Experimental set-up for realising long-range interaction using strontium atoms in an optical lattice

Author: Marco Menchetti
Supervisor: Prof. Kai Bongs, Dr. Yeshpal Singh
Abstract

Ultracold interacting gases represent a new and exciting frontier for technological applications, such as quantum information processing, and they also offer an ideal test bench for condensed matter systems.

This work examines the case of atoms in the alkaline earth metal family. These atoms can exhibit long-range dipolar interactions, generated via coherent exchange of photons on the $^3P_0 \rightarrow ^3D_1$ transition. In particular, the progress in realising an experiment to study this coherent exchange of atoms in bosonic strontium is discussed. A review of the experimental techniques developed over the last 50 years to cool, manipulate and study atoms and molecules used in long-range interaction experiments is given from a historical viewpoint. Techniques to laser cool and trap atomic strontium are described, and a novel study of different geometries for magneto-optical traps (MOTs) is presented.

This thesis describes the long-range interaction strontium experiment under development at the University of Birmingham. In particular, the characterisation of a self assembled Zeeman slower is presented, along with a novel repump scheme for the first stage of cooling using the $^3P_0 \rightarrow ^3D_1$ transition.

This work also reports the use of the $^3P_1 \rightarrow ^3S_1$ transition to populate the 3P_0 level, and the realisation of a monolithic (Interference Filter External Cavity Diode Laser) IFECDL.

The new techniques that I present here have the potential to facilitate future studies of long-range interaction in strontium and other cold atoms experiments.
Acknowledgements

I would like to start by thanking my parents Massimo and Natascia and all the rest of my family who always supported me over all those years. Thank you to my colleagues for the company and support and especially thanks to David, Johnny J. and B., Matt, Richard and Chang for proofreading this thesis, without you it would have been a mess. Thank you to my supervisors Kai and Yeshpal to give me this opportunity. Thank you to my brother because if not, it looks bad. Thanks to Ian, Richard and William that welcomed me at NPL when I could barely speak English. Thank you to Valentina for helping me to move here four years ago. Thanks to my friends Ily and Sara who always make me feel as I never left when I go back home. Thank you to DSTL that funded my PhD and allowed me to be here. Thank you to all the people at the quantum HUB, Physics East and NPL for welcoming me. A special thanks to my girlfriend Liisa who bore me along this voyage and always helped me when I needed it.
Ringraziamenti

Vorrei iniziare ringraziando i miei genitori Massimo e Natascia e tutto il resto della mia famiglia che mi ha sempre sostenuto in tutti questi anni. Grazie ai miei colleghi per la compagnia e il supporto e soprattutto grazie a Davide, Giovanni J. e B., Mattia, Riccardo e Ciang per la correzione di questa tesi, senza di voi sarebbe stato un casino. Grazie ai miei supervisori Cai e Iespal per darmi questa opportunità. Grazie a mio fratello perché se no, sta brutto. Grazie a Giovanni, Riccardo e Guglielmo che mi hanno dato il benvenuto all’NPL quando riuscivo a malapena a parlare inglese. Grazie a Valentina che mi aiuta a trasferirmi qui quattro anni fa. Grazie ai miei amici Ily e Sara che mi fanno sempre sentire come non me ne sono mai andato quando torno a casa. Grazie a DSTL che finanzia il mio dottorato di ricerca e mi ha permesso di essere qui. Grazie a tutte le persone del Quantum HUB, Physics East e NPL per avermi dato il benvenuto. Un ringraziamento speciale alla mia ragazza Liisa che mi sostenuto lungo questa viaggio e mi ha sempre aiutato quando ne ho avuto bisogno.
CONTENTS

1 Introduction
 1.1 Brief history of long-range interacting cold atoms 2
 1.2 Long-range interactions in strontium 3
 1.3 Effect of long range interaction in strontium spectroscopy 5
 1.4 Contributions of the author 5
 1.5 Outline of the thesis .. 6

2 Cooling and trapping of strontium atoms 7
 2.1 Strontium ... 7
 2.1.1 Strontium source ... 8
 2.2 Light matter interaction 10
 2.2.1 Zeeman slower .. 11
 2.3 Magneto Optical Trap (MOT) 13
 2.3.1 Doppler limit ... 16
 2.3.2 Repumps .. 17
 2.4 Red MOT ... 18
 2.5 1D lattice trap .. 18
 2.5.1 Dipole potential .. 18
 2.5.2 Multi-level atoms .. 20
 2.5.3 Calculation of the polarizability 21
 2.5.4 Confinement using light 23
 2.5.5 Inhomogeneous AC Stark broadening 23
 2.6 Excite atoms in the \(^3D_1 \) state 27
 2.7 Normalised detection ... 27
 2.8 Chapter summary ... 28
CONTENTS

3 Study of different geometries for Magneto Optical Traps
 3.1 Six-beam MOT ... 32
 3.1.1 Simulation ... 32
 3.2 Pyramidal MOT .. 37
 3.2.1 Simulation ... 37
 3.3 Tetrahedral MOT .. 41
 3.3.1 Simulation ... 41
 3.4 Conclusion .. 45

4 Experiment description
 4.1 Vacuum system .. 47
 4.2 Coils and magnets ... 49
 4.2.1 Zeeman slower .. 49
 4.2.2 MOT coils ... 50
 4.2.3 Compensation coils 51
 4.3 Laser system .. 52
 4.3.1 461 nm laser .. 52
 4.3.2 707 nm laser .. 55
 4.3.3 2.6 μm laser .. 55
 4.3.4 689 nm laser .. 61
 4.3.5 688 nm laser .. 64
 4.3.6 813 nm laser .. 64
 4.3.7 Interference Filter External Cavity Diode Laser (IFEC DL) .. 64
 4.3.8 Scanning cavity .. 69
 4.4 Imaging and timing ... 71
 4.4.1 Camera and PMT tube 71
 4.4.2 Computer control .. 72

5 Result and discussion
 5.1 Oven characterisation 74
 5.1.1 Atomic flux ... 74
 5.1.2 Velocity distribution 75
 5.2 Precooling .. 78
 5.2.1 Effect of the Zeeman slower on the velocity distribution .. 78
 5.3 1st stage cooling ... 78
 5.3.1 Zeeman slower optimisation .. 78
 5.3.2 Background pressure and loading time 80
 5.3.3 Repumps .. 81
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 2nd stage cooling</td>
<td>82</td>
</tr>
<tr>
<td>5.4.1 Temperature of the final cooling stage</td>
<td>82</td>
</tr>
<tr>
<td>5.5 Transfer of atoms in the 3P_0 state</td>
<td>85</td>
</tr>
<tr>
<td>5.6 Preliminary measurement on the 2.6 μm transition</td>
<td>86</td>
</tr>
<tr>
<td>6 Conclusions and outlook</td>
<td>88</td>
</tr>
<tr>
<td>6.1 What next?</td>
<td>89</td>
</tr>
<tr>
<td>A MOT simulation</td>
<td>91</td>
</tr>
<tr>
<td>A.1 <code>int main</code></td>
<td>91</td>
</tr>
<tr>
<td>A.1.1 Initialization of the environment</td>
<td>91</td>
</tr>
<tr>
<td>A.1.2 Calculation of the trajectory</td>
<td>95</td>
</tr>
<tr>
<td>A.2 Full program</td>
<td>97</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Relevant energy levels of 88Sr used in this thesis, more detail of the transitions can be found in tab. 2.2</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Vapour pressure of commonly used elements in cold atoms experiments [60], as calculated with eq. 2.1</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Transition probability distribution as a function of the velocity of the atom using the $^1S_0 \rightarrow ^1P_1$ transition of strontium</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic representation of the Doppler cooling. A) in the system of reference of the lab, B) in the system of reference of the atom</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Acceleration perceived by an atom in the presence of counterpropagating beams for different detuning Γ, as calculated in the one dimensional case using eq. 2.12</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Splitting of the atomic levels caused by the Zeeman effect in a 1D Magnetic Optical Trap, the split in energy $\delta = \mu B(z)/\hbar$ is produced by the magnetic field</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Polarizability of 1S_0, 3P_0 and 3D_1 states as calculated using eq. 2.33 and the data from tab. 2.3</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Potential generated by 500 mW of 813 nm laser focused at a waist of 50 μm in a region of 80 \times 1 μm around the focus point and relative induced acceleration (left). Potential and relative acceleration generated by the same laser but with a counterpropagating beam, resulting in a standing wave (right)</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Trap depth and relative confinement temperature in $r=0, z=0$ versus lattice waist for 1 W of optical power</td>
<td>25</td>
</tr>
</tbody>
</table>
2.10 Frequency shift produced by an 813 nm lattice with P = 500 mW and \(w_0 = 50 \mu m \) (dashed line). Atomic distribution inside the same lattice at different temperature (solid line) 25

2.11 Power-broadening generated by the inhomogeneity of the lattice trap. .. 26

2.12 Schematic of the sequence used for the detection of the transfer efficiency. .. 27

3.1 Schematic representation of a six-beam MOT. The big arrows represent the direction of the beams with their polarisation. The coils in anti-Helmholtz configuration provide the magnetic field necessary for the confinement. 32

3.2 Acceleration of the atoms at rest for a six-beam MOT. 34

3.3 Trajectory of the atoms inside the MOT. This figure has been generated by starting the simulation with the atoms in the position \((0, 0, -20 \, mm)\), and having starting velocity \((v_0, 0, 0)\). \(v_0 \) starts at 10 m/s and it is increased 10 m/s each time. ... 34

3.4 Dependency between the capture velocity and the direction of the atoms. The surface on the figure is defined by the region of space where all the beams overlap. This figure has been obtained in a similar way to fig. 3.3 but here the initial position has been varied in a sphere of 20 mm around the centre of the MOT. ... 35

3.5 Dependency between the capture velocity, the power and detuning of the slowing beam. The simulation starts with atoms having the initial velocity \(V_0 = (0, v, 0) \) where \(v > 0 \), and the starting point is \((0, -20 \, mm, 0)\). The power in this graph is referring to a single beam. As expected, the capture velocity increases with the power with diminishing returns as it is approaching saturation. .. 35

3.6 CAD model of a pyramidal MOT (left) and a schematic representation of the light path in it (right). 37

3.7 Acceleration of the atoms in rest calculated by the simulation for pyramidal MOT. .. 39

3.8 The trajectory of the atoms inside the pyramidal MOT. This figure has been generated similarly to fig. 3.3 but in this case the atoms start in position \((15 \, mm, 0, 0)\). With these parameters we can achieve a capture velocity of 55 m/s. 39
3.9 Dependency between the capture velocity and the direction of the atoms. The figure in the simulation is defined by the space where the six beams that form the pyramidal MOT overlap. In this simulation it is possible to see the best positions to place the source of atoms. 40

3.10 Dependency between the capture velocity, the power and the detuning of the slowing beam in a pyramidal MOT. Here the atoms have a starting velocity $V_0 = v(0, 1/\sqrt{2}, 1/\sqrt{2})$ where $v > 0$, and the starting position is (0, -20 mm, -20 mm). 40

3.11 Schematic representation of the tetrahedral MOT (left). Intensity of the reflected light in the vertical (red) and radial (blue) direction, compared with the intensity of the beam sent (right). 41

3.12 Acceleration of atoms in a tetrahedral MOT when the atoms are at rest. On the figures on the left the main beam has a waist of 25 mm, in the central figures the main beam has a waist of 50 mm, and in the figures on right the beam has a flat power profile. 43

3.13 The trajectory of the atom in a tetrahedral MOT with a top hat beam (left) and Gaussian beam (right). It is important to notice the difference in scale and that in the simulation there is not an upper limit for the z-direction. In a real system some of the atoms could hit the windows used to deliver the light before being captured, so the chamber needs to be designed accordingly. 44

3.14 Simulation of the capture velocity of the trap from different angles. Minimum velocity required for the capture (left), maximum capture velocity (right). The trajectory is calculated starting from 10 mm from the centre of the MOT, and top heat profile is used for the beam. The beam used in this simulation has a flat power profile since a Gaussian beam would produce a narrow window of capturable velocity as shown in fig. 3.13. 44

3.15 Effect of power and detuning on the minimum (left) and maximum (right) capture velocity. Here the atoms have a starting velocity $V_0 = v(0, 1/\sqrt{2}, 1/\sqrt{2})$ with $v > 0$ and the starting position is (0, -20 mm, -20 mm). 45
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>A 3D rendering of the vacuum system: 1) oven, 2) gate valve, 3) 25 l/s ion pump, 4) Angle valve, 5) atomic shutter, 6) differential pumping, 7) Zeeman slower, 8) 6+2 Way Crosses, 9) Science chamber, 10) 2.5 l/s ion pump and sapphire window.</td>
</tr>
<tr>
<td>4.2</td>
<td>CAD rendering of the science chamber.</td>
</tr>
<tr>
<td>4.3</td>
<td>Self-assembled Zeeman slower.</td>
</tr>
<tr>
<td>4.4</td>
<td>Render image of the science chamber. 1) Titanium science chamber, 2) thermal isolator, 3) copper support for coil, 4) heat sink</td>
</tr>
<tr>
<td>4.5</td>
<td>Science chamber with compensation coil around it.</td>
</tr>
<tr>
<td>4.6</td>
<td>Set-up for the 461 nm laser</td>
</tr>
<tr>
<td>4.7</td>
<td>Delivery system to the science chamber of the MOT beams.</td>
</tr>
<tr>
<td>4.8</td>
<td>Set-up for the repumps lasers.</td>
</tr>
<tr>
<td>4.9</td>
<td>Set-up for the 2.6 µm laser.</td>
</tr>
<tr>
<td>4.10</td>
<td>Schematic representation of a knife-edge method used for beam-waist measurements.</td>
</tr>
<tr>
<td>4.11</td>
<td>Measure of the profile of the 2.6 µm beam using the knife edge technique in the horizontal(left) and vertical direction (right).</td>
</tr>
<tr>
<td>4.12</td>
<td>Reconstruction of the beam intensity using the knife-edge technique.</td>
</tr>
<tr>
<td>4.13</td>
<td>Measure of the 2.6 µm laser as recorded by the wavemeter while the laser was lock to the transition.</td>
</tr>
<tr>
<td>4.14</td>
<td>Occurrence of the measure of frequency in function of the frequency (same data of fig. 4.13), in this graph are reported only the measure took after the initial stabilisation of the laser (t > 3h).</td>
</tr>
<tr>
<td>4.15</td>
<td>Schematic of the optical system used to lock the 689nm laser to the $^1S_0 \rightarrow ^3P_1$ transition.</td>
</tr>
<tr>
<td>4.16</td>
<td>Transfer sequence from broadband to single frequency red MOT. On top, TTL signal sent to the RedPitaya by the computer control. On the centre, signal generated by the RedPitaya. On the bottom, FFT of the signal sent to the AOM.</td>
</tr>
<tr>
<td>4.17</td>
<td>Delivery system for the lattice laser and detection setup.</td>
</tr>
<tr>
<td>4.18</td>
<td>Littrow ECDL configuration.</td>
</tr>
<tr>
<td>4.19</td>
<td>Filter ECDL configuration.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.20</td>
<td>Drawing of the IFECDL. 1) Cavity, 2) laser diode, 3) diode protection, 4) collimation lens, 5) $\lambda/2$ waveplate, 6) cat-eye lens, 7) mirror with piezo and support, 8) filter support, 9) beam splitter cube, 10) PCB for connections, 11a) and 11b) box for the protection.</td>
</tr>
<tr>
<td>4.21</td>
<td>Picture of the monolithic IFECDL.</td>
</tr>
<tr>
<td>4.22</td>
<td>Wavelength of the IFECDL over a period of 16 hrs and 40 mins.</td>
</tr>
<tr>
<td>4.23</td>
<td>Beat note between the IFECDL and a 689 nm commercial laser locked to the cavity. This measurement has been recorded using a spectrum analyser with 100 kHz resolution and 300 µs sweep time.</td>
</tr>
<tr>
<td>4.24</td>
<td>Set-up of the fast scanning cavity offset lock.</td>
</tr>
<tr>
<td>4.25</td>
<td>Transmission signal over the cavity, the two big peak are generated by the reference laser, the smalls peaks are generated by the lasers which are being locked to the reference laser.</td>
</tr>
<tr>
<td>4.26</td>
<td>Frequency of the lasers when free running (top), and when locked using the scanning cavity (bottom).</td>
</tr>
<tr>
<td>4.27</td>
<td>Comparison of the Allan deviation of the 707 nm laser in free running and when locked.</td>
</tr>
<tr>
<td>4.28</td>
<td>Schematic representation of the computer control.</td>
</tr>
<tr>
<td>5.1</td>
<td>Set-up for the measuring of the atomic flux: at the centre of the six-way cross, with direction exiting the page, is the atomic beam that is crossed by the light coming from the fibre on the left. On the right, a photodiode collects the light after it has been absorbed by the atoms. On the top is the PMT that collects the light emitted by the atoms.</td>
</tr>
<tr>
<td>5.2</td>
<td>Absorption and fluorescence spectroscopy of the atomic beam in the direction perpendicular to the direction of the atomic beam. The fit is a sum of three Lorentzian distributions corresponding to the 88, 86 and 84 isotopes of the strontium. The peaks of ^{87}Sr are not visible since they are covered by the ^{88}Sr peak.</td>
</tr>
<tr>
<td>5.3</td>
<td>Velocity distribution on the direction of the flux and relative fit of a Maxwell-Boltzmann distribution for the different currents of the oven.</td>
</tr>
</tbody>
</table>
5.4 Velocity distribution of the atoms along the direction of the
atomic beam with the Zeeman slower active, these data are taken
with the oven at 1.99 A. .. 79
5.5 Relation between number of atoms, power and detuning of the
Zeeman slower beam. ... 79
5.6 Number of atoms vs time at different currents of the oven, after
3 s the Zeeman slower is turned off and the atoms start to escape
the MOT. ... 80
5.7 Relative number of atoms vs time with different repumps con-
figuration. ... 81
5.8 Experimental timing sequence used to achieve red MOT. 83
5.9 Picture of the atomic cloud as seen from the camera and relative
fit using 2D Gaussian function [103]. 84
5.10 Dimensions of the atomic cloud at different TOF and fit of eq.
5.10 ... 85
5.11 Fluorescence of the blue MOT at the change of the 688 nm laser
frequency. .. 86
5.12 Fluorescence of the blue MOT at the change of the 2.6 µm side-
bands. ... 87
6.1 Schematic of the optical system to lock the 2.6 µm laser to the
cavity. ... 90
A.1 Workflow of the simulation program. 92
A.2 Beam generate by the program. .. 94
A.3 Magnetic field calculated by the program. 94
A.4 To determine if a point P is or not inside a polygon, is sufficient
to count the number of time a segment starting from outside the
figure and ending on the point, cross the segment of the figure.
If the count is odd, the point is inside the figure. If the count is
even the point is outside it. .. 96
CHAPTER 1

INTRODUCTION

As a brain is more than the sum of its cells, the behaviour of interacting atoms is much richer than a simple multitude of isolated particles. As the number of interacting particles grows the complexity of such systems grows exponentially, and many aspects of these highly interactive systems have not yet been fully understood.

The discipline which studies these systems is called ‘many-body physics’. Over the last decades, advancements made in cold atoms experiments have allowed the creation of a controlled environment, where it is possible to selectively tune the interaction between the particles forming the system, allowing the generation of an ad hoc benchmark to study many-body physics [1, 2].

Furthermore, some of those interactions can be used to overcome some of the limits of modern technology. In particular, the study of an atomic system with long-range interaction is essential to the field of quantum information, since it allows the realisation of entangling gate operations among distant qubits [3–5].

There are four approaches currently used to achieve long-range interaction in cold atoms: using atoms with large magnetic dipole moment (such as chromium) [6], using polar molecules [7], using Rydberg atoms [8] or light-induced dipoles [9–11].

In this thesis we focus on the latter. Light induced dipoles are based on the coherent exchange of photons between atoms. In the case of the experiment that I worked on during my PhD and that is reported in this thesis, the coherent
exchange uses the $^3P_0 \rightarrow ^3D_1$ transition of strontium atoms to realise and study mixtures of hard-core lattice bosons that feature long-range interactions \[12\]. Presented in this thesis is the progress made so far in this experiment.

1.1. Brief history of long-range interacting cold atoms

First described in 1975 by T. W. Hänsch and A. L. Schawlow \[13\] and then experimentally demonstrated in 1978 by D. J. Wineland, R. E. Drullinger and F. L. Walls \[14\], the cooling of atoms by laser radiation signalled the start for cold atoms and molecules physics. In Wineland’s article is demonstrated for the first time that it is possible to cool down Mg$^{+2}$ ions to 50 K using radiation pressure like the one produced by lasers.

Four years later, in 1982, W. D. Phillips and H. Metcalf showed that the cooling could be applied to neutral atoms as well \[15\]. In this article Phillips and Metcalf used what will be called a Zeeman slower (see ch. 2.2.1) to keep the atoms in resonance with the laser, which allowed them to slow down the atoms to 40% of their initial velocity.

