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ABSTRACT 

 

The mupirocin biosynthetic pathway belongs to the trans-AT group in which 

acyltransferase (AT) activity is provided by a separate polypeptide (MmpC) rather 

than in cis as found in the typical type I polyketide synthases. AT docking domains 

have been documented in trans-AT PKS clusters for ten years yet little functional 

evidence is available. The cluster shows many interesting features that must be 

understood to create novel products. 

 

Specificity studies demonstrated that AT2 performs the typical AT function of 

loading malonyl-CoA to ACPs throughout the cluster. Mutagenesis studies 

demonstrated the importance of AT active site residues for protein structural integrity, 

acquisition and transfer of malonate and propose an alternate role for AT1 as a 

proofreading enzyme responsible for hydrolysing truncated intermediates from the 

pathway. Consequently an edit, reload, reduce model for MmpC is proposed. 

Mutagenesis of docking domains led to a halt in mupirocin production and suggested 

that docking domains are required for structural integrity of the Mmps or for guiding 

the ACPs into the correct position for interactions with their respective partners. 

Studies involving a mutated ACP3 protein confirmed the importance of Trp55, as 

demonstrated by structural changes and the inability of the protein to accept 

malonate from AT2.  
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It should be noted that some material from Sections 1.2 and 1.3 (including 

subsections) was written as part of a published review on mupirocin by Gurney and 

Thomas (2011). For the full reference see References page 290. 
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1 INTRODUCTION 

 

1.1 Antibiotics 

Every living organism has evolved methods to promote survival and 

reproductive fitness. Microbes produce metabolites such as siderophores, surfactants 

and antibiotics designed to increase the availability of nutrients in the immediate 

environment and aid their survival (Redfield, 2002; Brown and Balkwill, 2009). 

Humanity has been aware of antimicrobial properties of certain compounds for 

millennia; some of these may have been mystic and superstitious, while some 

compounds have been shown to have healing properties. Ancient Egyptians often 

utilised honey, lard, tree resin, green copper or mercury in wound healing, while 

ancient Greeks opted for oil extract of St. John’s wort, wine or vinegar, and honey 

(Forrest, 1982; Lindblad, 2008). Galen documented use of cobwebs, writing ink, clay, 

dove faeces and aloe vera in his medical texts in approximately 179AD and Paulus 

Aegineta documented cleansing wounds with pine resin, radish, and honey as well 

as the more unusual lizard dung and ox blood between 607 and 690AD (Forrest, 

1982; Lindblad, 2008). Countries such as India, Nigeria and Japan have also 

contributed to documentation of the use of plant extracts and compounds towards 

wound healing. In China during the period 1046 to 1600BC wine was utilised, in 

400AD badger oil and honey were popular, and from the late 12th century until early 

20th century sesame oil and mercury sulphide were more common (Lindblad, 2008). 

Honey appears regularly in texts detailing ancient and medieval medical history, and 

is one of the few compounds to have been investigated and proven to be beneficial in 

both artificial and animal models of healing (Lindblad, 2008). More recently (1877) 
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the antagonistic effects of bacteria were demonstrated by Louis Pasteur when he 

showed that aerobic bacteria had the power to rid anthrax cultures of their virulence 

(Foster and Raoult, 1974; Van Epps, 2006).  

The start of what was to be termed ‘the modern era of chemotherapy’ came 

when Paul Ehrlich discovered that trypan red could be used therapeutically for the 

treatment of African sleeping sickness, and arsphenamine was active against syphilis 

(Bosch and Rosich, 2008). During the late 1920’s-early 1930’s a systematic search 

for antimicrobials from soil yielded an agent that destroyed the polysaccharide 

capsule of type III pneumococci bacteria, and led to the discovery of gramicidin, the 

first antibiotic to be tested clinically, by René Dubos (Van Epps, 2006). Howard 

Florey stated that had René Dubos not undertaken this work, he may never have 

decided to take up further investigation of penicillin. Although the discovery of 

penicillin is attributed to Alexander Fleming in 1928, history has documented several 

occasions where Penicillium moulds have been investigated. The name Penicillium 

was put forward in 1809 after the characteristic brush appearance of the sporangia of 

members belonging to this genus (Foster and Raoult, 1974). In 1874 William Roberts 

determined bacteria did not grow as well when media was covered with Penicillium 

glaucum, and in 1876 and 1881 John Tyndall determined the bacteriolytic properties 

of Penicillium moulds (Landsberg, 1949; Foster and Raoult, 1974). The serendipitous 

‘re-discovery’ of penicillin by Alexander Fleming in 1928 is one of the most 

documented and well-known stories of antibiotics. The exact circumstances 

surrounding this discovery are unknown, but it is thought a Penicillium notatum spore 

landed on an exposed Staphylococcal petri dish and upon returning from a holiday 

Fleming noticed the Penicillium colony and the clear lysis of some of the 



Chapter 1: Introduction  4 
 

Staphylococcal colonies on the plate (Fleming, 1945). After extensive work by 

Fleming, Howard Florey and Ernst Chain, penicillin went into clinical development in 

1944 by Pfizer (Fleming, 1929; Chain et al., 1940; Pfizer, 2002). In the subsequent 

years a number of clinically important antibiotics were discovered and developed for 

chemotherapeutic use. 

 

1.1.1 Major targets of antibiotics 

Antibiotics can be classified according to four main targets: inhibition of cell 

wall, protein, folic acid, or nucleic acid synthesis (Figure 1.1) (Walsh, 2003). The 

bacterial cell wall is comprised of various components, including peptidoglycan 

(thicker in Gram-positive bacteria), membrane proteins (such as internalins and 

peptidases), and lipopolysaccharides (Gram-negative bacteria) or teichoic acids 

(Gram-positive bacteria) (Walsh, 2003). Antibiotics can attack various aspects of cell 

wall synthesis, for example β-lactams, which are analogues of a peptidoglycan 

subunit, act as substrates for the penicillin binding proteins (PBPs) thus blocking the 

transpeptidations that led to a strong peptidoglycan layer (Tomaz, 1979; Josephine et 

al., 2004). Fosfomycin binds to MurA, one of the first proteins involved in 

peptidoglycan synthesis, preventing catalytic turnover and consequently preventing 

synthesis of peptidoglycan (Skarzynski et al., 1998). Vancomycin is a glycopeptide 

antibiotic that inhibits cell wall synthesis by binding peptidoglycan subunits (Kahne et 

al., 2005). Daptomycin, a lipopeptide antibiotic, is one of the most recent antibiotics to 

be available clinically, and acts by inserting into the membrane disrupting integrity; 

ions escape and the membrane is depolarised, and consequently transport 

processes can no longer be carried out (Allen et al., 1987; Larkin, 2003).  
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Figure 1.1. Principle targets of antibiotics. (Walsh, 2003b; Wright, 2010). 
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Antibiotics that inhibit protein synthesis are split into two subgroups: those 

which inhibit the 50S ribosomal subunit and those which inhibit the 30S ribosomal 

subunit. Erythromycin, chloramphenicol and pristinamycin all target the 50S subunit 

affecting the elongation stage of protein synthesis, while in addition erythromycin and 

pristinamycin also inhibit the translocation stage and availability of free tRNA 

(Kohanski et al., 2010). Aminoglycosides such as gentamycin and streptomycin 

target the 30S subunit, causing misincorporation of amino acids, resulting in a 

misfolded protein being incorporated into the cell envelope, while tetracycline inhibits 

aminoacyl-tRNA binding to the ribosome (Kohanski et al., 2010). The quinolones bind 

to DNA-topoisomerase complexes at the DNA cleavage stage preventing strand 

rejoining. Double-stranded breaks are introduced into the DNA, thereby blocking 

DNA replication, affecting cell division and ATP generation (Yoshida et al., 1990; 

Heddle and Maxwell, 2002). The rifamycins are RNA synthesis inhibitors that bind to 

the β-subunit of an actively transcribing RNA polymerase, and ultimately terminate 

transcription and as a consequence they also block DNA replication (Kohanski et al., 

2010). Folic acid metabolism in bacteria occurs de novo (as opposed to eukaryotes 

which can transport necessary folate into cells from nutritional sources), so antibiotics 

that target part of the pathway for folic acid metabolism ultimately kill the bacteria. 

The sulfa drugs block different steps in folic acid metabolism, resulting in disruption of 

nucleic acid synthesis. Sulfamethoxazole blocks dihydropteroate synthase, inhibiting 

folic acid synthesis, while trimethoprim targets dihydrofolate reductase which inhibits 

tetrahydrofolic acid synthesis, and ultimately thymidine triphosphate synthesis which 

is required for DNA replication (Walsh, 2003). 
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Fatty acid synthesis is emerging as an additional target of antibiotics with 

several steps in the pathway being targeted: platensimycin targets condensing 

enzymes such as FabF and FabB; isoniazid has been used as a first line treatment 

for TB for years, however it is only recently that its target of β-keto-ACP-synthase has 

been elucidated; triclosan binds to enoyl-ACP reductase FabI thereby inhibiting fatty 

acid synthesis (Mdluli et al., 1998; Heath et al., 1999; Wang et al., 2006). 
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1.1.2 Antibiotic resistance 

Antibiotic resistance is generally thought of as a modern phenomenon arising 

as a consequence of the ‘golden era of antibiotics’ (Hughes and Datta, 1983; Bhullar 

et al., 2012). However, studies have now shown that resistance is likely to be as old 

as antibiotics themselves, which is logical when considering that bacteria would have 

been exposed to antibiotics for millions of years. β-lactamases are predicted to have 

evolved over 2 billion years ago, and the resistance genes to have been located on 

plasmids for over a million years (Hall and Barlow, 2004). In accordance with this 

theory a β-lactamase was isolated from a bacterium found in sediment 1050m below 

the surface of the Pacific Ocean (Toth et al., 2010). Thought to have evolved in 

complete isolation from modern chemotherapy this was the first antibiotic resistance 

enzyme to be characterised from an organism inhabiting the deep-sea. A study 

analysing samples taken from 173-185m below land surface in Washington, USA, 

where the sediment had been sheltered completely from modern life for 

approximately 3 million years determined that 86% of bacteria isolated were resistant 

to at least one antibiotic (Brown and Balkwill, 2009). Over 60% of the strains 

analysed were resistant to more than one antibiotic and one was resistant to eight 

antibiotics (strain G880). Resistance to nalidixic acid and mupirocin were the most 

frequently observed (Brown and Balkwill, 2009). The Wright group at McMaster 

University in Canada have been instrumental in investigating the occurrence of 

antibiotic resistance in habitats that have been isolated from humanity. Analysis of 

DNA sequences from permafrost sediments in Alaska thought to have been 

completely isolated from the surface since the Pleistocene period (2.5 million – 

11,700 years ago), identified mammals associated with the period (e.g. mammoth) 
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and none that were associated with the following period (D’Costa et al., 2011). 

Sequencing of bacterial rRNA established there was no contamination from modern 

bacteria and uncovered resistances to tetracycline, vancomycin and β-lactamases 

(D’Costa et al., 2011). A second study by the Wright group focussed on a cave in 

New Mexico that had been isolated from the modern world for over 4 million years - 

even surface water had not penetrated the sampling sites (Bhullar et al., 2012). Over 

500 isolates were collected in the cave, 93 of which were carried forward for antibiotic 

susceptibility testing. Over 60% of the isolates were resistant to 3 or 4 antibiotics, 

with 3 being resistant to 14 different antibiotics, including the recently approved 

natural antibiotic daptomycin (Raja et al., 2003; Bhullar et al., 2012). Collectively 

these studies have shown that antibiotic resistance pre-dates our modern use of 

antibiotics, although it is highly likely that increase use of antibiotics and 

misprescribing is contributing to the increase in resistance we are seeing today (Bush 

et al., 2011). 

There are several forms of resistance a bacterium could have towards an 

antibiotic: a producer must be able to protect itself from the antibiotic it is producing, 

there are ‘physical’ resistance mechanisms such as efflux pumps or enzymes that 

inactivate the antibiotic, and a resistance gene could be acquired by genetic 

mutation, or by acquisition of a plasmid or genetic material from another bacterium 

(Figure 1.2). Biofilms can also provide some protection for bacteria from antibiotics, 

and it has recently been shown that aggregating Klebsiella pneumoniae in the 

bloodstream can survive treatment by antibiotics (Anderl et al., 2000; Thornton et al., 

2012). Autoimmunity of bacteria to the antibiotics they produce is paramount to their 

survival and it is thought that resistance mechanisms must have evolved with 
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antibiotic-producers before being transposed to/acquired by other bacteria (Walsh, 

2003a).  

 

 
 

Figure 1.2. Mechanisms of antibiotic resistance. Microbes can evade antibiotics 
by modifying targets, producing inactivating enzymes that interfere with antibiotic 
function, producing efflux pumps to remove the antibiotic from the cell before any 
damage can be done, and by forming biofilms. (Anderl et al., 2000; Walsh, 2003a, 
Wright, 2010). 
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Autoimmunity in macrolide producers, such as erythromycin, can take several 

forms: modification by an erythromycin-resistant-methylase (Erm) so the antibiotic 

cannot bind to the 50S ribosomal subunit and production of transport proteins to 

efficiently remove erythromycin from the cell (Skinner and Cundliffe, 1982; Skinner et 

al., 1983). Aminocoumarin producers protect themselves by modifying the target of 

the antibiotic (ATP-binding site of the GyrB subunit of DNA gyrase) by mutation so it 

cannot bind (Tsai et al., 1997). Autoimmunity in vancomycin producers is enforced by 

three enzymes, VanH, VanA, and VanX, which collectively alter the peptidoglycan 

precursor, thereby reducing affinity of the antibiotic for peptidoglycan and conferring 

resistance (Walsh et al., 1996). 

Bacterial immunity to antibiotics may be innate, as in the case of the 

opportunistic pathogen Pseudomonas aeruginosa which has 71 outer membrane 

porins and 30 efflux pumps. Alternatively, immunity may be acquired, as in the case 

of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 

Staphylococcus aureus (VRSA), which have several mobile genetic elements and 

pathogenicity islands that contribute to resistance to several antibiotics (Hiramatsu et 

al., 2001; Walsh, 2003a). The mechanisms of resistance in bacteria towards 

antibiotics produced by other organisms are often similar to the self-resistance 

mechanisms described previously: mutation; inactivation or degradation of antibiotics 

by enzymes; efflux mechanisms; weakened permeability; increased synthesis of an 

affected metabolite; and acquisition of a modified target (Walsh, 2003a). β-

lactamases hydrolyse the β-lactam ring in this class of antibiotics (e.g. penicillin and 

cephalosporin) thus rendering it ineffective against the target (Thomson and Moland, 

2000). β-lactam-resistant Streptococcus pneumonia produces five mutated PBPs, 
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ultimately reducing the PBP affinity for the β-lactam (Nagai et al., 2002). 

Transmembrane proteins can act as pumps, actively exporting foreign substances 

from the bacterial cell. These efflux pumps can have a narrow or broad range of 

specificity, but each bacterial cell will have many, as already mentioned with regards 

to P. aeruginosa (Paulsen et al., 1996). Bacterial replication occurs rapidly; 

consequently there is a high chance of mutation which could lead to the development 

of resistance over a relatively short period of time if an antibiotic is naturally present 

in the environment (Walsh, 2003a). Alongside the high mutation rate in bacteria, 

resistance genes are often located on mobile genetic elements such as transposons 

or plasmids, leading to a very efficient method of transfer between organisms. For 

example, the VanA resistance genes are located on a transposon within a plasmid in 

vancomycin-resistant Enterococcus faecalis (VRE) (Walsh, 2003a). The genome of 

Salmonella enterica serovar Typhimurium DT104 has evolved to include an antibiotic 

resistance island containing resistance genes to many clinically important antibiotics 

– streptomycin, sulphonamides, chloramphenicol, tetracycline and ampicillin (Kim et 

al., 2009).  

 

1.1.3 Implications of antibiotic resistance 

Since the discovery of penicillin the development of antibiotics has 

revolutionised the treatment of infectious diseases. However, even in his original 

work on penicillin, Fleming noted that some bacteria were completely insensitive to 

the antibiotic, and further investigation by his colleagues attributed this resistance to 

an enzyme which was present in several different bacteria (1929; Abraham and 

Chain, 1940). In his Nobel lecture Fleming warned about the consequences of 
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resistance to penicillin occurring and suggested prudent use of penicillin to preserve 

its use (1945). As discussed previously, it is highly likely that some bacteria were 

resistant to penicillin long before scientists discovered the full potential of this 

antibiotic, but from a clinical perspective resistance was observed immediately, with 

occurrence rising steeply after mass-production (Bellamy and Klimek, 1948; Klimek 

et al., 1948; Gould, 1958). Throughout history resistance to antibiotics has been 

documented anywhere from immediately to tens of years after development, but this 

can vary greatly. While penicillin resistance was known at the time of development, 

resistance to erythromycin was not observed until 35 years after initial clinical 

development (Walsh, 2003a). Between the 1940s and 1970s many clinically 

important antibiotics were discovered and developed, but in the 21st century less than 

ten have been approved for clinical use (Figure 1.3) (Patel et al., 2001; Larkin, 2003; 

Higgins et al., 2005; Kasbekar, 2006; Colson, 2008; Keam, 2008). In the last two 

years the U.S. Food and Drug Administration (FDA) has approved only three 

antibiotics – ceftaroline fosamil in October 2010 for bacterial infections such as 

MRSA; fidaxomicin in September 2011 for use against Clostridium difficile; and 

levofloxacin in April 2012 for use against Yersinia pestis (Morrissey et al., 1996; 

Ikeda et al., 2008; Louie et al., 2009; FDA, 2012).  

 



Chapter 1: Introduction  14 
 

 
 
Figure 1.3. Timeline of antibiotic development. 
 

Development of resistance has not ceased during the recent lag of antibiotic 

development – resistance to new antibiotics is still occurring, yet no new antibiotics 

are being developed, something which could lead to a very dire situation in the future 

(Clatworthy et al., 2007; Frabbretti et al., 2011). With the emergence of so called 

‘superbugs’ like totally drug-resistant tuberculosis (TDR TB), C. difficile, 

Enterococcus, New Delhi metallo-beta-lactamase 1 (NDM-1) producing bacteria, 

MRSA and VRSA, new therapies and antibiotics are vitally important for the future of 

humanity. 

 The situation with TB has declined rapidly since the 1990’s when multidrug-

resistant TB (MDR TB) was first described, to extensively drug-resistant TB (XDR 

TB) in 2006 and now TDR TB (Migliori et al., 2007a; Udwadia, 2012). The first cases 

of TDR TB were reportedly in 2007 in Italy (Migliori et al., 2007b). Fifteen patients in 

Iran were diagnosed with TDR TB in 2009, and there have been several cases in 
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India in 2012 that were resistant to all first line and second line TB drugs (Velayati et 

al., 2009; Udwadia et al., 2012). 

C. difficile is resistant to clindamycin, and newer antibiotics such as 

levofloxacin and moxifloxacin. It is thought to be hyper-virulent, with spores surviving 

treatment by detergents and cleaning agents (Taubes, 2008). C. difficile is a major 

problem in terms of hospital-acquired infections, however the rate of mortality rate is 

reducing each year – so much so that the rate dropped by 31% from 2009 to 2010, 

and a further 24% from 2010 to 2011 in England and Wales (Kyte, 2011; Pegler, 

2012).  

Enterococcus species have emerged over the last decade as another 

threatening nosocomial infection. Often displaying resistances to lipopeptides, 

aminoglycosides, streptogramins, β-lactams or glycopeptides, the Gram-positive 

Enterococcus can thrive in a situation where antibiotics have targeted Gram-negative 

organisms (Arias and Murray, 2012). Of particular concern is VRE which can only be 

treated with daptomycin - however daptomycin resistance is also starting to emerge 

in these bacteria causing a very worrying situation for the future (Kelesidis et al., 

2011).  

The most recent superbugs to hit the media headlines worldwide are those 

that carry the NDM-1 gene. First isolated from a strain of K. pneumonia originating in 

New Delhi, this gene conveys the potential to protect its host from all antibiotics 

known to man, with the exceptions of fluoroquinolones and colistin (Yong et al., 

2009). This readily transmissible element has also been isolated from E. coli and K. 

pneumonia from various locations in the UK (Figure 1.4) (Kumarasamy et al., 2010). 
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Figure 1.4. Distribution of NDM-1 producing Enterobacteriaceae strains in the 
UK. (Kumarasamy et al., 2010). 
 

 

There may however be some light at the end of the tunnel with researchers 

investigating new targets and methods to eradicate resistance genes from bacteria, 

but it is time consuming and costly. Due to the short-course nature of antibiotics and 

the need to restrict use of new antibiotics to reduce selection of resistant strains, the 

development of novel antibiotics by pharmaceutical companies is not financially 

rewarding (GlaxoSmithKline, 2012). Despite this however, private companies and 

academic research institutes world-wide are working towards developing new drugs 

and alternative therapies. A study analysing new antibiotic treatments in development 
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discovered that 66 new active substances were being researched (Freire-Moran et 

al., 2011). Of those 66 new agents, 27 were thought to have a new mechanism of 

action, and 8 had activity against Gram-negative bacteria (Freire-Moran et al., 2011). 

Researchers are tapping into the vast resources provided by marine organisms - in 

2009 over 1000 novel compounds were found to have been isolated from marine 

organisms (Blunt et al., 2011). Another untapped resource is that of uncultured 

symbiotic organisms – some antimicrobial compounds that have already been 

characterised are thought to originate from symbiotic organisms (for example, 

pederin, bacillaene and bryostatin), yet there remains uncharacterised a potential 

natural product treasure trove (Piel, 2009). Potential new targets for antibiotics are 

being uncovered, such as the deoxyxylulose-5-phosphate reductisomerase-like 

(DRL) enzyme involved in isoprenoid biosynthesis in Brucella abortus, and the 

bacterial pyruvate dehydrogenase complex (PDHC) (Birkenstock et al., 2012; Perez-

Gil et al., 2012). Alternative therapies, such as plasmid displacement are being 

investigated as a method to expel resistance genes located on plasmids from the gut 

microbiome (Hale et al., 2010). 

Several taskforces have been put into place on both sides of the Atlantic in an 

effort to solve the current antibiotic resistance crisis. The World Health Organisation 

(WHO) has formulated a strategic action plan for antibiotic resistance in Europe; the 

Department of Health in the UK is supporting research into antibiotic resistance with 

an injection of funding; the TransAtlantic Task Force on Antimicrobial Resistance 

(TATFAR) was instigated in 2009 with the aim of encouraging research 

collaborations between the USA and EU and has launched the 10x20 initiative (10 

novel antibacterial drugs by 2020) (Anon, 2012a; Rodier, 2011; Department of 
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Health, 2012). The Centres for Disease Control and prevention (CDC) and European 

Centre for Disease prevention and Control (ECDC) both have action plans and 

surveillance systems in place for monitoring and coping with antibiotic resistance 

(CDC, 2011; ECDC, 2012). In the UK, specifically, there is the Health Protection 

Agency (HPA) and its Antimicrobial Resistance Monitoring Reference Laboratory 

(ARMRL) monitoring resistance and performing susceptibility tests, and the 

Antibiotic-Action movement highlighting the issues relating to resistance (Antibiotic-

Action, 2011; Health Protection Agency, 2012). These initiatives have led to the 

preparation of policies and guidelines for healthcare providers, clinicians, 

researchers, agriculturalists, governments and countries, as summarised below: 

 Public education 

 Improved public health and sanitation 

 Control of antibiotic use/correct prescribing 

 Ban on antibiotics as agricultural growth promoters in Europe, fading out in the 

USA 

 Surveillance to track use and resistance to antibiotics 

 Enforcing regulation 

 Development of new antibiotics 

 Development of alternative therapies 

 Encouragement of transatlantic collaborative chemotherapy research 

(Reynolds, 2009; Enne, 2010; Bush et al., 2011; Laxminarayan and Powers, 

2011; Anon 2012b; Alcorn, 2012). 
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With the worldwide media putting the spotlight on antibiotic resistance, consequently 

ensuring everyone understands the impact; researchers can focus on finding novel 

and alternative therapies.  

 

1.1.4 Methicillin-resistant Staphylococcus aureus 

The discovery of penicillin caused an explosion of investigation for other such 

substances. In 1960 researchers at the Beecham Research Laboratories developed 

a new penicillin antibiotic, methicillin (celbenin) that was effective against 22 strains 

of penicillin-resistant S. pyogenes (Rolinson et al., 1960). Just a few months later 

methicillin resistance was reported in the British Medical Journal (Jevons, 1961). 

Resistance has escalated and MRSA has become a world-wide problem, particularly 

within hospitals, but community acquired MRSA infections are becoming increasingly 

more frequent (Jevons et al., 1963; Kriebs, 2008). The map in Figure 1.5 (A) shows 

the severity of the MRSA problem across Europe, with many countries having 

recorded incidences of 10-50% of S. aureus isolates being resistant to methicillin. As 

shown in Figure 1.5 (B) the proportion of MRSA isolates in the UK has been 

gradually reducing from 2006. It is interesting to note that Scandinavia, The 

Netherlands and Estonia have a percentage resistance of less than five per cent. 

This success has been mainly attributed to a ‘search and destroy’ policy and 

restrictive prescribing of antibiotics (Cars et al., 2001; Wertheim et al., 2004; van 

Rijen et al., 2008). The ‘search and destroy’ policy includes strict guidelines to screen 

patients being admitted to hospital for treatment as well as hospital staff, and 

isolation of MRSA positive individuals until tests prove negative or until discharge 

from hospital (van Trijp et al., 2007). When this policy was trialled at a hospital in 
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Ireland between 2007 and 2008, it was found that single-bed isolation was the most 

effective method of quashing nosocomial MRSA (Higgins et al., 2010). It may be that 

more countries can learn from the ‘search and destroy’ policy implemented in 

Northern Europe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. MRSA spread in Europe and the UK. (A) Proportion of MRSA isolates 
in participating countries in 2009. Report generated by data submitted to The 
European Surveillance System up to 24-08-2012. (B) Proportion of S. aureus isolates 
that are methicillin-resistant in the UK from 1999-2010. (European Centre for Disease 
Prevention and Control, 2012). 
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The antibiotic resistance capabilities of MRSA are integrated within a large 

antibiotic resistance island known as the Staphylococcal cassette chromosome mec 

(SCCmec), which incorporates mecA – the methicillin-resistance gene (Ito et al., 

1999; Katayama et al., 2000). There are 5 different forms of SCCmec within MRSA 

species and up to 17 variants of these types. All SCCmec types give resistance to β-

lactams, while types II and III also provide multi-resistance on integrated plasmids 

and a transposon - including kanamycin, tobramycin, bleomycin, penicillins, heavy 

metals, tetracycline, macrolides, lincosamide and streptogramin (Deurenberg et al., 

2007). While types I-III are mainly associated with nosocomial MRSA infections, 

types IV and V are associated with community-acquired MRSA (Deurenberg et al., 

2007). Within the SCCmec island there are two recombinase genes, ccrA and ccrB, 

that are involved in integrating SCCmec into and excision of SCCmec from the S. 

aureus chromosome, and as a consequence have been involved in the evolution of 

MRSA (Katayama et al., 2000). One of the key antibiotics in treating and overcoming 

MRSA has been mupirocin, a polyketide antibiotic first introduced in the UK in 1985 

(Cookson, 1990). 
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1.2 Polyketides 

Polyketides are secondary metabolites produced by bacteria, fungi and some 

plants that display a wide range of biological activities that are increasingly exploited 

as therapeutic tools. For example: antibiotics (erythromycin and mupirocin), anti-

cancer agents (daunomycin) and immunosuppressants (rapamycin) (McDaniel et al., 

1993). Type I and II polyketide synthases (PKSs) are closely related to fatty acid 

synthases (FASs) (Figure 1.6) and are classified according to their protein 

architecture: when clustered as a large multifunctional polypeptide they are denoted 

as type I, when mono-functional proteins form multi-enzyme complexes they are 

classed as type II (Walsh, 2003a; Ridley et al., 2008). Type III PKSs are quite 

different from FASs and can be found in plants and some bacteria. There is great 

interest in the diversity of PKS systems since they provide a growing source of 

genetic building blocks for synthetic biology which aims to generate novel biologically 

active molecules. 
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Figure 1.6. The similarity of domain arrangement between FASs and PKSs.  
Different enzymatic functions are indicated by labelled hexagons: MAT, malonyl-
acetyl transferase; DH, dehydratase; KR, ketoreductase; ER, enoyl reductase; ACP, 
acyl carrier protein; TE, thioesterase. Where hexagon sides touch they are part of the 
same polypeptide, where there is a gap and hexagons are connected by a short line 
they represent different polypeptides that are part of a multi-protein complex. 
(Richardson et al., 1999; Austin and Noel, 2003; Mercer and Burkart, 2007). 
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1.2.1 Fatty acid biosynthesis 

In all organisms fatty acid biosynthesis is carried out by fatty acid synthases 

(FAS). The large multifunctional mammalian FAS is denoted as type I – a single 

protein carries all of the enzymatic domains required. In plants, protozoa and bacteria 

the type II FAS is characterised as a multi-enzyme complex comprised of mono-

functional proteins, each of which is responsible for one step within the pathway 

(Schujman and de Mendoza, 2008). Although the enzyme structure differs between 

mammals and bacteria, the process of fatty acid biosynthesis is the same. Malonyl- 

and acetyl-CoA are loaded to an acyl carrier protein (ACP), prior to a four-step 

process (condensation, reduction, dehydration and reduction) to develop a saturated 

acyl group that becomes the substrate for the subsequent repeated cycles. Each 

cycle extends the fatty acid chain by two carbons – contributed by malonate.  

For bacteria E. coli has become a model organism, providing valuable 

information about the processes that take place during fatty acid synthesis 

(Magnuson et al., 1993). The FAS II of E. coli is comprised of seven core 

polypeptides (encoded by the fab genes) that work together to catalyse fatty acid 

synthesis (Maier et al., 2008). This process starts with acetyl-CoA (starter) and 

malonyl-CoA (extender) which are both activated by acyltransferases (AT). The 

starter and the extender units are then condensed by the ketosynthase (KS) to form 

acetoacetyl-ACP (the acetoacetyl group is bound to the phosphopantetheine arm of 

the ACP), which then undergoes reduction via ketoreductase (KR) to form D-β-

hydroxybutyryl-ACP. Next a dehydratase (DH) removes water with the formation of a 

double bond, before an enoyl reductase (ER) reduces the double bond to form 

butyryl-ACP (Nelson and Cox, 2005). This cycle is then repeated to elongate the 
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chain before release of the complete intermediate by a thioesterase (TE). The main 

difference between PKS and FAS systems is that FASs invariably catalyse reductive 

cycles on the condensation products, whereas PKSs occasionally omit the reductive 

stage after the condensation leading to a greater variety of products (McDaniel et al., 

1993; Crosby et al., 1995). 

 

 

 

 

Figure 1.7. Scheme depicting the chemical steps involved in fatty acid and 
polyketide synthesis. The β-ketoacyl moiety produced in fatty acid synthesis is 
always fully reduced, whereas in polyketide synthesis it can either be partially or fully 
reduced. (MAT, malonyl-CoA-ACP transferase; AT, acyltransferase; ACP, acyl carrier 
protein; KS, ketosynthase; KR, Ketoreductase; DH, Dehydratase; ER, enoyl 
reductase (Smith and Tsai, 2007). 
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1.2.2 Type I polyketides 

Type I PKSs consist of large multifunctional enzymes with domains joined 

covalently (Figure 1.6) (Cane, 2010; Hill and Staunton, 2010). Iterative fungal type-I 

PKSs use the functional domains repeatedly; for example 6-methylsalicylic acid 

synthase (MSAS) during the production of methylsalicylic acid, a precursor to the 

antibiotic patulin (Richardson et al., 1999; Moore and Hopke, 2001). Modular 

bacterial type-I PKSs use each set of catalytic sites once within a cycle, such as in 

the case of 6-deoxyerythronolide B synthase (DEBS) during the production of 

erythromycin (Moore and Hopke, 2001; Chopra et al., 2008). There are exceptions to 

the co-linearity ruling, such as the slipping and stuttering of modules. Module 

skipping has been observed during polyketide engineering and occurs naturally in 

some clusters, such as the pikromycin PKS where module 6 is not necessarily 

required, and the Stigmatellin PKS where module 4 is likely skipped (Xue and 

Sherman, 2000; Rowe et al., 2001; Thomas et al., 2002; Moss et al., 2004; Wenzel et 

al., 2005). Aberrant stuttering occurs when modules operate in an iterative matter, as 

in the case of the aureothin and borrelidin PKSs and engineered DEBS derivatives 

(Wilkinson et al., 2000; Moss et al., 2004; He and Hertweck, 2005). 

 

1.2.2.1 Erythromycin biosynthesis pathway 

Erythromycin is a polyketide antibiotic that blocks protein synthesis by acting 

on the ribosome – the binding of erythromycin releases peptidyl-tRNA prematurely, 

thereby blocking polypeptide translation; it also binds to the polypeptide export tunnel 

of the 50S ribosomal subunit, causing a build-up of oligopeptidyl-tRNA which 

concurrently terminates polypeptide elongation (Walsh, 2003a). 
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The erythromycin gene cluster of Saccharopolyspora erythraea is a typical 

modular type-I PKS (Donadio et al., 1993; Marsden et al., 1994; Cortes et al., 1995; 

Ruan et al., 1997; Marsden et al., 1998; Stassi et al., 1998; Lal et al., 2000). The 

polyketide synthase involved in the erythromycin biosynthesis pathway is DEBS, 

which consists of three multifunctional enzymes, DEBS1, DEBS2 and DEBS3 

(Caffrey et al., 1992; Marsden et al., 1994; Lal et al., 2000). Each enzyme is encoded 

by a separate gene (eryAI, eryAII, and eryAIII, respectively) and contains two 

modules – therefore six modules together catalyse the addition of starter and 

extension units (Figure 1.8) (Lal et al., 2000). The N-terminus of DEBS1 contains an 

additional loading domain incorporating two additional catalytic sites, an AT and an 

ACP, thought to provide the propionyl-CoA starter unit to the first module, prior to 

transfer to the active site of the KS on module 1 (Lau et al., 2000). Six 

decarboxylative condensations between a propionyl-CoA starter unit and 

methylmalonyl-CoA extender units form a heptaketide which is then cyclised to form 

the product 6-deoxyerythronolide B (Lal et al., 2000; Walsh, 2003a). The cyclisation 

is catalysed by the TE domain of module 6, at the C-terminal of DEBS3 (Lal et al., 

2000). Each module of the DEBS system has a KS, ACP and methylmalonyl-specific 

AT domain; in addition modules one, two, four, five and six also contain a KR 

domain, while the fourth module also contains DH and ER domains (Walsh, 2003a).  

 The DEBS system has become a model system for polyketides of all types 

and research has allowed several aspects of polyketide production to be 

investigated. Crystal structures of portions of modules 3 and 5 demonstrated for the 

first time the topology and 3D organisation of a modular PKS, and the crystal 

structure of the DH domain in module 4 elucidated how a polyketide substrate 
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interacts with the cognate DH domain (Tang et al., 2006; Tang et al., 2007; Keatinge-

Clay, 2008; Cane, 2010). Many studies have contributed to the information base of 

AT specificity within PKS clusters by altering extender unit specificity to produce 

novel metabolites (Ruan et al. 1997; Marsden et al. 1998; Reeves et al. 2001; Long 

et al., 2002; Del Vecchio et al., 2003). Novel metabolites were also produced when 

the whole loading module from the avermectin PKS was swapped into the 

erythromycin PKS (Marsden et al., 1998). The Khosla group have highlighted the 

importance of the linkers that flank the modular AT domains in the DEBS system, 

hypothesising that they are important for ACP recognition or position and potentially 

for catalysing acyl group transfer (Wong et al., 2010). More recently the Khosla group 

demonstrated the specificity of ACP domains for their cognate KS domain, and again 

highlighted the importance of inter-domain linkers for aligning domains correctly for 

polyketide synthesis (Kapur et al., 2012).  
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Figure 1.8. Organisation of the polyketide synthase DEBS, responsible for 
erythromycin biosynthesis. The complete DEBS comprises of three polypeptides, 
DEBS1, DEBS2 and DEBS3, which encompass the six condensation modules 
required for production of the erythromycin precursor 6-deoxyerythronolide. Domains 
are acyltransferase (AT), acyl carrier protein (ACP), ketosynthase (KS), 
ketoreductase (KR), dehydratase (DH), enoyl reductase (ER), and thioesterase (TE) 
(Staunton and Weissman, 2001). 



Chapter 1: Introduction  30 
 

1.2.3 Type II polyketides 

Type II PKSs, found in bacteria and plants, assemble an iterative multienzyme 

complex by encoding distinct proteins (Lal et al., 2000; Moore and Hopke, 2001; 

Chopra et al., 2008). The minimal type II PKS is comprised of three subunits: KSα, 

KSβ (also known as chain length factor – CLF) and an ACP. This minimal PKS can 

synthesize a full-length polyketide chain: the KSβ catalyses the decarboxylation of 

malonyl-ACP to acetyl-ACP (the ACP can be loaded by the actions of a malonyl-

acetyl transferase (MAT) or can self-load), second, the KSα catalyses the iterative 

extension of the chain (McDaniel et al., 1993; Crosby et al., 1995; McDaniel et al., 

1993; Crump et al., 1996; Dreier et al., 1999; Tang et al., 2003; Beltran-Alvarez et al., 

2007). The chain is then cyclised and released from the protein. Figure 1.9 shows the 

processes involved in producing actinorhodin and the novel products SEK4 and 

SEK4b. In this case the minimal PKS has synthesised the C16 chain and, in the 

absence of auxiliary tailoring enzymes, spontaneous cyclisation of the individual 

octaketides has formed products SEK4 and SEK4b (Dreier et al., 1999; Beltran-

Alvarez et al., 2007). Interestingly it has been hypothesized that the same MAT is 

utilised not only by the minimal PKS, but also by fatty acid synthesis within the 

polyketide-producing cell (Tang et al., 2004a; Wesener et al., 2011).  
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Figure 1.9. Biosynthesis of octaketides by the actinorhodin minimal PKS. 
Actinorhodin is synthesised by seven rounds of condensation with malonyl-CoA. 
Ketoreductases, aromatases, cyclases, oxygenases and methylases interact with 
and modify the emerging polyketide to produce the final products (Dreier et al., 1999; 
Beltran-Alvarez et al., 2007). 
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1.2.4 Type III polyketides 

Until the characterisation of the bacterial type III PKSs RppA and PhlD in 1999 

it was thought that type III PKSs only occurred in plants (Bangera and Thomashow, 

1999; Funa et al., 1999). Type III PKSs consist of a homodimer (Figure 1.6), working 

independently of ACPs to utilise a wide variety of CoA thioesters as substrates, 

resulting in extraordinary product diversity; such as aloesone, a secondary metabolite 

involved in chromone synthesis in rhubarb; plant flavonoid synthesis; bacterial 

melanin biosynthesis; and resveratrol, an antimicrobial produced by some plants in 

response to bacterial or fungal attack that is also thought to be the beneficial 

compound of red wine and has anti-cancer properties (Schröder et al., 1998; Moore 

and Hopke, 2001; Abe et al., 2004; Austin et al., 2004; Gross et al., 2006; Flores-

Sanchez and Verpoorte, 2009). The chalcone/stilbene synthase superfamily is one of 

the most widely studied type III PKSs. Decarboxylative condensations add acetate to 

an acyl-CoA starter unit, prior to cyclisation, aromatisation and downstream 

modifications (Austin and Noel, 2003). Compound diversity comes from the wide 

variety of starter and extender units that can be used during biosynthesis, for 

example: naringenin chalcone is synthesised from p-coumaroyl-CoA and 3 malonyl-

CoA units; while aloesone is synthesised from acetyl-CoA and 6 malonyl-CoA units 

(Flores-Sanchez and Verpoorte, 2009).  
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1.3 Mupirocin - pseudomonic acid 

Mupirocin is a polyketide antibiotic produced by the soil bacterium 

Pseudomonas fluorescens NCIMB 10586, isolated from Hampstead Heath in London 

(Fuller et al., 1971; LGC Standards, 2010). Pseudomonas spp. are Gram-negative, 

aerobic (yet can utilise nitrogen as the electron acceptor under anaerobic conditions), 

rod-shaped bacteria found in a variety of habitats including soils, water, and on the 

surfaces of plant roots and leaves (Palleroni and Moore, 2004; Remold et al., 2011). 

Fluorescent pseudomonads are particularly important as plant growth-promoting 

rhizobacteria (PGPR), as they colonise plant roots and are thought to promote the 

growth of the plant by producing substances which protect it from pathogens (Haas 

and Défago, 2005). The substances produced include antifungal metabolites (AFMs) 

(for example, 2,4 diacetylphloroglucinol (DAPG), phenazine-1-carboxamide acid 

(PCN), oomycin A and fusaric acid) and secondary metabolites (for example, 

hydrogen cyanide, pyoverdin and pseudobactin) (Lugtenberg and Bloemberg, 2004). 

