFRP using HSS, CVD coated, and TiAlN-

coated tungsten carbide end mills, the effect of tool performance on cutting forces is shown in 

Figure  2.44. 
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Figure ‎2.44: Effect of tool material on cutting forces [163] 

 

Forces have been shown to be lower with coated tools due to their low friction coefficient. 

About 30% reduction in feed force (tangential) was reported by Shen et al. [150] which is 

significant in relation to tool wear. Comparison of specific cutting energy (Ks) for CFRP, 

aluminium, and steel, produced values of 300-600, 700-900, 2000-2200 N/mm2 for each 

material respectively, with tool wear occurring mainly by abrasion in the case of CFRP [178]. 

In recent work involving ultrasonic assisted milling, Li et al. [167] found that cutting 

forces decreased with increasing cutting speed. They reported a critical speed of 113 m/min at 

which the ultrasonic action had no effect. Forces increased with the increase of feed rate and 

depth of cut. Liu et al. [168] also observed similar results with maximum forces (at maximum 

feed rate and width of cut) of 460 N and 345 N respectively. In helical milling, the cutting 

forces were affected by axial and tangential feed rates fzt, and fza, such that increasing only 

axial feed increased forces, but increasing only tangential feed reduced forces, see Figure  2.45 

[135]. 

 

Figure ‎2.45: Left: increasing axial feed at constant tangential feed, right: increasing tangential 

feed at constant axial feed [135] 
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2.3.10 Temperature/cooling 

Although fibre reinforced plastic composites, can be cut dry, stagnant heat represents a 

major concern due to the low thermal conductivity of the matrix, resulting in poor surface 

quality and higher thermal stresses on the cutting tool [156]. Typically 50% of the cutting 

temperature is absorbed by the tool, compared to 18% in the case of metal cutting due to the 

low thermal conductivity of matrix martial. Temperature, absorbed by the tool, necessitates 

the use of coolant [114]. Cutting fluids are used to reduce the adverse effects of heat and 

friction on the cutting tools and workpiece. The cutting fluid, required for cooling, lubrication, 

and evacuation of chips can be compressed air, a gas, or a liquid. The most common cutting 

fluids are oils, oil–water emulsions, pastes, gels, mists, and gases (liquid nitrogen and CO2) 

[187].  

Water soluble coolants are recommended for cutting composites but should be avoided 

when cutting hydrophilic composites since they damage the laminate if absorbed [159]. In 

such cases air cooling and an extraction system are preferable. Generally, the cooling medium 

can be fed internally through the tool which may require spindle modifications, alternatively 

cooling can be provided externally. Figure  2.46 shows the common cooling methods used in 

milling. Oil mist, minimum quantity lubricant (MQL), or nearly dry machining (NDM) were 

described by Astakhov as flexible, efficient, cost effective, and environment friendly cooling 

methods [198]. Nearly dry machining avoids the thermal fatiguing and cracking induced by 

flood coolants. Oil mist is preferred in the case of high speed end milling for longer tool life 

[199] and improved surface quality [200]. MQL showed better performance when intermittent 

cutting occurs as in end milling and should be supplied to the flank face of the tool [201]. The 

air stream carrying the oil can be cooled using the vortex flow principle [202]. In addition to 

the adverse effects of flood coolant on the workpiece, there are adverse environmental effects 

of using Freon (used by Ramulu [151]). In contrast chilled air (CA) of -30˚C has been shown 

to be effective in reducing tool wear and surface roughness [203] but there was no significant 

effect reported regarding cutting forces. A mixture of chilled refrigerated air and oil mist 

(CAMQL) showed a drastic reduction in temperature and improvement in tool life when 

compared to MQL alone [204]. Tool geometry and tool diameter affect the cutting 

temperature as noted by Wurtz et al. [155]. Here the use of a larger diameter cutter with a 

secondary clearance angle helped reduce cutting temperature, see Figure  2.47. The larger the 

cutter size, the higher the heat capacity of the tool, while a secondary clearance angle reduces 

tool rubbing from the bounce-back of fibres. In dry milling the temperature, generated in 
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cutting of CFRP, is normally 250-400 °C, which is higher than aluminium (~150°C) but lower 

than that for titanium (600°C) [205]. The tool should preferably have high heat capacity to 

absorb heat [156]. 

 

 

Figure ‎2.46: Different cooling options in milling [206] 

 

 

Figure ‎2.47: Effect of tool diameter and secondary clearance on temperature [155] 

 

During cutting of FRP composites, there is a critical cutting speed Vcr beyond which the 

temperature increase to exceed the glass temperature of the matrix. Rahman et al. [175] 

measured temperature using an IR camera and mentioned that in the case of thermoplastic 

PEEK, the critical temperature was 150°C to 175°C while the glass temperature at which the 

matrix becomes leathery then rubbery is 143°C. Any further increase in temperature beyond 

the glass temperature may cause melting or burning of the matrix. Ucar and Wang [161] used 

a K type thermocouple to measure cutting temperature and found it to be no more than 44° C, 

possibly because of the very low cutting speed/feed rate used (35 m/min and 0.178 mm/min 

respectively) and the four fluted 11.11 mm diameter TiN-coated WC tool with 30 degree helix 
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angle. Matrix content can have an influence on cutting temperature. The effect of resin 

percentage and layup and tool material on temperature (measured using IR) is shown in 

Figure  2.48 [163]. The use of coolant in milling is not common, additionally there is very 

little published data on cutting temperature when slotting of CFRP. Compressed air can be 

helpful in cooling the cutting zone and evacuating the chips. A colder stream of air can be 

obtained from compressed air using a vortex tube. Here the compressed air is filtered to 

remove water and oil and the pressure is then regulated. As shown in Figure  2.49, clean air 

enters the vortex tube at point (A). The vortex tube splits the compressed air into a cold (B) 

and hot (C) stream of air. The hot air is vented to the atmosphere at point (D) after being 

muffled to reduce noise. Cold air enters into the muffler (E) and is then distributed through 

the hose (F) onto the tool being cooled. A strong magnet (G) is used to hold the unit onto the 

machine. The system is said to be capable of delivering a cold air stream 28 °C below the 

inlet air temperature [207]. Despite the advantage of the vortex tube being easy to operate, the 

author is not aware of it previously being used in the milling of composites. 

 

 

Figure ‎2.48: Relationship between tool material and cutting temperature [163] 
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Figure ‎2.49: Schematic of the vortex tube [207] 

 

2.3.11 Surface integrity  

Surface integrity describes the inherent surface alterations from machining or any other 

surface generation operation [208]. Milling of inhomogeneous and anisotropic FRP 

composites is difficult and may result in some defects if the tool and the machining 

parameters are not selected properly. Common defects include the following: 

 Small holes due to fibre pull out 

 Edge fracture  

 Fuzz, tufts, or extended fibres beyond cut surface  

 Delamination (affects structural integrity & tolerance) 

 Splintering 

 Deep cracking  

 Matrix smearing or burning  

 

Appropriate selection of machining parameters is vital to avoid mechanical or thermal 

induced defects. For example, smearing of matrix material and deep cracking can result from 

excessive feeds [158] while burning is likely at high cutting speeds and low feeds [156]. 

Fracture of edges can be avoided by making a pre-cut to avoid weakening the edges at the tool 

exit [157]. 

 

2.3.11.1 Delamination  

When milling composites there is a likelihood of delamination due to the action of 

machining forces [177]. Delamination reduces the strength of components, it is highly 
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dependent on fibre orientation relative to the machining direction, and is significantly affected 

by the feed rate [152]. For this reason milling of FRP is considered as a complex process 

[160]. Fibre orientation has a significant effect on the quality of cut. Cutting parallel to fibres 

is recommended for best cut quality. Forces in cutting fibres at 45˚, 90˚, are higher than that 

for fibres at 0˚ because the effort exerted in bending or shearing is higher than that for 

buckling [139]. Surface plies are not stabilised by neighbouring layers compared to internal 

plies, consequently, axial machining forces will cause damage. Colligan and Ramulu [151, 

152] observed surface defects and classified them into 3 distinctive types (shown in 

Figure  2.50), namely Type 1 where fibres were broken some distance inward from the 

trimmed edge (missing fibres) at 90˚ fibre orientation, Type 2 where uncut fibres protruded 

from the edge (may be delaminated some distance from next ply) due to fibre movement away 

from the cutter due to bending and usually at 45°, and Type 3 involving loose fibres partially 

attached appearing fuzzing/frayed usually at 0˚, 5˚ and 175˚, the fibres being almost parallel 

to the cutting direction. Type 1 was the most frequent defect to occur. A lower tendency to 

delaminate was observed during cutting 0° fibres or fabric plies. They also recommended use 

a specific top ply placement around the workpiece edges in order to minimise surface damage, 

with unidirectional fibres used parallel to the edge in case of straight edges and fabric in the 

case of curved edges. 

 

 

Figure ‎2.50: Types of surface ply delamination [151] 

 

In edge trimming of different fibre orientations, the probability of damaged surface plies 

increases in the case of top plies. The use of a large helix angle has showed a lower incidence 

of delamination probably because of the smooth cutting action provided by the helix, see 

Figure  2.51 a,b. With helical tools, at any moment more than one tooth is engaged keeping the 

tool constantly loaded and avoiding harmonic interrupted bending [159]. The use of a double 

helix milling cutter, directs the axial cutting forces towards the centre, which in turn 
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minimises surface damage [151]. There is controversy about which cutting mode is better, up 

milling or down milling. It is difficult to decide which is better because it is affected by 

several parameters and their interactions. Colligan and Ramulu [151] found down milling was 

better as it produced less delamination, a fact also reported by Sheikh Ahmed et al. [158]. 

Figure  2.52 shows how down milling prevents fibre separation. Other researchers have found 

up milling preferable [161, 162]. A higher feed rate causes a rise in cutting forces, rapid tool 

wear and hence an increase in delamination. See Figure  2.51 c and d for effect of cutting 

mode and feed rate.  

 

 

Figure ‎2.51: Factors affecting probability of delamination occurring [151] 

 

 

Figure ‎2.52: Down milling (left) prevents fibre separation [157]. 

 

Allowable damage varies from one manufacturer to other. It was noted by Coligan and 

Ramulu [152] that the maximum allowable delamination commonly used in the aerospace 

industry is 2.5 mm (based on Boeing data), although in their research they used a value of 

1mm. Prashanth [196] used 1.5 mm as a conservative value. For Airbus, the allowable 

delamination value in drilling is 1.5 mm [134]. A dimensionless delamination factor of >1 can 

be calculated from an equation similar to the drilling equation shown in Figure  2.53. For this 
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slotting example Wmax is the maximum extent of damage and W is the actual slot width. The 

damage extent can be measured using a tool makers microscope, imaging techniques or most 

recently laser techniques as reported by Hintze et al. [171]. Matrix material has an effect on 

the delamination factor (DF), which is increased with both cutting speed and feed rate [176]. 

Delamination is also affected by cutting tool performance. Inoue et al. [163] studied slot and 

face milling of CFRP using HSS, CVD coated, and TiAlN-coated tungsten carbide tools. 

Uncut fibres (fuzzing) on the surface plies were observed mostly with HSS tools due to 

excessive tool wear. 

 

 

Figure ‎2.53: Calculation of delamination factor [176] 

 

Hintze et al. [171] studied the causes of delamination during a slotting operation using 

fluted tools, they found that increasing the cutting edge radius (due to tool wear) was 

responsible for the occurrence of delamination especially in the top ply. For example, in 

milling 90° fibres the amount of uncut fibre (fuzz) increased when using a worn tool with 90 

µm edge radius as shown in Figure  2.54.  

 

Figure ‎2.54: Delamination due to tool wear (V= 800 m/min, f = 0.03 mm/tooth, ae = D, ap = 

4mm) [171] 
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The chance of delamination was higher in slotting compared to edge trimming and Hintze 

et al. pointed out that when the ratio ae/d < 0.13, there is little chance of delamination 

compared to when ae/d > 0.13. The delamination was most frequent on the up milling side. 

They highlighted the difference between the fibre angle and cutting angle (see Figure  2.55 and 

Figure  2.56) and stated that there are non-critical cutting angles 0°<θ<90° and critical cutting 

angles 90°<θ<180° ( for fibres at 0°, 90°, and 135°) and 45°<θ<180° (in case if 45°). They 

also divided the cutting into three distinct regions, see Figure  2.57. Region A is associated 

with a critical fibre cutting angle where delamination occurs, in Region B propagation of 

delamination occurs and in Region C no propagation occurs. They concluded that the length 

of the overhang fibres was equal to the distance from the edge to the point where the cutting 

edge cut the fibres at the critical cutting angle [171]. In case of burr routers, delamination 

increased with increasing effective chip thickness and cut length as shown in Figure  2.58. 

 

 

Figure ‎2.55: Fibre orientation angle and cutting angle [171] 
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Figure ‎2.56: Delamination when slot milling at fibre orientation of 135° [171] 

 

 

Figure ‎2.57: Delamination and propagation of delamination [171] 
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Figure ‎2.58 Effect of average chip thickness on delamination depth, dark symbols cutting 2.5 

m. white symbols cutting 26 m [162] 

 

Wang et al. [165] showed that delamination increased by increasing feed rate which in 

turn raised the cutting force. They noted that delamination was in the acceptable range as long 

as the cutting forces were below 200 N [169]. Delamination was dependent on tool geometry 

such that a 2 fluted tool was better than a 6 fluted tool as noted by Davim and Reis [160]. 

Additionally when helical milling Rahim et al. [170] found that tool geometry influenced 

damage.  

 

2.3.11.2 Surface roughness  

The surface roughness of a machined part affects friction, wear, light reflection, heat 

transmission, wetability with lubricants, and fatigue resistance [209]. Vibration of the 

machine tool, cutting speed, feed rate, depth of cut, material properties, fibre orientation, 

weave pattern, bond strength, and flank wear affect surface roughness [51, 52]. Surface 

roughness can be measured in the longitudinal and transverse direction but transverse 

measurement gives a better indication of surface quality [24]. 

The main roughness paramters used in respect of composite machining are average 

surface roughness Ra and peak-to-valley Rt [21, 23-25, 29]. Other roughness paramaters have 

been studied [23, 25] such as profile height probability, density of profile height, cumulative 

height distribution [24], and power spectra of the surface profile [26]. The average Ra has 

been shown to be as little as 1-2 µm with Rt 4-11 µm when orthogonal machining with PCD 

[26]. Here roughness was largley dependent on tool geometry such that increased rake angle 

was reported to result in finer chips due to the localised extent of fracture beyond the tool tip, 
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leaving a high quality machined surface. As previously detailed, fibre orientation has a 

significant influence on surface roughness and a critical value of 90˚ exists below which the 

roughness deteriorates, the surface being covered by a thin layer of matrix, and subsurface 

cracks [21, 29]. The nature of the milling makes cutting tools especially with small radii 

vulnerable to process dynamics and requires appropriate clamping otherwise wear resistance 

and quality of cut will be lower [156]. In milling the surface roughness is a function of the 

feed rate and the height of the profile H can be calculated using the feed rate f and cutter 

diameter D as shown in Figure  2.59.  

 

 

Figure ‎2.59: Surface roughness (profile height) as a function of the feed rate[19] 

 

Richards et al. [142] noted a roughness requirement of 3 µm for Airbus A400M CFRP 

panels. Sandvik described a CFRP surface produced by routing with 1.25 µm Ra as a “good 

surface”. In machining of unidirectional/multi-directional CFRP using PCD tools, Ramulu et 

al. [164] investigated the effectiveness of surface topography parameters in describing surface 

roughness. Using cumulative height distribution (CHD), power spectral density functions 

(PSDF), auto correlation function (ACF) techniques, and scanning electron microscopy 

(SEM), they found that the maximum peak-to-valley height (Rt) and ten-point height (Rz), are 

more accurate in describing the surface roughness than the arithmetic average roughness (Ra) 

and the root mean square height RMS (Rq). Differences in roughness in both longitudinal and 

lateral directions were also noticed. At smaller orientation angles fibres were exposed but 

matrix smearing was absent in the case of 0˚ fibres. Fibre pull out was attributed to 90˚ and 

135˚ plies. Three-dimensional topography mapping/analysis is recommended for CFRP 

composites [164, 210].  

An optimum speed of 50 m/min and 0.1 mm/tooth feed rate is recommended for best 

surface quality [139]. Matrix material type (thermoset or thermoplastic) effects surface 

roughness [176]. In machining carbon/peak (thermoplastic matrix) composite material, 

Rahman et al. [175] found that the average surface roughness Ra was in the range of 0.4-0.6 
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µm (1 µm normally in milling of metals). The Ra value was independent of cutting 

parameters. When increasing cutting speed from 25 m/min to 250 m/min the rise in 

temperature and consequently the softening of the material meant that the cutter left no 

distinguishable marks. 

Feed rate has the most significant effect on surface roughness [177]. Cracks or feed marks 

which occur at high feed rates increase surface roughness especially when measured in the 

transverse direction [158, 160, 176]. Davim et al. [177] also found that the tolerance grade 

(IT) increased with material removal rate and decreased with cutting speed. In end milling of 

CFRP, Ucar and Wang [161] recommended a cutting speed of 18-25 mm/min, feed rate 

0.019-0.04 mm/tooth, and 1 mm depth of cut in order to achieve a satisfactory surface. Higher 

feed rates are not recommended as they produce higher surface roughness and leave feed 

marks as shown in Figure  2.60 [158].  

 

 

Figure ‎2.60: Effect of feed rate on quality in milling CFRP (cutter marks inclined by helix 

angle and spaced by approximately feed is visible on higher feeds [158]. 

 

Klocke and Wurtz [156] noted that workpiece surface roughness using PCD was better 

than WC and a 25% surface roughness improvement was achieved by using finer grained (2 

µm) PCD tools compared with coarser grained PCD product (6-10 µm). This was attributed 

mainly to the smoothness of the cutter surface. Using burr tools in cutting CFRP composites, 

Prashanth et al. [162] reported surface roughness was lower at higher milling speeds and 

smaller feed rates. Fuzzing and fibre pull out were observed when using high effective chip 

thickness (aeff). Generally, roughness measured in the transverse direction was higher 

compared to that in the longitudinal direction. The burr tools achieved maximum roughness 

values of 22 µm Rt in the longitudinal direction and 28 µm Rt in the transverse. Using burr 

tools produced surfaces with higher roughness than that obtained with abrasive tools. 

When using diamond abrasive tools, Colligan and Ramulu [153] observed grooving on the 

cut surface although workpiece surface finish was not affected by feed rate, cutting mode or 
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cutter diameter. Surface roughness as fine as 2 µm was obtained by Richards et al. [142] using 

60 grit diamond for roughing while diamond coated routers were used for finishing at 0.5 mm 

width of cut [142]. The work involved trimming lugs from the periphery of CFRP panels used 

in wing assemblies (for indexing or lifting) on Airbus A400M aircraft. This was similar to the 

high speed electric hand operated trimmers developed in the early 80‟s for edge finishing of 

plastics [211]. The diamond coated router bit did not wear during the process because forces 

were minimised. Grit sizes of 35, 50, 80 and 125 µm were evaluated by Colligan and Ramulu 

[153]. They found that each cutter had its own “irregular” signature see Figure  2.61. An 

empirical equation was established to predict surface finish which was not affected by feed 

rate, cutting mode or cutter diameter. Surface finish was inversely proportional to grit size 

such that: 

 

Surface finish = 103.46 (Grit size)-1.31 

 

Recently, Soo et al. [197] achieved a surface roughness Ra (3-8 µm) using diamond and 

CBN grit tools. Gao et al. found that using ultrasonic assisted milling (4-5 µm amplitude and 

frequency of 20 kHz) could achieve a better surface but they did not clarify the improvement 

quantitatively [166]. 

 

 

Figure ‎2.61: Fingerprint of different diamond grit sizes (left), effect of grit size and feed rate 

on Ra (right) [153] 
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2.3.12 Modelling and simulation of the milling process 

Several research articles have included the modelling approach to predict the effect of 

different process parameters on responses such as tool wear, cutting forces, surface roughness 

or delamination factor [160, 169, 172-174, 176, 180, 181, 212]. For example, multiple 

regression analysis was used to generate a formula to predict resultant cutting force (Fm), 

surface finish (Rt), and delamination factor (FD) for each material as a function of cutting 

speed Vc (m/min) and feed rate f (mm/rev) [176]. Other equations exist for a different matrix 

material used with glass fibres. 

 

                                                                                              Equation  2.5 

                                                                                                   Equation  2.6 

                                                                                             Equation  2.7 

 

Azmi et al. [180] presented a mathematical model to predict cutting force, tool life, and 

surface roughness. These responses were dependent on the rotational speed N (rpm), feed 

speed Vf (mm/min) and depth of cut (mm). However again, the equations were only suitable 

for GFRP composites. 

 

                     
       

                                                                           Equation ‎2.8 

                            
        

                                                                   Equation  2.9 

                     
       

                                                                                Equation  2.10 

 

Equations related to milling of CFRP were presented by Wang et al. and they predicted 

the cutting force, delamination factor and surface roughness as follows: 

  

            
               

                                                                             Equation ‎2.11 

                                                                                   Equation  2.12 

                                                                                  Equation  2.13 

 

In the modelling work done by Sheikh-Ahmad et al. [173], Sheikh-Ahmad and Yadav 

[174] and Kalla and Twomey [213], the authors used regression analysis to determine the 

specific cutting energy of CFRP composites for uni-directional and multi-directional fibre 
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orientations. An artificial neural network model was capable of predicting the cutting forces 

(without the oscillations accompanied with real cutting) in milling as a function of process 

parameters and fibre orientation. Force prediction equations for unidirectional and 

multidirectional orientations for FRP were presented [173, 174, 213]. Iliescu et al. [172] 

presented a model to predict tool wear as a function of feed which was helpful in optimising 

cutting conditions and tool diameter as shown in Figure  2.62 . 

 

 

Figure ‎2.62: Wear indicator and feed load variation with contact length LC and tool diameter 

(V = 200 m/min, f = 0.05 mm/rev) [172] 

 

Mechanistic modelling is a common method of modelling cutting forces and involves the 

analysis of chip area. In milling of FRP the instantaneous fibre orientation with respect to the 

cutting velocity vector is dependent on both laminate orientation and the instantaneous 

immersion angle [173]. Seikh-Ahmad et al. [173, 174] derived specific cutting pressures in 

the radial and tangential directions in order to predict cutting forces as a function of the fibre 

angle for unidirectional and multi-directional laminates. For the cutting of (np) plies with a 

thickness at, the total forces Fc and Ft was described in equations below where φi was the 

instantaneous immersion angle, ac was the uncut chip thickness at laminate thickness, θ 

represented the fibre angle while Kc and Kt were the specific cutting energy in directions 

along and perpendicular to cutting speed (i.e. tangential and normal) respectively. The model 

was transferable to helical tools by slicing the tool into a number of discs [181]. 
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   (  )      
   [   (     )   (  )   ]                                                                Equation ‎2.14 

   (  )      
   [   (     )   (  )   ]                                                                 Equation ‎2.15 

 

Rusinek [212] correlated the chatter behaviour during milling of CFRP to the tool 

rotational speed and stated that there is a range of spindle speeds to be avoided during the 

cutting operation which result in large amplitude vibration (instability lobes), see Figure  2.63.  

 

 

Figure ‎2.63: Effect of varying feed and rotational speed on cutting forces [212] 

 

Finite element analysis (FEA) has also been used to model the machining of CFRP 

composites. Here there are two main challenges, the first is how to model the inhomogeneous 

material and the second the assumption of faliure criterion. It is possible in orthogonal cutting 

to model the material as an equivalent homogenous material (EHM) [32, 33]. There are many 

failure criteria such as maximum stress, maxium strain, Tsai-Hill, Tsai-Wu, and Azzi-Tsai 

Hill [214] but Tsai-Hill is most commonly used [34, 130].  

Comparing macroscopic implicit to microscopic explicit FEA models (Figure  2.64), 

Rentsch et al. [215] found that the microscopic explicit modelling technique was capable of 

giving higher detail of the material removal process compared to macroscopic implicit 

modelling. However, the forces were lower compared to experimentation due to FEA element 

deletion, see Figure  2.65, which necessitates the experimental investigation. 
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Figure ‎2.64: Implicit and explicit FEM model of CFRP [215] 

 

 

Figure ‎2.65: Calculated and measured cutting and thrust forces for 0° and 90° fibre orientation 

[215] 

 

Using a variable helix cutter (three fluted tool with 3 different helix angles), Karpat et al. 

[216] found a sinusoidal relationship between cutting force and instantaneous fibre angle in 

slotting of unidirectional CFRP, see Figure  2.66. Consequently, tangential and radial forces 

showed variation with the rotation angle of the tool, see Figure  2.67 for 0° fibres example, the 

pattern of force varies with fibre orientation. They suggested that fibres at 45˚ and 135˚ were 

easier to cut than 0˚ and 90˚ fibres and preferred these to be top plies which conflicts with 

recommendations of Colligan and Ramulu mentioned earlier [152]. Cutting force coefficients 

were modelled as a function of the fibre angle [217].  



 

69 

 

 

Figure ‎2.66: Instantaneous cutting angle (left) cutting force signal with sinusoidal response 

(right) [216] 

 

 

Figure ‎2.67: Variation of cutting forces within 1/2 rotation of the tool (for 0° fibres) 

 

2.3.13 Cost analysis  

The tool life is the time a newly sharpened tool cuts satisfactorily before it becomes 

necessary to regrind or replace. This time which is affected by the tool resistance to different 

types of wear has an impact on the total machining cost. Tool life is affected by cutting 

conditions, tool geometry, tool material, workpiece material, coolant and rigidity of the 

machine. Tool life criteria can be allowable tool wear, cut length, cutting forces, surface 

integrity/roughness or even noise. 

  

For any process there are fixed and variable costs. Fixed costs may include the assets and 

the machines while variable costs vary depending on several factors such as production rate. 

Ideally, the total cost of a product should include all the cost elements to make it.  This can be 
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raw material cost, machine cost (e.g. electricity, compressed air, gas, consumables, cutting 

fluids, lubricant oil, filters etc.), tooling cost (tools, regrinding), labour cost (wages). Some of 

the process by-products can be recycled and subtracted from the cost such as metal chips and 

scrap tools.  

The cost of a single product Cpr reflects three main cost components which are machine 

cost Cm, tooling cost Ct and labour cost CL and a total machining cost equation can be written 

as: 

 

                                                                                                                                                                               Equation  2.16 

 

The machine cost is the running cost of the machine while the labour cost comes from 

time spent operating the machine during actual machining as well as replacing tools 

multiplied by the labour cost per hour. In this context the most important element is the 

tooling cost per product. The tooling cost CT depends on the tool type whether disposable or 

regrindable. In the case of regrindable tools, the tool cost for a single tool is divided by the 

number of products it makes in the life time and the total tooling cost comes from the 

following equation: 

 

    
(           )      

    
                                                                                         Equation ‎2.17 

 

Where CT is the total tooling cost for a single tool, Cnew is the initial cost including 

grinding if applicable, Cscrap is the scrap cost, ns is how many times the tool was sharpened 

and Cr is the tool sharpening cost.  The tooling cost Ct can be calculated by dividing CT by the 

number of products in a tool life time (z) which is: 

 

   
  

 
                                                                                                                  Equation ‎2.18 

 

The total number of products in a life time z can be calculated from the following 

equation: 

 

  
 

  
                                                                                                                     Equation ‎2.19 
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Where T is the tool life time and tm is the time required to machine a single product.  

Disposable tool cost is the cost of a new tool or prime cost minus the scrap cost if sold as 

scrap divided by the number of products made within the tool life time z.  

In an interrupted process like milling, the tool life T is estimated based on the life of one 

edge, and in this case the tool life becomes the actual contact time between a single edge and 

workpiece. The Taylor model for tool life (VT
n
=C) can be used to derive an equation to 

estimate the economic tool life (Te) and the economic cutting speed (Ve) for minimum cost. It 

can also be used to formulate an equation for the tool life for maximum production rate (To) 

and the corresponding cutting speed (Vo) [218]. 
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                                                                                             Equation  2.23 

 

Here n is the Taylor exponent, C is Taylor constant, tct is the tool changing time, L is the 

labour wage per unit time and r is and overhead ratio.   