In 1986 S. Chu et al. were able to trap atoms using dipole force \[16\] and in the following year the first magneto optical trap (MOT) was realised \[17\]. C. Cohen-Tannoudj, S. Chu and W. D. Phillips were awarded the Nobel price in physics in 1997 for their work on atoms cooling \[18\]. In the 1980s the physics community put great effort in the study of highly excited states, e.g. Rydberg states \[19\].

In 1995 the first Bose-Einstein condensate (BEC) was realised by evaporative cooling \[20\]. With the realisation of BEC, cold atoms systems were considered as a promising tool to study many-body physics \[21\]. In a BEC the density of the atoms is several order of magnitude higher than in a MOT, the resulting reduction of interatomic distance enabled researchers to study now interactions that were too weak to be noticed before.

1998 was the year when J. Weinstein and colleagues trapped polar molecules in a MOT for the first time \[22\]. In the same year, Rydberg gas was cooled and trapped as well \[23\] \[24\].

A few months later, in 1999, B. DeMarco and D. S. Jin obtained the first Fermi degenerate gas \[25\].

In 2001 it was proposed theoretically to utilise the dipole blockade generated by Rydberg atoms to process quantum information \[26\]. The dipole blockade was demonstrated eight years later by A. Gaëtan et al. \[27\]. In the following
year L. Isenhower et al. realised a NOT gate using Rydberg atoms\cite{3} for the
first time.

In 2002 a Mott insulator was realised using 87Rb in an optical lattice\cite{28}. In this experiment it was possible to confine a single atom in a lattice site where motion of atoms across lattice sites was prohibited, making the system more similar to a crystal than an atomic cloud.

The techniques of photoassociation and Feshbach-resonance were demonstrated in 2004 \cite{29,30} enabling the creation of cold molecules starting from cold atoms, and in 2009, molecules formed by Rydberg atoms were demonstrated \cite{31,32}.

J. F. Sherson et al. showed a single atom resolution in a Mott insulator in 2010 \cite{33}. In the following year, J. Struck and colleagues demonstrated how it is possible to use atoms trapped in a 2D lattice to simulate the magnetic properties of solid state matter \cite{34}.

In more recent years the cold atoms community has concentrated its efforts on a number of subjects, such as the integration of cold atoms and solid state devices \cite{35,36,37} and the study of subradiance \cite{38}. Apart from the two aforementioned research areas, extensive studies have been made on the use of polar atoms and molecules for quantum simulation \cite{39} as well as researching the possibility of using the long range interaction to enhance the performance of metrological quantum devices \cite{40}. Great efforts are also directed to the integration of atoms and molecules with long range interaction in an optical cavity \cite{41,42,43}.

1.2. LONG-RANGE INTERACTIONS IN STRONTIUM

A strontium (Sr) atom in its ground state ($5s^2 \, ^1S_0$) does not have any multipole moment, this means that for a dilute gas (average distance between atoms ≈ 100 nm) it is possible to use shape-independent approximation, where the interaction between atoms are treated as a delta function \cite{44}. Long range interaction effects are only possible by the coherent exchange of photons, allowed for by the rich electronic structure of Sr. In bosonic strontium, the transition between the states $5s5p^3 P_0$ and $5s4d^3 D_1$ has a wavelength of $\lambda = 2.6 \mu m$ and a transition dipole moment of $4.03 \, D$ \cite{45}.

The magic wavelength\footnote{A magic wavelength is the wavelength that has the same AC polarisability for both states that allows trapping the atoms in a dipole trap without perturbing the transition.} for this transition is found to be at 430 nm (see
A laser at this wavelength can be used to create a blue detuned lattice with lattice spacing \(a = \lambda /2 \).

Combining small interatomic distance\(^2\) and long wavelength\(^3\) leads to dipolar interaction \(^{46}\). An atom that absorbs a photon will re-emit it soon after. However, the photon can be adsorbed again by a neighbouring atom and so on, creating thus interactions between distant atoms.

To understand the effects of the long-range interaction on strontium atoms, consider a 1D chain of atoms trapped in a periodic lattice with interatomic spacing \(a \). If we assume that the atoms interact weakly with the environment, an atom in this chain is excited by a photon, the evolution of the system is given by the master equation of the density matrix \(\rho \),

\[
\dot{\rho} = -\frac{i}{\hbar} [H, \rho] + D(\rho). \tag{1.1}
\]

The first term describes how the excitation moves along the chain, while the second describes how it dissipates. A detailed description of the master equation is out of the scope of this thesis; more details can be found in \(^{45,47}\). In general, the dissipative effect decreases for transitions with longer wavelength and for chains with smaller interatomic spacing. Using the transition between the \(^3P_0 \) and the \(^3D_1 \) states and \(a = 215 \text{ nm} \), the excitation lifetime is longer than the decay rate of the single atom \(^{45}\).

In the specific case of the \(^3P_0 \rightarrow ^3D_1 \) transition of strontium atoms, the interaction between atoms has a strength comparable with the one between polar molecules (e.g. KRb\(^{48}\) or LiCs\(^{49}\)), that is 3 orders of magnitude stronger than the one among atoms with large magnetic dipole moments like Cr\(^{6}\). Although this interaction is much weaker than the one produced by Rydberg atoms \(^{21}\), the coherent exchange of photons uses long-lying states and is less sensitive to external magnetic fields. This, plus the high number of particles\(^4\), make this experiment an interesting experiment for the study of long-range interacting atomic system.

\(^2\)Distance between the atoms smaller than the dipole length \(l_d = Md^2/(4\pi\varepsilon_0\hbar^2) \) where \(M \) is the reduced mass, \(d \) is the dipole moment \(^{21}\).

\(^3\)Longer than several lattice sites.

\(^4\)compared with polar molecules
CHAPTER 1. INTRODUCTION

1.3. EFFECT OF LONG RANGE INTERACTION IN STRONTIUM SPECTROSCOPY

To show that the effect of the long range interaction, we can perform spectroscopy of this transition. Let’s start by considering the effect of the dipolar interaction between two atoms. The spectrum of the radiation emitted during a transition of the first atom will be modified by the presence of the second atom and vice versa. This can be represented by the following equation:

\[
S(\omega) \propto \frac{1}{(\omega - \omega_a - W_{12})^2 + (\Gamma + \Gamma_{12})^2/4},
\]

with

\[
W_{12} = \frac{3\Gamma}{4} \left[j_0(kd) - \frac{j_1(kd)}{kd} \right] \quad \text{and} \quad \Gamma_{12} = \frac{3\Gamma}{2} \left[j_0(kd) - \frac{j_1(kd)}{kd} \right],
\]

where \(\omega = kc \) is the frequency of the laser, \(\omega_a = ka c \) is the frequency of the transition and \(\Gamma \) its linewidth, \(d \) is the distance between the two atoms, \(j_n \) and \(y_n \) are the \(n \)th order spherical Bessel function of the first and second kind respectively. This translates to a shift towards a higher frequency and a broadening of the transition linewidth [50, 51].

There is no analytic solution for systems more complex than two atoms, but it is possible to calculate the spectrum numerically [45]. The results display a more pronounced shift and broadening than in the case of two atoms, along with the appearance of narrow peaks belonging to long-lived subradiant states [52].

1.4. CONTRIBUTIONS OF THE AUTHOR

This thesis is based on the work I performed over the four years of my PhD. During this period I performed a study of several geometries for the cooling and trapping of cold atoms (ch. 3). I also built and characterised majority of the experiment described here. In particular, I worked on the first demonstration of the use of self-assembled Zeeman slower in cooling atoms (ch. 5). I demonstrated the use of a 2.6 \(\mu \)m laser as repump for the first stage of cooling of strontium atoms (ch. 5), and I designed, built and tested a monolithic interference filter external cavity diode laser (IFEC DL) (ch. 4).

Although this experiment did not allow me to study the effect of long-range interaction in strontium atoms, my work established strong foundation to these studies. The experiment will continue at the University of Birmingham and
the first scientific results are expected to arrive within the next year.

1.5. Outline of the thesis

A brief overview of the long-range interaction effect on strontium atoms and an examination of the latest developments in the field has been provided in this introduction. The remainder of this thesis is structured as follows:

- **In Chapter 2** the basis on which the cooling and trapping of strontium atoms is founded are presented.

- **In Chapter 3** a numerical study of three different geometries for magneto optical trap that are used in cold atoms experiments is presented, along with their feasibility in the use of this particular experiment.

- **In Chapter 4** the experiment is described along with the characterisation of its components.

- **In Chapter 5** the measurements done on the atomic samples are presented.

Finally, **in Chapter 6**, the thesis concludes with an outlook for the future prospects of the long-range interaction experiment at the University of Birmingham.
CHAPTER 2

COOLING AND TRAPPING OF STRONTIUM ATOMS

2.1. Strontium

Strontium is an alkaline earth metal. It reacts readily when in contact with air, forming strontium oxide (SrO) and, in lower concentrations, Strontium hydroxide (Sr(OH)$_2$). As a result, handling and storage must be performed in an inert environment (vacuum, Nitrogen, Argon or oil). Strontium is sold commercially as a pure element in its dendritic form. Its ground state configuration is $5s^2$ and the element occurs in nature as three different bosonic isotopes (84Sr, 86Sr and 88Sr) and as a fermionic isotope 87Sr.

<table>
<thead>
<tr>
<th>Atomic mass (au)</th>
<th>Nuclear spin</th>
<th>Natural abundance (%)</th>
<th>Elastic cross section (a_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>0</td>
<td>0.56</td>
<td>123</td>
</tr>
<tr>
<td>86</td>
<td>0</td>
<td>9.86</td>
<td>800</td>
</tr>
<tr>
<td>87</td>
<td>9/2</td>
<td>7.00</td>
<td>96</td>
</tr>
<tr>
<td>88</td>
<td>0</td>
<td>82.58</td>
<td>-2</td>
</tr>
</tbody>
</table>

Table 2.1: Natural abundance of Sr isotopes and elastic cross section with itself. [53]
The energy level structure of strontium, shown in fig. 2.1, leads to its use in several studies of atomic physics, especially in metrology [54] and in interferometry [55]. In particular the $^1S_0 \rightarrow ^1P_1$ and the $^1S_0 \rightarrow ^3P_1$ transitions, both relatively easy to reach with modern lasers, allow for Doppler cooling of strontium to a temperature of a few hundred nK [56]. The large elastic cross section (see tab. 2.1) enables the formation of Bose-Einstein condensates for 84Sr, 86Sr and degenerate Fermi gases for 87Sr. Although the cross section of pure 88Sr does not allow the formation of a BEC, it is possible to condense it via sympathetic cooling [53, 57]. The natural abundance of 88Sr makes it simple to obtain a large magneto-optical trap (MOT) using this isotope, which is why it has been chosen for use in this experiment.

\[\log_{10} p = A - \frac{B}{C + T}, \]

(2.1)

Figure 2.1: Relevant energy levels of 88Sr used in this thesis, more detail of the transitions can be found in tab. 2.2.

2.1.1. Strontium source

At room temperature Sr is solid. Before it can be used in atomic spectroscopy experiments it needs to be transformed to a gas, and an oven is usually used for this purpose. The number of atoms produced by an oven depends on the vapour pressure of the substance inside [58] and this pressure is well described by the Antoine equation [59]:
CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

<table>
<thead>
<tr>
<th>Transition</th>
<th>Wavelength (nm)</th>
<th>Transition rate (10^6 \text{s}^{-1})</th>
<th>(I_{sat} (\text{mW/cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1S_0 \rightarrow ^1P_1)</td>
<td>460.86</td>
<td>190.01</td>
<td>40</td>
</tr>
<tr>
<td>(^1S_0 \rightarrow ^3P_1)</td>
<td>689.45</td>
<td>0.0469</td>
<td>(3 \times 10^{-3})</td>
</tr>
<tr>
<td>(^1S_0 \rightarrow ^3P_0)</td>
<td>698.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(^3P_0 \rightarrow ^1D_1)</td>
<td>2603.1</td>
<td>0.4587</td>
<td>(5.4 \times 10^{-4})</td>
</tr>
<tr>
<td>(^3P_2 \rightarrow ^3S_1)</td>
<td>707.21</td>
<td>39.73</td>
<td>2.3</td>
</tr>
<tr>
<td>(^3P_1 \rightarrow ^3S_1)</td>
<td>688.02</td>
<td>25.89</td>
<td>1.7</td>
</tr>
<tr>
<td>(^3P_0 \rightarrow ^3S_1)</td>
<td>679.29</td>
<td>8.90</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 2.2: \(^{88}\text{Sr}\) transitions relevant for this project.

where \(A\), \(B\) and \(C\) are constants specific to each substance, and \(T\) is the temperature in °C.

\[
P(v) = \left(\frac{m}{2\pi k_B T} \right)^{3/2} 4\pi v^2 e^{-\frac{mv^2}{2k_B T}}. \tag{2.2}
\]

Compared with other common elements used in cold atoms experiments, strontium’s vapour pressure is low at room temperature (see fig. 2.2); this means that high temperatures are required to achieve a useful flux of atoms. Increasing the temperature has the consequence of increasing the velocity of the atoms emitted from the oven. The horizontal velocity distribution of the atoms outside the oven is well described by the Maxwell Boltzmann distribution [61]:
Let us now consider the effect that this velocity distribution has on the frequency of the atomic transition: when an atom moves with velocity \(v \) respect the system of reference of the laboratory its transitions will be shifted due to the Doppler effect:

\[
\Delta f = f_0 \left(1 + \frac{v}{c}\right),
\]

where \(c \) is the speed of light, and \(f_0 \) the frequency of the transition. Since each atom has a different velocity from the others, combining eq. 2.2 and 2.3 it is easy to see that the measured linewidth of a transition depends on the temperature of the atoms (Doppler broadening):

\[
\sigma_f = \sqrt{\frac{K_B T}{m c^2}} f_0,
\]

where \(m \) is the mass of the atom.

In a typical Sr experiment, the temperature of the oven is around 800 K, that translates in a Doppler broadening of \(\approx 800 \text{ MHz} \) for the \(^3P_0 \rightarrow ^1D_1 \) transition. In contrast the interaction between atoms shifts the transition by a few kHz. It is then clear that the first goal of this experiment is to reduce Doppler broadening by decreasing the temperature of the atoms. This is done via laser cooling.

2.2. Light Matter Interaction

When a stream of photons with wave-vector \(\vec{k} \) interact with an atom of mass \(m \), each photon exchanges momentum equal to \(\hbar \vec{k} \) that leads to a recoil velocity for the atom:

\[
\vec{v}_r = \frac{\hbar \vec{k}}{m}
\]

When the atom re-emits the photon it has a near even probability of emitting in any direction providing a momentum exchange to the atom in the opposite direction. Over many atom-photon interactions the average emission direction becomes isotropic, resulting in a zero net change in velocity due to photon emission, and an overall deceleration along the vector of the photons due to photons absorption:

\[
\vec{a} = \frac{\vec{F}}{m} = P \frac{\vec{v}_r}{\tau} = P \frac{\hbar \vec{k}}{m \tau}
\]

where \(P \) is the probability for the atom to absorb the photon and \(\tau \) the
CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

lifetime of the transition.

As an example, let us take an atom of 88Sr interacting with a photon in resonance with the $^1S_0 \rightarrow ^1P_1$ transition. The mass of the atom is ~ 87.9 atomic mass units and the transition requires a photon with a wavelength of 461 nm. Using eq. 2.5 we obtain a recoil velocity of 1.5 mm/s. Even if it seems a small quantity, after around 5 ns the photon is re-emitted and the atom is ready to absorb another photon. This means that under ideal conditions a deceleration of up to 285 km/s^2 can be obtained.

In more detail, we can consider a two-level atom ($|g\rangle$ and $|e\rangle$) separated by an energy $E_e - E_g = \hbar \nu_0$, which interacts with a monochromatic plane wave of intensity I and frequency ν_L. The number of absorption and spontaneous re-emission cycles, in photons per second, is given by the rate of spontaneous emissions $1/\tau$ multiplied by the probability of occupation of the excited state:

$$P = \frac{1}{2} \frac{S}{1 + S + \Delta f^2 / \Gamma^2}, \quad (2.7)$$

with $S = \frac{I}{I_0}$ and $\Delta f = \gamma - \vec{k} \cdot \vec{v}$.

Where $\gamma = \nu_L - \nu_0$ is the difference between the frequency of the laser and that of the transition, and $\Gamma = 1/(2\pi\tau)$ is its natural width (in Hz), I is the intensity of the laser, I_0 the saturation intensity1 and the quantity $\vec{k} \cdot \vec{v}$ is the shift in frequency as perceived by the atom due to the Doppler effect6.22

2.2.1. Zeeman slower

To obtain a sufficient flux of atoms, it is required to heat the strontium to several hundred degrees which translates to an atomic velocity of hundreds of metres per second. As shown in eq. 2.7, the probability for the laser to interact with the atom depends on the velocity of the atom. Hence, only a specific range of speeds can efficiently be slowed down using a pure monochromatic beam.

To overcome this problem it is possible to: ramp the frequency of the laser as the atom slows down (chirping6), increase the width of the laser frequency (power or frequency broadening) or use a magnetic field gradient to change the frequency of the transition along the flight of the atoms (Zeeman slower). Each of these techniques has its benefits, but the last one, in particular, is the one that produces a constant flux of cold atoms and has low power requirements.

1The saturation intensity is the intensity for which the probability of excite an atom using resonance light, is 25% and is calculated as $I_0 = \frac{2\pi^2\hbar c}{\lambda^3 \Gamma}$.

11
CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

Figure 2.3: Transition probability distribution as a function of the velocity of the atom using the $^1S_0 \rightarrow ^1P_1$ transition of strontium.

For these reasons, the Zeeman slower has been implemented as a pre-cooling stage in this experiment; this will be the subject of the discussion in this section.

In presence of magnetic fields the Δ_f of eq. 2.7 becomes:

$$\Delta_f = \gamma - \vec{k} \cdot \vec{v} - \mu \frac{B(z)}{\hbar}. \tag{2.8}$$

Here $\mu = (g_e m_e - g_g m_g) \mu_B$ is the transition magnetic moment, $g_{e,g}$ is Landé g-factor for the exited and ground state, z is position along the Zeeman slower and $m_{e,g}$ is the magnetic quantum number $[64]$.

The maximal deceleration ($a_{max} = F_{max}/m_{atom}$) occurs at $\Delta_f = 0$ i.e. on resonance. This means we need to vary the magnetic field in parallel with the velocity of the atom to keep the light in resonant with the transition:

$$\Delta_f = 0 \Rightarrow \gamma - \vec{k} \cdot \vec{v}(z) = \frac{\mu B(z)}{\hbar} \Rightarrow B(z) = \frac{\hbar}{\mu} \left(\gamma - \vec{k} \cdot \vec{v}(z) \right). \tag{2.9}$$

Assuming constant deceleration we obtain:

$$B(z) = \frac{\hbar}{\mu} \left(\gamma - |k| \cdot \sqrt{\frac{2|a|z}{m}} \right). \tag{2.10}$$

Combining eq. 2.10 and eq. 2.6 with $\Delta_f = 0 \leftarrow P = 1/2$ we obtain:

$$B(z) = B_0 - \frac{1}{\mu m} \sqrt{\frac{\hbar^3 |k|^3}{2\pi} \frac{S}{1 + S}}, \tag{2.11}$$
where $B_0 = \frac{\hbar}{\mu} \gamma$ is the offset of the magnetic field. This offset is essential to ensure that the laser used in the Zeeman slower does not interact with the atoms after they exit the slower. Otherwise, the continued interaction will cause the atoms to come to rest and then continue accelerating in the opposite direction without having the chance to be captured.

This magnetic profile can be achieved by using a carefully designed coil, with the number of turns of wire changing along the Zeeman slower axis or by using permanent magnets with variable positions and/or strengths. Due to the lower cost and simplicity of use, we opted for the second type and realised a design proposed by V. Lebedev and D. M. Weld (see chapter 4.2.1).

Equation 2.11 represents an ideal case. If a gradient higher than the one calculated in eq. 2.11 is present, the atoms will not have the time to slow down enough to remain in resonance with the light. It is also necessary to consider imperfections in the coil (or magnets) used to create the magnetic field and fluctuations in the power of the Zeeman slower beam. For these reasons the Zeeman slower uses in the experiment has lower gradient than the one calculated in equation 2.11.

It is also worth noting that an atom will interact with the light only when it is in a region where $\vec{k} \cdot \vec{v} + \mu B z / \hbar \approx \gamma$. This means that faster atoms will start to interact earlier than the slower ones, obtaining a compression in the velocity distribution in addition to a reduction of the average speed.

2.3. Magneto Optical Trap (MOT)

With a single laser beam, the velocity of an atom will decrease until it stops and eventually will start to be pushed back. Instead of using a single beam, a pair of counter-propagating beams with a frequency that is red detuned from the transition could be used. In this case the Doppler effect will ensure higher probability for the atom to interact with the beam propagating in the opposite direction, hence opposing the motion of the atom.