Pseudomonads (including fluorescent strains) are important biocontrol agents in the 

preservation of agricultural crops and progress has been made to improve the 

biocontrol activity of these strains by introducing extra copies of the required genes, 

and by creating new strains for use in agriculture (Morrissey et al., 2004; Haas and 

Défago, 2005). Examples of AFM-producing P. fluorescens strains are CHA0 which 

produces hydrogen cyanide, 2-79 which produces phenazine-1-carboxylic acid 

(PCA), and Q2-87 which produces DAPG. In addition Pseudomonads produce 

several polyketide metabolites (Table 1.1). Of particular importance in this case is P. 

fluorescens NCIMB 10586, which produces mupirocin. 
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Table 1.1. Polyketide metabolites produced by species of Pseudomonas. 

Pseudomonad Polyketide 

P. fluorescens Pf-5 Pyoluteorin 

P. aeruginosa* 
Pederin 

P. syringae pathovars Coronatine 

P. fluorescens Q2-87 DAPG 

P. fluorescens NCIMB 10586 Mupirocin 

*Thought to be the bacterial symbiont responsible for pederin biosynthesis (Kellner, 2002). DAPG, 2,4 diacetylphloroglucinol. 

(Hothersall and Thomas, 2004). 

 

In 1887 the Swiss scientist C. Garré carried out work on a strain of P. 

fluorescens that exhibited antibiotic activity, aside from pioneering the streak method 

used today for assessing activity, he was the first scientist to record the antibiotic 

activity of this strain of bacteria (Brunel, 1951; Florey, 1945). The substance 

responsible for this antibiotic activity was finally isolated almost a century later and 

was identified as pseudomonic acid (PA) (Fuller et al., 1971). Subsequent 

investigations revealed a mixture of four pseudomonic acids (A-D), collectively 

named mupirocin, with extensive antibacterial activity. The structure of mupirocin, 

shown in Figure 1.10, comprises a monic acid (MA, a heptaketide) containing a pyran 

ring, attached to 9-hydroxynonanoic acid (9-HN) via an ester linkage (Fuller et al., 

1971; Chain and Mellows 1974, 1977a; Alexander et al., 1978; Whatling et al., 1995). 

Pseudomonic acid A (PA-A) accounts for 90% of mupirocin. Pseudomonic acid B 

(PA-B) has a hydroxide group replacing the hydrogen at C8, pseudomonic acid C 

(PA-C) has an alkene group replacing the epoxide at C10-C11, and pseudomonic 

acid D (PA-D) has an alkene group replacing the alkane at C4’-C5’ (Chain and 

Mellows, 1977b; Clayton et al., 1980, 1982; O’Hanlon et al., 1983; El-Sayed et al., 
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2003). Mupirocin targets bacterial isoleucyl-tRNA synthase (IleS) (for more detail see 

Section 1.3.5) competitively inhibiting the formation of Ile tRNA, and ultimately 

blocking protein synthesis (Hughes and Mellows, 1978). 

 

 

Figure 1.10. The structure of mupirocin and thiomarinol. (A) The structure of 
mupirocin, showing the monic acid and 9-HN moieties. Mupirocin is a mixture of four 
pseudomonic acids: PA-A (~ 90%), PA-B (~ 8%), PA-C (<2%), PA-D (<2%). (B) 
Structure of thiomarinol A, showing the marinolic acid (equivalent to pseudomonic 
acid/mupirocin) and holomycin moieties. 
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1.3.1 Mupirocin biosynthetic cluster 

A 75kb region of the P. fluorescens NCIMB 10586 chromosome involved in 

mupirocin biosynthesis was identified by transposon mutagenesis and subsequently 

analysed by DNA sequencing, gene knock-outs and complementation studies 

(Whatling et al., 1995; El-Sayed et al., 2003). The cluster can be conveniently split 

into 2 sections: the first section comprising primarily of genes encoding 3 large 

multifunctional PKSs (MmpA, B and D) and a smaller multifunctional PKS (MmpC), 

plus at least 2 single function polypeptides, and the other section comprising genes 

encoding 2 small PKSs (MmpE and F) in addition to 29 individual “tailoring” proteins. 

Table 1.2 shows all of the genes involved in mupirocin biosynthesis and their putative 

functions. The cluster is unusual in that the order of the genes does not match the 

order of biosynthetic steps – biosynthesis starts with MmpD (Figures 1.11 and 1.12). 

The multifunctional genes mmpD and A together encode the first four and last two 

elongating modules respectively and one putative transfer/non-elongating/processing 

module. They comprise appropriate KS, ACP, KR, DH and methyltransferase (MT) 

functions for monic acid backbone synthesis while mmpC encodes two AT domains 

and a putative ER domain. The mmpB gene encoding single KS, KR and DH 

domains and triple ACP domains is proposed to be responsible for synthesis of the 9-

HN moiety, but also encodes the only TE suggesting that it controls the final steps of 

the pathway and release of products. Resistance to mupirocin is encoded within the 

cluster by MupM which shows significant similarity to other IleS proteins (for more 

detail go to Section 1.3.6) (El-Sayed et al., 2003). 
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Table 1.2. Gene functions of the mupirocin biosynthetic cluster. 

ORF Proposed function 

mupA Reduced flavin mononucleotide (FMNH2) oxygenase 

mmpA 
PKS: load/transfer KS, ACP; module 5 KS, KR, ACP; module 6 KS, ACP, 

ACP 

mupB 3-Oxo-ACP synthase 

mmpB PKS: KS, DH, KR, ACP, ACP, ACP, TE 

mmpC Dual AT and putative ER 

mmpD 
PKS: module 1 KS, DH, KR, MT, ACP; module 2 KS, DH, KR, ACP; 

module 3 KS, DH, KR, MT, ACP; module 4 KS, KR, ACP 

mupC Dienoyl CoA reductase 

mAcpA ACP 

mupD 3-Oxo-ACP synthase 

mupE ER 

mAcpB ACP 

mupF KR 

mAcpC ACP 

mupG 3-Oxo-ACP synthase 

mupH β-hydroxyl-β-methyl glutarate (HMG) CoA synthase 

mupJ Enoyl CoA hydratase 

mupK Enoyl CoA hydratase 

mmpE PKS: KS, hydroxylase 

mupL Hydrolase 

mupM Isoleucyl-tRNA synthetase 

mupN Phosphopantetheinyl transferase 

mupO Cytochrome P450 

mupP Unknown 

mupQ Acyl CoA synthase 

mupS 3-Oxo-ACP reductase 

mAcpD ACP 

mmpF PKS: KS 

mAcpE ACP 

mupT Ferrodoxin dioxygenase 

mupU Acyl CoA synthase 

mupV Oxidoreductase 

mupW Dioxygenase 

mupR Transcriptional activator 

mupX Amidase 

mupI N-Acyl homoserine lactone synthase 

Abbreviations: mmp, mupirocin multifunctional polypeptide gene; PKS, polyketide synthase; KS, ketosynthase; DH, dehydratase; KR, 

ketoreductase; ACP, acyl carrier protein; TE, thioesterase; AT, acyltransferase; ER, enoyl reductase; MT, methyltransferase; mAcp mupirocin acyl 

carrier protein; ORF, open reading frame (El-Sayed et al., 2003; Hothersall et al., 2007). 
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Figure 1.11. Genetic organisation of the mupirocin cluster. The control circuits 
emanating from MupR are indicated by arrows. R, MupR; I, MupI, HSL, homoserine 
lactone (Thomas et al., 2010). 
 

 

1.3.2 Mupirocin biosynthesis 

Mupirocin biosynthesis occurs in a very similar manner to that of fatty acids: 

the condensation of carboxylic acid starter units is catalysed by a KS and a 

dicarboxylic acid extender unit is transferred to the phosphopantetheine arm of an 

ACP; the KS then catalyses a condensation reaction to join the starter and extender 

units; the product is either left unreduced or is partially or fully reduced by the actions 

of KR, DH and ERs; further rounds of elongation can be undertaken until the 

polyketide has reached the designated length (El-Sayed et al., 2003; Walsh, 2003a; 

Hothersall, et al., 2007). Throughout this process two ATs are proposed to act in 

trans to catalyse the transfer of starter and extender units to KS and ACPs 

respectfully, via acyl-CoA-activated intermediates between condensation modules 

(Hothersall, et al., 2007; Wu et al., 2008).  
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1.3.2.1 Monic acid biosynthesis 

The heptaketide chain that comprises the backbone of monic acid is 

synthesised by six condensation reactions of acetate-derived units catalysed by 

MmpD (modules 1 to 4) and MmpA (modules 5 and 6) as shown in Figure 1.12, A 

(Martin and Simpson, 1989; El-Sayed et al., 2003). Synthesis of mupirocin is thought 

to begin on MmpD despite MmpA being one of the first proteins to be transcribed – a 

mutant that knocked-out the activity of the KR of MmpD module 4 prevented PA-A 

from being produced. Instead a tetraketide, mupiric acid (Figure 1.13, C), was 

produced as it was unable to continue down the assembly line to form the fully 

complete monic acid product of MmpD and MmpA (Wu et al., 2008).  

Synthesis could begin with one of the trans-acting ATs (located on MmpC) 

transferring an activated starter unit (acetyl-Coenzyme A intermediate) to the 4’-

phosphopantetheine arm of ACP8 and then to the thiol group of the active Cys of 

KS5. An activated extender unit (malonyl-CoA) could then be transferred by one of 

the ATs to the vacant ACP8, prior to decarboxylative (Claisen) condensation 

catalysed by KS5. Alternatively an activated starter unit could be transferred directly 

to the KS5. The first module could then carry out ketoreduction and α-methylation to 

create the structure that mimics the isoleucine side chain. Synthesis continues 

through three further rounds of condensation and modification on successive 

modules of MmpD (KS/ACP modules 2, 3 and 4), including a second α-methylation 

by the MT in module 3, before the acyl intermediate is passed to MmpA. Two further 

elongation modules on MmpA extend the chain to give the C17 precursor to monic 

acid. The first module of MmpA is likely to act as a transfer or processing module due 

to the presence of an atypical KS (KS0) domain. A typical KS domain has an active 
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motif consisting of CHH, where C is the active site Cys, and the H’s represent His 

residues at positions 135 and 173 (Aparicio et al., 1996). The mupirocin KS1 has the 

motif CQH, indicating an unusual role or an inactive domain – it can bind the 

intermediate but cannot catalyse a condensation (El-Sayed et al., 2003). The 

mupirocin system is not the only system to demonstrate this unusual motif – 

occurrences have also been documented in chivosazol, pederin and myxovirescin 

PKS systems (Piel, 2002; Perlova et al., 2006; Simunovic et al., 2006). Another form 

of KS has also been documented, those where the active site Cys has been replaced 

by Gln – KSQ domains. These domains are thought to be very similar to the KSβ/CLF 

of type II FAS and PKS systems, where the active site Gln has a role in 

decarboxylation catalysis (Bisang et al., 1999). In many systems it has been 

hypothesised that these KSQ domains are responsible for the loading and 

decarboxylase function required for system initiation (Kakavas et al., 1997; Xue et al., 

1998; Bisang et al., 1999; Kopp et al., 2005; Schneider et al., 2007). Due to the 

location of the KS0 domain within the mupirocin cluster it seems unlikely to be 

responsible for system initiation, but perhaps it performs an alternative function. 

Deletion (as well as mutation of active site residues) of the domains of the loading 

module resulted in a loss of antibiotic production, indicating their importance for 

mupirocin production, however more research is required to fully understand the 

presence and roles of these domains within the cluster (El-Sayed et al. 2003).  
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1.3.2.2 Tailoring the monic acid backbone 

The mupirocin cluster contains many genes that are needed to modify (“tailor”) 

the PKS-bound intermediate to form the final PA structure. The modifications involve 

incorporation of a methyl group at C15, hydroxylation at C6, epoxidation at C10-11 

and formation of the pyran ring (Figure 1.12, B) (Cooper et al., 2005a; Hothersall et 

al., 2007). Bioinformatics can often predict both biochemical function and partner 

genes which work together (based on being found together in other genomes). In the 

mupirocin cluster these include the hydroxymethylglutaryl-CoA Synthase (HCS) 

cassette genes mAcpC, mupG, H, J, K (for function see below) as well as two other 

blocks mAcpD, mupS, Q, mmpF (function currently unknown) and mupD and mupE 

(an ER responsible for the C6’-7’ reduction). However, gene knock-outs and product 

analysis are essential since other gene sets such as mupW, T (pyran ring formation) 

and mAcpE, mupO, U, V, C and F (further reduction around the pyran ring) seem to 

have functions currently unique to this cluster. While it is clear at what stage in the 

pathway some of them work, for example the HCS cassette that functions at module 

6, for others it is either flexible or still unclear. Gene functions relating to double bond 

reduction in 9-HN, C6-hydroxylation and C-10,-11 epoxidation are currently under 

investigation, although it is predicted the hydroxylase domain of MmpE performs the 

epoxidation (Hothersall, unpublished data, 2012).  

Gene knock-outs have been particularly instrumental in indicating a possible 

pathway for pyran ring formation and PA-A synthesis (Figure 1.13, A). In this scheme 

MupW and MupT catalyse the epoxidation of the C-8,-16 double bond (essential for 

formation of the tetrahydropyran ring) which makes the C-16 more receptive to attack 

by the C-5 hydroxyl group. Esterification with 9-HN and C-10,-11 epoxidation, which 
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may occur before or after this, result in PA-B. Mutation of mupW and mupT resulted 

in accumulation of a novel metabolite, mupirocin W, lacking the tetrahydropyran ring 

but having the attached 9-HN confirming the role of MupW/T in mupirocin 

biosynthesis but not defining when it normally occurs (Cooper et al., 2005a). To 

produce PA-A, MupU is proposed to mediate the transfer of the intermediate to 

mAcpE before MupO, a cytochrome P450 may catalyse oxidation of the C-7 hydroxyl 

to the ketone, while subsequent dehydration by MupV generates a C-8,-9 enoyl 

bond. MupC is proposed to reduce the C-8,-9 bond, before MupF catalyses 

ketoreduction at C-7 and the resultant product is released as PA-A (Cooper et al., 

2005a; Cooper et al., 2005b; Hothersall et al., 2007; Wu et al., 2007). Gene knock-

outs of MupW, MupF and MupC have yielded mupirocin W, mupirocin F and 

mupirocin C respectively (Figure 1.13, C) and contributed to the above scheme for 

pyran ring formation. As stated previously, along with PA-A there are several other 

intermediates released, most notably PA-B. It was hypothesised that over expression 

of mAcpE, MupO, U, V, C, and F would increase the conversion of PA-B to the more 

biologically active PA-A. However, while introducing these proteins in trans in the wild 

type (WT) strain did increase the production of PA-A by over twofold, it also 

increased the production of PA-B (Macioszek, 2009). The increase in PA-A 

production was determined to be due to the actions of mAcpE, MupU, MupV and 

MupC. Work is currently underway to investigate the roles of MupU and mAcpE 

further as it is predicted MupU transports the intermediate from MmpB to mAcpE, 

where dehydration would take place. 
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Figure 1.13. Tailoring steps from the mupirocin pathway and intermediates 
released. (A) Formation of the pyran ring. (B) Actions of the HCS cassette. (C) 
Intermediates released from gene knock-outs: mupiric acid is produced by ΔKR-D4, 
mupirocin H by ΔmupH, mupirocin W by ΔmupW/mupT, mupirocin C by ΔmupC, and 
mupirocin F by ΔmupF. PA-B, pseudomonic acid B; PA-A, pseudomonic acid A; 
ACP, acyl carrier protein; KS, ketosynthase; HCS, hydroxymethylglutaryl-CoA 
synthase; CR, crotonase. (Hothersall et al., 2007; Wu et al., 2007) 
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The HCS cassette, comprised of MupG, H, J, K and mAcpC, is responsible for 

the incorporation of the β-methyl group at C-15 while the growing intermediate is 

tethered to ACP4 (Figure 1.12, B): MupG catalyses the decarboxylation of acetate 

from a malonate bound to mAcpC; MupH catalyses the condensation to produce a 

gluconate intermediate; dehydration, catalysed by MupJ is finally followed by 

decarboxylation mediated by MupK to produce the β-methylthioester (Rahman et al., 

2005; Wu et al., 2007; Wu et al., 2008). The functions of related HCS cassettes have 

been proposed by a number of groups and experimental evidence supporting these 

hypotheses have been provided from studies on myxovirescin (Simunovic et al., 

2006), jamaicamide (Edwards et al., 2004), leinamycin (Tang et al., 2004b), 

bacillaene (Butcher et al., 2007) and curacin A (Chang et al., 2004). 

 

1.3.2.3 9-hydroxynonanoic acid biosynthesis 

Since there are strong indications for the role of MmpD and MmpA in MA 

synthesis it seems logical that MmpB, the third type I PKS, is responsible for 9-HN 

synthesis although as yet there is no direct evidence for this. However, 9-HN is 

proposed to be derived from a 3-hydroxypropionate (3-HP) starter unit with MmpB 

iteratively catalysing three rounds of condensation with malonate as the extender unit 

(Figure 1.12, A). MmpB does not contain an ER domain but an in-frame deletion of 

MupE results in a 6’-7’ enoyl bond suggesting that it, possibly in conjunction with 

MupD, is responsible for at least part of the required ER activity (Hothersall et al., 

2007; Macioszek, 2009; Hothersall and Wu, unpublished data). Since mutagenesis of 

mupE resulted in the formation of only a partially saturated fatty acid chain, an 

additional enzyme must be responsible for reduction of the fatty acid chain to give 9-
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HN. There is a third domain in MmpC which has predicted ER activity, that could 

function during the formation of 9-HN. Work by Calderone group at Harvard 

University demonstrated that PksE, an enzyme from the dihydrobacillaene PKS 

consisting of AT and ER domains, provided ER activity in trans (Bumpus et al., 

2008). The terminal TE domain of MmpB could then either catalyse the release of the 

saturated 9-HN, or provide a means of esterification with MA (Figure 1.12) (El-Sayed 

et al., 2003; Hothersall et al., 2007). The order in which events occur is still under 

investigation. It is possible either that 9-HN and monic acid are synthesized 

separately and then joined together to complete the mupirocin structure, or that 9-HN 

is elongated on a starter unit (3-HP) esterified with the product of MmpD/MmpA. 

Currently the latter appears more likely due to the release of PA-A and PA-B with C7 

side chains in place of C9 side chains – indicating MmpB works on monic acid to add 

the fatty acid prior to release by the TE (Hothersall et al., 2011). 

 

1.3.3 Regulation of mupirocin production 

A quorum sensing mechanism controls expression of the mupirocin 

biosynthetic genes. This involves the constitutive production of diffusible signal 

molecules (auto inducers, in this case N-acyl homoserine lactones) that accumulate 

in the environment of the bacteria and, when the population reaches a critical density 

(quorum), switch on target gene transcription via an activator protein. In theory this 

means that in the case of producing substances such as antibiotics, the 

concentration produced will be sufficient enough to kill the competing bacteria. 

Based on sequence alignments with the Vibrio harveyi Lux system, the genes 

mupR and mupI were predicted to mediate quorum-regulated expression of the 
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mupirocin cluster (El-Sayed et al., 2001). MupI is required to produce N-(3-

oxodecanoyl) homoserine lactone (3-O-C10-HSL) which by analogy to other systems 

is predicted to bind to MupR, which can then bind to the promoter to activate it (El-

Sayed et al., 2001; Hothersall et al., 2011). Thus the MupR-MupI system activates 

transcription of the mup operon upon binding to the lux box promoter regions of 

mupA, mAcpC and mupF, while surprisingly mupI does not appear to have a lux box 

region or any obvious promoter (Fuqua et al., 1994; El-Sayed et al., 2001; Hothersall 

et al., 2007). In an attempt to upregulate mupirocin production, 3-O-C10-HSL was 

added to the production media, and separately mupI was expressed in trans to the 

WT producer; however neither approach was successful (Hothersall et al., 2011). An 

alternative approach was to express mupR in trans, and this resulted in a fivefold 

increase in PA-A production in the WT, as well as detection of early intermediates 

such as mupiric acid, mupirocin H and fatty-acid-truncated versions of PA-A and PA-

B (Hothersall et al., 2011). The same investigation also highlighted a potential 

regulatory role for the product of mupX, which is located in between mupR and mupI 

in the cluster.  
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1.3.4 Special features of the mupirocin cluster 

The mupirocin cluster contains various features that distinguish it from typical 

PKSs such as the DEBS system and whose activities may be useful in the generation 

of novel pathways. Refer to Appendix for a summary of trans-AT PKS traits and 

figures of select clusters. 

 

1.3.4.1 Dependence on in trans ATs 

The mupirocin PKSs differ from those of the well studied erythromycin 

biosynthetic system from S. erythraea (Lal et al., 2000) in that the AT domains are 

absent from each module and are encoded by a separate gene, mmpC (El-Sayed et 

al., 2003). They thus belong to the group of PKS systems termed ‘in trans’ AT PKSs, 

of which a growing number have been described and analysed including those that 

produce myxovirescin, virginiamycin, leinamycin, lankacidin, pederin, rhizoxin, 

bryostatin, kirromycin, mycosubtilin, bacillaene, difficidin, macrolactin, chivosazol, 

disorazol and thiomarinol (Piel, 2002; Cheng et al., 2003; Chen et al., 2006; Kopp et 

al., 2005; Mochizuki et al., 2003; Perlova et al., 2006; Simunovic et al., 2006; Aron et 

al., 2007; Partida-Martinez and Hertweck, 2007; Pulsawat et al., 2007; Schneider et 

al., 2007; Sudek et al., 2007; Weber et al., 2008; Piel, 2010). For more details please 

refer to Chapter 4. 

 

1.3.4.2. No integrated ER domains 

The trans-acting AT PKSs either completely lack ER domains or have them in 

unusual positions. For example, in the myxovirescin biosynthetic cluster it has been 

proposed that the ER domain of TaO is shared between modules 7 and 8, encoded 
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on Ta-1 and TaO respectively (Simunovic et al., 2006). In the mupirocin cluster one 

of the tailoring proteins, MupE, provides ER activity in trans. ER domains are also 

thought to be located on discrete proteins, with trans-acting ATs, such as LnmG and 

MmpC (Cheng et al., 2003; El-Sayed et al., 2003). There are five distinct 

architectures of the AT-encoding genes (Figure 4.4): single ATs, tandem AT-

domains, single AT with single TE domain, single AT with single ER domain, tandem 

ATs with a single ER domain (Gurney and Thomas, 2011; Jensen et al., 2012; Musiol 

and Weber, 2012). These architectures are distributed throughout two evolutionary 

pathways. Their functionality and relevance is yet to be determined. Control of enoyl 

reduction in the mupirocin pathway is currently under investigation. 

 

1.3.4.3 Methyl group incorporation 

In type I systems with modular AT domains each module can specify the 

nature of the extender unit, for example choosing methylmalonate rather than 

malonate. When all modules share one or two trans-acting ATs incorporation of α-

methyl groups can be specified by MT domains in a module. These occur in the mup 

cluster and all other trans-AT PKSs mentioned previously, with the exceptions of 

FK228, macrolactin, mycosubtilin, neocarzillin and zwittermicin (Duitman et al., 1999; 

Otsuka et al., 2004; Cheng et al., 2007; Schneider et al., 2007; Kevany et al., 2009). 

However, this is not obligatory because some systems employ a mixture of trans- 

and cis-acting ATs (Otsuka et al., 2004; Weber et al., 2008; Kevany et al., 2009). In 

mupirocin the MT domains in modules one and three are responsible for the methyl 

groups at positions C-17 and C-16 in the final structure, which are incorporated from 

S-adenosyl methionine (SAM) (El-Sayed et al., 2003; Feline et al., 1977; Wu et al., 
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2008). In addition, many of the trans-AT group of PKS contain β-branches to the 

polyketide backbone that are incorporated under the actions of an HCS cassette 

(Chen et al., 2006; Cheng et al., 2003; Partida-Martinez and Hertweck, 2007; 

Pulsawat et al., 2007; Simunovic et al., 2006; Sudek et al., 2007). As detailed in 

Section 1.3.2.2, the mupirocin HCS cassette catalyses the incorporation of the methyl 

group at C-15. Studies on mupirocin have also provided evidence of the functions of 

the HCS cassette – mutation of mupH produced a new metabolite, mupirocin H 

(Figure 1.12, C), which appeared to be a truncated version of MA incorporating a 3-

hydroxy-γ-lactone ring (Wu et al., 2007).  

 

1.3.4.4 Duplicated acyl carrier proteins 

The multifunctional proteins MmpA and MmpB contain tandem doublet and 

triplet ACPs respectfully (El-Sayed et al., 2003). There are several other trans-AT 

PKSs with similar unusual domain architecture: leinamycin, lankacidin, bacillaene, 

difficidin, chivosazol, virginiamycin, and macrolactin (Chen et al., 2006; Cheng et al., 

2003; Mochizuki et al., 2003; Perlova et al., 2006; Pulsawat et al., 2007; Schneider et 

al., 2007). The ACPs of the mupirocin doublet (ACP3 and 4) and triplet (ACP5, 6 and 

7) are more closely related to each other than any other ACPs within the cluster, 

indicating they may have arisen from gene duplication events. Another unusual 

feature of the tandem ACPs is the unusually short linker regions between the 

individual domains – the spacers between domains on the Mmps are usually 

approximately 100 amino acids in length, but ACP3 and 4 are separated by just 12 

amino acids and ACP5, 6 and 7 by only 3. Rahman et al. (2005) produced various 

mutants to determine the roles of these tandem ACPs: mutants of ACP3 and 4, and 
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ACP5, 6, and 7 resulted in loss of mupirocin production when analysed by bioassay 

and high performance liquid chromatography (HPLC). Pairwise mutants of ACP5/6, 

6/7 and 5/7 reduced mupirocin production to less than 20% of WT, while individual 

mutants of ACP3 and 4, and ACP5, 6, and 7 resulted in approximately 60% and 25-

36% of production when compared to WT, respectively. The authors concluded that 

while any one ACP from the cognate doublet and triplet clusters is sufficient for 

mupirocin biosynthesis, production was significantly improved by an increase in 

numbers, indicating that the doublet and triplet set of ACPs are functionally 

redundant (Rahman et al., 2005). Reducing the tandem ACPs to a single ACP would 

be rate-limiting. The results indicated that the doublet ACPs (3/4) work in parallel, 

while ACP5 physically blocks access of other ACPs to some part of the machinery if 

it is inactivated by a point mutation (Rahman et al., 2005). 

 

1.3.5 Clinical significance 

Mupirocin competitively inhibits IleS, blocking the formation of Ile tRNA and 

thus inhibiting protein synthesis (Hughes and Mellows, 1978). IleS catalyses the 

transfer of isoleucine onto tRNA via the formation of aminoacyl-adenylate (aa-AMP). 

The C-14 to C-11 terminus of MA resembles the side-chain structure of Ile and 

interacts with the Ile-specific binding pocket of IleS (Figure 1.14) (Yanagisawa et al., 

1994). The pyran ring interacts with the ATP binding site of IleS, and it is thought the 

9-HN moiety may stabilise the binding by its affinity for a hydrophobic groove 

(Nakama et al., 2001). Mupirocin has a remarkably broad spectrum of activity; it is 

active against both Gram-positive and Gram-negative organisms, and particularly 

effective against those Staphylococcal and Streptococcal species most commonly 
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responsible for infections of the skin (Sutherland et al., 1985). Mupirocin cannot be 

used systemically due to its high affinity for serum and rapid metabolism in body 

fluids (it is hydrolysed at the ester joining monic acid to 9-HN), but has been 

successfully used topically for many years (Basker et al., 1980; Sutherland et al., 

1985).  

Pseudomonic acid was tentatively used as a potential therapeutic agent for 

skin infections and nasal carriage of antibiotic-resistant strains of Staphylococcus 

aureus in 1983 (Wuite et al., 1983; Dacre et al., 1983). In 1985 it was introduced for 

the treatment of bacterial skin infections, and in 1988 for nasal carriage of 

Staphylococci, including MRSA (Cookson et al., 1990). MRSA colonising the skin and 

nose can easily be transferred to other areas of the body or wounds, thus causing 

particular concern during surgical procedures and when exposed cuts or burns are 

present (Neu, 1992). Marketed globally, mupirocin is now used world-wide for topical 

treatment of impetigo, infected skin lesions and for decolonisation of patients with 

nasal carriage of Staphylococcus, including MRSA (GlaxoSmithKlein, 2010; 

Medimetriks, 2008; TEVA, 2003). In fact, mupirocin is effective in infiltrating S. aureus 

and P. aeruginosa biofilms on the surface of burns, demonstrating the full potential of 

this antibiotic in a clinical setting (Hammond et al., 2011). Decolonisation of patients 

that carry MRSA can reduce the risk of infection in patients and decrease 

transmission to other patients (Gilpin et al., 2010).  
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Figure 1.14. Mupirocin binding to isoleucyl-tRNA synthase. (A) Structure of 
isoleucyl-tRNA complex with isoleucyl-tRNA and mupirocin. The protein is coloured 
by domain, mupirocin is shown in pink (Silvian et al., 1999). (B) Mupirocin binding in 
the synthetic site of isoleucyl-tRNA synthase, mupirocin is shown in grey (Thomas et 
al., 2010). 
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1.3.6 Resistance to mupirocin 

The initial widespread use of mupirocin to treat MRSA led to resistance first 

being recorded in 1987 (Rahman et al., 1987). Resistance to mupirocin has two 

distinct levels: high level resistance >500µg/ml, and the more common low level 

between 8-256µg/ml (Ramsey et al., 1996). Low level resistance normally arises from 

spontaneous mutations in the chromosomally encoded IleS, in particular V558F and 

V631F, which distort the hydrophobic pocket of the Rossman fold to the point where 

mupirocin binding is impeded (Yanagisawa et al., 1994; Antonio et al., 2002; Hurdle 

et al., 2004). These mutations tend to be non-transferable and generally of little 

clinical significance (Eltringham, 1997; Slocombe and Perry, 1991).  

High level resistance has a more substantial effect on clinical treatments and 

involves the presence of an IleS similar to the eukaryotic versions, which are known 

to be more resistant to mupirocin (Racher et al., 1991; Yanagisawa and Kawakami, 

2003). The gene responsible for producing this highly mupirocin-resistant IleS2 is the 

plasmid-encoded mupA (mupM or tmlM in the mupirocin and thiomarinol producers) 

(Dyke et al., 1991; Eltringham, 1997; Farmer et al., 1992; Gilbart et al., 1993; 

Hodgson et al., 1994; Rahman et al., 1987). The mupA gene is associated with 

transposable elements as part of different plasmids, often self-transmissible, that also 

confer resistance to other antibiotics, such as gentamicin, tetracycline and 

trimethoprim (Patel et al., 2009; Perez-Roth et al., 2010). Comparison of sequences 

surrounding mupA genes from self-transmissible plasmids in S. aureus indicates 

apparently multiple gene capture events with varying amounts of the same flanking 

sequences as if the gene comes from the chromosome of an as yet unidentified 

organism (Perez-Roth et al., 2010). Further analysis of the growing wealth of 
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bacterial genome sequences also reveals that many bacteria carry two IleS proteins 

– the second (IleS2) belonging to this eukaryote-like mupirocin resistance type 

correlating with a mupirocin resistant phenotype. The reasons for carriage of a 

second IleS are at present unclear, but it seems quite likely that it is one such IleS2 

gene in an as yet unidentified bacterium that is the source of mupA in S. aureus. 

Bifidobacteria spp. are highly resistant to mupirocin and the antibiotic is often used to 

select for them. The high level of resistance (>1,800µg/ml) in these organisms has 

been traced to a single amino acid mutation within an amino acid motif thought to be 

involved in binding mupirocin – HIGH (Serafini et al., 2011). In highly resistant 

organisms such as Bifidobacteria spp., S. aureus and P. fluorescens NCIMB 10586 

the Ile in this motif is replaced with the bulkier Tyr preventing mupirocin from binding 

(Figure 1.15) (Serafini et al., 2011).  
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Figure 1.15. 3D structural model of the mupirocin binding site of isoleucyl-
tRNA. (A) The binding site from the mupirocin-sensitive Thermus thermophilus. (B) 
The binding site from the mupirocin-resistant Bifidobacterium bifidum PRL2010 
(Serafini et al., 2011). 
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Mupirocin resistance is increasing globally, and there are many examples of 

this. A study in Kuwait which sampled 53 MRSA isolates (74% of which expressed 

high level mupirocin resistance) reported a significant increase in the number of high 

level mupirocin-resistant MRSA isolates between 1993 and 1995; over the total study 

period (1990 to 1995) 42% of the isolates demonstrated high-level resistance (Udo et 

al., 1999; Vasquez et al., 2000). Between 1994 and 1995 at two closely situated 

hospitals in Brazil, resistance to mupirocin was >50% in one and approximately 6% in 

the other – the difference being that mupirocin was used far more frequently in the 

first hospital (Orrett, 2008). A recent study showed that high level mupirocin 

resistance was detected in 17% of patients involved, and this led to decolonisation 

failure (Gilpin et al., 2010).  

In areas where mupirocin is readily available the occurrence of resistance is 

high: in New Zealand mupirocin became available over the counter in 1991 and by 

1999 up to 28% of S. aureus isolates were mupirocin-resistant (Upton et al., 2003). 

After increased mupirocin use in Western Australia high level mupirocin resistance 

reached 15% but subsequent government issued guidance on limiting use reduced 

these levels to 0.3% after four years (Torvaldsen et al., 1999). In the Netherlands 

mupirocin use increased from 3.6kg/year in 2006 to 13.3kg/year in 2010, and 

concurrently mupirocin resistance detected in Staphylococci isolates increased from 

8% in 2006 to 22% in 2011 (Bathoorn et al., 2012). Surveillance of mupirocin-

resistant MRSA in 32 Canadian hospitals demonstrated that out of 4980 isolates, the 

prevalence of high level mupirocin resistance increased from 1.6% to 7% between 

1995 and 2004 (Simor et al., 2007). Highly mupirocin-resistant strains of MRSA are 

not restricted to the clinical setting as they have been detected in community-
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acquired strains, nor are they restricted to patients where prior use of mupirocin was 

documented (Udo and Sarkhoo, 2010; Nakajima et al., 2011). While it has been 

demonstrated that increased use of mupirocin is related to the increase in mupirocin-

resistant MRSA occurrence (Caffrey et al., 2010), a study in France determined that 

a decrease in prevalence (10% in 2004 down to 3% in 2009) was not necessarily due 

to the parallel decreased volume of mupirocin used. The investigators postulated that 

it could instead be due to the way mupirocin was used, for example a controlled 

prescription for a period of time and refraining from using mupirocin if additional 

MRSA infection sites are known or if decolonisation fails (Talon et al., 2011).  

Rather worryingly a new mupirocin resistance mechanism has been 

discovered in MRSA strains isolated in Canada. Encoded on a non-conjugative 

plasmid, the mupB gene is thought to be responsible for high level mupirocin 

resistance seen in cases where mupA was not present (Patel et al., 2009; Swenson 

et al., 2010; Seah et al., 2012). This newly identified gene encodes an IleS that 

shares 41.8% similarity and contains conserved motifs found in IleSs. 

Among these studies a recurring conclusion is evident – surveillance and 

prudent use of mupirocin is vitally important and can reduce the levels of resistance. 

As a last line of defence against MRSA it is essential we preserve the use of 

mupirocin (Park et al., 2012). Again, continued research is required to find suitable 

alternatives should MRSA one day become totally mupirocin resistant. Already this 

research is producing novel ideas - REP8839 is a compound that inhibits methionyl-

tRNA synthase and has been found to be effective against mupirocin-resistant MRSA 

(Critchley and Ochsner, 2008). 
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1.4 Non-ribosomal peptide synthases 

The organisation of non-ribosomal peptide synthases (NRPSs) into modules 

within protein subunits is analogous to that of the organisation of PKS type I gene 

clusters and FASs. These multi-domain enzymes utilise the assembly line-like 

organisation in the catalytic reactions that produce structurally diverse antibiotics 

such as the penicillin precursor δ-(1-α-aminoadipyl)-1-cysteinyl-d-valine (ACV), 

tyrocidine, vancomycin and bactracin (Mootz et al., 2002; Walsh, 2003a; Schaffer 

and Otten, 2009). An initiation module, followed by elongation modules and a 

termination module comprise this assembly line. Domains of the elongation modules 

are condensation (C), adenylation (A), and the ACP equivalent peptidyl carrier 

protein (PCP) (Walsh, 2003a). The process begins by selection of an amino acid 

from a pool of substrates by the initiation A domain: aminoacyl adenylate is formed 

and transferred to the adjoining PCP; peptide bonds form between activated 

substrates on neighbouring PCPs by the actions of C domains; finally deacylation of 

the PCP results in the growing peptide chain being transferred to the next module 

(Figure 1.16) (Mootz et al., 2002; Schaffer and Otten, 2009). The single NRPS, ACV 

synthetase, is involved in the assembly of the precursor of the penicillins. Of the ten 

domains that make up the assembly line three are adenylation, each selecting for a 

different amino substrate. Consequently there are three PCP domains adjacent to the 

A domains. The C domain of module two catalyses the reaction to condense the first 

two amino acids, while the C domain of module 3 catalyses the condensation 

between the second and third amino acids. The enzyme also contains epimerisation 

and termination modules (Walsh, 2003a). The antibiotic bleomycin is a peptide-

polyketide hybrid metabolite formed from a hybrid NRPS-PKS system. One PKS 



Chapter 1: Introduction  60 
 

gene containing KS, AT, MT, KR and ACP domains is sandwiched in between ten 

NRPS genes; during biosynthesis, one acetate and nine amino acids are 

incorporated into the bleomycin structure (Du et al., 2000).  

 

 

Figure 1.16. Biosynthesis scheme of the tripeptide penicillin precursor δ-(1-α-
aminoadipyl)-1-cysteinyl-d-valine (ACV). The three core domains are arranged in 
the order A-C-PCP to add one amino acid to the growing chain. A, adenylation 
domain; C, condensation domain; PCP, peptidyl carrier protein; TE, thioesterase 
(Mootz et al., 2002). 
 

 

1.4.1 The thiomarinols 

The thiomarinols are antibiotics produced by the marine bacterium 

Pseudoalteromonas sp. SANK 73390. They have a chemical structure which is 

essentially a combination of two independent antibiotics, PA and holomycin (Figure 

1.10, B). The pyrrothine moiety (holomycin) is attached to the marinolic acid portion 

(PA-like) via an amide bond (Shiozawa et al., 1993). With a broad range of activity 
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against both Gram-positive and Gram-negative bacteria, thiomarinol A displays far 

more potency than mupirocin; for example the activity is approximately twentyfold 

higher against organisms such as MRSA and E. coli (Shiozawa et al., 1993). The 

activity is also stronger than that of short chain pyrrothine antibiotics, such as 

holomycin, which displays tenfold less potent activity against E. faecalis (Oliva et al., 

2001; Shiozawa et al., 1993). Thiomarinols B and E displayed excellent antimicrobial 

activity, similar to that of thiomarinol A, while thiomarinols C, D and F showed less 

potent activity (Shiozawa et al., 1995; 1997).  

Recently, a 97kb plasmid encoding the hybrid PKS-NRPS thiomarinol 

production system from Pseudoalteromonas sp. SANK 73390 was identified (Figure 

1.17). The plasmid included 27 PKS-encoding ORFs required for synthesis of the 

marinolic acid portion and 7 NRPS-encoding ORFs thought to be responsible for the 

pyrrothine moiety. Despite their similarity, there are several intriguing differences 

between the thiomarinol and mupirocin gene clusters: there are several extra ACPs 

throughout the cluster presumably increasing throughput (Rahman et al., 2005); there 

is an additional non-elongating KS (KS
0
) on TmpB which forms an extra module with 

one of the additional ACPs; there is significant tailoring gene reorganisation; 

identification of possible operator sequences suggests five transcriptional units; and 

there is no evidence for regulatory genes such as the mupirocin quorum sensing 

system of mupR/mupI (Fukuda et al., 2011). The thiomarinol homologue of mup-

mAcpE appears to be missing, and so it has been suggested that the late tailoring 

steps may occur on the extra module in TmpB, in particular removal of the C8 

hydroxyl group after pyran ring formation (completed by mupU/mAcpE in the 

mupirocin system) (Thomas, 2012). Recent research in the Thomas laboratory has 
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demonstrated that deleting the extra module from TmpB causes a reduced amount of 

thiomarinol A and B to be produced, but increased amount of thiomarinol G 

production (Omer-Bali, 2012).  