Ideally, a detailed cost analysis should include fixed and variable costs such as interest, 

depreciation, wages, rents, energy costs, maintenance costs, and tool costs. Only few research 

articles have included a cost analysis in milling, see references [156, 159, 172]. The analysis 

conducted by Kocke and Wurtz [156] showed that the specific cost per cut meter (£/m) can be 

reduced by 9% through using tools capable of providing a longer tool life. Cost could also be 

reduced by increasing the cutting parameters by 18%. The cost using PCD was 18% less than 

that using WC tooling, see Figure  2.68. 
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Figure ‎2.68: Cost reductions achieved by adjusting cutting parameters , specific cost £/m can 

be reduced by 9% by longer tool life, and 18% by proper selection of parameters (milling 

CFRP using an 8 mm PCD router at 800 m/min) [156] 

 

Horman et al. [159] recently studied the tool wear/life associated with different tooling 

technologies. Veined PCD was a cost effective choice to cut 250 m CFRP despite its high unit 

cost as it allowed complex and more efficient router geometries, see Figure  2.69. In contrast, 

Lopez de lacalle et al. [150] recently concluded that the use of PCD is not economical in 

comparison with cheaper WC burr tools. 

 

 

Figure ‎2.69: Different tool material cost analysis based on 250 m cut length at manufacturers 

recommended cutting speeds and feed rates [159]. 

 

2.4 Non-conventional machining 

Non-conventional machining techniques have been used in cutting of FRP but each 

process has advantages and limitations. For example laser beam [219, 220], water jet [221], 

and abrasive water jet [222] have been used to cut CFRP. Water jet machining (WJM) is not 
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recommended for machining composites which can absorb water (hydrophilic) and cause 

separation, breakage, and hydrocracking. In the aerospace industry, abrasive water jet 

machining (AWJM) is used for rough routing of excess material, followed by milling for the 

final shape and dimensions. Traverse speed is inversely proportional to laminate thickness and 

in order to cut a 12.7 mm section of CFRP, the recommended traverse speed is 900 mm/min 

(at 345 MPa using 80 garnet mesh), which is slower than milling. Finishing can be performed 

using fine abrasive grains. AWJM is known to be better than plain WJM or laser beam 

machining (LBM) in terms of surface quality [222]. AWJM is environment friendly however 

it has drawbacks in that it can cause thermal damage at the exit side and damage due to high 

pressure water wedging as well as causing workpiece abrasive contamination [223].  

Laser beam cutting is a non-contact ablation process in which the efficiency is determined 

by the thermal properties of the cut material. Difficulties are encountered if the plastic 

material cannot absorb the laser beam and this is why carbon black is added to plastics to 

facilitate light absorption. Laser cutting can also produce charred layers (where matrix is 

burned and fibres are bare) and beam divergence can affect workpiece geometry. The most 

common types of lasers used in industry are ND-YAG and CO2 lasers. Lasers operate in two 

modes namely continuous wave (CW) and pulsed mode (PM) [224]. Pulsed mode is 

preferrable as it generates high power and allows cooling. ND-YAG laser can be used 

effectively in pulsed mode to cut CFRP by evaporating resin and fibres before matrix 

overheat. The main parameters governing laser operation are pulse duration, wave length, 

focal spot diameter, fluence, pulse energy, and scanning speed. With a 1500 W laser the 

maximum thickness that can be cut is 9.5 mm. 

Electrical discharge machining (EDM) is capable of cutting conductive materials. In EDM 

the material is removed by high temperatures (8000 - 12,000°C) between two electrodes. A 

series of voltage pulses of about 20-120 V and frequency of ~5 kHz is applied between the 

two electrodes, which are separated by a small gap typically 0.01 to 0.5 mm, filled with a 

dielectric liquid [224]. Composites should have 1-3 ohm/m resistivity to allow for EDM. In 

cases where the matrix is nonconductive, copper can be added to facilitate operation. The 

process is more accurate than WJM and capable of producing holes down to 0.25 mm and is 

not affected by workpiece although. Conversely the process is slow. EDM can be used to 

produce cavities (die sinking/trimming mode) or contoured edges in wire cutting mode. 

Ultrasonic machining (USM) is not widely used for machining composites however, 
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ultrasonic vibrations can be employed to assist some conventional machining processes 

(turning, milling) as mentioned earlier. 

 

2.5 Design of experiments 

A set of experiments can be performed using either full factorial or fractional factorial 

designs. A full factorial design involves running all possible combinations. For example, three 

factors at two levels will require 8 experiments not counting replications. When the number of 

factors and levels increase, a factorial design will require a large amount of resources which 

in some cases is not realistic. However the full factorial design provides comprehensive 

assessment of results [225].  

Taguchi fractional factorial designs or orthogonal arrays are normally used to reduce the 

amount of experiments. In Taguchi‟s method, the term „signal S‟ represents the desirable 

value and „noise N‟ represents the undesirable value. The S/N ratio indicates the degree of 

predictable performance of a product or process in the presence of noise factors. Process 

parameter settings with the highest S/N ratio always yield the best quality with minimum 

variance [53]. Analysis of variance (ANOVA) is a method of appointing variability into 

identifiable sources of variation and the associated Degrees of Freedom (DOFs) in an 

experiment. Here one of the methods to analyse the data is Pareto ANOVA. This is a quick 

and easy method to analyse the results of parameter design, which does not require an 

ANOVA table and, therefore, does not use F-tests [53]. In milling of composites authors such 

as Davim et al. [160, 177] reported that the use of ANOVA is beneficial in determining the 

contribution percentage of each factor and percentage of error. Azmi et al. [179] found that 

when using Taguchi and ANOVA in milling of UD-GFRP, that feed rate had the highest 

influence on the resultant force with 53.6% percentage contribution (PCR). For surface 

roughness the PCR was 66.3% and for tool life 85.2%. Main effects plots shown in 

Figure  2.70 are used to demonstrate the effect of varying factors on either the S/N ratio or 

means. 
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Figure ‎2.70: Main effects plot of process parameters 

 

2.6 Summary of literature review 

 The literature review covered composite materials and their machinability. The material 

part presented the classification of composite materials and focused on fibre reinforced plastic 

(FRP) composites. The discussion around FRP composites covered the main constituents 

including the matrix and the fibre material. The most common fibre materials were then 

classified according to their physical and mechanical properties with emphasis on carbon 

fibres that were classified according to strength. The matrix material was discussed with more 

emphasis on polymeric types and their properties and applications. 

The various forms of fibres and how they are normally used to make different composite 

architectures were mentioned. The laminated types, their anatomy and common codes were 

discussed in detail. Fabrication methods used to manufacture FRP composites were covered 

alongside the health and safety risks associated with such processes and the related 

regulations.  

The machinability review covered the current trends in FRP machinability research. 

Starting from orthogonal cutting which was studied to understand the behaviour of fibre 

reinforced composites when they are machined. The key aspects studied were chip formation 

and the cutting mechanism of fibres at different orientations with respect to cutting tool 
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motion. Although these findings were useful, they could not be taken as indicative of results 

for the milling process which is different in nature and the values of the parameters used were 

inappropriate for adoption in a real production scenario. Turning of FRP composite was also 

reviewed with consideration of the fact that turning can be a continuous process whereas 

milling which is an interrupted one. There was no data relating to cutting temperature either in 

the orthogonal or other turning process research articles surveyed.  

The most widely studied machining process of FRP composites was drilling. This was due 

to the extensive use of drilled holes in aircraft structures. The vast majority of the drilling 

research work was focused on how to assess delamination and how to minimise or avoid its 

formation using several techniques which help in reducing thrust force. The drilling of stacks 

is currently the challenge for researchers.  

The milling of composites was thoroughly reviewed and the importance of the milling 

process in manufacturing FRP components was extensively highlighted. The different milling 

operations were detailed and the process requirements and related terminologies were 

explained. Previous machinability studies related to milling were categorised according to 

process variables and responses measured to evaluate the machinability and the related 

references were detailed. It was obvious that there was relatively few research articles 

compared to other processes especially drilling. There were few articles discussing the 

slotting operation the majority of research work involved the edge trimming process.  

Although the cutting speeds and feed rates cited in the literature had a wide range of 

values, research concerning the use of high cutting speeds and feed rates especially where 

slotting was absent. End mill geometry and related research was divided into three main 

categories namely fluted, burr, and abrasive grit tools and the details of preferred geometry 

features from the literature were mentioned. However, there were no details on the effect of 

tool geometry neither on stability of cutting nor on the cutting temperature and their effects on 

surface integrity when slotting FRP composites.  

In relation to carbide tool material aspects, cobalt content, grain size, and coatings were 

reviewed. The use of different PCD grades or different diamond coating in slotting of CFRP 

was lacking in the literature. Tool wear associated with different tool categories was detailed. 

There was no data covering tool temperature during slot milling nor on the use of vortex 

generated chilled air as a cutting environment. The effect of different chilled air flow rates on 

quality was not studied. In addition, delamination assessment using laser techniques was 

limited.  
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On the modelling side, the modelling approaches varied from mathematical to FEA 

modelling. The empirical formulas obtained to predict responses like such as, delamination, 

tool life, and surface integrity were however limited to process other than slot milling (i.e. 

edge trimming of CFRP) and other equations were limited to milling other materials such as 

glass fibre reinforced plastics GFRP.  

Cost analysis with respect to tooling cost when slotting CFRP was not discussed. An up to 

date comparison between the cost per meter cut for slot milling and the most common non-

conventional machining process used for roughing of CFRP panels was also missing. 

Different designs of experiments used in previous research were highlighted. 
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3 EXPERIMENTAL WORK 

3.1 Workpiece material 

Three different lay-up arrangements of CRFP workpiece material were employed for the 

research, which were denoted as Type-1, Type-2 and Type-3. Each type consisted of fibres at 

orientated at 0˚, 45˚, 90˚, and 135˚ but with different lay-up arrangements. Type-1 and Type-2 

configurations are commonly used for wing skin panels while Type-3 are utilised for wing 

spars. Figure  3.1 shows a schematic of various wing structural parts currently made from 

CFRP. The composite materials are also generally described in the form of [A/B/C], with A, 

B, and C representing the percentage of fibres in the laminate aligned at 0˚, 45˚ or 135˚ and 

90˚ directions respectively. 

 

 

Figure ‎3.1: Wing structural part made of CFRP composites (courtesy of Airbus) 

 

The CFRP laminates comprised unidirectional (UD) prepregs consisting of intermediate 

modulus (294 GPa) carbon fibres impregnated within an epoxy resin matrix (each 0.26 mm 

thick), which were manually laid up and subsequently autoclave cured for consolidation. The 

prepregs were manufactured by Toray Industries with a material designation of TORAY 

3911/34%/UD268/T800SC-24K, which indicates the resin type, resin content by percentage 

weight, fibre areal weight (g/m
2
), fibre type and tow size respectively. Figure  3.2 shows the 
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symmetric lay-up configurations of the 3 different laminates while details of the number of 

plies in a given fibre direction for each material type are detailed in Table 11.  

 

 

Figure ‎3.2: Schematic of Type-1, Type-2 and Type-3 lay-up configurations 

 

Table ‎3.1: Number of different plies within the lay-up for Type-1, Type-2 and Type-3 

material configurations 

Fibre‎orientation‎angle Number‎of‎plies 

Type-1 Type-2 Type-3  

45˚ 10 8 14 

0˚ 10 16 6 

135˚ 10 8 14 

90˚ 10 4 6 
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Both Type-1 and Type-3 panels were each made up of 40 plies and stacked according to 

the sequence of [45˚/0˚/135˚/90˚5]5S and [45˚/0˚/135˚/135˚/135˚/90˚/45˚/45˚/ 

45˚/0˚/135˚/135˚/90˚/45˚/45˚/0˚/135˚/135˚/90˚/45˚]2S respectively (total thickness of 10.4 

mm), while Type-2 laminates involved 36 plies arranged in the order of 

[45˚/0˚/135˚/0˚/90˚/0˚/135˚/0˚/45˚]4S, with a post cure thickness of 9.36 mm. 

All of the composite workpieces were prepared at Airbus in Filton with details of the 

manufacturing procedure, material safety datasheet and material properties of the carbon 

fibres shown in Appendix B, C and D respectively. The cured panels had dimensions of 600 × 

550 mm, where the long edge facilitates identification of the 0° fibre direction. The panels 

were subsequently sectioned using a diamond abrasive disc saw rotating at ~ 4000 rpm under 

a water based emulsion environment (Figure  3.3), into workpiece specimens having 

dimensions of 260 × 240 mm and 100 × 100 mm for use in tool life and cutting force/surface 

integrity evaluation tests respectively, as shown in Figure  3.4. 

 

 

Figure ‎3.3: Diamond disc slitting saw and cutting operation 
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Figure ‎3.4 : Cutting of different specimen sizes from 600 × 550 mm cured panels 

 

In addition, a further three panels were produced where all of the plies were oriented in 

one direction (0°/90°, 45° or 135°) and were used in Phase-2A experimental work. All 3 

panels were cut into specimens with dimensions of 100 × 100 mm. Table  3.2 lists the CFRP 

materials used in the 3 main phases of experimental work (detailed in Section 3.5). 

 

Table ‎3.2: CFRP materials used in the 3 main experimental work phases 

  Phase-1 Phase-2 Phase-3 
Prepreg‎material TORAY 3911/34%/UD268/T800SC-24K 

Lay-up Type-1 [25/50/25] Single direction layup 

(0°, 45°, 90°,135°) 
Type-1 [25/50/25] 
Type-2 [44/44/11] 
Type-3 [15/70/15] 

Type-1 [25/50/25] 
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3.2 Cutting tools routers/end mills 

The cutting tools employed for testing included both uncoated and coated 2 fluted WC 

routers/end mills as well as various grades of brazed PCD tools. The performance of an 

uncoated and diamond coated burr type router was also evaluated. The majority of tooling 

was manufactured and supplied by Seco, with a small proportion of PCD routers provided by 

ITC and Exactaform for benchmarking trials. Details of the tools used are detailed in the 

following sections. 

 

3.2.1 Tungsten carbide tools 

3.2.1.1 Two-fluted routers 

All of the two-fluted WC routers employed were 12 mm in diameter and had equivalent 

geometry of 0° helix, 0° rake, 12° primary relief and 22° secondary relief angles, as shown in 

Figure  3.5. These involved 3 variants, which included an uncoated as well as two having 

diamond based coatings (DLC and CVD diamond), with details of the carbide substrate 

material characteristics and mechanical/physical properties of the coatings outlined in 

Table  3.3 and Table  3.4 respectively. 

  

 

Figure ‎3.5: Geometry of 2-fluted WC routers from Seco 
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Table ‎3.3: Properties of WC substrates (courtesy of Seco) 

            Substrate  

  

Tool 

Cobalt 

content 

Co % 

Transverse 

rapture strength, 

TRS (MPa) 

Vickers 

hardness 

(HV) 

Modulus of 

elasticity E, 

(GPa) 

Grain 

size 

(µm) 

Uncoated  

(Seco Jabro 94120 

d=12 87250 AMG) 

10 3700 1680 580 0.5-0.8 

DLC coated  

(Seco Jabro 

A033798-02696031) 

6 3000 1830 640 0.8-1 

CVD diamond 

coated  

(Seco 02692693) 

6 3000 1830 640 0.8-1 

 

Table ‎3.4: Properties of coating materials (courtesy of Seco) 

 

3.2.1.2 Burr type routers 

The performance of uncoated (Seco 871120.0 4486035-014) and Dura coated (Seco 

871120.0 – Dura 4431601 - 011) burr type routers were also evaluated. These cutters with 

pyramidal shaped cutting edges, are formed from two interlocking left and right hand helices, 

see Figure  3.6. The properties of the WC substrates and Dura coating were equivalent to those 

used for the 2-fluted routers. Geometry details of the burr-routers used are shown in 

Table  3.5.  
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DLC coated 2-4 PVD C-H free 5000 360 4-6 0.305 

Diamond coated 6-8 CVD C- sp3 10000 800 6-8 0.230 
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Figure ‎3.6: Uncoated and diamond coated (Dura) coated WC burr type routers 

 

Table ‎3.5: Geometry details of burr type routers 

Number of 

flutes 18 Cutting 

length 
45 

mm 
Helix angle 

right 25° Relief 

angle 18°  

Router length 

  
100 

mm 
Router 

diameter 
12 

mm 
Helix angle 

left 
 

27° 
Rake 

angle  7° 

 

3.2.2 Polycrystalline diamond (PCD) routers 

Various PCD grades manufactured by Element 6 were evaluated in the mainstream 

testing. Limited comparative trials were also performed using routers with PCD grades 

produced by alternative manufacturers/tool fabricators. 

 

3.2.2.1 Element 6 PCD grades 

The routers were fabricated by Seco using PCD blanks supplied by Element 6 and brazed 

onto the cutter body. All of the cutters were 2-fluted 12 mm diameter with a corner chamfer 

together with rake and relief angles of 0° and 18° respectively. A detailed drawing of the tools 

is shown in Figure  3.7. Four commercially available PCD grades were tested based on 

recommendations from Element 6, which were CTM-302, CTB-010, CMX-850 and WPC-

102 PCD, see Table  3.6 for brief descriptions of the tool characteristics. Further information 

regarding the structure and mechanical/physical properties of the different grades are detailed 

in Table  3.7. 
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Figure ‎3.7: Geometry of PCD routers supplied by Seco 

 

Table ‎3.6: Characteristics of Element 6 PCD grades 

Element 6 PCD grade Reference number Description 

CTM-302  Seco 28108-928 Grain sizes varying from 2-30µm. High 

abrasion resistance but relatively low 

chipping resistance 

CTB-010  Seco Reaming 28156-928* 

Seco BR28155 02692693 

4361079 020/026** 

Average grain size of ~ 6.7µm. Good 

balance of abrasion and chipping 

resistance 

CMX-850 Seco 28155-928*** 

Seco 890120E2s.0Z2A 

8002081-0033 DC-12**** 

Grain size of 1.26µm, which enables 

fabrication of cutters with finer cutting 

edges and high resistance to milling 

forces 

WPC-102 Seco 0269269 Developed for woodworking applications 

with multi-layered PCD structure 

consisting of functionally graded PCD 

with diamond to prevent chipping 

* Mechanically ground edges (used in Phase-1) 

** WEDM cut edges (used in Phase-2) 

***18° primary relief 

****10° primary relief and 18° secondary relief angles (used for benchmarking) 
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Table ‎3.7: Mechanical and physical properties of Element 6 PCD grades 

Property‎ Units‎ 
PCD‎grade 

CTM-302 CTB-010 CMX-850 

Binder‎type --- Co Co Co 

Average‎grain‎size µm 13.8 6.77 1.26 

Grain‎size‎distribution --- Multimodal*  Unimodal**  Unimodal 

%‎Diamond Area % 91.71 89.52 85.55 

Fracture‎toughness MPa.m
0.5

 10.24 8.96 - 

Thermal‎conductivity W.m
-1

.K
-1

 560 459 212.16 

Transverse‎rapture‎strength‎(TRS) MPa 1131 1398 1595 

Density g/cm
3
 3.99 4.08 4.37 

Elastic‎modulus GPa 883 1000 827 

Thermal‎diffusivity mm
2
. S

-1
 - 277 78.66 

Coefficient‎of‎expansion 10
6
/
◦
C 4.2 4.5 4.9 

Specific‎heat J.kg
-1

.K
-1

 0.471 0.468 0.458 

* Contains grains with varying sizes 

**All grains are approximately of same size 

 

3.2.2.2 Alternative PCD routers 

Three alternative PCD tools were tested, all of which were two-fluted and 12 mm in 

diameter. Each of the routers however had different cutting edge geometries, see following 

details:  

 Seco/Mega-Diamond PCD (Seco 890120E35.0Z2A/8002081-0018 DC-12): The 

tools were fabricated with 10° primary relief, 18° secondary relief and 0° rake angles. 

Properties of the Mega-Diamond PCD grade were approximately equivalent to the 

CTB-010 outlined in Table  3.7.  

 ITC-PCD (ITC 2111-12.0-0.5 R): Recommended for the milling of composites 

materials with rake and helix angles of 0°, a 15° relief angle and a 0.5 mm corner 

radius, see Figure  3.8(a). 

 Exactaform-PCD: Three different variants were assessed involving „Neutral‟ (EX 

9703), „Up-cut‟ (EX 8706) and „Down-cut‟ (EX 8705) geometries. These tools have 

rake and relief angles of 0° and 18° respectively. The „Up-cut‟ and „Down-cut‟ tools 

however have helix angles of +3˚ (right hand) and -3 (left hand) respectively while the 
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„Neutral‟ cutter was straight fluted tool (0˚ helix), see Figure  3.8(b). The PCD grade 

used was similar to CTM-302.  

 

 

Figure ‎3.8 (a) ITC 2 fluted PCD router, (b) Schematic of Exactaform 3 fluted PCD routers 

(courtesy of Exactaform)  

 

A summary of the routers employed in the different phases of experiments is shown in 

Table  3.8.  
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Table ‎3.8: Summary of cutting tools/routers used in the various experimental phases 

Phase-1 Phase-2 Phase-3 
Phase 1A  ITC-PCD 

Exactaform-PCD 

Phase-2A  ITC-PCD 

Exactaform-PCD 

Phase-3A  ITC-PCD 

Exactaform-PCD 

Phase-1B  DLC-coated WC 

CTM-320 PCD 

CTB-010 PCD 

CMX-850 PCD 

Phase-2B  CTB-010 PCD Phase-3B  CTB-010 

Phase-1C CTM-320 

CMX-850 

Mega-Diamond-PCD 

WPC-PCD 

CVD (Dura) coated 

WC 

Phase-2C  CTB-010 PCD   

Phase-1D  Uncoated WC 

PVD (DLC) coated 

WC 

CVD (Dura) coated 

WC 

Uncoated WC Burr 

router 

Dura coated WC Burr 

router 

    

 

3.3 Test and analysis equipment 

3.3.1 Machine tool 

All tests were performed on a Matsuura FX-5 high-speed machining centre, shown in 

Figure  3.9 (a), with a spindle rotational speed of 200 to 20000rpm, a maximum feed rate of 

15m/min and a power rating of 15kW, The machine was fitted with a Renishaw TS27R 

contact tool setting probe while a vacuum extraction system (Filtermist), shown in Figure  3.9 

(b), capable of removing airborne particles down to 0.3 µm was installed to extract CFRP dust 

from the cutting zone. Face masks were used all the times during the tests to provide 

additional protection from any airborne dust.  
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Figure  3.9: (a) Matsuura FX-5 vertical CNC machine, (b) Filtermist extraction system 

 

3.3.2 Tool holding 

All of the routers/cutters were held using a BT-40 taper tool holder with a 12 mm 

diameter collet except those used in the temperature measurement experiments, which were 

held in a special HSK-63 tool holder fitted with a wireless transmitter and connected to a 

HSK BT-40 adapter to allow mounting on the FX-5 machine. Figure  3.10 shows the tool 

holders used. 

 

 

Figure ‎3.10: Various tool holders used in the experiments 
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3.3.3 Work holding 

The large CFRP workpiece samples (260 × 240 mm) primarily used for tool life testing 

were held using a VacMagic VM 300 vacuum pallet unit with a universal top plate, see 

Figure  3.11(a). A safety valve interlock system was installed to stop the machine in the event 

of a sudden loss of vacuum. The dimensions of the top plate were 365 × 325 mm with an 

array of pre-drilled holes to fit guide pins for precise location of the workpiece. A further 6 

clamps were also added for additional rigidity. Conversely, the smaller workpiece coupons 

(100 × 100 mm) for cutting force/surface integrity analysis were mounted on a 3-component 

force dynamometer by means of a bespoke fixture as shown in Figure  3.12.  

 

 

Figure ‎3.11: (a) VacMagic VM 300 vacuum pallet unit (b) safety valve  

 

 

Figure ‎3.12: Cutting force /surface integrity coupon clamped on dynamometer 
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3.3.4 Cutting environment 

Typically, water soluble coolant is recommended for cutting composites whereas air 

cooling and strong extraction is preferred for hydrophilic composites [15]. The application of 

liquid based cutting fluid leads to the absorption of moisture by the resin phase [5], which 

deteriorates part dimensional accuracy and mechanical properties in addition to the formation 

of sludge [226]. In the present work, the CFRP was machined either dry or under chilled air 

conditions. The latter was generated using a NexFlow Frigid-X 57030FD vortex tube, which 

was attached to side of the machine spindle as shown in Figure  3.13 (a). Compressed air 

injected into the unit separates into flows of hot and cold air due to the vortex tube 

phenomenon, which is illustrated by the schematic shown in Figure  3.13 (b).  

 

 

Figure ‎3.13: (a) NexFlow vortex tube twin nozzle chilled air outlet, (b) vortex tube working 

principle 

 

The chilled air (CA) was directed to the cutting zone through adjustable hoses, either in a 

twin-nozzle or single-nozzle mode. The temperature of the chilled air delivered at different 

parameters was measured using a thermometer placed directly after and at ~10 mm from the 

nozzle exit, with results detailed in Table  3.9. 
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Table ‎3.9: Chilled air conditions in single and twin-nozzle arrangements  

Chilled air 

mode 

Air 

speed* 

(m/s) 

Air temperature** (C)  

 

Output pressure 

(bar) 
At 10 mm from 

nozzle edge 

At nozzle edge 

 

Single-nozzle 29 2 -3  0.72 

Twin-nozzle 17 5 0  0.40 

*Measured using an Extech AN200 anemometer at 10 mm distance from nozzle  

**Measured using a thermometer 

 

3.3.4 Force measurement 

Cutting forces (maximum and average) were measured using a Kistler platform 

dynamometer (Type 9257A) connected to three single-channel charge amplifiers (Kistler 

Type 5011A). Force signals were recorded and manipulated using Kistler Dynoware software 

in the majority of the experiments with the exception of temperature measurement trials 

where corresponding force data was acquired at a rate of 10000 samples/second and analysed 

using a Nicolet Sigma 60 4-channel oscilloscope (detailed further in the next section).  

 

3.3.5 Temperature measurement  

Cutting temperature measurement was carried out using a wireless telemetry system from 

Actarus (on loan from Airbus), which involved a K-type thermocouple implanted on the back 

face of a PCD router; see Figure  3.14. Cutting temperature (in form of voltage signals) was 

measured by the thermocouple system and displayed on a Microtel K-1 digital readout unit. 

The data was subsequently relayed to and recorded (simultaneously with cutting force traces) 

using a Nicolet Sigma 60 oscilloscope, see Figure  3.15. The thermocouple was calibrated to 

0.01V for every 1˚C prior to the start of testing.  

 

 

Figure  3.14: Implanted thermocouple in Exactaform router 
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Figure ‎3.15: Arrangement for simultaneous force and temperature signal capture using Sigma 

60 oscilloscope 

 

3.3.6 Tool wear/life evaluation 

New and worn routers were photographed using a Canon EOS400D digital camera 

mounted on a Wild M3z toolmakers microscope equipped with a digital micrometre stage 

(resolution of 1µm) and bespoke fixture for flank wear measurement as shown in Figure  3.16. 

Tool flank wear was measured over the entire tool-workpiece engagement length (5mm) at 

appropriate intervals of 100, 200, 300, 900, 2000, 4100, 8200, 12300, 16400, 20500, 24600 

and 28000 mm cut length.  

 

 

Figure ‎3.16: Wild M3z toolmaker microscope fitted with Canon EOS 400D 
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Higher resolution wear micrographs were also obtained using a JEOL 6060 scanning 

electron microscope (SEM) at the University of Birmingham as well as a LEO ULTRA 55 

FEG-SEM at Seco Tools in Sweden, while limited 3D surface scans of worn cutting edges 

were taken using an Alicona optical measurement system at Element 6.  