Figure 2.4 shows an atom moving to the right and interacting with a co- and counter-propagating beam. The beam moving against the motion of the atom will appear to have a higher frequency in the reference frame of the atom and the beam with the same direction a lower frequency. When the beam is red detuned from resonance, the counter-propagating beam is Doppler shifted closer to resonance and has a higher probability of interacting with the atom.
CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

Figure 2.4: Schematic representation of the Doppler cooling. A) in the system of reference of the lab, B) in the system of reference of the atom.

Figure 2.5: Acceleration perceived by an atom in the presence of counter-propagating beams for different detuning Γ, as calculated in the one dimensional case using eq. 2.12.
So far we have discussed only how to slow the atoms, but not how to trap them. Again considering the \(^1S_0 \rightarrow ^1P_1 \) transition, if a linear magnetic field \(B_z = B_0 z \) is applied, then due to the Zeeman effect the \(^1P_1\) state will be split into sub-levels as shown in fig. 2.6.

Applying now two counter-propagating beams with opposite circular polarisation and red detuning, the beam coming from the positive \(z \)-direction will interact predominantly with atoms that are located at \(z > 0 \) and vice versa, thus obtaining atomic confinement along one axis.

In general, eq 2.6 can be rewritten as \[68, 69\]:

\[
\vec{F}_j = \alpha \beta_j \hat{k}_j \sum_{n=-1,0,1} \eta_n \left(1 + \beta_{tot} + 4 \left(\gamma - k_\Gamma \hat{k}_j \cdot \vec{v} - \mu_\Gamma n \right) \vec{B} \right)^2,
\]

where \(\alpha = h \pi \Gamma / \lambda \), \(\beta_j = I_j / I_s \) is the intensity of the beam \(j \) respective to the saturation intensity, \(\beta_{tot} = \sum_j \beta_j \) and

\[
\eta_0 = (1 - \varsigma^2)/2 \quad \eta_{\pm 1} = (1 \mp s \varsigma)^2/4
\]

where \(\varsigma = \hat{k}_j \cdot \vec{B} \) and \(s = \pm 1 \) is the handedness of the polarisation, resulting in the equation of motion of a damped harmonic oscillator:

\[
\ddot{z} - \gamma \dot{z} + \omega_{trap}^2 z = 0.
\]

The magnetic field can be generated by two coils in anti-Helmholtz configuration:

\[
B_r = \frac{\mu I}{2\pi r} \frac{z - A}{[(R - r)^2 + (z - A)^2]^{1/2}} \left[-K(k^2) + \frac{R^2 + r^2 + (z - A)^2}{(R - r)^2 + (z - A)^2} E(k^2) \right] \]

\[
B_z = \frac{\mu I}{2\pi r} \frac{z - A}{[(R - r)^2 + (z - A)^2]^{1/2}} \left[K(k^2) + \frac{R^2 - r^2 - (z - A)^2}{(R - r)^2 + (z - A)^2} E(k^2) \right]
\]

\[
k^2 = \frac{ARr}{(R - r)^2 + (z - A)^2}
\]

where \(R \) is the coil radius, \(A \) the location of its centre on the \(z \)-axis, \(r \) and \(z \) the radial and axial coordinates, and \(K \) and \(E \) are the incomplete elliptic integrals of the first and second kind [70].
CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

Figure 2.6: Splitting of the atomic levels caused by the Zeeman effect in a 1D Magnetic Optical Trap, the split in energy $\delta = \mu B(z)/\hbar$ is produced by the magnetic field.

2.3.1. Doppler limit

For small velocity and $\vec{B} = 0$, eq. 2.12 can be rewritten as:

$$\left(\frac{d\langle E \rangle}{dt} \right)_{\text{cooling}} = Fv \approx \frac{\hbar k}{8\gamma} \left[\frac{I/I_0}{1 + (2\gamma/\Gamma)^2} \right] v. \quad (2.18)$$

Each time an atom emits a photon, it will acquire a recoil velocity v_r. The resulting motion is analogous to the motion of a tiny particle on the surface of a fluid (Brownian motion). To find the rate of energy increase, we consider a two level atom where with each emitted photon is associated with a quantity of motion equal to $\hbar k$ with opposite direction to the photon emitted. After time t has passed, the average quadratic pulse that transferred to the atom will be:

$$< p^2 > = \frac{t}{\tau} p_e (\hbar k)^2. \quad (2.19)$$

For small velocity:

$$\left(\frac{d < E >}{dt} \right)_{\text{heating}} = \frac{1}{2m} \frac{d < p^2 >}{dt} = \frac{1}{2m} (\hbar k)^2 \frac{1}{2\tau} \frac{I/I_0}{1 + I/I_0 + (2\gamma/\Gamma)^2}. \quad (2.20)$$

The equilibrium will be obtained when:

$$\left(\frac{d < E >}{dt} \right)_{\text{heating}} = \left(\frac{d < E >}{dt} \right)_{\text{cooling}} = 0. \quad (2.21)$$
CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

Assuming Maxwell-Boltzmann distribution of the velocity, eq. 2.21 can be rewritten as [62]:

$$k_b T = \frac{\hbar \Gamma}{4} \left(\frac{\Gamma}{2 \lvert \gamma \rvert} + \frac{2 \lvert \gamma \rvert}{\Gamma} \right)$$ \hspace{1cm} (2.22)

The minimum temperature is achieved for $\gamma = \frac{\Gamma}{2}$. In the case of Sr, using 461 nm laser for cooling, a temperature of 110 μK can be reached.

2.3.2. Repumps

The $^1S_0 \rightarrow ^1P_1$ cooling cycle is not completely closed, from the 1P_1 state an atom can also decay into the 1D_2 with a probability of 1 in \approx12000 [71]. From there they then decay into the 3P_1 and 3P_2 state with a probability of 2/3 and 1/3 respectively. The 3P_1 states decay into the 1S_0 with a lifetime of 21 μs where the atom can re-enter the cooling cycle. In contrast, the 3P_2 state decays with a lifetime \approx 120 s, meaning that atoms in this state are lost from the MOT. To keep the atoms in the cooling cycle, we need to repump the atoms back to the ground state.

One possibility to repump the atoms back to the ground state is using a 3 μm laser pointed at the MOT. A laser with this wavelength can excite the atoms from the 3P_2 state into the $5s4d \; ^3D_2$, from here they can then decay into the $5s5p \; ^3P_{2,1}$ states, with the majority of the atoms decaying into the 3P_1 state. The difficulty of using this transition emerges from the wavelength of the laser. Until recently laser diodes with this wavelength were not commercially available and the light was obtained via optical parametric oscillators [72].

The second solution, most frequently used in atomic clocks, is via the $5s5p \; ^3P_2$ state using a 707 nm laser. From this state the atom will decay into all three 3P_j states. In particular, with a probability of 1/4 the atoms will decay into the 3P_0 state. This state has a lifetime of several minutes, so an additional 679 nm laser is required to pump back the atoms into the $5s5p \; ^3P_2$ state closing the cycle.

The 679 nm laser can be substituted with the 2.6 μm laser. This wavelength is in resonance with the $^3P_0 \rightarrow 5s4d \; ^3D_1$ transition, from here the atoms decay into the 3P_j manifold with probability 2%, 39% and 59% for j=2, 1 and 0 respectively. We are using this scheme because the $5s4d \; ^3D_1$ is the same transition required to generate the long-range interaction and the results are 35% better than those obtained by the 679 nm laser (see fig. 5.7 in chapter 5.3.3).
 CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

2.4. Red MOT

As shown before, the minimum temperature that is possible to achieve using the $^1S_0 \rightarrow ^1P_1$ transition is in the order of hundreds of μK. If a lower temperature is required, a second stage of cooling is needed.

The $^1S_0 \rightarrow ^3P_1$ transition is available for strontium at 689 nm, this transition has a linewidth $\Gamma = 7.5 kHz$ and saturation intensity of $3 \mu W/cm^2$. Using this transition, it is possible to reach a temperature of 460 nK, limited by the recoil energy of photons at this wavelength [73]. This transition is so narrow that even starting from the final stage of the blue MOT, the 689 nm laser will interact with less than 2% of the atoms due to the Doppler effect. For this reason the laser needs initially to be broadened to capture the maximum number of atoms and then gradually decrease the broadening until the minimum temperature is reached. This is done by increasing the power of the laser over saturation and modulating its frequency. The initial phase is called broadband red MOT and the second phase single frequency red MOT. An exhaustive explanation of the physics involved in this cooling stage can be found in [73–75]. Below are reported only few key points about this cooling mechanism.

- The maximum acceleration imposed to the atoms by the 689 nm laser is comparable to the gravitational acceleration ($a_{max}/g = 16$), and therefore it is non-negligible.
- The need to interact with a class of velocity higher than the natural linewidth would allow, requiring frequency and/or power broadening of the laser.
- The minimum temperature calculated by eq. 2.22 is lower than the recoil temperature that is equal to 490 nK which is towards the lower limit of temperatures achievable using this cooling transition [76].

2.5. 1D lattice trap

2.5.1. Dipole potential

In contrast with the MOT, in an optical lattice, the confinement is not produced by optical pressure, but by the interaction between the electric field of a laser and the induced electric dipole of the atoms. By using a far-detuned laser, the

\[T = \frac{\hbar^2 k^2}{4m \Delta \nu}, \]

\[\Delta \nu \] is the detuning of the laser from the transition frequency. #2
resulting trap potential is much weaker compared to the one produced by a MOT, but the optical excitation can be kept low. Under the right conditions, it is possible to create a conservative potential that is insensitive to the internal state of the atoms, making the far detuned optical lattice an ideal tool to study the internal state of an atom.

Starting by considering an atom as a classical oscillator [77], an atom placed in an oscillating electric field $E(r,t) = \hat{e}E_0 e^{-i\omega t} + c.c.$ (as in a laser beam) will experience an induced dipole moment $p(r,t) = \hat{e}P_0 e^{-i\omega t} + c.c.$. The relation between electric field and polarizability is:

$$P_0 = \alpha E_0,$$ \tag{2.23}

where α is the complex polarizability, which depends on the frequency of the electric field (ω). This induced polarizability will create an interaction between the electric field and the atom:

$$U_{dip} = -\frac{1}{2} \langle pE \rangle = -\frac{1}{2} \text{Re}(\alpha) \langle E^2 \rangle = -\frac{1}{2\epsilon_0 c} \text{Re}(\alpha) I,$$ \tag{2.24}

where $\langle \cdot \rangle$ is the average over time and $I = 2\epsilon_0 c|E_0|^2$ is the intensity of the electric field. The resulting dipole force is:

$$F_{dip}(r) = -\nabla U_{dip}(r) = -\frac{1}{2\epsilon_0 c} \text{Re}(\alpha) \nabla I(r).$$ \tag{2.25}

The absorbed power is:

$$P_{abs} = \langle \dot{p}E \rangle = \frac{\omega}{\epsilon_0 c} \text{Im}(\alpha) I,$$ \tag{2.26}

that translates to a scattering rate:

$$\Gamma_{abs}(r) = \frac{P_{abs}}{\hbar \omega} = \frac{1}{\hbar \epsilon_0 c} \text{Im}(\alpha) I(r).$$ \tag{2.27}

Using the Lorentz’s model of a classical oscillator [78], we have:

$$\alpha = 6\pi\epsilon_0 c^3 \frac{\gamma/\omega_0^2}{\omega_0^2 - \omega^2 - i(\omega^3/\omega_0^2)\Gamma},$$ \tag{2.28}

where ω_0 is the frequency of the transition, Γ its spontaneous decay rate and γ its width.

\[^{3}\hat{e} \text{ is the direction where the electric field propagate, } E_0 \text{ its amplitude, } \omega \text{ its frequency and c.c. is its complex conjugate.} \]
\(\omega \) the frequency of the electric field.

Now we can replace \(\alpha \) in eq. 2.26 and 2.24, obtaining:

\[
U_{\text{dip}}(r) = \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} I(r),
\]

(2.29)

\[
P_{\text{abs}}(r) = \frac{3\pi c^2}{2\hbar \omega_0^3} \left(\frac{\Gamma}{\Delta} \right)^2 I(r),
\]

(2.30)

where \(\Delta = \omega - \omega_0 \).

These two equations give us two significant results:

- For red-detuned light \((\alpha > 0) \) the potential is attractive, and the atom will sit in the maximum of the intensity, for blue-detuned light \((\alpha < 0) \) the potential is repulsive, and the atoms will sit in the intensity minimum.

- The dipole potential scales as \(I/\Delta \) and the scattering rate as \(I/\Delta^2 \), therefore to avoid heating the atomic sample it is possible to use a far-detuned laser with high intensity.

2.5.2. Multi-level atoms

So far we have modelled atoms as having a single electron elastically bound to the nucleus. In reality, the dipole potential depends on the state of the atom. In general, the polarizability of the state \(a \) at the frequency \(\omega_0 \) is given by the sum of the polarizability over all levels \(k \):

\[
\alpha_a = \frac{2}{\hbar} \sum_k |d_{ak}|^2 \frac{\omega_{ak}}{\omega_{ak}^2 - \omega_0},
\]

(2.31)

where \(\omega_{ak} \) is the frequency of the transition between the state \(a \) and the state \(k \) and where \(d_{ak} \) is the dipole matrix element of the same transition:

\[
|d_{ak}|^2 = \frac{6\pi \epsilon_0 \hbar c^3}{2\omega_{ak}^3 \Gamma_{ak}}.
\]

(2.32)

Unfortunately, a direct measurement of the transition rate is often challenging and in the literature it is easier to find the total decay rate equivalent to the state lifetime \(\tau_a = 1/\Gamma_a \). Therefore, it is more useful to rewrite eq. 2.31 as:

\[
\alpha_a(\omega) = \frac{6\pi \epsilon_0 \hbar c^3}{\omega_{\text{cm}}^3 (\omega_{ak}^2 - \omega_0)} \bar{b}_{ak} \bar{d}_{Mak} \Gamma_a,
\]

(2.33)
where \(b_{ak} \) is the branching ratio for the transition rates between fine structure states, \(b_{Mak} \) is the normalised magnetic branching ratio and \(\omega_{cm}^3 = \sum_n b_n \omega_n^3 \) is the centre-of-mass frequency. For linearly polarised light \(b_{Mak} = 1 \) and hence can be ignored.

2.5.3. Calculation of the polarizability

During the measurement of the long-range interaction we are interested in three states in particular: \(^1S_0 \), \(^3P_1 \) and the \(^3D_1 \). For these states, we need to know how much the attractive force generated by the lattice laser is, and the frequency shift generated by the light. To do that, it is important to know the polarizability of those states. Using eq. 2.33 along with the data in tab. 2.3 it is possible to calculate the expected polarizability for those states, and the results are shown in fig. 2.7.

![Figure 2.7: Polarizability of \(^1S_0\), \(^3P_0\) and \(^3D_1\) states as calculated using eq. 2.33 and the data from tab. 2.3.](image-url)
Table 2.3: Parameters for calculation of the polarizability. The data for the 1S_0 and 3D_1 states comes from the [79] the data for the 3P_1 state from [78].

<table>
<thead>
<tr>
<th>Lower level</th>
<th>Upper level</th>
<th>Wavelength (nm)</th>
<th>ω (10^{-15}s^{-1})</th>
<th>Γ (10^{-5}s^{-1})</th>
<th>b</th>
<th>$\omega \gamma$ (10^{-15}s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5s^2 \ ^1S_0$</td>
<td>$5s20p^1P_1$</td>
<td>219.3977</td>
<td>8.59</td>
<td>2.560</td>
<td>1</td>
<td>8.59</td>
</tr>
<tr>
<td></td>
<td>$5s19p^1P_1$</td>
<td>219.6214</td>
<td>8.58</td>
<td>3.200</td>
<td>8.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s18p^1P_1$</td>
<td>219.8802</td>
<td>8.57</td>
<td>4.200</td>
<td>8.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s17p^1P_1$</td>
<td>220.2176</td>
<td>8.55</td>
<td>5.000</td>
<td>8.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s16p^1P_1$</td>
<td>220.6239</td>
<td>8.54</td>
<td>6.400</td>
<td>8.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s15p^1P_1$</td>
<td>221.131</td>
<td>8.52</td>
<td>8.500</td>
<td>8.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s14p^1P_1$</td>
<td>221.7816</td>
<td>8.49</td>
<td>11.700</td>
<td>8.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s13p^1P_1$</td>
<td>222.6304</td>
<td>8.46</td>
<td>15.700</td>
<td>8.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s12p^1P_1$</td>
<td>223.7655</td>
<td>8.42</td>
<td>24.000</td>
<td>8.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s11p^1P_1$</td>
<td>225.3256</td>
<td>8.36</td>
<td>37.000</td>
<td>8.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s10p^1P_1$</td>
<td>227.5304</td>
<td>8.28</td>
<td>66.000</td>
<td>8.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s9p^2P_3$</td>
<td>230.7264</td>
<td>8.16</td>
<td>115.000</td>
<td>8.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s9p^1P_1$</td>
<td>235.4319</td>
<td>8.00</td>
<td>180.000</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4d5p^1P_3$</td>
<td>242.8095</td>
<td>7.76</td>
<td>170.000</td>
<td>7.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s7p^3P_1$</td>
<td>256.9469</td>
<td>7.33</td>
<td>53.000</td>
<td>7.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s6p^1P_1$</td>
<td>263.1853</td>
<td>6.42</td>
<td>19.000</td>
<td>6.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s5p^3P_1$</td>
<td>460.7331</td>
<td>4.09</td>
<td>2000.000</td>
<td>4.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s5p^2P_1$</td>
<td>689.2585</td>
<td>2.73</td>
<td>0.469</td>
<td>2.73</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower level</th>
<th>Upper level</th>
<th>Wavelength (nm)</th>
<th>ω (10^{-15}s^{-1})</th>
<th>Γ (10^{-5}s^{-1})</th>
<th>b</th>
<th>$\omega \gamma$ (10^{-15}s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5s5p^3P_0$</td>
<td>$5s6s^3S_1$</td>
<td>579.289</td>
<td>2.773</td>
<td>74.58</td>
<td>1/9</td>
<td>2.701</td>
</tr>
<tr>
<td></td>
<td>$5s7s^3S_1$</td>
<td>432.766</td>
<td>4.353</td>
<td>21.6</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s8s^3S_1$</td>
<td>378.16</td>
<td>4.981</td>
<td>8.22</td>
<td>4.909</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s9s^3S_1$</td>
<td>355.446</td>
<td>5.299</td>
<td>4.53</td>
<td>5.227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s10s^3S_1$</td>
<td>343.525</td>
<td>5.453</td>
<td>2.77</td>
<td>5.411</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s4d^2D_1$</td>
<td>2603.13</td>
<td>0.7236</td>
<td>0.381</td>
<td>5/9</td>
<td>0.666</td>
</tr>
<tr>
<td></td>
<td>$5s5d^2D_1$</td>
<td>483.339</td>
<td>3.897</td>
<td>61</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s6d^2D_1$</td>
<td>394.192</td>
<td>4.779</td>
<td>26.7</td>
<td>4.761</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s7d^2D_1$</td>
<td>363.018</td>
<td>5.189</td>
<td>14.2</td>
<td>5.171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s8d^2D_1$</td>
<td>348.099</td>
<td>5.411</td>
<td>8.51</td>
<td>5.394</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s9d^2D_1$</td>
<td>339.326</td>
<td>5.551</td>
<td>5.51</td>
<td>5.534</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5f^2 \ ^3P_2$</td>
<td>474.325</td>
<td>3.971</td>
<td>120</td>
<td>1/3</td>
<td>3.917</td>
</tr>
<tr>
<td></td>
<td>$4d^2 \ ^3P_2$</td>
<td>330.758</td>
<td>5.703</td>
<td>59</td>
<td>1</td>
<td>5.703</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower level</th>
<th>Upper level</th>
<th>Wavelength (nm)</th>
<th>ω (10^{-15}s^{-1})</th>
<th>Γ (10^{-5}s^{-1})</th>
<th>b</th>
<th>$\omega \gamma$ (10^{-15}s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5s4d^2D_1$</td>
<td>$4d5p^3P_3$</td>
<td>521.2978</td>
<td>3.61</td>
<td>19.00</td>
<td>1</td>
<td>3.61</td>
</tr>
<tr>
<td></td>
<td>$4d5p^1P_1$</td>
<td>522.2198</td>
<td>3.61</td>
<td>340.00</td>
<td>3.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4d5p^3P_2$</td>
<td>548.6136</td>
<td>3.43</td>
<td>153.00</td>
<td>3.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4d5p^3P_1$</td>
<td>552.1765</td>
<td>3.41</td>
<td>630.00</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4d5p^1P_2$</td>
<td>638.0728</td>
<td>2.95</td>
<td>52.00</td>
<td>2.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4d5p^2P_2$</td>
<td>661.7266</td>
<td>2.85</td>
<td>160.00</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s4f^3P_2$</td>
<td>485.5045</td>
<td>3.88</td>
<td>263.00</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s6p^3P_1$</td>
<td>627.2042</td>
<td>3.00</td>
<td>0.14</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s6p^3P_2$</td>
<td>636.391</td>
<td>2.96</td>
<td>37.00</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5s6p^3P_3$</td>
<td>636.9918</td>
<td>2.96</td>
<td>180.00</td>
<td>2.96</td>
<td></td>
</tr>
</tbody>
</table>
2.5.4. Confinement using light

Equation 2.25 shows how the dipole force is connected to the gradient of the intensity of the beam. Considering a Gaussian beam:

\[I(r, z) = I_0 \left(\frac{w_0}{w(z)} \right)^2 \exp \left\{ -\frac{2r^2}{w_0^2} \right\}, \]

(2.34)

where \(w_0 \) is the waist radius, \(I_0 \) is the peak intensity and

\[w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_r} \right)^2}; \quad z_r = \frac{\pi w_0^2}{\lambda}. \]

(2.35)

It is easy to see that the confinement along the direction of propagation of the beam is much smaller than the one along the perpendicular to it (see fig. 2.8). This result in a very low density, incompatible with the measurement of the long-range interaction. This problem can be solved by retro-reflecting the beam, generating a standing wave with a much higher gradient of the intensity along the direction of the propagation. The resulting potential is:

\[U = U_0 \left(\frac{w_0}{w(z)} \right)^2 e^{-2(r/w(z))^2} \cos^2(kz), \]

(2.36)

where

\[U_0 = -\alpha \frac{4P}{\epsilon_0 c \pi w_0^7}. \]

(2.37)

with \(P \) being the total optical power.