During the elucidation of the thiomarinol production pathway several novel 

metabolites were generated, some of which were shown to have activity against 

Bacillus subtilis and MRSA (Murphy et al., 2011). This highlights the potential of 

using mutation and mutasynthesis to generate novel antibiotics with significant 

clinical applications in the future. 
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1.5 Statement of objectives 

 Research in the Thomas laboratory at The University of Birmingham has 

focussed on mupirocin for nearly 13 years, and during that time much has been 

learnt about the pathway and the processes that are involved in synthesising this 

important antibiotic. Despite this, however, there remains much to be understood and 

there are many pathways the research could take in the future. The objectives of the 

project as a whole were to completely understand the mupirocin biosynthesis 

pathway, with the aim of producing novel compounds and concurrently contributing 

valuable information to the growing group of PKSs known as trans-AT PKSs. 

The trans-AT group of PKSs is a rapidly growing group and more and more 

information is being elucidated each year. However one of the critical aspects of 

these pathways remains poorly understood – that of the functions of the ATs. Out of 

the 30 or so systems characterised that employ trans-ATs, only a few of the ATs 

have been fully characterised themselves. This study is particularly focussed on two 

of the domains of mmpC – the ATs. The immediate objectives were to purify the ATs 

to produce soluble protein and to determine the substrates they interact with by 

biochemical characterisation. The successful purification of AT2 led to 

characterisation, however, AT1 turned out to be more problematic, as described in 

Chapters 3 and 4. 

An alternative method for the investigation of AT1 was developed – point 

mutations were introduced into the AT2-containing plasmid in an attempt to make it 

more AT1-like. Chapter 5 shows that mutant proteins were produced and 

characterised by enzyme assays and autoradiography, in addition to performing 

circular dichroism to analyse the structural changes caused by the mutations.  
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This method of investigating AT1 in turn led to a further method – introducing 

point mutations into the P. fluorescens NCIMB 10586 chromosome. This work was 

jointly planned by C. M. Thomas, myself and Harry Thorpe, an undergraduate project 

student I was supervising at the time. Harry designed the primers required for 

introducing the mutations and performed the molecular biology, bioassays and 

HPLC. Further analysis of the mutant strains by LCMS was performed at The 

University of Bristol by Zhongshu Song. The data was analysed and interpreted by 

myself and is presented in Chapter 6. 

Docking domains have been documented in trans-AT systems for the last 10 

years. Little was known about them, and very few functional studies had been 

performed. As they were thought to be remnants of once functional cis-acting ATs it 

seemed prudent that their investigation be included in this study. P. fluorescens 

NCIMB 10586 deletion mutants were designed to delete regions thought to be 

structural or functional and the subsequent mutant strains analysed by bioassay and 

HPLC. Again, further analysis of the mutant strains by LCMS was performed at The 

University of Bristol by Zhongshu Song. Chapter 7 describes the results and 

conclusions from this particular sub-project. 

Research in the Thomas laboratory at The University of Birmingham was 

already underway investigating β-branching ACPs, which appear to be another 

common feature among trans-AT PKSs, although not restricted to this group. 

Bioinformatic studies by Dong et al., (manuscript in preparation, 2012) had identified 

a conserved Trp residue in ACPs thought to be important for HCS recognition. A 

W>L mutation was introduced into ACP3 and 4 and this was introduced into the P. 

fluorescens NCIMB 10586 chromosome. Results demonstrated the importance of 
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this residue as no PA-A was produced. In order to fully assess the phenotype of the 

mutated ACP a project was designed to purify ACP3 (ACP4 was tricky to work with). 

An undergraduate project student, Erika Yamada, designed primers to amplify the 

mutated ACP and performed the molecular biology. However the mutant displayed 

additional residues which required excising from the plasmid. Chapter 8 describes 

this work, along with the phenotypical characterisation which was performed by 

myself – phosphopantetheinylation of the ACP and subsequent malonylation by AT2.  

 There are many directions this work could take, and these are further 

described in later sections. It is hoped that the work described thereafter contributes 

not only to the field of polyketides but also to protein biology and antibiotic resistance. 
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2 MATERIALS AND METHODS 

 

2.1 Bacterial strains, culture conditions and plasmids 

Bacterial strains used in this study are detailed in Table 2.1. Pseudomonas 

fluorescens NCIMB 10586 was grown in L broth or L agar, supplemented with 50 

μg/ml ampicillin at 30ºC. Plasmids were initially transformed into Escherichia coli 

strain DH5α, ahead of transformations into strain BL21 (DE3) for working cultures. E. 

coli Lemo21 (DE3) was used for expression of clones prone to insolubility. E. coli 

S17-1 was utilised to mobilise vectors into P. fluorescens by conjugation. E. coli 

XL10-Gold ultra-competent cells were used for the transformation of mutant 

plasmids. Bacillus subtilis 1064 was used as an indicator strain in bioassays. E. coli 

and B. subtilis strains were grown in L broth or on L agar, supplemented with 

appropriate antibiotics at 37ºC overnight. Antibiotics used in this study are listed in 

Table 2.2. The pET vector system was used for the cloning and expression of 

recombinant proteins in E. coli; pGEM-T-Easy was used to clone polymerase chain 

reaction (PCR) products for sequencing; pSUEH was incorporated into various 

transformants to maximise the solubility of recombinant proteins; pAKE604 was the 

suicide vector used to introduce chromosomal deletions. Plasmids used and 

constructed in this study are detailed in Tables 2.3-2.8, according to the relevant 

chapter. 
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Table 2.1. Bacterial strains used in this study. 

Bacterial strain Genotype/phenotype 
Source/ 

reference 

B. subtilis 1064 
trpC2amyE::(spec Pxyl-gfp-lacI) 
chr::pSG1196 (rrnD-lacO cat) 

Moir et al., 1979 

E. coli BL21 
(DE3) 

F-  ompT  hsdSB  gal  dcm  (DE3) 
All-purpose strain for high-level protein 
expression and easy induction. Contains the 
DE3 lysogen that carries the gene for T7 
RNA polymerase under the control of the 
lacUV5 promoter. 

Invitrogen 

E. coli DH5α 

endA1  recA  hsdR17  lacZΔM15  supE44  
gyrA96  thi-I relA1  F

- 

High transformation efficiency strain. 
Supports blue/white screening utilising the 
activity of β-galactosidase. 

Gibco BRL 

E. coli Lemo21 
(DE3) 

F-  ompT  hsdSB  gal  dcm  (DE3)  fhuA2  
lysY pLemo  CmR 
Contains the host features of BL21 (DE3) 
while allowing for tuneable expression of 
difficult clones. Tuneable expression is 
achieved by varying the level of lysozyme 
(lysY) the natural inhibitor of T7 RNA 
polymerase. 

NEB 

E. coli S17-1 RecA pro hsdR RP4-2 Tc::Mu-Km::Tn7 Simon et al., 1983 

E. coli XL10-
Gold 

TetR  Δ(mcrA)183 Δ  (mcrCB-hsdSMR-
mrr)173  endA1  supE44  thi-1  recA1  
gyrA96  relA1  lac  Hte [F´ proAB 
lacIqZΔM15 Tn10 (TetR) Amy ChlR] 

Logan, 2012 

P. fluorescens 
NCIMB 10586 

Mupirocin-producer wild type (WT). AmpR G.T. Banks 
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Table 2.2. Antibiotics used in this study. 

Antibiotic 
Working concentration 

 (μg/ml) 
Medium 

Ampicillin 50 H2O 

Carbenicillin 50 H2O 

Chloramphenicol 34 70% C2H6O 

Kanamycin sulphate 50 H2O 

Tetracycline 
hydrochloride 

15 70% C2H6O 
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Table 2.3. Plasmids used in Chapter 3. 

Plasmid 
Size 
(kb) 

Properties 
Source/ 
reference 

pET28a 5.4 KanR, T7lac promoter, N-terminus His•Tag Novagen 

pET28b 5.4 KanR, T7lac promoter, C-terminus His•Tag Novagen 

pGBT340 5.3 Modified pET28a without T7 tag. KanR 
Jagura-
Burdzy et al., 
1999 

pGEM-T-
Easy 

3.0 
AmpR, lacZα. Linear T-tailed plasmid for 
cloning PCR products. Blue/white screening 

Promega 

pGEX-2t 4.9 AmpR, tac `promoter, N-terminus GST•Tag 
G. E. 
Healthcare 

pJH10 14.5 
IncQ. pOLE1 IncC1 deleted. TetR (from 
pDM1.2) oriT 

El Sayed et 
al., 2001 

pJHN11 15.4 851bp MupN fragment cloned into pJH10 
Hothersall et 
al., 2007 

pJS551 5.6 
303bp EcoRI-HindIII mAcpA fragment cloned 
into pGBT340 

Shields, 2008 

pJS552 5.6 
249bp EcoRI-HindIII mAcpB fragment cloned 
into pGBT340 

Shields, 2008 

pJS553 5.5 
234bp EcoRI-HindIII mAcpC fragment cloned 
into pGBT340 

Shields, 2008 

pJS554 5.6 
318bp EcoRI-HindIII mAcpD fragment cloned 
into pGBT340 

Shields, 2008 

pJS555 5.5 
240bp EcoRI-SacI mAcpE fragment cloned 
into pGBT340 

Shields, 2008 

pJS559 6.4 
959bp EcoRI-SacI AT1 fragment cloned into 
pET28a 

Shields, 2008 

pJS560 6.4 
971bp EcoRI-SacI AT2 fragment cloned into 
pET28a 

Shields, 2008 

pJS561 5.7 
267bp BamHI-EcoRI ACP1 fragment cloned 
into pET28a 

Shields, 2008 

pJS5610 5.7 
273bp BamHI-EcoRI ACP10 fragment cloned 
into pET28a 

Shields, 2008 

pJS5611 5.7 
267bp BamHI-EcoRI ACP11 fragment cloned 
into pET28a 

Shields, 2008 

pJS562 5.7 
267bp BamHI-EcoRI ACP2 fragment cloned 
into pET28a 

Shields, 2008 
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pJS563 5.7 
270bp EcoRI-SacI ACP3 fragment cloned into 
pET28a 

Shields, 2008 

pJS564 5.7 
267bp BamHI-EcoRI ACP4 fragment cloned 
into pET28a 

Shields, 2008 

pJS565 5.7 
273bp BamHI-EcoRI ACP5 fragment cloned 
into pET28a 

Shields, 2008 

pJS566 5.7 
273bp BamHI-EcoRI ACP6 fragment cloned 
into pET28a 

Shields, 2008 

pJS567 5.7 
273bp BamHI-EcoRI ACP7 fragment cloned 
into pET28a 

Shields, 2008 

pJS568 5.7 
270bp BamHI-EcoRI ACP8 fragment cloned 
into pET28a 

Shields, 2008 

pJS569 5.7 
279bp BamHI-EcoRI ACP9 fragment cloned 
into pET28a 

Shields, 2008 

pRG300 4.0 
1kb XhoI-NcoI fragment encoding linker-AT1 
cloned into pGEM-T-Easy 

This study 

pRG301 6.4 
959bp EcoRI-SacI AT1 fragment cloned into 
pET28b with 10 residue linker 

This study 

pRG302 6.4 
959bp EcoRI-SacI AT1 fragment cloned into 
pET28b 

This study 

pRG303 6.4 
959bp EcoRI-SacI AT1 fragment cloned into 
pET28a with 15 residue linker 

This study 

pRG304 5.9 
959bp EcoRI-SacI AT1 fragment cloned into 
pGEX-2t 

This study 

pRG305 6.4 
938bp EcoRI-SacI tml-AT1 fragment cloned 
into pET28a 

This study 

pRG306 6.4 
974bp EcoRI-SacI tml-AT2 fragment cloned 
into pET28a 

This study 

pSUEH 4.5 ChlR, lac and GroEL promoters Lund, 1993 
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Table 2.4. Plasmids used in Chapter 4. 

Plasmid 
Size 
(kb) 

Properties 
Source/ 

reference 

pET28a 5.4 KanR, T7lac promoter, N-terminus His•Tag Novagen 

pGBT340 5.3 Modified pET28a without T7 tag. KanR 
Jagura-

Burdzy et al., 
1999 

pJH10 14.5 
IncQ. pOLE1 IncC1 deleted. TetR (from 
pDM1.2) oriT 

El Sayed et 
al., 2001 

pJHN11 15.4 851bp MupN fragment cloned into pJH10 
Hothersall et 

al., 2007 

pJS553 5.5 
234bp EcoRI-HindIII mAcpC fragment cloned 
into pGBT340 

Shields, 2008 

pJS554 5.6 
318bp EcoRI-HindIII mAcpD fragment cloned 
into pGBT340 

Shields, 2008 

pJS560 6.4 
971bp EcoRI-SacI AT2 fragment cloned into 
pET28a 

Shields, 2008 

pJS561 5.7 
267bp BamHI-EcoRI ACP1 fragment cloned 
into pET28a 

Shields, 2008 

pJS563 5.7 
270bp EcoRI-SacI ACP3 fragment cloned into 
pET28a 

Shields, 2008 

pJS565 5.7 
273bp BamHI-EcoRI ACP5 fragment cloned 
into pET28a 

Shields, 2008 

pJS568 5.7 
270bp BamHI-EcoRI ACP8 fragment cloned 
into pET28a 

Shields, 2008 
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Table 2.5. Plasmids used in Chapter 5. 

Plasmid 
Size 
(kb) 

Properties 
Source/ 

reference 

pET28a 5.4 KanR, T7lac promoter, N-terminus His•Tag Novagen 

pGBT340 5.3 Modified pET28a without T7 tag. KanR 
Jagura-

Burdzy et al., 
1999 

pJH10 14.5 
IncQ. pOLE1 IncC1 deleted. TetR (from 
pDM1.2) oriT 

El Sayed et 
al., 2001 

pJHN11 15.4 851bp MupN fragment cloned into pJH10 
Hothersall et 

al., 2007 

pJS553 5.5 
234bp EcoRI-HindIII mAcpC fragment cloned 
into pGBT340 

Shields, 2008 

pJS560 6.4 
971bp EcoRI-SacI AT2 fragment cloned into 
pET28a 

Shields, 2008 

pJS561 5.7 
267bp BamHI-EcoRI ACP1 fragment cloned 
into pET28a 

Shields, 2008 

pJS563 5.7 
270bp EcoRI-SacI ACP3 fragment cloned into 
pET28a 

Shields, 2008 

pJS565 5.7 
273bp BamHI-EcoRI ACP5 fragment cloned 
into pET28a 

Shields, 2008 

pRG501 6.4 
971bp EcoRI-SacI fragment encoding AT2 
H89S cloned into pET28a 

This study 

pRG502 6.4 
971bp EcoRI-SacI fragment encoding AT2 
R115Q cloned into pET28a 

This study 

pRG503 6.4 
971bp EcoRI-SacI fragment encoding AT2 
M119F cloned into pET28a 

This study 

pRG504 6.4 
971bp EcoRI-SacI fragment encoding AT2 
S190N cloned into pET28a 

This study 

pRG505 6.4 
971bp EcoRI-SacI fragment encoding AT2 
A191R cloned into pET28a 

This study 

pRG506 6.4 
971bp EcoRI-SacI fragment encoding AT2 
N224S cloned into pET28a 

This study 

pRG507 6.4 
971bp EcoRI-SacI fragment encoding AT2 
Q242V cloned into pET28a 

This study 

pRG508 6.4 
971bp EcoRI-SacI fragment encoding AT2 
V247L cloned into pET28a 

This study 

pRG509 6.4 
971bp EcoRI-SacI fragment encoding AT2 
S190V and A191R cloned into pET28a 

This study 
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pRG510 6.4 
971bp EcoRI-SacI fragment encoding AT2 
R115Q and Q242V cloned into pET28a 

This study 

pRG511 6.4 
971bp EcoRI-SacI fragment encoding AT2 
R115Q, Q242V, S190N and A191R cloned 
into pET28a 

This study 

pRG512 6.4 
971bp EcoRI-SacI fragment encoding AT2 
H89S and Q242V cloned into pET28a 

This study 

pRG513 6.4 
971bp EcoRI-SacI fragment encoding AT2 
H89S, Q242V and R115Q cloned into 
pET28a 

This study 

pRG514 6.4 
971bp EcoRI-SacI fragment encoding AT2 
H89S, Q242V, R115Q and V247L cloned into 
pET28a 

This study 

pRG515 6.4 
971bp EcoRI-SacI fragment encoding AT2 
S190N, A191R and M119F cloned into 
pET28a 

This study 

pRG516 6.4 
971bp EcoRI-SacI fragment encoding AT2 
H89S and R115Q cloned into pET28a 

This study 

pRG517 6.4 
971bp EcoRI-SacI fragment encoding AT2 
R115Q, Q242V, S190N, A191R and V247L 
cloned into pET28a 

This study 

pRG518 6.4 
971bp EcoRI-SacI fragment encoding AT2 
R115Q, Q242V, S190N, A191R, V247L and 
M119F cloned into pET28a 

This study 
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Table 2.6. Plasmids used in Chapter 6. 

Plasmid 
Size 
(kb) 

Properties 
Source/ 

reference 

pAKE604 7.2 pMB1 replicon. AmpR, KmR, oriT, lacZα, sacB 
El-Sayed et 

al., 2001 

pET28a 5.4 KanR, T7lac promoter, N-terminus His•Tag Novagen 

pGEM-T-
Easy 

3.0 
AmpR, lacZα. Linear T-tailed plasmid for 
cloning PCR products. Blue/white screening 

Promega 

pHT601 4.0 
1kb HindIII-XbaI fragment encoding AT1 
S95H cloned into pGEM-T-Easy 

This 
study/Harry 

Thorpe 

pHT602 4.0 
1kb PstI-XbaI fragment encoding AT2 H89S 
cloned into pGEM-T-Easy 

This 
study/Harry 

Thorpe 

pHT603 8.2 
1kb HindIII-XbaI fragment encoding AT1 
S95H cloned into pAKE604 

This 
study/Harry 

Thorpe 

pHT604 8.2 
1kb EcoRI-XbaI fragment encoding AT2 
H89S cloned into pAKE604 

This 
study/Harry 

Thorpe 

pRG605 6.4 
959bp EcoRI-SacI fragment encoding AT1 
S95H cloned into pET28a 

This study 
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Table 2.7. Plasmids used in Chapter 7. 

Plasmid 
Size 
(kb) 

Properties 
Source/ 

reference 

pAKE604 7.2 pMB1 replicon. AmpR, KmR, oriT, lacZα, sacB 
El-Sayed et 

al., 2001 

pGEM-T-
Easy 

3.0 
AmpR, lacZα. Linear T-tailed plasmid for 
cloning PCR products. Blue/white screening 

Promega 

pRG701 3.5 
500bp EcoRI-SalI fragment (mmpA region 1 
upstream arm) cloned into pGEM-T-Easy 

This study 

pRG702 3.5 
500bp SalI-BamHI fragment (mmpA region 1 
downstream arm) cloned into pGEM-T-Easy 

This study 

pRG703 3.5 
500bp EcoRI-SalI fragment (mmpA region 2 
upstream arm) cloned into pGEM-T-Easy 

This study 

pRG704 3.5 
500bp SalI-BamHI fragment (mmpA region 2 
downstream arm) cloned into pGEM-T-Easy 

This study 

pRG705 3.5 
500bp EcoRI-HindIII fragment (mmpD region 
1 upstream arm) cloned into pGEM-T-Easy 

This study 

pRG706 3.5 
500bp HindIII-BamHI fragment (mmpD region 
1 downstream arm) cloned into pGEM-T-Easy 

This study 

pRG707 3.5 
500bp EcoRI-HindIII fragment (mmpD region 
2 upstream arm) cloned into pGEM-T-Easy 

This study 

pRG708 3.5 
500bp HindIII-BamHI fragment (mmpD region 
2 downstream arm) cloned into pGEM-T-Easy 

This study 

pRG710 8.2 
1kb EcoRI-BamHI fragment (deletion of 
mmpA DD region 1 – ΔA1) cloned into 
pAKE604 

This study 

pRG711 8.2 

1kb EcoRI-BamHI fragment (deletion of 
mmpA DD region 2 – ΔA2) cloned into 
pAKE604 

This study 

pRG712 8.2 
1kb EcoRI-BamHI fragment (deletion of 
mmpA DD – ΔA3) cloned into pAKE604 

This study 

pRG713 8.2 

1kb EcoRI-BamHI fragment (deletion of 
mmpD DD region 1 – ΔD1) cloned into 
pAKE604 

This study 

pRG714 8.2 

1kb EcoRI-BamHI fragment (deletion of 
mmpD DD region 2 – ΔD2) cloned into 
pAKE604 

This study 

pRG715 8.2 
1kb EcoRI-BamHI fragment (deletion of 
mmpD DD – ΔD3) cloned into pAKE604 

This study 
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Table 2.8. Plasmids used in Chapter 8. 

Plasmid 
Size 
(kb) 

Properties 
Source/ 

reference 

pET28a 5.4 KanR, T7lac promoter, N-terminus His•Tag Novagen 

pEY801 3.3 
270bp EcoRI-SacI fragment encoding ACP3 
W55L cloned into pGEM-T-Easy 

This 
study/Erika 
Yamanda 

pEY802 5.7 
270bp EcoRI-SacI fragment encoding ACP3 
W55L cloned into pET28a 

This 
study/Erika 
Yamanda 

pGEM-T-
Easy 

3.0 
AmpR, lacZα. Linear T-tailed plasmid for 
cloning PCR products. Blue/white screening 

Promega 

pJH10 14.5 
IncQ. pOLE1 IncC1 deleted. TetR (from 
pDM1.2) oriT 

El Sayed et 
al., 2001 

pJHN11 15.4 851bp MupN fragment cloned into pJH10 
Hothersall et 

al., 2007 

pJS562 6.4 
971bp EcoRI-SacI AT2 fragment cloned into 
pET28a 

Shields, 2008 

pJS563 5.7 
270bp EcoRI-SacI ACP3 fragment cloned into 
pET28a 

Shields, 2008 
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2.2 Polymerase chain reaction  

Polymerase chain reaction (PCR) was used to amplify segments of DNA from 

P. fluorescens NCIMB 10586. The bacterial chromosomal DNA template was 

prepared by adding one colony to 30μl of sdH2O and boiling for 10min, before 

centrifugation. 20μl of the supernatant was transferred to a fresh tube and held on ice 

until required. If plasmid DNA was to be used as a template, dilutions were used to 

determine the optimal concentration of plasmid DNA to be used, i.e. 1/10 or 1/100 

diluted with 1/10 TNE buffer (100mM Tris pH 8.0, 50mM NaCl, 5mM EDTA pH 8.0) 

and added to the reaction mixture. Primers were synthesised by Alta Bioscience of 

the University of Birmingham, and were diluted to 15pmole/μl prior to use (Table 2.9 

– Table 2.13). Generally the BIO-X-ACT long DNA polymerase kit (Bioline) was used 

for amplification for DNA cloning. PCR for screening was performed with Taq 

polymerase (Invitrogen), if it was required. Annealing temperatures were calculated 

according to the melting temperature (Tm) of the primer. The melting temperature was 

calculated using the following equation: 

 

 

    Tm = 4 (G + C) + 2 (A + T)  °C 
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Table 2.9. Primers used in Chapter 3. 

Name 
Template 

DNA 
Sequence Purpose 

Restriction 
sites 

AT1BF 

P. 
fluorescens 

NCIMB 
10586 

CCATGGGCGTGTCCATTGTTT
TCATGTTTTC 

Clone 
AT1 and 

a 10 
residue 

linker into 
pET28b 

NcoI 
SalI 

AT1BR P. f. 10586 

CTCGAGCGCGCCCGCGCCCG
CGCCCGCGCCCGCGCCGTCG
ACCGCGCTGACAACGCGCTGT
GC 

XhoI 
SalI 

LINKA
F1 

P. f. 10586 
GGATCCGGCGCGGGCGCGGG
CGCGGACGGCGCGTCGGCGC
GGGCGCGGGCGCGG Linker for 

pJS561 

BamHI 
AhdI 

LINKA
R1 

P. f. 10586 
GCGCGCCCGCGCCCTGGCCC
GCAGCGCGCCCGCGCCCGCG
CGAATTC 

AhdI 
EcoRI 

AT1pG
EXF 

P. f. 10586 
CTCCCGGGGTGTCCATTGTTT
TCATGTTT 

Clone 
AT1 into 
pGEX-2t 
vector 

SmaI 

AT1pR P. f. 10586 
GCTGAATTCTCACGCGCTGAC
AACGCGC 

EcoRI 

Bases underlined correspond to restriction sites. 
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Table 2.10. Primers used in Chapter 5. 

Name 
Template 

DNA 
Sequence Purpose 

Restriction 
sites 

91F2 
pET28a-

AT2 

GTGGTATGTGCTCGGGTCCAGCC
TCGGCGAG AT2 

H89S 
mutation 

- 

91R2 
CTCGCCGAGGCTGGACCCGAGC
ACATACCAC 

- 

117F3 
pET28a-

AT2 

CTGGTCAAGCGGCAGGGCGAAC
TCATG AT2 

R115Q 
mutation 

- 

117R3 
CATGAGTTCGCCCTGCCGCTTGA
CCAG 

- 

121F 
pET28a-

AT2 

GGCGAACTCTTCTCCGAGGCCAC
C AT2 

M119F 
mutation 

- 

121R 
GGTGGCCTCGGAGAAGAGTTCG
CC 

- 

197F 
pET28a-

AT2 

GCGTTGAATGTCAACGCGCCTTT
CCAC AT2 

S190N 
mutation 

- 

197R3 
GTGGAAAGGCGCGTTGACATTCA
ACGC 

- 

198F 
pET28a-

AT2 

GCGTTGAATGTCAGCCGGCCTTT
CCACTCC AT2 

A191R 
mutation 

- 

198R 
GGAGTGGAAAGGCCGGCTGACA
TTCAACGC 

- 

231F 
pET28a-

AT2 

CCGGTGATCGCCAGTGTCGACG
CACGC AT2 

N224S 
mutation 

- 

231R 
GCGTGCGTCGACACTGGCGATCA
CCGG 

- 

250F 
pET28a-

AT2 

CAGTTGGCGCGGGTAATGACGTC
ATCG AT2 

Q242V 
mutation 

- 

250R 
CGATGACGTCATTACCCGCGCCA
ACTG 

- 

255F 
pET28a-

AT2 

GACGTCATCGCTGCAGTGGGTCG AT2 
V247L 

mutation 

- 

255R CGACCCACTGCAGCGATGACGTC - 
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17F 

pET28a-
AT2 

GCGTTGAATGTCAACCGGCCTTT
CCACTCC 

AT2 
S190N 

and 
A191R 

mutations 

- 

17R 
GGAGTGGAAAGGCCGGTTGACAT
TCAACGC 

- 

250F 
pET28a-

AT2 R115Q 

CAGTTGGCGCGGGTAATGACGTC
ATCG 

AT2 
R115Q 

and 
Q242V 

mutations 

- 

250R 
CGATGACGTCATTACCCGCGCCA
ACTG 

- 

17F 
pET28a-

AT2 R115Q 
and Q242V 

GCGTTGAATGTCAACCGGCCTTT
CCACTCC 

AT2 
R115Q, 
Q242V, 
S190N 

and 
A191R 

mutations 

- 

17R 
GGAGTGGAAAGGCCGGTTGACAT
TCAACGC 

- 

17F pET28a-
AT2 R115Q, 

Q242V, 
S190N, and 

A191R 

GCGTTGAATGTCAACCGGCCTTT
CCACTCC 

AT2 
R115Q, 
Q242V, 
S190N, 
A191R 

and 
V247L 

mutations 

- 

17R 
GGAGTGGAAAGGCCGGTTGACAT
TCAACGC 

- 

121F pET28a-
AT2 R115Q, 

Q242V, 
S190N, 

A191R and 
V247L 

GGCGAACTCTTCTCCGAGGCCAC
C 

AT2 
R115Q, 
Q242V, 
S190N, 
A191R, 
V247L 

and 
M119F 

mutations 

- 

121R 
GGTGGCCTCGGAGAAGAGTTCG
CC 

- 

121F 
pET28a-

AT2 S190N 
and A191R 

GGCGAACTCTTCTCCGAGGCCAC
C 

AT2 
S190N, 
A191R 

and 
M119F 

mutations 

- 

121R 
GGTGGCCTCGGAGAAGAGTTCG
CC 

- 
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117F3 
pET28a- 

AT2 H89S 

CTGGTCAAGCGGCAGGGCGAAC
TCATG 

AT2 
H89S 
and 

R115Q 
mutations 

- 

117R3 
CATGAGTTCGCCCTGCCGCTTGA
CCAG 

- 

250F 
pET28a- 

AT2 H89S 

CAGTTGGCGCGGGTAATGACGTC
ATCG 

AT2 
H89S 
and 

Q242V 
mutations 

- 

250R 
CGATGACGTCATTACCCGCGCCA
ACTG 

- 

117F3 
pET28a- 

AT2 H89S 
and Q242V 

CTGGTCAAGCGGCAGGGCGAAC
TCATG 

AT2 
H89S, 
Q242V 

and 
R115Q 

mutations 

- 

117R3 
CATGAGTTCGCCCTGCCGCTTGA
CCAG 

- 

255F 
pET28a- 

AT2 H89S, 
Q242V and 

R115Q 

GACGTCATCGCTGCAGTGGGTCG 
AT2 

H89S, 
Q242V, 
R115Q 

and 
V247L 

mutations 

- 

255R CGACCCACTGCAGCGATGACGTC - 
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Table 2.11. Primers used in Chapter 6. 

Name 
Template 

DNA 
Sequence Purpose 

Restriction 
sites 

AT1F1 

P. 
fluorescens 

NCIMB 
10586 

GCGAAGCTTCCATGTGGCCA
CGGTGGACG 

AT1 
S95H 

mutation 

HindIII 

AT1R1 P. f. 10586 
CAGGCTATGGCCAAGTACAT
GGTCGGGGTATACACCG 

MscI 

AT1F2 P. f. 10586 
GTACTTGGCCATAGCCTGGG
AGAAGTGGCTGCG 

MscI 

AT1R2 P. f. 10586 
CCCTCTAGAGGCCTTCAAGG
TATTCAATGGCGG 

XbaI 

AT2F1 P. f. 10586 
GCGCCATGGTGGTGCGCTCG
ACACTGCAG 

AT2 
H89S 

mutation 

NcoI/PstI 

AT2R1 P. f. 10586 
GAGGCTCGAGCCGAGCACAT
AGTCGGGGGGC 

XhoI 

AT2F2 P. f. 10586 
GCTCGGCTCGAGCCTCGGC
GAGTTCTGCGC 

XhoI 

AT2R2 P. f. 10586 
GGCTCTAGACTCGATGCTTT
CGACCCACTGC 

XbaI 

AT1MF 
pET28a-

AT1 
CATGTACTCGGCCACAGCCTGG
GAGAAGTG AT1 

S95H 
mutation 

- 

AT1MR 
pET28a-

AT1 
CACTTCTCCCAGGCTGTGGCCG
AGTACATG 

- 

Bases underlined correspond to restriction sites. 
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Table 2.12. Primers used in Chapter 7. 

Name 
Template 

DNA 
Sequence Purpose 

Restriction 
sites 

A1F1 

P. 
fluorescens 

NCIMB 
10586 

CCGAATTCACCCCGTGGCAGATA
TCGCTG 

Deletion of 
mmpA DD 
region 1 
(arm 1) 

EcoRI 

A1R1 P. f. 10586 
CCGTCGACGCACAGCGTCGGCT
CATCGATC 

SalI 

A1F2 P. f. 10586 
CCGTCGACTTACACACGGGCGAT
CTTACGGGC 

Deletion of 
mmpA DD 
region 1 
(arm 2) 

SalI 

A1R2 P. f. 10586 
CCGGATCCTAAGGGGCGGCAAT
GCGCTGC 

BamHI 

A2F1 P. f. 10586 
CCGAATTCTTCATAAAATCCTCGA
CTTTGAACAGC 

Deletion of 
mmpA DD 
region 2 
(arm 1) 

EcoRI 

A2R1 P. f. 10586 
CCGTCGACCTCGGCCCAAGGGT
CAAGCGC 

SalI 

A2F2 P. f. 10586 
CCGTCGACTATGACGCGCCTGCA
CCCATG 

Deletion of 
mmpA DD 
region 2 
(arm 2) 

SalI 

A2R2 P. f. 10586 
CCGGATCCCGCTGGCGGTCCGC
GTTAAAATGC 

BamHI 

D1F1 P. f. 10586 
CCGAATTCAAGCCCATGGCACCG
GCACC 

Deletion of 
mmpD DD 
region 1 
(arm 1) 

EcoRI 

D1R1 P. f. 10586 
CCAAGCTTGCTGGCAGATGCGCC
GGCAC 

HindIII 

D1F2 P. f. 10586 
CCAAGCTTGCCTCGCAGGCCGA
GGTCCAG 

Deletion of 
mmpD DD 
region 1 
(arm 2) 

HindIII 

D1R2 P. f. 10586 
CCGGATCCGCCCCGGCGCTTGC
TGGTCG 

BamHI 

D2F1 P. f. 10586 
CCGAATTCTCTACCCGGTGACCC
GCCTG 

Deletion of 
mmpD DD 
region 2 
(arm 1) 

EcoRI 

D2R1 P. f. 10586 
CCAAGCTTCTCGGCCAGCGTTTG
CAGGTG 

HindIII 

D2F2 P. f. 10586 
CCAAGCTTTTGCCGACCGCGCCG
ACCGATC 

Deletion of 
mmpD DD 
region 2 
(arm 2) 

HindIII 

D2R2 P. f. 10586 
CCGGATCCGGCACCACGACCAA
CGCCAGC 

BamHI 

A2R3 P. f. 10586 CTTTTACCCTCTTGGATCGC 

To check 
product of 

mmpA 
deletion 

- 

Bases underlined correspond to restriction sites. 
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Table 2.13. Primers used in Chapter 8. 

Name 
Template 
DNA 

Sequence Purpose 
Restriction 
sites 

ACP3 
FP 

pGEM-T-
Easy ACP3 

W55L, ACP4 
W57L No. C 
(A. Haines) 

CAGAATTCATGCCTTTAGCGGCC
AAGGCGGC 

Clone 
ACP3 

W55L into 
pET28a 

EcoRI 

ACP3 
RP 

GTGAGCTCTCACTGAAGCTGGGT
GCCCACCC 

SacI 

Bases underlined correspond to restriction sites. 
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2.2.1 BIO-X-ACT long DNA polymerase kit 

The BIO-X-ACT long kit (Bioline) provides high fidelity with proofreading 

ability, and is capable of amplifying DNA fragments up to 20kb. BIO-X-ACT long DNA 

polymerase provides a seventeenfold increase in fidelity than Taq polymerases, and 

has been optimised to achieve results from long templates. Reaction mixtures were 

set up as two solutions, detailed in Table 2.14. 24μl of solution A and 25μl of solution 

B was placed into to each reaction tube and 1μl of DNA added (H2O was used as a 

control). PCR was carried out in a Sensoquest labcycler using the program detailed 

in Table 2.15.  

 

Table 2.14. BIO-X-ACT long DNA polymerase kit reaction conditions. 

Solution A 

Component Total volume (μl) Volume/reaction (μl) 

Sample DNA - 1 

dNTP (2.5mM) 16 4 

Primer F (15pmole/µl) 4 1 

Primer R (15pmole/µl) 4 1 

H2O 72 18 

Solution B 

Components Total volume (μl) Volume/reaction (μl) 

Enzyme (4U/µl) 1.5 0.375 

Buffer (10x) 20 5 

MgCl2 (50mM) 6 1.5 

Spec Factor (5x) 40 10 

H2O 32.5 8.125 
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Table 2.15. BIO-X-ACT PCR program details. 

Stage Description Length Temp (°C) Cycles 

1 Denaturation 2min 94 1 

2 

Denaturation 15s 94 

10 Annealing 30s (Tm-4) 

Elongation 1min 70 

3 

Denaturation 15s 94 

20 
Annealing 30s (Tm-4) 

Elongation (plus 5s 
increment each cycle) 

1min 70 

4 Final elongation 7min 70 1 
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2.2.2 Invitrogen Taq polymerase  

Taq is a heat-stable polymerase isolated from Thermus aquaticus, and lacks 

proofreading activity. PCR for screening was performed with the Invitrogen PCR kit 

and each reaction was set up as detailed in Table 2.16 and performed as described 

in Table 2.17: 

 

         Table 2.16. Taq polymerase PCR reaction conditions. 

Component Volume/reaction (μl) 

Template DNA 1 

10x Buffer 5 

dNTPs (2.5mM) 4 

Taq polymerase 0.6 

50% glycerol 10 

Primer F (15pmole/μl) 0.3 

Primer R (15pmole/μl) 0.3 

MgCl (50mM) 1 

H2O 27.8 

 

Table 2.17. Taq polymerase PCR program details. 

Stage Description Length Temp (°C) Cycles 

1 Denaturation 2min 94 1 

2 

Denaturation 15s 94 

30 Annealing 30s (Tm-4) 

Elongation 1min 72 

3 Final elongation 7min 72 1 
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2.2.3 QuikChange® site-directed mutagenesis PCR 

Based on the QuikChange® site-directed mutagenesis kit by Stratagene, this 

method involves amplification of template plasmid DNA incorporating a point 

mutation at the same time. The template plasmid DNA is then digested to remove it 

from the sample. Mutagenic PCR was performed with the high fidelity Pfu DNA 

polymerase kit (Promega) and each reaction was set up as detailed in Table 2.18 

and performed using the conditions described in Table 2.19. A primer mix was 

prepared by adding 100pmole/µl of each to sdH2O to reach a final concentration of 

10pmole/µl. A dNTP mix was prepared by combining 100mM of each nucleotide with 

sdH2O to a final concentration of 10mM. A control was included that omitted the 

primers (replaced by sdH2O). 

 

 

         Table 2.18. Pfu polymerase PCR reaction conditions. 

Component Volume/reaction (μl) 

Template DNA  1 

Pfu 10x Buffer 5 

dNTPs (10mM) 2 

Pfu DNA polymerase (2-3U/µl) 1 

Primer mix (10pmole/μl) 2 

H2O 39 
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Table 2.19. Pfu polymerase PCR program details. 

Stage Description Length Temp (°C) Cycles 

1 Denaturation 1min 95 1 

2 

Denaturation 30s 95 

12 Annealing 1min 55 

Elongation 14min 68 

 

An agarose gel was run to check for the presence of template and amplified 

DNA. Methylated template DNA was digested with DpnI at 37°C for 1h. 
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2.2.4 Velocity DNA polymerase  

Velocity is a fast high-fidelity polymerase that generates blunt ended products. 

PCR for chromosomal deletion mutants was performed with the Velocity PCR kit 

(Bioline) and each reaction was set up as detailed in Table 2.20 and performed as 

described in Table 2.21: 

 

         Table 2.20. Velocity polymerase PCR reaction conditions. 

Component Volume/reaction (μl) 

Template DNA 2 

5x Buffer 10 

dNTPs (2.5mM) 5 

Velocity Taq polymerase 0.5 

Primer F (15pmole/μl) 2 

Primer R (15pmole/μl) 2 

DMSO 1.5 

H2O 27 

 

Table 2.21. Velocity polymerase PCR program details. 

Stage Description Length Temp (°C) Cycles 

1 Denaturation 2 min 98 1 

2 

Denaturation 30s 98 

30 Annealing 30s (Tm-4) 

Elongation 20s 72 

3 Final elongation 7 min 72 1 



Chapter 2: Materials and methods  93 
 

2.3 DNA manipulation 

2.3.1 Plasmid extraction 

Plasmid DNA was extracted by alkaline SDS lysis method of Birnboim and 

Doly (1979) or using Bioneer Accuprep® plasmid extraction kit.  

 

2.3.1.1 Birnboim and Doly alkaline SDS method 

Bacteria carrying plasmids were grown overnight in L broth supplemented with 

appropriate antibiotics. 1ml of the overnight culture was spun for 1min at 14,000rpm 

in a microfuge. The bacterial pellet was re-suspended in 100μl of ice cold lysis 

solution 1 (25mM Tris pH8.5, 10mM EDTA pH 8.0, 50mM glucose). 200μl of freshly 

prepared solution 2 (0.4M sodium hydroxide and 2% SDS) was added and the tube 

inverted several times before incubation on ice for 5min. 150μl of neutralising solution 

(3M sodium acetate pH 5.0) was added and the tube inverted several times before 

incubation on ice for 5min. Proteins and cell debris were pelleted by centrifugation for 

10min at 14,000rpm at 4ºC. The supernatant was poured into a new tube and 

plasmid DNA precipitated by addition of 400μl of isopropanol, prior to repeating the 

centrifugation step. The supernatant was discarded and the DNA washed with 70% 

ethanol followed by centrifugation for 10min at 14,000rpm. The supernatant was 

discarded and the DNA dried for 20min at 48ºC, prior to dissolving in 1/10 diluted 

TNE buffer. The plasmid DNA was stored at -20ºC until required. 
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2.3.1.2 Bioneer Accuprep® plasmid extraction kit 

All solutions were provided by Bioneer and the method carried out according 

to the manufacturer’s protocol. 1.5ml of an overnight culture was centrifuged at room 

temperature at 14,000rpm for 2min in a microfuge tube to pellet the bacterial cells. 