 

3.3.7 Workpiece surface/slot quality 

The condition/quality of the machined surfaces including characterisation of workpiece 

damage/defects and dimensional accuracy were assessed using various techniques, which are 

described in the following sections.  

 

3.3.7.1 Laser scanning  

3D digital images of the machined slots were generated using an Impact coordinate 

measuring machine (CMM) retrofitted with a Kreon Zephyr KZ-25 laser head (10µm 

accuracy and 500 × 1000 mm scanned part size) mounted on a Renishaw PH 10M indexing 

head as illustrated in Figure  3.17. The head was manually traversed over the machined 

workpiece surface with the indexing unit in different orientations, which guaranteed a 

comprehensive point cloud file of the slot edges and walls.  

The point cloud data was subsequently converted to an STL file (example shown in 

Figure  3.18) using Polygonia software with dimensional/damage analysis performed using 

Geomagic-Studio package. Features measured include length of uncut fibres (fuzzing), width 

of damage/delamination and width/depth of slot while the delamination factor (DF) was 

calculated using Equation 3.1:  

 

   =
Wmax

W
                                                                                                              Equation ‎3.1                                                                                                      

 

Where Wmax is the maximum width of damage and W is the nominal width of slot as 

shown previously in Figure  2.53 [176]. 
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Figure ‎3.17: Impact CMM with 3D laser scanner for slot quality/damage evaluation 

 

 

Figure ‎3.18: Machined workpiece sample and corresponding STL scan 
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3.3.7.2 Optical microscopy imaging 

Optical micrographs of the machined surfaces were captured using the digital camera and 

toolmakers microscope setup described previously for tool wear measurement (Section 3.3.7) 

while images of selected samples were also taken using the Alicona optical measurement 

system. The machined slots were sectioned (following dimensional analysis) using a diamond 

disc along the length as shown in Figure  3.19 in order to analyse slot wall quality. In addition 

only the surfaces produced by the down milling cutter direction was assessed as this was 

representative of the machining operation (end routing/trimming) to be utilised in production. 

Figure  3.20 shows a schematic of the approximate positions on the workpiece samples that 

were examined.  

 

 

Figure ‎3.19: Sectioning of workpiece coupons for slot wall analysis  

 

 

Figure ‎3.20: Position in sample for optical microscopy imaging 

 

3.3.7.3 Scanning electron microscope (SEM) imaging 

High resolution micrographs of the machined surfaces were obtained using a JEOL 6060 

scanning electron microscope (SEM). Samples were mounted on aluminium stubs (35 mm 

diameter × 10 mm thickness) by using carbon adhesive tabs (25 mm diameter) and were gold 
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(Au) sputtered (several nanometres thick) to increase the electrical conductivity of the 

workpiece to avoid „charging‟ (blurring of the image) during analysis. Images were taken at 

90 to 950X magnifications. Figure  3.21 shows the JEOL 6060 SEM unit together with an 

example of a mounted/sputtered specimen. 

 

 

Figure ‎3.21: JEOL 6060 scanning electron microscope (SEM) and sample mounting  

 

3.3.7.4 Surface roughness evaluation 

Surface roughness of the slot walls on the down milling side were measured perpendicular 

to the cutting direction (transverse direction) using a Taylor Hobson Talysurf 120L contact 

stylus tester (2.5 µm stylus tip radius) as shown in Figure  3.22. Three 2D readings (Ra and Rt) 

were taken for each surface over an evaluation length of 2.4 mm (0.8mm cut-off) such that 

one reading was in the middle of the sample with the other two ~10 mm on either side and 

subsequently averaged. In contrast, 3D surface topography plots (Sa and St) were assessed 

over an area of 2.4 x 1.5 mm with one measurement recorded after the first (new tool) and last 

pass (worn tool) in the middle of the sample. Stylus measurements did allow more for an 

evaluation length greater than 2.4mm due to slot depth. In addition, 3D topography plots were 

also obtained using the Alicona optical measurement system (shown in Figure  3.23), which 

were assessed over an area of 2.5 x 1.5 mm at 10X magnification.  
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Figure ‎3.22: Surface roughness tester and sample position during surface roughness 

measurement 

 

 

Figure ‎3.23: Alicona optical measurement system 

 

3.3.7.5 Calibration of Alicona optical system 

Alicona Infinite-Focus optically scans the surface by slicing the scanned area (box 

shaped) into a stack of images and stitches them together to make a 3D surface. This method 

is a non-contact method and capable of scanning down to 20nm resolution. For example, 

using 10X magnification and 159 nm 3.91 µm vertical and lateral resolutions respectively, 
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scanning the surface of standard samples with an area of 1.5 mm X 5 mm, the surface 

roughness parameters obtained were very close to the standard values as shown in Table  3.10. 

 

Table ‎3.10: Comparison between standard samples and Alicona measurements 

Standard‎samples Alicona‎measurements 

Ra 3.2 µm 
Ra 2.94  µm 

Sa 2.92  µm 

Ra 6.3 µm 
Ra 6.69  µm 

Sa 6.71  µm 

Ra 12.5 µm 
Ra 12.7  µm 

Sa 13.66 µm 

 

3.4 Experimental design, test procedure and test arrays 

3.4.1 Phase-1: Effect of operating conditions, tool materials and cutter design 

The overall aim of this phase of work was to investigate the effect of different process 

variables such as cutting speed, feed rate, cutting environment and tool material when 

routing/slotting CFRP composites. The experimental work undertaken was divided into four 

sub-phases. 

 

3.4.1.1 Phase-1A: Preliminary work 

Following some initial setup verification cuts, a series of pilot trials were performed using 

commercial „off the shelf‟ PCD routers in order to assess the influence of different operating 

parameters on cutting forces, temperature and surface integrity. All trials involved Type-1 

CFRP material with depth of cut fixed at 5 mm under a chilled air environment. Only one slot 

was machined for each set of parameters. Table  3.11 and Table  3.12 detail the test array for 

experiments to evaluate the influence of varying cutting speed and feed rate on cutting forces 

and workpiece surface integrity respectively. The PCD router employed was supplied by ITC.  
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Table ‎3.11: Test array to evaluate the effect of cutting speed on forces and slot quality 

Test‎ 
Cutting‎

speed‎

(m/min) 
Tool Feed‎rate‎

(mm/tooth) 
Cutting‎

environment 
WP‎

configuration 

1 200 

ITC-

PCD 0.03 Twin nozzle 

chilled air Type-1  
2 350 

3 500 

4 650 

 

Table ‎3.12: Test array to evaluate the effect of feed rate on cutting forces and slot quality  

Test‎ Cutting‎speed‎

(m/min) Tools Feed‎rate‎

(mm/tooth) 
Cutting‎

environment 
WP‎ 

configuration 

1 

200 (5308 rpm) ITC-

PCD 

0.03 

Twin-nozzle  
chilled air Type-1  

2 0.05 

3 0.07 

4 0.09 

 

Trials to evaluate the effect of varying depth of cut on cutting forces and temperature at a 

constant cutting speed and feed rate were carried out using 2 different Exactaform PCD 

routers, see Table  3.13. Similarly, the tools were utilised to investigate the effect of varying 

cutting speed and feed rate on cutting temperature, with the lower cutting speed and feed rate 

levels chosen to avoid PCD chipping as detailed in Table  3.14. 
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Table ‎3.13: Test array to evaluate the effect of varying slot depth on cutting temperature 

Test 
Cutting‎

speed‎

(m/min) 

Tool‎

material 
Feed‎rate‎

(mm/tooth) 
Cutting‎

environment 
WP‎

configuration‎ 
Depth‎of‎

slot‎(mm) 

1 

200 (5308 

rpm) 

Exactaform 

Neutral 

0.03 Twin-nozzle  
Chilled air Type-1 

1 

2 2 

3 3 

4 
Exactaform 

Up-cut 

1 

5 2 

6 3 
 

Table ‎3.14: Test array to evaluate the effect of cutting speed and feed on temperature 

Test‎ Cutting‎speed‎

(m/min) Tool‎material Feed‎rate‎

(mm/tooth) 
Cutting‎

environment 
WP‎

configuration 

1 

200 (5308 rpm) 

Exactaform 

Down-cut 
0.03  

Twin-nozzle 

chilled air Type-1 

2 0.06 

3 Exactaform 

Neutral 
0.03 

4 0.06 

5 

350 (9289 rpm) 

Exactaform 

Down-cut 
0.03  

6 0.06 

7 Exactaform 

Neutral 
0.03 

8 0.06 
 

3.4.1.2 Phase-1B: Influence of operating conditions and tool materials 

Following on from Phase-1A, mainstream experiments were undertaken to evaluate the 

influence of operating parameters (cutting speed and feed rate), tool materials and cutting 

environment on cutting forces, tool wear/life and surface roughness. The fixed factors are 

shown in Table  3.15 while the variable parameters are detailed in Table  3.16. 
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Table ‎3.15: Fixed factors for Phase-1B experiments 

Parameter Units Levels 

Depth‎of‎slot mm 5  

Tool‎diameter‎Dc mm 12 

Number‎of‎tool‎flutes‎Z --- 2 

WP‎material‎(prepreg) --- TORAY 3911/34%/UD134/T800SC-24K 

WP‎configuration ---  Type-1 [25/50/25] 

 

Table ‎3.16: Variable parameters and levels in Phase-1B experiments 

‎‎‎‎‎‎‎‎‎‎Parameter‎ 

 

Level 

Cutting‎speed‎

(m/min) 
Feed‎rate‎

(mm/tooth) 
Tool‎material Cutting‎environment 

1 200 0.03 DLC-coated WC Dry 

2 350 0.06 CTM-PCD 
Twin-nozzle chilled 

air 

3 500 0.10 CTB-PCD  

4 650 0.15 CMX-PCD  

 

A Taguchi fractional factorial experimental design involving 16 tests was specified 

consisting of 3 factors at 4 levels (tool material, cutting speed and feed rate) and 1 factor at 2 

levels (cutting environment). This was selected as opposed to a full factorial (4
3
*2

1
 = 128 

tests) in order to reduce the number of tests, but which would still allow statistically 

significant factors to be identified to a high level of confidence. Due to the relatively high 

number of factors and corresponding levels evaluated, a modified L16 orthogonal array (OA) 

had to be employed rather than the standard L16 OA shown in Table  3.17. 
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Table ‎3.17: Standard L16 orthogonal array [227] 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Run A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD 

1  -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

2 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

3 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

9 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 

10 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

12 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 

14 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

15 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

To statistically accommodate a four-level factor within a two level OA, three mutually 

interactive, two-level columns (for example columns 1, 2 and 3 in Table  3.17) were replaced 

with one four-level column, which provide the same information potential and maintained the 

orthogonality of the final modified orthogonal array [227], see Table  3.18. The merging of 

mutually interactive columns for the 4 factors meant that interactions between experiment 

factors could not be assessed. The final test array indicating the parameter levels for each 

experiment is shown in Table  3.19.  
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Table ‎3.18: Modified Taguchi L16 orthogonal array  

 
Cutting 

speed 

Tool 

material 

Feed 

rate 

Cutting 

environment 

Run A B Level C D Level AC BD Level BC Level 

1 -1 -1 1* -1 -1 1 1 1 4 1 2 

2 1 -1 2 -1 -1 1 -1 1 3 1 2 

3 -1 1 3 -1 -1 1 1 -1 2 -1 1 

4 1 1 4 -1 -1 1 -1 -1 1 -1 1 

5 -1 -1 1 1 -1 2 -1 1 3 -1 1 

6 1 -1 2 1 -1 2 1 1 4 -1 1 

7 -1 1 3 1 -1 2 -1 -1 1 1 2 

8 1 1 4 1 -1 2 1 -1 2 1 2 

9 -1 -1 1 -1 1 3 1 -1 2 1 2 

10 1 -1 2 -1 1 3 -1 -1 1 1 2 

11 -1 1 3 -1 1 3 1 1 4 -1 1 

12 1 1 4 -1 1 3 -1 1 3 -1 1 

13 -1 -1 1 1 1 4 -1 -1 1 -1 1 

14 1 -1 2 1 1 4 1 -1 2 -1 1 

15 -1 1 3 1 1 4 -1 1 3 1 2 

16 1 1 4 1 1 4 1 1 4 1 2 
* For factors levels: (-1 × -1 = 1), (1 × -1 = 2), (-1×1 =3) and (1×1 = 4) 

 

Table ‎3.19: Fractional factorial test array for Phase-1B experiments 

Test 
Cutting speed 

(m/min) 
Tool material 

Feed rate  

(mm/tooth) 

Cutting 

 environment 

1 200 DLC-coated WC 0.15 Twin nozzle chilled air 

2 350 DLC-coated WC 0.10 Twin nozzle chilled air 

3 500 DLC-coated WC 0.06 Dry 

4 650 DLC-coated WC 0.03 Dry 

5 200 CTM-302 PCD 0.10 Dry 

6 350 CTM-302 PCD 0.15 Dry 

7 500 CTM-302 PCD 0.03 Twin nozzle chilled air 

8 650 CTM-302 PCD 0.06 Twin nozzle chilled air 

9 200 CTB-010 PCD 0.06 Twin nozzle chilled air 

10 350 CTB-010 PCD 0.03 Twin nozzle chilled air 

11 500 CTB-010 PCD 0.15 Dry 

12 650 CTB-010 PCD 0.10 Dry 

13 200 CMX-850 PCD 0.03 Dry 

14 350 CMX-850 PCD 0.06 Dry 

15 500 CMX-850 PCD 0.10 Twin nozzle chilled air 

16 650 CMX-850 PCD 0.15 Twin nozzle chilled air 
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Analysis of variance (ANOVA) was performed to identify significant factors affecting 

cutting forces, tool life and surface roughness (Ra, Rt, Sa) together with corresponding main 

effects plots produced using Minitab 15 software with the response values normalised at a 

flank wear of 0.1 mm. The percentage contribution ratio (PCR) of each factor was also 

calculated. A confirmation test was carried out using the preferred operating parameter levels 

based on the ANOVA results as shown in Table  3.20.  

 

Table ‎3.20: Confirmation test parameters for Phase-1B 

Test 
Cutting‎ 
speed 

‎(m/min) 

Tool‎

material 
Feed‎rate 
‎(mm/tooth) 

Cutting‎ 
environment 

WP 

Configuration 

Confirmation 500 CTB-010 

PCD 0.15 Twin nozzle  

Chilled air  
Type-1 

 

3.4.1.3 Phase-1C: Benchmarking of Element 6 PCD grades at preferred operating parameters 

Using the preferred combination of cutting parameters identified based on results from 

Phase-1B, benchmarking trials were performed to evaluate the performance of alternative 

Element 6 PCD grades. Experiments were carried out at a fixed cutting speed and feed rate of 

500 m/min and 0.15 mm/tooth respectively, under a chilled air environment as detailed in the 

experimental array shown in Table  3.21. Output measures included tool wear/life, cutting 

forces, surface roughness and workpiece delamination. The end of test criterion was a 0.3 mm 

flank wear or a 28,000 mm cut length.  

 

Table ‎3.21: Test array to evaluate the performance of Element 6 PCD grades  

Test 
Cutting 
speed 
(m/min) 

Tool‎material Feed‎rate 
(mm/tooth) 

Cutting 
environment 

WP‎

configuration 

1 

500 

CTM-302 PCD 

0.15 Twin-nozzle 
chilled air Type-1 2 CMX-850 PCD 

3 WPC-102 PCD 
 

3.4.1.4 Phase-1D: Benchmarking of carbide tooling products 

Based on results of the DLC coated WC routers in Phase-1B, trials were undertaken to 

benchmark the performance of DLC coated WC tools against uncoated and CVD diamond 
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(Dura) coated 2 fluted and burr type WC routers at a cutting speed of 200 m/min and feed rate 

of 0.03 mm/tooth, see Table  3.22. Tests aimed to identify wear types resulting from the 

slotting operation of CFRP composites. Response measures included tool wear/life, cutting 

forces and workpiece surface roughness. A tool life criterion of 0.3 mm flank wear or 

occurrence of fuzzing on down milling side were specified for the 2-fluted tools while a 0.3 

mm flank wear or 28,000 mm cut length was selected in the case of burr type routers. 

 

Table ‎3.22: Test array to evaluate the performance of different WC routers 

Test 
Cutting‎

speed‎ 
(m/min) 

Tool‎

material/configuration 
Feed‎rate‎

(mm/tooth) 
Cutting‎

environment 
WP‎

configuration 

1 

200 

2-fluted DLC coated 

WC router 

0.03 Twin nozzle 

chilled air Type-1 

2 2-fluted Dura coated 

WC router 

3 2-fluted Uncoated WC 

router 

4 Uncoated WC burr 

type router  

5 Dura coated WC burr 

type router 
 

3.4.2 Phase-2 Effect of workpiece material lay-up configuration 

The overall aim of Phase-2 experiments was to determine the effect of varying workpiece 

configuration on the machinability of CFRP. More specifically, the objectives of the work 

relate to investigating the influence of laminate/ply orientation on machined surface quality 

(surface roughness, delamination etc.), cutting forces and tool life/wear, tool temperature and 

to determine best parameters for each laminate configuration/orientation tested. 

 

3.4.2.1 Phase-2A: Preliminary testing and temperature measurement 

A series of tests were carried out to evaluate the effect of fibre orientation at 0°, 45°, 90° 

and 135° (all plies in single direction) as well as the three workpiece material configurations; 

Type-1, Type-2, and Type-3. A single slot was machined for each experiment with the cutting 

forces and surface roughness recorded. The trials were performed using a partially worn 2-
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fluted ITC-PCD router (flank wear less than 0.1 mm). Similarly, the effect of workpiece 

configuration on cutting forces and temperature were also investigated using semi-worn (flank 

wear of ~ 0.1 mm) 3-fluted Exactaform PCD routers (Up-cut, Neutral and Down-cut). The 

test array is detailed in Table  3.23.  

 

Table ‎3.23: Test array to evaluate the effect of workpiece configuration 

Test 
Cutting‎

speed‎

(m/min) 
Tool‎material Feed‎rate‎

(mm/tooth) 
Cutting‎

environment 
WP‎

configuration 

1 

200 
 

ITC-PCD 
 

Exactaform 

Up-cut 

 

Exactaform 

Neutral 

 

Exactaform 

Down-cut 

0.03 
 

Twin-nozzle  
chilled air 

 

0˚ 

2 45˚ 

3 90˚ 

4 135˚ 

5 Type-1 

6 Type-2 

7 Type-3 
 

The influence of cutting environment (single-nozzle and twin-nozzle chilled air as well as 

dry) on cutting temperature was assessed using Exactaform Neutral and Down-Cut PCD 

routers when machining Type-3 CFRP workpieces. Initial trials involved a slotting operation 

over a distance of 100 mm; see Table  3.24, while a further 3 tests were undertaken under an 

edge routing configuration over 5000 mm at 3/4 engagement of the tool, see Table  3.24.  

Table ‎3.24: Test matrix to evaluate the effect of cutting environment on cutting temperature 

during slotting operation 

Test 
Cutting‎

speed‎

(m/min) 

Tool‎

material 
Feed‎rate‎

(mm/tooth) Cutting‎environment WP‎

configuration 

1 

200 

Exactaform 

Neutral 

0.03 

Dry 

Type-3 

2 Single-nozzle chilled air 

3 Twin-nozzle chilled air 

4 
 

Exactaform 

Down cut 

Dry 

5 Single-nozzle chilled air 

6 Twin-nozzle chilled air 
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Table ‎3.25: Test matrix to evaluate the effect of cutting environment on cutting temperature 

during a continuous edge routing operation  

Test 
Cutting‎

speed‎

(m/min) 

Tool‎

material 
Feed‎rate‎

(mm/tooth) Cutting‎environment WP‎

configuration 

1 

200 
Exactaform 

Neutral 
0.03 

Dry 

Type-3 2 Single-nozzle chilled air 

3 Twin-nozzle chilled air 

 

3.4.2.2 Phase-2B: Effect of workpiece material lay-up configuration 

Phase-2B involved mainstream testing to evaluate the effect of CFRP lay-up configuration 

with variable operating parameters and tool material selected based on results from Phase-1B. 

All tests were performed under a chilled air environment delivered through a single-nozzle 

based on results from Phase-2A. Table  3.26 and Table  3.27 details the fixed factors and 

variable parameters utilised respectively. A full factorial design was employed involving 12 

tests (see Table  3.28), which resulted from the combination of 2 factors at 2 levels (cutting 

speed and feed rate) and one factor at 3 levels (workpiece material). 

 

Table ‎3.26: Fixed factors for Phase-2B experiments 

Parameter Units Levels 

Depth‎of‎slot/cut‎per‎pass mm 5 

Tool‎material‎ --- CTB-010 PCD 

Tool‎diameter,‎Dc mm 12 

Number‎of‎flutes,‎Z --- 2 

Cutting‎environment --- Single-nozzle chilled air 

WP‎material‎(prepreg) --- TORAY 3911/34%/UD134/T800SC-24K  
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Table ‎3.27: Variable parameters and levels for Phase-2B experiments 

‎‎‎‎‎‎‎‎‎‎Parameter‎ 

 

Level 

Cutting‎speed‎

(m/min) 
Feed‎rate‎

(mm/tooth) WP‎configuration 

1 350 0.10 Type-1 
2 500 0.15 Type-2 

3   Type-3  

 

Table ‎3.28: Full factorial test matrix for Phase-2B experiments 

Test 
Cutting peed 

(m/min) 

Feed rates 

(mm/tooth) 

Material 

configuration 

1 350 0.1 Type-1 

2 350 0.1 Type-2 

3 350 0.1 Type-3 

4 350 0.15 Type-1 

5 350 0.15 Type-2 

6 350 0.15 Type-3 

7 500 0.1 Type-1 

8 500 0.1 Type-2 

9 500 0.1 Type-3 

10 500 0.15 Type-1 

11 500 0.15 Type-2 

12 500 0.15 Type-3 
 

3.4.2.3 Phase-2C Effect of cutting environment 

Results from Test 11 and confirmation trial in Phase-1B as well as Test 10 in Phase-2B 

were compared in order to investigate the influence of cutting environment. All three tests 

involved the CTB-010 PCD router, which were performed using Type-1 CFRP material 

configuration. Response measures included cutting forces, tool wear/life, surface roughness, 

and delamination factor. A summary of the test parameters used are detailed in Table  3.29. 
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Table ‎3.29: Test matrix to evaluate effect of cutting environment 

Test 
Cutting speed 

(m/min) 

Tool 

material 

Feed rate 

(mm/tooth) 

Cutting 

environment 

WP 

configuration 

1* 

500 
CTB-010 

PCD 
0.15 

Dry 

Type-1 
2** 

Twin-nozzle 

chilled air  

3*** 
Single-nozzle 

chilled air  

*Phase-1B: Test-11 

**Phase-1B: Confirmation test 

***Phase-2B: Test-10 

 

3.4.3 Phase-3: Effect of varying tool geometry 

The overall aim of Phase-3 experiments was to determine the effect of varying tool 

geometry on the machinability of CFRP, with all tests undertaken using PCD routers. 

Variables assessed included the influence of different helix and secondary relief angles on 

machined surface quality (surface roughness, delamination), cutting forces, temperature and 

tool life/wear when slotting CFRP workpieces having Type-1 lay-up configuration.  

 

3.4.3.1 Phase-3A: Influence of router helix angle 

The effect of tool helix angle on cutting temperature was investigated using Exactaform 

Up-Cut, Neutral and Down-Cut PCD routers when machining CFRP at a cutting speed and 

feed rate of 200 m/min and 0.03 mm/tooth respectively. A tool life criteria of 28,000 mm cut 

length or 0.1 mm maximum flank wear was employed with the test matrix detailed in 

Table  3.30.  

 

Table ‎3.30: Effect of helix angle on cutting temperature  

Test 

Cutting 

speed 

(m/min) 

Tool helix angle  
Feed rate 

(mm/tooth) 

Cutting 

environment 

WP 

configuration 

1 

200  

Exactaform Up-cut  

(+ 3) 

0.03  
Twin nozzle 

chilled air 
Type-1 2 

Exactaform Neutral  

(0) 

3 
Exactaform Down-cut  

(- 3) 
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3.4.3.2 Phase-3B: Effect of secondary relief angle 

The influence of a secondary clearance angle on tool life, cutting forces and surface 

quality/roughness when slotting CFRP was evaluated. The Mega Diamond (similar to CTB-

010) and CMX-850 PCD grades were employed, with results compared against those from 

trials in Phase-1B and Phase-1C respectively. The tests were performed at fixed operating 

parameters of 500 m/min cutting speed and 0.15 mm/tooth feed rate under a twin-nozzle 

chilled air environment based on results from Phase-1B. The end of test criterion was a flank 

wear of 0.3 mm or 28,000 mm cut length. Details of the tools and test parameters used are 

detailed in Table  3.31. 

 

Table ‎3.31: Test matrix to evaluate the effect of secondary relief angle 

Test 

Cutting 

speed 

(m/min) 

Tool material 

(PCD) 

Relief angle 

Feed rate 

(mm/tooth) 

Cutting 

environment 
WP 

Primary Secondary 

1* 

200 

CTB-010  18˚ - 

0.15 
Twin nozzle 

chilled air 
Type-1 

2 Mega-diamond  10˚ 18˚ 

3** CMX-850  18˚ - 

4 CMX-850  10˚ 18˚ 

*Used in Phase-1B: Confirmation test 

** Used in Phase-1C: Benchmarking test 

 

3.5  Cutting strategy 

Two different machining strategies were employed during the experiments involving 

slotting or edge routing at ¾ engagement of the tool diameter. The latter was generally 

performed during tool life testing in a raster operation (alternating between up and down 

milling) in order to conserve workpiece material. The use of 3/4 engagement was preferred 

over the full-engagement in order to make the available test panels sufficient for the planned 

tests.  In addition, compared to ½ engagements, it also allowed a closer machining scenario to 

slotting operation. A schematic illustrating the slotting and ¾ engagement cutting strategy is 

shown in Figure  3.24. The CNC code for both the full (slotting) and ¾ engagement is found in 

Appendix D together with the modified CNC code to enable continuous machining. In 

addition, tool run-out was measured using a dial gauge prior to the start of each test and did 

not exceed 10µm. 
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Figure ‎3.24: Full and ¾ engagement of router 

 

3.6 Summary of experimental work 

This chapter presented the details of workpiece material used in the experimental work 

and how it was fabricated. It also covered the three main workpiece lay-up configurations 

used by Airbus for the wing applications that are under investigation in terms of 

machinability. Cutting tools from SECO (WC and PCD grades) and grades from other 

manufacturers were detailed and assigned to different phases of experiments. The 

experimental tests were divided into three main phases and related sub-phases. Test arrays 

including Taguchi‟s orthogonal arrays in Phase-1 and full factorial experiments were detailed 

showing the parameters used in every individual test and the anticipated output responses 

were also listed. All test equipment and measuring instruments during and after machining 

were discussed and illustrated and finally a procedure for running the experiments was 

detailed.  
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4 RESULTS AND DISCUSSION 

4.1 Phase-1A: Preliminary work 

When machining using the ITC PCD router at the lowest cutting speed and feed rate 

combination of 200 m/min and 0.03 mm/tooth respectively, flank wear was minimal (~0.038 

mm) even after 1860 mm cut length, see Figure  4.1, with negligible fuzzing on the workpiece. 

Matrix residue marks however were visible on the tool rake face, due to the accumulation of 

melted CFRP resin, as a result of temperatures generated during machining. No signs of crater 

wear were detected, which is generally rare when milling CFRP as flank wear is usually the 

dominant form [148, 175]. 

 

 

Figure ‎4.1: Tool wear and matrix residues on ITC-PCD router 
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All three force components were observed to increase with cutting speed and feed rate, 

with mean values for the cutting and feed forces in the region of 300 N, see Figure  4.2. This 

was higher by a factor of 10 compared to results on edge-trimming of CFRP reported by Ucar 

and Wang [161]. The results can be attributed to the smaller radial depth of cut/stepover 

employed for edge-trimming (9% of tool diameter) compared to slotting (100% of tool 

diameter). 