2.5.5. Inhomogeneous AC Stark broadening

When an atom sits in a region where an oscillating electric field is present, it will experience a shift of its levels due to the polarizability induced by the electric field itself (AC Stark effect). In particular, if we consider a transition from level \(|a\rangle \) to the level \(|b\rangle \), the transition will be shifted by the electric field by an amount equal to:

\[\delta \omega = -\frac{1}{2\hbar} (\alpha_a - \alpha_b) \langle E^2 \rangle = -\frac{1}{4\hbar} \Delta \alpha E_0^2 = -\frac{1}{\epsilon_0 c} \Delta \alpha I. \]

(2.38)

To calculate the broadening produced by the optical trap, we need to find the distribution of the atoms and start by considering the unidimensional case, however the result is the same in higher dimensions. For \(k_b T \ll U_{dip} \) we can
CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

Figure 2.8: Potential generated by 500 mW of 813 nm laser focused at a waist of 50 µm in a region of 80 x 1 µm around the focus point and relative induced acceleration (left). Potential and relative acceleration generated by the same laser but with a counter-propagating beam, resulting in a standing wave (right).
CHAPTER 2. COOLING AND TRAPPING OF STRONTIUM ATOMS

Figure 2.9: Trap depth and relative confinement temperature in $r = 0$, $z = 0$ versus lattice waist for 1 W of optical power.

Figure 2.10: Frequency shift produced by an 813 nm lattice with $P = 500$ mW and $w_0 = 50$ µm (dashed line). Atomic distribution inside the same lattice at different temperature (solid line).
consider the atoms effectively in an infinitely deep trap. In this case, the density distribution of the atoms will be \[n(r) = n_0 e^{-\frac{U(r)}{k_b T}}, \] (2.39)

where \(n_0 \) is the atoms density at the minimum of the trap and \(U(r) \) is given by eq. 2.36. The resulting spectroscopy figure in parametric form is:

\[
\omega = \frac{1}{4\hbar} \Delta \alpha I(r),
\]

(2.40)

\[
n = n_0 \exp \left(-\frac{1}{2} \frac{\alpha \alpha I(r)}{k_b T} \right).
\]

(2.41)

The result of this equation is shown in fig. 2.11. To avoid this broadening, it is possible to either decrease the difference between the polarisability of the two states \[81], to decrease the temperature of the sample or to use an additional laser that is spatially mode matched with the trapping field and with frequency that is tuned in between the two hyperfine levels \[82].

![Figure 2.11: Power-broadening generated by the inhomogeneity of the lattice trap.](image)
2.6. Excite atoms in the 3D_1 state

To study the LRI it is important to control the number of atoms in the excited state. This controlled excitation can be done by sending a short pulse of resonant light to the atoms. The probability for an atom to be excited by a pulse of length t with frequency ω is \[P(t) = \frac{\Omega}{W} \sin \left(\frac{Wt}{2} \right), \] (2.42)

Where $\Omega = \vec{p} \cdot \vec{E}_0 / \hbar$ is the Rabi frequency, and

$$W^2 = \Omega^2 + (\omega - \omega_0)^2,$$ \hspace{1cm} (2.43)

with ω_0 the frequency of the transition, \vec{p} the transition dipole moment and \vec{E}_0 the electric field. Sending a pulse in resonance with length $\Omega t = \pi$ the probability of transitions is 100%, for obvious reasons this type of pulse is called π-pulse.

2.7. Normalised detection

![Diagram of the sequence used for the detection of the transfer efficiency.](image)

Figure 2.12: Schematic of the sequence used for the detection of the transfer efficiency.

The number of atoms captured in the MOT will vary between each mea-
measurement sequence, therefore it is important to measure the total number of atoms present in the 3P_0 state before and after the pulse in order to normalise the detection signal. Starting with the atoms in the 3P_0 state, the detection can be split into 4 phases:

1. A 2.6 μm pulse is sent to the atoms.

2. After 5 ms, 39% of the exited atoms will decay into the 3P_1 state, 59% will go back to the 3P_0 state and 2% will decay into the 3P_2 state and are lost. Atoms from the 3P_1 state will then go in the ground state where they can be detected using 461 nm light (N_1).

3. The 2.6 μm laser is turned on again, but this time it stays on for several ms to ensure that the majority of the atoms are pumped into the ground state ($^3P_0 \rightarrow ^3D_1 \rightarrow ^3P_1 \rightarrow ^1S_0$).

4. The atoms in the ground state are counted again using the 461 nm light (N_2).

The transfer efficiency will be:

$$\eta = \frac{N_1}{0.39} \cdot \frac{N_2}{0.98} + \left(1 + \left(\frac{0.02}{0.39}\right)N_1\right). \quad (2.44)$$

2.8. Chapter summary

This chapter discussed the theory behind the cooling and trapping of Sr atoms, as well the effect of dipolar traps on the transitions levels and how to manipulate and measure the states of an atom.

To complete this experiment we need to cool, trap, probe and detect atoms. Each of those tasks uses one or more lasers, each with a different wavelength and each of them needs to be kept to few MHz or less (≈ 1 kHz for the second stage of cooling) from the required frequency. This requires a complex and robust stabilisation system. In particular, the 2.6 μm laser used to induce the long-range interaction is outside the spectrum of most commonly used lasers (VIS-NIR) and it requires particular care. When possible, I tried to minimise the number of lasers required and use lasers that require less stringent stabilisation or power requirements.

$^{42\%}$ of the atoms will be lost in the 3P_2 state
I the next chapter is presented a study of different geometries of magneto-optical trap for strontium atoms to find the most suitable one for this experiment.
In this chapter are presented and compared three different schemes to realise the cooling of strontium atoms. This study has been performed to assess which of those geometries will capture the largest sample of atoms when given a limited amount of power. As will be explained in more detail in ch. 5.3.2, the number of atoms captured in a MOT depends of the rate at which the atoms are captured (R) and of the rate at which they escape the MOT (β). β depends mostly of the pressure inside the chamber and it is independent from the geometry of the MOT. R depends of the flux of atoms reaching the MOT and of the fraction of atoms that can be captured. An atom will be captured if its direction and speed are inside a certain parameter range that depends on the geometry of the MOT. This study has been performed with the goal to find which geometry results in the broadest parameter. Those geometries have already been studied previously when they were used for trapping other atoms (especially rubidium), however this is the first time that those geometries are been studied in this manner for trapping strontium.
• **Six-beam MOT** is the most common scheme used in cold atoms. It consists of three pairs of mutually orthogonal counter-propagating beams (see fig. 3.1). Of the ones considered, this scheme is the most flexible and easy to realise, but it requires careful alignment and is subject to loss of alignment over time.

• **Pyramidal MOT** is conceptually similar to the previous scheme. In a pyramidal MOT, the confinement is achieved by the use of six beams, but only one beam enters the chamber. The cooling in the non input beam axis is provided by the reflections of the beam by mirrors in vacuum (see fig. 3.6). This scheme was used for production of a rubidium MOT for the first time in 1996 [83]. The scalability of this scheme has allowed integrating a MOT into an atom chip [84]. In comparison to the six-beam MOT the pyramidal design is more compact and robust to misalignment; however, the disadvantages are a more difficult construction, an increase of scattering light due to reflection against the edge of the mirror inside the vacuum chamber, and a decrease of optical access.

• **Tetrahedral MOT** has four beams. Each beam can be seen as generated from a corner of a tetrahedron and directed at the centre of it (see fig. 3.11). Similarly to the pyramidal MOT, only one beam enters the chamber, the other three are generated by the reflection of the mirrors. The mirrors need to have an angle of $\approx 35^\circ$ to balance the intensity of the main beam. This scheme was demonstrated by Vangeleyn et al. [85] using rubidium. It is also suitable for the production of a chip-based MOT [86]. The advantages of the tetrahedral MOT compared to the pyramidal MOT is the fact that confinement of the atoms is located above the mirrors, giving more optical access.

To help to decide which scheme is the most favourable for the experiment, I wrote a C++ program to simulate the trajectories of the atoms in the MOT (see appendix A), and to use this information to calculate the number of atoms captured with each design.

For each of these schemes we calculate the direction of the forces produced by the light and the trajectory for the atoms when entering the MOT. Then the best direction the atoms should enter the MOT from is found. The analysis concludes with finding the relation between power and detuning for the cooling beams.
3.1. Six-beam MOT

Figure 3.1: Schematic representation of a six-beam MOT. The big arrows represent the direction of the beams with their polarisation. The coils in anti-Helmholtz configuration provide the magnetic field necessary for the confinement.

This is the standard scheme used in cold atoms experiments. Each beam is balanced by another one in the opposite direction; the counter-propagating beams can be generated by retro-reflection or be independent. Each beam is required to be polarised in the right direction using $\frac{\lambda}{4}$ waveplate. This scheme allows for excellent control of the MOT and can be used to accelerate the atoms in a specific direction, as in the case of atomic fountains \cite{87}.

The main advantages of a six-beams MOT are:

- it allows the change of the scope of the experiment with little effort;
- it does not require a particular chamber to be used.

On the other hand, compared to the other schemes discussed below, six-beam MOT requires more physical space for optics and more regular re-alignment.

3.1.1. Simulation

Figure 3.2 shows the calculated acceleration of the atoms at rest. This figure has been used to ensure that the direction and polarisation of the beams used
in the simulation were correct. Figure 3.3 shows the trajectory of an atom when it enters the MOT as calculated by the program. In this simulation, as well as in the ones that follow, each beam has a power of 10 mW, a waist radius of 1 cm and a detuning of -21 MHz. The magnetic field in the x-direction is \(\approx 40 \text{G/cm} \). The beams have directions \((\pm 1, 0, 0), (0, \pm 1/\sqrt{2}, \mp 1/\sqrt{2})\) and \((0, \pm 1/\sqrt{2}, \pm 1/\sqrt{2})\). The time resolution used in the simulation is 10 \(\mu \text{s} \). From the data it is possible to see that from this particular position the maximum speed that an atom can have and still be captured is 110 m/s. Those initial conditions are similar to the ones used in others strontium experiments [78, Chapter 3.5][74, Chapter 6.5].

Figure 3.4 has been generated by simulating atoms moving in the direction of the centre of the MOT, approaching from different angles. For each position a series of atoms is tested. The first atom has a velocity of 10 m/s. If the first atom is captured\(^1\), then the next atom with the same direction is tested, its initial speed is increased by 10 m/s. This is repeated until the atom is too fast to be captured. At this point, the final velocity is recorded. Then the initial position of the atom is changed, and the process is repeated until the whole image is formed.

For each direction, this geometry captures every atom with a speed lower than a certain value that we will call capture velocity. The maximum capture velocity is found to occur when the atoms enter the MOT with a direction that is close to the direction of one of the cooling beams. A possible explanation for this is that atoms that come from those directions will interact with the beams for a longer time.

The next step in the study of this cooling scheme was to find the best mix of power and detuning to reach the highest capture velocity. Although atoms that enter the MOT with a small angle (with respect to one of the cooling beams) have a higher capture velocity, this will require a custom-made vacuum chamber that is not easy to manufacture. A more convenient direction to introduce the atoms in the chamber is from a direction that is between two laser beams. In the next simulation the atomic beam will have starting position \((0, 20 \text{mm}, 0)\). The capture velocity for this position as function of power and detuning of the cooling beam is shown in fig. 3.5. From the data it is possible to see that using 10 mW of power per beam\(^2\), it should be possible to capture 98% of the atoms after they exit from Zeeman slower (see ch. 5.2).

\(^1\)In this simulation an atom is considered captured if its distance from the equilibrium
CHAPTER 3. STUDY OF DIFFERENT GEOMETRIES FOR MAGNETO OPTICAL TRAPS

Figure 3.2: Acceleration of the atoms at rest for a six-beam MOT.

Figure 3.3: Trajectory of the atoms inside the MOT. This figure has been generated by starting the simulation with the atoms in the position \((0, 0, -20\, mm)\), and having starting velocity \((v_0, 0, 0)\). \(v_0\) starts at 10 m/s and it is increased 10 m/s each time.
CHAPTER 3. STUDY OF DIFFERENT GEOMETRIES FOR MAGNETO OPTICAL TRAPS

Figure 3.4: Dependency between the capture velocity and the direction of the atoms. The surface on the figure is defined by the region of space where all the beams overlap. This figure has been obtained in a similar way to fig. 3.3 but here the initial position has been varied in a sphere of 20 mm around the centre of the MOT.

Figure 3.5: Dependency between the capture velocity, the power and detuning of the slowing beam. The simulation starts with atoms having the initial velocity $\vec{V}_0 = (0, v, 0)$ where $v > 0$, and the starting point is (0, -20 mm, 0). The power in this graph is referring to a single beam. As expected, the capture velocity increases with the power with diminishing returns as it is approaching saturation.
point is less then 10 µm, and the module of its velocity is less than 1 m/s.

\[\text{For a total of 30 mW using three retro-reflected beams} \]
3.2. Pyramidal MOT

Figure 3.6: CAD model of a pyramidal MOT (left) and a schematic representation of the light path in it (right).

In a pyramidal MOT only one beam enters in the chamber, the cooling in the other directions is provided by the reflections of the beam by mirrors in a vacuum (see fig.3.6).

The advantages of the pyramid MOT are:

- small dimensions
- scalability
- only one beam needs to be aligned.

One of the main disadvantages of this scheme is the difficult access to the MOT and the reduced power efficiency compared to a six-beam MOT.

3.2.1. Simulation

For the pyramidal MOT, the same parameters for power, detuning and magnetic field as for the six-beam MOT are been used. The beams generated by the reflection of the mirrors are square in shape, with 12.5 mm sides. The main beam has direction (0, 0, -1), the reflected beams have directions \((\pm 1, 0, 0), (0, \pm 1, 0)\) and \((0, 0, 1)\).

As for the six-beam MOT, the study of this configuration begins by checking the polarisation and the direction of the beams by calculating the acceleration for the atoms at rest.

In fig.3.8 it is possible to see that although the dimensions of the MOT are similar to the six-beam MOT, when using the same amount of power, the
CHAPTER 3. STUDY OF DIFFERENT GEOMETRIES FOR MAGNETO
OPTICAL TRAPS

capture velocity of the pyramidal MOT is around half the capture velocity
of the six-beam MOT. Nevertheless, the study proceeded by finding the best
direction from where to send the atoms in the chamber. It appears that in the
pyramidal MOT that would be either from the top with a small angle from
the vertical axis, or from the direction \((0, 1/\sqrt{2}, 1/\sqrt{2})\) with 90° symmetry in
respect of the vertical axis (see fig. 3.9). Sending atoms from the top is not a
viable solution since we need to have a clear space from that direction to send
the main beam. For this reason, the best balance of detuning an power for
sending the atoms is been simulated with atoms starting from the direction
\((0, 1/\sqrt{2}, 1/\sqrt{2})\).

The results of the simulation using different parameters of detuning and
power are shown in fig. 3.10. Even when optimising power and detuning, using
a pyramidal MOT we can at best hope to have a capture velocity of \(\approx 50\%\)
the one of a six-beam MOT.
CHAPTER 3. STUDY OF DIFFERENT GEOMETRIES FOR MAGNETO OPTICAL TRAPS

Figure 3.7: Acceleration of the atoms in rest calculated by the simulation for pyramidal MOT.

Figure 3.8: The trajectory of the atoms inside the pyramidal MOT. This figure has been generated similarly to fig. [3.3], but in this case the atoms start in position (15 mm, 0,0). With these parameters we can achieve a capture velocity of 55 m/s.
CHAPTER 3. STUDY OF DIFFERENT GEOMETRIES FOR MAGNETO OPTICAL TRAPS

Figure 3.9: Dependency between the capture velocity and the direction of the atoms. The figure in the simulation is defined by the space where the six beams that form the pyramidal MOT overlap. In this simulation it is possible to see the best positions to place the source of atoms.

Figure 3.10: Dependency between the capture velocity, the power and the detuning of the slowing beam in a pyramidal MOT. Here the atoms have a starting velocity $V_0 = v(0, 1/\sqrt{2}, 1/\sqrt{2})$ where $v > 0$, and the starting position is $(0, -20 \text{ mm}, -20 \text{ mm})$.

40
3.3. Tetrahedral MOT

In a tetrahedral MOT, instead of using four or five mirrors as in pyramidal MOT, three mirrors are used. This solution, even though it is very similar to pyramidal MOT, has the advantage of forming the MOT outside of the region of the mirrors, enabling more optical access to the atoms. This makes a tetrahedral MOT more flexible than a pyramidal MOT.

For a beam with intensity I_0, the intensity of the light reflected in the radial direction is $I_\perp = RI_0 \sin(2\alpha)$ and in the vertical direction is $I_\parallel = 3RI_0 \cos(2\alpha)$ where R is the reflectivity of the mirrors (fig. 3.11). To balance the intensity in the vertical direction, we need to have $\alpha \approx 35.26^\circ$ or use mirrors with reflectivity < 1.

Figure 3.11: Schematic representation of the tetrahedral MOT (left). Intensity of the reflected light in the vertical (red) and radial (blue) direction, compared with the intensity of the beam sent (right).

3.3.1. Simulation

Unless specified differently, the parameters of the simulation are the same as described above for the simulation of the pyramidal MOT.

The study of the tetrahedral MOT starts by calculating the acceleration produced by the cooling beam on a static atom (fig. 3.12). However, in this case, it was not possible to find a configuration that would produce a stable MOT. The power at the centre of the main beam is higher than the power reflected by the mirror. This effect can be partially reduced by increasing the waist of the main beam. However, assuming that the total power stays the same, the acceleration is reduced due to the lower intensity of the beam. A solution can come in the form of engineered diffusers\(^3\) that can produce top-hat

\(^3\)like the engineered diffusers from thorlabs model ED1-C20
intensity profile eliminating this problem.

Another peculiarity of this MOT is that a large portion of space around the MOT is illuminated by a single beam, producing a region of space where the net force is not directed at the centre of the MOT. Those unbalanced forces have the result of deviating some atoms away from the MOT before they can reach the area where the forces are compensated. Because of this, there is a minimum capture velocity. Atoms with a velocity lower than that are not captured by the MOT (see fig. 3.13).

The next phase was to find the best entering angle for the atomic beam. Since it is already being ascertained that a top hat beam gives a better result than a Gaussian one, the next simulations are being run only for flat beams. In fig. 3.14 it is possible to see the change in capture velocity with the angle of entrance of the beam in the MOT. Contrary to the previous scheme, for this simulation it was necessary to find also the dependency between the entering angle and the minimum capture velocity. The direction with the maximum capture spread ($V_{min} = 40\, \text{m/s} \quad V_{max} = 160\, \text{m/s}$) is at $\approx -29^\circ$ in respect to the z-axis, $\approx \pm 60^\circ$ and $\approx 180^\circ$ in respect to the x-axis.

To conclude the study of this configuration the dependency of the capture velocity from the power and the detuning was calculated (see fig. 3.15). Surprisingly, the capture velocity of the tetrahedral MOT is higher than the one of the pyramid MOT, even if the actual number of atoms captured could be lower due to the presence of a minimum velocity needed to reach the centre.

\footnote{With minimum capture velocity, is intended the minimum velocity that the atom need to have to be captured by the MOT.}
CHAPTER 3. STUDY OF DIFFERENT GEOMETRIES FOR MAGNETO OPTICAL TRAPS

Figure 3.12: Acceleration of atoms in a tetrahedral MOT when the atoms are at rest. On the figures on the left the main beam has a waist of 25 mm, in the central figures the main beam has a waist of 50 mm, and in the figures on right the beam has a flat power profile.
CHAPTER 3. *STUDY OF DIFFERENT GEOMETRIES FOR MAGNETO OPTICAL TRAPS*

Figure 3.13: The trajectory of the atom in a tetrahedral MOT with a top hat beam (left) and Gaussian beam (right). It is important to notice the difference in scale and that in the simulation there is not an upper limit for the z-direction. In a real system some of the atoms could hit the windows used to deliver the light before being captured, so the chamber needs to be designed accordingly.