The medium was completely removed by pipetting. Cells were re-suspended in 250μl 

of buffer 1 (resuspension buffer) by vortexing. 250μl of buffer 2 (lysis buffer) was 

added and the contents of the tube mixed by inversion three times. 350μl of buffer 3 

(neutralisation buffer) was added and the tube immediately mixed by inversion three 

times, followed by centrifugation at 4°C at 14,000rpm for 10min. The cleared lysate 

was transferred to the DNA binding column tube and centrifuged at room temperature 

at 14,000rpm for 1min. The flow-through was poured off and the DNA binding filter 

column reassembled with the collection tube. 700μl of buffer 4 (wash buffer) was 

added to the column and then centrifuged at room temperature at 14,000rpm for 

1min. The flow through was poured off and the column reassembled, before an 

additional 1.5min centrifugation step to completely dry the filter. The DNA binding 

filter column was transferred to a new microfuge tube. 75μl of buffer 5 (elution buffer) 

was added to the filter and incubated at room temperature for 1min before 

centrifuging to elute the plasmid DNA at room temperature at 14,000rpm for 1min. 

The column was discarded and the DNA preparation stored at -20°C until required. 

 

2.3.2 Restriction digests 

Digestion of DNA was performed with appropriate restriction enzymes 

(Fermentas and NEB). Prior to gel electrophoresis the volume in each digestion tube 

was adjusted to 40μl, and digests required for detection were made up to a final 
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volume of 20μl. 1μl of each enzyme and either 4 or 2μl of the appropriate 10 times 

concentrated buffer were added to the reaction. Bovine serum albumin (BSA) was 

added if stipulated in the manufacturer’s instructions for a particular enzyme. 5-10μl 

sample DNA was added to the reaction, and the final volume made up by addition of 

sterile distilled H2O. Typically digestions were carried out at 37°C for 2h. 

 

2.3.3 Agarose gel electrophoresis 

PCR and restriction digest products were analysed by agarose gel 

electrophoresis. Gels were made of 1% agarose in TAE buffer (40mM tris-acetate, 

1mM EDTA pH 8.0). 1g of agarose was added to 100ml TAE and micro-waved on full 

power for 1min, before stirring and heating for an additional 30s. The solution was 

allowed to cool on the work bench, before adding 2μl of ethidium bromide solution 

(10mg ml-1). After sealing a gel tray the agarose mixture was poured in, and combs 

inserted, and the gel allowed to set at room temperature. 2μl of loading buffer (top: 

0.25% w/v xylene cyanol, 15% w/v ficoll; or bottom: 0.25% w/v bromophenol blue, 

15% w/v ficoll) was added to each 10μl of sample. Samples were run simultaneously 

with a 1kb DNA molecular weight ladder (Fermentas) at 100V/500mA for 

approximately 45min. DNA was visualised on a UV transilluminator. 

 

2.3.4 Extraction of DNA from an agarose gel 

Extraction of DNA from gel slices was performed using the Illustra GFX PCR 

DNA and gel band purification kit (G.E. Healthcare). All solutions were provided by G. 

E. Healthcare and the procedure carried out according to the manufacturer’s 

instructions. Required DNA bands were cut from an agarose gel, placed in a 
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microfuge tube and weighed. 10μl of Capture Buffer was added to the tube for each 

10mg of gel slice, or a minimum of 300μl was added. Samples were incubated at 

60°C for 15-30min (with inversion every 3min) until the agarose was completely 

dissolved. The Capture Buffer contains a pH indicator to ensure the solution is at the 

correct pH for maximum binding of DNA to the silica membrane in the column – if the 

solution changed from yellow/orange to pink, the pH would need to be brought back 

down to less than 7.5 by addition of 3M sodium acetate at pH 5.0. The sample was 

transferred to a column in a collection tube and incubated at room temperature for 

1min, before centrifugation at room temperature at 16,000rpm for 30s. The flow 

through was discarded, 500μl of Wash Buffer added to the column, and centrifuged 

at room temperature at 16,000rpm for 30s. The flow through was discarded and the 

column centrifuged again for 90s to fully dry the membrane. DNA was eluted by 

addition of 15μl of Elution Buffer, followed by incubation at room temperature for 

1min and centrifugation at room temperature at 16,000rpm for 1min. The elution step 

was repeated for each sample and the DNA stored at -20°C until required. 
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2.2.5 A-tailing blunt-ended PCR products 

Velocity DNA polymerase produces blunt-ended products, meaning for ligation 

into pGEM-T-Easy an ‘A’ tail needs to be added. The components required for A-

tailing (Table 2.22) were mixed in a microfuge tube and incubated at 70ºC for 30min, 

in advance of ligation with pGEM-T-Easy. 

 

 

         Table 2.22. Components for A-tailing blunt-ended PCR products. 

Component Volume/reaction (μl) 

Purified PCR fragment 6 

Invitrogen Taq MgCl2 1 

dATP (2mM) 1 

10x Invitrogen Taq buffer 1 

Invitrogen Taq DNA polymerase 1 

 

 

2.3.5 DNA ligations 

Ligations were performed either with the pGEM-T-Easy vector system I kit (for 

ligations with pGEM-T-Easy vector that utilise the blue/white colony screening to 

detect for transformants - Promega), with the Quick-stick ligase kit (for 5-15min 

ligations at room temperature - Bioline), or using the T4 DNA ligase system 

(Invitrogen) at 4ºC overnight. Firstly the vector and insert samples were run on an 

agarose gel against a marker to determine the concentration in ng/μl. To determine 

the amount of insert required for the ligation reaction, the amount of vector (ng) was 

divided by the multiplication factor (size of the vector divided by the size of the insert, 
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in kb). This was then multiplied by 3 for a 1:3 vector insert ratio. Usually ligations 

were performed in a 10μl reaction mixture following the manufacturer’s instructions.  

 

2.3.6 DNA transformation 

E. coli cells were made competent according to the methods of Cohen (1972). 

A single colony was used to inoculate 5ml L broth (with appropriate antibiotic 

supplement) which was subsequently incubated overnight at 37ºC with shaking. The 

overnight culture was diluted 1:50 with fresh L broth and grown on at 37ºC with 

shaking until OD600 was approximately 0.4-0.6. Cells were pelleted at 5000rpm for 

7min at 4ºC. The supernatant was discarded and the pellet resuspended in 2ml of 

100mM pre-chilled calcium chloride (CaCl2) per 5ml of culture and vortexed. The 

cells were incubated on ice for 20min, prior to centrifugation at 5000rpm for 7min at 

4ºC. The supernatant was discarded and the pellet of cells re-suspended gently in 

0.5ml of 100mM pre-chilled CaCl2 per 5ml culture. Competent cells were stored at 

4ºC. 3μl of plasmid DNA was added to 100μl of competent cells and left on ice for 

30min, followed by heat shock at 42ºC for 2min. 1ml of L broth was added to the cells 

and the suspension was incubated at 37ºC for 1-2h, prior to spreading 100μl on L 

agar plates and incubating at 37ºC overnight. 

 

2.3.7 DNA sequencing 

A 5ml overnight culture of the pGEM-T-Easy cloned gene to be sequenced 

was set up, and plasmid DNA was extracted as described previously. Sequencing 

was carried out by the functional genomics laboratory at The University of 

Birmingham using an ABI 3700 analyser. 200-500ng of plasmid DNA and 3-4pmoles 
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of the appropriate primer were supplied, and made up to a final volume of 10μl. 

Sequences were analysed using Chromas Lite 

(http://www.technelysium.com.au/chromas_lite.html).  

 

2.3.8 Sequence analysis 

Alignments of DNA and amino acid sequences were carried out using BLAST 

align (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple amino acid sequence 

alignments and generating phylogenetic trees was carried out using ClustalW 

(http://www.ebi.ac.uk/). Structural analysis of proteins was carried out using the 

PSIPRED protein structure prediction server (http://bioinf.cs.ucl.ac.uk/psipred/). 

Sequence logos were generated using WebLogo 

(http://weblogo.berkeley.edu/logo.cgi) (Schneider and Stephens, 1990; Crooks et al., 

2004). 

 

2.3.9 Conjugation and suicide vector excision 

Bi-parental mating was carried out to mobilise the suicide plasmid derivatives 

and expression vectors from E. coli S17-1 to P. fluorescens as follows. 1ml each of 

late-exponential phase cultures of E. coli S17-1, containing the relevant plasmid, and 

P. fluorescens were filtered onto a sterile 0.45µM Millipore filter which was 

subsequently plated onto L agar and incubated at 30ºC overnight to allow 

conjugation. The mating mixture was re-suspended in 1ml sterile saline solution 

(0.85%) and serially diluted with saline to give dilutions of 10-1-10-4. 100µl aliquots 

were plated onto M9 minimal media (200ml salt solution containing: Na2HPO4 (6g/l), 

KH2PO4 (3g/l), NH4Cl (1g/l), MgSO4 (1mM), thiamine HCl (1mM), CaCl2 (0.1mM), 

http://www.technelysium.com.au/chromas_lite.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/
http://bioinf.cs.ucl.ac.uk/psipred/
http://weblogo.berkeley.edu/logo.cgi
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glucose (0.2%) added to 200ml 50% H2O agar) supplemented with kanamycin at 

30ºC for 2-3 days. Single colonies were then re-streaked to kanamycin-containing M9 

minimal media and incubated at 30ºC for 3-4 days. Overnight cultures of co-integrant 

clones were incubated in L broth at 30ºC overnight without any antibiotic selection. 

The cultures were serially diluted with L broth to give dilutions 10-1-10-5 which were 

plated on L agar supplemented with 5% sucrose at 30ºC for 3-4 days. Single colonies 

were purified by first streaking to L agar supplemented with ampicillin, followed by 

simultaneous streaking on L agar plus ampicillin and L agar supplemented with 

kanamycin incubated at 30ºC for 3-4 days at each stage. AmpR and KanS colonies 

were selected and subjected to a final round of PCR to check for the mutant 

genotype.  

 

2.4 Bioassay for mupirocin production  

Single-colony-purified mutant and WT strains were used to inoculate L broth 

containing appropriate antibiotics and the cultures incubated overnight at 30°C. The 

OD600 of each culture was measured and the cultures diluted to the OD600 of the least 

dense culture. 10μl of culture was spotted onto 20ml L agar plates and incubated at 

room temperature for 24h. Overnight cultures of B. subtilis 1064 in L broth, no 

selection, were grown at 37°C. Agar containing 40μl ml-1 B. subtilis culture, and 2, 3, 

5-triphenyltetrazolium chloride (TTC) (0.25mg ml
-1

) was used to overlay the 20ml L 

agar plates and allowed to set, before incubating at 37ºC overnight. TCC is a redox 

indicator that is reduced to give a red precipitate in the presence of bacteria 

undergoing respiration. Therefore actively growing B. subtilis 1064 turns the agar red, 

but where there is no growth the agar remains colourless. The size of the clearance 
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zone, where the antibiotic has prevented growth of B. subtilis 1064 cells, relative to 

the WT zone, was taken as an estimate of the amount of mupirocin production. 

Assays were completed in triplicate and standard error bars calculated. 

 

2.5 High performance liquid chromatography 

Overnight cultures of strains in L broth supplemented with ampicillin were 

incubated at 25°C, 200rpm, before 1ml was used to inoculate 25ml of fresh SSM 

broth (25g soya flour, 2.5g spray dried corn liquor, 5.0g (NH4)SO4, 0.5g MgSO4•7H20, 

1.0g Na2HPO4, 1.5g KH2PO4, 1.09g KCl, 6.25g CaCo3, 50ml glucose, made up to 1l 

with H2O) and incubated at 22°C, 200rpm, for 40h. Cultures were centrifuged at 

13,000rpm for 7min and the supernatant filtered using 13mm, 0.2μm PTFE syringe 

filters. HPLC was performed using Unipoint LC system software, reverse phase C18 

column (15cm x 4.6mm), with UV detection (Gilson) at 233nm, and mobile phase 

water/acetonitrile gradient (5-70% acetonitrile trifluoroacetic acid (0.01%)) over 60min 

at 1ml min-1 flow rate. 

 

2.6 Liquid chromatography mass spectrometry (Zhongshu Song) 

LCMS was performed by one of our collaborators, Zhongshu Song, at The 

University of Bristol. L agar plates were inoculated with test strains and incubated at 

30°C for 30h. A single colony from each mutant and WT strain was picked from the 

agar plates and inoculated into L broth with carbenicillin (50µg/ml). The flasks were 

incubated at 25°C and 200rpm overnight. Three flasks each containing 100ml of 

fresh mupirocin production medium were inoculated with 5% of seed culture and 

incubated at 22°C and 220rpm for 48h. After the fermentation finished all the flasks 
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were examined for pH values, cultural outlook and smell for any sign of 

contamination. The cultures were combined and cells removed by centrifugation at 

16,000rpm for 20min. The supernatant was extracted by ethyl acetate (1:1) once, 

followed by an extra ethyl acetate extraction after the aqueous solution was acidified 

to pH 5.0. The two extracts were combined and ethyl acetate was evaporated in 

vacuo. The residue was collected in 3ml MeOH for LCMS analysis. Analytical 

samples were prepared by tenfold dilution with MeOH and analysed by LCMS using 

a 2795HT HPLC system. Detection was achieved by UV between 200 and 400nm 

using a Waters 2998 diode array detector, and by simultaneous electrospray (ES) 

mass spectrometry using a Waters QM spectrometer detecting between 150 and 600 

m/z units. Chromatography (flow rate 1 ml·min-1) was achieved using Phenomenex 

LUNA column (5μ, C18, 100Å, 4.6 × 250mm). Solvents were: A, HPLC grade H2O 

containing 0.05% formic acid; B, HPLC grade CH3CN containing 0.045% formic acid. 

Gradients were as follows: 0min, 5% B; 22min, 60% B; 24min, 95% B; 26min, 95% B; 

27min, 5% B; 30min, 5% B. Both positive ion (PI) and negative ion (NI) mode were 

employed for the characterisation of the target compounds together with UV 

absorption pattern. The target compounds were measured by selected ion monitoring 

(SIM). Assigned with purified standard compounds the yield of PA-A was measured 

at the retention time of 20.4min and a [M-H]- of m/z 499, mupiric acid at retention time 

of 16.5min and a [M-H]
-
 of m/z 185, and mupirocin H was measured at retention time 

of 14.7min and a [M+Na] + of m/z 295.  
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2.7 Protein expression and purification 

5ml of L broth (supplemented with appropriate antibiotic) was inoculated with a 

single colony from a fresh transformation, and incubated at 37ºC with shaking, 

overnight. The overnight culture was diluted 1:50 (2ml into 98ml) with fresh L broth 

and grown on at 37ºC with shaking until OD600 was approximately 0.4-0.6. Isopropyl-

β-D-thiogalactoside (IPTG) was added to the required final concentration to induce 

expression of the recombinant protein, prior to incubation at either 18ºC or 16ºC with 

shaking for 16h, 25ºC for 6h, 30ºC for 4h or 37ºC for 2h. The culture was split 

between two 50ml centrifuge tubes and spun at 11,000rpm for 10min at 4ºC, the 

supernatant discarded and the cells washed with 20ml of ice cold STE buffer (10mM 

Tris-Cl pH 8.0, 0.1M NaCl, 1mM EDTA pH 8.0) before centrifugation at 11,000rpm for 

10min at 4ºC. The supernatant was discarded and the pellet stored at -20ºC until 

required. 

 

2.7.1 Cell lysis 

Cell pellets were thawed on ice and re-suspended in 5ml BugBuster Master 

Mix (Novagen) per gram of wet pellet, and incubated at room temperature with 

rocking for 60min. To separate the cell debris from the soluble fraction the culture 

was centrifuged at 11,000rpm for 20min at 4ºC. The cleared lysate (supernatant) was 

transferred to a fresh tube and 20μl saved for analysis. The insoluble pellet was re-

suspended in 1% SDS and 20μl also saved for analysis. Select ACPs were lysed by 

sonication as follows: cell pellets were re-suspended in 5ml per gram of wet pellet in 

lysis buffer (100mM tris-Cl pH 8.0, 1mM dithiothreitol (DTT), 10% (v/v) glycerol) 

with10µl/ml Halt™ EDTA-free protease inhibitor cocktail (Thermo Scientific) and 
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sonicated on ice using 6x10s bursts at 10 microns with a 10s cooling period. 

Samples were then centrifuged at 11,000rpm for 20-30min to separate the soluble 

supernatant from the insoluble pellet. 

 

2.7.2 Nickel affinity chromatography 

1ml of nickel-agarose (Qiagen) per 4ml of lysate was added and the mixture 

rotated for 1h at 4ºC before being transferred to a 5ml polypropylene column. The 

flow-through was collected for analysis prior to washing the column three times with 

wash buffer A (50mM sodium phosphate buffer pH 6.0, 300mM NaCl, 10% glycerol), 

or wash buffer B (50mM sodium phosphate buffer pH 8.0, 300mM NaCl, 20mM 

imidazole). A 1ml sample was collected from the final wash. Proteins were eluted 

with 6 x 1ml of elution buffer (wash buffer A or B with increasing concentrations of 

imidazole). Loading buffer was prepared using 2.5ml upper tris (0.5mM Tris-Cl pH 

6.8, plus 0.4% SDS), 4ml 10% SDS, 0.4ml 1% bromophenol blue, 2ml glycerol, made 

up to 10ml with H2O. Before use 100µl β-mercaptoethanol was added to a 900µl 

aliquot of loading buffer before adding to the samples on a 1:1 ratio and incubating at 

55ºC for 10min. Samples were then loaded onto an SDS-polyacrylamide gel for 

electrophoresis (SDS-PAGE). 

 

2.7.2.1 Purifying proteins under denaturing conditions 

Proteins were denatured according to the Qiagen protocol (2003). Cell pellets 

were thawed on ice and re-suspended in 8M urea (5ml per gram wet pellet weight) 

prior to mixing at room temperature for 60min. Cellular debris was pelleted at 

10,000rpm for 30min at room temperature. Samples of soluble and insoluble (the 
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insoluble pellet was resuspended in 1% SDS and 20μl also saved for analysis) 

fractions were saved for analysis by SDS-PAGE. 1ml of nickel-agarose per 4ml of 

lysate was added and the mixture rotated for 1h at 4ºC before being transferred to a 

5ml polypropylene column. The flow through was collected for analysis prior to 

washing the column twice with 4ml of buffer C (100mM NaH2PO4, 10mM Tris-Cl, 8M 

urea, pH 6.3). Samples were collected at each stage for downstream analysis. 

Protein was eluted with 4 x 0.5ml of buffer D (buffer C at pH 5.9) and 7 x 0.5ml of 

buffer E (buffer C at pH 4.5). All fractions were added to loading buffer on a 1:1 ratio 

and incubated at 55ºC for 10min prior to SDS-PAGE analysis. 

 

2.7.2.2 Refolding denatured protein  

The refolding assay is based on a fractional factorial design and requires 

empirical research of a number of different variables such as pH, incubation 

temperature, and amount of protein to add and the concentrations of ingredients to 

add. The refolding assay used in this study was based on the QuickFold™ protein 

refolding kit (Athena Enzyme Systems). Before commencing the elutions from buffer 

E during the purification process were pooled and the pH adjusted to 7.0 by addition 

of NaOH, in order to start from a neutral protein solution. The protein concentration 

was adjusted to 1mg/ml with water. 50μl of protein was added to 950μl of each buffer 

(Table 2.23) in a microfuge tube whist vortexing gently, before incubation for 1h at 

room temperature. The A340 of each sample was measured against a water blank, to 

give an indication of the amount of refolded protein in the sample (iFOLD Protein 

Refolding System 2, Novagen). The samples were centrifuged at 14,000rpm for 

5min. The refolded soluble protein-containing supernatant was transferred to a fresh 
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tube, and the insoluble pellet re-suspended in 1% SDS and saved for analysis. 40μl 

of soluble fraction was mixed with 10μl of SDS-PAGE loading buffer and incubated at 

55ºC for 10min prior to SDS-PAGE. Successful refolding was evidenced by the 

presence of the protein in the soluble fraction. Samples that gave a positive signal in 

the soluble fraction by SDS-PAGE and had a low A340 reading were considered to be 

successfully refolded and could be optimised and scaled up. Large scale refolding 

took place by the dialysis method: the denatured soluble protein was dialysed 

overnight at 4°C, in a volume of refold buffer at least 50 times that of the pooled 

protein.  
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2.7.3 SDS-PAGE 

The recipes shown in Table 2.24 were used to make a resolving gel and a 

stacking gel. Two gel plates were clipped together; the resolving gel was prepared 

and pipetted in between and the top sealed with isopropanol to create a smooth top. 

Once the resolving gel was set the isopropanol was removed and the top of the gel 

washed with two volumes of water. The stacking gel was prepared and pipetted on 

top of the resolving gel and a comb inserted. When they had set, the gel plates were 

removed from the clips and the gel tank assembled. Tris-glycine electrophoresis 

buffer (25mM Tris pH 8.3, 250mM glycine, 0.1% (w/v) SDS) was added to the gel 

tank, ensuring it filled the gap between the gels. Samples were loaded and the gel 

was run at 50V, 20mA for approximately 4h. Once complete the gels were removed 

from the equipment and stained for 15-60min in Instant Blue (Expedeon). The gels 

were then briefly rinsed in water before being dried. 

 

Table 2.24. Components for SDS-PAGE gels. 

Component 
15% resolving 

gel  
10% resolving 

gel 
3% stacking 

gel 

H2O (ml) 2.3 4 3.24 

Tris (ml) 2.5* 2.5* 1.25+ 

1% APS (μl) 120 120 60 

30% acrylamide (ml) 5 3.35 0.6 

TEMED (μl) 8 8 15 

*Lower tris (1.5M tris-Cl pH 8.0, 0.4% SDS); +Upper tris (0.5M tris-Cl pH 6.8, 0.4% SDS); APS, 1% ammonium persulphate. 
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2.7.4 Determination of protein concentration 

Protein concentration was determined by running diluted samples on SDS-

PAGE and comparing the gel bands to a marker of known concentration. The 

concentration of the protein was calculated by multiplying the concentration of the 

marker by the appropriate dilution factor, depending on which sample matched the 

marker bands. Where an estimation of protein concentration was required a 1μl 

sample was loaded onto the NanoDrop ND-100 and the protein concentration 

estimated using the A280 method against a standard blank. 

 

2.8 Acyltransferase assays 

Proteins were incubated with 1ml reaction buffer (0.1M sodium phosphate 

buffer pH 8.0, containing 1mM EDTA) and 50μl of 10mM Ellman’s reagent (DTNB – 

5,5’-dithiobis-(2-nitrobenzoic acid)) at room temperature for 10min. The 

spectrophotometer was blanked with the reaction mixture prior to addition of 

substrate (acyl-CoA derivatives purchased from Sigma-Aldrich). Substrate was 

added (total reaction volume 1150μl) and the reaction converting DTNB to 2-nitro-5-

thiobenzoic acid (TNB) followed at 412nm. The molar extinction coefficient of TNB is 

14,150M/cm. Assays were performed in duplicate or triplicate and standard error bars 

calculated. 

 

2.9 Autoradiography 

Proteins were equilibrated in assay buffer (50mM HEPES pH 7.4, 2mM TCEP) 

at room temperature for 10min before addition of [14C]-malonyl-CoA (Perkin Elmer). 

The reaction was quenched after 20min by addition of DTT SDS-PAGE loading buffer 
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with no reducing agent (50mM upper tris, 2% SDS, 0.1% bromophenol blue, and 

10% glycerol). The samples were boiled for 3min and analysed by SDS-PAGE. The 

gels were stained as described before, prior to being dried onto filter paper and 

placed in a phosphorimager cassette. After 24h the phosphorimager screen was 

scanned and the images analysed.  

 

2.9.1. Analysis of phosphorimager screen 

For each gel that was exposed to a phosphorimager screen a spot test was 

performed that involved pipetting 0.2µl of [14C]-malonyl-CoA onto the filter paper. 

Scanned screens were analysed using the Quantity One software (BioRad). 

Radioactive counts were calculated for each sample, in addition to the spot test. The 

amount of malonate acquired by the proteins was calculated as a percentage of the 

spot test and took into account dilution factors. An example is detailed below: 

 

Step 1: The spot test = 181µM [14C]-malonyl-CoA = 26,735 radioactive counts 

Step 2: A sample has 693 radioactive counts 6.2100
735,26

693









% of 26,735 or 

181µM = 4.7µM 

Step 3: The sample was diluted with an equal volume of SDS-PAGE loading buffer: 

2

7.4
= 2.35µM 

Step 4: Only a quarter of the sample was loaded onto the SDS-PAGE gel: 
4

35.2
= 

0.59µM acquired by the protein. 

Assays were performed in duplicate or triplicate and standard error bars calculated. 
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2.10 Circular dichroism 

Protein samples eluted from Ni-NTA were dialysed against sodium phosphate buffer 

at either pH 6.0 or pH 8.0 (depending on which buffer, A or B, was used to elute the 

proteins) to remove any traces of NaCl, glycerol or imidazole which can all affect the 

absorbance spectrum of a solution. Dialysis took place at 4ºC overnight, using 

Spectra/Por dialysis membrane with a 6-8kDa molecular weight cut off (Spectrum 

Labs). Protein samples were diluted to 1mg/ml and 60µl loaded into a 0.1mm path 

length quartz cuvette and the absorbance from 190-260nm recorded on a Jasco-J-

715 spectropolarimeter. Absorbance spectrums were analysed using Spectra 

Analysis software (Jasco) and Dichroweb 

(http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) (Whitmore and Wallace, 2004; 

2008). Assays were performed in duplicate or triplicate and standard error bars 

calculated. 

 

2.11 Protein crosslinking with glutaraldehyde 

The protein of interest was incubated at room temperature for 20min with 

varying concentrations (0.01-0.5%) of glutaraldehyde, in 0.05M bicine-NaOH buffer, 

pH 8.5, 0.1mM DTT and 0.4M NaOH. The reactions were terminated with 

ethanolamine-HCl (pH 8.0) added to a final concentration of 0.14M. Samples were 

then analysed by SDS-PAGE for evidence of crosslinking. 

 

 

 

http://dichroweb.cryst.bbk.ac.uk/html/home.shtml
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3 EXPRESSION AND PURIFICATION OF MUPIROCIN 

BIOSYNTHESIS PROTEINS 

 

3.1 Introduction 

Proteins are essential constituents of all living organisms and are involved in 

every aspect of the function of a living cell. Proteins can be characterised at a 

bioinformatics level, studying the amino acid sequence and predicting structure and 

function relationships, but additionally at an applied level – performing in vitro assays 

to determine the function(s). Before assays can take place however, protein needs to 

be expressed in a host and purified.  

Escherichia coli has been a model organism in microbiology for many years, 

due to the ease and inexpense of growing cultures and high expression of foreign 

proteins (Sambrook and Russell, 2001). As early as the 1940’s E. coli was used as a 

model organism and was key in demonstrating that certain bacteria use conjugation 

as a method of transferring genetic material (Lederberg and Tatum, 1946). In 1973 it 

was the organism of choice when DNA cloning and recombinant DNA were 

developed by Stanley Cohen and Herbert Boyer (Russo, 2003). Since then, 

hundreds of recombinant proteins have been expressed in E. coli using a variety of 

different expression systems. The choice of system depends on the amount of 

protein required, the size of the protein to be expressed, and whether active protein 

is required. Vectors can contain IPTG-inducible promoters, bacteriophage T7 

promoter or the bacteriophage λ PL promoter. Proteins can be produced as fusion 

proteins with β-galactosidase, alkaline phosphatase, glutathione S-transferase 

(GST), maltose binding protein (MBP), hexa-His, or thioredoxin (Sambrook and 

Russell, 2001). Special strains are also available to allow expression of genes that 
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use a range of codons that are not suited to the abundant aa-tRNAs that are usually 

present in E. coli, for example Rosetta (DE3) from Novagen. Previous investigations 

that have involved expression and purification of polyketide proteins, particularly AT 

and ACP, have utilised the various plasmids of the pET vector system (Cox et al., 

2002; Aron et al., 2007; Lopanik et al., 2008; Arthur et al., 2009; Musiol et al., 2011). 

There are 44 pET-derived expression vectors available, and the system has been 

widely used since development in the 1990’s (Sørensen and Mortensen, 2005; 

Merck, 2005). 

 Many proteins form insoluble inclusion bodies when over-expressed in E. coli 

leading to incorrectly folded and non-functional protein, which is unproductive for 

further studies. There are many factors that can lead to proteins having a propensity 

for insolubility when over-expressed: increased aggregation due to hydrophobic 

residues; reduced protein translation of ORFs involving rare codons; N- and C-

terminal sequences, and inability to interact with proteins participating in folding in 

vivo (Idicula-Thomas and Balaji, 2005). Determining the optimal expression 

conditions to produce soluble recombinant protein can be difficult and involves 

empirical research, tweaking various factors such as incubation temperature and 

time, and concentration of inducer. Insoluble inclusion bodies are thought to arise 

from improper folding in the E. coli host, and if these issues can be rectified then 

soluble protein may be achievable. Living cells have developed molecular chaperone 

systems, such as DnaK-DnaJ-GrpE and GroEL-GroES, which bind to proteins to 

prevent aggregation in the cytoplasm during in vivo protein production (Georgiou and 

Valax, 1996; Baneyx, 1999; Qoronfleh et al., 2007). The GroEL-GroES system 

encodes 2 polypeptides (Figure 3.1): GroEL is a tetradecamer consisting of 14 
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subunits arranged in 2 heptameric rings while GroES forms a lid on top of the rings 

trapping the protein inside, where it is unrestricted to begin folding (Horwich et al., 

2007; Madan et al., 2008). After several seconds, GroES is released allowing the 

protein, folded or not, to be liberated into the cell. These chaperones can be co-

expressed with the protein of interest in an attempt to prevent aggregation into 

inclusion bodies. The search goes on for new ways to improve expression of proteins 

in soluble form, such as the development of novel fusion tags, developing screening 

strategies to efficiently search for ideal expression parameters and determining the 

characteristics that make certain proteins insoluble (Idicula-Thomas and Balaji, 2005; 

Ohana et al., 2009; Vernet et al., 2011). 

 

 
 
Figure 3.1. Architecture of the E. coli GroEL-GroES chaperonin. One subunit has 
been coloured to reveal the domain structure: Ap, apical domain; Int, intermediate 
domain; Eq, equatorial domain. GroES binds asymmetrically, encapsulating the cis 
GroEL ring (Horwich et al., 2007). 
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If soluble protein cannot be produced by traditional expression experiments, 

inclusion bodies can be isolated, purified and the protein refolded in vitro, but the 

process is difficult, may not always work, and if it does may not produce functional 

protein that can be used in downstream applications. Strong solvents, such as urea 

or guanidine-HCl, are required for solubilising the aggregates prior to refolding, but 

this process denatures the proteins (Marston and Hartley, 1990). Denaturation of a 

protein involves disrupting the secondary and tertiary structure to a point where its 

standard form and functional activity is lost. The denaturation and renaturation of 

ribonuclease has been extensively investigated since the 1950’s. Complete 

denaturation took place in the presence of urea and mercaptoethanol, but once these 

reagents were removed the ribonuclease re-established the native conformation and 

regained catalytic activity (Anfinsen, 1973). There are many factors that can influence 

the renaturation of a protein, for example, heat, pH, oxidation state, ionic strength, 

protein concentration, and the presence of sugars, cofactors, surfactants, detergents 

and/or chaotrophic agents (Marston and Hartley, 1990; Clark, 1998; Lilie et al., 1998). 

Refolding can occur either by dilution or dialysis methods to remove or at least 

reduce the concentration of the solubilising agent and replace it with agents required 

for refolding. Screening systems have been developed in an attempt to facilitate the 

research involved in determining the ideal conditions for refolding proteins, but the 

process still requires empirical research with many factors being investigated.  

Previous work had already been done on the mupirocin AT and ACP proteins. 

In her thesis, J. A. Shields details the expression and purification, using the pET-

expression vector system, of mupirocin ACP1, 3-7, mAcpA, C and D and one of the 
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ATs - AT2 (2008). Shields went on to utilise the ACPs for phosphopantetheinylation 

studies (Shields et al., 2010).  

 The aim of this study was to solubilise difficult proteins, optimise solubility 

conditions for those already found to be soluble, and purify them. Of particular 

interest are the ATs that potentially transfer substrates throughout the mupirocin 

biosynthesis system. As AT2 has previously been purified the focus of this Chapter 

will mainly be on the AT1 protein. Having both of these proteins pure for biochemical 

characterisation will help build a complete picture of how mupirocin biosynthesis is 

initiated and progressed throughout the cluster. It is presumed that one or other of 

the ATs will transfer substrates to the ACPs throughout the cluster, both type I and 

type II ACPs, so it is vital to be able to purify a selection of ACPs to utilise in future 

enzymatic assays.  
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3.2 Results 

The pET28a vector used in previous studies and this study encodes 

kanamycin selection, contains an f1 origin of replication, is under the control of the 

T7lac promoter, has an N-terminal 6-His tag which can be removed by thrombin 

cleavage, and an internal T7 tag (Merck, 2005). The vector containing the gene of 

interest is cloned into an expression host (i.e. E. coli BL21 (DE3)) that carries a 

chromosomal copy of the T7 RNA polymerase gene under the control of the lacUV5 

promoter. Under normal conditions the lac repressor binds to the lac operator on both 

the E. coli BL21 (DE3) genome and the plasmid, preventing transcription of the T7 

RNA polymerase (Figure 3.2). Upon addition of IPTG, the lac repressor is released 

(bound to IPTG), allowing chromosomal transcription of the T7 RNA polymerase, 

which in turn initiates transcription of the target gene by the T7 promoter on the 

plasmid (Sørensen and Mortensen, 2005; Merck, 2005).  
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Figure 3.2. Regulating protein expression in pET28a. Stage 1 - The lac repressor 
is bound to the lac operator preventing transcription of the T7 RNA polymerase. On 
addition of IPTG (Stage 2) the lac repressor is released, allowing transcription of the 
T7 RNA polymerase (Stage 3) which switches on transcription of the target gene 
(Stages 4-5) (Merck, 2005). 
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3.2.1 Expression and purification of acyltransferase proteins 

Acyltransferase 1 and 2 (AT1 and AT2) were previously cloned as EcoRI-SacI 

fragments into pET28a to give vectors pJS559 and pJS560 (Shields, 2008), and 

transformed into E. coli BL21. Induction conditions for over-expression of the proteins 

were determined by a series of experiments to test the effect of the concentration of 

IPTG, the post-induction incubation temperature and length of incubation. AT1 was 

found to be insoluble while AT2 was soluble. 

 

3.2.1.1 Expression and purification of AT1 

Preceding work had determined that AT1 was insoluble when expressed in E. 

coli BL21 (DE3) and BL21 star (DE3) at post-induction temperatures ranging from 

18°C to 37°C, and varying IPTG concentrations. The use of MagicMedia (Invitrogen) 

and the MBP fusion tag did not improve the solubility of this protein (Shields, 2008). 

Therefore in this study AT1 was co-expressed with a 4.5kb plasmid, pSUEH (Lund, 

1993) that encodes the E. coli chaperonin complex GroEL-GroES. AT1 was insoluble 

if expressed in E. coli without pSUEH, but a small fraction appeared soluble (and 

there was less insoluble) when the chaperone protein was produced alongside it at 

18°C post-induction (Figure 3.3, A).  
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Figure 3.3. Expression and purification of AT1. (A) Expression of AT1 without and 
with the GroEL-GroES chaperone. (B) Purification of AT1 after co-expression with 
GroEL-GroES. M, molecular weight marker; lane 1, soluble fraction; lane 2, 
chromatography column flow through; lane 3, final wash through fraction. 
 
 

Purification of His-tagged AT1 was attempted using nickel-affinity 

chromatography, but very little of the protein appeared to bind to the column as 

indicated by AT1 coming out in the flow through in Figure 3.3 (B). This could be due 

to many reasons: it is possible the protein is being folded in such a way that the His-

tag is folded towards the inside, meaning it would not be free to bind to the nickel 

agarose; the protein remains insoluble; or conditions for binding to nickel agarose 

and subsequent elution are not optimal. 

 

3.2.1.1.1 Alternative purification strategy for AT1 

The plasmid pET28a has an N-terminal His-tag, allowing for purification by 

nickel-affinity chromatography. If the protein of interest is being folded in such a 

manner that the tag is not available for binding to the nickel agarose it could hinder 

the purification process. Therefore, a strategy was designed to incorporate the His-

tag at the C-terminus of the protein, and also to extend the His-tag out further from 
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the protein with the aim of making it more accessible to the nickel agarose on the 

chromatography column. Therefore, AT1 and a 10 residue Gly-Ala linker were cloned 

into pET28b using primer pairs AT1BF and AT1BR. After amplifying the region by 

PCR it was cloned and sequenced in pGEM-T-Easy (pRG300). Following 

sequencing, linker-AT1 was excised as an XhoI-NcoI fragment and ligated with 

pET28b to give plasmid pRG301. The linker was then excised by restriction digest 

with XhoI-SalI overnight, the DNA band purified and ligated to re-linearise the 

plasmid to produce pRG302. Absence of the linker was double-checked by digest 

with SalI. To add a 15 residue Gly-Ala linker to pJS559, the plasmid was first 

digested with BamHI-EcoRI, followed by AT1 DNA band purification and ligation with 

100pmole of primers LINKAF1 and LINKAR1 (prepared by boiling for 10min) to 

produce plasmid pRG303. Addition of the linker was checked by restriction digest 

with AhdI, a restriction site unique to the linker region. Plasmids pRG301, pRG302 

and pRG303 were co-expressed with pSUEH in E. coli BL21 (DE3), induced with 

0.1mM IPTG and incubated at 18°C for 16h to overexpress AT1, prior to purification. 

It appears that extension of the N-terminal His-tag, use of a C-terminal his-tag with 

and without an extension linker were unsuccessful in purifying AT1 (Figure 3.4), 

however, there is no insoluble AT1 when using pRG303 and more in the soluble 

fraction. This would suggest that the purification conditions do not suit AT1. 
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3.2.1.1.2 Expression of AT1 in E. coli Lemo21(DE3) 

E. coli Lemo21 (DE3) cells (NEB) contain the same host features as BL21 

(DE3), but allow for tuneable expression of difficult clones, producing more properly 

folded soluble protein. By varying the level of lysozyme, the natural inhibitor of T7 

RNA polymerase, it is possible to fine tune expression of the target protein (Wagner 

et al., 2008). The level of lysozyme is altered by the addition of L-rhamnose to the 

expression culture. Plasmid pJS559 was transformed into competent E. coli Lemo21 

(DE3) cells, and small scale expression experiments were conducted at 15°C, 18°C 

and 30°C to determine: a) the optimum temperature for expression; and b) the 

optimum L-rhamnose concentration for expression. At each temperature the amount 

of AT1 in the insoluble fraction is greater at a concentration of 0mM than at 100mM 

L-rhamnose, and gets successively less as the concentration of L-rhamnose 

increases (Figure 3.5). At 18°C AT1 remained in the insoluble fraction, at 15°C the 

amount of insoluble AT1 decreased considerably, and at 30°C, there was no AT1 in 

the insoluble fraction when the L-rhamnose concentration is 500μM or above. At 

15°C there appeared to be a small amount of soluble AT1, so large scale expression 

and purification was carried out using 100mM L-rhamnose, however AT1 came off in 

the flow through and did not purify (data not shown).  
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Figure 3.5. Expression of AT1 in E. coli Lemo21(DE3). Expression was carried out 
at a variety of different temperatures (right-hand side) and L-rhamnose 
concentrations (top), prior to lysis by BugBuster Master Mix and running soluble and 
insoluble fractions by SDS-PAGE. M, molecular weight marker; the white box 
indicates soluble AT1. 
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3.2.1.1.3 Expression of AT1 in Terrific Broth 

Terrific Broth was developed in 1987 in order to improve the yield of plasmid 

DNA in E. coli (BD Biosciences, 2011). The broth includes extra peptone, yeast 

extract, potassium phosphates and glycerol to encourage growth of recombinant 

strains of E. coli to produce a higher cell density, and therefore increase the yield of 

soluble protein expression. Plasmid pJS559 was expressed in E. coli BL21 (DE3) at 

a range of temperatures and IPTG concentrations to determine if any soluble protein 

could be detected before scaling up expression to purify AT1. Figure 3.6 shows that 

at 18°C no soluble protein was detected. At 37°C there appeared to be a small 

amount of soluble protein, but the most was achieved when incubated at 30°C for 4h 

post-induction with 0.5mM IPTG, although the amount appears to remain negligible.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Expression of AT1 in Terrific Broth. Expression at different 
temperatures (right-hand side) and IPTG concentrations (top). The negligible amount 
of protein visualised by SDS-PAGE ceased further investigation under these 
conditions. M, molecular weight marker. 
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3.2.1.1.4 Purification of AT1 with styrene maleic acid  

Inclusion bodies are formed when proteins with hydrophobic patches on their 

surface aggregate. Researchers are developing new technologies to overcome this 

and increase the solubility, and consequently increase production of proteins. One 

such product is NVOY (Expedeon), a carbohydrate based polymer which binds to 

hydrophobic surface patches preventing proteins from aggregating.  