 

 

Figure ‎4.2: The effect of feed rate and cutting speed on force components (Fx, Fy, Fz) 

 

The machined surfaces produced at different test conditions are shown in Figure  4.3. The 

area surface roughness parameter (Sa) generally varied between 6-10 µm over the range of 

operating parameters employed. The 3D surface topography of the surfaces generated with 

respect to variation in cutting speed and feed rate are shown in Figure  4.4 and Figure  4.5 

respectively. Damage was most severe on the 45° direction ply with signs of material pull out 

irrespective of cutting speed or feed rate. Figure  4.6(a) shows that the surface roughness 

parameter Sa initially increased with cutting speed but subsequently reduced at higher cutting 

speeds (> 350 m/min), possibly due to melting of the resin matrix. In contrast, surface 

roughness was found to decrease as feed rate increased from 0.03 to 0.06 mm/tooth but y 

increased subsequently at elevated feed rate levels, see Figure  4.6(b), which was likely due to 

greater damage on the workpiece surface. 
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Figure ‎4.3: Machined CFRP surface at different cutting parameters 
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Figure ‎4.4: 3D surface topography and roughness parameters using different cutting speeds 

 

 

Figure ‎4.5: 3D surface topography and roughness parameters using different feed rates 
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Figure ‎4.6: 3D surface roughness parameter Sa (µm) vs. cutting speed and feed rate 

 

Figure  4.7 details the influence of cutting speed and feed rate on temperature when 

machining with the Exactaform routers (Neutral and Down-cut geometries). In general, 

temperature increased with cutting speed but decreased at higher feed rates due to the reduced 

tool-workpiece contact time. Similarly, larger slot depths (axial depth of cut) resulted in an 

approximately linear increase in cutting temperatures from ~ 70C (at 1 mm depth of cut) to 

170C (at 3 mm depth of cut) due to the greater area of tool-workpiece contact.  

 

Figure ‎4.7: Cutting temperature at different cutting parameters. 
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4.2 Phase-1B: Influence of operating conditions and tool materials 

4.2.1 Tool life (cut length)  

The tool wear progression against cut length for each test is shown in Figure  4.8. 

Typically, the abrasive carbon fibres cause „shedding‟ of the tool particles resulting in 

attrition wear [47, 48]. The tool life of the PCD routers were significantly higher in 

comparison to WC, which was also reported by Klocke and Wurtz [156]. The cut lengths 

obtained at 0.1 mm flank wear for all tests are shown in Figure  4.9. 

The main effects plot for tool life is shown in Figure  4.10. None of the factors was 

statistically significant with respect to cut length. The trends indicated that mean tool life 

decreased at the lowest and highest cutting speed level (200 and 650 m/min), which was 

likely due to the larger uncut chip thickness which is equal to feed/tooth (causing chipping of 

the CTM-302 PCD tool) and increased abrasion of the cutting edge respectively. 

 

Figure ‎4.8: Tool wear vs. cut length (all tests) 
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Figure ‎4.9: Cut length at 0.1 mm flank wear 
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Figure ‎4.10: Main effects plot for tool life 

 

The ANOVA calculations and percentage contribution ratio of the different factors are 

shown in Table ‎4.1. An error level of 70% was observed, which was possibly due to 

interactions between the factors that was not considered due to the limitations of the fractional 

factorial experimental design employed. Such high error percentage suggests that the 

modified orthogonal array used (with no interactions) was not the optimal and that a different 

experimental design should be employed (full factorial for example) which considers a more 

comprehensive number of factors and levels.  
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Table ‎4.1: ANOVA table for tool life 

Source DOF‎‎ Seq‎SS‎‎ Adj‎MS‎‎‎ ‎F‎calc.‎‎‎‎ F‎tab. ‎P PCR‎(%) 
Vc 3 256797325 85599108 1.72 5.41 0.277 10.76 
f 3 105456085 35152028 0.71 5.41 0.588 0 

Tool 3 341381533 113793844 2.29 5.41 0.196 19.20 
C 1 49574815 49574815 1 6.61 0.364 0 

Residual error   5 248440946 49688189       70.08 
Total  15 1001650705           

 

Tool wear doubled when cutting speed increased in Test-2 compared to Test-1 from 0.12 

mm to 0.24 mm VB possibly due to the higher cutting speed which had larger effect (higher 

PCR) on tool wear despite the decrease in feed rate from 0.15 mm/tooth to 0.1 mm/tooth. 

Regardless of the cutting conditions, DLC coated WC generally suffered from severe wear 

in the form of coating loss and exposed substrate, while the tool was serrated due to the 

varying fibre orientation. At high tool feed rates, signs of plastic deformation was prominent. 

The amount of tool wear was highest at the point of maximum axial depth of cut or corners. 

Using WC tools some signs of plastic deformation possibly due to high forces resulting from 

high feed rate were also visible, (see Figure  4.11) where the effect of high cutting speed in 

Test-4 was prominent. Coating was removed by abrasion which indicates enhanced adhesion. 

An EDX analysis of the worn surface also showed that the carbon layer was completely 

removed from the worn area. Using CMX-850 PCD, the high cutting speed and feed rate 

(Test-16) caused fracture of the router at 0.290 mm flank wear and 12300 mm cut length.  

The severe tool wear associated with DLC-coated WC tools resulted in the extremely 

short tool life of no more than 900 mm cut length at 0.308 mm flank wear in Test-2. Tools 

suffered from abrasion tracks and serrated cutting edges due to the different ply orientation. 

Similar serration in edge were noted by Davim [228].  

The CTM-302 grade showed the least resistance to chipping especially at high feed rate 

(Test-5) possibly due to the large grain structure and high mechanical load although it has the 

highest abrasion resistance, see Figure  4.12. Large chunks of cutting edge were fractured at 

equi-spaced points of the type CH1 mode according to ISO standard [145] which looked like 

the serrated tool in DLC-coated tool despite the different wear mechanism. Tool life was 

dictated by chipping which reached the tool life criteria of 0.3 mm (~900 mm cut length) 
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Figure ‎4.11: (a) worn edge Test-1 (b) worn edge Test-4 

 

 

 

Figure ‎4.12: Chipping in CTM-302 PCD (Test-5) 

 

Tool material had the highest PCR (19.2%). Significant improvement, using PCD 

compared to DLC-coated WC (up to 95 times), was achieved. CTB-010 PCD achieved the 

best tool life, on average, possibly due to the balanced mechanical/thermal properties. Despite 

the good properties of the CMX-850 PCD it comes second due to the relatively low abrasion 
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resistance of the small grain size PCD. The thermal cycling and fatigue could be a reason that 

the tool life was slightly lower as noted by Rahman et al. [203]. 

The CTB-010 in general was capable of cutting without fuzzing on down milling side at 

high cutting speed/feed rate combination with only the signs of abrasion wear and the least 

amount of tool wear was achieved using cutting speed 500 m/min, feed rate of 0.15 mm/tooth 

and in dry conditions (Test-11), see Figure  4.13. The performance may improve if chilled air 

is used. The CTB grade had a good balance of physical/mechanical properties (i.e. compared 

to the rest of the grades used) such that having medium (cobalt content, diamond area, 

transverse rapture strength (TRS), fracture toughness) and the highest elastic modulus which 

made it a better choice for applications where the tool is subjected to cyclic loading. It had 

also better thermal properties than the CMX-850 PCD grade. The CMX-850 grade was also 

suitable for the process at high cutting speed and high feed rate (Test-15) but it came second 

after CTB-010. At extreme condition (650 m/min cutting speed and 0.15 mm/tooth feed rate) 

the tool fractured (Test-16). 

 

Figure ‎4.13: Worn CTB-010 following 28,000 mm cut length (Test-11) 

 

Although statistically insignificant, the use of chilled air was found to be crucial for chip 

evacuation and preventing rubbing against CFRP dust like chips. The CFRP dust caused 

severe a rise in temperature which in turn accelerated tool wear and promoted burning. The 

burning of dust lead to matrix degradation and surface deterioration and was a potential 

health/fire hazard.  
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4.2.1 Cutting forces 

The maximum cutting force Fx was in the range of 150.76 N using CMX-850 PCD at low 

cutting speed and low feed rate (Test-13) to 1032 N (Fx) using DLC-coated WC at high 

cutting speed and low feed rate (Test-3) due to tool wear. Figure  4.14 shows an example of 

the increase in the cutting forces with the length of cut. The cutting forces Fx and Fy at 0.1 

mm flank wear are shown in Figure  4.15. 

 

Figure ‎4.14: Cutting force components against cut length (Test-6) 

 

 

Figure ‎4.15: Cutting forces at 0.1 mm flank wear  
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The maximum cutting force Fx represents the actual cutting force at the point of 

maximum chip thickness. The main effects plot for the cutting force component (Fx) is shown 

in Figure  4.16. The cutting forces increased with cutting speed up to a critical point where the 

thermal softening of matrix took place which might have contributed to lowering the cutting 

force as noted by Wang et al. [88]. The low mean force at high speed can be explained by the 

early premature failure of tool at such high cutting speed (due to high abrasion and high 

temperature). Feed rate caused some increase in the mean cutting forces. Similarly, when 

cutting under the extreme condition (highest feed rate), the mean forces were lower due to the 

effect of feed rate on tool life (i.e. premature chipping). 

DLC-coated WC tools were obviously responsible for the highest cutting forces due to the 

severe rounding of the cutting edge and loss of its sharpness (twice as large compared to PCD 

tools). Low cutting forces using CTM-PCD could be attributed to the high abrasion resistance 

of the large grained PCD.  

The low mean forces also can be related to chipping of the cutting edge at low speed/high 

combination as in (Test-5). The relatively high wear resistance and hence the extended tool 

life of CTB-PCD and CMX-850 PCD raised the mean forces over the forces obtained by 

CTM-302 PCD tools. The CMX-850 PCD was lower in forces (Fx) compared to CTB-PCD 

possibly due to the sharper cutting edge and inherent smooth surface of the fine grained PCD 

which reduced the coefficient of friction.  

The percentage of different factors affecting the cutting force (Fx) shown in  ANOVA 

analysis for cutting force Fx are shown in Table  4.2. Feed rate was the most significant factor 

affecting Fx. This is because of the fact that in slotting operation, the maximum chip 

thickness is equal to the feed rate per tooth in such a case. Percentage contributions were 38 

% for feed rate, 20.92 % for cutting speed while the tool was responsible for 10 %. This 

agrees with findings of Hocheng et al. [139]. 
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Figure  4.16: Main effects plot for cutting force (Fx) 

 

Table ‎4.2: ANOVA analysis for cutting force Fx 

Source‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎tab. ‎P PCR‎(%)‎ 

Vc            3 108031 36010 4.41 5.41 0.072 20.92 

f                 3 178673 59558 7.3 5.41 0.028 38.62* 

Tool             3 65233 21744 2.66 5.41 0.159 10.20 

C                1 6494 6494 0.8 6.61 0.413 0.00 

Residual error   5 40820 8164       30.25 

Total            15 399250           
*significant at the 5% level 

 

In case of the feed force Fy, none of the factors was significant. It can be seen that 

increasing cutting speed resulted in increased tool wear. Further increase in cutting speed 

reduced the feed force possibly because of either temperature effect (softening of matrix) or 

premature tool wear at such high speeds. The effect of feed rate was quite similar, the lowest 

feed rate force was using CTM-302 PCD because of its low chipping resistance promoting 

early chipping which reduced the mean forces for such tool. The low wear resistance and the 

severe tool wear exhibited by the DLC coated WC contributed to the high feed force as shown 

in the main effects plot. CTB-010 PCD was in general around the average. Although there is 

no difference in abrasion resistance between CTB-010 and CMX-850 PCD grades, the sharp 

and smooth CMX-850 resulted in lower feed forces. The percentage contribution of tool 

material was the highest (19.75% PCR) while negligible contribution was made by the chilled 

air environment at a high error percentage due to many factors discussed earlier, see 

Table  4.3. 
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Figure ‎4.17: Main Effects plot for Fy 

 

Table ‎4.3: ANOVA analysis for cutting force Fy 

Source‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 
Vc              3 60863 20288 1.37 5.41 0.352 4.96 
f                 3 87699 29233 1.98 5.41 0.235 13.00 

Tool             3 110233 36744 2.49 5.41 0.175 19.75 
C                1 1208 1208 0.08 6.61 0.786 0.00 

Residual error   5 73817 14763       62.28 
Total            15 333820           

 

The feed force (Fy) increased with feed rate and was also between 130.33 N (Test-13) 

using PCD and 1301.88N using DLC-coated WC (Test-4).  Using DLC-coated at high cutting 

speed and low feed rate resulted in feed force 10 times higher than PCD owing to the severe 

rounding of the cutting edge. The cutting forces increased with cut length obviously because 

of tool wear. Within a single revolution the forces varied because of the altering of fibre 

orientation with respect to the instantaneous cutting edge direction. 

The axial force Fz was not a deterministic factor in the process this is why it was excluded 

from the statistical study. The resultant force, calculated by the formula using Fx and Fy, was 

in the region of 206.286 N (Test-13) to 1560 N (Test-3, 4) and increased as a result of tool 

wear. The calculated resultant angle was between ~ 32˚ when tool was new (Test-13) to ~ 57 ˚ 

(Test-4) when tool was worn. This angle generally increased by increasing the cut length or 

tool wear (due to increased feed force). The smaller the resultant force angle, the cleaner and 

the better quality is the cut and vice versa. Similarly, the calculated specific cutting resistance 

was 550-5712 N/mm
2
 and was increasing with cut length and tool wear. The specific cutting 
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resistance of steel is 2000-2200 N/mm
2
 [150] which suggested the great contribution of the 

cutting forces to the tool wear process. 

 

4.2.2 Surface integrity/roughness 

The defects at slot entry in all tests were less compared to slot exit. This was in form of 

fibres pulled out by the tool or frayed uncut fibres. Such uncut fibres were not supported at 

the end of the slot which suggests the use of a backup material or a pre-cut as detailed by Puw 

and Hocheng [157]. Fuzzing/delamination significantly affected up milling side especially at 

the top ply oriented at 45° because the flexible fibres at such orientation escape from the 

cutting edge. It was noted that a cutting edge radius should remain less than or equal the fibre 

diameter to obtain a clean cut [228]. Fuzzing on the down milling side occurred when tool 

flank wear was ~ 0.1 – 0.13 mm.  

The use of chilled air prevented the carbon fibre from accumulating and agglomerating 

within slot or sticking to the workpiece surface. The blown away dust was loose as a result of 

the little temperature effect which means that the cutting was mostly achieved by crushing of 

composites by brittle fracture. Conversely, the absence of chilled air promoted the rise in 

cutting temperature which resulted in fumes and burning within slots as shown in Figure  4.18. 

These were signs that it had exceeded the glass temperature Tg (180 °C) had been exceeded 

and the test was stopped, on examination of the tool was found to have an excessive amount 

of matrix residues. The burning dust can be a fire hazard and such parameters (high cutting 

speed and low feed rate) are not recommended for slotting. There was also visible fuzz on 

both up and down milling sides. The extraction system used was capable of removing 

airborne dust but it was unable to suck the heavy agglomerated dust. A stronger extraction 

system would have been better especially in such dry conditions to avoid fire hazard.  

The transverse roughness measurement were recommended as it gave more accurate 

representation of the surface since longitudinal measurements (parallel to cutting direction) 

might represent one layer only depending on stylus path and tend to be more periodic [24, 

164]. Surface roughness parameters Ra and Rt increased with cut length. For example in Test-

13 surface roughness increased from 3.6 µm to 21 µm Ra when the tool was worn because of 

mechanical and thermal damage. However, the trend (Figure  4.19) was not increasing 

uniformly possibly due to the inhomogeneous nature of carbon fibre unlike metals. This short 

traverse length of the stylus may contribute to those fluctuations but the limited traverse 
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length was imposed by the slot depth. Surface roughness parameters Ra and Rt at 0.1 mm 

flank wear are shown in Figure  4.20 and Figure  4.21 respectively. 

 

 

Figure ‎4.18: Burning of dust within slot Test-3 

 

 

 

Figure ‎4.19: 2D surface roughness parameters (Ra, Rt) vs. cut length 
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Figure ‎4.20: Average surface roughness Ra (µm) at 0.1 mm VB flank wear  

 

 

 

Figure ‎4.21: Peak to valley roughness Rt (µm) at 0.1 mm VB flank wear 

 

The main effects plot of surface roughness is shown in Figure  4.22. Surprisingly, the 

surface roughness increased at higher cutting speed and decreased at high feed rate, unlike 

commonly observed in metal cutting and unlike findings of others in machining of composites 

by operations other than slotting as found by Sheikh-Ahmad and Sridhar [158]. The statistical 
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trend complies with the explanations provided earlier. The highest surface roughness, 

generally, resulted from the use of DLC-coated tools. The use of CTM-302 PCD resulted in 

surfaces with 5.6 µm Ra on average which suggests the use of CTM-302 PCD for finishing 

purposes. Chilled air contributed to a slight reduction in surface roughness possibly because 

of the flushing action of chilled air which reduced the frictional heat.  

Higher cutting speed may improve surface roughness in case of thermoplastic composites 

because of matrix softening [175]. While high cutting speeds and low feed rates are 

recommended for edge trimming CFRP, the situation is somewhat different in slot milling 

where the low thermal conductivity of the resin matrix tends to retain the heat within the 

cutting zone. This leads to softening, degradation and burning of the matrix material that 

binds fibres together [210]. The softened matrix allows flexible fibres to „escape‟ from the 

cutting edge and spread over a wider area, especially those in the 90˚ and 135˚ direction. This 

was observed in trials at low levels of feed rate and cutting speed (Test 13) where 

disintegration of the matrix also resulted in the loss of fibres particularly in the 0˚ direction. 

This is because of the accumulation of heat and the poor thermal conductivity of the resin 

[139]. The best surface roughness produced using PCD end mills was with the CMX-850 

grade where an Ra/Sa of 3.60µm/3.65µm was obtained with a new tool (Test-13), although 

this test had to be stopped after 16,400mm cut length (flank wear ~0.13mm) due to burning of 

the workpiece. This was similar to the 3.2µm Ra typically required for aerospace applications 

[142]. 

Operating without chilled air was thought to be a further contributory factor as burning of 

the workpiece generated an acrid odour, suggesting that the glass transition temperature of the 

resin (180C) was exceeded. Increasing cutting speed and feed rate in Test 15 with chilled air 

led to significantly improved surfaces, due to the absence of thermal damage. The main 

effects plot showed that low cutting speed with high feed rate was the best combination for 

minimum surface roughness, as this most likely reduced cutting temperatures as well as the 

total contact time between the tool and the work piece.  

In terms of ANOVA results, feed rate was the only statistically significant variable 

affecting surface roughness with a 57.5% contribution. While the use of chilled air improved 

the removal of dust particles from the slot and helped reducing the incidence of matrix 

burning/sticking, the corresponding ANOVA showed that cutting environment was not 

statistically significant with respect to the workpiece surface roughness together with a 

negligible PCR. The percentages of different factors affecting the surface roughness Ra are 
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shown in Table  4.4. In case of Rt, the most significant factor was the feed rate with 67% PCR 

and the error level was 30% as shown in Table  4.5. 
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Figure ‎4.22: Main Effects plot for surface roughness Ra, Rt 

 

Table ‎4.4: ANOVA analysis for surface roughness parameter Ra 

Source‎‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 
Vc              3 18.446 6.149 1.51 5.41 0.321 3.46 
f                 3 115.132 38.377 9.4 5.41 0.017 57.47* 

Tool             3 22 7.333 1.8 5.41 0.264 5.45 
C                1 3.031 3.031 0.74 6.61 0.428 0.00 

Residual error   5 20.416 4.083       33.62 
Total            15 179.024           

*significant at the 5% level 
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Table ‎4.5: ANOVA analysis for surface roughness parameter Rt 

Source‎‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%)‎‎ 
Vc              3 504.2 168.8 1.51 5.41 0.412 2.48 
f                 3 4208 1402.68 7.27 5.41 0.028 67.02* 

Tool             3 222.5 74.16 0.89 5.41 0.505 0.00 
C                1 201.3 201.29 1.18 6.61 0.327 0.00 

Residual error   5 602.7 120.55       30.49 
Total            15 5738.8           

*significant at the 5% level 

The three dimensional surface roughness measurement was recommended for better 

understanding of machined surface of composites [164]. The 3D surface topography plots 

revealed some feed marks on the machined surface which were visible also by naked eye. 

Similar feed marks were observed by Sheikh-Ahmad and Sridhar [158] and were explained as 

a result of high feed rate [158]. The lowest surface roughness obtained in this test matrix was 

2.6 Sa µm and 49.1 µm St obtained using DLC-coated in chilled air environment at 200 

m/min cutting speed and 0.15 mm/tooth feed rate (when tool was new). Regardless of the tool 

performance in terms of wear/life, the slotting operation of CFRP seems to prefer low cutting 

speed with higher feed rate which promoted the removal of chips by brittle fracture without 

softening of the matrix. The 3D roughness parameters Sa and St for all tests for a tool (first 

pass) are shown in Figure  4.23 and Figure  4.24 respectively while the main effects plot for the 

3D surface roughness parameter Sa is shown in Figure  4.25. Generally, for non-bearing 

surfaces of wing panels and wing spars, where there is no mechanical requirement for a fine 

surface finish, the surface roughness should be 3.2 µ Ra or Sa or less. The lower the peak to 

valley surface roughness (Rt or St) the better as this indicates a smaller the depth of damage 

left by the milling process. In this test, the peak-to-valley values were ~ 10 to 25 times larger 

than the average surface roughness, however, this was mainly due to test parameters and the 

type of surface is related to the parameters selected. 

The high average surface roughness value (17.9 µm Sa) in Test-4 was a result of the 

severe wear associated with the use of coated WC at high cutting speed and low feed rate in a 

dry environment (thermal damage). On the other hand, the higher tool wear in Test-2 

compared to Test-1 was due to a rise in cutting speed from 200 to 350 m/min which caused a 

combined mechanical and thermal effect which resulted in high surface roughness 11.8 and 

200 µm Sa and St respectively. The dry environment and the consequent matrix melting and 

smearing caused a reduction in the St Value in Test-4 (170 µm) compared to (200 µm) Test-2. 
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Figure ‎4.23: 3D surface roughness parameters Sa for all tests 

 

 

Figure ‎4.24: 3D surface roughness parameters St for all tests 
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Figure ‎4.25: Main Effects plot for surface roughness Sa 

 

Figure  4.26 shows SEM micrographs of the slot wall (down milling side) machined using 

DLC coated WC routers. The 45° oriented plies typically exhibited „wavy‟ surfaces which 

were especially evident in trials at lower cutting speed (200 and 350 m/min) involving chilled 

air. When operating dry at higher cutting speeds however, matrix cracking, material pull out 

was evident, most likely due to the increased temperature. In contrast, the 135° plies were 

generally characterised by loose fibres, particularly when machining dry as a result of matrix 

burn. 3D surface topography using DLC coated WC tools (Figure  4.27) shows that low 

cutting speed along with higher feed rate (Test-1) result in relatively good surface (2.6 µm Sa) 

possibly because of low heat input and low wear rate of the tool compared to poor surfaces 

(17.9 µm Sa) in Test-4 due to matrix burning.  
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Figure ‎4.26: SEM micrographs of machined surfaces produced using DLC coated WC 

 

 

Figure ‎4.27: 3D surface topography using DLC-coated WC 

 

Despite the localised chipping on the CTM-302 PCD tool used in Test-5 the machined 

surface exhibited minimum amount of damage. This contradicts with high cutting speed and 

low feed rate being the key to smooth surface as reported by Davim et al. [160, 176, 177] 

possibly because they were not measuring roughness of the slot walls or other researchers 

may have come to such conclusion that high speed and low feed is better due to difference in 

process, i.e. edge-trimming as reported by Ucar and Wang [161] and Prashanth et al. [162]. 
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Feed marks on the machined surface were similar to those associated with milling of 

metallic materials. These marks occurred due to either mill deflection and vibration [229] or 

could be formed by the softened matrix as explained by Bissacco et al. [230], alternatively, 

they could also be due to self-excited chatter caused by the straight fluted tool. The marks 

were more prominent when tool was new but disappeared when the tool was worn especially 

when using PCD routers only as can be seen in Tests 6, 14, 15 and 16. The higher cutting 

forces (especially in Test-6) caused by high feed rate resulted in grooves especially in fibres at 

90° orientation as shown in Figure  4.28.  

 

Figure ‎4.28: Optical microscope and SEM images of surfaces produced using CTM-302 PCD 

showing Test-6 feed marks on surface  

 

In Test-7 and Test-8, the melting of resin matrix and loose fibres were evident in 0° layers 

due to high temperature while fibres at 45° direction were bent. In contrast, fibres oriented at 

135° were spread over a wider area „brooming‟ which were more severe in Test-7. Cracks 

normally occur in matrix since the matrix is weaker than fibres [157] normally associated 

with fibres at 90° [21] and this is also evident in Test-8 for example, see Figure  4.29.  
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Figure ‎4.29: SEM micrographs of surfaces obtained in Test-7 and Test-8 showing the 

common surface defects associated with slotting of CFRP 

 

Generally large grain PCD has the advantage of high abrasion as noted by Klocke and 

Wurtz [156]. The use of CTM-302 PCD routers was relatively better in terms of quality. 

Regardless of the cutting conditions, the CTM-302 produced surfaces 5-7 µm Sa and 70-113 

µm St when tool was new as shown in Figure  4.30. The chipping associated with CTM-302 

may have left some marks on the surface at chipping locations since every tool leaves its own 

signature on the surface as reported by Colligan and Ramulu [153].  

Chilled air showed a great effect in lowering the surface roughness. Using CTB-010 the 

surface roughness was 4.14 -5 µm Sa, 90-117 µm St compared to 7.5 µm Sa and 98-131 µm 

St in case of dry cutting. The use of chilled air results in more flat surface while a wavy 
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surface with feed marks were attributed to dry cutting possibly because of the response of the 

soft matrix as shown Figure  4.31. 

 

 

Figure ‎4.30: 3D Surfaces obtained using CTM-302 PCD 

 

 

Figure ‎4.31: 3D surface topography using CTB-010 PCD 
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Thermal effects also increase with higher cutting speeds. When the cutting is done 

utilising higher feed rates, the mechanical effects become dominant as in Test-11 and Test-12. 

This can be seen in samples cut by using CMX-850 PCD which can be explained by altering 

the cutting mechanism to brittle fracture in case of chilled air. The use of CMX-850 PCD at 

very low feed rate in dry condition (Test-13) resulted in smooth surface when the tool was 

new with 3.65 µm Sa, 68 µm St when tool was new which can be further improved using 

chilled air, see Figure  4.33. Accumulation and burning of dust caused poor surface.  

The use of CMX-850 PCD at very low feed rate in dry condition (Test-13) resulted in 

smooth surface when the tool was new but accumulation and burning of dust caused poor 

surface as shown in Figure  4.33. Increasing feed rate (Test-14) helped in reducing the thermal 

damage slightly. Some signs of feed marks were visible on the surface. High cutting 

speed/feed rate combination in chilled air produced a very smooth surface as in (Test-15) but 

some cracks and fibre pull-out were visible when the tool lost its sharpness. At extreme 

conditions (Test-16) both mechanical and thermal effects on surface were prominent. Such 

surface finish may result from the superior cutter surface of the fine grained PCD as noted by 

Klocke and Wurtz [156].  

 

 

Figure ‎4.32: Deterioration of surface in absence of chilled air in Test-13 
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Figure ‎4.33: 3D surfaces using CMX-850 PCD 

 

Plies oriented at 45˚ sustained severe damage where fibres were generally bent and „lifted-

up‟ as the cutting edge advanced, which can subsequently cause splitting/interfacial failure of 

fibre bundles and the matrix. Some of these fibres then proceeded to fracture/were pulled out 

while others were merely flexed, thereby producing a wavy surface. High cutting forces (worn 

tool) and matrix softening can also result in reorientation of 45˚ fibres, and surface 

delamination of the unsupported top ply. 