Figure 3.14: Simulation of the capture velocity of the trap from different angles. Minimum velocity required for the capture (left), maximum capture velocity (right). The trajectory is calculated starting from 10 mm from the centre of the MOT, and top heat profile is used for the beam. The beam used in this simulation has a flat power profile since a Gaussian beam would produce a narrow window of capturable velocity as shown in fig. 3.13.
Figure 3.15: Effect of power and detuning on the minimum (left) and maximum (right) capture velocity. Here the atoms have a starting velocity \(V_0 = v(0, 1/\sqrt{2}, 1/\sqrt{2}) \) with \(v > 0 \) and the starting position is \((0, -20\, \text{mm}, -20\, \text{mm})\).

3.4. Conclusion

This chapter reports the results of the study of three different MOT schemes for strontium. For the study a numerical simulation is used to calculate the force acting on the atoms at any given moment when illuminated by the cooling beam.

These simulations allow us to determine the maximum speed that an atom can have to be captured, along with the best direction from where to send the atoms to be cooled.

This study was conducted to choose the best cooling scheme to use in the long-range interaction experiment.

This study also shows that although the pyramidal and the tetrahedral MOT represent compelling cases of study, between all the schemes considered, the six-beam MOT appears to be the most efficient to capture fast atoms.

The smaller footprint and the reduced sensitivity to misalignment do not justify the use of pyramidal or tetrahedral MOT for this experiment. However, these simulations also show that those other schemes can be used to cool and trap strontium 88. Worthy of notice is also the effect of a Gaussian beam on tetrahedral Sr MOT and the effect of the direction of the atoms on the capture of them.
CHAPTER 4

EXPERIMENT DESCRIPTION

In this chapter the experiment built at the University of Birmingham to study the long-range interaction in strontium atoms is described in detail. The components that are described here are the direct results of my PhD, with the exception of the actual implementation of the self-assembled Zeeman slower, the coil for the MOT and the locking system for the 689 nm laser. The experiment can be subdivided in five main part:

- **Vacuum system**, this contains the atomic sample and creates a low pressure environment which avoids the interaction between the Sr atoms and the gas in the air.

- **Magnetic fields generation**, magnets and coils provide the magnetic fields needed to cool the atoms and define the atomic structure.

- **Lasers generation and control**, laser beams are used to cool, trap and probe the atoms. This system is the most complex part of the experiment and was the most difficult to realise.

- **Imaging and Detection**, it is required to extract information from the atomic sample.

- **Computer control** that is responsible for running the actions needed to perform the experiment with precise timing.
CHAPTER 4. EXPERIMENT DESCRIPTION

4.1. Vacuum system

![Figure 4.1: A 3D rendering of the vacuum system: 1) oven, 2) gate valve, 3) 25 l/s ion pump, 4) Angle valve, 5) atomic shutter, 6) differential pumping, 7) Zeeman slower, 8) 6+2 Way Crosses, 9) Science chamber, 10) 2.5 l/s ion pump and sapphire window.](image)

The metal vacuum chamber is constructed mostly using stainless steel, unless otherwise stated. At the junctions between vacuum components, oxygen-free copper gaskets are used, the viewports are made from Kodial glass, and the connections are CF35. On fig. 4.1 starting from the left, there is the oven, where the atoms are heated and vaporised, forming the atomic source for the experiment. This oven is based on the design used in the SOC 2 apparatus [88]. It consists of a stainless steel chamber where the strontium is stored, the atoms can escape from an aperture filled with capillaries that ensure a tightly collimated beam. Around this strontium storage chamber there is a ceramic heater, which is surrounded by an aluminium heat shield that decreases the black body radiation emanated by the heating element. The whole assembly is kept in place by steal rods connected to a CF35 flange with electrical feedthroughs that connect to the heating element.

After the oven, a gate valve is installed, this valve is usually open to allow the stream of atoms to reach the chamber. When the valve is closed, it isolates the oven from the rest of the system. Allowing to recharge the oven without the need to break the vacuum in the rest of the system and to avoid oxidation of the strontium in case the rest of the system needs to be open.
Following the gate valve, there is a four-way cross. The cross connects an angle valve (used to create the initial vacuum with a turbo pump) and a 25 l ion pump to the rest of the system. Up to this point the pressure inside the system during the normal operation is around 5×10^{-8} mbar. The vacuum in this region is limited by the presence of the oven. When operated the oven reaches the temperatures of $< 800 \text{ K}$ relishing volatile elements. This is demonstrated by the drop in pressure when the oven is switched off, or if the gate valve is closed.

The four-way cross is followed by an atomic shutter. This allows the flux of atoms being delivered to the science chamber to be interrupted if required. Installed down-stream from the atomic shutter is a differential pumping tube that is formed from a 10 cm long pipe with 5 mm diameter. As the name suggests, the differential pumping creates a difference in pressure between two parts of the vacuum system. With these dimensions, a pressure of two-orders of magnitude lower is achieved in the section with the science chamber compared with the section with the oven.

Another 25 l ion pump is connected by a 'T' pipe to the differential pumping tube. This is followed by the Zeeman slower module. The Zeeman slower is formed from a 20 cm long nipple made of stainless steel, with an external diameter of 27 mm and internal of 21 mm. A series of magnets are attached to the outside of this section of the vacuum chamber to create the magnetic field required for a functioning Zeeman slower (sec. 4.2.1).

After this is a 6+2 way cross with windows mounted on each side. This cross would allow the addition of a 2D MOT before the science chamber, however at this stage this has not yet been implemented.

Finally, furthest away from the atomic source, there is the science chamber. This is formed by a regular octagon constructed from titanium, its sides are of length 35 mm, and it is 36 mm deep. The science chamber is shown in fig. 4.2 this chamber is attached to the rest of the vacuum system via a CF35 flange. The following is in reference to fig. 4.2

1). The opposite face of this CF16 flange connects the chamber to a 2.5 l/s ion pump and a Sapphire windows via a 'T' pipe 2). On the top of the chamber a D50 Capacitor from Sales group and a window are present 3). On

\[\text{The Sapphire has been chosen due to its desirable properties, i.e. sustain structural integrity at high temperature and does not react with the Strontium atoms. Surrounding the sapphire window, a resistive coil is place to periodically provide Ohmic heating to the window and eliminate the deposits of strontium which are formed during the normal operation of the experiment.}\]
the bottom, a CF16 window closes the chamber 4). On the remaining small side, the chamber is sealed using 30 mm windows attached with an indium seal 5-8). On the larger sides, 60 mm CaF2 windows are attached with indium to the chamber; these windows are made of CaF2 since this is transparent to the 2.6 \mu m laser.

![Figure 4.2: CAD rendering of the science chamber.](image)

4.2. Coils and magnets

4.2.1. Zeeman slower

The magnetic field required for pre-cooling of the atoms (see ch.2.2.1) is generated by a series of NdFeB spherical magnets. The magnet configuration is produced by applying an initial "adhesive layer" of the spherical NdFeB magnets. This first layer is kept in position by the magnetic force generated by the magnets themselves. The magnets that compose the adhesive layer are arranged in a configuration so that the total magnetic field is zero along the central axis of the Zeeman slower, and the configuration is stable. After that, other layers of magnets are added to obtain the desired magnetic profile. The absence of
any external mechanical structure, other than the magnets themselves, makes this novel Zeeman slower easier to build and more flexible compared to other permanent magnet setups [64, 66].

4.2.2. MOT coils

The coils used to generate the magnetic field needed for the magneto-optical trap are made from 330 turns of 1 mm copper filament. The filament is wound around a copper core that has the role of keeping the coil in place and to transfer the heat generated by the coil out to the heat sink. The core has a 3 mm cut to limit the remaining of eddy current when the magnetic field is changed. The space between the turns in the core is filled with thermal paste to increase the heat transfer rate. The heat sink is made of copper as well and it is cooled by a constant stream of air generated by two 15 mm re-purposed computer fans.

The coils are connected to the chamber by screws, are separated by a 2 mm thick plastic sheet to avoid transferring the heat generated by the coil into the chamber.

The two coils are connected in series with an H-bridge electronic switching circuit between them. The H-bridge enables to change the direction of the current in the second coil. Using a TTL signal, is it possible to switch between
Figure 4.4: Render image of the science chamber. 1) Titanium science chamber, 2) thermal isolator, 3) copper support for coil, 4) heat sink

Helmholtz and anti-Helmholtz configuration in few ms.

During normal operation, the coils are in anti-Helmholtz configuration, generating \(\approx 50 \text{ G/cm} \) of magnetic field gradient near the centre. In this condition, the coil operates at 4.5 A, dissipates 127 W of power and it reaches thermal equilibrium at temperature of 48 \(^\circ \text{C} \).

4.2.3. Compensation coils

Parasitic contributions to the magnetic field in the chamber are always present and originate from the natural earth field and from the magnet assembly of the ion pump. Those parasitic contributions change the position of the atoms and affect the energy of the atomic transition due to the Zeeman effect.

The change in position of the atoms during the transfer of the atoms from blue to red MOT is particularly critical. In the red MOT phase the gradient of the magnetic field is \(\approx 60\% \) of the one used in the blue MOT. The efficiency of the transfer is limited by the change of the magnetic field minimum position\(^2\) induced by parasitic fields.

\(^2\) where the atoms are confined
To cancel those parasitic magnetic fields, three pairs of coils has been set in place. These coils have a square profile, they are formed of 90 turns of 1 mm copper wire, and are held in position by an aluminium frame. The size and position of the compensation coils have been chosen to allow easy access to the chamber and to compensate for a large area around the MOT.

4.3. Laser system

4.3.1. 461 nm laser

The light for the pre-cooling (Zeeman slower), blue MOT and detection are all generated by a commercial Ti:Sapphire laser emitting at 922 nm (SolsTiS produced by Msquare3) plus an external cavity doubler (SolsTiS ECD-X produced by Msquare4).

This system can generate up to 550 mW of light at 461 nm. This power is divided into four branches using polarising beam splitter (PBS) and half waveplate (HWP): 1) Zeeman slower, for the first stage cooling, 2) Probe beam

3http://www.m2lasers.com/solstis-ecd-x.html
4http://www.m2lasers.com/solstis-ecd-x.html
CHAPTER 4. EXPERIMENT DESCRIPTION

Figure 4.6: Set-up for the 461 nm laser
3) wave-meter monitoring 4) towards the experiment. The frequency of the laser is locked at +19 MHz from the transition by a PID loop that is controlled by the wavemeter. The wavemeter (WSU2 from highfinesse) has a resolution of 500 kHz and it is periodically calibrated using a SLR-780 rubidium reference laser.

Before impinging on the atoms, the light used by the Zeeman slower is shifted using an acousto optic modulator (AOM) driven by -320 MHz signal. The light is shifted by the AOM with 80% of efficiency. The signal to power the AOM is generated by a DDS (model EVAL-AD9959). This DDS generates the frequencies to control the AOMs in the cooling beam and 707 nm lasers branch. Before the fibre coupler (which delivered the Zeeman slower to the vacuum chamber via optical fibre), a laser shutter has been put in place to stop the light interacting with the atoms after the loading of the MOT is finished. The polarisation of the laser has been matched with the fast axis of the P.M. fibre using an HWP that is placed before the fibre coupler. This decreases the fluctuation in polarisation due to the mechanical and thermal stress on the fibre. At the fibre output, the light emitted has a power of 20 mW. The laser beam is then circularly polarised using a quarter wave-plate (QWP), expanded to 20 mm and then focused to a distance of 75 cm to have the maximum intensity at the region of the Zeeman slower and minimum at the MOT.

The frequency, as well as the power, of the cooling beams are controlled by a 40 MHz AOM. After the AOM, the beam passes through a telescope to decrease its size. This is done to increase the coupling efficiency into the fibre down the line. Another an HWP and a PBS combination is used to divide the beam between this experiment and other experiments performed by this group. Similarly to the case of the Zeeman slower beam, before entering the fibre, the polarisation of the beam is matched to the fast axis of the fibre using a QWP and an HWP. On the other side of the fibre, a PBS is used to increase the polarisation purity of the output light. The beam is then overlapped with the 689 nm laser beam, (required in the second stage cooling), using a long pass dichroic mirror (model DMLP567). The beam is then divided into three parts, each part is circularly polarised using achromatic QWP and expanded using a circle tophat engineered diffuser (model ED1-C20-MD from Thorlabs). This diffuser gives a constant intensity to the beam over its cross-section. The beams are also expanded to a dimension of 1 in. The beams then enter the science chamber as shown in fig. 4.7. On the opposite side of the chamber, mirrors together with QWPs reflect the beams into the chamber, reversing the
direction of their polarisation at the same time.

Figure 4.7: Delivery system to the science chamber of the MOT beams.

4.3.2. 707 nm laser

The light required to pump the atoms away from the 3P_2 state is generated using a home built IFEC DL (see ch. 4.3.7). The light of this laser is divided into four parts: 1) delivered to the science chamber, 2) wave-meter monitoring, 3) directed towards a transfer cavity for the stabilisation (see ch. 4.3.8), and 4) sent towards other experiments inside the cold atoms group. The light is delivered to the long-range interaction experimental chamber via optical fibre. The power of the laser reaching the atoms is 2.5 mW and the beam has a waist of 3 mm.

4.3.3. 2.6 µm laser

A beam at 2.603 µm is produced by a DFB laser diode from laser 2000. The laser has a power 7 mW. After exiting the laser, the beam is sent to an AOM. Varying the power sent to the AOM, it is possible to change the efficiency with which the beam is deflected. In this way, is possible to regulate the power of the 2.6 µm laser beam using a voltage signal.
Figure 4.8: Set-up for the repumps lasers.
The 2.6 μm laser is in the short-wavelength infrared and hence entirely invisible to the human eye and most cameras. This makes the alignment of this laser extremely difficult. The only way to "see" the beam is by using a liquid crystal detector card. These cards change their colour in response to their temperature, in this way when the beam hits the card heating a certain spot, the colour of the card will change revealing the presence of the beam. This process can take up to several seconds. To overcome those difficulties in alignment, a 679 nm laser beam has been overlapped with the path of the 2.6 μm laser, using a flip mirror it is possible to switch between the two beams. The 679 nm laser also has the advantage of being in resonance with the $^3P_0 \leftarrow ^3S_1$ transition. This makes it possible to see the effect the light directly using the MOT, i.e when the laser is aligned correctly and is passing through the MOT results in the number of atoms in the MOT being increased (see ch. 5.3.3).

The laser is then divided into three branches using beam sampler: 1) Enables external monitoring using a wavemeter, 2) photodiode for monitor the power 3) the bulk of the power is sent to the chamber.

Figure 4.9: Set-up for the 2.6 μm laser.
Beam profile.

To create a coherent excitation of the 3D_1 state, precise control of the intensity of the beam is required. The intensity depends on the power and the dimensions of the laser beam. The power is easily measured using thermal power sensor, such as the S401C from Thorlabs. The dimensions of the beam are more difficult to measure. Since the beam is invisible, a direct measure of its waist is not possible. To measure its dimensions the knife-edge technique [89, 90] has been implemented.

![Schematic representation of a knife-edge method used for beam-waist measurements.](image)

The knife-edge technique, measures the variation in the intensity across a beam, as the portion of a barrier is interposed between the beam and the detector (fig. 4.10). Assuming a Gaussian beam, the resulting signal as a function of the position of the barrier is:

$$I = \frac{1}{2} \left[1 + \text{erf} \left(\frac{x - x_0}{\sigma \sqrt{2}} \right) \right],$$

(4.1)

where erf is the error function, x_0 the position of the centre of the beam, and σ is the beam waist. To obtain the profile of the beam, it is sufficient to differentiate eq. 4.1. Alternatively, in the case of discrete measure, calculate the difference in intensity between two measurements:

$$I = \frac{V_n - V_{n-1}}{x_n - x_{n-1}},$$

(4.2)

with V_n the intensity of the beam reaching the detector during the n-th measure, and x_n the position of the barrier during that measure.

The result of these measurements is shown in fig. 4.12. The data shows that the 2.6 µm laser beam has a periodic structure in the horizontal direction, the cause of this structure is not clear however likely due to the DFB structure. A four-peak Gaussian distribution was fit with the horizontal data, this shows...
that the highest peak has 50.3% of the power and its dimensions are $\sigma_x = 1$ mm and $\sigma_z = 2.3$ mm.

Figure 4.12: Reconstruction of the beam intensity using the knife-edge technique.

Stability of the wavemeter

While using the 2.6 μm laser as repump, it was observed that the frequency of the laser as measured by the wavemeter was shown to change by several tens of MHz, although the fluorescence of the MOT was stable. This has been taken as a sign that the stability of the wavemeter was lower of the stability of the laser in free run. To ensure that, the 2.6 μm laser was side locked to the transition using the fluorescence of the MOT as signal and the frequency of the laser recorded with the wavemeter. The result of that measurement is shown
CHAPTER 4. EXPERIMENT DESCRIPTION

This measure has been taken during the night to minimise drifts caused by the environment and is possible to see how after an initial period, the wavemeter remain stable with an oscillation of ± 25 MHz (see fig. 4.14).

Figure 4.14: Occurrence of the measure of frequency in function of the frequency (same data of fig. 4.13), in this graph are reported only the measure took after the initial stabilisation of the laser ($t > 3h$).
4.3.4. 689 nm laser

For the second stage cooling, a commercial ECDL laser coupled with a Tapered Amplifier (TA) from Toptica\footnote{https://www.toptica.com/products/tunable-diode-lasers/amplified-lasers/ta-pro} is used. In order to increase the stability, the laser and all the optics are mounted on a breadboard that is isolated from the rest of the lab using isolating sorbothane feet and enclose in a hardboard enclosure.

The laser has two outputs: the main beam (the one after the TA) has a power of 120 mW, the other one (before the TA) has a power of 1.2 mW.

The main beam is divided using a polarising beam splitter and it is sent to the wave-meter using a fibre. The rest goes through a $\approx +80$ MHz AOM that is used to set the beam to the right frequency and to apply a 1.6 MHz modulation during the broad-band cooling phase. The beam is then injected into a polarisation maintaining (PM) fibre that delivers the light to the science chamber (see fig. 4.7).

The secondary beam is sent to a double pass ≈ -100 MHZ AOM and then injected in a PM fibre to be sent to a cavity, where using the PDH technique\footnote{https://www.toptica.com/products/tunable-diode-lasers/laser-locking-electronics/falc-110-mfalc-110-fast-pid/} it is locked to the frequency of the cavity (see fig. 4.15). The sidebands needed for the PHD are generated by modulating the current of the laser at 5.6 MHz.

The cavity consists of two high reflecting mirrors separated by double cone-shaped spacer that is made of ULE and it is 77.5 mm long\footnote{https://www.toptica.com/products/tunable-diode-lasers/}. The cavity has a finesse of $\lesssim 3 \times 10^5$ and a free spectral range of 1.5 GHz, resulting in a resolution of $\approx 4 KHz$. The cavity is maintained under vacuum at a pressure of 9×10^{-8} mbar and has three heat shields (2 aluminium and one of steel) keep the temperature constant. Unfortunately the TEC element inside the cavity that was used to stabilise the temperature ceased to work and so an active temperature stabilisation has not been possible. The cavity is mounted on a minus-k platform on top of a 500 Kg marble table in order to minimise the vibration. The PID function is provided by a FALC from Toptica\footnote{https://www.toptica.com/products/tunable-diode-lasers/laser-locking-electronics/falc-110-mfalc-110-fast-pid/}. As result of the lack of temperature stabilisation of the cavity and of the absence of an absolute reference, the frequency of the 689 nm laser needs to be frequently adjusted. This is done by running the sequence for single frequency red MOT (see ch. 5.4) and optimising the transfer efficiency of the atoms in the single frequency red MOT by changing the frequency sent to the 100 MHz AOM. In
Figure 4.15: Schematic of the optical system used to lock the 689nm laser to the $^1S_0 \rightarrow ^3P_1$ transition.
the future the construction of a new cavity and the realisation of fluorescence spectroscopy for the $^1S_0 \rightarrow ^3P_1$ transition will solve this problem.

The frequency modulation of the cooling beam is obtained by modulating the frequency sent to the +80 MHz AOM. This frequency is generated by an arbitrary frequency generator that is set to a frequency modulation depth of 1 MHz and has an external input. The external input is connected to a RedPitaya. The RedPitaya is set to output a sine waveform, the frequency of this waveform will dictate the distance between the comb line of the laser modulation. The amplitude is responsible for the depth and the DC offset for the central frequency. Those parameters are controlled by the internal CPU of the RedPitaya, running a C program structured as a state machine. This machine has three states. The first, is for the broadband red MOT, the second is a transition from broadband and single frequency red MOT, and the last one is for the single frequency (see fig. 4.16). These states are controlled by a digital signal sent by the main computer control to the RedPitaya.