Styrene maleic acid (SMA) is a copolymer that forms lipid discs which 

preserve the integrity of transmembrane proteins, and has been used to increase the 

solubility of proteins for analysis (Knowles et al., 2009). When integrated with a 

protein SMA forms a lipid particle (SMALP) in the shape of a disc which surrounds 

the protein (Figure 3.7). The proteins within are protected from denaturation and 

aggregation. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. The proposed structure of a SMALP. A protein is shown in blue, and 
phospholipid molecules shown in red (Knowles et al., 2009). 
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Plasmid pJS559 was expressed in E. coli BL21 at 18ºC for 16h with and 

without pSUEH. The cell pellets were re-suspended in Bugbuster Master Mix along 

with 1mg/ml SMA (Tim Dafforn, 2011). Solubilisation and purification then proceeded 

as described previously. It appeared that SMA didn’t enhance the solubility of AT1, 

however the soluble fraction was considerably less contaminated than when SMA 

was not present (Figure 3.8). Purification by nickel-affinity chromatography yielded no 

pure AT1 – the protein came off in the flow-through fraction as before (data not 

shown). 

 

 

 

 

 
Figure 3.8. Expression of AT1 with and without SMA. M, molecular weight 
marker; I, insoluble; S, soluble; A, AT1; B, AT1+SMA; C, AT1+pSUEH; D, 
AT1+pSUEH+SMA. 
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3.2.1.1.5 Purifying AT1 under denaturing conditions 

Due to the continuing problems with expressing and purifying soluble AT1, an 

alternative strategy was implemented. The denaturation process was optimised by 

testing different lysis solutions for producing the maximum amount of soluble 

denatured protein, before purification by nickel-affinity chromatography under 

denaturing conditions. Figure 3.9 shows that this purification scheme was successful, 

with a good yield and purity of AT1. The chaperone protein GroEL came out in the 

flow through, further increasing the purity of the AT1 fraction.  

 
 
 
 

 
 
Figure 3.9. Purification of AT1 under denaturing conditions. AT1 was denatured 
by lysis of host cells with 8M urea prior to purification. M, molecular weight marker; 
lane 1, soluble lysate; lane 2, insoluble protein; lane 3, chromatography column flow 
through fraction; lane 4, final wash fraction. AT1 was eluted with 100mM NaH2PO4, 
10mM Tris-Cl, 8M urea at pH 5.9 (elution buffer D) and pH 4.5 (elution buffer E). 
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3.2.1.1.6 Refolding purified denatured AT1 

In order to test the functions of AT1 it was necessary to renature the protein 

beforehand. The method adopted in this study was based on a fractional factorial 

design, first screening for a suitable buffer, and second optimising the buffer 

conditions for maximum protein refolding (Chen and Gouaux, 1997; Armstrong et al., 

1999; Qoronfleh et al., 2007; Athena Enzyme Systems, 2008). Successful protein 

refolding was visualised by SDS-PAGE and taking the A340, as described in Chapter 

2. The absorption at 340nm is informative because unfolded protein will precipitate, 

and so less precipitation indicates more properly folded protein. Figure 3.10, (A) 

shows that AT1 was successfully refolded in the presence of a variety of different 

factors. Buffer 11 (50mM Tris-Cl pH 8.5, 9.6mM NaCl, 0.4mM KCl, 1mM EDTA, 0.5% 

triton X-100 and 1mM DTT) was selected for optimisation as it appeared to produce 

the most soluble protein. Factors optimised were pH and the concentration of DTT in 

the buffer. Figure 3.10, (B) and (C) shows that all of the optimised buffers produced 

soluble, refolded protein. Buffer 11.9 was chosen for subsequent refolding on a large 

scale due to the resultant protein solution having the lowest absorbance reading, and 

therefore less denatured protein. 

 

 

 

 

 



Chapter 3: Expression and purification of mupirocin proteins  131 
 

F
ig

u
re

 3
.1

0
. 

R
e
fo

ld
in

g
 o

f 
A

T
1
 u

s
in

g
 a

 f
ra

c
ti

o
n

a
l 

fa
c
to

ri
a
l 

d
e

s
ig

n
e
d

 a
s
s

a
y
. 

A
 m

a
tr

ix
 w

a
s
 d

e
s
ig

n
e

d
 i
n
c
o
rp

o
ra

ti
n
g
 1

9
 

d
if
fe

re
n
t 

e
le

m
e

n
ts

 t
o
 b

e
 t

e
s
te

d
 (

S
e
c
ti
o
n
 2

.7
.2

.2
).

 (
A

) 
B

u
ff

e
r 

1
1
 p

ro
d
u
c
e

d
 t

h
e
 s

tr
o
n

g
e
s
t 

re
fo

ld
e

d
 b

a
n
d
 o

n
 S

D
S

-P
A

G
E

. 

(B
) 

a
n
d
 (

C
) 

O
p
ti
m

is
a
ti
o
n
 o

f 
th

e
 r

e
fo

ld
in

g
 p

ro
c
e
s
s
 f

o
r 

A
T

1
. 

B
, 

T
h
e
 S

D
S

-P
A

G
E

 g
e
l 

s
h
o

w
s
 t

h
a
t 

e
a
c
h
 m

o
d
if
ie

d
 b

u
ff

e
r 

p
ro

d
u
c
e
s
 s

o
lu

b
le

 r
e
fo

ld
e
d
 A

T
1
; 

C
, 

T
h
e
 t

a
b
le

 s
h

o
w

s
 t

h
e
 m

o
d

if
ic

a
ti
o

n
s
 t

o
 b

u
ff

e
r 

1
1
 i

n
 e

a
c
h
 c

a
s
e
. 

a
A

b
s
o
rb

a
n
c
e

 o
f 

th
e
 

s
o
lu

b
le

 f
ra

c
ti
o
n
 a

ft
e
r 

re
fo

ld
in

g
 a

n
d

 l
y
s
is

 s
h
o
w

s
 t

h
e
 d

e
g
re

e
 o

f 
re

fo
ld

in
g
 f

o
r 

e
a

c
h
 b

u
ff

e
r 

–
 a

 l
o

w
 a

b
s
o
rb

a
n
c
e
 m

e
a
n
t 

th
e
re

 

w
a
s
 l
e
s
s
 d

e
n
a
tu

re
d
 p

ro
te

in
 i
n
 t

h
e
 s

a
m

p
le

. 
M

, 
m

o
le

c
u
la

r 
w

e
ig

h
t 

m
a
rk

e
r.

 



Chapter 3: Expression and purification of mupirocin proteins  132 
 

3.2.1.1.7 Expression of AT1 with the GST tag 

A GST fusion protein includes a 26kDa glutathione-S-transferase (GST) fused 

to the N-terminus of the protein of interest. This strategy was employed as it was 

thought a larger tag might be more effective at extending from the protein. GST-

tagged proteins bind to a reduced glutathione (GSH) affinity column, and can be 

eluted by displacement of the GST fusion protein by addition of GSH to the column. 

The GST tag can be removed, if desired, by thrombin cleavage (Smith and Johnson, 

1988). AT1 was PCR amplified for cloning into the pGEX-2t vector using the primers 

AT1pGEXF and AT1pR to produce plasmid pRG304. PCR products were purified 

and ligated with pGEM-T-Easy for sequencing. Successful cloning of AT1 with pGEX-

2t was determined by restriction digest with SmaI and EcoRI, ahead of transformation 

into E. coli BL21 cells. Small scale experiments showed that most GST-AT1 was 

expressed at 18°C (Figure 3.11, A). After treatment with BugBuster Master Mix to 

separate soluble and insoluble fractions it appeared that some GST-AT1 was soluble 

(Figure 3.11, B). 

 
 

Figure 3.11. Expression of AT1 with the GST tag. (A) Expression experiments at 
different temperatures (bottom) and IPTG concentrations (top). (B) Solubility of AT1 
after expression at 18°C and 0.1mM IPTG. M, molecular weight marker; I, insoluble; 
S, soluble; white box indicates soluble GST-AT1; orange box indicates cleaved GST 
(bottom) and cleaved AT1 (top). 
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3.2.1.2 Expression and purification of AT2 

Previous work had determined that AT2 was soluble when expressed in E. coli 

BL21 (DE3), and this was confirmed by expression experiments during this study 

(Figure 3.12, A). It was determined that AT2 was more soluble at the lower 

temperature of 18°C, as opposed to the previously determined 24°C (Shields, 2008). 

After induction with 0.1mM IPTG and continued growth at 18°C for 16h, samples 

were lysed with BugBuster Master Mix and the soluble fraction purified by nickel-

affinity chromatography as previously described. Figure 3.12, B shows AT2 purified 

to a high purity and yield of approximately 7mg/ml. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Expression and purification of AT2. (A) Solubility of AT2 at a range of 
temperatures (top in ºC). M, molecular weight marker; lanes X, 0.1mM IPTG; lanes Y 
no IPTG. (B) Purification of AT2. Lane 1, soluble lysate; lane 2, insoluble protein; 
lane 3, chromatography column flow through fraction; lane 4, final wash fraction. 
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3.2.1.3 Expression of thiomarinol acyltransferases 

As an alternative to using the mupirocin AT1 for assays it was thought it may 

have been possible to use the AT1 from the related thiomarinol system as the 

proteins share 43% identity. The thiomarinol ATs were cloned as EcoRI-SacI 

fragments into pET28a to create plasmids pRG305 for AT1 and pRG306 for AT2. 

Tml-AT1 was found to be soluble at 18ºC (Figure 3.13, A), however attempts at 

purification were futile (Figure 3.13, B). Tml-AT2 was also found to be soluble at 

18ºC, but not to the degree that mup-AT2 was (Figure 3.13, C). Purification was not 

carried out for this protein as mup-AT2 produced a sufficient yield to work with. 

 

 

Figure 3.13. Expression of thiomarinol ATs. (A) Solubility of Tml-AT1. M, 
molecular weight marker; lane 1, soluble fraction; lane 2, insoluble fraction. A, 18ºC; 
B, 30ºC. (B) Purification of Tml-AT1. Lane 3, chromatography column flow through; 
lane 4, final wash fraction. (C) Solubility of Tml-AT2. Lane 5, 0mM IPTG; lane 6, 
0.1mM IPTG, lane 7, 0.5mM IPTG; lane 8, 1.0mM IPTG.  
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3.2.2 Expression and purification of ACPs 

Previously the ACPs were cloned into pET28a and the mAcps were cloned 

into pGBT340, a pET28a derivative lacking the T7 tag (Shields, 2008). For this study, 

each ACP-containing plasmid was initially transformed into E. coli BL21 (DE3) to 

assess expression conditions compared to the work of Shields (2008). It was 

confirmed that the ideal expression conditions for ACPs 1, 3-5, 7 and mAcps A, C, 

and D were as defined previously (Table 3.1). ACP6 was found to be more soluble at 

15°C for 16h when induced with 1mM IPTG, than at the previously described 30°C 

for 4h induced by 0.4mM IPTG. ACP2, 10 and 11 were previously found to be not 

expressed at all in E. coli BL21, so expression conditions were tested using a variety 

of IPTG concentrations and post-induction incubation temperature and times. By 

lowering the induction temperatures it was found not only that the proteins were 

expressed, but that they were in the soluble fraction. Previously ACP8 and 9 were 

found to be produced, but to be insoluble under all conditions tested. Expression 

conditions were tested again, but these two ACPs remained in the insoluble fraction. 

They were cotransformed with pSUEH in the hope that the chaperone plasmid would 

facilitate protein folding, but this was also unsuccessful. Therefore, plasmids pJS568 

and pJS569 were transformed into E. coli Lemo21 (DE3), as an alternative 

expression host and the experiments repeated. Both ACPs were found to require 

1mM of L-rhamnose for optimal soluble expression, and induction with 0.4mM IPTG. 

ACP8 was incubated at 18°C for 16h, ACP9 required 2h at 37°C. The expression 

conditions of mAcpB were deduced to be as for the previously defined mAcpA, C and 

D, while mAcpE required a lower post-induction temperature to acquire soluble 

protein. The ACPs were expressed on a large scale and subjected to purification by 
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nickel-affinity chromatography as previously described. Figure 3.14 shows that all 

ACPs, with the exception of 4, 7, 11, B and E purify to a certain degree. While the 

yield and purity was not optimum, functional ACP was produced for future assays. 

 

 

Table 3.1. Expression conditions for mupirocin ACPs. 

Protein 
Solubility phenotype 

Temperature (°C)a Time (h)b [IPTG] (mM) 

‡ACP1 37 2 0.1 

ACP2c 15 16 0.1 

‡ACP3* 30 4 0.4 

ACP4 30 4 0.4 

‡ACP5* 37 2 0.1 

‡ACP6d 15 16 1.0 

ACP7 37 2 0.1 

‡ACP8e 18 16 0.4 

ACP9e 37 2 0.4 

ACP10c 15 16 1.0 

ACP11c 18 16 0.25 

‡mAcpA 30 4 0.1 

mAcpBe 30 4 0.1 

‡mAcpC* 30 4 0.1 

‡mAcpD* 30 4 0.1 

‡mAcpEe 25 5 0.1 

a, post induction temperature; b, post induction incubation time; c, ACPs were previously found not be expressed under a range 

of conditions; d, previously expressed at 30°C for 4h after induction by 0.4mM IPTG; e, ACPs were previously found to be 

insoluble under a range of conditions; *, lysis by sonication rather than Bugbuster; ‡, ACPs purified using buffers B (the 

remainder used buffers A) (Shields, 2008). See Chapter 2. 
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3.3 Discussion 

In order to assay the activity of the mupirocin ATs, soluble functionally active 

protein needed to be produced. The production of the mupirocin ATs and ACPs is 

key to the continuation of this work. While AT2 was easily solubilised and purified to a 

good yield and purity, it was a different story altogether regarding AT1. A number of 

strategies were deployed in an effort to obtain soluble functionally active protein, but 

unfortunately none were successful. In the end the rather drastic step of purifying the 

protein under denaturing conditions and attempting to renature it was taken. While 

this produced a good yield of protein, it cannot be definitely defined as active until 

biochemical characterisation. If during the process of characterisation it is not clear if 

AT1 has regained activity or not, it could be due either to no activity from AT1 or to 

the fact that the refolding process did not work efficiently. One method to check the 

refolding of AT1 would be to perform circular dichroism on both AT2 and the refolded 

AT1 to determine the secondary structure and to compare the two proteins. The 

structures of AT1 and AT2 should be similar to each other, so the similarity of the 

refolded AT1 compared to the native AT2 would give an indication of the degree of 

refolding that has occurred. 

Increasing the solubility of AT1 could be crucial in being able to purify active 

protein in the future. Expressing AT1 with the GST tag appeared to be successful, 

however time constraints meant this work could not be repeated. The inclusion of 

protease inhibitors could prevent the cleavage of GST from AT1 and so increase the 

amount of soluble GST-AT1 that could potentially be purified using glutathione 

agarose chromatography. There are many other methods than those tested during 

this work for producing soluble protein. Simply adding glycerol to the buffers could 
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prevent the aggregation that can lead to insolubility (Gekko and Timasheff, 1981). 

Various biotechnology companies provide vectors for producing recombinant protein. 

The SHuffle system (NEB) is marketed as a vector system that can produce soluble 

protein, particularly proteins that require disulfide bonding for folding. The SHuffle 

system not only has deletions of reductase genes gor and trxB, but also expresses 

DsbC which aids correct protein folding (Chen et al., 1999; and de Marco, 2009). 

Rare codon usage can affect protein translation as the E. coli tRNA population can 

be lacking in particular codons. Both AT1 and AT2 have the rare Pro codon CCC, but 

additionally AT1 also has rare Arg codons AGG (x1) and CGA (x2). The Rosetta™ 

host strains have been designed to specifically counteract proteins that use rare 

codons – they supply rare tRNAs on a ChlR plasmid (Novagen). As these stains are a 

variant of E. coli BL21 they are compatible with the pET system, and so this may be a 

viable option to try in the battle of purifying AT1. 

While solubility does appear to be a major factor in the problems that have 

arisen during the work with AT1, it may be that changing the method of purification 

could produce more protein. Methods such as size-exclusion or ion-exchange 

chromatography could prove to be more successful than the nickel-affinity 

chromatography method used in this study. Ammonium sulphate precipitation was 

tried during this study (data not shown) and appeared to isolate pure AT1, however 

upon re-suspending the pellet afterwards in a variety of different buffers AT1 

remained insoluble. Alternatively there are many other affinity tags that might prove 

more successful. The PinPoint Xa protein purification system (Promega) produces 

soluble biotinylated fusion proteins with the benefit that they can be affinity purified 

under native conditions using the SoftLink™ Soft Release Avidin Resin (Promega). 
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The HaloTag (Promega) purifies proteins based on ligand specific covalent 

immobilisation, and is thought to enhance solubility (Ohana et al., 2009). An 

additional tagging system is the cool-tag, a fragment of a penicillin binding protein 

that binds exclusively to ampicillin sepharose (Expedeon). One option would be to 

mutate the AT2 active site motifs to match those of AT1 in an attempt to alter the 

substrate specificity or to match the specificity of AT1. As AT2 is a very soluble 

protein this could prove successful, so long as those residues in AT1 were not the 

cause of the insolubility.  

Some of the methods discussed to improve the solubility and purification of 

AT1 can be applied also to the ACPs that proved to be not so soluble (ACP3, 4, B 

and E) and to those that did not purify by nickel-affinity chromatography (ACP4, 9, 

11, B and E). While the biochemical relationship between the ATs and some ACPs 

can be resolved, for a fuller picture it would be ideal to have access to all of the 

mupirocin ACPs. It was also hoped that acyl group transfer to the ketosynthase of 

module 1 would be able to be monitored, but this protein also remained insoluble.  

 During this chapter the expression and purification of AT1 was achieved and 

the conditions for AT2 were optimised. All ACPs, with the exception of ACP4, were 

able to be expressed as soluble protein and purified. These proteins can therefore go 

on to be utilised in enzymatic assays to assess the functions of the ATs. 
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4 CHARACTERISATION OF AT1 AND AT2 

 

4.1 Introduction 

A transferase is an enzyme which catalyses the transfer of a functional group 

from one molecule to another, for example, a methyltransferase transfers a methyl 

group and a glycosyltransferase transfers a monosaccharide. Acyltransferases (ATs) 

transfer acyl groups and can be found in many biological processes, from production 

of the neurotransmitter acetylcholine in eukaryotes to fatty acid biosynthesis in 

prokaryotes (St-Pierre and De Luca, 2000). ATs have particularly important roles in 

fatty acid and polyketide biosynthesis, transferring the starter and extender units to 

the enzyme complexes. As mentioned previously, FASs and PKSs are homologous, 

so important observations about one can frequently correlate to the other. 

The mammalian type I FAS is an intertwined polypeptide chain homodimer, 

with a lower condensing portion and an upper modifying portion (Figure 4.1, A) 

(Maier et al., 2008). The malonyl-acetyl transferase (MAT) is located in the 

condensing portion and functions to provide both the acetyl-starter and malonyl-

extender units. The MAT is connected to neighbouring KS and DH domains by 

linkers containing α-helices and β-sheets, thought to prevent direct interaction 

between domains (Maier et al., 2008). The fungal type I FAS is an α6β6-

heterododecameric complex formed into a central wheel structure with a dome either 

side; openings provide access to the encompassed reaction chambers (Figure 4.1, 

B) (Jenni et al., 2007). Located in one of the dome segments, an acetyltransferase 

provides acetyl starter units, while a malonyl/palmitoyl transferase (MPT) provides 

malonyl extender units to ACPs (Jenni et al., 2007).  
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Figure 4.1. Structures of the mammalian and fungal FASs. (A) The structure of a 
mammalian FAS from pig, comprising of two segments that intertwine to form an X-
shape dimer. (B) Structure of the α and β subunits that comprise the fungal FAS from 
Thermomyces lanuginosus. A total of 12 subunits form the complex. KR, 
ketoreductase; ER, enoyl reductase; ME, methyltransferase; DH, dehydratase; MAT, 
malonyl-acetyl transferase; KS, ketosynthase; ACP, acyl carrier protein; LD, linker 
domain; MPT, malonyl/palmitoyl transferase, AT, acyltransferase; DM, dimerization 
module; PT, phosphopantetheinyl transferase; TIM, triose phosphate isomerase. 
(Jenni et al., 2007; Maier et al., 2008). 
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The bacterial type II FAS, in particular that of E. coli, has been extensively 

studied and is comprised of enzymatic functions encoded as discrete proteins that 

form a large enzymatic complex (Figure 1.6) (Schujman and de Mendoza, 2008). The 

structures of several of these discrete proteins have been elucidated allowing for 

important rules to be formed that can be applied to other homologous systems 

(Huang et al., 1998; Price et al., 2004). The E. coli FAS complex contains two 

transferases: an acetyl-CoA-ACP transferase (AT) domain for transferring the acetyl-

CoA starter unit, and a malonyl-CoA-ACP transferase (MCAT) which transfers an 

extender malonyl group from malonyl-CoA to the exposed sulfhydryl group of the 

ACP (Magnuson et al., 1993).  

The E. coli MCAT, encoded by fabD is comprised of two domains with the 

active site located in a cleft between them (Figure 4.2) (Serre et al., 1995). Research 

has indicated that the entire length of the active site cleft is utilised in the binding of 

substrate during acyl-group transfer (Oefner et al., 2006). There are four amino acid 

residues at the active site that are particularly involved in substrate docking and 

recognition. Located at a sharp turn between an α-helix and a β-sheet within the 

major sub domain Ser92 attacks the thioester carbonyl of malonate, where it binds, 

forming a tetrahedral enzyme-substrate complex (Figure 4.2) (Oefner et al., 2006). 

Anchored at the base of the active site cleft is Arg117, which recognises the acidic part 

of the molecule, and in particular two –NH moieties forming a bidentate salt bridge 

with malonate (Oefner et al., 2006). Gln11 further stabilises malonate via hydrogen 

bonding. His201 functions to stabilise the Ser92 residue prior to attack of the substrate, 

and protonates the CoA, releasing it and leaving behind malonyl-FabD (Keatinge-

Clay et al., 2003). These reactions are the first step of a ping-pong bi-bi mechanism 
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of substrate acquisition and transfer (Joshi and Wakil, 1971). In the second step, the 

phosphopantetheine arm of ACP docks in the active site cleft, the substrate is 

transferred and His201 protonates Ser92, releasing malonyl-ACP and leaving the 

active site of FabD free to acquire more substrate (Keatinge-Clay et al., 2003). There 

are several other residues thought to be involved in substrate specificity and these 

will be discussed in further detail in Chapter 5. 
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Figure 4.2. Schematic representations of the MCAT active site and the 
mechanisms taking place in it. (A) Malonyl-CoA binding to MCAT. Malonate is 
depicted in orange, CoA in green, hydrogen bonds by dotted lines. (B) The process 
of MCAT transferring a malonate group from CoA to ACP. Malonate is depicted in 
orange, CoA in pink and ACP in light blue. (C) The 3D structure of E. coli FabD 
complexed with malonyl-CoA. Helices are shown as green cylinders; strands are 
shown as brown arrows; random coils are blue; Coenzyme A and malonate are 
depicted in ball and stick style. PDB ID: 2G2Z. (Keatinge-Clay et al., 2003; Oefner et 
al., 2006). 
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The crystal structures of portions of modules comprising DEBS and FAS have 

been solved providing valuable structural and mechanistic information that may be 

applied to other systems. Fragments of modules 3 and 5 of DEBS have been studied 

in detail after X-ray crystallisation. The fragments from both modules comprise 

homodimeric proteins that include KS and AT domains along with structurally defined 

linker sections (Figure 4.3, A). It was shown that the AT domains had an α,β–

hydrolase-like core domain and a smaller subdomain, very similar to that of E. coli 

and S. coelicolor MCAT (Serre et al., 1995; Keatinge-Clay et al., 2003; Tang et al., 

2006; Tang et al., 2007). A noticeable difference from the bacterial MCAT structures 

was that the C-terminal helix of the AT was stacked against one side of the three 

stranded β-sheet/two α-helix region of the KS-to-AT linker region forming a unique 

αβα- fold. The post-AT linker region then wraps back over the AT domain and KS-to-

AT linker to interact specifically with the KS domain – forming a rigid structure that 

prevents the AT and KS domains from moving apart. The active site of the AT 

domain formed a 20Å deep channel between the two subdomains (the invariant 

Arg
667

 forming a bridge with methylmalonyl-CoA substrate), but the distance between 

this and the KS active site was too great for the span of a phosphopantetheine arm of 

ACP to bridge the gap. Thus significant domain reorganisation is required for the 

ACP/substrate complex to interact first with the AT and then the KS domain (Tang et 

al., 2006; Tang et al., 2007).  

In contrast to the cis-acting ATs from the DEBS system, trans-acting ATs do 

not have the same inter-domain constraints. Until recently little was known about this 

type of AT, but there are now over 30 PKS systems identified where AT activity is 

provided in trans by one or more discrete proteins. 
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Figure 4.3. Crystal structures of cis- and trans-acting ATs. (A) Crystal structure 
of the cis KS3/AT3 didomain of DEBS module 3 dimer. The KS3 domain, KS3-AT3 
linker, AT3, and post-AT3 linker are shown in blue, yellow, green and red 
respectively. AT, acyltransferase; KS, ketosynthase (Tang et al., 2007). (B) 
Homology model of the trans-acting AT DisD docking with disorazol ACP1. ACP is 
shown in cyan, AT large subdomain in green and AT small subdomain in red. Active 
site serine residue of the AT and phosphopantetheine attachment site of the ACP are 
shown as red spheres. ACP, acyl carrier protein (Wong et al., 2011). 
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Out of these trans-AT systems the substrate specificity has been determined 

for only a few ATs and in almost every case the preferred substrate is malonyl-CoA, 

with the exception of KirCII of the kirromycin system which is specific for 

ethylmalonyl-CoA (Tang et al., 2004b; Aron et al., 2007; Lopanik et al., 2008; Musiol 

et al., 2011; Wong et al., 2011). The first structure of a trans-acting AT was published 

in 2011 providing new insights into the field of trans-acting ATs (Figure 4.3, B) (Wong 

et al., 2011). The trans-AT was found to be very similar to the cis-ATs from modules 

3 and 5 of DEBS as well as to FabD from E. coli. In keeping with previous predictions 

DisD was found to be an αβ-hydrolase with a large and a small subdomain. The large 

subdomain was comprised of 10 α-helices and a short 3-stranded parallel β-sheet, 

while the small subdomain was comprised of a 4-stranded anti-parallel β-sheet 

topped with 2 α-helices – this is an α-helix and β-strand less than the cis-ATs or 

FabD. The active site cleft was located in a gorge in between the large and smaller 

subdomains (Wong et al., 2011). This model has also shed light on the second part 

of the AT reaction – the docking of an ACP. Previous models for S. coelicolor MAT 

indicated that the ACP docked on the larger subdomain of the AT around the helical 

flap (Keatinge-Clay et al., 2003). For cis-acting ATs it is also known that the linkers 

connecting the ATs to the adjacent domains either side are important for ACP 

recognition and docking (Wong et al., 2010). However, trans-acting ATs do not have 

linkers connecting them to the KS domain, and so it is clear that an alternative 

mechanism must be in operation. The crystal structure of DisD has shown that Asp45 

of the ACP1 could form a salt bridge with Lys197 on the AT surface (Wong et al., 

2011). This model has also demonstrated that the majority of the ACP-AT interaction 

appears to involve the smaller AT subdomain, as opposed to the large subdomain. It 
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is possible that the lack of the C-terminal helix and sheet in this trans-AT allows 

substrates to preferentially dock at the smaller subdomain (Wong et al., 2011).  

Due to the homology between FASs and PKSs, the conclusions of research 

undertaken on E. coli FabD and S. coelicolor MAT can be applied to polyketide ATs, 

not only those with known substrate specificities, but the information can also be 

utilised to predict substrate specificity (Yadav et al., 2003). Correlating to E. coli FabD 

residues 198-201 (Val, Pro, Ser and the active site His), highly conserved sequence 

motifs have been found to indicate substrate preferences among polyketide ATs. The 

sequence motif YASH correlates with methylmalonyl-CoA specificity, while HAFH 

correlates with malonyl-CoA specificity (Del Vecchio et al., 2003). The choice of 

starter and extender units is determined by the substrate preferences of the ATs. The 

starter and extender units are simple carboxylic acids that become associated with 

CoA (for example: acetyl, propionyl, butyryl, isobutyryl, malonyl and methylmalonyl), 

but the vast pool of substrates available ensures polyketides are a diverse group of 

metabolites (Ruan et al., 1997; McDaniel et al., 1999; Staunton and Weissman, 

2001). The loading AT (ATL) of the DEBS system is somewhat promiscuous as it can 

transfer acetyl, butyryl and isobutyryl groups, in addition to the preferred substrate of 

propionyl; while the remaining ATs load methylmalonyl derived extender units 

(Marsden et al., 1994; Lau et al., 2000). BryP AT1 is a promiscuous trans-AT as it 

can accept both malonate and methylmalonate, although the substrate of preference 

is malonate (Lopanik et al., 2008).  

The mupirocin cluster contains two domains classified as ATs – both encoded 

by mmpC, and are proposed to act in trans throughout the production of mupirocin 

(El-Sayed, et al., 2003; Wu et al., 2008). Sequence alignments have shown that AT1 



Chapter 4: Characterisation of AT1 and AT2  151 
 

and AT2 are both homologous to ATs of type I PKS systems, such as DEBS, and 

AT2 also shows sequence identity to an MCAT involved in fatty acid synthesis (El-

Sayed et al., 2003). Previous studies on the cluster have shown that in-frame 

deletion of AT1 only reduced mupirocin production (but did not abolish it), while a 

similar mutation in AT2 abolished it, leading to the conclusion that AT2 is essential for 

mupirocin biosynthesis, whereas AT1 is not (El-Sayed et al., 2003; Shields, 2008). It 

is thought that the ATs load the starter acetate unit onto module 1 of MmpD, and 

then load extender malonate units onto ACP2-11. It is also possible they load 3-

hydroxypropionate (3-HP) starter units to mAcpD as a precursor to 9-

hydroxynonanoic acid (9-HN) biosynthesis (El-Sayed et al., 2003). MmpC is 1110 

amino acids (aa) in length, and it is predicted to be split into 3 domains, the 2 ATs 

and a third domain: AT1 is 286aa and has a molecular weight of 30.9kDa; AT2 is 

281aa with a molecular weight of 30.5kDa, and the third domain is 416aa with a 

molecular weight of 45.9kDa; there are also linkers between the domains.  

The third domain has homology to many domains or discrete proteins labelled 

as FMN-dependant oxidoreductases or PfaD family protein, which are responsible for 

omega-3 polyunsaturated fatty acid biosynthesis in several bacteria (Metz et al., 

2001; Bumpus et al., 2008). Many of these are encoded by known PKS clusters and 

are also associated with trans-ATs, such CorA (61% identity), DifA (58% identity), 

PksE (55% identity), ChiA (54% identity), TmpC (62% identity), KirCI (43% identity), 

BatK (58% identity) and PedB (56% identity). Sequence alignments with ERs from 

trans-AT systems have revealed a remarkable similarity between 15 putative ER 

domains when aligned with the MmpC third domain - as many as 34 residues are 
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completely conserved. Inactivation of this putative ER resulted in abolishment of 

mupirocin production indicating the importance of this domain. 
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4.2 Results 

4.2.1 Phylogenetic analysis 

All of the characteristics described that define trans-AT PKS systems can be 

applied to those of the mupirocin cluster: the ATs are encoded by a discrete gene, 

there are two cis-acting methyltransferase (MT) domains (in modules 1 and 3) 

thought to incorporate the methyl groups of S-adenosyl methionine (SAM) into the 

growing polyketide chain; and there are no ER domains included in any of the 

modules - it is thought that the third domain of MmpC could encode an ER domain 

that would act in trans to provide the remaining two enoyl reductions required for 9-

HN biosynthesis (MupE performs the C7’-C6’ enoyl reduction) (El-Sayed et al., 

2003). Malonate is the preferred extension substrate for trans-acting ATs, and it is 

highly probable that this is the case in mupirocin biosynthesis.  

Phylogenetic analysis of 52 trans-acting ATs indicated 2 main evolutionary 

pathways with the mupirocin ATs falling into separate clades (Figure 4.4). The 

domain architecture of genes encoding trans-acting ATs varies from single ATs, 

tandem ATs, single AT with a C-terminal ER domain, single AT with a C-terminal TE 

domain, to tridomain proteins with tandem AT domains and a C-terminal ER domain. 

While several single ATs group in either AT1- or AT2-like (in relation to the mupirocin 

ATs) there are also several that appear to be phylogenetically separate, such as 

FenF, ZmaF, AlbXIII, Orf12 of S. carzinostaticus-F41, OzmC and EtnB. Of these, 

OzmC and EtnB are not the only ATs in their respective clusters – OzmM encodes a 

tridomain protein and EtnK has bidomain ATs (Menche et al., 2008; Zhao et al., 

2010). There are five tridomain proteins, of which MmpC is one, and in every case 

the first AT (AT1) clusters in the AT1-like group and the second AT (AT2) clusters in 
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the AT2-like group, with the exception of BryP – which is reversed (Lopanik et al., 

2008). There are several proteins that have the tandem AT architecture – of these 

the first AT is always AT1-like and the second is AT2-like, like the tridomain proteins 

but lacking the ER domain. When the AT is part of a bidomain protein which 

encompasses a C-terminal ER or TE domain, the AT is always AT2-like. 
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4.2.2 Secondary structure prediction 

X-ray crystallography is a method used to determine the spatial arrangement of 

atoms within a molecule. The electron density information gained can be used to build 

a 3D model of the molecule. The structure of several bacterial fatty acid MCATs have 

been solved by X-ray crystallography, thus allowing predictions about the structure of 

similar enzymes. Predictions of the secondary structures of the mupirocin ATs was 

carried out using the protein structure prediction server (PSIPRED), and compared to 

that of FabD and DisD (Jones, 1999; and McGuffin et al., 2000). Figure 4.5 shows the 

predicted results. The prediction confirmed the presence of 14 α-helices in FabD, but 

predicted the presence of an extra β-strand. The active site GHS motif appears to be 

located in between a β-strand and an α-helix, which concurs with previous research 

(Serre et al., 1995). PSIPRED predicted DisD to have 13 α-helices and 7 β-strands (8 

if you include the small C-terminal one), and this is in agreement with Figure 2 from 

the research by Wong et al., but not with the text – they describe DisD as having 12 α-

helices (2011). However based on their figures and the prediction from PSIPRED it 

seems likely that DisD has one less α-helix than FabD. Again the active site GHS motif 

is located between a β-strand and an α-helix. MmpC AT2 is predicted to match the 

structure of DisD – 13 α-helices and 7 β-strands, with the active site GHS located 

between a β-strand and an α-helix. However, MmpC AT1 appears to have a slightly 

different structure – there are only 11 predicted α-helices and 5 β-strands. While the 

position of the active site GSS motif appears to be the same, it is clear there may be 

structural differences in the active site of AT1. The GSS motif does not appear to be 

located in a tight turn between a β-strand and an α-helix, but in a space between two 

sizable α-helices. 
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4.2.4 Crosslinking of AT2 

While the structural models of modules from the DEBS system show that 

modules 3 and 5 operate as dimeric proteins, it is unknown whether this is the case 

for trans-AT systems (Tang et al., 2006; 2007). It is also unknown if the ATs that are 

absent in these systems function as dimers or monomeric proteins. It may be that 

dimerization provides a more efficient mechanism for transferring units throughout 

the cluster. While dimerisation can be assessed by size-exclusion chromatography, 

in this case glutaraldehyde crosslinking was used to determine whether purified AT2 

forms dimers. Glutaraldehyde reacts with amino groups, specifically those on Lys 

residues, to form stable covalent bonds – Schiff base formation from an amino group 

from one protein and a carbon-nitrogen bond formation with an amino group from 

another protein molecule (Wine et al., 2007). If two proteins are in close proximity to 

one another they will both react with the glutaraldehyde to form a dimeric complex 

which can indicate their ability to dimerise in vivo. AT2 at a concentration of 0.1mg/ml 

was incubated with increasing concentrations of glutaraldehyde as described in 

Chapter 2 and the reaction terminated after 20min. The data in Figure 4.6 shows that 

treatment of AT2 with glutaraldehyde does not result in crosslinking to form dimers, 

which would have resulted in a band corresponding to approximately 68kDa. The 

presence of a band immediately below AT2 could be explained by the absence of 

protease inhibitors in the reaction mix, allowing some cleavage of the N-terminal His-

tag to take place. The disappearance of this band on addition of glutaraldehyde 

indicates the crosslinking process is fully functional. 
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Figure 4.6. Crosslinking AT2 with glutaraldehyde. The absence of a band around 
68kDa showed that AT2 does not function as a dimer. The band slightly below the 
AT2 band can be accounted for by cleavage of the 3.8kDa His-tag.  
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4.2.5 Substrate specificity assay of AT1 and AT2 

The assay to test AT activity in vitro involved measurement of free sulfhydryl 

groups exposed upon transfer of malonate from CoA to AT. Ellman’s reagent (5, 5’-

dithio-bis-(2-nitrobenzoic acid) – DTNB) reacts with free sulfhydryl groups to yield a 

mixed disulphide and 2-nitro-5-thiobenzoic acid (TNB), which can be measured at 

412nm (Ellman, 1959). Preparations of AT1 and AT2, purified as described in 

Chapter 3, were used to determine specificity for release of CoA from different acyl-

CoA substrates. The ATs at 50µM were equilibrated with buffer and Ellman’s reagent 

prior to addition of 100µM acyl-CoA substrate, which was used to start the reaction. 

The reactions were measured over a 10s period, with measurements being taken 

every 1s. The ATs were initially tested with acetyl-CoA (the proposed starter unit for 

mupirocin biosynthesis) and malonyl-CoA (the extender unit). Figure 4.7 shows that 

neither AT showed significant activity with acetyl-CoA, and only AT2 accepted 

malonyl-CoA. A possible reason for the negative result with AT1 could be that the 

refolding process had not reconstituted an active protein and as of the time of writing 

this Thesis it has not been possible to perform an alternative test of AT1 activity 

although ideas about this are discussed in Chapter 6. 

In addition to the two substrates initially tested, AT2 was also tested with 

propionyl- and methylmalonyl-CoA, both of which are known to be involved in 

polyketide biosynthesis (Marsden et al., 1994). AT2 did not react with either of these 

substrates, as was expected from the sequence analysis which had predicted a 

preference for malonyl-CoA. The reaction between AT2 and its substrate, malonyl-

CoA, proceeded very fast – it appeared the majority of the reaction was completed 

within seconds, the time it took to mix the contents of the cuvette and start recording 
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the reaction on the spectrophotometer. Assays were completed using less AT2 and 

at lower temperatures to attempt to slow the reaction down, and while this produced 

a lower absorbance reading, the reaction still proceeded within the first few seconds. 

For this reason it was not possible to calculate kinetic parameters from the Ellman’s 

assay. 

 

 

 

 
Figure 4.7. Substrate preference of AT2 measured by Ellman’s assay. The 
results indicate AT2 converted 58.6µM of malonyl-CoA to malonate and CoA. [AT2] = 
50µM; [substrate] = 100µM; n=2. 
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4.2.6 Acquisition and transfer of malonate by AT2 

Autoradiography was used to confirm the findings from the enzyme assay. 

Initially AT2 was incubated with [14C]-malonyl-CoA to assess self-loading of 

malonate. Loading was not detected for either of the negative controls – AT2 with no 

substrate, and substrate without any AT2. Radioactivity was detected when both 

[14C]-malonate and AT2 were present (Figure 4.8). As the concentration of unlabelled 

malonyl-CoA was decreased, the amount of radioactivity on AT2 increased. At 

maximum concentration of [14C]-malonyl-CoA (20μM), there is approximately 40% 

incorporation of [14C]-malonyl-CoA – indicating that all 8µM of AT2 has acquired a 

[14C]-malonyl group. This result confirmed that of the previous section – that AT2 is 

specific for malonyl-CoA. It also confirmed that this assay could be used to determine 

the transfer of the malonyl group from AT2 to mupirocin ACPs.  