Surfaces with fibres at 0˚ generally showed the least damage with fibres removed cleanly 

as a result of fracture by buckling [140]. All other layers exhibited matrix smearing except 0˚ 

layers which was noted also by Colligan and Ramulu [152]. Matrix smearing normally reduce 

surface roughness [23]. The 0˚ layers however were responsible for high cutting forces as they 

became orientated at 90˚ with respect to the cutting edge at the point of maximum chip 

thickness (middle of slot), which causeed loose fibres to form. Fibre pull out was observed in 

90˚ and 135˚ plies leading to empty holes or large grooves as fibres tended to break at 

locations beneath the machined surface/depth of cut [157]. Matrix cracking as a result of 

elevated forces at high feed rates also occurred.  

In summary, CTB-010 PCD tools showed the lowest flank wear rate compared to the 

other PCD grades and DLC coated cutters tested. The high cutting forces (~500N) 

encountered when operating at high feed rate (0.15 mm/tooth) led to chipping of the CTM-
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302 PCD. Flank wear on the CMX-850 tool (Test 15) was ~0.15mm after 28m cut length 

which was ~50% greater than the CTB-010 router at similar parameters. The relatively high 

magnitude of cutting force experienced by the CTB-010 PCD did not appear to have a 

detrimental effect on tool life under certain conditions. For example, at 500 m/min cutting 

speed and 0.15 mm/tooth feed rate combination (Test 11), the flank wear after 28m cut length 

was approximately 0.10mm, despite Fx force level of ~600N. The CTB-010 grade did not 

suffer any chipping at high feed rates as uniform flank wear was dominant. No sign of fuzzing 

or delamination was detected on the down milling side of the slot after 28m cut length 

(0.10mm flank wear), despite machining dry with CTB-010 at 500 m/min cutting speed and 

0.15 mm/tooth feed rate (Test-11). Conversely, severe fuzzing was observed when using the 

CMX-850 grade even at low operating parameters (Test 13). 

Since cutting speeds of 350 m/min and 500 m/min were shown to give the highest tool life 

and feed rates of 0.10 and 0.15mm/tooth were selected for Phase-2 experiments (section 4.6: 

Phase-2B). The selection was made in order to achieve workpiece quality/surface roughness 

and productivity requirements. Chilled air is recommended to prevent burning of dust 

particles. A tool life criterion of 0.10 mm flank wear was recommended for future trials as the 

majority of PCD grades tested achieved a 28 m cut length with a corresponding flank wear 

level ranging between 0.10 and 0.18 mm. Additionally, it was observed that the probability 

for fuzzing and delamination increased as tool flank wear exceeded 0.10 mm. 

 

4.2.3 CTB-010 PCD confirmation test 

The CTB-010 PCD grade was selected because of the relatively extended tool life over the 

other tool materials. This tool surprisingly suffered from chipping and signs of cracks were 

evident. The difference between this tool and the tool used in Phase 1 (Tests-9 to 11) was 

mainly due to the manufacturing method. This tool was shaped to the cutting angles by wire 

electro-discharge machining (WEDM) compared to mechanical grinding as in Phase-1. The 

mechanical grinding is known to lower heat effect on tools as WEDM may leave residual 

stresses which result in cracks [188]. The different edges are shown in Figure  4.34. Such 

cracks can be promoted by the use of chilled air. Using laser to obtain the cutting edge angles 

is still under investigation by Dold et al. preliminary testing show that it gives equal results to 

ground PCD [189].  
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Figure ‎4.34: Tool surface of WEDM versus mechanical grinding 

 

This CTB-010 tool was capable of cutting 28000 mm length without fuzz on the down 

milling side at only 0.072 mm flank wear (uniform abrasion) without taking into account the 

chipping. The flank wear in the chip area reached and exceeded 0.5 mm wear into substrate. 

However, the quality of the top ply was not affected i.e. no fuzzing, see Figure  4.35. 

 

 

Figure ‎4.35: Worn CTB-010 PCD tool (confirmation test) 
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4.3 Phase-1C: Benchmarking of Element 6 PCD grades at preferred operating 

parameters 

4.3.1 CTM-302 PCD  

The CTM-302 PCD lacked chipping resistance especially at higher tool loads associated 

with higher parameters and suffered from drastic tool edge chipping following only 100 mm 

cut length as shown in Figure  4.36. Although the cut was free of fuzzing on the down milling 

side with 8.75 Sa and 116 St surface roughness parameters, the wear performance does not 

recommend CTM-302 PCD grade from being used in high feed rate cutting. The cutting 

forces (maximum) were higher compared to other PCD grades due to loss of cutting edge 

(661 N Fx and 518 N Fy).  

 

 

Figure ‎4.36: Worn CTM-302 PCD router at 500 m/min cutting speed and 0.15 mm/tooth feed 

rate in chilled air environment 

 

4.3.2 CMX-850 PCD 

The CMX-850 PCD router obtained was not properly sharpened and the blunt edge 

resulted in early fuzzing on down milling side. Besides, the cutting forces were very high 

compared to other PCDs even the surface roughness was not as usually obtained by CMX-850 

PCD tools which were greater than 8 µm Sa. The router was reground to ~ 11.590 mm 

diameter and the test was repeated. After tool re-sharpening, the tool lasted for only 850 mm 

cut length where it suddenly fractured in the middle of the slot as shown in Figure  4.37. The 

last reported force peaks were 185 N Fx, 246 N Fy, and a very high peak Fz of 1400 N. A 

replacement tool was ordered and another bench marking test was performed from scratch. 
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Figure  4.37: Un-completed slot due to tool fracture 

 

4.3.3 WPC-102 PCD 

The WPC-102 PCD router had 18
o
 primary relief and consequently it suffered from 

chipping which may be spalling of one of the top layer of the functionally graded material. 

The tool was capable of cutting 28000 mm cut length with no fuzz in down milling side at 

flank wear VB reaching ~ 0.197 mm, see Figure  4.38.  

 

 

Figure ‎4.38: Worn WPC-102 PCD tool following 28000 mm cut length 
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4.3.4 Tool wear summary 

Without taking into account the chipping which occurred to the tool used in the 

confirmation test, the results conform to the outcomes of Phase-1. The chilled air used 

improved the performance in terms of flank wear which reached 0.072 mm compared to 0.101 

mm in dry environment (Phase-1 Test-11) which means ~ 30 % improvement in tool life. The 

WPC-102 PCD exhibited higher amount of wear compared to CTB-010 (> 2 times CTB-010 

wear), see Figure  4.39 for tool wear against cut length. 

 

 

Figure ‎4.39: Tool wear versus cut length for different PCD blades 

 

4.3.5 Cutting forces 

The average cutting forces Fx of CMX-850 and WPC-102 PCD grades were the highest in 

both new and worn conditions, possibly due to high wear rate, see Figure  4.40. The CTB-010 

PCD had the lowest rate of increase in cutting force from new to worn state due to the steady 

wear rate. The use of chilled air also helped in reducing forces in both cases of new and worn 

conditions (356.9 N dry, 323.4 N CA) when the tool was new, (408 N dry, 396 N CA) when 

the tool was worn. Comparing Fx when using CTB-010 PCD in Test-11 (dry) and the 

confirmation test, the chilled air environment slightly reduced the forces. 

The WPC-102 PCD was responsible for the highest average feed force (Fy) most likely 

due to the tool wear as mentioned before. CTB-010 confirmation test resulted in higher 

average feed force compared to Test-11 may be due to the lowered friction between tool and 

workpiece by the softened resin matrix in the dry condition in Test-11 which lowered the 

force, see Figure  4.41. Figure  4.42 illustrates the recorded force signals for the different tools 

which are similar to a great extent to the force profile obtained by Zaghbani et al. [231] and 

they show how the tool wear contributed in minimising or eliminating the initial dynamic 
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forces associated with the milling process. The consequences of such dynamic forces will be 

detailed in the surface integrity section. 

 

 

Figure ‎4.40: Cutting forces Fx for benchmarked tools a) max b) mean 

 

 

Figure ‎4.41: Cutting forces Fy for bench marked tools a) maximum b) mean 
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Figure ‎4.42: Force signals for different cutting tools 

 

4.3.6 Surface integrity/roughness 

The optical microscope images of benchmarking test samples show that the feed marks 

were visible at start using WPC-102 and CTB-010 PCD tools when tools were new. No 

fuzzing on the down milling side but it occurred mostly on the up-milling side. The optical 

microscope images did not show enough details and from the images shown in Figure  4.43 

the surface obtained using the worn tools appeared almost the same. The SEM graphs 

(Figure  4.44) show that using either router, when tools were new there was no significant 

difference in quality. However the relatively superior wear resistance of the CTB-010 

produced a better surface when the tool was worn.  

 

 

Figure ‎4.43: Machined surface under toolmakers microscope 
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Figure ‎4.44: SEM images of surfaces obtained using new and worn tools  

 

Surface topography and surface roughness parameters are shown in Figure  4.45 and 

Figure  4.46 respectively. In the confirmation test using CTB-010 PCD, prominent feed marks 

were observed at the beginning of the test (new tool) however they diminished by the end of 

the test. As a result, the surface roughness using the worn tool was better than that of the new 

tool (6.2 µm Sa compared to 14.3 µm Sa) due to the contribution of the feed marks attributed 

to new tools. When tools were new and sharp, the cutting was done mostly by shear 

producing feed marks which were mostly visible at the higher feed rate. Such phenomena 

bring to mind the possibility that the tool edge encounters flank regrinding by the fibre as 

noted by Klocke and Wurtz [156] which may provide the tool with a new edge geometry. The 

damage in 45° layers was the highest as usual and some fibres were pulled out distorting the 

common wavy pattern of those layers. When the tool was worn the damage was extended to 

the adjacent layer (90°). The 135° layer was easily compressible, which was the reason that 

fibres here were observed to spread over the neighbouring plies.  

Using WPC-102 PCD, there were some elevated regions on the surface which correspond 

to the minor chipping the WPC-102 PCD tool encountered at the beginning despite being 

covered later by subsequent uniform abrasion wear. The surface roughness obtained using 

WPC-102 PCD was relatively high in new and worn conditions because of the relatively 

higher tool wear attributed to this tool which in turn resulted in higher cutting and feed forces 

all those factors contributed to the surface roughness. Fibres at 45° were not cut evenly and 
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some of them were reoriented and pushed back. Fibres at 90° showed some deep marks on the 

surface (cracks) which possibly resulted from the high cutting forces (649 N Fx , 528 N Fy) 

when the tool was new. The forces were higher compared to CTB-010 PCD used in 

confirmation test (537.6 N Fx and 409 N Fy). 

 

 

Figure ‎4.45: Alicona 3-D scans of slot wall machined by different tools 
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Figure ‎4.46: 3D surface roughness parameters using different tools 

 

4.3.7 Fuzz (uncut fibre) and delamination factor 

The most observed delamination mode was Type-II as described by Colligan and Ramulu 

[151], which occurred mainly on up milling side in the 45° top ply although they said Type-I 

was the most dominant for the 45° top ply may be because the fibres used in this test are very 

flexible and did not break easily or due to the coolant type they used. The amount of uncut 

fibre generally increased with the increase in cut length because of the tool wear as the tool 

became blunt and rounded, the condition, which allowed the flexible fibres to escape from the 

cutting edge. This, in turn, caused subsurface delamination the extent of which was 

measurable using laser scanning. Measuring the length of uncut fibre on the up-milling side, 

the tools performed similarly, see Figure  4.47.  

 

Figure ‎4.47: Fuzz length for different tools 
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Despite the lower cutting forces using CTB-010 PCD, the delamination factor using the 

worn CTB-010 PCD was higher compared to the WPC-102 PCD, see Figure  4.48. This may 

be due to cutting temperature using the WPC-102 PCD being lower, however this needs to be 

further investigated. The use of laser scanning during milling to measure fuzzing and 

delamination factor can be used as an indirect method to evaluate tool wear. Delamination 

factor and fuzz length measurements are found in Appendix-G. 

 

 

Figure  4.48: Delamination factor for different tools 

 

To summarise the selection of which tool is best, the radar graph in Figure  4.49 sorts the 

tools on a scale of 1 to 2 (higher is better) based on their responses when these tools were 

new. The fabrication of the CTB-010 to such geometry may result in better performance 

provided that the edge is ground rather than wire cut. Poor slotting performance of WPC-102 

PCD in most of the aspects exclude it from being used in slotting of CFRP composites. 

 

Figure ‎4.49: Performance of benchmarked tools in slotting 
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4.4 Phase-1D: Benchmarking of carbide tooling products  

4.4.1 Two-fluted routers 

Diamond-coated carbides can be better than polycrystalline diamond (PCD) being 30% 

lower in cost and easier to manufacture to complex geometries [41]. Dura coated WC was 

tested at 500 m/min cutting speed and 0.15 mm/tooth feed rate in chilled air environment and 

sustained severe tool wear in the form of breakage, spalling of Dura coat, and subsequent 

wear in the substrate which was also observed by Sheikh-Ahmad and Sridhar [158] in fluted 

tools and also by Lopez et al. [150] in burr tools. The Dura coated tool suffered from chipping 

of the brittle coating and chunks of coating removed by spalling and flacking of coating 

leaving an exposed substrate with wear beyond the tool life criteria (0.57 mm VB) as shown 

in Figure  4.50. Cutting forces were considerably high from first pass mainly due to excessive 

tool wear (1020 N Fx 1090 Fy) compared to only 600 N when the CTB-010 PCD router was 

worn (Test-11). 

The breakage may be a result of the dynamic forces associated with the process caused by 

material inhomogeneity [22]. Intermittent cutting process with such fluctuating forces 

accelerates fatigue induced flaking of cutting tool coating [186]. Images of worn tools show 

severe wear where coating was removed by brittle fracture as a result of the high cutting 

forces measured under such high cutting speeds and feed rates.  

There was no fuzz on the down milling side and although the tool sustained severe wear 

from first pass, the surface quality of the down milling side was not bad compared to PCD 

grades used in Phase-1 see Figure  4.51. A smooth surface with reasonable surface roughness 

5.74 µm Sa 99.4 µm St was obtained possibly because of cutting characteristics of the CVD 

diamond. However the DURA coated tool can perform in a better way if lower cutting speed/ 

feed rate combination was used. The produced surface, for the unit tool cost, suggests that 

CVD diamond is the option for finishing. This test will be discussed again later in the 

following section.  

From results of this test and also the results previously obtained in Phase-1, it was 

suggested to test different WC tools at low machining parameters combination (i.e 200 m/min 

cutting speed and 0.03 mm/tooth feed rate) in chilled air environment. Because of the tool 

performance exhibited at high cutting speeds or high feed rates depending on the costing type, 

the test entailed DLC coated, Dura-coated and uncoated WC. In such a case, the test was 

stopped at the point of initiation of major fuzz (~ 3 mm long uncut fibres on down milling 

side). 
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Figure ‎4.50: Severely worn Dura coated WC tools at 500 m/min, 0.15 mm/tooth, and chilled 

air after 100 mm cut length 

 

 

 

Figure ‎4.51: Surface quality following 100 mm cut length using Dura-coated WC at 500 

m/min, 0.15 mm/tooth  
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4.4.1.1 Tool wear  

The tool flank wear reached 0.1mm after a cut length < 100 mm (~ 90 mm). Abrasion 

wear was the dominant wear pattern in this case, see Figure  4.52 for the worn DLC coated 

tool. 

 

 

Figure ‎4.52: Edge of a worn DLC-coated tool following 300 cut length 

 

The tool edge suffered from coating spalling and subsequent abrasion wear on substrate 

(0.22 mm VB following 8200 mm cut length) which may be due to abrasive carbon fibres 

brushing action plus being reacting with cobalt during machining which promoted shedding 

of the WC particles as explained by Masuda et al. [47], see Figure  4.53. 

  

Figure ‎4.53: Worn Dura-coated WC tool edge following 300 mm cut length and 8200 mm cut 

length 

 

The polycrystalline structure of the CVD diamond makes it tougher than the 

monocrystalline diamond (~5.5 compared to 3.4 MPa/m
2
) [193]. The hardness of the CVD 

diamond (described as pure PCD) was even better than PCD because the later contains cobalt 

and porosity [194]. This may be the reason behind the extended tool life of the diamond 

coated tool although being used in harsh slotting operation. 

When the uncoated WC tool was used, fuzzing started to occur on the up milling side after 

~ 50 mm cut length. The cutting edge was worn quickly due to the absence of protective 

coating and exhibited serrations with equally spaced ridges (spaces equal to the ply 

thickness). The serrated edge valleys occurred due to the brushing action of the abrasive 
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carbon fibres while the peaks were located at ply/ply interface. Here the concentration of the 

fibres was less compared to the matrix [164] which made it the weakest point and prone to 

separation during cutting. The tool reached ~ 0.1 mm flank wear at ~ 270 mm cut length, see 

Figure  4.54. 

 

Figure ‎4.54: Worn uncoated WC tool following 300 mm cut length 

 

 

Figure ‎4.55: Profile of machined surface and worn/serrated edge of the uncoated tool 

 

It should not be misunderstood from tool wear in Figure  4.53 that Dura sustained the 

highest wear as it performed 48 times better than DLC, and 16 times better than the uncoated 

(based on 0.1 mm flank wear criterion). Tool wear was plotted against cut length as shown in 

Figure  4.56. The tool wear rate of the diamond coated WC (Dura-coated) was the slowest but 

increased considerably following 4000 mm cut length which was the turning point where the 

tool started to lose coating rapidly and as a result of wear that started to make fuzz. The DLC-

coated tool showed the lowest wear resistance because of wear occurring in both substrate and 

coating that made the worn part look larger. 
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Figure ‎4.56: Tool wear vs. cut length for different WC tools, tool wear  

 

 

Figure ‎4.57: Tool wear vs. cut length for different WC tools, tool wear  

 

SEM micrographs also revealed that the DLC-coated and the uncoated WC tools suffered 

from uniform abrasion wear with no signs of chipping. The uncoated tool was more serrated 

than the DLC-coated due to the lack of coating and also due to the sharp edge. Good adhesion 

(the ability of coating to remain attached to substrate under operating conditions) is vital 

[192].There was a transition zone between the substrate and coating in DLC which indicated 

that coating was removed by abrasion thus giving a good adhesion sign. Such transition zone 
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was also noted by Sheikh-Ahmad and Sridhar [158]. Generally, the substrate surface requires 

treatment because diamond prefers surface defects, humps (which etching will produce) as 

these provide anchoring sites on surface. Good adhesion permits predictable uniform abrasive 

wear [190, 191]. High CVD process temperature and mismatch of thermal expansion 

coefficients of CVD diamond coating and WC substrate (3.85 and 5.6 10
-6

/˚C) may cause the 

spalling of the coating [4, 191, 192]. In case of Dura-coated, the worn edge resembled a “bite 

in an ice-cream sandwich” where the brittle abrasion resistant coating was removed and 

subsequent brushing action from the fibres abraded the substrate leaving a concave surface 

with some marks from ply/ply interface as shown in Figure  4.58. Brushing marks and the 

concave surface may be an indicator of good abrasion resistance of the diamond coating. 

A hand sketch of the worn edge showing the convex and concave surfaces generated by 

different wear patterns is shown in Figure  4.59. The tools‟ worn edges were also scanned 

using Alicona and the scan results conform to the expectations that Dura coated worn edge 

was concave while the others were convex. Horman et al. [159] compared between WC, CVD 

diamond, and PCD in edge trimming process. Accordingly, the tool life ratio was 1:10:15 

respectively while the cost ratio was 1:7:13, which indicate the cost effectiveness of the CVD 

diamond. In this case the tool life and cost ratios were 1:6:104 and 1:2.3:4.2 for Un-coated 

WC, Dura-coated and PCD respectively based on 28000 mm cut length target despite the 

expectation that Dura coated would have performed better in edge trimming process rather 

than slotting with full engagement. The superior wear resistance of the CVD diamond may be 

caused by the crystalline tetrahedral sp3 covalent bond structure. DLC on the other hand 

contains less sp3 and a mixture of sp2/sp number within the structure which makes the 

structure amorphous [192]. Containing higher number of sp3 within structure may be the 

reason CVD diamond is better than the amorphous DLC coating in terms of abrasion 

resistance. 
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Figure  4.58: SEM micrographs of worn edges 

 

 

Figure ‎4.59: Alicona 3D surface vs. a hand sketch depicting different wear patterns  
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4.4.1.2 Cutting forces 

Using DLC-coated tools, the cutting forces reached 310 N Fx and 320 N Fy when the tool 

finished only 300 mm cut length. The cutting forces using Dura-coated were the lowest. 

Additionally, the cutting forces using uncoated WC were the highest in comparison while the 

tool wear was lower than DLC-coated but serration and lack of coating may have contributed. 

In case of the Dura-coated, the cutting force trend was similar to the tool wear (increased 

gradually with cut length) as can be seen in Figure  4.60. The variation of the cutting forces 

may not only be because of the different cutting tool material or coating. The coating 

fabrication process itself may play a role in adding to the friction between the tool and 

workpiece. The cutting forces observed using the DLC coated may be because the diamond 

like carbon used was hydrogen free and removing hydrogen from the DLC coating was 

normally performed to increase tetrahedral Sp3 carbon structure [192]. The hydrogen free 

tetrahedral amorphous carbon (ta-C) was said to be better in terms of wear resistance than a-

C:H but lowering hydrogen resulted in higher coefficient of friction [232] . Also the surface 

of the DLC coated tool appeared rougher and would be better if it was treated following the 

coating process to remove the droplets [187]. SEM micrographs of DLC and Dura coatings 

are shown in Figure  4.61 while surface topography of the different tools are shown in 

Figure  4.62. Added to the wear resistance of the diamond it has a low coefficient of friction 

from 0.05 to 0.1 [159]. 
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Figure ‎4.60: Cutting forces for different tools 

 

 

Figure ‎4.61: SEM micrographs of coating surfaces of DLC coating and Dura coating  
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Figure ‎4.62: Surface topography and 3D roughness values for different WC tools 

 

4.4.1.3 Surface integrity/roughness 

The DLC-coated tools succeeded in cutting without fuzz in either sides of the slot for only 

100 mm beyond which fuzz started to appear due to the rounding of the cutting edge as a 

result of tool wear. Following 200 mm cut length, fuzz started to appear in the down milling 

side (see Figure  4.63).  

 

 

Figure ‎4.63: Slot quality using DLC-coated tool 

 

Dura coated router, on the other hand, produced fuzz free slots until reaching a cut length 

of 4100 mm (0.09 mm VB) when fuzz occurred. Fuzz on down milling side occurred 

following 4400 mm (0.1 mm VB) but increased to become major fuzzing following ~ 8000 

mm at the point where the test was stopped, see Figure  4.64. 
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Figure ‎4.64: Slot quality using Dura-coated WC  

 

Using the uncoated WC, significant fuzz in down milling side was produced during third 

pass (slot) because of edge rounding, test was then stopped, see Figure  4.65. As shown 

previously in Figure  4.55, the serration in the tool edge resembled the profile of the machined 

surface traversed. 

 

 

Figure ‎4.65: Slot quality using uncoated WC tool 

 

Comparing the surface roughness of down milling side slot wall produced by the different 

WC tools, it was found that the uncoated tool produced the roughest surface followed by the 

DLC coated tool while the Dura coated produced the smoothest surface. The Dura coated 

benefited from the high abrasion resistance of the diamond coat which is actually a "pure 
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PCD" [4] i.e. diamond crystals with no binding cobalt which weakens the structure (and 

promote attrition wear Figure  4.66 shows the 3D surface topography and the values of Sa and 

St roughness parameters. 

 

 

Figure ‎4.66: 3D surface topography and roughness parameters using Talysurf 

 

The enhanced surface quality obtained using the CVD diamond and their wear pattern 

promoted by the high cutting forces in slotting operation suggested that the CVD coated tool 

was an ideal choice for finishing, at small radial depth of cut where the tool performed better 

in such condition. This agrees with the findings of Sheikh-Ahmad and Sridhar [158] who also 

concluded that CVD diamond was suitable for finishing. 

Figure  4.67 shows the surface quality for the new tool compared to worn tool following 

only 300 mm cut length. Smooth surface using CVD diamond coated tool in comparison to 

rough and deteriorated surface in case of DLC coated and uncoated WC. 

 



 

164 

 

 

Figure ‎4.67: Optical microscope images of down milling side slot wall when tool was new 

and following 300mm cut length 

 

Higher magnification SEM micrographs of the down milling side revealed high amount of 

damage in case of uncoated tool followed by DLC coated while best surface integrity was 

attributed to Dura coated tool, see Figure  4.68. 

In case of DLC-coated tool, the cut at 0˚ and 135˚ was clean with visible ply interface 

between them and some matrix smeared on 135˚ layer. Some deep grooves were noticed at 

45˚ ply as a result of the cutting mechanism of those fibres. Cracks and fibre pull out were 

seen on 90˚ as a result of high cutting forces. Signs of matrix smearing may be the reason 

behind the low surface roughness obtained. Using Dura-coated WC, the cut surface was clean 

and the difference between 90˚ and 135˚ was barely noticeable. Repetitive shallow pockets or 

grooves were left behind the tool when cutting 45˚, the pitch correspond to the feed per tooth, 

this was caused by the breakage of these fibre bands while flexed back by the retreating 

cutting edge. The Dura coated tool was capable of shearing the fibres without causing any 

pressure, this explains the relatively low cutting forces obtained.  

On the other hand, the relatively high cutting forces using uncoated WC caused damage in 

45˚ in the form of pushed back fibres, made grooves by fibre breakage and pull out and this is 

evidenced by the poor surface at these plies. Cracks in 90˚ plies were caused by the high 

pressure of the cutting edge on the plies which cause splitting and cracks within the matrix. 

Small pores were seen in this layer because of fibre pull out. The ply to ply interface which 

caused less wear on tool and resulted in serrated form of edge looks deeper than the slot wall 

surface. Bare fibres were seen at 0˚ plies. 
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Figure ‎4.68: SEM micrographs of machined surface 

 

The fabrication method, coating structure, and deposition method defined the tool surface 

smoothness. Comparing the surface roughness of the different versions of the WC tools, it 

was found that the uncoated tool surface had marks of abrasion tracks from the grinding 

process. The addition of coating layer did not mean that the surface was going to be smoother 

than the ground substrate. For example, the surface roughness of the DLC coated tool 

increased after coating as a result of the spattered PVD diamond like carbon coating droplets 

as shown earlier in Figure  4.61. In case of the CVD coating, the grown diamond crystals 

lower the surface roughness from ground substrate by ~ 22 % from 0.294 µm Sa to 0.230 µm 

Sa which may have contributed to the surface roughness and cutting forces. 

Despite the higher roughness of the DLC coated tool, it produced better surface quality 

possibly due to enhanced tribological effect of the tool surface by the added coating layer 

compared to a bare WC with grinding marks. The DLC coating may have prevented the 

serration of the cutting edge compared to the uncoated tool. Alicona 3D scanned images of 

the down milling slot wall machined surface also reveal a lot about the quality characteristics 

of the surface, see Figure  4.69. Alicona 3D scans also revealed that the surface obtained using 

Dura coated possessed superior surface finish which was nearly twice as good as the 

recommended surface roughness by the manufacturer which was 3.2 µm Ra [142]. Generally, 

the surface roughness obtained using Alicona was up to 6 times higher than the Talysurf 

results especially in St peak-to valley roughness values possibly because Alicona uses non-

contact optical technology which can measure narrow areas the stylus cannot reach. 3D 

surface topography of machined surface as well as surface roughness parameters obtained 

using different two fluted are shown in Figure  4.69. 



 

166 

 

Based on the observations described above a radar graph (Figure  4.70) can combine the 

results of the three router materials and compare them in order to facilitate the selection 

process for the application. 

 

 

Figure ‎4.69: Alicona 3D scans of machined surface 

 

 

Figure ‎4.70: Router performance and suitability for the DLC-coated, Dura-coated and 

uncoated WC. 
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4.4.2 Burr routers 

A variant of the WC tools namely Burr router was tested (uncoated and Dura coated) 

because of their reputation in cutting composites especially glass fibre but recently (Lacalle) 

noted their performance in cutting CFRP. The use of this 16 flute tool permitted an 8 times 

increase in productivity in terms of machining time at the same feed per tooth compared to the 

2 flute version. 