Figure 4.16: Transfer sequence from broadband to single frequency red MOT. On top, TTL signal sent to the RedPitaya by the computer control. On the centre, signal generated by the RedPitaya. On the bottom, FFT of the signal sent to the AOM.
4.3.5. 688 nm laser

The laser used for producing 688 nm light is a commercial ECDL from Laser2000 (model TEC 150-690). The output of this laser is coupled in a three-way fibre splitter. One of the branches sends the light to the scientific chamber, one to the wave-meter and the last to a scanning cavity for stabilisation (see chapter 4.3.7).

4.3.6. 813 nm laser

This laser is used for the optical lattice and is generated using a Ti:Sapphire laser emitting at 813.4 nm (SolsTiS produced by M square). This laser emits up to 3 W of power at 813 nm, 10 mW of this power is sent to the wave-meter to monitor the wavelength, the remaining power is injected into a high power PM fibre. At the output remains 1 W of power, this light is then collimated by a 20 mm lens and then focused again by a 200 mm lens, resulting in a beam waist $w_0 = 50 \mu m$. On the opposite side of the chamber, a 75 mm lens collimates the beam again, so that it is retro-reflected by a hot mirror (from Thorlabs model FM01). This 75 mm lens is also responsible for collecting the fluorescence of the atomic cloud for the spectroscopy (see fig 4.17).

4.3.7. Interference Filter External Cavity Diode Laser (IFECDL)

The majority of the lasers currently used in cold atoms labs are based on semiconductors. Typically laser diodes do not have a narrow enough linewidth to be used directly ($\Delta \nu_d \approx 40 \text{ MHz}$) in a cold atoms experiment; therefore it is necessary to provide optical feedback to the diode to achieve the required performance. This feedback is produced by an external cavity.

The most common scheme called Littrow (fig. 4.18) uses a diffraction grating to provide frequency selection back into the cavity. This configuration is sensitive to ambient pressure and optical misalignment. By using an interference filter instead of the diffraction grating, the laser becomes less sensitive to these disturbances. In addition, this apparatus is extremely compact and robust (fig. 4.19).

\[^7\text{http://www.m2lasers.com/solstis-ecd-x.html}]

64
CHAPTER 4. EXPERIMENT DESCRIPTION

Figure 4.17: Delivery system for the lattice laser and detection setup.

Figure 4.18: Littrow ECDL configuration.
CHAPTER 4. EXPERIMENT DESCRIPTION

Monolithic IFECDL

The body, the filter support and the piezo support of the laser have been printed in brass by Shapeways. The diode model used is a VPSL-0690-035-x-5-A with an output power of 35 mW. The filter is a custom-made interference filter made by LASEROPTIK (fig. 4.20 and 4.21).

The wavelength of this laser can be changed from 680 nm up to 690 nm by turning the interference filter. The presence of the HWP and PBS permits to change the injection of the diode and maximise the output power. The cat-eye lens ensures the stability of the laser frequency and helps to avoid misalignment. The temperature is kept constant by a Peltier that is placed under the laser cavity, powered by a home-made PID. This unit is inserted in an enclosure made by a brass base and a plastic lid, to provide a secure connection with the electronics and to make the vacuum around the cavity to ensure stability.

The particular design of this laser permits this to be also used as a slave for another laser.

Characterisation IFECDL

By changing the voltage applied on the piezo it is possible to obtain mode-hop free range of 2 GHz. This measurement has been taken by measuring the wavelength of the laser using the same wavemeter as for the lock of the 461 nm laser. The laser presents a drift of \(\approx 30kHz/s \), see fig. 4.22.

To measure the linewidth of the laser, the wavelength was tuned to 689 nm and the beat note between this laser and the laser used for the second stage MOT has been recorded. This measure shows that the linewidth of this laser is 774 kHz (see fig. 4.23).

\(^8\)In this configuration the filter and the cat eye mirror are not required.

\(^9\)During this measure the laser was locked to the cavity.
CHAPTER 4. EXPERIMENT DESCRIPTION

Figure 4.20: Drawing of the IFEC DL. 1) Cavity, 2) laser diode, 3) diode protection, 4) collimation lens, 5) $\lambda/2$ waveplate, 6) cat-eye lens, 7) mirror with piezo and support, 8) filter support, 9) beam splitter cube, 10) PCB for connections, 11a) and 11b) box for the protection.

Figure 4.21: Picture of the monolithic IFEC DL.
Figure 4.22: Wavelength of the IFEC DL over a period of 16 hrs and 40 mins.

Figure 4.23: Beat note between the IFEC DL and a 689 nm commercial laser locked to the cavity. This measurement has been recorded using a spectrum analyser with 100 kHz resolution and 300 µs sweep time.
4.3.8. Scanning cavity

The 707, the 688 and the 813 nm lasers require long-term stability on the order of a couple of MHz. Those lasers could be locked using the wavemeter, as for the case of the 461, but those require additional ports that are not available at this time. To solve this problem, a fast scanning cavity offset lock has been set in place. This locking system is composed of a scanning cavity (the FPI-100-0750-1 from Toptica in the case of this experiment) and a stable laser. By injecting the stable laser and the laser(s) that need stabilisation into the cavity, and performing a scan of the length of the cavity using the piezo actuator, a transmission spectrum as shown in fig. 4.25 is obtained. \(T_1 \), the relative frequency spacing between a) the peak of the reference laser and b) the peak of the laser which requires frequency locking, depends on the relative frequency of the lasers and the free spectral range of the cavity. Since the frequency of the reference laser is constant and the free spectral range is measured at each scan as \(T_0 \), keeping the ratio between \(T_1 \) and \(T_0 \) constant, the frequency of the laser will be locked.

The "brain" of the system is a RedPitaya, in this case FPGA is used as ADC to record the signal from the cavity, and its DAC to send the signal to the lasers and cavity to keep them locked. The program running in the CPU reads 5 times per second the transmission signal from the FPGA, finds the peaks of the transmission, calculates the relative distance between them, and also generates the error signal by comparing the positions found with the ones set as the target. At this point, the program calculates the correction needed using a Proportional Integral Derivative loop to keep the lasers locked. Another signal is sent to the signal generator that controls the scan of the cavity. This signal changes the DC component of the signal which is sent to the cavity. This is done to keep the position of the first peak constant. Without this correction, the order of the peak will change over time due to drift of the cavity, resulting in a failure of the frequency lock.

Performance of the cavity

The IFECIDL was not available at the time that the characterisation of the cavity was performed. The behaviour of the cavity has been tested using two ECDLs that have remained in the lab from previous experiments. Those lasers have wavelengths 707 and 679 nm. The reference laser is provided by the 689 nm laser that is locked to the high finesse cavity.
CHAPTER 4. EXPERIMENT DESCRIPTION

Figure 4.24: Set-up of the fast scanning cavity offset lock.

Figure 4.25: Transmission signal over the cavity, the two big peak are generated by the reference laser, the smalls peaks are generated by the lasers which are being locked to the reference laser.
CHAPTER 4. EXPERIMENT DESCRIPTION

Figure 4.26: Frequency of the lasers when free running (top), and when locked using the scanning cavity (bottom).

In fig. 4.26, the frequency of the two lasers when free-running is recorded by the wavemeter. During free-running, these lasers drift in frequency by hundreds MHz over the time of a few minutes. When the lock is engaged, their frequency will not drift more than 5 MHz from the set frequency lock, making the setup suitable for the use in this experiment.

4.4. IMAGING AND TIMING

4.4.1. Camera and PMT tube

In this experiment, the atoms are revealed by the application of the 461 nm cooling beams. The fluorescence of the atoms is collimated by a 1-inch diameter lens with a 75 mm focus, positioned under the chamber. After 50 cm the light is reconstructed on the sensor of a camera (Zyla 5.5 from Andor\footnote{https://andor.oxinst.com/products/scmos-camera-series/zyla-5-5-scmos?gclid=EAIaIQobChMIveOwp-3-3QIVSPhRCh16egpueKAAAYASAAEgXfBvD_BwE}) using a 50 mm f=1 in lens. Between the two lenses, is placed a hot mirror (model FM01 from Thorlabs) and a 70:30 beam splitter. The mirror is used to create the lattice and to filter the unwanted light from reaching the camera. The beam splitter is used to divert part of the light to a PMT tube. Comparing with the camera, the PMT tube has better sensitivity, faster response and it is easier to
operate. However, it does not give any information about the distribution of the atoms (see fig. 4.17).

4.4.2. Computer control

The time of each phase of the experiment is given by a field-programmable gate array (FPGA) model sbRIO 9632. The FPGA is programmed with a Python script developed here in University of Birmingham. The FPGA has 8 analogue channels with output ±10 V and 16 digital TTL outputs.

Figure 4.27: Comparison of the Alan deviation of the 707 nm laser in free running and when locked.
Figure 4.28: Schematic representation of the computer control.
In this chapter are reported the measurements made to characterise the cooling phases, the preliminary analysis made on the preparation of the atoms in the 3P_0 state, and the measurement performed on the $^3P_0 \rightarrow ^3D_1$ transition with reference to their importance to the long-range interaction measurement.

5.1. Oven characterisation

5.1.1. Atomic flux

The atomic flux is the number of atoms per second that are sent to the science chamber at any given moment. The flux is correlated to the number of atoms captured in the MOT, and the time that is required to reach this number (see chapter 5.3.2). Absorption spectroscopy was used to measure the total flux of the atoms on the atomic beam when the oven was set at 2.48 A, and the signal was at its maximum. This absorption signal has been used to calibrate the fluorescence signal received by a Photomultiplier (PMT) set to collect the light emitted by the atoms. The fluorescence signal is then used to measure the atomic flux at lower current values, where the signal to noise ratio is too small to measure it using absorption spectroscopy (see fig.5.1).

The amount of light reaching the photo-detector follows the Beer-Lambert
Figure 5.1: Set-up for the measuring of the atomic flux: at the centre of the six-way cross, with direction exiting the page, is the atomic beam that is crossed by the light coming from the fibre on the left. On the right, a photodiode collects the light after it has been absorbed by the atoms. On the top is the PMT that collects the light emitted by the atoms.

law:

\[P(x) = P_0 \exp(-\sigma nx), \tag{5.1} \]

where

\[\sigma = \frac{3\lambda^2}{2\pi} \frac{1}{1 + s}, \tag{5.2} \]

and \(s = I/I_s \). In this experiment a beam with \(s = 0.06 \) is used. The flux can be now calculated as:

\[\varphi = n(v) \pi r^2, \tag{5.3} \]

where \(\langle v \rangle \) is the average velocity and \(r \) is the atomic beam radius.

5.1.2. Velocity distribution

Together with the atomic flux, to assess the performance of the oven, is important to know the velocity distribution of the atoms. The atoms exiting the oven have a distribution of velocity well described by the Maxwell–Boltzmann equation \[98\]:

\[P(v) = 4\pi v^2 \left(\frac{m}{2\pi k_b T} \right)^{\frac{3}{2}} \exp \left(-\frac{mv^2}{2k_b T} \right) \tag{5.4} \]
Figure 5.2: Absorption and fluorescence spectroscopy of the atomic beam in the direction perpendicular to the direction of the atomic beam. The fit is a sum of three Lorentzian distributions corresponding to the 88, 86 and 84 isotopes of the strontium. The peaks of ^{87}Sr are not visible since they are covered by the ^{88}Sr peak.

To measure this distribution, fluorescence spectroscopy on the atomic beam exiting the oven was performed. The spectroscopy was executed on the $^1S_0 \rightarrow ^1P_1$ transition using the 461 nm laser.

The velocity of the atoms can be calculated by measuring the variation in the resonance frequency as it is shifted by the Doppler effect:

$$\Delta f(v) = \frac{v}{c} f_0.$$ \hspace{1cm} (5.5)

The probe beam is generated by using a Ti:Sapphire laser which is frequency doubled by a (PPLN) waveguide module. By injecting 100 mW of infra-red light, 20 mW of light at 461 nm is obtained. After filtering the infra-red light the blue light is injected into a PM fibre to be used as a probe. The probe beam reaches the atoms by the same optical distribution that was used to realise the 3D MOT (see fig. 4.7). However, for this measurement, two of the beams entering the chamber and the retro-reflecting mirror were covered. The beam has a power of 1 mW, a diameter of 2 cm and a top hat profile, resulting in an intensity of 0.3 mW/cm2, well below the saturation to avoid broadening due to intensity. Before the telescope that enlarges the beam, some of this light is sent to a photodiode to monitor the variation in intensity. The light enters the chamber with an angle of 45° in respect to the direction of the atomic beam.
CHAPTER 5. RESULT AND DISCUSSION

The frequency of the laser is then changed using a linear scan throughout 100 s. The frequency is monitored continuously by the wave-meter. The fluorescence is measured using the PMT, with the optics set-up described in ch. 4.4.1.

Since the probe beam as at an angle of \(\theta = 45^\circ \) in respect to the atomic beam, the measured velocity is:

\[
v_{\text{measured}} = v_{\perp} \sin(\theta) + v_{\parallel} \cos(\theta),
\]

(5.6)

with \(v_{\perp} \) being the velocity of the atoms perpendicular to the atomic beam, \(v_{\parallel} \) the velocity parallel to the atomic beam and \(\theta \) the angle between the probe beam and the atomic beam. Since \(v_{\perp} \ll v_{\parallel} \) than \(v_{\parallel} \approx \sqrt{2} v_{\text{measured}} \).

The result of the measurements made at different oven currents is shown in fig. 5.3. The measured velocity distribution is in good agreement with the expected result. Furthermore, using those measurements it has been possible to estimate the temperature of the oven at different currents applied.

![Figure 5.3: Velocity distribution on the direction of the flux and relative fit of a Maxwell-Boltzmann distribution for the different currents of the oven.](image)

\(^1\)The signal was too small to be measured.
5.2. Precooling

5.2.1. Effect of the Zeeman slower on the velocity distribution

Once the velocity distribution of the atoms which are emitted by the atomic oven is known, it is useful to see the effect that the Zeeman slower has on the atoms. Performing the measurement of the velocity distribution again, as in the previous section (fig. 5.3) but with the Zeeman slower in operation, is clear that there is an effect from the Zeeman slower on the distribution of the velocity (see fig. 5.4). The peak at the beginning of the distribution is well described by a Lorentzian distribution with centre at 94 m/s and a full width at half maximum of 26 m/s.

5.3. 1st stage cooling

5.3.1. Zeeman slower optimisation

Once the blue MOT was found, the next step was to find which combination of power and detuning of the Zeeman slower laser result in the maximum number of atoms in the MOT. As shown in fig. 5.5, the number of atoms increases with the power until it reaches a maximum, and then starts to decrease. The presence of the maximum can be explained by the fact that even if the slowing beam is several Γ away from the transition, with enough power the probability for the Zeeman slower beam to interact with the atoms in the MOT is not negligible. This is confirmed by the fact that the position of the cloud changes when the slowing beam is off or on. Based on this test, the Zeeman slower beam is set to have a power of 20 mW and a detuning of 320 MHz.

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>T (K)</th>
<th>Flux (10^9 atoms/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.71</td>
<td>NA</td>
<td>44</td>
</tr>
<tr>
<td>1.86</td>
<td>808</td>
<td>140</td>
</tr>
<tr>
<td>1.99</td>
<td>830</td>
<td>277</td>
</tr>
<tr>
<td>2.25</td>
<td>960</td>
<td>1493</td>
</tr>
<tr>
<td>2.48</td>
<td>1063</td>
<td>3300</td>
</tr>
</tbody>
</table>

Table 5.1: Summary of the characterisation of the oven.
CHAPTER 5. RESULT AND DISCUSSION

Figure 5.4: Velocity distribution of the atoms along the direction of the atomic beam with the Zeeman slower active, these data are taken with the oven at 1.99 A.

Figure 5.5: Relation between number of atoms, power and detuning of the Zeeman slower beam.
5.3.2. Background pressure and loading time

The formation of the MOT is a dynamic process. Once trapped, the atoms can escape if they collide with the thermal atoms present in the chamber, or if they collide with each other and form molecules. The loading time of a MOT is driven by the charging rate R, the collision rate with the gases in the chamber γ and from the probability of the atoms to form molecules β. In formulas:

$$\frac{dN}{dt} = R - \gamma N - \beta \int n^2 dV,$$ \hspace{1cm} (5.7)

that results in :

$$N(t) = \frac{R}{\Gamma} (1 - e^{-\Gamma t}),$$ \hspace{1cm} (5.8)

where

$$\Gamma = \gamma + \beta \int n^2 dV.$$ \hspace{1cm} (5.9)

Assuming that the predominant contribution to the loss comes from collisions with the background, it is possible to estimate the pressure inside the chamber by the lifetime of the MOT [99].

![Figure 5.6](image-url)

Figure 5.6: Number of atoms vs time at different currents of the oven, after 3 s the Zeeman slower is turned off and the atoms start to escape the MOT.
CHAPTER 5. RESULT AND DISCUSSION

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>(n) atoms in MOT ((10^8))</th>
<th>Loading time (s)</th>
<th>Life time (s)</th>
<th>Pressure (10^{-10}) mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.71</td>
<td>0.5</td>
<td>0.64</td>
<td>0.67</td>
<td>5.5</td>
</tr>
<tr>
<td>1.86</td>
<td>1.9</td>
<td>0.45</td>
<td>0.62</td>
<td>6.1</td>
</tr>
<tr>
<td>1.99</td>
<td>4.3</td>
<td>0.32</td>
<td>0.57</td>
<td>6.8</td>
</tr>
<tr>
<td>2.25</td>
<td>8.8</td>
<td>0.19</td>
<td>0.33</td>
<td>13.2</td>
</tr>
<tr>
<td>2.48</td>
<td>15.7</td>
<td>0.09</td>
<td>0.27</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Table 5.2: Summary of the characterisation of the first cooling stage, at different currents of the oven.

5.3.3. Repumps

To prove that it is possible to use the 2.6 μm laser as repump, a comparison between the number of atoms in the blue MOT with different repumps configuration was performed. In this comparison the 679 laser has \(I \approx I_{sat} \) and for the 2.6 μm \(I \approx 3 \times 10^4 I_{sat} \). The results of these measurements are shown in fig. 5.7.

![Figure 5.7: Relative number of atoms vs time with different repumps configuration.](image)

These data do not only show that the 2.6 μm laser can be used as the repump to remove the atoms from the \(^3P_0 \) state, but also that using this laser \(\approx 35\% \) more atoms are trapped compared with the atoms trapped using the 679 nm laser as the repump. This increased number of atoms is probably due
to the power of the 2.6\,\mu m laser. Since $I \ll I_s$ the stimulated emission of the atoms in the 3D_1 state reduces the lifetime of that state making the repumping more efficient. This result is particularly important for this experiment because it not only removes the need for the 679 nm laser, but also offers a simple clear method to tune the 2.6 \, \mu m laser to the transition frequency with higher accuracy than the one offered by a wavemeter.

5.4. 2ND STAGE COOLING

After the number of atoms in the MOT has reached its maximum (in around 2 s) the 461 nm laser is slowly switched off and the magnetic field reduced. At this point, the atoms are trapped by the 689 nm laser that cools them down below the temperature reachable with the 461 nm laser, due to the relative Doppler cooling limits for these wavelengths.

At the beginning of the 2nd cooling phase, the laser is modulated with a deviation of 1.6 MHz, modulation frequency of 10 kHz, and it has intensity of 300 I_s. After 20 ms the modulation is ramped down and the intensity is reduced to 100 I_s (see fig. 5.8).

With this sequence, it was possible to transfer 1.4×10^8 atoms (25% of the atoms present in the blue MOT) into the broadband red MOT and 6×10^7 atoms (15% of the atoms present in the blue MOT) in the single frequency red MOT. Although there is room for improvement, those numbers are in line with what has been obtained by other cold atoms groups that use strontium [75, 88, 100, 101].

5.4.1. Temperature of the final cooling stage

To trap a significant number of atoms in the optical lattice, the temperature of the atoms needs to be lower than the equivalent energy depth of the trap. Furthermore, the temperature of the atoms will affect their distribution in the lattice and accordingly the linewidth of the transition. To ensure that the atoms are cold enough for this experiment, a time of flight (TOF) [102] measurement has been performed. The TOF method measures the variation in the size of the atomic cloud over time, after all the forces that are applied to the atoms in the MOT are being removed\footnote{Due to the velocity of the atoms that form}. Due to the velocity of the atoms that form

\footnote{2}$E = \frac{3}{2} kT$
\footnote{3}except for the gravity}
Figure 5.8: Experimental timing sequence used to achieve red MOT.
the cloud, the average size will increase:

$$\sigma(t) = \sqrt{\sigma_0^2 + \frac{k_b T}{m} t^2};$$

(5.10)

where $\sigma(t)$ is the waist of the cloud at the time t assuming a 3D Gaussian distribution, σ_0 is the waist at the time $t = 0$, k_b is the Boltzmann constant, m is the atomic mass, and T the temperature in K.

This measure was taken with a camera positioned above the chamber, and the image was calibrated by taking a picture of an object with known length (a section of a rule) and measuring the length of that object in pixels.