 

 
 
Figure 4.8. Radiolabelling of AT2. AT2 was mixed with unlabelled malonyl-CoA and 
[14C]-malonyl-CoA at different ratios to assess malonate acquisition. 
 



Chapter 4: Characterisation of AT1 and AT2  163 
 

4.2.6.1 Assessing the appropriate conditions for AT assays 

An initial assay to test the ability of AT2 to transfer [14C]-malonate to holo 

ACP3 proved to be negative. On reviewing conditions it was decided to fully assess 

the conditions required for transfer. Firstly the presence of the reducing agent tris(2-

carboxyethyl)phosphine (TCEP) was tested. All assays were performed in duplicate 

with 5µM AT2 and 20µM ACP and [14C]-malonyl-CoA. Figure 4.9 demonstrates that 

TCEP is required for AT to transfer the [14C]-malonate to the ACP – while AT2 can 

acquire the malonate without the presence of TCEP, it can then only be transferred to 

the ACP in the presence of TCEP. 

 

 

 

Figure 4.9. Effect of TCEP on the transfer of [14C]-malonate to ACP3. Where 
present [AT2]=5µM, [ACP]=20µM and [[14C]-malonyl-CoA]=20µM. 
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To determine the optimal pH to conduct the assay, tests were designed using 

buffers of varying pH’s and the ability of AT2 to transfer malonate to ACP3 was 

observed. The amount of malonate observed on AT2 and ACP3 was calculated in 

comparison to a spot test of known concentration, as described in more detail in 

Chapter 2. An initial assay varying from pH 4.4-10.4 highlighted the area around pH 

7.4 as a suitable pH for optimal malonate acquisition by AT2 (Figure 4.10, A), in line 

with the methods used in the characterisation of BryP (Lopanik et al., 2008). Further 

optimisation of the pH determined pH 8.0 to be optimal for transfer of malonate from 

AT2 to ACP3 (Figure 4.10, B).  

There are many factors in the radiolabelling assay that could affect the transfer 

of malonate from AT2 to the ACP. Due to the speed at which AT2 acquires malonate 

the concentration of ACP and [14C]-malonyl-CoA in the assay could be rate limiting. 

Therefore, tests were conducted to analyse the ideal concentration of AT2 required 

for maximum transfer of malonate to ACP3. While the concentration of AT2 was 

lowered from 20µM to 0.1nM, the concentration of both ACP3 and [14C]-malonyl-CoA 

was fixed at 20µM (Figure 4.11). The highest transfer to ACP3 occurred between 

AT2 concentrations of 1µM and 10nM. An AT2 concentration higher than 2µM (the 

AT2/ACP3 cross over point in Figure 4.11 (B)) is likely to result in less malonate 

being transferred to ACP3. At an AT2 concentration of 50nM the malonylation of 

ACP3 was at its highest – 3.7µM. At this concentration the malonylation of AT2 was 

still at a minimal level, so it was decided to use 50nM AT2 in all further assays. This 

would ensure the concentration of ACP and [14C]-malonyl-CoA in the assay were not 

rate limiting and so allow the maximum amount of transfer to the ACP to be 

measured. 
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Figure 4.10. Effect of pH on the malonylation of AT2 and ACP3. (A) The 
malonylation of AT2 and ACP3 were measured between pH 4.4-10.4. n=2. (B) The 
malonylation of ACP3 between pH 7.4 and 8.3. In all cases [AT2]=5µM, [ACP]=20µM 
and [[14C]-malonyl-CoA]=20µM. n=2. 
 



Chapter 4: Characterisation of AT1 and AT2  166 
 

 

 
Figure 4.11. Effect of AT2 concentration on the malonylation of ACP3. (A) 
Autoradiography showing the effect of decreasing AT2 concentration on malonate 
transfer to ACP3. (B) Line graph showing the amount of malonate acquired by AT2 
and ACP3 as the concentration of AT2 was lowered (data is only shown for 
[AT2]<2.5µM). In all cases [ACP]=20µM and [[14C]-malonyl-CoA]=20µM. n=1. 
 



Chapter 4: Characterisation of AT1 and AT2  167 
 

4.2.6.2 AT2 malonylation of type I and type II ACPs 

Individual ACPs were incorporated into the assay at the same stage as AT2 

and allowed to equilibrate before addition of [14C]-malonyl-CoA. In the first instance 

soluble fraction ACP was added to the assay to get an idea of the ACPs that could 

accept malonate as not all ACPs in the cluster could be purified (data not shown). 

The empty pET28a vector and apo ACPs were used as negative controls. All type I 

ACPs appeared to self-malonate to a certain degree and to malonate in the presence 

of AT2, although as this was using soluble fraction it is possible the self-malonylation 

could have been due to a separate protein. mAcpA, C, D and E all appeared to self-

malonylate and accept malonate in the presence of AT2. This preliminary experiment 

confirmed previous findings that E. coli phosphopantetheinyl transferase (PT), Sfp, 

can phosphopantetheinylate apo mAcpA and convert it to the active holo form 

(Shields, 2008). These results also found that this was likely for mAcpB, C and E, 

although further investigation would be required to confirm this. Interestingly, 

although converted from apo to holo from by Sfp, where it was able to accept 

malonate (perhaps as a by-product from the reaction, rather than self-acquisition), 

holo mAcpB was not malonylated in the presence of AT2. 

Using the conditions determined in the previous section the ability of AT2 to 

transfer malonate to pure ACPs was investigated. The assay was performed in pH 

8.0 buffer containing 1mM TCEP, with an AT2 concentration of 0.05µM, an ACP 

concentration of 20µM, and a [14C]-malonyl-CoA concentration of 20µM. 

Autoradiography showed that AT2 transferred malonate to ACP3, 5, 8 and mAcpC 

and D, but not to ACP 1 (Figure 4.12, A). Controls consisting of just AT2, or AT2 plus 

extract from bacteria with the empty pET28a expression vector showed no 
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radioactive signal in the ACP region of the gel. Further experiments to quantify the 

amount of malonate transferred were only performed using ACP1, 3, 5 and C, due to 

poor yields when purifying ACP8 and D. Alongside extracts from bacteria with the 

empty vector, the apo ACPs were analysed as additional negative controls (data not 

shown). ACP1, ACP3 and ACP5 were chosen to be assayed for malonylation by AT2 

as they are present during different steps in mupirocin biosynthesis. mAcpC was 

chosen to represent the type II ACPs in the cluster. ACPs were purified by nickel-

affinity chromatography and the protein concentration calculated by Coomassie 

staining. No radioactivity in the region of ACP1 was detected with or without AT2. 

The remaining ACPs all appeared to self-malonylate, however, the addition of AT2 

did increase the amount of radioactivity detected (Figure 4.12, B). AT2 increased the 

malonylation of ACP3 by 247%, ACP5 by 513% (sixfold increase) and mAcpC by 

938% (tenfold increase). 

 It should be noted that despite best efforts the proteins did not represent 100% 

purity due to undergoing one round of metal affinity chromatography and no further 

rounds of purification, therefore the results presented here are semi-quantitative 

when concerning malonyl transfer and protein structure. 
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Figure 4.12. Malonate transfer from AT2 to mupirocin ACPs. (A) Autoradiography 
showing transfer of [14C]-malonate to select ACPs from the mupirocin cluster. Lane 1, 
AT2 no ACPs; Lane 2, AT2 + empty expression vector. (B) Chart showing the 
malonylation of ACPs with and without AT2. Empty expression vector was used as 
the negative control. In all cases [AT2]=0.05µM, [ACP]=20µM and [[14C]-malonyl-
CoA]=20µM; n=2. 
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4.3 Discussion 

Previously, feeding studies have shown that mupirocin is made from acetate-

derived units (Feline et al., 1977) (presumably largely via formation of malonate by 

acetyl-CoA carboxylase) and sequence alignments in this study have shown the ATs 

cluster with others showing malonyl-CoA substrate specificity. Due to the phenotypes 

of the individual AT mutants (ΔAT2=no mupirocin production, ΔAT1=reduced 

mupirocin production) it had been hypothesised that AT2 could perform all essential 

acyl transfer reactions at some level of efficiency but that AT1 may be needed for a 

step that is only inefficiently performed by AT2, for example loading of the acetyl-CoA 

starter unit. However, this study has shown that AT2 exclusively prefers malonyl-CoA 

as a substrate over any of the other substrates tested, and that it transfers the 

malonate group to ACPs throughout the cluster. This would indicate that it is 

responsible for transferring extender units to the ACPs throughout the cluster. If this 

is the case, AT1 could be responsible for loading the starter unit, however in the 

absence of AT1 it is possible that AT2 or another uncharacterised protein could 

inefficiently take over, accounting for the reduction in mupirocin. 

To consider the process of chain initiation further a closer inspection of other 

trans-AT systems indicates a wide diversity of functional loading modules thought to 

be involved in transferring and/or accepting the starter molecule. The lack of an 

obvious loading module within the mupirocin cluster is unusual, but not unique, the 

macrolactin and disorazol biosynthetic systems being the best studied examples. 

Many PKS systems, of both cis- and trans-AT architecture, have loading modules 

specifically designed to accept the starter unit for initiation of metabolite production 

(Hertweck, 2009). The model DEBS system contains a loading module consisting of 
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an AT and an ACP, thought to provide the propionyl-CoA starter unit to module 1 (Hill 

and Staunton, 2010). The loading modules of trans AT PKSs vary in the domains that 

are present, from the NRPS of leinamycin, to the minimal ACP of chivosazol and 

virginiamycin, and to the more intricate loading module of bryostatin which contains 

four domains – DH- and KR-like domains, an FkbH phosphatase-like domain and an 

ACP (Cheng et al., 2003; Perlova et al., 2006; Pulsawat et al., 2007; Sudek et al., 

2007). Rhizoxin, myxovirescin and pederin have a GCN5-related N-acetyltransferase 

(GNAT) domain, thought to catalyse incorporation of the starter unit for system 

initiation (Partida-Martinez and Hertweck, 2007; Simunovic et al., 2006; Piel et al., 

2004). Until recently it was thought these domains merely directed the transfer of 

acetyl groups to the loading-ACP. However, work on curacin A led to a new 

mechanism of chain initiation being recognised: it was demonstrated that the GNAT 

domain catalysed the decarboxylation of malonyl-CoA to form acetyl-CoA, followed 

by transfer to the adjacent ACP (Gu et al., 2007; Jones et al., 2009). The mupirocin 

ATs both have a portion of the identified GNAT acetyl-specific motif 

((R/Q)xxGx(G/A)(T/S)) – AT1 reads RHMGRAL, while AT2 reads RGMGEGL, 

however the conserved T/S residue is replaced by Leu, reducing the acetyl-specificity 

– demonstrated by AT2 accepting malonyl-CoA as a substrate. A possible loading 

mechanism of a malonyl-CoA-specific AT (such as AT2) catalysing the loading of a 

malonate residue followed by decarboxylation to provide the first acetate molecule to 

the first KS domain has been proposed for several PKS clusters, with both trans- and 

cis-acting ATs: macrolactin, disorazol, picromycin and niddamycin (Kakavas et al., 

1997; Xue et al., 1998; Bisang et al., 1999; Kopp et al., 2005; Schneider et al., 2007). 

This mechanism could also apply to systems where the loading mechanism is 
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unclear, such as virginiamycin and kirromycin (Pulsawat et al., 2007; Weber et al., 

2008). The macrolactin and disorazol systems appear to lack an obvious loading 

domain and the trans-ATs are specific for malonyl-CoA extension units. In these 

systems it has been proposed that a malonate residue is loaded to the first KS 

domain and then decarboxylated to provide the required starter acetate unit (Kopp et 

al., 2005; Schneider et al., 2007). Such a mechanism might occur in the mupirocin 

system, with an as yet unidentified protein providing the decarboxylative function to 

generate the first acetate for module 1 of MmpD. Alternatively KS5 may 

decarboxylate malonate to acetate before the first condensation. It is also possible 

that one of the uncharacterised type II mAcps accepts malonate and catalyses the 

decarboxylation before transfer to KS5. It may well be that the AT2-like enzymes 

(orange squares, Figure 4.4) represent the ‘main’ ATs within clusters, while the AT1-

like enzymes provide increased turnover, or more specialized functions.  

Despite proposing an AT role for AT1 above, several results from this study 

indicate an alternative role for AT1. There are a group of AT1-like proteins that 

cluster together in sequence similarity, and there are several more single ATs in or 

closer to this group than to the AT2-like group. If AT1 is partially redundant in a 

system it may be that the systems are evolving and consequently making some ATs 

redundant – thus explaining why only five systems have the tridomain, but many 

systems have an AT2-ER bidomain. The structural differences also point to an 

alternative role for AT1 – the active site is predicted to have a different morphology 

indicating alternative substrate specificity. This structural difference could also 

account for the inability to solubilise and purify AT1. Although it is inconclusive it may 

be that AT1 transfers an acetate starter unit, alongside an alternative role, and that in 
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the absence of AT1, AT2 can take over, albeit inefficiently. Solving the solubility and 

purification problems of AT1 will be key in determining a definitive role for this AT, 

and for this group of ATs.  

In summary, this work has shown AT2 to be an AT specific for malonyl-CoA – 

transferring malonate to ACPs throughout the mupirocin cluster, and has proposed 

the option that AT1 may have an alternative role to that of a typical transferase. 
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5 SITE DIRECTED MUTATIONAL ANALYSIS OF AT2 

 

5.1 Introduction 

Chapter 4 describes work that leads to a clear conclusion about the 

biochemical activity of the AT2 component of the mupirocin biosynthetic cluster as a 

malonyl-CoA-specific acyltransferase (AT). Unfortunately due to solubility problems it 

was not possible to provide the same sort of evidence for the function of AT1. As an 

alternative approach it was therefore decided to combine bioinformatic and 

mutational analysis as a way to gain an insight into the function of AT1. 

A key aspect of any investigation of protein function is bioinformatic analysis of 

the sequence or sequences of the genes and proteins of interest. The DNA or protein 

sequence of a gene can tell us a great deal about that gene and its protein product, 

for example, structural predictions and evolutionary relationships, as demonstrated in 

Chapter 4. The study of sequence alignments can lead to predictions of specificity 

and function, and by searching for similar sequences one can identify specific genes 

as having specific roles based on prior biochemical characterisation of proteins 

produced by related genes. These techniques have led to a greater understanding of 

genes such as fabD, the gene that encodes the E. coli malonyl-Coenzyme A-acyl 

carrier protein transacylase (MCAT) utilised in fatty acid biosynthesis, and 

consequently a variety of polyketide ATs. E. coli fabD and the model polyketide 

system of DEBS have been extensively studied and consequently many conclusions 

have been drawn that can be applied to other polyketide systems. The most common 

method for determining domain importance and function is inactivation or mutation. A 

widely utilised method to discover or synthesise novel metabolites is to swap 



Chapter 5: Site directed mutagenesis of AT2  176 
 

domains, for example to replace the domain of interest with one that displays a 

different specificity. Much of the research focuses on ATs due to their role in 

substrate delivery throughout polyketide synthesis. Swapping the methylmalonyl-CoA 

specific ATs from modules in DEBS for malonyl-CoA specific ATs from the 

rapamycin, picromycin, avermectin and niddamycin systems resulted in the 

production of several (and in one case over 50) novel metabolites (Oliynyk et al., 

1996; Liu et al., 1997; Ruan et al., 1997; Marsden et al., 1998; Stassi et al., 1998; 

McDaniel et al., 1999). However, when the AT domain from module 4 in DEBS was 

exchanged with malonyl-CoA specific ATs from the rapamycin, FK520 or epothilone 

systems no product was produced leading the researchers to speculate about the 

structural importance of that domain in the overall protein. Their alternative method 

for altering the specificity of module 4 eventually came from site-directed 

mutagenesis rather than exchanging the whole domain. Three motifs were identified 

as possibly being important for substrate specificity and subsequent mutagenesis 

which changed the motifs from methylmalonyl-CoA to malonyl-CoA specificity 

resulted in mutants producing the expected novel products (Reeves et al., 2001). The 

motifs were identified by aligning several ATs of predicted specificity to the sequence 

of FabD from E. coli and are shown in Table 5.1 (Serre et al., 1995).  

 

Table 5.1. AT specificity motifs. 

AT specificity Motif 

Malonyl-CoA QTxYTQ63  GHS92[IVL]GE  HAFH201 

Methylmalonyl-CoA RVDVVQ63  GHS92QGE  YASH201 

Superscript number relates to the corresponding FabD residue. (Haydock et al., 1995; Ikeda et al., 1999) 
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The crystal structure of FabD highlighted the importance of several residues 

and also gave an indication of the interactions between active site residues: Ser92 is 

hydrogen bonded with His201 and Arg117; His201 is also hydrogen bonded with Gln250; 

Gln11 provides hydrogen bonds for water molecules, and the stereochemistry of the 

active site demonstrates the importance of other residues such as Val255, Asn231, 

His91, Leu93, and Ser200 (Figure 5.1) (Serre et al., 1995). A study investigating the 

prediction of substrate specificity of cis-acting ATs highlighted that all malonyl-CoA 

ATs clustered together and methylmalonyl-CoA specific ATs clustered together 

separately (Yadav et al., 2003). ATs that were specific for unusual substrates tended 

to cluster with the methylmalonyl-CoA group. Out of the 13 active site residues 

analysed in the study, 9 in the malonyl-CoA group, 10 of the methylmalonyl-CoA 

group and 4 of the unusual substrate group, were completely conserved.  
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Figure 5.1. Structural model of a malonate group in the active site of a typical 
malonyl-CoA specific AT domain. The 13 active site residues and 3 of the 
additionally conserved residues (197-199) are shown (Yadav et al., 2003). 
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Arg117 was conserved in all malonate- and methylmalonate-specific ATs, while 

some ATs in the unusual group had variations at this position. Arg117 is thought to 

play a role in differentiating between mono- and dicarboxylic acids – the basic 

guanidinium group forms bidentate salt bridges with a dicarboxylic acid substrate 

(Keatinge-Clay et al., 2003). The stigmatellin loading AT has Leu in this position and 

is specific for acetyl-CoA which lacks the second carboxylate component (Gaitatzis et 

al., 2002). A study of an animal MAT mutating the residue corresponding to Arg117 to 

either Ala or Lys successfully altered the substrate preference from malonyl-CoA to 

acetyl-CoA, confirming the role of Arg117 in dicarboxylic acid interactions (Rangan 

and Smith, 1997). In addition to the 13 active site residues there were an additional 

11 residues in conserved positions further away from the catalytic Ser but 

nonetheless important. Residues 198-201 comprise the YASH/HAFH motif that is so 

important for distinguishing malonate and methylmalonate specificity, and while 

residue 197 is also important, the critical residue in this motif is Ser or Phe200. In ATs 

specific for malonyl-CoA this position is almost completely conserved as Phe and in 

methylmalonyl-CoA specific ATs it is completely conserved as Ser (Yadav et al., 

2003). Phe200 is in direct contact with the methylene group of the malonate, 

explaining why it is a crucial residue in the substrate specificity of ATs. An AT with 

Phe200 is unable to accept methylmalonate due to steric clashing between the methyl 

carbon and carbon atoms of the Phe ring, while a Ser in this position allows 

methylmalonate to bind (Yadav et al., 2003). 

The aims of this study were to mutate active site residues of AT2 to match 

those of AT1 and characterise the mutants by Ellman’s assay, circular dichroism and 

autoradiography. In addition to determining the importance of the active site residues 
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it was hoped this would also provide a potential function for AT1 that could be 

investigated further in a later chapter. 
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5.2 Results 

5.2.1 Sequence analysis 

The phylogenetic analysis in Chapter 4 clearly displays two separate clades of 

trans-acting ATs. This relationship was examined with further sequence analysis of 

the active site residues based on the methods by Yadav et al. (2003). Tables 5.2 and 

5.3 show the active site residues and some of the additional conserved residues of 

the AT1-like and AT2-like ATs shown in Figure 4.4 compared to the out-group E. coli 

FabD. Despite not being consigned an evolutionary group in the previous chapter, 

EtnB was included in the AT1-like group for the more detailed sequence analysis due 

to the unusual active site motif, GYS. AlbXIII, Orf12, and OzmC were excluded from 

further analysis due to the inability of the sequences to align with either group. Out of 

the 14 residues analysed there was complete conservation of 3 in the AT1-like group 

and 10 in the AT2-like group (Figure 5.2).  

 

 

 

 

 

 
Figure 5.2. AT active site motifs. Top, motif of the AT1-like group of ATs. Bottom, 
motif of the AT2-like group of ATs, which is more ordered than that of the AT1-like 
group. Emboldened residues highlight complete conservation within that group. 
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The AT2-like group all display the archetypal AT active site motif of GHS, 

followed by the crucial Arg117 for dicarboxylic acid specificity. Met121, Phe200 and 

His201 all indicate malonyl-CoA specificity. The three residues where there are 

variations in the conservation are 198 which is Gly or Ala, 199 which is either Ala or 

Phe, and 231 which is Asn in all but two cases.  

The AT1-like group has far more active site diversity than the AT2-like group. 

The GHS motif is present in three ATs from this group, replaced in many cases by 

GAS, and in some by GSS, GTS, or GYS. Arg117 is present in four cases within this 

group, but the incorporation of these proteins in this group could be questioned as 

they are outliers, so it is likely they are more AT2-like: FenF is already known to be 

malonyl-CoA-specific and the residues match the AT2-like motif with the exception of 

His250 instead of Gln; ZmaF has many similarities to FenF, yet it has a motif of GYS 

at the active site and lacks the malonyl-CoA-specific Met at position 121 (Lopanik et 

al., 2008); KirCII is already known to be specific for the unusual ethylmalonyl-CoA 

despite having GHS at the active site, but there are variations from the malonyl-CoA 

specificity that tie in with this unusual specificity, particularly Leu
121

 and Ser
200

; EtnB 

has GYS at the active site and unusually Trp at position 200. Most of the remainder 

of the AT1-like group have Gln at position 117, except EtnK AT1 and SorO AT1 

which both have His. In the research by Yadav et al. the only group to have residues 

other than Arg at position 117 was the unusual substrates group – one protein with 

Gln117 was specific for 2-methyl-butyrate, another with His117 was specific for 3-

methyl-butyrate, while those with Trp117 were specific for propionate or 2-methyl-

butyrate (2003). Similarly the only deviations from Phe or Ser200 (malonate or 

methylmalonate specificity respectively) were in the unusual substrate group.  
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Position 200 is Phe in all cases across AT1- and AT2-like ATs, with the 

exception of KirCII (which we know to be ethylmalonyl-CoA specific) and EtnB which 

have Ser200. Residue 200 varied from Ala, Thr, Gly, Val, and Pro in the unusual 

substrate group (Yadav et al., 2003). Other notable differences between the two 

groups of ATs include position 231, which is predominantly Asn in the AT2-like group, 

but Cys or Ser in the AT1-like group; position 250 and 255 are Gln and Val 

respectively in the AT2-like group, but Val, Ala, Gln, Thr, Ser, Asn, His, and 

predominantly Ile for 255 in the AT1-like group.  

The active site GHS…R motif, where Ser is the catalytically active Ser, and 

His and Arg are both in contact with the substrate, is conserved in AT2, whilst for AT1 

the His residue is replaced with an additional Ser and the Arg replaced with Gln. Both 

mupirocin ATs contain partial HAFH motifs, particularly the crucial FH residues, 

indicating malonyl-CoA specificity (Del Vecchio et al., 2003): AT1 reads RPFH, and 

AT2 reads APFH. This analysis has highlighted several residues that differ 

significantly between the two groups of ATs (these are highlighted bold in the MmpC 

AT1 and AT2 motifs shown below), and that were selected for investigation by 

mutagenesis to determine whether they could help to decipher a potential role for the 

AT1-like ATs. 

 

The MmpC AT1 motif:   QGSSQFNRPFHSVL 

The MmpC AT2 motif:   QGHSRMSAPFHNQV 
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Table 5.2. Active site amino acid alignment of AT1-like ATs from trans-AT PKS 
clusters compared to E. coli FabD. 

Domain name E. coli residue reference number 

 11* 90* 91* 92* 117* 121+ 197+ 198+ 199+ 200* 201* 231* 250* 255* 

FabD Q G H S R M S V P S H N Q V 

FenF Q G H S R M S A P F H N H V 

               
ZmaF V G Y S R L S G P F H N Q V 

KirCI_AT1 Q G A S Q F L F P F H G V F 

MmpC_AT1 Q G S S Q F N R P F H S V L 

TmpC_AT1 Q G S S Q F T Q A F H S V I 

RhiG_AT1 Q G T S Q F K Q A F H C T I 

RzxG_AT1 Q G A S Q F N Q A F H C S I 

OzmM_AT1 Q G A S Q V P Y A F H C A I 

TaV_AT1 Q G A S Q F R Y P F H C V Q 

BryP_AT2 Q G H S Q L S H G F H C V I 

PedC Q G A S Q F S I A F H C V I 

BaeD Q G A S Q V S Y G F H S V R 

BatH Q G A S Q F S Y A F H C A I 

EtnK_AT1 Q G A S H L S F A F H C V I 

SorO_AT1 Q G A S H L S F A F H C A I 

ElaC Q G S S Q V K Y A F H S V I 

KirCII Q G H S R L T V A S H T N V 

EtnB Q G Y S R M T V A S H N H V 
* indicates putative active site residues; + indicates additional conserved residues. 
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Table 5.3. Active site amino acid alignment of AT2-like ATs from trans-AT PKS 
clusters compared to E. coli FabD. 

Domain name E. coli residue reference number 

 11* 90* 91* 92* 117* 121+ 197+ 198+ 
199+ 200* 201* 231* 250* 255* 

FabD Q G H S R M S V P S H N Q V 

LkcD Q G H S R M S G A F H T Q V 

VirI Q G H S R M S G P F H N Q V 

LtmH Q G H S R M S G A F H N Q V 

MgsH Q G H S R M S G A F H N Q V 

LnmG Q G H S R M S A A F H S Q V 

LtmB Q G H S R M S A A F H N Q V 

MgsB Q G H S R M S A A F H N Q V 

KirCI_AT2 Q G H S R M S A P F H N Q V 

OzmM_AT2 Q G H S R M S A P F H N Q V 

MmpC_AT2 Q G H S R M S A P F H N Q V 

TmpC_AT2 Q G H S R M S A P F H N Q V 

RhiG_AT2 Q G H S R M S A P F H N Q V 

RzxG_AT2 Q G H S R M S A P F H N Q V 

DisD Q G H S R M S A A F H N Q V 

CorA - G H S R M S A A F H N Q V 

PsyH Q G H S R M S G A F H N Q V 

TaV_AT2 Q G H S R M R A P F H N Q V 

BatJ Q G H S R M S A A F H N Q V 

EtnK_AT2 Q G H S R M S A A F H N Q V 

SorO_AT2 - G H S R M G A A F H N Q V 

PedD - G H S R M S G A F H N Q V 

BryP_AT1 Q G H S R M S A A F H N Q V 

ElaB Q G H S R M S G A F H N Q V 

PksC Q G H S R M S G A F H N Q V 

BaeC Q G H S R M S G A F H N Q V 

PksE Q G H S R M S G A F H N Q V 

DifA Q G H S R M S G A F H N Q V 

MlnA Q G H S R M G G A F H N Q V 

ChiA Q G H S R M S G A F H N Q V 
* indicates putative active site residues; + indicates additional conserved residues; residues in bold were mutated during this 

study. 



Chapter 5: Site directed mutagenesis of AT2  186 
 

5.2.2 Construction of AT2 point mutants  

The solubility and purification problems of AT1 combined with the 

bioinformatics study identifying key active site differences between the two groups of 

ATs, suggested that a way to investigate possible AT1 function would be to mutate 

key AT2 residues to match those in the same position of AT1 – in effect, attempting 

to make AT2 more AT1-like. Rather than mutating the chromosome, plasmid pJS560 

was the template for mutation by QuikChange® site-directed PCR mutagenesis 

(Chapter 2), which enabled comparisons to be made between in vitro assays of the 

mutant strains when compared to the WT (pJS560). Briefly, primers (Table 2.10) 

were designed to introduce point mutations in the PCR products, the PCR reaction 

products were then subjected to restriction digest by DpnI (which recognises GATC, 

when the A is methylated), thus digesting the template WT DNA leaving the mutated 

product intact (Figure 5.3). Table 5.4 details mutants constructed during this study, 

while Table 5.5 provides a summary of the results. Once mutations were confirmed 

by sequencing, plasmids were transformed into E. coli BL21 (DE3) for expression 

and purification. 

 

Figure 5.3. Principle of QuikChange® PCR. (Adapted from Loening, 2005). 
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Table 5.4. Mutants constructed during this study. 

Mutant Mutation Plasmid 

WT - pJS560 

1 H89S pRG501 

2 R115Q pRG502 

3 M119F pRG503 

4 S190N pRG504 

5 A191R pRG505 

6 N224S pRG506 

7 Q242V pRG507 

8 
S190V 

A191R 
pRG509 

9 
R115Q 

Q242V 
pRG510 

10 

R115Q 

Q242V 

S190N 

A191R 

pRG511 

11 V247L pRG508 

12 
H89S 

Q242V 
pRG512 

13 
H89S 

R115Q 
pRG516 

14 

H89S 

Q242V 

R115Q 

pRG513 

15 

H89S 

Q242V 

R115Q 

V247L 

pRG514 

16 

S190N 

A191R 

M119F 

pRG515 
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17 

R115Q 

Q242V 

S190N 

A191R 

V247L 

pRG517 

18 

R115Q 

Q242V 

S190N 

A191R 

V247L 

M119F 

pRG518 
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5.2.3 Expression and purification of AT2 point mutants 

Pure protein was required before the mutant proteins could be assayed for 

malonyl-CoA acquisition via the Ellman’s assay, transfer to an ACP by 

autoradiography and for structural changes by circular dichroism. Mutant strains 1 

and 11-18 were all found to be insoluble and so no further analysis could be made. 

Interestingly strains 12-15 all include the mutation made in mutant 1 (H89S), implying 

this residue, although buried within the protein, could be important for solubility. 

However, mutating the corresponding residue in pJS559 which encodes AT1 from 

Ser to His (S95H – plasmid pRG519) did not result in the protein changing from 

insoluble to soluble. Strains 11, 17 and 18 had the mutation V247L in common, 

suggesting that Val247 residue could also be important for solubility. For those strains 

that were found to produce soluble mutant AT proteins, all could be purified by nickel-

affinity chromatography to a certain degree (Figure 5.4) and could be assayed for 

activity. 

 

 

 

Figure 5.4. SDS-PAGE of mutant AT2 proteins. M, molecular weight marker; WT, 
wild type; 2-10, mutants (34.3kDa).  
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5.2.4 Substrate specificity of mutant AT2 proteins 

Two stages of Ellman’s assays were performed to test the mutant proteins: 

firstly, the assays were performed as described previously, but with 20µM protein and 

20µM malonyl-CoA and monitored for 30min; secondly, the assay was started in the 

same way but a further 20µM malonyl-CoA was added half way through the assay 

(15min). The proteins were only tested with malonyl-CoA, as this was the determined 

substrate of choice for AT2 in Chapter 4. A negative control consisting of the protein, 

but no malonyl-CoA was included to measure the background absorbance as AT2 

has four Cys residues and if the thiol groups were exposed they would react with the 

Ellman’s reagent. All of the mutant strains were able to acquire malonate to a level at 

least equal to the WT, with the exception of strains 2 and 9. The yield of mutant 3 

protein was too low for the Ellman’s assay (Figure 5.5). All of the mutants displayed a 

background absorbance that was less than when malonyl-CoA was added. For 

mutant 10 this absorbance was considerably higher than for the other mutants, and 

on addition of malonyl-CoA the absorbance only increased by 0.16. Mutants 2 and 9 

also released less CoA than WT on addition of malonyl-CoA – both of these mutants 

incorporate the R115Q mutation. Mutant 10 also incorporates this mutation, so it is 

possible that R115Q is responsible for the reduced acceptance of malonate from 

malonyl-CoA and subsequent release of CoA. Mutants 4, 5, 7 and 10 all released 

over twice as much CoA from malonyl-CoA as the WT. Mutant 5 released as much 

as four times more than the WT. Mutant 10 is a quadruple mutant incorporating 

mutants 2, 4, 5 and 7 but the mutations did not have a cumulative effect on malonate 

acquisition. Mutants 6 and 8 released 1.2 and 1.4 times more CoA from malonyl-CoA 

than the WT.  
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 Stage two of the Ellman’s assay was to add a further 20µM malonyl-CoA to 

the assay half way through the period of the experiment. For the WT this had the 

effect of increasing the absorbance by 1.5 times, and so increasing the amount of 

malonyl-CoA converted. Mutants 4, 6, and 8 all converted more malonyl-CoA in this 

stage of the assay than the WT, with mutant 4 converting 2.2 times more than when 

malonyl-CoA was only added to start the reaction, and mutant 6 converting 1.9 times 

more. For some mutants the availability of more substrate had little or no effect – 

mutants 5 and 9 appeared to have a similar increase to the WT, while mutants 2, 7 

and 10 had little effect. 
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5.2.5 Circular dichroism of mutant AT2 proteins 

Circular dichroism (CD) was performed firstly to see if any of the mutant 

strains had any structural changes when compared to the WT, and secondly to 

observe the degree of structural change when malonyl-CoA was added. Once the 

data was collected it was analysed by Dichroweb software (Whitmore and Wallace, 

2004; 2008) for the percentage of different types of secondary structures present 

(Table 5.5). The WT AT2 protein has a typical CD spectrum of an α-helical protein, 

with negative peaks at 208 and 222nm (red line in Figure 5.6). All mutants, with the 

exception of mutant 7, have the same helical spectrum, with varying magnitudes of 

the CD signal indicating variations in helical structure and length. Mutant 4 is the 

least altered from the WT, with mutant 8 the most altered, in agreement with the 

calculated helical content from Dichroweb. The remainder of mutants have different 

degree of changes in predicted helical content. Mutant 7 is the most altered from the 

WT structure, in that rather than remaining helical it appears to be comprised of 

random coils as demonstrated by the negative peak at 200nm. This is consistent with 

the Dichroweb data which predicts only 17% helices compared to the 36% helical 

WT. 

When the WT has accepted malonate from malonyl-CoA the CD spectrum 

does not appear to alter significantly, indicating little structural change in the protein 

when it has bound its substrate (Figure 5.7). However, Dichroweb analysis of the 

data indicates that the WT protein loses 4% of its helical structure when malonate is 

bound. All of the mutants, with the exception of 5 and 8, experienced helical loses 

upon binding of malonate. Mutants 2, 4, 8 and 10 showed the least degree of 

structural change on binding of malonate (loss of 1% for 2 and 4, and gain of 1% for 
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8). Mutant 6 showed a 39% loss of helical content when malonate was bound, while 

mutant 5 became more helical on binding of malonate, as demonstrated by the CD 

spectra and Dichroweb data. The randomly coiled mutant 7 lost a further 10% of its 

helical structure and remained mainly randomly coiled.  

 

 

Figure 5.6. Circular dichroism spectra of AT2 mutant proteins. Mutants were 
analysed against a negative control of assay buffer and a positive control of the WT 
protein (red line).  
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Figure 5.7, A. Circular dichroism spectra of mutant AT2 proteins compared to 
when bound to malonate.  
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Figure 5.7, B. Circular dichroism spectra of mutant AT2 proteins compared to 
when bound to malonate.  
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5.2.6 Acquisition and transfer of malonate by mutant AT2 proteins 

An initial radiolabelling assay was done to assess each mutants ability to 

acquire [14C]-malonate. Assays were performed as described in Chapter 2, with 

20µM AT and [14C]-malonyl-CoA with the concentration of unlabelled malonyl-CoA 

decreasing from 380-0µM. The chart in Figure 5.8 (A) shows the results for when the 

20µM [14C]-malonyl-CoA did not have a competing substrate (blue box in (B)). The 

results show that all mutants, with the exception of mutants 5 and 8, acquired less 

malonate than the WT.  

The second stage of radiolabelling was used to demonstrate the ability of the 

mutant proteins to malonate mAcpC from the mupirocin cluster, as shown in Figure 

5.9. In this assay the concentration of AT was 0.05µM, and mAcpC and [14C]-

malonyl-CoA were 20µM. Assay conditions were as previously assessed for 

maximum transfer from AT to ACP (Section 4.2.6.1). As a negative control, the ability 

of mAcpC to self-malonate was tested – this demonstrated a background level of 

radioactivity corresponding to acquisition of less than 0.6µM of malonate. Similar 

levels were also detected in mutants 7 and 10. None of the mutants malonylated 

mAcpC as efficiently as the WT (15.2µM transferred), however mutants 4 and 6 were 

most like the WT with 11.7µM and 14.2µM transferred respectively. As mutants 4 and 

6 were most like the WT it seems they have retained the most archetypal AT2 

activity. Mutant 5 has lost over half of its activity and mutants 2 and 8, at least one 

fifth.  

Large margins of error displayed in Figures 5.8 and 5.9 could be explained by 

inaccurate protein concentration determination. More accurate protein concentration 

readings could be acquired by the Bradford or Lowry protein assays. 
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Figure 5.8. Acquisition of malonate by mutant AT2 proteins. (A) Chart showing 
acquisition of malonate by mutant AT2 proteins. [AT]=20µM; WT, wild type; mutants 
2-10, AT2 mutant proteins; for WT, mutants 6, 9 and 10, n = 3; for mutants 2-5 and 7-
8, n = 2. (B) Example of autoradiography gel showing radioactivity acquisition by WT 
AT2. Blue box shows lane with 20µM [14C]-malonyl-CoA. 
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Figure 5.9. Ability of mutant AT2 proteins to transfer malonate to mAcpC. 
[AT]=0.05µM; [[14C]-malonyl-CoA]=20µM; [mAcpC]=20µM. (A) Chart showing the 
transfer of malonate to mAcpC. (B) Autoradiography of [14C]-malonate-mAcpC 
(12.4kDa). mAcpC, negative control with no AT present; WT, wild type; 2-10, AT2 
mutants; n = 2. 
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5.3 Discussion 

To date there have been over 30 trans-AT systems identified and the 

importance of this group of PKSs is becoming increasingly obvious with each 

investigation published. It is thought they have evolved completely independently 

from cis-AT PKS systems, patched together based on substrate specificity from 

multiple gene segments, but that the PKS modules contain catalytically inactive 

remnant AT residues in the form of docking domains (Nguyen et al., 2008; Cheng et 

al., 2009; Piel, 2010). Several studies have highlighted the fact that these trans-

acting ATs fall into two distinct groups – those that are AT1-like and those that are 

AT2-like (Gurney and Thomas, 2011; Jensen et al., 2012; Musiol and Weber, 2012). 

The AT2-like ATs appear to be the more demonstrably functional out of the two 

groups, with many research groups predicting they transfer the extender unit, while 

the function of the AT1-like ATs has remained enigmatic until recently – with 

bioinformatics not revealing any specific roles. 

A role has been determined for AT2 (Chapter 4), however, the solubility issues 

of AT1 have led to problems investigating this protein. Bioinformatics tells us that AT1 

clusters with a group of ATs where the role is not as apparent as the AT2 malonate-

transfer group. The differences in active site amino acid residues led to the 

investigation of trying to make AT2 more ‘AT1-like’ by mutating select residues, with 

the aim of determining a role for AT1.  

Of particular importance appears to be residue 117 – Arg in the AT2-clade, 

and mostly Gln in the AT1-clade. Interestingly, two of the ATs with confirmed 

specificity, FenF and KirCII, in the AT1-clade both retain the Arg117. As Arg117 

appears to act as a substrate anchor for dicarboxylic acids within the active site cleft, 
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it stands to reason that a different residue in this position could indicate different 

substrate specificity, such as monocarboxylic acids (Rangan and Smith, 1997). As 

such this was demonstrated in mutant 2 which resulted in half as much conversion of 

malonyl-CoA to malonate and CoA in the Ellman’s assay, sixfold less acquisition of 

malonate in radiolabelling assays and fivefold less transfer of [14C]-malonate to 

mAcpC in the transfer assays. Mutants 9 and 10 (both incorporating the R115Q 

mutation) were also less efficient at malonate acquisition and transfer when 

compared to the WT. This is consistent with the proposed role of this residue in the 

docking of the dicarboxylic malonate, and thus it is likely that a protein which has Gln 

at this position instead of Arg cannot accept dicarboxylic acids. This is also 

demonstrated in the myxalamid PKS where the loading AT has Gln at this position 

and loads 2-methyl-butyrate to initiate metabolite synthesis (Silakowski et al., 2001). 