 

4.4.2.1 Tool wear  

The uncoated tool sustained some marks of edge rounding; also the edge was serrated as 

shown in (Figure  4.71). The tool end was severely worn however such wear was not 

considered because of the application was mainly intended for separation of the excess 

material rather than actual slotting. 

On the other hand, the coated Burr router sustained higher amount of tool wear in the form 

of breakage and spalling of the thick and brittle coating. The uncoated one was capable of 

cutting 28000 mm while the diamond coated one reached the criteria following only one pass, 

i.e. 100 mm cut length. In this case, the use of lower feed rate could be better for extended 

tool life. A WC carbide tool with up to 10% cobalt and with micro-grain fulfil the 

requirements for machining of CFRP composites [4]. However, the use of lower cobalt 

content may be advantageous [178].  

 

 

Figure ‎4.71: worn WC Burr tool 
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4.4.2.2 Cutting forces 

The cutting process was accompanied with a whistle like noise. The tool geometry (helix) 

allowed cutting of the CFRP downwards. The axial force Fz was relatively high (~830-890N) 

compared to straight flutes in region of ~ 40N. The fluctuation in the axial force could be 

reduced if a full axial immersion was used instead of slotting. Cutting forces using 16 flute 

burr routers were higher than that of the 2 fluted tools because of the feed speed, see 

Figure  4.72 for first slot forces. Accordingly, it can be seen that the coated burr tool resulted 

in higher cutting force.  

 

 

Figure ‎4.72: Cutting forces (2 fluted vs. burr routers)  

 

4.4.2.3 Surface integrity/roughness 

The uncoated burr router was capable of producing slots with no uncut fibre on neither up 

nor down milling side which makes the burr router flexible for use in any direction (up or 

down milling). The downward cutting action may have contributed to a clean cut without fuzz 

possibly due to tool leaving no chance for fibres to bend upwards and escape the cutting, see 

Figure  4.73. 
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Figure ‎4.73: Slot quality for uncoated and coated burr type tools 

 

The machined surface (i.e. slot wall) was very rough and it was difficult to identify the 

different layers. The quality of the surface obtained using coated was better than that of the 

uncoated as shown in Figure  4.74 which depicts the SEM micrograph and Figure  4.75 for the 

3D surface scans. The surface scans show the saw like marks on the machined surface using 

the new uncoated tool where it is difficult to identify different layers. The worn burr router 

resulted in a surface with fibres pushed back where less shearing was taking place.. The high 

surface roughness of (24.3 µm Sa and 300.25 µm St when tool was new), and (22.62 µm Sa 

and 288.00 µm St when tool was worn) in case of uncoated tool with little variation in 

roughness parameters from new to worn condition suggest that the burr router is an ideal 

choice for roughing while a finishing pass at 0.3- 0.5 mm radial depth of cut using a 2 fluted 

Dura coated tool will be necessary to remove the wavy layer and to obtain reasonable surface 

quality which agrees with the recommended depth of cut by Richards et al. [142] for similar 

finishing pass for Airbus application. The surface obtained using the diamond coated burr 

router on the other hand exhibited. Using Dura coated burr type router, the surface was 

relatively better (14.2889 µm Sa and 168.6455 µm St), however the tool cost compared to the 

uncoated version did not justify the use of coated router for slotting added to the fact that a 

coated tool is relatively blunt compared to the uncoated [140]. A comparison between the two 

burr routers is shown in Figure  4.76. 
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Figure ‎4.74: Optical tool maker‟s microscope images (up) and SEM images (down) 

 

 

Figure ‎4.75: 3D surface scans using uncoated and Dura coated WC burr routers 

 

 

Figure ‎4.76: Router performance and suitability for the uncoated and Dura-coated WC Burr 

routers 
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4.5 Phase-2A: Preliminary testing and temperature measurement 

4.5.1 Effect of workpiece lay-up on cutting force/surface integrity 

4.5.1.1 Cutting forces 

Although it is commonly known that 0° fibres are the easiest to cut, the cutting force 

component Fx in this case was the highest because the maximum cutting force is dependent 

on the orientation of the fibres at the point of maximum chip thickness (i.e. the middle of the 

slot) which in this case is 90°. In different cutting scenarios or different operations such as 

edge trimming the cutting forces may be lower because of the smaller radial depth of cut 

utilised. Feed force Fy was smaller in comparison such that it was nearly half of the Fx 

component, see Figure  4.77. The variation of forces with fibre angle showed a cyclic pattern 

similar to that described in orthogonal cutting by Bhatnagar et al. [22]. 

 

 

Figure ‎4.77: Cutting forces when slotting unidirectional laminates 500 m/min cutting speed, 

0.15 mm/tooth feed rate, and using chilled air environment 

 

Conversely, fibres at 90° orientation angle resulted in the lowest Fx force component 

despite the high feed force Fy . Similarly, this can be explained by the orientation at the 

middle with respect to the tool cutting direction which turns to be 0° which is easier to cut 

(due to the cutting mechanism) so it produced lower cutting forces but on the other side 

produced higher feed force Fy. The highest feed forces were recorded when slotting fibres at 

45° orientation because the cutting direction was against the fibre orientation causing more 

compression and pressure on the tool. Lowest feed force Fy was attributed to 135° fibres, 

while Fz showed a decrease with the fibre, see Figure  4.78. The cutting force per ply was 

calculated using the maximum and mean forces assuming that a 5 mm slot included a number 

of 20 plies. These forces were used for force prediction discussed later. 
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Figure ‎4.78: Forces when slotting different unidirectional laminates (200m/min, 0.03 

mm/tooth) using ITC two fluted router 

 

The cutting force Fx when cutting unidirectional laminates showed a similar trend to 

using 2 flutes tool (at same feed per tooth) but the feed force magnitude which was higher 

because of the higher feed speed in case of the 3 flutes tools. The relatively high cutting 

forces during slotting of 0° workpiece caused fracture of Exactaform Up-cut router. For 

example, at 90° the 2 fluted tools resulted in 500 N compared to 650 N in case of using 

neutral tools. The main cutting force Fx remained almost the same. Results shown in 

Figure  4.79 do not include the Up-cut router which was severely damaged during cutting of 

the 0° unidirectional laminate at Fx, Fy 554 and 348 N. Added to these high forces, the 

implanted thermocouple may have weakened the tool. 

 

 

Figure ‎4.79: Fx and Fy when slotting unidirectional laminates using Exactaform Neutral and 

Down-cut. 

 

4.5.1.2 Surface integrity 

Slotting of the unidirectional laminates at 0° resulted in no fuzz either up or down milling 

sides. The fibres at 0° were easily removed by buckling resulting in no damage or 

delamination. On the other hand, fibres at 45° exhibited uncut fibres on up milling side 

because fibres in top plies of this orientation flexes away from cutting edge and escape the 

cutting and due to the tool being partially worn and rounded which increased the tendency to 



 

173 

 

such phenomenon. Fibres at 90° suffered from fuzz on both sides while fibres at 135° showed 

some fuzz on down milling side, see Figure  4.80. The results agree well with results obtained 

by Hintze et al. [171]. 

Surfaces generated (down milling only) using different unidirectional laminates are shown 

in Figure  4.81. The 0° exhibited the best surface with some bare fibres and some areas had 

sticking debris which were the ply/ply interface having higher concentration of resin. Wavy 

surface was generated in 45° fibres. Cracks and fibre pull-out were prominent in 90° fibres 

while 135° showed some signs of fibre pull-out. 

 

 

Figure ‎4.80: Slot quality when cutting slots in unidirectional laminates 

 

 

Figure ‎4.81: Machined surfaces obtained in different unidirectional laminates (down milling 

side) using ITC-PCD at 500 m/min cutting speed, 0.15 mm/tooth feed rate and CA (twin 

nozzle) 
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The 3D micrographs of the surfaces are shown in Figure  4.82. Surface roughness 

corresponded to a great extent with results of optical and SEM microscopy where 0° exhibited 

the lowest surface roughness with 1.59 µm Sa and 17.6 µm St, 45° fibres exhibited wavy 

surface and the highest surface roughness Sa 14.1 µm and St 91.1 µm. Fibres at 90° had a 

surface with 7.36 µm Sa and 75.7 µm St due to fibre pull out while the 135° with 3.79 µm Sa 

and 57.4 µm St. The surface roughness values (Sa) are plotted in Figure  4.83. The results are 

similar to results reported by Wang and Zhang [29]. 

 

 

Figure ‎4.82: 3D surface topography obtained using ITC-PCD at 500 m/min cutting speed, 

0.15 mm/tooth feed rate and twin-nozzle chilled air 

 

 

Figure ‎4.83: Values of surface roughness parameter Sa for different unidirectional layups 
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4.5.2 Effect of workpiece lay-up on temperature 

4.5.2.1 Cutting forces 

The main cutting forces Fx was the highest during cutting of Type-2 material which was 

obviously because the Type-2 lay-up contained larger number of 0° oriented plies in the layup 

(~ 8 layers) and obviously along the slot depth. Type-1 had the lowest Fx component be 

because the lay-up was balanced, See Table  4.6. The number was approximated assuming the 

ply thickness was 0.250 mm instead of 0.260 mm to simplify the calculations. Type-3 gave 

the second highest force Fx because it had 7 layers oriented at 135°. 

 

Table ‎4.6: Number of plies in 5 mm slot 

 Number‎of‎plies‎in‎5‎mm‎depth 

Ply‎angle Type-1 Type-2 Type-3 

0˚ 5 8 5 

45˚ 5 5 5 

90˚ 5 3 3 

135˚ 5 4 7 

 

The highest feed force Fy when slotting Type-1 can be explained by that Type-1 

contained the highest number of 90° layers. Type-2 exhibited the lowest feed force because it 

had the largest number of 0° fibres in the lay-up. The force component Fz showed a response 

trend similar to Fx. 

In cutting force modelling approach by Sheikh Ahmad et al they managed to predict 

cutting forces by summation of forces at different fibre orientations [173, 174, 181] and it was 

also noted by Wang et al [24] that forces in orthogonal cutting of multi-directional laminates 

was nearly the summation of forces from individual ply forces. Similarly but on experimental 

basis in slotting, it was possible to calculate the mean cutting force Fxmean when slotting 

different types of material using the force per ply and the number of different plies within the 

slot depth. The results of the calculated and the experimentally measured mean forces are 

shown in Table  4.7. Calculation of the maximum force was done by adding the (Max-mean) 

force per ply to the calculated mean force. 
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Table ‎4.7: Experimental vs. calculated forces (using ITC at 200m/min, 0.03 mm/tooth, CA) 

  
Type-1 Type-2 Type-3 

Ply‎angle (Fxmax-Fxmean)/ply Fxmax‎calculated‎(N) 

0˚ 17.02 272.28 292.30 280.48 

45˚ 15.37 Experimental‎Fxmax‎(N) 

90˚ 8.98 252 285 249 

135˚ 13.08 %‎variation 

  

8.04 2.56 12.64 

 

4.5.2.2 Surface integrity/roughness 

Despite that the ITC-PCD tool was partially worn, the top ply did not exhibit any fuzzing 

when slotting the three lay-up configurations on either up milling or down milling sides. Only 

minor fuzzing at tool entry and exit which was normal to the slotting process. See 

Figure  4.84. 

 

 

Figure ‎4.84: Slot quality when slotting Type-1, Type-2 and Type-3 laminates 

 

The machined surface (down milling side) showed that the damage is concentrated in the 

45° plies in form of grooves from pulled out fibres. Some fibres were also bent over (Type-3). 

Matrix smearing was evident in 135° and 90 plies and loose fibres were observed in 0° fibres 

as shown in Figure  4.85. 
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Figure  4.85: Machined surface (down milling side) Type-1, Type-2, and Type-3 ( ITC-PCD 

200 m/min 0.03 mm/tooth CA) 

 

It was noted by that surface profile is dependent on fibre orientation and periodic damage 

zones in multilayer laminates [24, 164]. The surface roughness was also dependent on the 

number of plies and also on the different ply orientation traversed by the stylus during the 

surface roughness measurement. The lowest surface roughness was attributed to Type-2 (Sa 

2.4 µm) because it had larger number of 0° layers in the lay-up as well as in the traversed 

area. Type-3 was the highest in surface roughness because it had higher concentration of 45° 

and few of them were adjacent to each other making a wider area of damage and wavy 

surface. See Figure  4.86 for the 3D surface topography. 
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Figure ‎4.86: 3D surface topography of the down milling side of slots in Type-1, Type-2 and 

Type-3 (Talysurf) 

 

Comparing the results obtained from the Talysurf with the results obtained using Alicona 

(for the same surfaces), the Alicona roughness were higher than Talysurf due to the high 

accuracy of the variable focus optical system which was capable of scanning deep and narrow 

areas the stylus could not traverse. The results show that the surfaces on the up milling side 

were better than the down milling possibly due to the low cutting edge temperature at the tool 

entry (within one complete revolution of the tool) such that there was reduction in Sa values 

by ~ 70% in Type-1, 73% in Type-2 and 75% in Type-3, see Figure  4.87. In edge trimming 

operation, Prashanth et al. [162] and Konig et al. [233] observed better surface roughness on 

up milling side but the observation of the present study does not agree that up milling side 

possesses better delamination/fuzz response than down milling. This suggested that up milling 

should be adopted for any finishing pass for better quality. There were no feed marks on the 

surface possibly because a worn tool stabilised and reduced vibration in cutting as if a virtual 

primary relief was created by abrasion. 
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Figure ‎4.87: 3D surface of the up and down milling side of slots in Type-1, Type-2 and Type-

3 (Alicona) 

 

4.5.2.3 Cutting temperature 

Temperature measurements (Figure  4.88) show that temperature when cutting 135° fibres 

was the lowest followed by 0° laminates. This could be due to the friction between tool and 

those layers were lower. The highest temperature was attributed to the 45° fibres followed by 

90°.This implies that 45° is the most difficult layer to cut in terms of both forces and 

temperature and this explains the severity of the damage of those layers. The use of emulsion 

coolant was reported by Mondelin et al. [131] to reduce the coefficient of friction between 

diamond and CFRP from 0.06 to 0.02. However, for this aerospace applications the use of 

liquid coolant should be avoided for the absorption concerns. 
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Figure ‎4.88: Temperature measured when slotting unidirectional laminates (200 m/min 

cutting speed, 0.03 mm/tooth and Twin-Nozzle CA) 

 

Comparing cutting temperature when slotting laminates of Type-1, Type-2 and Type-3 

materials, using the Neutral tool, the temperature when cutting Type-1 was the lowest ~ 242 

°C. The cutting temperature when slotting Type-2 material was the highest (271°C) while 

Type-3 temperature was slightly below Type-2. However, on average, Type-3 produced the 

highest temperature followed by Type-2 and the lowest was Type-1. In case of a tool with 

helix the cutting temperature was lower because of the longer edge and lower heat per unit 

length as explained by Sasahara et al [182]. The reduction was from ~5 % (Type-3) to 8 % 

(Type-1and 2) in case of using Exactaform Down-cut and (from 2.5 % (Type-3 to 4 % (Type-

1 and 2) in case of Exactaform Up-cut. Down-cut generally produced lower temperature while 

neutral produced 270°C, see Figure  4.89. 

On average, the cutting temperature can be ranked as Type-1 (253 °C), Type-2 (261 °C) 

and Type-3 (263 °C) from low to high. This was also the same order obtained by the Up-cut 

and Down-Cut routers. In milling of CFRP, the temperature lies in the middle between 

tempreature normally generated in cutting Titanium ~ 600 °C and cutting Aluminum  ~150 

°C. These temperature values for Al and Ti were obtained by Coz et al [205] in drilling of 

stacks using a similar measuring system. 
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Figure ‎4.89: Temperature measured when slotting Type-1, Type-2 and Type-3 laminates (200 

m/min 0.03 mm/tooth, Twin-Nozzle CA) 

 

Dry environment was ~100 °C higher than chilled air while the heating and cooling rate 

varied, see Figure  4.90 and Figure  4.91. It was necessary to carry out a continuous cut of 5000 

mm using tool life coupon to mimic the real production process, see temperature profile 

Figure  4.92. It was found that the single nozzle chilled air outperformed the twin nozzle. The 

worst case was the dry cutting environment which caused burning of dust and melting of the 

thermocouple braze. It was observed that the temperature increased rapidly in the beginning 

of the cut then remained almost the same level with very slow growth. Cutting temperature 

when machining ¾ coupons was found 85% of the temperature of the slotting. This means the 

temperature in real continuous slotting would definitely be higher when cutting was 

continuous. It was observed that during the up milling pass the peak temperature was lower 

than that of the down milling pass, which was also reported by Sato et al. [234].  
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Figure ‎4.90: Temperature profile when slotting a 100mm slot (12.6 S) at 200 m/min cutting 

speed, 0.03 mm/tooth feed rate using Exactaform 3-fluted PCD router 

 

 

Figure ‎4.91: Slotting temperature when using single nozzle, twin nozzle, and dry environment 

(200 m/min, 0.03 mm/tooth) 
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Figure ‎4.92: Temperature profile using Dry, Single-Nozzle CA and Twin-Nozzle in a 

continuous cut (200 m/min cutting speed, 0.03 mm/tooth feed rate in Type-3 material 

configuration. 

 

The single nozzle chilled air resulted in lower cutting temperature (20°C) because the air 

temperature in this case was ~ 2°C compared to ~ 5°C in case of double nozzle. The flow rate 

and air speed also played a role in cooling efficiency such that the air speed using single 

nozzle was almost twice the speed of the double nozzle (~ 29 m/s and ~17 m/s respectively). 

The higher flow rate enables the quicker evacuation of the dust from the cutting zone. Since 

single nozzle was lower in temperature it was decided to perform mainstream Phase-2 testing 

using single nozzle chilled air.  

 

4.6 Phase-2B: Effect of workpiece material lay-up configuration 

4.6.1 Tool life/cut length 

The cut length results obtained using different combinations are shown in Figure  4.93. 

Although tools were able to cut longer the tool life was limited by the chipping such that the 

statistical analysis was carried out taking chipping into consideration as an end of life criteria. 
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Main effects plot (Figure  4.94) shows that cutting speed and feed rate have almost the same 

effect on tool life. Increasing the cutting speed at the same feed rate did not cause a great 

variation in the abrasion wear such that tool sustained 0.09 mm flank wear in Test-1 

compared to 0.088 mm flank wear in Test-7 following 28000 mm cut length with a light 

reduction. The feed rate had a higher contribution ratio compared to cutting speed (8% 

compared to 0.6%) due to effect of feed rate on chipping of the cutting edge. For example 

increasing the cutting speed in Test-7 also caused chipping at 900 mm cut length due to the 

increase in feed speed. On the other hand when the feed rate was increased, the amount of 

chipping on the cutting edge increased due to the increase in the cutting forces, see 

Figure  4.95. Percentage contribution (PCR) and ANOVA are shown in Table  4.8. 

 

 

Figure ‎4.93: Cut length achieved in all tests 
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Figure ‎4.94: Main effects plot for tool life 
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Figure ‎4.95: Severe chipping associated with Type-3 layup configuration, increasing with 

feed rate 

 

Table ‎4.8: ANOVA for tool life 

Source‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 
V             1 12403333 12403333 0.11 5.59 0.714 0.6 
f                 1 158413333 158413333 0.23 5.59 0.215 8.0 

Lay-up 2 1216601667 608300833 3.19 4.74 0.021 61.3* 
Error 7 597858333 85408333       30.1 
Total            11 1985276667           

*significant at the 5% level 

 

The most significant factor influencing the tool life was the workpiece layup configuration 

(61.3 % PCR). Based on the cut length results, Type-1 material was the easiest to cut while 

Type-3 was the most difficult, see Figure  4.96. In Type-3 layup, the chipping occurred at two 

locations on the cutting edge corresponding to layers with 45° layers and was prominent 

following one pass of 100 m accompanied with a high cutting force Fx spike of 676 N which. 

Generally, when using PCD tools, mechanical shock at tool entry should be avoided [187], 

hence, it is recommended to use slow feed rate with Type-3 especially at initial contact, a 

gradual increase in feed rate may also reduce the impact spikes and resulting chipping.  
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Figure ‎4.96: Effect of material layup configuration on edge wear 

 

4.6.2 Cutting forces 

Cutting force results agreed with preliminary testing results apart from the difference in 

force magnitudes (Fx range 418-690 N at 500m/min and 0.15 mm/tooth instead of 249-285N 

Fx at 200 m/min and 0.03 mm/tooth) obviously due to the higher parameters used. Type-1 

was again the lowest Fx followed by Type-3 while the highest Fx cutting forces were 

attributed to Type-2 as explained earlier.  

The force trace within one revolution of the cutting showed that the cutting force varied 

with tool rotation such that peaks and valleys corresponded to the changing of the ply angle 

with respect to the tool during its rotation. See Figure  4.97 for example force traces from 

slotting of different material lay-up. 
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Figure ‎4.97: Force traces during slotting different material lay-up  

 

The maximum cutting forces Fx when the tool was new (shown in Figure  4.98) were used 

in the analysis to obtain the main effects plot for the cutting force shown in Figure  4.99. 

Cutting force (Fx) was increasing with cutting speed because of its indirect effect on feed 

speed. Feed rate was the most significant factor affecting cutting force because of the chip 

thickness which agreed with Phase-1 results. Type-2 was the most difficult to cut in terms of 

Fx owing to its zero degree fibre content. ANOVA table is shown in Table  4.9 where none of 

the factors is significant. 
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Figure ‎4.98: Cutting force Fx for all tests 

 

500350

610

600

590

580

570

560

550

540

530

520

0.150.1 Type-3Type-2Type-1

Cutting speed

M
e

a
n

 F
x
 m

a
x

 (
N

)

Feed rate Workpiece lay-up

Main effects plot for Fx max

 

Figure ‎4.99: Main effects plot for Fx (max) 

 

Table ‎4.9: ANOVA for cutting force Fx 

Source‎‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 

V              1 3123 3123 0.4 5.59 0.546 3.3 

f                 1 18534 18534 2.38 5.59 0.167 19.6 

Lay-up 2 18258 9129 1.17 4.74 0.363 19.3 

Error 7 54449 7778       57.7 

Total            11 94363           
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It was also possible to use the (Fx max-Fx mean)/ply obtained using the ITC-PCD and to 

compare the calculated results with the results obtained from Phase-2 (Test-10, Test-11 and 

Test-12). The results obtained were quite similar but the percentage variation may be high 

possibly due to the variation in the cooling environment (i.e. preliminary test used Twin-

Nozzle chilled air compared to Single-Nozzle chilled air in Phase-2 tests added to the 

difference in tool material, see Table  4.10. 

 

Table ‎4.10: Calculated and experimental forces at 500 m/min cutting speed, 0.15 mm/tooth 

feed rate 

  
Type-1 Type-2 Type-3 

Ply‎angle (Fxmax-Fxmean)/ply Fxmax‎calculated‎(N) 

0˚ 27.15 532.68 542.69 559.10 

45˚ 27.38 Experimental‎Fxmax‎(N) 

90˚ 19.41 517 690 571 

135˚ 32.61 %‎variation‎ 

  

3.03  21.34  2.08  

 

4.6.3 Feed force 

The maximum feed force Fy is shown in Figure  4.100. The most significant factor 

affecting feed force was the feed rate and very small contribution come from cutting speed. 

Type-2 lay-up caused the lowest cutting force for the same reason mention in Fx. Main effects 

plot for feed force Fy is shown in Figure  4.101. ANOVA showed that the most significant 

factor affecting feed force was the feed rate with 49.4 % PCR as shown in Table  4.11. 

 

 

Figure ‎4.100: Feed force Fx for all tests 
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Figure ‎4.101: Main effects plot for Fy 

 

Table ‎4.11: ANOVA for Fy 

Source‎‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 

V            1 132 132 0.14 5.59 0.717 0.8 

f                 1 7967.1 7969.1 8.6 5.59 0.022 49.4* 

Lay-up 2 1547.1 773.5 0.83 4.74 0.473 9.6 

Error 7 6486.8 926.7       40.2 

Total            11 16133           

*significant at the 5% level 

 

4.6.4 Surface roughness 

The use of 3D surface topography with real surface appearance obtained using the optical 

imaging system (Alicona) was sufficient enough to describe the surface details. The values of 

the roughness parameters are shown in Figure  4.102 and Figure  4.103. Similar to preliminary 

testing Type-2 exhibited the smoothest surface followed by Type-1 and the lowest quality 

surface was of that of Type-3. Looking at the first three tests, the Type-1 lay-up had a high 

surface roughness Sa as in Test-1 due to the wavy surface caused by vibration and this also 

occurred in most of the subsequent tests. Although Type-3 had several 45° in the lay-up, their 

effect on average suarface roughness Sa was lower compared to the waviness associated with 

Type-1 lay-up especially when the tool was new. However, Test-3 was an exception possibly 

due to premature tool failure due to chipping which may have caused further damage and 

fibre pull-out. This can be seen evident in the 3D scans obtained using Alicona for the first 
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slot of the 12 tests which are shown in Figure  4.106 where severe damage in 45° layers in 

particular is prominent.  

Surface roughness parameters (Sa and St) were extracted from the scans following 

waviness removal. Since the surface roughness was measured for all tests when tool was new, 

there was little variation in the surface roughness values. In case of Sa there was a slight 

decrease in surface roughness with increase in cutting speed from 350 to 500 m/min may be 

because of the temperature effect. The increase in feed rate from 0.1 to 0.15 mm/tooth did not 

result in any improvement. The vibration associated with milling Type-1 material made Type-

1 material look the poorest quality but may improve when tools are worn. The main effects 

plot for Sa is shown in Figure  4.104 while ANOVA is in Table  4.12. The lay-up was the most 

significant factor affecting Sa with 63% PCR. 