![Figure 5.9: Picture of the atomic cloud as seen from the camera and relative fit using 2D Gaussian function [103].](image)

The pictures were taken at the end of the sequence shown in fig. 5.8 but changing the time the camera and the blue light was triggered. In fig. 5.10 are the dimensions of the clouds at different TOF.
CHAPTER 5. RESULT AND DISCUSSION

Figure 5.10: Dimensions of the atomic cloud at different TOF and fit of eq. 5.10.

The fit of eq. 5.10 with the data results in a temperature of $19 \pm 8\mu K$. Although the lattice that has been put in place to capture the atoms (1 W of power for 50\,\mu m of waist) is deep enough to contain those atoms, the broadening due to inhomogeneous AC Stark effect (see ch. 2.5.5) is greater than the transition linewidth, so that it could mask long-range interaction effects. Higher control of the frequency of the 689 nm laser and a reduction of the power used in the single frequency could solve the problem.

5.5. Transfer of atoms in the 3P_0 state

To induce the long-range interaction in strontium, the atoms need to start from the 3P_0 state. This is a metastable state and it has a lifetime of several minutes. As a consequence, the linewidth of the transition between the 3P_0 and the 1S_0 state is extremely narrow. Therefore a very narrow and stable laser (clock laser) is required to transfer the atoms consistently into the 3P_0 state from the ground state and this makes this route impractical.

However the atoms in the $5s6s^3S_1$ decay into the 3P_0 with a probability of 12%

\[4 \text{Calculated as } \frac{\Gamma_{^3P_0}}{\Gamma_{^3P_0} + \Gamma_{^3P_1} + \Gamma_{^3P_2}}\]

This changes the problem from moving the atoms to the 3P_0 to moving...
them to the 3S_1 state. Fortunately, this state is the same that is used to repump the atoms into the ground state during the first stage of cooling. It is possible to use 688 nm and 707 nm lasers during the second stage of cooling to transfer atoms from the 3P_1 state to the 3P_0. Since at this point the atoms are cold enough to be captured by the lattice they will be trapped.

To test the 688 nm laser, the blue MOT has been illuminated with the laser and the frequency of the laser is scanned over 3 GHz. At the transition frequency, the fluorescence of the MOT decreases, a sign that the atoms are moved to the 3P_0 state by the laser with a reduction in fluorescence of 84%. As further evidence, the loss of fluorescence was reduced to 74% when the 2.6 μm laser was turned on.

![Figure 5.11: Fluorescence of the blue MOT at the change of the 688 nm laser frequency.](image)

5.6. Preliminary measurement on the 2.6 μm transition

A crucial part of this experiment is to create a coherent excitation in the 3D_1 state using a 2.6 μm laser. However, this transition has not been extensively studied, and the data about it comes from theoretical calculation [79, 104] or indirect measurements [54]. Moreover, a characterisation of the linewidth of the laser is required to check its usability in this experiment.

The study of the transition starts by looking at the effect that the 2.6 μm laser has on the number of atoms in the blue MOT. In particular, the depen-
dency of the fluorescence of the MOT with the frequency of the 2.6 µm laser.

Since the MOT is a dynamic process, it requires time to find the equilibrium. Thus the change in frequency of the laser needs to be slower than the time that takes the MOT to reach equilibrium. It has been observed empirically that a change of less than 5 MHz/s does not distort the shape of the fluorescence peak.

To be able to change the frequency of the light sent to the atoms of a known amount, a modulation has been applied to the current of the laser. This modulation produces sidebands on the laser with distance from the carrier equal to the frequency of the modulation. Therefore scanning the frequency modulation, the sideband will be moved the same amount.

Fig. 5.12 has been taken by scanning the modulation frequency from 100 to 180 MHz and by recording the fluorescence of the blue MOT with a PMT.

![Figure 5.12: Fluorescence of the blue MOT at the change of the 2.6 µm sidebands.](image)

The resulting peak has a linewidth of 4 MHz. This broadening of the transition is to be expected during the blue MOT phase, Doppler \(\Delta f = k \cdot \Delta v \), Zeeman \(\Delta f = \mu / h \Delta B \) and power \(\Delta f = \Gamma \sqrt{1 + s} \) are all contributing to the broadening of transition. Nevertheless, this measure puts an upper limit to the linewidth of the 2.6 µm laser to 4 MHz.
In this thesis the progress that I made on the long range interaction experiment at the University of Birmingham, as of September 2018, has been presented. Key milestones achieved:

- Conducted the numerical study of several MOT geometries to cool Sr88.
- Carried out the characterisation of a self-assembled Zeeman slower.
- Reviewed the theoretical framework for the realisation of the 1D optical lattice and set up the optics required to realise the 1D optical lattice.
- Cooled down 6×10^7 atoms of 88Sr to a temperature of 19 μK.
- Proved that the 2.6 μm laser can indeed excite the atoms into the 3D_1 state and can be used as repump for the blue MOT.
- Showed that it is possible to pump the atoms into the 3P_0 state using the 688 nm laser.
- Presented a monolithic design for a IFECOIL and measured its performance.

This thesis represents the starting point for the study of long-range interaction between Sr atoms with lower perturbation from external electric field and lower radiative decay compared with Rydberg atoms. The use of 2.6 μm laser
as repump for the first stage of cooling and the use of the $^3P_1 \rightarrow ^3S_1$ transition to load the atoms in the 3P_0 state will simplify the implementation of similar studies in the future, avoiding the need of an additional 679 nm laser and of an ultra-stable 698 nm one. The characterisation of the self-assembled Zeeman slower shows the effectiveness of the concept, making it a viable alternative to the more expensive options.

6.1. What next?

The next challenge for this experiment is to show the effect of the long-range interaction when the atoms are trapped in the 1D lattice. If the density is high enough it should be possible to measure the change in the Rabi frequency and transition frequency of the $^3P_0 \rightarrow ^3D_1$ state. To perform these measurements, a better stabilisation of the 2.6 µm laser is required. The drift and linewidth of the laser need to be well below the linewidth of the transition. To reach this level of stability, the laser needs to be locked to a cavity. The cavity for this laser needs to have a frequency resolution in the order of 100 kHz and it has to be possible to tune the cavity length to bring the laser to the right frequency when locked. A cavity of this type is under construction at the time that this thesis is written. This cavity is based on a low drift etalon developed by the National Physical Laboratory\(^1\). With a drift lower than 500 kHz/hour, it will be possible to perform the experiment for several minutes before a recalibration using the atoms as a reference is required. The calibration can be performed by scanning the frequency of the laser using an AOM and monitor the atoms transferred into the upper state after a π-pulse. The schematic for the realisation of the locking system for the 2.6 µm laser is illustrated in fig. 6.1.

Once the measurements in the 1D lattice are completed, the realisation of a Mott insulator\(^2\) will be attempted. This can be done by cooling the atoms further down using evaporative cooling, until the atoms reach the BEC state. Unfortunately, due to its negative elastic cross section, to make a BEC out of pure 88Sr is not possible. Thus, instead of using the 88Sr isotope, the 84Sr isotope can be used in the experiment\(^1\). Alternatively, a sympathetic cooling of 88Sr with 87Sr is also a promising method to achieve BEC\(^2\). The trapping force for the evaporation will be provided by a 1064 nm fibre laser. Once the BEC is formed, the atoms will be trapped in a 3D blue detuned

\(^1\)http://www.npl.co.uk/science-technology/time-frequency/products-and-services/products-and-services/low-drift-etalons
optical lattice at 430 nm. At this point, the system will be used for the study of collective states with lifetime several order of magnitude longer than the one studied using to Rydberg atoms \cite{107, 108} which has exciting applications in quantum information and photon storage.

Figure 6.1: Schematic of the optical system to lock the 2.6 µm laser to the cavity.
MOT simulation

In this chapter, the program which was developed to simulate the behaviour of atoms inside a MOT is represented.

The program is written in the C++ programming language. The simulation starts by reading the initial position and velocity of an atom given by the user. The program then calculates the forces that are acting on this atom, and use this information to calculate the new position and velocity of the atom.

The main flow of the program and how the each section of the program operates are described in section A.1 and, for reference, the complete code can be seen in section A.2. Throughout this chapter, the notation (L a:b) is used to indicate lines numbers from point a to point b in the program as seen in section A.2.

A.1. int main

The workflow of the program is shown in fig. A.1 and below is the description of each workflow component.

A.1.1. Initialization of the environment

(L 653:745) The program starts by loading into memory the value of the complete elliptical integral of the first and second kind that are used in the
Figure A.1: Workflow of the simulation program.
calculation of the magnetic field. As well as initialising the input and output file used in the program to read and store data respectively.

(L 747:749) The program continues by setting relevant value of the transition, in the specific: \(\alpha = \frac{h \pi \Gamma}{\lambda} \), \(\Gamma \), \(\mu \), \(I_{sat} \) and \(k_g = \frac{1}{\lambda \gamma} \) as defined in eq. 2.12. These parameter need to be defined by the user in the environment.txt file. At this moment the number of atoms simulated is defined as well.

(L 750:826) It proceeds by setting the number of laser beams and the relative \(P, w_0, f, \Delta \) along with the direction vector, focusing point, direction, number of points used to determine the shape and the polarisation of the beam. For ring beam (number of points = 2) is sufficient to define its external and internal radius (set the internal radius to 0 for circular beam). For more complex geometry, further information is required: a list of points that define the vertices of the shape produced by the beam when projected on a plane, this plane will also determine the region of space where the beam starts (L 190:315). At the same moment, the program also generated a ‘System Of Reference’ (SOR) where the beam propagates along the z-axis. Then the program will generate the ending plane of the beam. For example, the sequence:

20 0.025 6.503e+14 -21e6 -1 0 0 0 -15 1 4 1
22.5 -7.5 7.5
7.5 -7.5 -7.5
7.5 7.5 -7.5
22.5 7.5 7.5
1 0 1
-15 0 0

will generate a square beam with side of 15 mm, with 20 mW of power, 25 mm beam waist, a frequency of 650.3 THz, detuning equal to 21 MHz, with \(\vec{k} = (-1, 0, 0) \), focused on the point (0,0,-15) mm, with positive direction, it is formed by 4 points and with positive circular polarisation, the vertices of its shape are (22.5,-7.5,7.5), (7.5, -7.5, -7.5), (7.5, 7.5, -7.5) and (22.5, 7.5, 7.5) this beam will propagate until it meets the plane defined by the vector (1,0,1) and the point (-15,0,0). This example beam characterisation can be seen in fig [A.2].

(L 750:826) At this point, the program initialises the magnet and the coil along with their SOR, and an example initialisation sequence is shown below:
This sequence will generate two coils that sit on xy plane at z=15 and z=-15 mm, they have $I \times \text{number of turns} = \pm 330 A$ and their radius is 30 mm (see fig. A.3).
A.1.2. Calculation of the trajectory

(L 847:877) In this section, the program initialises the variables needed for the simulation and reads from the file the number of atoms to simulate, their initial position, velocity and the probability to be found at that particular velocity and position.

(L 880:906) Now starting from \(t = 0 \) the forces acting on the atom are calculated. The position and velocity of the atom are updated assuming constant acceleration for \(t = t_{\text{res}} \). This is repeated until any of the following conditions are met: the atom is captured by the MOT, the atom escape from the MOT completely or if \(t > t_{\text{end}} \).

When the previous loop is complete, the program will check if other atoms are required to be simulated. If the response is positive, it will repeat the calculation with the new atom, otherwise, it will close the program.

In detail, to calculate the acceleration imposed by the laser on the atoms, the program will start by calculating the magnetic field present at the position where the atom is. It will do that considering each magnet and each coil separately and summing all the effects together. The first step to calculate the magnetic field generated by the magnet (L 533:548), this is transferred into the calculation in the SOR where the polarisation of the magnet corresponds to the z-axis, and then uses the equations:

\[
B_x = \frac{\mu_m}{4\pi} \frac{3xz}{r^5}, \\
B_y = \frac{\mu_m}{4\pi} \frac{3yz}{r^5}, \\
B_z = \frac{\mu_m}{4\pi} \frac{2z^2 - y^2 - x^2}{r^5},
\]

to calculate the component of the magnetic field in the SOR of the magnet. It finishes translating this component in the SOR of the atom.

To calculate the magnetic field generated by the coil (L 479:517), we start as before by finding the position of the atom in the SOR of the coil; then it uses equation 2.15 and 2.16 to determine the components of the magnetic field. It ends transposing those components in the SOR of the atom.

Next the program will check which beams are hitting the atom being investigated. This is done by first making sure that the atom is in the region
of space defined by the plane of the mirror and the mirror end\footnote{mirror end is the name of the plane where the beam end} (L 355:362). Using a ray cast algorithm the program checks if the projection of the position of the atom is along the direction of the beam and sits inside the region defined by the shape of the beam (L 325:353) (see fig. A.4).

![Figure A.4](image)

Figure A.4: To determine if a point P is or not inside a polygon, is sufficient to count the number of time a segment starting from outside the figure and ending on the point, cross the segment of the figure. If the count is odd, the point is inside the figure. If the count is even the point is outside it.

If the atom is inside the beam, the program will calculate the intensity (corrected for the detuning) of that beam at that point in space, and the total intensity seen by the atom (L 443:459).

At this point eq 2.12 is used to determine the acceleration imposed on the atom by each beam. With this information, the position and velocity are now changed by the following:

\[
\vec{P} = \vec{P}_0 + \frac{1}{2} \vec{a} t^2, \quad (A.1)
\]

\[
\vec{V} = \vec{V}_0 + \vec{a} t. \quad (A.2)
\]

Next, the program checks if the atom is exiting from the MOT region, this is determined by the exit option (L 631:637), or if it is captured by the MOT ($\vec{V} \approx 0$ and $\vec{P} \approx 0$). If neither of the previous condition are met, the program will calculate the acceleration at the new point and so on. If the cycle ends with the atom being captured, its initial velocity and position are saved, this can be used to calculate the capture velocity of the MOT, or the loading rate if the flux is known. Every 100 iteration the position and velocity of the atom is recorded in the file and can be used to plot the trajectory of the atom in the
APPENDIX A. MOT SIMULATION

MOT.

A.2. Full program

```cpp
// Projection.cpp : simulation of a MOT

#include "stdafx.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <fstream>
#include <vector>
#include <math.h>
#include <string>
#include <iomanip>
#include <chrono>
#include <ctime>
#include <thread>
#include <windows.h>
#include "MOTsim.h"

#define M_PI 3.14159265358979323846
#define H_plank 6.62606876e-34
#define MU_0 12.566370614e-7
#define M_0 1.66053873e-27
#define Ek sqrt(1-k*sin(pi)*sin(pi))
#define Kk 1.0/sqrt(1-k*sin(pi)*sin(pi))
#define STEP 0.001 //Step in the integration
#define C_l 299792458 //speed of light
double IKk[10001], IEk[10001];

using namespace std;
double p_pro[3];
double A[3] = { 0,0,0 };
double B[3] = { 0,0,0 };

//add tab as a command for iostream
namespace std {
    template <typename _CharT, typename _Traits>
    inline basic_ostream<_CharT, _Traits>&
    tab(basic_ostream<_CharT, _Traits>& _os) {
        return _os.put(_os.widen(\'\t\'));
    }
}
```
void inverse_matrix (double AA[3], double BB[3], double CC[3], double a[3], double b[3], double c[3])
{
 double k[3][3];
 double det;
 c[0] = (BB[0] * CC[1] - BB[1] * CC[0]) / det;
}

// return in a,b and c the inverse of the matrix formed by AA, BB and CC

double Int_e (double k)
{
 double sum = 0, pi, x;
 for (pi = 0; pi <= M_PI / 2.0;)
 {
 x = Ek;
 pi += STEP;
 x += Ek;
 sum += x*STEP / 2.0;
 }
 return sum;
}

// Calculate the Complete elliptic integral of the second kind for the calculation of the magnetic field

double Int_k (double k)
{
 double sum = 0, pi, x;
 for (pi = 0; pi <= M_PI / 2.0;)
 {
 x = Kk;
 pi += STEP;
 x += Kk;
 sum += x*STEP / 2.0;
 }
 return sum;
}

// Calculate the Complete elliptic integral of the first kind for the calculation of the magnetic field
APPENDIX A. MOT SIMULATION

```cpp
83    sum += x*STEP / 2.0;
84 }
85    return sum;
86 }
87 //calculate the module of a 3D vector
double mod(double p[3])
88 {
90    return m;
91 }
92 //Each atoms belongs to this class
class particle
93 {
94    public:
95    double p[3], v[3];
96    //initialisation options
97    particle() {};
98    void set_v(double a[3])
99    {
100       v[0] = a[0];
101       v[1] = a[1];
102       v[2] = a[2];
103    }
104    void set_p(double a[3])
105    {
106       p[0] = a[0];
107       p[1] = a[1];
109    }
110 //calculate the new position of an atom given a constant
111     //acceleration 'a' is applied for a time 't'
112    void upgrade(double a[3], double t)
113    {
114       p[0] += v[0] * t + 0.5*a[0] * t*t;
115       p[1] += v[1] * t + 0.5*a[1] * t*t;
117       v[0] += a[0] * t;
118       v[1] += a[1] * t;
120    }
121 //print in "output" position, velocity and acceleration of the
122     //atom
123    void print_pos(ofstream &output)
124    {
126         1000 << " " << v[0] << " " << v[1] << " " << v[2] << " " <<
```

99
class transition
{
 public:
 double gamma; // decay rate [1/s]
 double mu; // magnetic moment
 double I_sat; // saturation intensity
 double alpha; // h*pi*gamma/(m*wave_length)
 double k_g; // wave_length^-1 gamma^-1
 transition() {};
};

// scalar product of the vector p and q
double dot (double p[3], double q[3])
{
 return m;
}

class polygon { public:
 vector < double > Point[2];
 double minx, miny, maxx, maxy;
 int n_points;
 polygon() {};
 polygon(vector < double > k[2])
 {
 initio(k);
 }
 void initio(vector < double > k[2])
 {
 for (int i = 0; i < k[0].size(); i++)
 {
 Point[0].push_back(k[0][i]);
 Point[1].push_back(k[1][i]);
 }
 minx = *std::min_element(Point[0].begin(), Point[0].end());
 miny = *std::min_element(Point[1].begin(), Point[1].end());
 maxx = *std::max_element(Point[0].begin(), Point[0].end());
 maxy = *std::max_element(Point[1].begin(), Point[1].end());
 n_points = k[0].size();
 }
};
APPENDIX A. MOT SIMULATION

```
173 ˜ polygon () { }
174  bool inside(double x[2]);
175 ;
176 class Plane
177 {
178 public:
179  Plane () {};
180  double kx[3], ky[3], kz[3], o[3], Vec[4];
181  int side = 1;
182  Plane(double *v1, double p[3], int s)
183  {
184    initiov(v1, p, s);// initialization by vector, one point in the
185    plane and one side
186  }
187  Plane(vector<double> p1[3], int s)
188  {
189    initip(p1, s);// initialization by three point and one side
190  }
191  void initiov(double v1[3], double p[3], int s)
192  {
193    // build the system of reference of the plane
194    kz[0] = v1[0];
195    kz[1] = v1[1];
196    kz[2] = v1[2];
197    if (kz[2])
198      {
199      ky[0] = 0;
200      ky[1] = 1;
202    }
203    else {
204      if (kz[1])
205        {
206        ky[0] = 1;
207        ky[1] = -(kz[0] / kz[1]);
208        ky[2] = 0;
209      }
210    }
211    else {
212      ky[0] = 0;
213      ky[1] = 1;
214      ky[2] = 0;
215    }
216  }
217 if (sqrt(dot(kz, ky)*dot(kz, ky)) > 1e-15) cout << "zy";
```
APPENDIX A. MOT SIMULATION

```c

// normalize
MOD = mod(kz);
if (MOD == 0) MOD = 1;
kz[0] = kz[0] / MOD;
MOD = mod(ky);
if (MOD == 0) MOD = 1;
ky[0] = ky[0] / MOD;
MOD = mod(kx);
if (MOD == 0) MOD = 1;
kx[0] = kx[0] / MOD;

o[0] = p[0];
o[1] = p[1];
o[2] = p[2];
side = s;

Vec[0] = v1[0];
Vec[1] = v1[1];
Vec[2] = v1[2];
```

APPENDIX A. MOT SIMULATION

266 side = s;
267 // build the system of reference of the plane
268 kz[0] = Vec[0];
269 kz[1] = Vec[1];
270 kz[2] = Vec[2];
271 if (kz[2])
272 {
273 ky[0] = 0;
274 ky[1] = 1;
276 }
277 else {
278 if (kz[1])
279 {
280 ky[0] = 1;
281 ky[1] = -(kz[0] / kz[1]);
282 ky[2] = 0;
283 }
284 else {
285 ky[0] = 0;
286 ky[1] = 1;
287 ky[2] = 0;
288 }
289 }
293 // normalize
294 double MOD = mod(kz);
295 kz[0] = kz[0] / MOD;
298 MOD = mod(ky);
299 ky[0] = ky[0] / MOD;
302 MOD = mod(kx);
303 kx[0] = kx[0] / MOD;
306 o[0] = p1[0][0];
307 o[1] = p1[1][0];
308 o[2] = p1[2][0];
bool Side(double x[3]);
~Plane() {};