Obscurely, the BryP ATs can both load malonate and methylmalonate, and in both 

cases malonate is the preferred choice, however BryP AT2 has Gln in position 117 

(Lopanik et al., 2008).  

Residue 242 is also incorporated into mutants 9 and 10 – mutating Q242V in 

AT2. However, the single Q242V mutant (mutant 7) was still able to release CoA 

from malonyl-CoA in the Ellman’s assay, but was not able to transfer [14C]-malonate 

to mAcpC efficiently in the transfer assays. Structurally mutant 7 was the most 

altered from the WT, which displayed an α-helical profile. In this mutant, the profile 

shifted to that of random coiling, and could well explain the inefficiency of this mutant 

at transferring malonate to mAcpC. AT2 has four Cys residues which presumably 

contribute to the structural integrity of the protein in the form of disulphide bridges. If 

a point mutation introduced prevents the Cys residues from interacting it may be that 
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consequently the protein loses significant secondary structure. While it is tempting to 

state that the reasons mutant 7 is less efficient is due to a structural change that 

prevents docking with or transfer of malonate to mAcpC, it may well be that the 

protein is simply too unordered to function in its usual manner. While mutant 10 was 

also dramatically altered from the WT and had no more activity that mutant 7, it still 

retained an α-helical structure, perhaps as a result of the incorporation of mutants 4 

and 5 which were at least as efficient as the WT protein. 

Mutants 4, 5 and 8 were all more efficient at releasing CoA from malonyl-CoA 

in the Ellman’s assay than the WT. Mutants 5 and 8 were more efficient at acquiring 

malonate in the initial radiolabelling assays, whereas mutant 4 was less efficient than 

the WT. However, when it came to transferring the [14C]-malonate to mAcpC mutant 

4 was the most efficient but not as efficient as the WT. This data combined would 

indicate that mutant 4 retained more AT2-like functionality while mutants 5 and 8 did 

not – they were able to acquire the malonate but were then not efficient at 

transferring it onto the ACP indicating a role for residue 191 in ACP docking, or in the 

transfer of malonate to ACP. This residue is the first in the HAFH/YASH motif thought 

to be so important for distinguishing between malonyl-CoA or methylmalonyl-CoA 

specificity. In FabD the corresponding residue is Val yet it is still specific for 

methylmalonyl-CoA, and in the malonyl-CoA-specific AT2 it is Ala. Replacing Ala with 

Arg in mutants 5 and 8 (to match the Arg in the corresponding position in AT1) would 

have resulted in quite a dramatic change as the guanidinium side-chain of Arg is 

more bulky than the methyl-group of Ala. It could be postulated that this prevented 

the phosphopantetheine arm from extending into the active site cleft towards the 

malonyl-CoA. 
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Mutant 6 appeared to be the single amino acid substitution mutant that was 

most like the WT: It had slightly higher CoA release than the WT in the Ellman’s 

reagent assay, although it did not appear to accept malonate as efficiently as the WT, 

while transfer to mAcpC was similar to the WT. It may be that this mutant is efficient 

at converting malonyl-CoA to malonate and CoA, but in the absence of an ACP 

simply releases the malonate rather than holding onto it. Mutant 3 was not as efficient 

at accepting or transferring [14C]-malonate as the WT indicating that this is also an 

important residue.  

Analysis of the mutants by CD highlighted the fact that the active site residues 

are vital to maintain the secondary structure of the AT. Indeed, this was also shown 

by the fact that some mutations caused AT2 to become insoluble so no further 

experiments could be completed - H89S is one such mutation. The single H89S 

mutant (mutant 1) and all multiple mutants incorporating this mutation (mutants 12-

15) rendered the mutant protein insoluble, indicating this residue has a vital role in 

structural stability and most likely transfer ability and must be investigated further. 

The remainder of the mutants varied in the magnitude of helical structuring and 

length from the WT profile, with 4, 9 and 3 being the least altered and 10, 6 and 8 the 

most. It is likely that the structural alterations caused by the mutations have had a 

knock-on effect on the function of the protein, as would be expected.  

CD demonstrated that every mutant had a change in secondary structure 

when compared to the WT AT2, and some had major changes when malonate was 

bound. In most cases however, the consequences of those changes resulted in the 

AT acquiring more substrate. The Ellman’s assays demonstrated that the WT AT2 

does has a continual turnover of malonate, however 4 of the mutants (4-6 and 8) 
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appeared to increase the conversion of malonyl-CoA to malonate and CoA more than 

the WT, suggesting that these proteins may have more of a propensity for quick 

turnover. However, this could be due to exposure of thiol groups from Cys residues, 

particularly in the case of mutants 5 and 10, where the background level was higher 

than the background level for the WT.  

It should be noted that despite best efforts the proteins did not represent 100% 

purity due to undergoing one round of metal affinity chromatography and no further 

rounds of purification, therefore the results presented here are semi-quantitative 

when concerning malonyl transfer and protein structure. 

This study involved identifying residue differences between AT1-like and AT2-

like trans-acting ATs and determining the reason for those differences. Mutation of 

residues in AT2 to match those in AT1 demonstrated not only the importance of 

those residues for AT2 activity, but also a potential alternative role for AT1 as a 

hydrolase. Three particular residue mutations point to this conclusion: mutants 5 and 

8 were more efficient at acquiring malonate, but not at passing it to an ACP, most 

likely due to the bulkier Arg residue replacing Ala; Mutants incorporating Q242V 

(responsible for forming a hydrogen bond with His201 and stabilising the active site 

complex) appeared to acquire more malonate but not release it, which could be due 

to active site destabilisation caused by this mutation; finally, the inefficiency of mutant 

2 to acquire malonate leads to the conclusion that Arg is required in this position in 

order to acquire dicarboxylic acid substrates, and the presence of only one amine 

group is not sufficient to bind to malonyl-CoA. This data combined points to a role for 

AT1 as a hydrolase, removing short-chain intermediates from a stunted pathway and 

will be examined further in the following chapter (Jensen et al., 2012). 
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6 ACYLTRANSFERASE ACTIVE SITE MUTAGENESIS 

 

6.1 Introduction 

The E. coli FabD active site has been extensively studied along with the active 

site of ATs from the DEBS PKS. However, there is a lack of information about the 

trans-acting AT active site. Predictions can be made based on knowledge from FAS 

and cis-acting ATs from PKSs, but more experimental evidence is required. At the 

centre of the AT active site is the GHSxG motif, corresponding to FabD residue 

numbers 90-94 (Yadav et al., 2003). Gly90 and Gly94 are residues that are conserved 

amongst all ATs, whether cis- or trans-acting (Yadav et al., 2003; Chapter 5, pages 

184-185). Ser92 is also completely conserved, as expected from the vital role it plays 

in attacking and bonding to the substrate. However, His91 and residue 93 are not fully 

conserved. Residue 93 is further away from the substrate than the His or Ser 

residues, however it is clear it may play an important role in the substrate specificity 

of the AT: malonate specific ATs have a branched amino acid in this position, while 

methylmalonate specific ATs have either Gln or Met; ATs with unusual substrates are 

more varied at this position with either Ile, Gln, Leu, Tyr, Val or Ala (Yadav et al., 

2003). All of the trans-acting ATs included in this study have a branched chain amino 

acid at this position, with the exception of KirCII and TaV AT1, which both have Met. 

As we already know KirCII to be specific for the unusual ethylmalonate, it seems 

highly likely that TaV AT1 also has an unusual specificity based purely on this 

residue (Musiol et al., 2011). Residue 91 is in direct contact with the substrate, be it 

malonate, methylmalonate or a more unusual substrate such as 3-methyl-butyrate 

(Figure 6.1). 
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Figure 6.1. Surface rendering of the active site pockets in three typical AT 
domains. All substrates are covalently attached to Ser92. Residues are numbered 
according to E. coli FabD. (A) The active site of a typical malonate specific AT, with 
residues Q11, Q63, G90, H91, S92, L93, G94, R117, F200, H201, N231, Q250, V255. Methylene 
group of malonate is in direct contact with F200. (B) The active site of a typical 
methylmalonate specific AT, with residues Q11, Q63, G90, H91, S92, L93, G94, R117, S200, 
H201, N231, Q250, V255. Additional space is created for the methyl group by F200S. (C) 
The active site of an AT specific for 3-methyl-butyrate, with residues A11, L63, G90, 
Y91, S92, V93, G94, H117, A200, H201, T231, N250, V255. (Adapted from Yadav et al., 2003). 
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Due to this contact is seems unusual then that several ATs in the AT1-like 

group have a different residue replacing His at position 91 (Chapter 5, page 184). 

Out of the 18 AT1-like ATs, 9 have Ala at this position, 3 have His, 3 have Ser and 2 

have Tyr. Of the three that have His at this position, FenF has demonstrated 

malonate specificity, BryP AT2 has demonstrated malonate and methylmalonate 

specificity, and KirCII has demonstrated ethylmalonate specificity (Aron et al., 2007; 

Lopanik et al., 2008; Musiol et al., 2011). No specificity has been determined for the 

remainder of the AT1-like ATs, however, a potential role as a thioester hydrolase has 

been put forward for PedC, which has Ala at position 91 (Jensen et al., 2012). Within 

the phylogeny of the AT1-group there appears to be two separate clades: one 

grouping KirCI AT1, MmpC AT1, TmpC AT1, RhiG AT1, RzxG AT1, OzmM AT1 and 

TaV AT1 together; with the other grouping BryP AT2, PedC, BaeD, BatH, EtnK AT1, 

SorO AT1 and ElaC (Figure 4.4). The group including the hydrolase PedC have 

several residues in common – all have Ser197 (except ElaC which has Lys) and five 

out of the seven have Ala91. The group including MmpC AT1 has more residue 

diversity at these positions, indicating there could be more than one function amongst 

the AT1-like group of ATs.  

Work described in the previous Chapter demonstrated that MmpC AT1 is likely 

to have a role different to that of AT2, most likely as a protein that accepts simple 

substrates and does not dock with an ACP. It also demonstrated the mutation H89S 

in vitro caused AT2 to become insoluble. The work in this Chapter further 

investigates the role of His/Ser91 in the mupirocin ATs with the aim of providing 

potential answers as to the function of AT1. 
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6.2 Results 

6.2.1 Construction of point mutations in MmpC AT domains (Harry Thorpe) 

To investigate the possibility of the different roles of AT1 and AT2 we focussed 

on the catalytic centre motif which is GHS in the known acyltransferase AT2 but is 

GSS in AT1 whose biochemical function is unknown. While it is well documented that 

the Ser is vital for substrate docking, the role of the adjacent His is unknown. We 

hypothesised that the unusual motif displayed by AT1 may prevent it from 

transacylating certain ACPs or from selecting certain substrates, hence why the 

chromosomal point mutant of AT2 did not produce mupirocin, and thus providing 

further evidence of the variant roles of the two groups of ATs. Point mutations were 

introduced to mutate S95H in AT1 (GSS to GHS) and H89S in AT2 (GHS to GSS). 

Thus, the AT1 active site would become more AT2-like and the AT2 active site more 

AT1-like.  

To construct point mutations two set of primers were designed, each having 

an end primer and an internal mutagenic primer (primer pairs AT1F1/R1, AT1F2/R2, 

AT2F1/R1 and AT2F2/R2). The initial round of PCR created two 500bp fragments 

which overlapped at the mutation site. The second round of PCR joined the 

fragments to create a 1kb fragment containing the mutation. These were cloned into 

pGEM-T-Easy, to create plasmids pHT601 (for AT1 S95H) and pHT602 (for AT2 

H89S) for sequencing. Ligation with pAKE604 formed plasmids pHT603 for AT1 and 

pHT604 for AT2. The plasmids were transformed into E. coli S17-1 and introduced 

into P. fluorescens NCIMB 10586 by conjugation, followed by selection of 

cointegrants and plasmid excision. 
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Not only were these mutations introduced into P. fluorescens WT chromosome 

(strain AT1WTAT2WT) but also to P. fluorescens AT2 S90A point mutant (strain 

AT1WTAT2GHA) and P. fluorescens AT1 S95A, S96A point mutant (strain 

AT1GAAAT2WT). Figure 6.2 demonstrates the strain architecture and nomenclature. 

The mutated strains were then analysed by bioassay, HPLC and LCMS for 

phenotyping. 

 

 

 

 
 
Figure 6.2. Strain architecture of the AT active site mutants. Top row shows the 
original strains which the mutations were introduced to. Bottom two rows show the 
strains produced by the intended mutations. Mutated residues are coloured red, 
inactivated AT domains are indicated by a red cross, and strain identifiers are written 
below the models. 
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6.2.2 Plate bioassay of antibiotic activity in MmpC point mutants (Harry Thorpe) 

Plate bioassay showed the antibiotic activity of the mutants against the 

indicator strain B. subtilis 1064. The zones of inhibition were measured and the mean 

calculated from the replicates. The bioassay showed that the AT1WTAT2GHA strain, 

where AT2 activity was knocked-out, produced a reduced amount of antibiotic 

activity, 34% of AT1WTAT2WT, and the AT1GAAAT2WT strain, where AT1 activity was 

knocked-out, produced approximately 86% of activity compared to AT1WTAT2WT 

(Figure 6.3 and Table 6.1). This confirmed the previous results that a mutation of AT2 

has more of an effect on mupirocin production than a mutation of AT1 (Shields, 

2008). Mutants AT1GHSAT2WT and AT1WTAT2GSS displayed the most antibiotic activity 

– both 103% of AT1WTAT2WT. Mutant AT1GHSAT2GHA displayed a slightly higher 

background activity than AT1WTAT2GHA displaying 39% compared to AT1WTAT2WT, 

while mutant AT1GAAAT2GSS displayed 87% of activity, a level similar to that of 

AT1GAAAT2WT.  
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Figure 6.3. Antibiotic assay of AT active site mutants. (A) Chart comparing zones 
of inhibition. (B) Bioassay plates showing zones of inhibition. n=3. 
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Figure 6.4. HPLC analysis of AT active site mutants. PA-A retention time, 21min.  
 

 

Table 6.1. Summary of metabolite production AT point mutants. 

 
AT1WT 

AT2WT 

AT1GAA 

AT2WT 

AT1WT 

AT2GHA 

AT1GHS 

AT2WT 

AT1WT 

AT2GSS 

AT1GHS 

AT2GHA 

AT1GAA 

AT2GSS 

Bioassay 
%+* 100 86 34 103 103 39 87 

HPLC 
(mupirocin) 

%* 
100 17.5 2 19 21 3 8 

LCMS (PA-
A) %* 

100 67 2.7 63.2 72.1 0 71.4 

LCMS 
(mupiric 
acid) %* 

100 90.5 0 42.3 34.5 0 32.7 

LCMS 
(mupirocin 

H) %* 
100 23.8 0 3.3 44.2 0 2.3 

+, zone of clearing in mm; *, values have been normalised to WT. 
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6.2.3 HPLC analysis of mupirocin production in MmpC point mutants (Harry 

Thorpe) 

Analysis of mupirocin by HPLC demonstrated a loss of antibiotic production in 

all mutants tested (Figure 6.4 and Table 6.1). However, as with the plate bioassay, 

mutants AT1GHSAT2WT and AT1WTAT2GSS produced the most mupirocin when 

compared to AT1WTAT2WT, but this was considerably lower than the AT1WTAT2WT 

value. Mutant AT1GAAAT2GSS produced approximately half the amount as the 

AT1GAAAT2WT strain, and mutant AT1GHSAT2GHA produced only 1% more than the 

AT1WTAT2GHA strain. 

 

 

6.2.4 LCMS analysis of compounds produced by MmpC point mutants 

(Zhongshu Song, University of Bristol) 

Previous LCMS analysis not only detected PA-A production, but also the early 

release intermediates mupiric acid and mupirocin H (Wu, et al., 2007; 2008). In line 

with previous findings the AT1
WT

AT2
GHA

 mutant produced background levels of PA-A, 

no mupiric acid and no mupirocin H (Table 6.1). As AT2 is predicted to transfer the 

malonyl-CoA extender units throughout the entire mupirocin pathway, the lack of 

production makes sense. Mutant AT1GHSAT2GHA produced similar results, however in 

this case no PA-A was produced (indicating AT1 cannot complement the loss of 

AT2). As expected, the AT1GAAAT2WT strain produced a reduced amount of PA-A, 

indicating production can still continue when this protein is inactivated. The level of 

mupiric acid in this strain was only 10% less than the AT1WTAT2WT strain, however 

the level of mupirocin H was reduced to only 24%, indicating the mutation has an 
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effect on the release of mupirocin H from the pathway. This could also account for 

the reduced amount of PA-A produced if mupirocin H is blocking the pathway.  

Mutant AT1WTAT2GSS appeared to be the most effective PA-A producer, even 

more so than the AT1GAAAT2WT strain, indicating that AT2 activity has not been lost. 

This mutant is the only one where the amount of mupirocin H released is more than 

the amount of mupiric acid released (44.2% and 34.5% respectively). This could be 

an indication that the GHS to GSS mutation in AT2 has increased the AT1-

functionality within the pathway, however, the loss of the active site His residue has 

caused a reduced production of PA-A (lose the Ser – only 2.7% compared to WT, 

lose the His, 72.1% compared to WT).  

Mutant AT1GHSAT2WT demonstrated a reduction in PA-A production slightly 

more than the AT1GAAAT2WT strain. It is likely in this strain that AT2 functionality is 

normal, as expected, but that AT1 functionality has been affected more by the GSS 

to GHS mutation than the GSS to GAA mutation – indicated by the reduction in 

amounts of mupiric acid and mupirocin H released from the pathway. It may be that 

the bulky His residue prevents AT1 from interacting with mupirocin H, whereas Ser 

and Ala both have relatively small side-chains. The AT1GAAAT2GSS mutant produced 

similar results to AT1GHSAT2WT – reduced PA-A compared to AT1WTAT2WT and 

reduced mupiric acid and mupirocin H compared to the AT1GAAAT2WT strain. This 

contradicts the hypothesis that the His in strain AT1
GHS

AT2
WT

 prevents AT1 from 

interacting with mupirocin H, indicating instead that the GSS motif is vital for AT1 

function. It would appear that this strain is 8% more efficient at producing PA-A than 

strain AT1GHSAT2WT, as was strain AT1WTAT2GSS, which would indicate the GHS to 

GSS active site mutation of AT2 has improved the activity.  
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6.3 Discussion 

The characterisation of AT2 in Chapter 4 concluded that this was the only AT 

required for transferring the extender malonate onto the ACPs. This begged the 

question as to the role of the other AT - AT1. As described in Chapter 5 there are 

several trans-AT PKSs that have a similar architecture to the mupirocin system – in 

that two ATs are encoded by a separate gene. The work carried out in Chapter 5 

identified the fact that AT1 may have an alternative role to the typical AT. This study 

carried on the investigation into AT1 function by mutating specific residues of the 

active site in the chromosome of P. fluorescens NCIMB 10586. Mutants were 

analysed by plate bioassay for antibiotic activity, by HPLC for mupirocin production, 

and by LCMS for PA-A, mupiric acid and mupirocin H production. 

 The bioassay results demonstrating mutants AT1GHSAT2WT and AT1WTAT2GSS 

did not lose any antibiotic activity indicates that the two mutated residues (S95H in 

AT1 and H89S in AT2) are not essential for antibiotic production. Similarly the 

AT1GAAAT2WT and AT1GAAAT2GSS strains retained about 86% of antibiotic activity 

when compared to AT1
WT

AT2
WT

 demonstrating a loss of activity similar to that of 

losing AT1 activity rather than AT2 activity. The same could be said for mutant 

AT1GHSAT2GHA, which produced an amount of activity similar to the AT1WTAT2GHA 

strain indicating a loss of AT2 activity. This is also the case for the HPLC results, 

where similar results were achieved for mutant pairs AT1
GAA

AT2
WT

/AT1
GAA

AT2
GSS

 

and AT1GHSAT2GHA/AT1WTAT2GHA. However, the mutants AT1GHSAT2WT and 

AT1WTAT2GSS did not produce an amount of mupirocin that corresponded to the high 

bioassay activity, indicating there may be another compound responsible for the 

increased antibiotic activity in these mutants. 
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 Previous studies have shown that certain deletions cause intermediates to be 

released early from the mupirocin pathway – for example, when you delete MupH 

you no longer get production of PA-A, but get the truncated hexaketide mupirocin H 

instead (Figure 6.5) (Wu et al., 2007). Likewise, inactivation of the KR in module 4 

results in accumulation of the tetraketide mupiric acid (Wu et al., 2008). Accumulation 

of these products in certain mutants can indicate whereabouts in the pathway certain 

proteins are functioning. For example, accumulation of mupirocin H by a mutant 

would indicate that the mutated protein functioned somewhere in the pathway after 

the MupH cassette, and so works later in the pathway. Accumulation of mupiric acid 

indicates that the mutated protein works at some point after MmpD. If none of these 

products are detected it would indicate that the mutated protein works early on in the 

pathway. 

 

 

Figure 6.5. Release of mupiric acid and mupirocin H from the mupirocin 
pathway. Inactivation of KR results in release of mupiric acid from the pathway, while 
inactivation of mupH releases mupirocin H.  
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 As AT2 transfers malonate to ACPs throughout the cluster it is vital for the 

entire pathway, therefore the LCMS results for the AT1WTAT2GHA strain were 

expected: no mupiric acid or mupirocin H was released from the pathway indicating 

AT2 functions right from module 1. The small percentage of PA-A detected in this 

strain is in agreement with previous results demonstrating 3% productivity in relation 

to a WT (Shields, 2008). It is possible that AT1 may be able to take over the 

transacylation properties of AT2 in its absence, but obviously quite inefficiently. The 

two strains where the AT2 GHS motif was mutated to GSS (AT1WTAT2GSS and 

AT1GAAAT2GSS) both affected the metabolites produced. In AT1WTAT2GSS it would 

appear the mutation in AT2 is affecting its activity as there is less mupiric acid being 

produced (a characteristic of non-functional AT2 due to the nature of it working 

throughout the entire pathway), and this would also affect the amount of mupirocin H 

being released as AT2 would be required to transfer malonate in the pathway 

preceding mupirocin H production. In the AT1GAAAT2GSS mutant however, the amount 

of mupirocin H being produced has reduced to almost zero, indicating AT1 activity is 

affected, and cannot be complemented by the GHS to GSS mutation in AT2. 

Similarly the AT1GHSAT2WT strain does not increase AT2 activity, or if it does, the loss 

of AT1 function counteracts it. The AT1GHSAT2GHA mutant produced nothing, 

indicating the GHS motif introduced into AT1 does not complement the inactivation of 

AT2. 

 The LCMS results for the AT1 inactivation strain, AT1GAAAT2WT, demonstrate 

a reduced PA-A production, which was also described previously (Shields, 2008). 

While this mutation did not appear to affect mupiric acid production but did affect the 

amount of mupirocin H detected it can be postulated that AT1 functions between 
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MmpD and the end of MmpA, potentially facilitating release of mupirocin H from the 

pathway. The results for strains AT1GHSAT2WT and AT1GAAAT2GSS also demonstrate 

this potential function. It is tempting to postulate that the presence of the His residue 

in place of the Ser in AT1 prevents interaction with potential substrates, but as the 

same dip in mupirocin H production occurs when Ser is replaced with Ala this is 

unlikely. Therefore it can be concluded that the Ser at position 95 in AT1 is vital for its 

functionality and replacing it with the non-reactive Ala results in either a loss of 

structural integrity or loss of catalytic activity.  

 In terms of active site residues of the AT1-like ATs, there is variation within the 

GxS motif, as shown in Table 6.2. The three ATs with the GHS motif have been 

demonstrated to transfer a malonate-based substrate to ACPs in their respective 

clusters (Aron et al., 2007; Lopanik et al., 2008; Musiol et al., 2011). As they have the 

same motif as the classic AT, such as AT2 or E. coli FabD their transfer of these 

substrates is logical. But what happens when the motif is altered to exclude the 

central His residue that comes into contact with the substrate? It stands to reason 

that a different residue in this position enables a different type of substrate to interact 

with the protein, especially when one considers the general role of His as an 

acid/base catalyst. An example of this is PedC from the pederin biosynthesis 

pathway which has the motif GAS replacing the classic GHS. PedC has been 

revealed to display hydrolase activity, interacting with ACPs to cleave acyl chains, yet 

unable to hydrolyse the malonyl group from the ACPs in question (Jensen et al., 

2012). It therefore seems prudent that the other ATs within the AT1-like group that 

contain the motif GAS perform a similar function. Thioesterase domains contain the 

active site motif GxSxG, which is very similar to the canonical AT motif GHSxG 



Chapter 6: Acyltransferase active site mutagenesis  221 
 

(Pazirandeh et al., 1991). An alignment of TE domains with trans-acting ATs revealed 

the active sites are most similar to the AT2-like ATs, many displaying the 

characteristic GHS motif (Figure 6.6). However, both the bryostatin and one of the 

leinamycin TEs do not contain the His residue.  

 

 

Table 6.2. Active site motif of AT1-like ATs. 

Domain Active site motif 

FenF G H S 

ZmaF G Y S 

KirCI_AT1 G A S 

MmpC_AT1 G S S 

TmpC_AT1 G S S 

RhiG_AT1 G T S 

RzxG_AT1 G A S 

OzmM_AT1 G A S 

TaV_AT1 G A S 

BryP_AT2 G H S 

PedC G A S 

BaeD G A S 

BatH G A S 

EtnK_AT1 G A S 

SorO_AT1 G A S 

ElaC G S S 

KirCII G H S 

EtnB G Y S 
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Figure 6.6. A comparison of acyltransferase and thioesterase active sites. 
Residues highlighted in blue are conserved; those in red are the active site His or 
equivalent; AT, acyltransferase; TE, thioesterase; *, complete conservation, ., partial 
conservation. 

 

 

Mupirocin AT1 is one of three ATs (along with TmpC AT1 and ElaC) in this 

group to have GSS at the active site, rather than GHS or GAS. As its already been 

demonstrated that AT1 is not required for malonylation of mupirocin ACPs, and 

results in the previous chapter indicated an alternative function from that of a normal 

AT, we hypothesised that AT1 may function as a hydrolase, in a similar manner to 

PedC. It is likely that the different residues in the middle of the GxS motif allow the 

protein to interact with different types of substrates. Data produced in this Chapter 

has demonstrated that AT1 most likely functions to remove intermediate compounds 
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from the pathway, thereby keeping the pathway clear for mupirocin production. The 

AT1GAAAT2WT, AT1GHSAT2WT, and AT1GAAAT2GSS strains corroborated this and 

demonstrated that AT1 likely removes mupirocin H from the pathway.  

This can be backed up by recent work within our group. It demonstrated that 

ACP3/4 can be successfully replaced with thiomarinol (tml) ACPs-A3abc, which are 

involved in β-methylation in tml production (Dong et al., 2012; Fukuda et al., 2011). 

When ACP3/4 are replaced with the tml non-β-branching ACPs-D3ab, no mupirocin 

is produced. One striking conclusion from this investigation was that the strain with 

tml ACPs-D3ab produced smaller colonies, compared to the WT or either the 

ΔACP3/4 strain or when ACP3/4 are replaced by tml ACPs-A3abc (Haines, 2012). It 

was hypothesised that in this case a toxic product was being released from the 

pathway. A simple experiment was set up to test this: mmpC has two start codons, 

one prior to the gene and the other prior to AT2 (Hothersall, 2012). A mutant 

inactivating the initial start codon still produces mupirocin, albeit at a lower rate, so 

presumably the WT is producing a mixture of MmpC1 (AT1-AT2-ER) and MmpC2 

(AT2-ER), while the mutant is only producing MmpC2, which is lacking AT1. ACP3/4 

were replaced with tml ACPs-D3ab in this start codon mutant and the result was no 

mupirocin production as before, but bacterial colonies were of a normal size 

compared to the previous investigation, indicating that no toxic by-product was being 

released to affect population cell growth (Haines, 2012).  

These data clearly demonstrate an alternative role for AT1-like enzymes as 

hydrolases removing stunted and toxic products from the PKS pathways to allow 

metabolite production to continue in the normal manner. 
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7 GENETIC ANALYSIS OF DOCKING DOMAINS 

 

7.1 Introduction 

The trans-acyltransferase (trans-AT) group of polyketide synthases (PKSs) is 

no longer unusual. The group has grown dramatically since the initial few were 

documented almost decade ago (Piel 2002; El-Sayed et al., 2003; Tang et al., 

2004b). There are now over 30 documented trans-AT PKS systems that produce 

antibacterial, anti-fungal, anti-cancer, anti-tumour, cytotoxic, and plant antibiotic 

compounds (see Appendix). Among the other characteristics detailed in the Appendix 

that these systems share is the presence of so-called “docking domains”.  

 Docking domains (DD) were initially observed in 2002 while analysing the 

pederin pathway. Piel identified the YTLQxGR and YPF motifs downstream of KS 

domains that form the boundaries of DDs, and noted that the AT active site GHSxS 

motif was absent (2002). In 2004 it was proposed they were named AT-docking 

domains (DD) as homage to a proposed function in the docking of AT domains to 

multifunctional proteins (Tang et al., 2004b). They appear to be remnants of once-

functional cis-acting AT domains, lacking the crucial active site and substrate 

specificity motifs (Figure 7.1) (Tang et al., 2004b). Several trans-AT PKSs have been 

annotated with DDs, but there is a distinct lack of functional evidence (Piel, 2002; 

Tang et al., 2004; Kopp et al., 2005; Calderone et al., 2006; Straight et al., 2007; 

Aron et al., 2007; Pulsawat et al., 2007; Lopanik et al., 2008; Lim et al., 2009; Fukuda 

et al., 2011). Studies on the mycosubtilin PKS have shown that the AT, FenF, carried 

out malonyl transfer 100 times faster to the KS-DD-ACP construct than to the DD-

ACP construct, but this was approximately half as slow as the lone ACP construct. 
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The lone ACP construct displayed over 1,000 times more affinity for malonyl-CoA 

than the DD-ACP construct, and 7 times more affinity than the KS-DD-ACP construct. 

The authors concluded that DD didn’t affect AT specificity, but may play a role in the 

timing of malonyl transfer – preventing the reaction between AT and KS from 

proceeding too fast, or indeed to slow, by conformational interactions between the 

DD, the KS and AT domains (Aron et al., 2007). 

 

 

 

 
 
Figure 7.1. Homologous regions between the AT docking domain and a 
functional methylmalonate-specific AT domain. The active site GHSxG motif and 
methylmalonate substrate specific motif YASH are absent from the docking domain 
(Tang et al., 2004b). 
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Previously it was proposed that all the trans-AT PKS systems contained DDs 

(Tang et al, 2004b). DDs have been identified in the mupirocin system, but several 

questions remain to be answered: Are DDs present in every trans-AT PKS system? 

Do DDs have any secondary structure? If DDs are deleted from the producing 

organism’s chromosome, is the secondary metabolite still produced? 
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7.2 Results 

7.2.1 Sequence analysis 

A mupirocin DD was used to identify DDs in other trans-AT systems – this 

demonstrated that all trans-AT PKSs contain DDs (see Appendix). A BLAST search 

using the DD from MmpB also identified several uncharacterised trans-AT PKS 

systems revealing an untapped resource of putative polyketide products (Table 7.1). 

 The mupirocin DDs were aligned with 275 docking domains from the other 29 

trans-AT PKS systems included in this bioinformatic study. While this alignment 

showed conserved regions, it was necessary to generate a sequence logo to be able 

to demonstrate the conservation that occurs, particularly at the N- and C-termini. 

Figure 7.2 shows that they consist of a maximum of 132 amino acids containing 

conserved motifs at each end, with a less conserved region in between. There are 

several completely conserved residues, including an Arg at position 18, Leu33, Pro122 

and Trp132. There are several other highly conserved residues including a Leu at the 

beginning, Thr7 and Leu8, Gly11 and Arg12, Gly100 and Tyr124, Pro125 and Phe126. 
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Table 7.1. BLAST results showing trans-AT PKS proteins containing docking 
domains, responsible for uncharacterised polyketide products. 

Accession Producing organism Identitya 

YP_777798.1 Burkholderia ambifaria AMMD 47% 

YP_004084148.1 Micromonospora sp. L5 43% 

YP_003124922.1 Chitinophaga pinensis DSM 2588 43% 

YP_002987049.1 Dickeya dadantii Ech703 42% 

EHK80195.1 Saccharomonospora azurea SZMC 14600b 
42% 

ZP_09832368.1 Saccharomonospora azurea NA-128b 
42% 

YP_001231835.1 Geobacter uraniireducens Rf4 41% 

YP_003871372.1 Paenibacillus polymxa E681 41% 

YP_003947589.1 Paenibacillus polymxa SC2 40% 

ZP_04622165.1 Yersinia kristensensii ATCC 33638 40% 

YP_004207774.1 Bacillus subtilis BSn5b 
39% 

YP_005556846.1 Bacillus subtilis subsp. subtilis RO-NN-1b 39% 

ZP_08194894.1 Clostridium papyrosolvens DSM 2782b 
39% 

EHA29456.1 Bacillus subtilis subsp. subtilis str. SC-8b 
39% 

ZP_02406696.1 Burkholderia pseudomallei DM98 39% 

ZP_02493571.1 Burkholderia pseudomallei NCTC 13177 39% 

ZP_02509683.1 Burkholderia pseudomallei BCC215 39% 

ZP_02501787.1 Burkholderia pseudomallei 112 39% 

YP_111014.1 Burkholderia pseudomallei K96243 39% 

ZP_03790871.1 Burkholderia pseudomallei Pakistan 9 39% 

ZP_03450044.1 Burkholderia pseudomallei 576 39% 

ZP_04812633.1 Burkholderia pseudomallei 1106b 39% 

YP_001075429.1 Burkholderia pseudomallei 1106a 39% 
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ZP_04899204.1 Burkholderia pseudomallei S13 39% 

YP_003973164.1 Bacillus atrophaeus 1942 39% 

YP_005312202.1 Paenibacillus mucilaginosus 3016b 39% 

AFH61261.1 Paenibacillus mucilaginosus K02b 39% 

YP_004640305.1 Paenibacillus mucilaginosus KNP414 38% 

YP_001062476.1 Burkholderia pseudomallei 668 38% 

YP_004877340.1 Bacillus subtilis subsp. spizizenii TU-B-10b 38% 

YP_002773468.1 Brevibacillus brevis NBRC 100599
b
 38% 

AFI28406.1 Bacillus sp. JS 38% 

ZP_06873410.1 Bacillus subtilis subsp. spizizenii ATCC 6633 36% 

YP_002505216.1 Clostridium cellulolyticum H10 36% 

    a, with MmpB DD; b, contains more than one trans-AT PKS. 
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Figure 7.2. Sequence logo showing conservation among docking domain 
sequences. 285 docking domain sequences from 30 trans-AT PKS systems were 
used to generate the sequence logo. Colour coding: blue, basic; red, acidic; black, 
non-polar; green, polar; purple, nonessential (Schneider and Stevens, 1990; Crooks 
et al., 2004). 
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This has enabled the DD boundaries to be characterised, with 

LxDLAYTLQxGRxxMxxRLAxxAxxxxxLxxxL representing the N-terminus consensus 

sequence, and WVxGxxxDWxxLxxxxxxxPRRxxLPTYPFARERYW representing the 

C-terminus sequence. The LPTY motif shown in the C-terminus sequence can be 

found downstream of cis-acting ATs, and represents the invisible boundary between 

AT and ACP (Tang et al., 2006). The GHSxG motif characteristic of the AT active site 

was not evident in any sequence analysed. The docking domains analysed in this 

study varied in length from 90 to 132 amino acids, with the disordered central 

segment accounting for between 17 and 60 residues. 

 A mupirocin DD was mapped to a portion of module 5 from DEBS including 

the C-terminus of the KS domain, the KS-AT linker, the AT and the post-AT linker 

(Tang et al., 2006). Figures 7.3 and 7.4 highlight two particular regions of the DEBS 

module that aligned with the N and C-terminal consensus sequences of the DDs – 

approximately half of the KS-AT linker aligned with the N-terminus (termed region 1), 

while post AT-linker aligned to the C-terminus (region 2). This identified two structural 

regions to be deleted from the chromosome alongside deletion of a whole docking 

domain. 

 

 

 

 

 

 



Chapter 7: Genetic analysis of docking domains  233 
 

 
Figure 7.3. Mapping of a docking domain to DEBS module 5. (A) A portion of 
DEBS module 5 showing ketosynthase (pink), acyltransferase subdomains (brown 
and green) and KS-AT and post-AT linkers (blue) with a docking domain mapped in 
yellow. (B) Left, region 1 to be deleted is highlighted yellow in cartoon; right, region 2 
to be deleted is highlighted blue in cartoon. 
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Figure 7.4. Sequence alignments of mupirocin docking domains with a portion 
of DEBS module 5. Secondary structures are annotated on the alignment to show 
areas of the mupirocin DDs that potentially have structure. KS, ketosynthase; AT, 
Acyltransferase; KR, ketoreductase. 
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7.2.2 Construction of P. fluorescens NCIMB 10586 deletion mutants 

MmpD and MmpA were targeted for deletion of an entire docking domain (ΔD3 

and ΔA3), alongside separate deletions of regions 1 (ΔD1 and ΔA1) and 2 (ΔD2 and 

ΔA2) (Figure 7.5). The first docking domain on MmpD was targeted as being the first 

docking domain in the mupirocin pathway, while the first docking domain on MmpA 

was targeted as being part of a non-elongating module. Primers were designed to 

amplify two 500bp fragments that flanked either side of the region to be deleted with 

external restriction sites for cloning into plasmids (Table 2.12). PCR was carried out 

using Velocity DNA polymerase (Bioline). The PCR products were gel purified, A-

tailed and ligated with pGEM-T-Easy to produce plasmids pRG701-pRG708. 

Following successful sequencing, fragments were excised from pGEM-T-Easy with 

the appropriate restriction enzymes for ligation into the suicide vector pAKE604. 

Ligations were performed in triple, that is, the pAKE604 vector, and two 500bp arms 

were ligated simultaneously, and then transformed into E. coli DH5α. Plasmid DNA 

extraction and restriction digests using the sites at either end of the fragments 

confirmed the presence of 1kb fragment with the selected area deleted. Plasmids 

pRG710-pRG715 were then transformed into E. coli S17-1 ahead of conjugation with 

P. fluorescens NCIMB 10586 where integration into the chromosome occurred by 

homologous recombination. Integrants were isolated by checking for sucrose 

resistance and kanamycin sensitivity, as the integrated plasmid carries sacB, which 

encodes the enzyme levansucrase, and KanR. The mutant genotype was checked by 

PCR. 
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Figure 7.5. Location of docking domain deletions. Δ, deletion; D, MmpD; A, 
MmpA; crescents, docking domains. 
 

 

 

7.2.5 Bioassay and HPLC analysis of docking domain mutants 

Plate bioassays and HPLC were employed to determine the phenotype of the 

six DD deletion mutants (Sections 2.4 and 2.5). Each mutant resulted in a complete 

loss of mupirocin production when compared to WT and the negative control, 

ΔmmpA which is known to knock-out mupirocin production (Figure 7.6, A and B). 

Mutants ΔA3 and ΔD2 had zones of inhibition that were 23% of the WT (3% more 

than ΔmmpA), and appeared more diffuse than the remaining zones. Mutants ΔA1, 

ΔA2, ΔD1 and ΔD3 all had zones that were less than those for ΔmmpA. HPLC 

analysis was carried out to confirm the results from the plate bioassay. Figure 7.6 (C) 

shows that compared to the WT, a mupirocin standard and ΔmmpA, none of the 

mutants produced PA-A. 
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Figure 7.6. Analysis of docking domain deletion mutants. (A) Chart of inhibition 
zones, (n=3). (B) Bioassay plates. (C) HPLC analysis. WT, wild type; ΔA1-A3 and 
ΔD1-D3, deletion of mmpA regions, 1, 2 and entire docking domain (3), and deletion 
of mmpD regions 1, 2 and entire docking domain (3). 
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7.2.6 LCMS of docking domain mutants 

It was predicted that the deletions on mmpA may produce mupiric acid – as 

this is the last intermediate to be released before the assembly line reaches mmpA. 

Alongside the negative control ΔmmpA, none of the mutants produced either mupiric 

acid or the other early intermediate, mupirocin H (Figure 7.7). 

 

 

Figure 7.7. LCMS analysis of docking domain deletion mutants. (A) Detection of 
PA-A. (B) Detection of mupiric acid. (C) Detection of mupirocin H. WT, wild type; 
ΔA1-A3 and ΔD1-D3, deletion of mmpA regions, 1, 2 and entire docking domain (3), 
and deletion of mmpD regions 1, 2 and entire docking domain (3). 
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7.3 Discussion 

Until fairly recently the linking regions between domains on trans-AT 

multifunctional PKSs were thought to be just that, regions that linked catalytically 

active domains to one another. Several investigations have revealed striking 

similarities between some of these so called linkers (specifically the KS to the next 

downstream domain linker) and cis-AT PKSs. Despite cis- and trans-AT PKS 

systems evolving separately, it has been postulated that these linkers immediately 

downstream of the KS domain were the remnants of ATs that once would have 

functioned in cis in the same way as the modern day cis-AT PKS systems, such as 

DEBS (Tang et al., 2004b). Previous studies showed it was portions of AT-like 

fragments remaining after multiple deletion events that formed these DDs (Figure 

7.1).  