 

Figure ‎4.102: Average surface roughness Sa  

 

 

Figure ‎4.103: Peak to valley surface roughness St 
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Apart from average surface roughness, some researchers considered only Peak-to-Valley 

roughness such as Davim and Reis [176]. In case of St, the feed rate showed smaller effect 

which can be explained by shortened contact time between edge and workpiece surface. The 

main effects plot of St is shown in Figure  4.105 and ANOVA is in Table  4.13. 
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Figure ‎4.104: Main effects plot for 3D surface roughness parameter Sa (µm) for new tools  
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Figure ‎4.105: Main effects plot for 3D surface roughness parameter St (µm) for new tools 
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Figure ‎4.106: 3D scans of first slot down milling side (new tool) 

 

Table ‎4.12: ANOVA table for Sa 

Source‎‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 

V              1 1.414 1.414 0.31 5.59 0.597 1.5 

f                 1 0 0 0 5.59 0.999 0.0 

Lay-up 2 59.255 29.627 6.42 4.74 0.026 63.7* 

Error 7 32.324 4.618       34.8 

Total            11 92.993           
*significant at the 5% level 
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Table ‎4.13: ANOVA table for St 

Source‎‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 

V             1 97.6 97.6 0.11 5.59 0.752 0.8 

f                 1 206.9 206.9 0.23 5.59 0.646 1.7 

Lay-up 2 5744.1 2872.1 3.19 4.74 0.104 46.5 

Error 7 6303.7 900.5       51.0 

Total            11 12352           

 

4.6.5 Delamination factor 

Delamination factor (calculated) increased with feed rate which was the most significant 

factor. This agrees well with results obtained by Davim and Reis [160, 176]. Delamination 

factor also increases with cutting speed possibly because of tool wear increase and related 

effect such as rounding of edge and rise in temperature. Type-1 material had the lowest 

delamination factor while Type-2 despite the good slot wall surface but this may be because 

high cutting forces. This trend correlates to the cutting temperature results obtained in 

preliminary work. The PCR of feed rate (the most significant) was 50.1% as shown in 

Figure  4.107 and Table  4.14. Values of delamination factor and fuzz length are in tabualted in 

Appendix-G. 
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Figure ‎4.107: Main effects plot for delamination factor 
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Table ‎4.14: ANOVA for delamination factor 

Source‎‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 

V              1 0.008533 0.008533 1.57 5.59 0.251 6.1 

f                 1 0.0700533 0.070533 12.96 5.59 0.009 50.1* 

Lay-up 2 0.02265 0.011325 2.08 4.74 0.195 16.2 

Error 7 0.038083 0.00544       27.6 

Total            11 0.1398           
*significant at the 5% level 

 

4.6.6 Fuzz length 

Although the tools suffered localised chipping, fuzzing was mainly dependant on the tool 

condition near the top ply which was relatively smaller compared to the rest of the cutting 

edge. The length of fuzz measured on up milling side increased with cut length. The main 

effects plot for fuzz length (Figure  4.108) shows that fuzz length increased with cutting speed 

and feed rate. The most significant factor affecting the fuzz length was the feed rate. Type-3 

material exhibited the longest fuzz, see Table  4.15. The results from delamination factor and 

fuzz length agree with Colligan and Ramulu [151]. However the amount of fuzz on the up 

milling was far from the requirements by Airbus [134] and was the reason the up milling side 

was discarded all the time. Feed rate was the most significant factor affecting fuzz length with 

57% PCR. 
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 Figure ‎4.108: Main effects plot for fuzz length 
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Table ‎4.15: ANOVA for fuzz length 

Source‎‎‎‎‎‎‎‎‎‎ DOF‎‎‎ Seq‎SS‎‎‎ Adj‎MS‎‎‎‎‎ ‎F‎calc.‎‎‎‎ F‎‎tab. ‎P PCR‎(%) 

V              1 0.19 0.19 0.1 5.59 0.761 0.5 

f                 1 21.198 21.198 11.2 5.59 0.012 57.8* 

Lay-up 2 2.029 1.015 0.54 4.74 0.607 5.5 

Error 7 13.245 1.892       36.1 

Total            11 36.662           
*significant at the 5% level 

 

4.7 Phase-2C: Effect of cutting environment 

4.7.1 Tool wear  

Using the results from Phase-1 Test-11 (dry), Phase-1 confirmation test (twin nozzle) and 

Phase-2 Test-10 (single nozzle) it was possible to compare the effect of different cutting 

environment. (Figure  4.109) shows the effect of different environments on flank wear (tool 

wear following 28000 mm cut length). Use of chilled air (twin nozzle) in confirmation test 

lead to 30% improvement in tool life compared to dry cutting. Although the single nozzle 

showed further reduction in tool temperature, there was no tangible difference in tool life 

using single nozzle.  

 

 

Figure ‎4.109: Tool wear following 28 m cut length dry, twin nozzle, and single nozzle 

 

Using single nozzle chilled air, the cutting forces were higher possibly because of the 

reduced temperature leading to reducing the degree of matrix softening. Figure  4.110 shows 

the effect of cutting environment on Fx and Fy average forces. 
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Figure ‎4.110: Cutting forces (average) for different cutting environments 

  

4.7.2 Delamination factor 

Generally, both delamination factor and fuzz length increase with cut length as mentioned 

earlier due to the increase in tool wear and edge rounding (edge radius) which agree well with 

Hintze et al observations [171]. Lower delamination factorwas obtained using single nozzle , 

as shown in Figure  4.111, possibly due to efficient cooling and dust evacuation which reduced 

the matrix softening and held the fibres to be cut rather than escaping from cutting edge and 

causing delamination,. The delamination factor, width of damage and fuzz length were 

respectively (1.6, 20.02 mm, and 9.8 mm) using single-nozzle chilled air compared to (1.8, 

21.7 mm and 9.8 mm) for twin-nozzle chilled air when tools were worn following 28000 mm 

cut length. 
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Figure ‎4.111: Delamination factor and fuzz length 

 

4.7.3 Surface integrity/roughness 

Alicona 2D microscope images (Figure  4.112) show that in all cases there were signs of 

feed marks and there were much more prominent in dry condition may be because of the 

excessive matrix smearing due to high temperature. It is evident that the use of twin nozzle 

chilled air maintained a balance between thermal induced damage in dry and mechanical 

damage in single nozzle as seen in surfaces when tools were worn. Alicona 3D surfaces 

(Figure  4.113) show that the slightly higher temperature in case of twin nozzle compared to 

single nozzle may result in a better surface because of matrix smearing which may not have 

happened in single nozzle mode. Twin-nozzle chilled air resulted in a surface with ~ 50% 

better in terms of surface roughness when tools were worn. 
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Figure ‎4.112: Microscope images for down-milling side surfaces different environments. 

 

 

Figure ‎4.113: Alicona images different environments 
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4.8 Phase-3A: Influence of router helix angle  

Initially, an Exactaform PCD router was used at 500 m/min cutting speed and 0.15 

mm/tooth feed rate in chilled air environment but the cutting edge exhibited severe chipping. 

Examining the PCD grade revealed that the grade was similar to CTM-302 (i.e. coarse grain 

PCD), therefore, the test was carried out at a lower cutting speed of 200 m/min and feed rate 

of 0.03 mm/tooth in chilled air environment.  

 

4.8.1 Tool wear  

Tool wear against cut length for the three router geometries is shown in Figure  4.114 

which indicates that routers had almost the same flank wear at the end of the test. Using either 

an Exactaform Up-cut, Neutral or Down-cut router did not cause any variation in tool life. In 

all cases, all cutting edges sustained only gradual abrasion wear possibly due to low cutting 

speed and feed rate and these continued to cut until a cut length of only 4100 mm reaching ~ 

0.1 mm VB flank wear, see Figure  4.115. The performance in terms of tool life was similar 

and this could be due to the low helix angle and the use of the same PCD grade.  

 

 

Figure ‎4.114: Flank wear against time for different router geometries 
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Figure ‎4.115: Flank wear following 4100 mm cut length at 200 m/min cutting speed and 0.03 

mm/tooth feed rate in chilled air environment 

 

4.8.2 Tool temperature 

The tool temperature recorded during the cutting of the ¾ engagement coupon was ~ 85 % 

of the temperature during slotting (full engagement). The temperature when the tool was new 

was in the region of 200°C. Using Exactaform Up-cut router, the temperature increased from 

197 °C to 253 °C following 4100 mm cut length. In the case of Exactaform Neutral router, the 

temperature was slightly higher as it started from 206 °C and was ~ 260 °C when the tool was 

worn. On the other hand, the down milling had the lowest temperature 193 ° C when the tool 

was new and ~ 236 °C when the tool was worn.  

Figure  4.116 shows the rate of temperature increase with cut length while Figure  4.117 

shows the temperature for the new/worn. Normally, an Up-cut geometry is better for chip 

evacuation while the down-cut is better for edge quality but chip evacuation was not an issue 

in the presence of chilled air environment. Generally, helical cutting tool temperature was 
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lower compared to neutral may be because of the longer tool edge which lowers the 

temperature per unit length as reported by Sasahara et al.[182]. 

 

 

Figure ‎4.116: Temperature vs. cut length using Exactaform routers 

 

 

Figure ‎4.117: Temperature using new and worn Exactaform routers 

 

 

 

 

 



 

203 

 

4.8.3 Cutting forces 

Generally the use of helical tools was generating noise possibly due to the fluctuating 

axial forces compared to the straight fluted Neutral router. The axial force Fz was ~ 30-60 N 

and the low helix did not cause significant variation in this component compared to high helix 

in Burr type routers mentioned earlier. Other force components (Fx and Fy) are shown in 

Figure  4.118 and Figure  4.119 respectively. Using neutral Exactaform Neutral, the high 

cutting temperature may have contributed to the lower cutting forces especially when the tool 

was sharp (i.e. new condition) and vice versa in the case of Down-cut (i.e. higher forces due 

to lower temperature). This was possibly due to the effect of higher temperature in softening 

of the workpiece matrix lowering frictional forces. This could be the reason that cutting forces 

Fx were lower when routers were worn. This reduction in forces did not happen in the case of 

feed force Fy because of the higher feed speed used and the effect of tool wear. This did not 

apply to Fy (feed force) because a worn tool tends to push the workpiece in feed direction 

instead of cutting.  

 

 

Figure ‎4.118: Cutting force Fx using Up-cut, Neutral, and Down-cut 
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Figure ‎4.119: Feed force Fx using Up-cut, Neutral, and Down-cut 

 

4.8.4 Surface integrity/roughness 

4.8.4.1 4.8.4.1 Slot quality  

Cutting started clean on both sides of the slot. Although the routers sustained the same 

amount of flank wear (~0.1 mm) the tool geometry influenced the occurrence and propagation 

of fuzzing. For example, using Exactaform Up-cut, an early occurrence of fuzz on up milling 

side was at a cut length of only ~ 300 mm compared to 550 mm in the case of Neutral and 800 

mm in the case of Down-cut possibly due to the Up-cut geometry allowing fibres to escape 

easily compared to the remaining routers. The density of fuzz on down milling side using 

neutral tool was higher in comparison which could be a result of the high tool temperature. 

Fuzz on down milling started following ~2750 mm cut length using Neutral compared to 

3500 mm using Down-cut due to the downward cutting action of the later which shear the 

fibres at the edge, See Figure  4.120 for the slot quality.  



 

205 

 

 

Figure ‎4.120: Slot quality using different helix angle Exactaform PCD tools  

 

4.8.4.2 4.8.4.2 Surface roughness 

Machined surfaces (down milling side) obtained using the Exactaform tools in new 

condition (shown in Figure  4.121) did not exhibit prominent feed marks compared to 2 fluted 

routers which may be a result of the stable cutting using tools with more than 2 flutes. Plies in 

45° orientation exhibited the usual repetitive wavy pattern. According to stylus measurement 

using Talysurf (Figure  4.122 left), the Down-cut router produced the roughest surface Sa 8.18 

µm and St 102 µm despite the lower temperature measured. At low cutting temperature the 

cutting was dominated by shearing and when tool was worn the friction and pressure between 

tool and fibres increased and mechanically induced damage were observed as well as higher 

cutting forces. Up-cut came second producing a surface with Sa 6.22 µm and St 85.7 µm. On 

the other hand, the Neutral router produced the finest surface Sa 4.49 µm and St 51.9 µm 

which may be indicative that high cutting temperature may not be adversely affecting the 

surface all the time.  High temperature (not to the burning level) may promote smoother 

cutting and smoother surface due to matrix softening and smearing. 
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Figure ‎4.121: Machined surface using Up-cut, Neutral, and Down-cut routers (new tool) 

 

On the other hand, using Alicona to scan the surface (Figure  4.122 right), the Neutral 

geometry was better in terms of both Sa and St 3D roughness parameters compared to the 

helical tools regardless of up or down cut.  
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Figure ‎4.122: 3D surface topography obtained using Talysurf (left) and Alicona (right) 

 

4.9 Phase-3B: Effect of secondary relief angle 

This test was to compare the effect of the tool geometry on tool wear, cutting forces, 

surface integrity/roughness and delamination. The comparison included two test performed 

previously in Phase-1 using CMX-850 PCD and CTB-010 PCD both with 18° primary relief 

angle against CMX-850 PCD and MegaDiamond PCD which had with 10° primary relief and 

18° secondary relief angles.  

 

4.9.1 Tool wear 

The secondary relief angle was reported by Caprino et al to reduce the tool wear [31], in 

this case the smaller relief angle reduced the tendency to chipping such that the 

MegaDiamond PCD router sustained minor chipping in comparison to the CTB-010 PCD 
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regardless that the later showed a slower wear rate in comparison, see Figure  4.123. This 

flank wear was reported to decrease when larger relief angle is used [31, 184]. In order to use 

PCD end mills at high cutting speed and feed rate it is hence recommended to use a cutting 

edge with secondary clearance. Apart from the CMX-850 with primary relief which fractured 

at a cut length of ~850 mm, the routers were able to cut 28000 mm, see Figure  4.124 for the 

tool wear against cut length graph. 

 

 

Figure ‎4.123: Effect of secondary relief on edge chipping 

 

 

Figure ‎4.124: Tool wear against cut length at 500 m/min cutting speed and 0.15 mm/tooth 

feed rate and twin-nozzle chilled air environment 
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4.9.2 Cutting forces 

The CTB-010 PCD had the lowest rate of increase in cutting force from new to worn state 

due to the steady wear rate. The tools with primary relief only exhibited higher Fx (max) 

cutting forces when they were new possibly due to the self-induced chatter attributed to such 

tools which tend to diminish when the tool is worn. Conversely, the tools with primary and 

secondary relief angles exhibited higher forces when worn due to rubbing against workpiece 

surface, see Figure  4.125. This contradicted the reported fact that a secondary relief angle was 

recommended to reduce cutting forces because of bouncing back fibres [29] possibly due to 

small secondary relief angle used. Increasing the clearance angle was reported to reduce the 

contact between the tool and workpiece and consequently reduces cutting forces [23, 24, 30]. 

CMX-850 PCD router with primary relief had the lowest initial Fy feed force possibly due to 

tool sharpness and smoothness attributed to the fine grain PCD, see Figure  4.126. 

 

 

Figure ‎4.125: Cutting forces Fx for benchmarked tools a) mean b) max 
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Figure  4.127: Effect of secondary relief on force signal illustrates the recorded force 

signals for the different tools and how the geometry plays a role in the initial dynamic forces 

associated with milling process due to varying fibre angles [22]. The fracture of the CMX-

850PCD router used at this feed rate was not the first instance, the CMX-850 PCD also 

fractured in Phase-1 (Test-16) which could be a result of the self-induced chatter. The 

consequences of such dynamic forces on workpiece surface are discussed in the surface 

integrity section. 

 

 

Figure ‎4.126: Cutting forces Fy for bench marked tools a) mean b) max 
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Figure ‎4.127: Effect of secondary relief on force signal 

 

4.9.3 Surface integrity/roughness 

All tools produced slots without fuzz on down-milling side while fuzz was mainly 

occurring on the up milling side. Figure  4.128 shows the slot obtained, the edge quality using 

primary and secondary relief angles appeared to be slightly better than a single relief. 

 

 

Figure ‎4.128: Machined slots using different tool geometries 
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Optical microscope (tool maker‟s microscope) images showed that the waviness or feed 

marks were visible when using new tools with primary relief only. Using a tool with primary 

and secondary relief angles, the marks were barely visible. This could be due to the effect of 

the cutting edge angles of the later which increased stability and reduced vibration that causes 

the waviness on the surface resulting in a clean surface. Figure  4.129 shows that surfaces 

obtained using the worn tools were quite similar in terms of quality. 

 

 

Figure ‎4.129: Machined surface under tool maker‟s microscope 

 

The SEM graphs of the down-milling side slot wall (Figure  4.130). The relatively superior 

wear resistance of the CTB-010 maintained a good surface when the tool was worn. 

MegaDiamond PCD, the CTB-010 PCD grade equivalent, generated a surface better than that 

obtained the CMX-850 PCD although they have the same geometry (2 relief angles). The 

surface when the tool was worn showed some evidence of compressed fibres. Generally, a 

larger relief angle reduces/eliminates workpiece surface defects caused by tool wear. 
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Figure ‎4.130: SEM images of surfaces obtained using new and worn tools 

 

Surface topography and surface roughness parameters Sa and St are shown in 

Figure  4.131, Figure  4.132 and Figure  4.133 respectively. Again, CTB-010 PCD with primary 

relief showed some prominent feed marks in the beginning of the test (tool new) and such 

feed marks diminished by the end of the test which resulted in surface roughness when tool 

was worn better than that of the new tool (6.2 µm Sa compared to 14.3 µm Sa) due to the 

contribution of the feed marks attributed to new tools when cutting is done mostly by shear 

and mostly visible in case of higher feed rate. Such phenomena may be due to the tool edge 

flank regrinding by the fibre as noted by Klocke and Wurtz [156] which may provide the tool 

with a new edge geometry. The damage in 45° layers was the highest as usual and some fibres 

were pulled out distorting the common wavy pattern of those layers. When the tool was worn 

the damage extended to the adjacent layer (90°). The 135° layer was easy to compress, this 

could be the reason they were spread over the neighbouring layers.  

There were a lot of similarities between the surfaces generated using both MegaDiamond 

PCD and CMX-850 PCD possibly because they had the same geometry (10° and 18° primary 

and secondary relief angles). Although such geometry reduced the tendency of edge chipping, 

it caused more rubbing and pressure on the machined surface and as a result more spring back 

phenomenon, noted by Wang and Zhang [29], which occurred at 90° and 135° and were more 

visible when the tool was worn. Surface roughness parameter Sa for such tools doubled from 

new to worn condition from 4.8 and 5.4 µm Sa (tool new) to 9.5 and 10 µm Sa (tool worn). 
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The MegaDiamond grade proved that the 10°/18° primary and secondary relief angle was 

superior to the single relief angle and resulted in no feed marks at start, which may be a result 

of dynamic forces as shown in force traces of different tools in Figure  4.127. In addition, the 

new CMX-850 PCD employing primary and secondary relief angles resulted in surfaces with 

Sa 5.4331µm and St 112.6945µm which were almost half of the roughness values obtained 

with a single relief angle tool (10.7725 µm Sa and 185.0971 µm St). When the MegaDiamond 

and CMX-850 PCD tools with primary and secondary relief were new they produced 

workpiece surfaces better than CTB-010. If the CTB-010 was ground with equivalent angles 

it is likely that it would have performed better based on the fact that the CTB-010 was better 

in terms of wear resistance.  

 

 

Figure ‎4.131: Alicona 3D scans of slot wall (down-milling side) 

 

 

Figure ‎4.132: 3D surface roughness parameters using different tool 
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Figure ‎4.133: 3D surface roughness parameters using different tool 

 

Although Colligan and Ramulu [151] mentioned that Type-I was the most dominant for 

the 45° top ply, in this test, Type-II delamination was most prevalent which occurred mainly 

in the 45° top ply on the up milling side. This could be due to the type of fibres used in this 

test which were flexible enough to escape from the cutting edge without breaking to form 

Type-I delamination. Alternatively, Colligan and Ramulu‟s result could have been due to the 

low temperature associated with the coolant type they used (Freon) which may promoted 

fracture due to bending. The amount of uncut fibre generally increased with cut length 

because of the increase in tool wear as the tool became blunt and rounded. This, in turn, 

caused subsurface delamination the extent of which was measurable using laser scanning. 

Measuring the length of uncut fibre on the up-milling side, the tools performed similarly apart 

from MegaDiamond which started and finished the test with relatively lower fuzz length. This 

may be because of the tool geometry (primary and secondary relief). However the 

MegaDiamond had little fuzz in down-milling side from 24600 mm cut length, see 

Figure  4.134.  Fuzz length and delamination factor values are listed in Appendix-G. 
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Figure ‎4.134: Fuzz length for different tools 

 

The MegaDiamond tools showed some good results in terms of delamination factor when 

the tool was new. This may be related to the tool geometry. CTB PCD came second after 

MegaDiamond at the same tool conditions but CTB was the last when the tool was worn 

which may be due to the chipping of the tool edge and high feed forces, see Figure  4.135.  

 

 

Figure ‎4.135: Delamination factor for different tools 

 

In summary, the radar graph in Figure  4.136 sorts the tools based on a scale of 1-3 (higher 

is better) according to responses when these tools were new. The geometry and the 

mechanical properties of the MegaDiamond together make it a good choice but it was ~17% 

more expensive per unit. The fabrication of a CTB-010 PCD router with primary and 

secondary relief angles may result in better performance provided that the edge is ground 

rather than wire cut.  
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Figure ‎4.136: Performance of different PCD tools in slotting of CFRP 

 

4.10 Cutting forces, cutting temperature and surface integrity 

There were some interactions between cutting forces, and cutting temperature which 

affected the resulting surface integrity. For example, when milling using different helical 

tools, the low temperature and high cutting forces associated with using down-cut resulted in 

rough surfaces while a higher temperature and low forces when using a neutral router resulted 

in a good surface. This suggested that there was harmless matrix softening which helped 

reduce friction between the tool and workpiece and consequently reduce cutting forces. The 

smearing of the softened matrix was beneficial as it added to the surface smoothness. This 

occurred at a critical temperature of ~200 °C below which the surface deteriorated due to 

mechanical damage. Above this temperature thermal damage occurred. The critical 

temperature also influenced the cutting forces. Such a critical temperature was also evident 

when using different cutting environments such that dry cutting increased thermal damage 

while the single-nozzle chilled air (low temperature) resulted in higher roughness due to 

mechanical damage. The best surface roughness was achieved using a twin-nozzle possibly 

due to cutting at a temperature near the critical temperature. 

In case of using a tool with two relief angles, there was no dynamic force which caused 

feed marks. The stability of this tool geometry contributed to the low delamination factor and 

fuzz length. The cutting forces using such tools were lower compared to single relief tools. 

The good surface finish when using twin relief could have resulted from the pressure from the 

tool flank faces on to the machined surface which was evident in the form of compressed 

layers. This pressure and rubbing may have caused a rise in temperature which improved the 

surface.           
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4.11 Cost/benefit analysis 

For the present research work, it was not possible to obtain all the cost variables 

mentioned in Chapter 2 such machine cost or labour cost due to confidentiality. In addition, 

the Taylor constant and Taylor exponent for the CFRP material were not available. However, 

it was possible to provide a comparison between tooling cost using different tool 

materials/designs. Since the tool life criteria was 28m cut length (equivalent to a length of a 

wing span) and the tool is used once (not regrindable) to achieve this length of cut, the tooling 

cost per product Ct becomes the tool price Cnew minus the tool selvage value Cscrap. Assuming 

the scrap value of the tool was zero the tool cost remained equal to the cost of the new tool as 

shown in the equation below.   

 

                                                                                                          Equation ‎4.1 

  

Although many authors find PCD an economic solution for machining composites [154] 

carbide tools can also offer a versatile solution at lower cost based on test outcomes. For 

instance, it was possible to obtain 28m cut length using PCD but the quality of the up-milling 

side was not acceptable due to fuzzing and delamination. On the other hand, at a fraction of 

the PCD router cost (£59 compared to £310), the uncoated carbide urr router was capable of 

cutting 28m with no fuzz on either side. The relatively high surface roughness obtained by 

using uncoated burr routers can be easily accomodated by a subsequent finishing pass using a 

Dura coated tool which can produce very low surface roughness especially if an up-milling 

mode is adopted. It was noted by Kauppinen [149] that the wear rate of burr routers was not 

affected by feed rate which suggests the possibility of using them for high productivity (high 

feed rate). Assuming that one router will be used for only 28m cut length (although it can be 

used several time depending on the panel thickness), the total cost then for 28m will be £59 

(for the burr router) + £169 (for the Dura coated 2 fluted router) which equals £228, as shown 

in Table  4.16. This is a 26.5% lower cost than for  PCD. Appendix-H lists the unit cost of 

various tools used in the project. 

The cost per meter of cut length, calculated using the equation 4.2, is ~ £8 using WC, 

compared to £17 per meter using PCD for roughing followed by a finishing pass using a Dura 

coated tool. The use of a Dura coated burr router is not justified based on the poor 

performance and the high cost.  
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                               (  )

  
                             Equation ‎4.2 

 

Table ‎4.16: Cost and benefits comparison using PCD and WC 

 PCD  WC 

Tooling cost to cut 28m £310 (PCD router) 

£59 (Uncoated Burr) for 

roughing + £169 (Dura 

coated 2 flute) for finishing 

= £228 

Minimum surface roughness in slotting  

(compared to  3.2 µm Ra or Sa standard 

for the application) 

2.6 µm  1.6 µm 

Up-milling side condition Scrap Usable 

Tooling cost per meter £17 £8 

 

Considering AWJ process as an alternative, there are a lot of variables that can affect the 

actual linear cutting speed and cost per meter for a given material such as the properties of 

material, size and specification of the pump being used, surface finish requirements etc. 

Assuming the material falls within the range of “generic CFRP” and we are using a 30hp 

Direct Drive pump rated at 55,000psi/3,800bar, the cut speed range would be 350 – 1,400 

mm/min. Therefore, time to cut 1 meter will be 2.8 – 0.7 minutes. The cost per meter then 

works out at £ 0.75- 0.19/meter. The cost is based upon an overall processing cost for the 

machine of £16/hour. This cost stays roughly the same irrespective of material or thickness. It 

should also be considered that as soon as the jet has to go around a corner, then it has to slow 

down. Piercing of start holes is also a factor that has to be considered when estimating times 

and costs [235]. At the lower end of the speed range, you will get a nice smooth finish with 

little evidence of “machining” marks or striations. At the other end of the range, it should be 

considered a roughing quality cut and will have taper on the cut edge and also evidence of 

striation lines. 

Considering all those aspects, although AWJ can be lower in cost ~ 10% of the milling 

cost, the milling of CFRP may avoid the water absorption and AWJ related defects. Milling 

speed using un-coated burr tool was 2547 mm/min which is higher than the roughing speed of 

the AWJ. As long as the highest productivity requires a quick roughing either by water jet or 
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by milling, it is much cheaper to use milling rather than installation of AWJ machine which 

may be costly.  

 

4.12 Summary of results  

4.12.1 Phase-1: Effect of operating conditions, tool materials and cutter design 

4.12.1.1 Phase-1A: Preliminary work 

 Despite a depth of cut of 5 mm, wear on the ITC PCD router was minimal (flank wear 

< 40 µm after 1860 mm cut length) following slotting of CFRP at a cutting speed and 

feed rate of 200 m/min and 0.3 mm/tooth respectively. In addition, no major damage 

modes (e.g. fuzzing, delamination etc.) were apparent on any of the machined surfaces 

analysed.  

 In general, cutting forces increased with both cutting speed and feed rate, which was 

most likely due to higher wear rates and larger uncut chip thicknesses.  

 Workpiece surface roughness typically ranged between 6 to 10 µm Sa (measured 

using contact stylus). An initial rise followed by a drop in surface roughness was 

observed as cutting speed increased from 200 to 650 m/min. The opposite trend 

however was seen with respect to variation in feed rate (0.03 to 0.15 mm/tooth). 

 Increasing cutting speed from 200 to 350 m/min led to a ~17% rise in temperature 

while higher feed rates reduced cutting temperature due to the shorter contact time 

between the tool and workpiece. Cutting temperature was also observed to vary 

linearly with increasing depth of cut.  

4.12.1.2 Phase-1B: Influence of operating conditions and tool materials 

 Rapid wear rates and severe damage in the form of serrated cutting edges (with depth 

of serration corresponding to ply orientation) were evident when machining with the 

DLC-coated WC routers. Tool life did not exceed 900 mm, irrespective of the 

operating conditions. This was caused by the high level of cutting forces (up to 856 N 

Fx and 1301 N Fy) and abrasive nature of the carbon fibres. 

 The use of chilled air prevented accumulation of dust in the slots and reduced the risk 

of workpiece burning. This was in contrast to tests performed dry where   

agglomeration of charred matrix material was observed, resulting in poor surface 

finish and tool life. 
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 Fuzzing on the machined surfaces was prevalent as tool flank wear exceeded ~ 0.1 

mm, irrespective of tool material. 

 The combination of low cutting speed and low feed rates generally produced good 

surface finish (3.6 µm Ra) although signs of burning were still apparent in a number of 

trials undertaken dry. Conversely, the routers were susceptible to fracture when 

operating at high cutting speeds and feed rates due to the greater machining forces. 

 The use of low cutting speed (200 m/min) together with high feed rate (0.03 

mm/tooth) generally resulted in superior workpiece surface integrity/roughness. The 

nature of workpiece defects however varied according to the ply orientation. Wavy 

surfaces, fibre reorientation or pull out were prevalent at 45° plies, while loose or 

spreading of fibres were predominant at 0° and 135° directions with matrix cracking 

and fibre pull out the dominant damage mechanism in the 90° layers.  

 Surface roughness deteriorated as machining progressed due to the increase in tool 

wear. Workpiece surfaces roughness using CMX-850 PCD was 3.6 µm Ra, 29 µm Rt 

when new compared to 21 µm Ra and 95 µm Rt when the tool was worn. 