// project a point on the plane A
void projection(double p[3], Plane A)
{
 p_pro[0] = dot(A.kx, diff);
 p_pro[1] = dot(A.ky, diff);
 p_pro[2] = dot(A.kz, diff);
}

// determine if a point on the plane is inside a polygon or not
// using the Ray casting algorithm
bool polygon::inside(double p[2])
{
 int i, j = n_points - 1;
 bool oddNodes = 0;
 double x = p[0], y = p[1];
 if (n_points<3)
 {
 double rag = sqrt((p[0] - Point[0][1]) * (p[0] - Point[0][1]) +
 (p[1] - Point[1][1]) * (p[1] - Point[1][1]));
 if (rag >= Point[1][0] && rag <= Point[0][0]) oddNodes = 1;
 }
 else
 {
 for (i = 0; i < n_points; i++)
 {
 if ((Point[1][i] < y & Point[1][j] >= y
 | Point[1][j] < y & Point[1][i] >= y)
 & (Point[0][i] <= x | Point[0][j] <= x))
 { oddNodes ^= (Point[0][i] + (y - Point[1][i]) / (Point[1][j] -
 Point[1][i]) * (Point[0][j] - Point[0][i]) < x); }
 j = i;
 }
 return oddNodes;
 }

 // determine if a point is in the positive or negative side of a
 // plane
bool Plane::Side(double x[3])
{
 bool gg = 0;
 f *= side;
 if (f >= 0) gg = 1;
 return gg;
}

/* this class contain the information about the laser beam:
shape: (as the name suggest) contain the information about the
shape of the beam, is defined by the radius for circular beam
or by the vertex position for other shape of beam
mirror: define the plane where the beam start
mirror_end: define the plane where the beam start
normal: define the plane normal to the direction of the beam
*/

class Beam {
public:
 polygon shape;// define the point then give the shape of the
 // beam, is defined by the radius for circular beam or by the
 // vertex position for other shape of beam
 Plane mirror;// define the plane where the beam start
 Plane mirror_end;// define the plane where the beam end
 Plane normal;// plane normal at the k vector and system of
 // reference
 double P;// power of the beam
 double z_r; // Rayleigh distance
 double w_0; // waist size
 double det_0; // detuning length respect the transition
 double wavelenght;
 int s; // polarization
 double det[3], ki[3];

 Beam() {}

 void set_gaussan_parameter(double a, double b, double c, double
d, int e)
 {
 P = a;
 wavelenght = b;
 w_0 = c;
 det_0 = d;
 s = e;
 z_r = M_PI*w_0*wavelenght*1e-9;
 }

 // set the shape of the mirror using the point on the edge
 void set_poly(vector<double> k[2])
}
APPENDIX A. MOT SIMULATION

{
 shape.initio(k);
 }
 // set the plane normal to beam direction
 void set_norm(double *v1, double p[3], int s)
 {
 normal.initio(v1, p, s);
 }
 // set the plane from where the beam start using point or euclidean vector
 void set_mirror(vector<double> p[3], int s)
 {
 mirror.initio(p, s);
 }
 void set_mirror(double *v1, double p[3], int s)
 {
 mirror.initio(v1, p, s);
 }
 // set the plane from where the beam end using euclidean vector
 void set_mirror_end(double *v1, double p[3], int s)
 {
 mirror_end.initio(v1, p, s);
 }
 // calculate effective detuning of the beam
 void set_det(double V[3], transition tr, int n)
 {
 det[n + 1] = det_0 - dot(V, normal.kz)*tr.k_g - tr.mu*n*mod(B);
 }
 void set_ki(double ci)
 {
 ki[0] = pow(1 + s*ci, 2) / 4;
 ki[1] = (1 - ci*ci) / 2;
 ki[2] = pow(1 - s*ci, 2) / 4;
 }
 bool in_beam(double x[3]); // determine if a point is inside or not the beam
 double intensity(double x[3]); // determine the intensity of the beam
 double intensity_eff(double x[3], int n); // determine the effective intensity of the beam (used for the calculation of Itot)

};
APPENDIX A. MOT SIMULATION

```c
projection(p, normal);

double x[] = { p_pro[0], p_pro[1] };

return (mirror.Side(p) && mirror_end.Side(p) && shape.inside(x));
```

// calculate the intensity of the beam at the point p

double Beam::intensity(double p[3])
{
 double i, I_0, w, r, d;
 w = -tan(z_r / 2)*d + w_0;
 projection(p, normal);
 r = sqrt(p_pro[0]*p_pro[0] + p_pro[1]*p_pro[1]);
 I_0 = P*2.0 / (M_PI*w*w);
 i = I_0 *(w*w / w_0 / w_0) * exp(-2 * r*r / (w*w));
 return i;
}

// correct the intensity considering the detuning

double Beam::intensity_eff(double p[3], int n)
{
 double I_eff = intensity(p) * 1 / (1 + det[n + 1] * det[n + 1]);
 return I_eff;
}

// in this class are defined the coils used to produce the magnetic field

class coil
{
 public:
 Plane norm;
 double I, R;
 double B_f[3];

 coil() {};

 void set_parameter(double v[3], double o[3], double i, double r)
 {
 norm.initiov(v, o, 1);
 I = i;
 R = r;
 }

 void fied_calculation(double x[3]);
}

// calculate the magnetic field using eq. 2.15 and 2.16.

void coil::fied_calculation(double x[3])
{
```
APPENDIX A. MOT SIMULATION

```c
 double b[3], br, ro, S1, S2, k, e_k, k_k;
 projection(x, norm);
 ro = sqrt(p_pro[0] * p_pro[0] + p_pro[1] * p_pro[1]);
 S1 = (R + ro)*(R + ro) + p_pro[2] * p_pro[2];
 S2 = (R - ro)*(R - ro) + p_pro[2] * p_pro[2];

 if (ro <= 0.002)
 {
 k = (4.0* R * ro / S1);
 k_k = Int_k(k);
 e_k = Int_e(k);
 }
 else
 {
 k = floor(4 * R * ro / S1 * 10000);
 k_k = IKk[(int)k];
 e_k = IEk[(int)k];
 }

 b[2] = MU_0 * I / (2 * M_PI * sqrt(S1))*(k_k + (R*R - ro*ro - p_pro[2] * p_pro[2]) / S2* e_k);
 if (ro == 0)
 {
 br = b[0] = b[1] = 0;
 }
 else
 {
 br = MU_0 * I * p_pro[2] / (2 * M_PI * sqrt(S1) * ro) * (-k_k + (R*R + ro*ro + p_pro[2] * p_pro[2]) / S2* e_k);
 b[0] = br*p_pro[0] / ro;
 }

 B_f[0] = b[0] * norm.kx[0] + b[1] * norm.ky[0] + b[2] * norm.kz[0];

 // in this class are defined the magnets used to produce the magnetic field in the Zeeman slower
 class magnet
 {
 public:
```
522  Plane norm;
523  double m;
524  double B_f[3];
525  magnet() {};
526  void set_parameter(double v[3], double o[3], double i)
527  {
528    norm.initiov(v, o, i);
529    m = i;
530  }
531  void fied_calculation(double x[3]);
532}
533  void magnet::fied_calculation(double x[3])
534  {
535    double b[3];
536    projection(x, norm);
537
538    //calculation of the magnetic field in system of reference of
539    //the magnet
540    b[0] = MU_0*m / (4 * M_PI)*(3 * p_pro[0] * p_pro[2]) /
541    pow(mod(p_pro), 5);
542    b[1] = MU_0*m / (4 * M_PI)*(3 * p_pro[1] * p_pro[2]) /
543    pow(mod(p_pro), 5);
545    p_pro[0] - p_pro[1] * p_pro[1]) / pow(mod(p_pro), 5);
546
547    //translation in the real SUR
548    B_f[0] = b[0] * norm.kx[0] + b[1] * norm.ky[0] + b[2] *
549    norm.kz[0];
551    norm.kz[1];
553    norm.kz[2];
554}
555//go through all the coil and all the magnet to calculate the
556magnetic field
557  void magnetic_field_calculation(double p[3], magnet *m, int n_m,
558  coil *c, int n_c)
559  {
561    int i;
562for (i = 0; i < n_m; i++)
563{
564  m[i].fied_calculation(p);
565  B[0] += m[i].B_f[0];
566  B[1] += m[i].B_f[1];
568}
B[2] += m[i].B_f[2];
}

for (i = 0; i < n_c; i++) {
    c[i].field_calculation(p);
    B[0] += c[i].B_f[0];
    B[1] += c[i].B_f[1];
}

for (int i = 0; i < n_beams; i++)
    //i = 4;

for (int i = 0; i < n_beams; i++)
    double bla;

APPENDIX A. MOT SIMULATION

//calculate the acceleration caused by the light using eq. 2.12
void Acceleration(double p[3], double V[3], Beam *beam, int n_beams, transition tr, magnet *m, int n_m, coil *c, int n_c)
{
    double I_total[] = { 0,0,0 };
    double ci = 0, a = 0;
    int n;
    double I_TOTAL = 0;
    magnetic_field_calculation(p, m, n_m, c, n_c);
    int i;
    for (i = 0; i < n_beams; i++)
        //i = 4;

    if (!beam[i].in_beam(p)) continue;
    if (mod(B) < 1e-15) ci = 0;
    else
        ci = dot(beam[i].normal.kz, B) / mod(B);
    beam[i].set_ki(ci);
    for (n = -1; n <= 1; n++)
        beam[i].set_det(V, tr, n);
    I_total[n + 1] += beam[i].intensity_eff(p, n) / tr.I_sat;
}

I_Total = I_total[0] * beam[i].ki[0] + I_total[1] * beam[i].ki[0] + I_total[2] * beam[i].ki[0];

for (int i = 0; i < n_beams; i++)
    continue;

}
for (n = -1; n <= 1; n++)
{
    a += tr.alpha*beam[i].intensity(p) / tr.I_sat * beam[i].ki[n + 1] / (1.0 + I_TOTAL + 4.0 * beam[i].det[n + 1] * 
        beam[i].det[n + 1]);
    bla = beam[i].intensity(p);
}
A[0] += a*beam[i].normal.kz[0];
A[1] += a*beam[i].normal.kz[1];
a = 0;
}

// check if the atom "is being" the mirror
bool inside_mirror(double p[3], Beam *beam, int n)
{
    bool gg;
    for (int i = 0; i < n; i++)
    {
        projection(p, beam[i].normal);
        double x[] = { p_pro[0], p_pro[1] };
        return (!beam[i].mirror.Side(p) && beam[i].shape.inside(x));
    }

    // determine when the simulation end
    bool brake_option(double p[3], Beam *beams, int n, int o)
    {
        bool gg = 0;
        if (mod(p)>0.05) gg = 1, o = 1;
        // if (inside mirror(p, beams, n)) gg = 1, o = 2;
        return gg;
    }

    // display error message
    int DisplayResourceNAMessageBox(LPCWSTR a, LPCWSTR b)
    {
        MessageBox(
            NULL,
            a,
            b,
            MB_ICONWARNING
        );
        return 0;
    }
```cpp
int main()
{
 const clock_t begin_time = clock();

 // input file
 ifstream input("beamFile.txt"); // This file contain the
 // information about the beam
 if (!input.is_open())
 {
 DisplayResourceNAMessageBox((LPCWSTR)L"beamFile.txt not found

 \n The program will be terminate", (LPCWSTR)L"File not found");
 return 1;
 }

 ifstream env("environment.txt"); // This file contain the
 // information about the transition and the starting position
 // of the atoms
 if (!env.is_open())
 {
 DisplayResourceNAMessageBox((LPCWSTR)L"environment.txt not found

 \n The program will be terminate", (LPCWSTR)L"File not found");
 return 1;
 }

 ifstream coil_file("coil.txt"); // information about the coil
 if (!coil_file.is_open())
 {
 DisplayResourceNAMessageBox((LPCWSTR)L"coil_file.txt not found

 \n The program will be terminate", (LPCWSTR)L"File not found");
 return 1;
 }

 ifstream magnet_file("magnet.txt"); // information about the magnet
 if (!magnet_file.is_open())
 {
 DisplayResourceNAMessageBox((LPCWSTR)L"magnet_file.txt not found

 \n The program will be terminate", (LPCWSTR)L"File not found");
 return 1;
 }

 ifstream intege("ek_integral.bin", ios::in |
 ios::binary); // table with the value of the complete
 // elliptical integral of second kind for the calculation of
 // the magnetic field. If the file doesn't not exist, the
program will crate it

683 if (!intege.is_open())
684 {
685 ofstream integE("ek_integral.bin", ios::out | ios::binary);
686 for (float i = 0; i <= 1; i += 1.0 / 10000)
687 {
688 double s = Int_e(i);
689 integE.write((char*)s, sizeof(double));
690 }
691 intege.open("ek_integral.bin", ios::in | ios::binary);
692 }
693 ifstream integk("kk_integral.bin", ios::in | ios::binary);// as
694 if (!integk.is_open())
695 {
696 ofstream integK("kk_integral.bin", ios::out | ios::binary);
697 for (float i = 0; i <= 1; i += 1.0 / 10000)
698 {
699 double s = Int_k(i);
700 integK.write((char*)s, sizeof(double));
701 }
702 integk.open("kk_integral.bin", ios::in | ios::binary);
703 }
704 }
705
706 //load in memory the complete elliptical integral value for fast
707 //access
708 for (int i = 0; i <= 10000; i++)
709 {
710 intege.read((char*)IEk[i], sizeof(double));
711 integk.read((char*)IKk[i], sizeof(double));
712 }
713 intege.close();
714 integk.close();
715
716 double point[] = { 1,1,1 }, k[] = { 0,0,1 }, o[] = { 0,0,0 }, p[3],
717 xxx[2], p2[] = { 0,0,0 };
718 int n_beams, n_magnets, n_coils;
719 double t_res, t_end;//time resolution and ending time [s]
720 string trajectory_file;
721 vector<double> Point2D[2];
722 vector<double> Point3D[3];
723 Beam *beam;
724 coil *Coil;
725 magnet *Magnet;
APPENDIX A. MOT SIMULATION

725 particle atom;
726 transition tr;
727 int ddd, n_point, direction, polarization;
728 double power, q_parameter, waiste, frequency;
729 int exit_state = 0;
730 int n_part;
731
732 // environment setup and output file
733 ofstream output("zero_v.txt");
734 ofstream output2("magnetic.txt");
735 ofstream gnup("mirror_shape.txt");
736 getline(env, trajectory_file);
737 ofstream trajectory (trajectory_file /*, ios::app*/);
738 getline(env, trajectory_file);
739 ofstream synthesis (trajectory_file /*, ios::app*/);
740 env >> t_res >> t_end;
741 ofstream omin("trajectory3.txt" /*, ios::app*/);
742 ofstream diff("diff.txt" /*, ios::app*/);
743 ofstream avr("average.txt" /*, ios::app*/);
744 // transition setup
745 env >> tr. alpha >> tr. gamma >> tr.mu >> tr.I_sat >> tr.k_g;
746 env >> n_part;
747 // start to set up all the beam defined in "beamFile.txt"
748 input >> n_beams;
749 beam = new Beam[n_beams];
750 for (int i = 0; i < n_beams; i++)
751 {
752 double detu;
753 input >> power >> waiste >> frequency >> detu >> k[0] >> k[1]
755 polarization;
756 double lamb = frequency / C_l;
757 detu = detu / tr.gamma;
758 // convert mm in m
759 o[0] *= 0.001;
760 o[1] *= 0.001;
761 o[2] *= 0.001;
762 beam[i].set_gaussan_parameter(power, lamb, waiste, detu,
763 polarization);
764 beam[i].set_norm(k, o, direction);
765 // start to build the contour of the beam

114
APPENDIX A. MOT SIMULATION

```cpp
769    gnup << "set object " << i + 1 << " polygon from ";
770 if (n_point <= 2)//circular beam
771 {
772    input >> point[0] >> point[1];
773    Point2D[0].push_back(point[0] / 1000);
774    Point2D[1].push_back(point[1] / 1000);
775    input >> point[0] >> point[1] >> point[2];
776    projection(point, beam[i].normal);
777    Point2D[0].push_back(p_pro[0] / 1000);
778    Point2D[1].push_back(p_pro[1] / 1000);
779 }
780 else
781 {
782    for (ddd = 0; ddd < n_point; ddd++)
783 {
784    input >> point[0] >> point[1] >> point[2];
785    point[0] *= 0.001;
786    point[1] *= 0.001;
787    point[2] *= 0.001;
788    gnup << point[0]*1000 << ", " << point[1]*1000 << ", " << point[2]*1000 << " to ";
789    Point3D[0].push_back(point[0]);
790    Point3D[1].push_back(point[1]);
791    Point3D[2].push_back(point[2]);
792    projection(point, beam[i].normal);
793    Point3D[0].push_back(p_pro[0]);
794    Point3D[1].push_back(p_pro[1]);
795    gnup << "set object " << i + 1 << " fillstyle transparent solid 0.5 splot 1 / 0 notitle " << endl;
796 }
797 }
798 gnup << Point3D[0][0] * 1000 << ", " << Point3D[1][0] * 1000
799 << ", " << Point3D[2][0] * 1000 << endl;
800 }  
801 beam[i].set_poly(Point2D);
802 if (n_point <= 2)
803 {
804 input >> o[0] >> o[1] >> o[2];
805 beam[i].set_mirror(o, point, -direction);
806 }
807 else
808 {
809 input >> o[0] >> o[1] >> o[2];
810 beam[i].set_mirror(Point3D, -direction);
811 }
```
APPENDIX A. MOT SIMULATION

input >> point[0] >> point[1] >> point[2];
point[0] *= 0.001;
point[1] *= 0.001;
point[2] *= 0.001;
beam[i].set_mirror_end(o, point, direction);

// erase the vector
Point2D[0].erase(Point2D[0].begin(), Point2D[0].end());
Point2D[1].erase(Point2D[1].begin(), Point2D[1].end());
Point3D[0].erase(Point3D[0].begin(), Point3D[0].end());
Point3D[1].erase(Point3D[1].begin(), Point3D[1].end());
Point3D[2].erase(Point3D[2].begin(), Point3D[2].end());
}

// magnetic field setup
double m, current, radius;
magnet_file >> n_magnets;
Magnet = new magnet[n_magnets];
for (int i = 0; i < n_magnets; i++)
{
 Magnet[i].set_parameter(k, o, m);
}
coil_file >> n_coils;
Coil = new coil[n_coils];
for (int i = 0; i < n_coils; i++)
{
 Coil[i].set_parameter(k, o, current, radius);
}

// trajectory calculation
int t;
double f1 = 0 * 3.14159265358979323846 / -6.0, theta = 0, v;
in in;
double v_max = 0;
double v_min = 0;
double n_pass = 289;
bool inside = 0;
double probability;
double count = 0;
// take one particle at the time and calculate the trajectory for each of them
for (int ss = 0; ss < n_part; ss++)
{
 int ccc = 0;
 if (!(ss % 10)) cout << "\r" << double(ss) / double(n_part) * 100;
 double P_0[] = { atom.p[0], atom.p[1], atom.p[2] };
 double V_0[] = { atom.v[0], atom.v[1], atom.v[2] };
 v_max = 0;
 v_min = 0;
 in = 0;
 exit_state = 0;
 inside = false;
 for (t = 0; t <= (t_end / t_res); t++)
 {
 // calculate the value of the acceleration and store the value in the global variable A
 Acceleration(atom.p, atom.v, beam, n_beams, tr, Magnet, n_magnets, Coil, n_coils);
 atom.upgrade(A, t_res);
 // write the actual position and velocity of the atom in the file define in "environent.txt"
 if (brake_option(atom.p, beam, n_beams, exit_state))
 {
 break;
 }
 }
 // interrupt the calculation if the atom is captured
if (floor(atom.p[0]) < 0.003 && floor(atom.p[1]) < 0.003 &&
floor(atom.p[2] - 0.01) < 0.003 && (mod(atom.v) < 0.1))
{
 exit_state = 1;
 count += probability;
 break;
}
if (exit_state)
{
 env.close();
 trajectory.close();
 synthesis.close();
 input.close();
 output.close();
 output2.close();
 omin.close();
 coil_file.close();
 magnet_file.close();
 avr.close();
 diff.close();
 delete[] beam;
 cout << '\a';
return 0;}

124

[104] G. H. Newsom, S O’Connor, and R. C. M. Learner, “Re-examination of
the spectrum of strontium: Autoionization in the spectrum of neutral
strontium,” Journal of Physics B: Atomic and Molecular Physics, vol. 6,
0022-3700/6/i=10/a=028

[105] S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose-
PhysRevLett.103.200401

[106] P. G. Mickelson, Y. N. Martinez de Escobar, M. Yan, B. J. DeSalvo, and
T. C. Killian, “Bose-einstein condensation of 88Sr through sympathetic
051601

[107] R. Wiegner, J. von Zanthier, and G. S. Agarwal, “Quantum-interference-
initiated superradiant and subradiant emission from entangled atoms,”
023805

by cooperative response of atoms in an optical lattice,” Phys. Rev. A,
doi/10.1103/PhysRevA.86.031602