This study has demonstrated the evolutionary deletion extends further than 

previously thought - DDs are comprised of two segments that are similar to portions 

of an AT, with an N-terminal similar to part of a KS-AT linker, and a C-terminal similar 

to a post-AT linker. Figure 7.1 can now be remodelled to this effect, as shown in 

Figure 7.8. Of the 285 DDs analysed during this study, the GHSxG motif 

characteristic of the AT active site was absent, indicating these are not functioning as 

partial ATs.  
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Figure 7.8. Homologous regions between the AT docking domain and a portion 
of DEBS module 5. KS-AT linker is shown in green, AT is shown in blue and the 
post-AT linker is shown in pink. Lines connecting the two models indicate 
homologous regions. KS, ketosynthase; AT, acyltransferase; KR, ketoreductase. 
 

 

Sequence alignments have demonstrated conservation of the docking domain 

with both the KS-AT linker and post-AT linker from module 5 of DEBS. The crystal 

structure of DEBS module 5 has been solved, and by aligning this module with the 

mupirocin DDs one can predict that a docking domain has at least some secondary 

structure (Tang et al., 2006). This alignment has shown that the KS-AT linker could 

be comprised of three α-helices and three β-sheets, while the post-AT linker mainly 

of random coils.  

 In cis-AT PKSs the positioning of the domains requires certain movement or 

reorganisation for the transfer of substrate from AT to ACP and to KS for 

condensation. It is thought the AT domain interacts with the KS-AT linker to form 

interdomain contact. At the KS to KS-AT linker and KS-AT linker to AT interfaces 

there are hinge regions – regions of flexibility designed to bring domains in closer 

proximity to one another (Anand and Mohanty, 2012). However it would seem that 

the hinge regions do not provide adequate flexibility for the ACP to dock at one site 
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and have access to the active sites of both the AT and KS domains. A key residue 

has been identified in the KS-AT linker region of cis-AT PKS systems that is thought 

to be involved in KS-ACP interaction, specifically to guide the biosynthesis of the 

polyketide in a unidirectional manner. The ratchet mechanism is based on the 

acidity/basicity of specific amino acid residues. The premise is that if a module has 

an acidic residue in a specific position (for example Arg551 of the KS-AT linker of 

DEBS module 5) an ACP from the same module will have an acidic residue at 

position 23 meaning the ACP cannot pass the growing chain back to the KS, but will 

instead pass it forward to the next module which would have a basic residue in the 

corresponding position (Kapur et al., 2012). The same study also identified residues 

44 and 45 of ACPs as being important for docking in the KS/KS-AT linker/AT cleft 

during the elongation process. It is tempting to hypothesis that the same residues 

could be of importance in trans-AT PKS systems however, Arg551 of DEBS module 5 

is not in a region that aligns with the mupirocin docking domains, suggesting that 

another residue holds this responsibility within trans-AT PKSs.  

Due to the disordered state of the post-AT linker, compared to the rigid 

secondary structure of the KS-AT linker, it was predicted to have a role in facilitating 

movement of the ACP between catalytic sites during biosynthesis (Anand and 

Mohanty, 2012). This is consistent with the crystal structure of part of DEBS module 

3 which indicates that the post-AT linker forms interactions with the KS and AT 

domains which ultimately enable the synthase to form a deep ACP-docking groove 

(Tang et al., 2007). Further studies have demonstrated that the post-AT linker is not 

required for AT acquiring substrate, passing it to ACP or for the KS acquiring 
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substrate, but is required for KS-catalysed β-ketoacyl-ACP synthase activity (Chen et 

al., 2007; Wong et al., 2010).  

 The number of domains varies between systems, but a trans-AT PKS cluster 

contains a DD for every KS-containing module that lacks a cognate AT domain. If 

these domains are the result of an evolutionary recombination event designed to 

eliminate AT domains, there are two notable clusters containing trans-AT PKSs that 

could be further behind in the evolutionary process. The zwittermicin and FK228 

clusters both contain a mixture of cis- and trans-acting ATs, which is not entirely 

unusual as so does the kirromycin cluster - KirAVI contains a cis-acting AT while the 

remaining PKS modules do not and are instead supplied by KirCI and KirCII, and the 

neocarzillin cluster – modules 1 and 3 have cis-acting ATs, while modules 2 and 4 do 

not (Otsuka et al., 2004; Cheng et al., 2007; Weber et al., 2008; Kevany et al., 2009; 

Musiol et al., 2011). What is unusual however, is the length of the proposed docking 

domains – they are between 200-250 amino acids in length, and one was annotated 

on DepB as a non-functional AT domain (Cheng et al., 2007). An alignment of these 

three DDs with DDs from other systems showed the same areas of homology, with 

the exception of there being more residues of the segment between the N and C-

termini sequences. 

 An alternative hypothesis for the role of DDs comes in the form of interdomain 

(ID) regions identified on a tetrameric iterative PKS that produces 6-methylsalicyclic 

acid (6-MSA) (Moriguchi et al., 2006). Based on previous studies it is highly likely that 

the mupirocin multifunctional proteins take on the form of dimers during mupirocin 

production (Tang et al., 2006). Therefore IDs may be required to form the functional 

dimers.  
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 It would seem prudent to hypothesise that the reason these DDs have 

remained in place throughout the evolutionary process is due to their functional 

nature, rather than by serendipity. The results shown in this study indicate DDs play a 

vital role in mupirocin biosynthesis – when even part of them is deleted it completely 

disrupts antibiotic production. As they have retained most of the post-AT linker, it 

seems highly likely that they play an as yet unidentified role in acyl-group transfer 

and/or condensation catalysation, even if it is a structural role. As yet, there are no 

crystal structures of complete polyketide synthases and until such a time we can only 

hypothesise about the complete conformation that a synthase may take. It is highly 

likely that in a trans-AT system the interactions between the AT domain and the post-

AT region (now located within the DD) still occur, indeed they may be even more 

important in guiding the trans-acting AT to the correct position for acyl transfer or for 

facilitating the ACP into the correct position. 
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8 MUTAGENESIS OF β-BRANCHING ACP3 

 

8.1 Introduction 

Acyl carrier proteins (ACPs) are an integral part of both fatty acid synthesis 

and polyketide synthesis. ACPs are modified from apo to holo form by the addition of 

a 4’-phosphopantethiene group to a conserved Ser residue located in a loop close to 

helix two (Lambalot et al., 1996; Mercer and Burkart, 2007). This 

phosphopantetheine arm serves to anchor acyl groups prior to Claisen condensation 

with the growing molecule. While ACPs have the same role, the nature of polypeptide 

organisation in different systems means the interactions of these small proteins are 

varied (Mercer and Burkart, 2007). In the assembly line set up of type I PKS systems 

the ACP is located within a multidomain polypeptide and is required to interact with 

neighbouring domains, including those located on a separate polypeptide. For type I 

FAS systems the ACP acts iteratively throughout the entire process of molecule 

synthesis and can interact with as many as 12 different domains (Rawlings and 

Cronan, 1992). In type II FAS and PKS systems each catalytic domain is located on a 

separate protein, including the ACP, which is required to repeatedly interact 

selectively with the correct enzymes in the correct sequence (Mercer and Burkart, 

2007).  

There are 11 type I and 5 type II ACPs involved in mupirocin biosynthesis (El-

Sayed et al., 2003). Studies have shown these are phosphopantetheinylated by the 

phosphopantetheinyl transferase (PT) MupN and acquire malonate from MmpC 

(Shields et al., 2010; Chapter 4 of this Thesis). As in many trans-AT PKSs systems, 

the mupirocin cluster has two cases of tandem ACPs – ACP3 and 4 in MmpA, and 
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ACP5, 6 and 7 in MmpB – thought to function independently and increase the 

pathway rate – a deletion of any one of these would be rate limiting (Rahman et al., 

2005).  

Methyl groups can be added to the growing molecule by one of three methods 

– cis-AT systems such as DEBS may employ methylmalonate specific ATs which 

incorporate methyl groups into the molecule (Ruan et al., 1997); trans-AT systems 

such as mupirocin, leinamycin and pederin have methyltransferase (MT) domains 

within catalytic modules incorporating α-methyl groups from S-adenosyl methionine 

(SAM) (Piel, 2002; Cheng et al., 2003; El-Sayed et al., 2003); the final method is the 

incorporation of β-methyl groups by the actions of a hydroxymethylglutaryl-CoA 

synthase (HCS) cassette (Calderone et al., 2006). The presence of an HCS cassette 

is not limited to either cis- or trans-acting AT PKS pathways as demonstrated by their 

presence in the cis-AT PKSs of curacin A and jamaicamide, and in many of the trans-

AT PKSs as demonstrated in the Appendix (Chang et al., 2004; Edwards et al., 

2004). The mupirocin cluster has an HCS cassette thought to associate with module 

6 on MmpA to add the C15-methyl group to monic acid. This module also happens to 

be the location for one of the tandem pairs of ACPs – ACP3 and 4. HCS cassettes 

generally involve a set of five proteins incorporating a decarboxylating KS (MupG), an 

HMG-CoA synthase (MupH), two enoyl-CoA hydratases (ECHs) (MupJ, MupK) and 

an ACP (mAcpC). It is proposed that AT2 would transfer a malonate group from 

malonyl-CoA to mAcpC, prior to decarboxylation by MupG. MupH then catalyses a 

condensation to join the acetyl-mAcpC with the β-ketothiolester moiety, presumably 

anchored on ACP3, before dehydration and a further decarboxylation by MupJ and 

MupK (Wu et al., 2007). 
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ACPs holding an intermediate which has a β-methyl group introduced by the 

activity of a HCS cassette are referred to as branching ACPs. Recent investigations 

have identified a sequence motif unique to branching ACPs, DSxxxxxW where S is 

the active site Ser, that once identified was utilised to identify branching ACPs from 

17 PKS clusters (Dong et al., 2012). In addition to this specific motif there were a 

number of differences identified between branching and non-branching ACP 

sequences, highlighting the potential for the different roles of these ACPs. The 

nuclear magnetic resonance (NMR) structure of the ACP3/4 didomain as determined 

by Matt Crump and co-workers indicated that both ACPs were very similar consisting 

of four α-helices and a loop, and they were joined by an unstructured linker (Figure 

8.1) (Dong et al., 2012). The active site Ser was located at the N-terminus of helix II, 

while the conserved Trp residue of each ACP was buried in the core of the protein 

located between helices I and II – replacing smaller residues at this position in non-

branching ACPs. 

Site directed mutations (W>L) in ACP3 or 4 or both ACP3 and 4 of the 

didomain resulted in a reduction of pseudomonic acid (PA-A) with the double mutant 

having the least production, indicating the importance of this residue for a fully 

functioning branching ACP (Dong et al., 2012).  

The aim of this project was to determine the phenotype of the W>L mutation in 

ACP3. 
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Figure 8.1. Structures of ACP3 and ACP4. (A) Solution NMR structures of ACP3/4 
didomain. Maroon, ACP3; blue, ACP4; green, domain-domain linker. (B) The 
superimposed structures of ACP3 (maroon) and ACP4 (blue). Helices are numbered. 
ACP3 wildtype (C) and mutant (D) structures visualised on visual molecular dynamics 
(VMD) from NMR coordinates. Wildtype ACP3 with Trp55 shown in blue and mutant 
ACP3 where Trp55 has been replaced with Leu (shown in blue). (Y. Takebayashi, 
2011; Dong et al., 2012). 
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8.2 Results 

8.2.1 Construction of ACP3 W55L point mutant (Erika Yamanda) 

Using pAH800 as the template, mutant ACP3 was amplified using primer pairs 

ACP3FP/ACP3RP and BIO-X-ACT long DNA polymerase. The reaction involved 

denaturation for 2min at 94°C, followed by 10 cycles of denaturation for 15s at 94°C, 

annealing for 30s at 60°C, and elongation for 1min at 70°C, followed by 20 cycles of 

the same with 5s increment at the elongation stage in each cycle, and a final 

elongation of 7min at 70°C. After purification of DNA from the corresponding bands 

on an agarose gel and cloning into pGEM-T-Easy, the product was sequenced to 

check for PCR errors. Sequencing revealed the insertion of eight residues prior to the 

N-terminus of the mutant protein (Figure 8.2).  

 

 

 
 
Figure 8.2. Sequencing comparison of ACP WT and mutant clones. WT, wildtype 
ACP3; mut, mutant ACP3; residues shown in grey remain from pGEM-T-Easy; 
residues underlined show the additional residues in the mutant; residues in red 
highlight the W>L mutation. 
 
 

Digestion with EcoRI and subsequent re-ligation successfully removed these 

extra residues. After re-sequencing to confirm the sequence was now correct with a 

W55L mutation the DNA fragment was cloned into pET28a to create plasmid pEY802 

for expression of mutant ACP3. 
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8.2.2 ACP3 mutant protein expression and purification 

Due to the insolubility and purification issues of ACP4 (Figure 3.14) studies 

continued using ACP3 only. Plasmids pEY802 and pJS563 were introduced into E. 

coli BL21 for expression. Where holo protein was required for assays the plasmids 

were co-expressed with pJHN11. The WT ACP3 was solubilised and purified as 

described previously (Table 3.1). The mutant protein required the same induction 

conditions as the WT (0.4mM IPTG, 30ºC for 4h) but only half the protein was soluble 

(Figure 8.3). Purification of the mutant took place using the same methods as for the 

WT; however the protein only eluted at 250mM imidazole, whereas the WT protein 

began eluting at 200mM, indicating the WT has more affinity for Ni-NTA than the 

mutant. 

 

 

 

 
Figure 8.3. Expression of WT and mutant ACP3. pET28a, negative control; WT, 
wildtype; M, molecular weight marker; 1, insoluble fraction; 2, soluble fraction; 3, pure 
fraction. 
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8.2.3 Circular dichroism of ACP3 WT and mutant proteins 

Circular dichroism (CD) was employed to determine structural differences 

brought on by the W55L mutation. The spectra demonstrate the difference in 

structure between the inactive apo and active holo forms of the WT ACP3 protein 

(Figure 8.4, A). WT ACP3 displays an α-helical spectrum with negative peaks at 208 

and 222nm and a positive peak at 190nm - in this case the peak at 208nm is stronger 

than that at 222nm. The apo and holo forms of the mutant both vary in spectra from 

the WT - as for the WT, the mutant displays a more negative peak at 208nm than 

222nm, but it is the holo form of the mutant where this characteristic is particularly 

noticeable. This would indicate the mutant has a higher helical content than the 

mutant, more coil-coil interactions of the helices, or is dimerising more than the WT.  

 

8.2.4 Malonylation assay of ACP3 WT and mutant proteins 

Autoradiography was used to determine the amount of malonate acquired by 

the WT and mutant ACP3 proteins. As determined in Chapter 4, the concentration of 

AT was 0.05µM, and ACP and [
14

C]-malonyl-CoA were 20µM. Autoradiography 

demonstrated that whilst both holo ACP3 proteins appear to self-malonate to a 

certain degree, the addition of AT2 in the assay increases the malonylation of the WT 

by 207% and the mutant by 67% (Figure 8.4, B and C). If the WT malonylation is 

considered as 100%, then in comparison the mutant is only 2.8% malonylated. 
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Figure 8.4. Determining the phenotype of mutant ACP3. (A) Circular dichroism 
spectra of WT and mutant ACP3 proteins. Mutant ACP3 was assayed against a 
negative assay buffer control and against the WT as a positive control. (B) Chart 
showing the acquisition of malonate by the holo WT and mutant ACP3 proteins. (C) 
Autoradiography of [14C]-malonate-holo-ACP3. M, molecular weight marker; 1, holo 
WT ACP3; 2, holo mutant ACP3. 
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8.3 Discussion 

β-branching ACPs are present in a wide variety of PKS clusters, both with cis- 

and trans-acting ATs. Recently several residues were identified that were thought to 

be significant in distinguishing branching ACPs from non-branching ACPs (Dong et 

al., 2012). In terms of ACP3 these residues were Leu21, Leu25 and Leu29. Phe42 and 

Trp55 and were found to cluster within the core of the ACP. Computer modelling was 

used to visualise the interactions between the mupirocin ACP3/4 and MupH HMG-

CoA synthase of the HCS cassette. This technique demonstrated that Tyr73, Asp70 

and Thr74 of helix III were at the interface between ACP3 and MupH; however these 

residues are not unique to branching ACPs. This led to the conclusion that 

recognition between ACP and MupH was most likely due to the position of helix III 

rather than the amino acid composition (Dong et al., 2012). However it was still clear 

that there were several residues that were exclusive to branching ACPs – 

corresponding to ACP3 residues Leu25 Leu29, Phe42, Asp48, and Trp55. The Trp55 

residue stood out as in this position whereas on non-branching ACPs the residue 

was much smaller – either Leu, Phe, Val, Ile, or Met. Therefore it was decided to 

mutate this residue to Leu to see what the effect would be on the production of 

mupirocin. As demonstrated in Figure 8.1 (C+D) Leu is a much smaller amino acid 

than Trp and so significantly changes the packing of side chains between helices I 

and II. Introducing these mutations into the chromosomal genes also demonstrated 

that the W>L mutation in both ACP3 and 4 reduced the amount of mupirocin 

produced (Dong et al., 2012).  

During this study the structure of the mutant protein and the ability to acquire 

malonate were assessed. The studies utilising CD to assess the changes in protein 
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secondary structure demonstrated significant structural changes in the mutant protein 

compared to the WT protein – it appeared the mutant was more helical and had more 

helical coil-coil interactions than the WT. This fits in with the model of the WT and 

mutant in Figure 8.1 – the mutant protein has a cleft due to the absence of the bulky 

Trp residue, allowing interactions between helices I and II to occur. The ability of the 

mutant protein to acquire malonate was tested and it was clear the ability was 

severely impaired, with the mutant protein acquiring a mere 2.8% of the amount of 

malonate as the WT protein did. The protein was also more difficult to work with in 

vitro in terms of solubility and purification, contributing to the conclusion that 

significant changes in structure had occurred. 

Dong et al. also experimented with domain swapping – replacing the 

mupirocin branching ACPs for both branching and non-branching ACPs from the very 

similar thiomarinol PKS cluster (2012). As detailed in Section 1.4.1, the thiomarinol 

PKS cluster is very similar to the mupirocin PKS system. The first experiment 

involved replacing the mupirocin ACP3/4 branching ACPs with the thiomarinol ACPs-

A3abc triplet, and showed they were successful in complementing the mupirocin 

ACP3/4. Interestingly the extra ACP appeared to have little effect on PA-A production 

when analysed by LCMS. The second experiment involved swapping ACP3/4 for 

thiomarinol ACPs-D3ab, which are non-branching. The data indicated that, although 

colony morphology was altered (see Chapter 6, page 223 for probable cause), no 

mupirocin was produced, conclusively agreeing that the HCS cassette cannot work 

with non-branching ACPs, but can work with branching ACPs from different clusters 

(Dong et al., 2012).  
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The experimental data produced during this study combined with the results 

from recent research clearly display differences between β-branching and non-

branching ACPs (Dong et al., 2012). It would be interesting therefore to investigate 

the protein-protein interactions between the WT and mutant ACP3 proteins and 

MupH.  
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9 GENERAL DISCUSSION AND FUTURE WORK 

 

Antibiotic resistance is worryingly becoming an increasingly common 

phenomenon. Brought on by decades of antibiotic misuse, be it by over prescribing, 

misprescribing, not finishing courses of antibiotics and misuse in the agricultural 

world, antibiotic resistance is a very real disaster waiting to happen. The World 

Health Organisation is at the forefront of the war against antibiotic/antimicrobial 

resistance and has several initiatives in place in order to: track antibiotic use and 

resistance, encourage better use of antibiotics, reduce the use of antibiotics in 

agriculture, prevent infection in the community and health care organisations, 

encourage innovation and research into combating antimicrobial resistance (Grayson 

et al., 2012). Recently a group of scientists from academia and industry came 

together to discuss issues relating to antibiotic resistance and to brainstorm how the 

issues could be addressed (Bush et al., 2011). Research required into controlling and 

tackling resistance included intercepting the development of resistance and 

preventing it altogether, educating the public, developing new antibiotics, 

reinvestigating the potential of previously discarded antibiotics, developing 

alternatives to antibiotics and perhaps most importantly, collaboration between 

members of academia, industry, and government agencies (Bush et al., 2011). 

It has already been discussed in Chapter 1 that mupirocin is an effective agent 

in the treatment of MRSA and that resistance to mupirocin is developing throughout 

the world, however continued research on this antibiotic is providing more answers 

about the pathway, and is generating novel antimicrobial compounds (Fukuda et al., 

2011; Hothersall et al., 2011; Murphy et al., 2011). Therefore, it is vitally important 
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this research continues. The conclusions of this current study have contributed to the 

field of antibiotics, and more specifically to the field of PKS produced antibiotics, and 

trans-AT PKS produced antibiotics. 

The mupirocin biosynthetic cluster is homologous to that of the modular type I 

PKSs and type II – comprising of multifunctional polypeptides and discrete proteins. 

Although much information has already been deduced about the biosynthesis of 

mupirocin, there are many aspects of the pathway still to be fully investigated and 

putative gene functions to be confirmed. The two discretely encoded ATs of the 

cluster play a crucial role in the biosynthesis of mupirocin – transferring substrates to 

commence biosynthesis and for continual extension of the polyketide. It has 

previously been shown that deletion of AT2 results in a complete loss of mupirocin 

production and deletion of AT1 results in reduced production, demonstrating the 

importance of these proteins within the cluster (El-Sayed et al., 2003; Shields, 2008). 

The work described here is part of an on-going investigation into the specific 

functions of the ATs. Biochemical characterisation of the ATs and domains they are 

predicted to interact with will result in a better understanding of the processes they 

undertake and will contribute to the overall knowledge of the cluster, and to that of 

similar clusters. 
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9.1 Mupirocin proteins can be difficult to work with 

Solving the solubility and purification issues of AT1 will be significant in 

defining the roles of the individual ATs. A recent study has shown that a protein 

similar to MmpC is responsible for the loading of malonyl-CoA to an ACP within the 

kirromycin cluster (Musiol et al., 2011). However, this study was completed using the 

whole of KirCI, which is an AT-AT-ER tridomain, rather than a breakdown of the 

individual domains. Therefore it is impossible to say which AT domain performed the 

transfer to the ACP. Based on the results in this study it is highly likely to be the 

second AT of KirCI that performed the transfer, which makes it all the more intriguing 

as to what function the first ones have.  

Work focussing on solving the solubility and purification issues of AT1 is 

definitely high priority in terms of concluding the AT work undertaken in this study. 

While several suggestions for future work were suggested in Chapter 3, including 

following on the work using the GST-tag, another option could be to utilise the 

facilities at the Oxford Protein Production Facility (OPPF). The OPPF has the 

facilities and resources to screen for solubility of the gene/protein of interest in a 

variety of plasmids and host cells (2011). Creating a double His-tagged protein by 

combing pET28a and pET28b to AT1 could provide the platform required for 

purification by nickel-affinity chromatography. Alternatively purification by other 

means, such as ion exchange or liquid chromatography may prove to be more 

successful. AT1 is not the only protein from the mupirocin system to be somewhat 

difficult to work with, several of the ACPs were difficult to solubilise and subsequently 

purify, and insoluble mupirocin proteins have been causing difficulties for many 

members of the Thomas group (Personal communications).  
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Expression of mupirocin proteins from a Pseudomonas host as opposed to an 

E. coli host could prove to be more successful. While E. coli is the standard host for 

use in protein expression, differences in codon usage and promoter structure can 

cause difficulties expressing proteins from Pseudomonads (Watson et al., 1996). 

There are however, several expression vectors that have been developed for use in 

Pseudomonas spp. and there is an increasing amount of research in this area. The 

vectors pUCPKS and pUCPSK have been demonstrated to produce recombinant 

proteins in P. aeruginosa (Watson et al., 1996). A c-type cytochrome subunit (PchC) 

from Pseudomonas putida could not be produced as recombinant protein when using 

the pET expression system in E. coli, but when expressed from the pUCP-Nde vector 

in P. aeruginosa recombinant protein was produced (Cronin and McIntire, 2000). 

More recently the stable shuttle vector pGNS-BAC and the broad host range shuttle 

vector pEBP have been shown to be effective for production of recombinant proteins 

in Pseudomonas spp. (Kakirde et al., 2010; Troeschel et al., 2012). A method has 

even been developed for transporting DNA into Pseudomonas strains that involves 

nanofibres absorbing DNA and releasing it into the bacterial cytoplasm upon cellular 

entry via cell wall penetration (Rodrígues-Beltrán et al., 2012).  

 

9.2 AT2 exclusively prefers malonyl-CoA as a substrate and transfers it to 

mupirocin type I and type II ACPs 

It was originally hypothesised that because AT2 was essential for mupirocin 

biosynthesis it loaded the acetyl-CoA starter unit to ACP1. However, substrate 

assays in this study have shown that AT2 exclusively prefers malonyl-CoA as a 

substrate over acetyl-CoA and doesn’t transfer to ACP1, indicating it does not load 
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the starter unit or interact with this ACP. This therefore, has set forth the questions of 

how biosynthesis of mupirocin is initiated and how the starter acetate unit comes to 

be at the KS of module 1? Currently insoluble, AT1 could be responsible for loading 

the starter units. If AT1 did load the starter units, it could be that in the absence of 

AT1, AT2 could take over – albeit inefficiently. However, evidence in this study 

indicates an alternative role for AT1, so there could be another mode of initiation 

such as a decarboxylative mAcp or uncharacterised protein within the cluster.  

While the biochemical characterisation of AT2 was successful in determining 

substrate specificity and transfer of substrate to ACPs within the cluster, it was not 

possible to determine kinetic parameters due to the speed that the reaction took 

place. Determining the kinetic parameters for the affinity of AT2:malonyl-CoA and 

AT2:ACP would allow comparisons to be made between AT2 and other ATs. The 

reaction between AT and substrates is termed as a ping-pong bi-bi mechanism (Joshi 

and Wakil, 1971). By generating double reciprocal plots, varying the substrate 

concentrations, it can be determined if a tertiary complex is formed during the 

reaction, i.e. if both substrates are complexed with AT2 at the same time. If the lines 

of the plot intersect it indicates a tertiary product is formed, but if the lines are parallel 

it indicates a ping-pong bi-bi mechanism, as in the case of MCAT (Joshi and Wakil, 

1971; Szafranska et al., 2002; Nelson and Cox, 2005). Important kinetic parameters 

to determine are Vmax and Km. Vmax describes the limit of the initial rate with regards 

to enzyme saturation, and Km (determined from ½ Vmax) is the Michaelis constant – it 

describes the affinity of an enzyme for its substrate. If the Km is large this generally 

means it has a low affinity for its substrate (a high substrate concentration is required 

to reach Vmax), whereas if the Km is smaller it indicates a higher affinity for substrate 
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(Vmax is reached at low substrate concentration) (Reed et al., 2003). Determining the 

Km value not only provides substrate affinity information, but can also give an 

indication of the substrate concentration required to give maximum reaction velocity 

(Reed et al., 2003). Kcat is the specificity constant which relates to the number of 

enzymatic reactions catalysed per second (Moran et al., 1994). The ratio with Kcat/Km 

can give an indication of substrate specificity and is a measure of the efficiency of the 

reaction of converting substrate into product (Moran et al., 1994). There are other 

assays that could be used to determine these parameters rather than the Ellman’s 

assay. When studying Streptomyces coelicolor MCAT one group utilised 

radiolabelling to measure kinetic parameters by varying times and concentrations of 

the components involved (Szafranska et al., 2002). The same group utilised the 

reductive functions of α-ketoglutarate dehydrogenase (KDH) to measure the CoA 

being released (KDH utilises the free CoA in the production of succinyl-CoA and thus 

the concomitant reduction of NAD+ to NADH is measured) by the transfer of substrate 

to S. coelicolor MCAT during the study of the actinorhodin minimal PKS (Beltran-

Alvarez et al., 2007). Either of these methods could prove fruitful in producing kinetic 

parameters for AT2 malonate acquisition and transfer, but as the reaction proceeds 

very fast between AT2 and malonyl-CoA the use of a continuous assay would be 

beneficial. If a reaction proceeds too fast for mixing by hand stopped- or quenched-

flow methods provide a platform for rapid mixing of reaction components, and 

microfluidics provide an alternative method that can measure millisecond kinetics 

utilising nanoliter amounts of solutions (Han et al., 2009). 

The structure of several FAS MCATs and two ATs from the DEBS cluster have 

been solved and have aided our understanding of ATs as a whole. However, to date 
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only one trans-acting AT has been crystallised (Wong et al., 2011). Therefore, it 

would contribute greatly to both the mupirocin and the trans-AT PKS knowledge base 

to solve the structures of the mupirocin ATs, particularly AT1 as it is predicated to 

have an altered structure and alternative role.  

 

9.3 AT1 demonstrates potential hydrolase activity 

Previous research hinted that AT1 may have a different role to play in 

mupirocin biosynthesis compared to AT2 (Lopanik et al., 2008). This difference has 

been noticed in other systems and has now been confirmed during this study. 

Phylogenetic analysis has demonstrated the AT1-like proteins cluster separately from 

the AT2-like proteins, and a comparison of secondary structure predictions has 

shown that AT1 displays a slightly altered structure compared to AT2, E. coli FabD 

and DisD, leading to the conclusion that AT1 had an alternative role to play. This was 

confirmed by creating active site mutants of AT2 in order to assess the effect on 

malonate acquisition and transfer. This work also highlighted the importance active 

site residues play in the structure of the AT protein and in the recognition of ACPs by 

the AT. Two specific point mutations (R115Q and Q242V) highlighted the fact that 

AT1 is unlikely to accept dicarboxylic acids as substrates and would be unable to 

interact with mupirocin ACPs. Further mutations involving in vivo work in Chapter 6 

also led to the conclusion that AT1 is likely to function as a hydrolase releasing 

stalled intermediates from the mupirocin pathway. This was demonstrated again 

when work based on the β-branching ACP3 and 4 highlighted the fact that AT1 

appeared to be releasing a toxic substance from the pathway causing alteration of 

colony morphology - when AT1 was inactivated normal morphology was resumed (A. 
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Haines, 2012). Removing stalled intermediates from the mupirocin biosynthesis 

pathway will ultimately improve pathway throughput to produce the full polyketide 

antibiotic mupirocin. 

There are many ways this research could be taken forward to substantiate the 

claims that AT1 is a hydrolase. One example of such work demonstrated recently 

involved studying the hydrolysis of short chain intermediates derived from N-

acetylcysteamine (SNAC) by PedC (Jensen et al., 2012). Performing similar 

experiments with AT1 would enable us to determine if this is a role that can be 

assigned to this protein, and other AT1-like proteins, or if it is exclusive to PedC. The 

phylogenetic clustering and sequence similarity between PedC and AT1 certainly 

suggests a comparable role for these two proteins. Another method of analysis for 

the role of AT1 would be to investigate protein-protein interactions between AT1 and 

ACPs from the mupirocin cluster. Presumably for AT1 to release stalled 

intermediates it would be required to interact with mupirocin ACPs. Intermediate-

bound ACPs could be utilised as substrates (potentially radiolabelled) for future 

experiments to demonstrate AT1-ACP interactions and to investigate the function of 

AT1. Using AT2 as a control (which based on the transfer assays presumably 

interacts with all type I ACPs, except ACP1, and several type II ACPs the interaction 

for AT1 for ACP1 and several other ACPs throughout the cluster could be measured. 

This would at least indicate where in the pathway AT1 would be likely to function.  

AT1 is not the only AT to have consecutive Ser residues at the active site – 

the MCAT involved in lovastatin biosynthesis in Aspergillus terreus also has 

consecutive Ser residues, but instead of reading GSS like AT1, reads GHSS (Ma and 

Tang, 2007). During that study it was discovered that Ser1 was important for loading 
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ability and Ser2 may have a structural role. The same could be said for AT1 as it 

certainly indicates the mutation of Ser95 affects the functionality of the protein. The 

amount of PA-A and mupiric acid being produced dropped compared to the WT, but 

not as much as the amount of mupirocin H, which was reduced almost to zero, 

indicating this mutation is affecting mupirocin function around the HCS cassette.  

 

9.4 Docking domains are essential for mupirocin biosynthesis 

Very little experimental evidence is available for the analysis of docking 

domains (DDs) and so it was important to assess the importance of these domains 

for mupirocin biosynthesis, irrelevant of their proposed role. Sequence analysis of 

over 280 DDs allowed specific conserved boundaries to be highlighted that can be 

used in future investigations to highlight a) DDs and b) trans-acting AT PKS clusters. 

As shown in this study a simple BLAST search of a mupirocin DD revealed many 

uncharacterised putative PKS clusters. While the role of DDs may not have been 

defined during this study, plate bioassay, HLPC and LCMS all demonstrated that 

even deletion of part of the region caused a halt in mupirocin biosynthesis. Whether 

their role is in docking of trans-acting ATs, interaction of multifunctional protein 

dimers, maintenance of structural integrity or facilitating AT and ACP interaction, the 

system cannot produce antibiotic without them. 

Protein-protein interactions would also be useful in investigating the roles of 

the DDs. It is obvious from this study that they play an important role in metabolite 

biosynthesis but it is unknown exactly how. In cis-AT PKSs it is thought the 

corresponding areas (KS-AT domain linker and post-AT linker) facilitate the transfer 

of substrate from AT to ACP and KS by positioning the domains in the correct 
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positions (Tang et al., 2006; 2007; Wong et al., 2010). There is no reason why these 

regions cannot have the same function in trans-AT PKSs. Crystallisation of one of 

these domains would be useful in confirming the structure predicted in Chapter 7 

(Figure 7.4), and modelling this structure with AT domains and mupirocin 

multifunctional proteins may provide answers as to the specific roles. 

 

9.5 The role of Trp55 is essential for malonylation of ACP3 

This study was part of an on-going investigation into the differences between 

β-branching and non-branching ACPs (Dong et al., 2012). The importance of this 

residue for mupirocin production had already been demonstrated, although whether 

this was due to inactivity of the ACP or interfering with the interaction of ACP3 with 

MupH was unknown. This study demonstrated the importance of this residue in 

malonylation of ACP3, and most likely of malonylation of other β-branching ACPs. 

The inability of the mutant protein to accept malonate, combined with the structural 

changes inferred the lack of mupirocin production in the in vivo mutants was most 

likely due to the altered phenotype of this protein rather than inability to interact with 

MupH, although that interaction could still be a factor. 

 

9.6 Future work on the third domain of MmpC 

Determining the role of the third domain of MmpC is important for the 

completion of this study. This domain aligns with enoyl reductase proteins often 

found in trans-AT PKSs and polyunsaturated fatty acid producing bacteria and has 

been shown to be essential for mupirocin biosynthesis (Gurney et al., 2012). As there 

are only three enoyl reductions (ERs) required for mupirocin biosynthesis and they 
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are for 9-hydroxynonanoic acid biosynthesis, protein-protein interaction studies could 

demonstrate which domains of MmpB this potential ER could interact with. 

Purification of this domain would also allow enzymatic assays to be performed to 

assay for ER activity, such as described by Ames et al. (2012). In this instance the 

activity of the trans-acting ER, LovC, was assayed with several potential substrates 

by following the oxidation of the LovC cofactor, NADPH, by fluorescent spectrometry 

(Ames et al., 2012). The trans-ER activity of PksE from the bacillaene biosynthesis 

system was analysed by mass spectrometry (to monitor the 2Da increase associated 

with enoyl reduction), by phosphopantetheinyl ejection assay (to measure the mass 

of the substrate attached to the ejected phosphopantetheine arm) and 

autoradiography to assess interactions of PksE with substrate-PksJ (Bumpus et al., 

2008). 

 

9.10 Model for MmpC function 

MmpC is a multifunctional protein that operates in trans throughout the 

process of mupirocin biosynthesis. The work presented in this Thesis demonstrates a 

clear model for the combined function of MmpC as a trifunctional Edit, Reload, 

Reduce (ERR) protein (Figure 9.1). This combines the hydrolysis functionality of AT1 

with the malonylation properties of AT2, and the potential ER role of the third domain. 

Thus this trans-acting tridomain protein has developed a multifunctional nature that is 

vitally important for mupirocin biosynthesis. Determining the structure of this 

complete protein would provide information as to how this protein performs three 

functions during mupirocin biosynthesis.  
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While the current aims of this project related mainly to the acyltransferases of 

the mupirocin cluster, there are many different pathways the work could take in the 

future.  
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APPENDIX CHARACTERISTICS OF TRANS-AT PKS SYSTEMS 
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Figure A.1. Model for difficidin biosynthesis. Some activities are predicted to be 
provided in trans by unknown enzymes, which are shown above some of the 
modules. ACP, acyl carrier protein; KS, ketosynthase; DH, dehydratase; KR, 
ketoreductase; MT, methyltransferase; ER, enoyl reductase; TE, thioesterase; X, 
inactive domain (Che et al., 2006). 
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Figure A.2. Model for elansolid A3 biosynthesis. Modules 9 and 14 do not insert 
extender units and are marked with an asterisk. AL, AMP ligase; ACP, acyl carrier 
protein; KS, ketosynthase; DH, dehydratase; KR, ketoreductase; MT, 
methyltransferase; AT, acyltransferase; ER, enoyl reductase; TE, thioesterase; º, 
inactive domains (Dehn et al., 2011). 
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Figure A.3. Model for lankacidin biosynthesis. R, CH3-C(=O)C(=O)- or CH3-
CH(OH)C(=O)-; KS, ketosynthase; ACP, acyl carrier protein; TE, thioesterase; KR, 
ketoreductase; AT, acyltransferase; MT, methyltransferase; DH, dehydratase; C, 
condensation domain; A, adenylation domain; PCP, peptidyl carrier protein (Arakawa 
et al., 2005). 
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Figure A.4. Model for leinamycin biosynthesis. The structures in brackets are 
hypothetical. Color coding indicates the moiety of LNM that is of peptide (blue), 
polyketide (red), and other (black) origin. A, adenylation; PCP (blue); peptidyl carrier 
protein; ACP (red), acyl carrier protein; AT (green), acyltransferase; green ovals, 
docking domains; Cy, condensation/cyclization; DH, dehydratase; KR, ketoreductase; 
KS, ketosynthase; MT, methyltransferase; Ox, oxidation; TE, thioesterase. 
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Figure A.5. Model for macrolactin biosynthesis. Functions thought to be provided 
in trans are shown above some of the modules. ACP, acyl carrier protein; KS, 
ketosynthase; DH, dehydratase; KR, ketoreductase; MT, methyltransferase; ER, 
enoyl reductase; TE, thioesterase (Schneider et al., 2007). 
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Figure A.6. Model for oxalomycin A biosynthesis. F, formylation domain; KS, 
ketosynthase; ACP, acyl carrier protein; TE, thioesterase; KR, ketoreductase; AT, 
acyltransferase; OX, oxidoreductase; ER, enoylreductase; MT, methyltransferase; 
DH, dehydratase; C, condensation domain; A, adenylation domain; PCP, peptidyl 
carrier protein, SAM, S-adenosylmethionine; X, domain thought to be inactive (Zhao 
et al., 2010). 
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Figure A.7. Model for pederin biosynthesis. The product of PedF could be directly 
cleaved off the enzyme (route A) or elongated further by PedH to yield an onamide-
type intermediate and subsequently cleaved (route B). TP, transposase pseudogene; 
MT, methyltransferase; OR, oxidoreductase; OXY, oxygenase; C, condensation 
domain; A, adenylation domain; T, thiolation domain; DH, putative nonfunctional 
dehydratase domain; ACP, acyl carrier protein; KS, ketosynthase; KR, 
ketoreductase; MT, methyltransferase; TE, thioesterase (Piel, 2002). 
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Figure A.8. Model for virginiamycin M biosynthesis. The circles and squares 
represent enzymatic domains in the PKS and NRPS polypeptide, respectively. The 
gray ovals symbolize the AT-docking sites and unk of PKS module 6 denotes a 
region of unknown function. The broken circle indicates the methyl group 
incorporated at C12 in the VM framework. ACP, acyl carrier protein; KS, 
ketosynthase; DH, dehydratase; KR, ketoreductase; MT, methyltransferase; ER, 
enoyl reductase; AT, acyltransferase; Cy, condensation domain; A, adenylation 
domain; PCP, peptidyl carrier protein; TE, thioesterase (Pulsawat et al., 2009). 
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