 Cutting forces when employing the DLC coated WC tools were significantly higher 

compared to the PCD routers (Fx and Fy of as low as 159 and 130 N at 200 m/min and  

0.03 mm/tooth using PCD compared to as high as 856 N Fx and 1301 N Fy using 

DLC coated WC). When the angle of the resultant force with respect to cutting 

direction (perpendicular to feed) was lower than 45°, fuzzing was reduced.  

 Tool life was up to 95 times higher when employing PCD compared to the DLC 

coated WC routers, with the CTB-010 grade showing the best performance according 

to the ANOVA. None of the factors were significant. A relatively high error level 

(70%) however was obtained, which was likely due to interactions between factors. 

 The coarse grained PCD (CTM-302) was prone to chipping especially at high feed 

rates due to high mechanical loads and lower fracture toughness of the CTM-302 

grade. 

 Feed rate was the most significant factor affecting both cutting force (Fx) and surface 

roughness with PCR‟s of 38% and 57.47% respectively.  

 While the use of chilled air was beneficial for debris removal and prevention of 

workpiece burning, cutting environment was not statistically significant with respect 

to all the responses evaluated.  
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4.12.1.3 Phase-1C: Benchmarking of Element 6 PCD grades at preferred operating 

parameters 

 The performance of the PCD tools fabricated via mechanical grinding was superior to 

routers manufactured using electrical discharge grinding (EDG). This was possibly 

due to the generation of tensile residual stresses in the tool material when utilising the 

non-conventional EDG process. 

 The confirmation test involving the CTB-010 grade showed a further 30% 

improvement in tool wear and corresponding reduction in cutting forces.  

 The WPC-102 PCD grade exhibited higher tool wear (~60%), cutting forces (~20%) 

and surface roughness compared to CTB-010 PCD.  

4.12.1.4 Phase-1D: Benchmarking of carbide tooling products 

 The Dura coated WC tools suffered peeling/removal of the CVD diamond coating 

when operating at elevated cutting speeds or feed rates (500 m/min cutting speed and 

0.15 mm/tooth feed rate), which was attributed to brittle fracture of the layer. 

 Dura coated products outperformed both the DLC-coated and uncoated WC routers in 

terms of tool life due to its diamond structure containing the stronger sp3 carbon 

bonds. The workpiece surface generated using the Dura-coated tools were superior in 

terms of tool life as it was 48 and 16 times longer than DLC-coated and uncoated WC 

routers respectively. In addition, the surface roughness was better (1.9 µm Sa 

compared to 9 µm Sa using uncoated) due to the higher wear resistance and lower 

roughness of the coating surface.  

 Uncoated burr type routers generally produced rougher surfaces compared to the 2-

fluted cutters (24 µm Sa and 300 µm St) however no fuzzing on either side of the slots 

were evident even after 28 m cut length, due to its down cutting action. 

 No substantial benefit was observed when using the Dura coated burr router due to 

failure of the coating and subsequent wear on the substrate. 

4.12.2 Phase-2: Effect of workpiece material lay-up configuration 

4.12.2.1 Phase-2A: Preliminary testing and temperature measurement 

 Workpiece material with fibres orientated at 0° (with respect to the tool cutting 

direction) showed the highest cutting force (Fx) while samples with fibres in the 90° 

direction generated highest feed force (Fy). This is due to the instantaneous fibre 
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orientation with respect to the cutting edge at the middle of the slot (i.e. at the point of 

maximum chip thickness). 

 Plies at 45° showed the highest levels of workpiece damage and was generally 

characterised by a wavy surface due to severe matrix loss or fibre pull out. 

 The Type-2 CFRP material generally exhibited the lowest surface roughness (3.4 µm 

Sa) owing to the higher number of 0° layers in the laminate lay-up. Conversely, the 

Type-3 configuration resulted in the highest surface roughness due to the greater 

number of 45° plies. 

 Surface roughness (Sa) of the up-milled slot wall (by 70 – 75% depending on the 

CFRP configuration) was lower compared to surfaces produced by down-milling 

which was possibly due to the lower temperatures generated in the up-milling 

direction.  

 The layers oriented at 45° were responsible for the highest cutting temperature 

because of the high friction caused by this layer.  

 Cutting temperature was highest when machining the Type-3 material (263°C), which 

was ~ 4% and 0.7 % greater than Type-1 and Type-2 configurations respectively. 

 The Neutral geometry routers resulted in the highest cutting temperature (271°C), with 

the Down-cut and Up-cut geometry showing reductions of up to ~8% and ~4% 

respectively. 

 Temperature when machining under the ¾ engagement strategy was ~15% lower 

compared to full engagement slotting. 

 Measured temperature was ~100°C higher when machining dry as opposed to 

employing chilled air. In addition, the use of single-nozzle delivery resulted in 20°C 

lower cutting temperatures in comparison the twin-nozzle arrangement, due to the 

higher air speed generated in the former. 

4.12.2.2 Phase-2B: Effect of workpiece material lay-up configuration 

 Cutting edges prepared using EDG were more prone to chipping due to the high initial 

cutting forces. 

 The Type-3 CFRP configuration generally caused severe chipping of the routers, 

particularly at locations with higher concentration of 45° orientated layers. Workpiece 

material configuration was the most significant factor influencing tool life with a PCR 

of 61.3%. 
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 Workpiece lay-up was the sole significant factor affecting surface roughness (Sa) with 

a PCR of 63.7%. Other factors were statistically insignificant. 

 In terms of workpiece delamination factor and fuzzing, feed rate had the greatest 

effect with a PCR of 50.1% and 57.8 % respectively. 

4.12.2.3 Phase-2C: Effect of cutting environment 

 Although the application of chilled air (in single-nozzle mode) did not have any 

appreciable effect on tool wear or fuzz length, cutting forces were seen to increase (by 

25% for Fx and 5% Fy when tools were new) while workpiece delamination factor 

was 12.5% lower when using chilled air environment in single-nozzle mode compared 

to twin-nozzle (1.6 compared to 1.8 when tools were worn). 

 Use of twin-nozzle delivery of chilled air was preferred to the single-nozzle mode in 

terms of surface integrity such that a twin-nozzle chilled air resulted in a surface with 

~ 50% better in surface roughness having 6.2 µm Sa and 98 µm St compared to 12.3 

µm Sa and 267.3 µm St in case of the single-nozzle configuration. 

4.12.3 Phase-3: Effect of varying tool geometry 

4.12.3.1 Phase-3A: Influence of router helix angle 

 The variation in helix angle did not have any major influence on tool life, possibly due 

to the relatively low values employed (± 3).  

 The Down-cut geometry generated the lowest cutting temperatures but the highest 

forces. 

 The Neutral geometry router produced the lowest surface roughness (Sa) compared to 

routers with a positive or negative helix angle. 

4.12.3.2 Phase-3B: Effect of secondary clearance angle 

 Single relief angle routers were less stable compared with tools having a secondary 

clearance, especially when the tool was in the new condition/sharp. This was reflected 

by the force signals showing greater dynamic variation when machining with the 

single relief tools.  

 While feed marks and relatively high surface roughness were initially apparent when 

employing routers with single relief angles, workpiece quality improved as cutting 

progressed due to the contact between the cutter and workpiece as tool wear increased. 
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 In general, the twin relief angle tools generated lower surface roughness (~ 50%), 

reduced fuzzing and smaller delamination factor compared to single clearance angle 

routers. 
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5 CONCLUSIONS & FUTURE WORK 

5.1 Conclusions  

A- Undertake a comprehensive literature review on the machining of composite 

materials across different engineering applications, and in particular on the 

milling/routing‎of‎CFRP’s. 

The literature review highlighted the absence of data on the use of high cutting speeds and 

high feed rates especially in slotting using polycrystalline diamond (PCD) together with the 

use of  different PCD grades (with cutting edges manufactured by different grinding 

techniques) or various diamond coatings in the slotting of CFRP. Furthermore, there was no 

data covering tool temperature during slot milling or the influence of material configuration. 

The effect of different chilled air flow rates on machined surface quality had not been studied, 

despite equipment and data for vortex operated chilled air delivery being available with 

reference to other materials. In addition, delamination assessment using laser techniques was 

limited. In relation to tool geometry, no details could be found concerning the effect of 

geometry either on stability of cutting or cutting temperature and consequent effects on 

surface integrity when milling FRP composites. Cost analysis with respect to tooling when 

slotting CFRP was similarly not discussed.  

 

B- Identify preferred/optimum tool material, operating parameters and the cutting 

environment for the machining of specified carbon fibre reinforced composite material. 

Cutting force increased with cutting speed and particularly feed rate this latter parameter 

influencing the cutting force Fx and surface roughness by 38% and 57% PCR respectively. 

Conversely, increase in the feed rate caused a reduction in cutting temperature due to the 

reduced contact time between tool and workpiece.  

An increase in axial depth of cut (slot depth) resulted in a linear increase in tool 

temperature. Cutting temperature increased also with cutting speed such that a 17% rise in 

temperature was observed when cutting speed was increased from 200 to 350 m/min. 

Unlike metal cutting, the use of low cutting speed and feed rate resulted in low surface 

roughness. A surface with 2.6 µm Ra was obtained at 200 m/min cutting speed and 0.15 

mm/tooth fed rate.  

The use of chilled air reduced the tendency of burning and the thermal induced damage to 

the workpiece surface. Tool temperature using Twin-nozzle chilled air was 100C lower than 
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in dry cutting.  Varying the number of nozzles from two to one affected the air flow rate and 

air temperature and caused a 20 C reduction in tool temperature and in turn resulted in 12.5% 

lower delamination factor, 25% lower cutting force Fx and 5% lower feed force Fy.  Use of 

twin-nozzle chilled air improved tool life by 30% in comparison to dry cutting. 

Cutting temperature during milling ¾ engagement coupons was 15% less than the tool 

temperature during slotting at full engagement.  

Carbide tools suffered from severe tool wear which was reflected in the cutting forces 

(1300 N Fx) as well as surface quality especially when milling was undertaken dry 

environment. The quality deteriorated as the machining progressed. 

Tool life using 2-fluted PCD tools was 95 times longer than the DLC-coated WC 

counterpart due to the higher abrasion resistance of the PCD.  

PCD tool life was influenced by edge preparation process such that mechanical grinding 

was recommended for a tool with higher chipping resistance. The thermal effect of non-

conventional EDG promoted cracking of the PCD. 

The Dura (CVD diamond) coated tool was the best for finishing as it produced a surface 

with 1.6 µm Sa surface roughness which was lower than the standard requirement of 3.2 µm. 

In addition, the Dura-coated router out performed both DLC-coated and uncoated WC routers 

in terms of wear resistance owing to the stronger Sp3 carbon structure such that it was 48 

times better than the uncoated tool in terms of the cut length. Each tool responded differently 

to the brushing action of the carbon fibres during cutting s resulting in different wear types.  

 

C- Evaluate the effect of workpiece material variables (different unidirectional 

“UD”,‎and‎multidirectional‎workpiece‎layups etc.) on machinability performance. 

The fibre orientation affected cutting forces, cutting temperature and surface roughness. 

Forces were determined by the instantaneous fibre orientation at point of maximum chip 

thickness (i.e. middle of the slot). The 0 fibres resulted in the highest cutting force Fx while 

the highest feed force Fy resulted from cutting 90 layers. Fibres at 45 angle of orientation 

were responsible for the high levels of surface damage, cutting temperature and tool wear. 

Lay-up significantly influenced tool wear having a 61.3 % PCR.  

Behaviour of a lay-up configuration was affected by its constituents or the number of plies 

at each direction. Type-2 lay-up for example resulted in the highest cutting forces Fx but 

resulted in the lowest surface roughness (3.4 µm). Workpiece lay-up was found to be the most 

significant factor affecting the surface roughness with 63.7 % PCR. 
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By calculating the cutting force Fx per ply when milling unidirectional lay-up, it was 

possible to calculate the cutting force for different lay-up configurations.  

Cutting temperature was highest when machining the Type-3 material (263°C), which was 

~ 4% and 0.7 % greater than Type-1 and Type-2 configurations respectively. 

 

D- Evaluate the effect of varying tool geometry on the machinability of CFRP with 

reference to the effect of helix angle and secondary clearance on slot milling 

performance and surface integrity. 

Low helix angle variation did not have a major influence on tool life. Down cut geometry 

resulted in the lowest cutting temperature which was 8% less than neutral geometry. 

However, the use of neutral geometry was beneficial in terms of surface roughness due to 

matrix smearing at elevated cutting temperature. 

The use of a tool with a secondary clearance resulted in more stable cutting with no 

dynamic forces or vibration which reduced/eliminated feed marks. The cutting force traces 

also revealed that cutting stability improved when using a single relief tool. The twin relief 

cutting edge produced a 50% better surface in terms of surface roughness and resulted in 

lower fuzz and delamination.  

 

E- Identify operating approaches that minimise / eliminate workpiece surface 

defects such as delamination, fibre pull-out, matrix chipping / degradation, cracking etc. 

during milling/routing. 

Fuzzing on the machined surfaces was prevalent as tool flank wear exceeded ~ 0.1 mm, 

irrespective of tool material. 

Tool temperature during up-milling was lower than that during down-milling and as a 

result the surface roughness on the up-milling side was 70% better than the down-milling 

side. The up-milling mode is suggested for finishing passes to further improve surface quality. 

Feed rate was the most statistically significant factor influencing the delamination factor 

and fuzz length with 50.1% and 57.8% PCR respectively. The use of laser scanning can be 

used during milling for direct quality monitoring and also as an indirect method to evaluate 

tool wear. 

The use of chilled air was beneficial for debris removal and prevention of workpiece 

burning. Workpiece delamination factor was 12.5% lower when using chilled air environment 
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in single-nozzle mode compared to twin-nozzle. However, use of twin-nozzle delivery of 

chilled air was preferred to the single-nozzle mode in terms of surface roughness. 

 

F- Perform a cost benefit analysis on the proposed machining approach. 

The uncoated WC burr router was the ideal choice for roughing due to the ability to cut a 

28m fuzz-free cut length (both up milling and down milling sides). The high surface 

roughness resulting from using the burr tool could be ameliorated by a subsequent finishing 

pass using a Dura-coated tool. The use of an uncoated burr router followed by a Dura coated 

2-flue router for finishing was found economical at £8/m compared to 17£/m using a PCD. 

The routing of CFRP could be better than AWJ in terms of accuracy and quality. There was 

no benefit of using a diamond coated burr for slotting due to poor tool life. 

 

5.2 Recommendations for future work 

Based on results from the present research, a number of related areas involving the machining 

of CFRP have been identified for future evaluation:   

 Assess the performance of CTB-010 PCD and Dura coated WC routers as well as burr 

type routers for the edge trimming of CFRP. 

 Investigate the use of abrasive point grinding for the routing/trimming of CFRP 

materials. 

 Evaluate the performance benefits of ultrasonic assisted cutting of CFRP in 

comparison to conventional end milling/trimming. 

 Further experimental investigation on the influence of varying tool geometry (larger 

helix angles, and negative rake angles) and tool design when milling CFRP. 

 Investigate the feasibility of employing wire electrical discharge machining (WEDM) 

for the routing/trimming of CFRP.  

 Investigate the performance of trochoidal milling strategy. 

 Development of a finite element model to simulate the edge routing/slotting of CFRP 

in order to predict tool life, cutting forces, cutting temperature and workpiece surface 

integrity. 
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7 APPENDICES  

Appendix-A: Material properties 

 

Table ‎7.1: Properties of various fibres and whiskers [11] 

Material 
Density‎ 

(g/cm
3

) 

Tensile‎ 

strength 

‎(GPa) 

Modulus‎

of‎ 

elasticity‎ 

(GPa) 

Ductility‎ 

(%) 

Melting‎ 

temperature 

(°C) 

Specific‎ 

modulus 

(10
6

‎m) 

Specific‎

strength 

(10
4

‎m) 

E-glass 2.55 3.4 72.4 4.7 <1725 2.90 14 

S-glass 2.50 4.5 86.9 5.2 <1725 3.56 18 

SiO
2
 2.19 5.9 72.4 8.1 1728 3.38 27.4 

Al
2
O

3
 3.95 2.1 86.9 0.55 2015 9.86 5.3 

ZrO
2
 4.84 2.1 42.4 0.62 2677 7.26 4.3 

Carbon‎(high‎

strength) 
1.5 5.7 340 2.0 3700 18.8 19 

Carbon‎(high‎

modulus) 
1.5 1.9 280 0.36 3700 36.3 13 

BN 1.9 1.4 530 1.6 2730 4.87 7.4 

Boron 2.36 3.4 90 0.89 2030 16.4 12 

B
4
C 2.36 2.3 480 0.48 2450 20.9 9.9 

SiC 4.09 2.1 480 0.44 2700 12.0 5.1 

TiB
2
 4.48 0.10 510 0.02 2980 11.6 0.3 

Be 1.83 1.28 300 0.4 1277 19.7 7.1 

W 19.4 4.0 410 0.95 3410 2.2 2 

Polyethelene 0.97 2.59 120 2.2 147 12.4 27.4 

Kevlar 1.44 4.5 120 3.8 500 8.81 25.7 

Al
2
O

3
whiskers 3.96 21 430 4.9 1982 11.0 53.3 

BeO‎whiskers 2.85 13 340 3.8 2550 12.3 47.0 

B
4
C‎whiskers 2.52 14 480 2.9 2450 19.5 56.1 

SiC‎whiskers 3.18 21 480 4.4 2700 15.4 66.5 

Si
3
N
4
‎whiskers 3.18 14 380 3.7 

 
12.1 44.5 

Graphite‎

whiskers 
1.66 21 703 3.0 3700 43 128 

Cr‎whiskers 7.2 8.90 240 3.7 1890 3.40 12 
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Appendix-B: Laminate fabrication procedure (lay-up) 

Manual layup: the layup process was carried out in clean room at regulated and controlled 

temperature and humidity on a special table with a glass surface with a bar to hold the roll of 

prepreg material. A roll of prepreg (130 m long × 0.6 m wide) stored in a freezer (at -16˚) 

needed to defrost in its sealed bag for use, otherwise they were stored to maintain shelf life 

(30 days). The typical layup sequence included defrosting of the material for 24 hours at room 

temperature (20˚C), preparing a table for cutting by adding guide cork, use of the steel 

triangle, steel ruler, and a knife to cut plies to size, then sorting the cut plies according to the 

manufacturing instructions sheet (MIS). Plies with 90˚ and 0˚ are directly to size, while those 

with 45˚ or 135˚ required cutting at angle the stitching the plies from the release film side 

using flash tape then finally cutting to size, see Figure  7.1. 

 

 

Figure ‎7.1: Manual ply cutting (left), stitching of plies (right) 

 

A layup vacuum bag is prepared using layers of different materials to ensure extraction of 

any excess air entrapped in-between the plies. Each laid up ply is then pressed with a square 

Teflon edge squeegee to remove any entrapped air and to achieve good adhesion. After each 4 

plies, the vacuum bag is sealed and vacuum is applied for 4 minutes for „debulking‟ and 

removing any trapped air, see Figure  7.2 . 
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Figure ‎7.2: components of layup vacuum bag and a final layup under vacuum  

 

Autoclave curing process: it is recommended to store the laid up panel to maintain shelf 

life and cure sooner after the layup. A flat aluminium plate is cleaned using a chemical release 

agent (solvent) to remove any residues from previous cures a step requires safety precautions 

such as special glove and heavy duty face mask to avoid toxic fumes. Laminated panels are 

bagged up for curing in the autoclave, surrounded with cork, and thermocouples are 

embedded to monitor the instantaneous temperature of panels. Figure ‎7.3 shows typical 

components of a vacuum bag while Figure ‎7.4 shows the cork dam, thermocouple, and the 

final bag ready for curing in an autoclave. Autoclave cycle and typical process parameters are 

shown in Figure ‎7.5. Panel testing: Following the curing process, cured panels are sent to 

NDT to be checked for defects using a gantry Ultrasonic C-scan machine. Figure  7.5 shows a 

typical C-scan test results. 
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Figure ‎7.3: Typical curing bag components (Courtesy of Airbus) 

 

 

Figure ‎7.4: Vacuum bag prepared for autoclave curing 
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Figure ‎7.5: Curing cycle pressure-temperature over time graph 

 

 

Figure ‎7.6: Typical C-scan result showing a defect free panel 
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Appendix-C: Material safety datasheet (sample) 
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Appendix-D: Carbon fibre properties 

Toray carbon fibres T800S can be supplied in 3 different twist configurations (A= twisted 

yarn, B= untwisted yarn from twisted yarn by untwisting process and C= never twisted). 
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Appendix-E: ANOVA analysis equations  

Percentage contribution (PCR) was calculated using Equation 1 [227] where SSA is the 

sum of squares for a factor, DOFA is the degree of freedom of that factor, MSE is the mean 

square of error, and SST is the sum of squares total. The error percentage was calculated 

using Equation 2. 

 

PCR = 100 [SSA-DOFA(MSE)]/ SST                                                                     Equation ‎7.1 

 

Error % = 100 – % PCR of all factors                                                                      Equation ‎7.2 
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Appendix-F: CNC program code 

Slotting full engagement coupon 

The CNC code for slotting (full engagement of 12 mm) is detailed in Table  7.2 while the 

tool path is shown in Figure  7.7.  

 

Table ‎7.2: CNC program for slotting  

Main CNC code (P500) Subroutine for slotting (P501) 

G21 ; 

M98 P9007 T19 ; 

M6 ; 

G59 G90 X16.0 Y–10.0 

G43 H19 Z10.0 F1000 ; 

S 9289 M01 ; 

M03 ; 

G0 Z–5.0 ; 

M98 P501 L3 ; 

G90 G1 Y110.0 F1858 ; 

G0 Z100.0 ; 

Y–10.0 ; 

G91 X34.0 ; 

M01 ; 

M03 ; 

G90 Z-5.0 ; 

M99 ; 

 

 

 

Figure ‎7.7: Router path in slotting of surface integrity coupon 

 

Tool life ¾ engagement  

Table  7.3 shows the machine program for milling the tool life coupon using ¾ 

engagement ( 9 mm width of cut ) either cutting 250 mm by 250 mm length or continuously. 

Figure  7.8 shows the tools path. 
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Table ‎7.3: CNC program for milling tool life coupon 

Main CNC code (P510) Subroutine for desecrate cut 

(P511) 

Subroutine for continuous 

cut (P511) 

 

G21 ; 

M98 P9007 T19 ; 

M6 ; 

G58 G90 X10.0 Y-8.0 ; 

G43 H19 Z10.0 F1000 ; 

S5308 M03 ; 

G0 Z-5.0 ; 

G1 Y3.0 F2548 ; 

M98 P511 L13 ; 

G0 Z 200.0 ; 

Y50.0 ; 

M30 ; 

 

G90 G1 X250.0 ; 

G0 Z100.0 ; 

M01 ; 

M03 ; 

Z 5.0 ; 

G1 Z-5.0 ; 

G91 Y9.0 ; 

G90 X10.0 ; 

G0 Z100.0 

M01 ; 

M03 ; 

Z5.0 ; 

G1 Z-5.0 ; 

G91 Y9.0 ; 

M99 ; 

G 90 G1 X250.0 ; 

G91 X250.0 ; 

G91 Y9.0 ; 

G90 X10.0 ; 

G91 Y9.0 ; 

M99 ; 

 

 

Figure ‎7.8: Router path in milling of tool life coupon 
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Appendix-G: Fuzz and delamination measurements  

 

Table ‎7.4: Benchmarking test at 500 m/min cutting speed 0.15 mm/tooth in Twin-Nozzle CA 

environment (Phase-1C) 

 

Table ‎7.5: CTB-010 PCD confirmation test at 500 m/min cutting speed, 0.15 mm/tooth and 

CA Twin-Nozzle environment 

 
Slot-1 Slot-2 Slot-3 Slot-4 Slot-5 Slot-6 

Damage width 17.01 17.03 16.23 16.64 17.37 17.10 

DF 1.417 1.42 1.352 1.39 1.45 1.49 

Slot width 12.04 12.05 11.96 12.03 12.05 11.97 

Fuzz length 7.81 4.11 4.03 7.10 7.44 8.88 

 
Slot-7 Slot-8 Slot-9 Slot-10 Slot-11 Slot-12 

Damage width 18.97 20.94 20.28 19.46 22.63 21.77 

DF 1.58 1.74 1.69 1.62 1.89 1.81 

Slot width 11.97 12 11.82 11.96 11.91 11.78 

Fuzz length 8.79 8.67 9.07 9.05 9.04 9.80 

 

Table ‎7.6: Phase-2B tests delamination (new tool) 

  Width of damage DF Width of slot Fuzz length 

Test-1 15.03 1.25 12.08 2.80 

Test-2 16.04 1.34 12.15 4.52 

Test-3 16.19 1.35 12.12 4.93 

Test-4 17.09 1.42 12.10 7.19 

Test-5 16.99 1.42 12.02 5.32 

Test-6 17.51 1.46 11.96 6.47 

Test-7 15.04 1.25 12.21 5.62 

Test-8 16.22 1.35 12.02 2.59 

Test-9 16.77 1.40 12.02 3.55 

Test-10 17.38 1.45 12.04 5.24 

Test-11 20.17 1.68 11.96 7.16 

Test-12 17.18 1.43 12.06 8.58 

 

 

 

 

 

Width of 

damage 

 

DF 
Fuzz length 

 

Slot width 

 

 

New Worn New Worn  New Worn New Worn 

WPC-102 PCD  17.56 18.84 1.46 1.57 7.02 9.72 12.04 11.97 

CTB-010 PCD  17.01 21.77 1.42 1.81 7.81 9.80 12.04 11.78 
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Table ‎7.7: CTB-010 PCD (Phase-2 Test-10)   Single-Nozzle CA  

 
Slot-1 Slot-2 Slot-3 Slot-4 Slot-5 Slot-6 

Damage width 17.38 16.99 17.37 17.02 17.37 17.13 

DF 1.448 1.42 1.45 1.42 1.45 1.42 

Slot width 12.035 12.01 12.05 12.09 12.01 12.09 

Fuzz length 5.24 8.54 9.19 7.09 8.71 7.81 

 
Slot-7 Slot-8 Slot-9 Slot-10 Slot-11 Slot-12 

Damage width 18.23 17.66 17.22 17.56 20.08 20.02 

DF 1.52 1.47 1.43 1.46 1.67 1.66 

Slot width 11.95 12.02 11.96 11.97 11.95 12.02 

Fuzz length 9.95 8.93 8.73 10.17 9.34 9.67 

 

Table ‎7.8: Benchmarking at 500 m/min cutting speed and 0.15 mm/tooth feed rate in Twin-

Nozzle CA environment (Phase-3B)  

 

Width of damage DF Fuzz length Slot width 

 
New Worn New Worn New Worn New Worn 

CMX-850 17.32 17.71 1.44 1.47 7.01 9.84 12.01 11.96 

MegaDiamond 16.09 20.17 1.34 1.68 5.77 9.37 12.31 11.82 
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Appendix-H: Routers unit cost  

Table ‎7.9: Routers, codes and unit cost 

 

 

 

 

Router Code Unit‎cost‎ 
Element-6 CTM-302 PCD Seco Reaming 28108-928 £310.00 
Element-6 CTB-010 PCD 

( mechanically ground) Seco Reaming 28156-928 £310.00 
Element-6 CMX-850 PCD Seco Reaming 28155-928 £310.00 
Element-6 WPC-102 PCD Seco 02692693 £310.00 
Seco-Mega-Diamond PCD 

router SECO 890120E35.0Z2A 8002081-0018 DC-12 £361.00 
Element-6 CTB-010 PCD 

(wire cut) SECO BR28155 02692693 4361079 020/026 £310.00 
Uncoated Burr router SECO 871120.0 4486035-014 £59.90 
Diamond coated (DURA) 

Burr router SECO 871120.0 – Dura 4431601 - 011 £144.00 
Uncoated carbide router Jabro tools 94120 d=12 87250 AMG £72.30 
Diamond like carbon 

(DLC) coated WC Seco Jabro A033798-02696031 £155.37 
Diamond coated (DURA) 

WC Seco 02692693 £169.00 


