An engineering understanding of the small intestine

Fonseca, Monica Rosalia Jaime (2012). An engineering understanding of the small intestine. University of Birmingham. Ph.D.

[img]
Preview
Fonseca_12_PhD.pdf
PDF

Download (9MB)

Abstract

The main objective of this research was to understand phenomena occurring during food digestion and nutrients absorption in the small intestine from an engineering perspective. Intestinal flow and mixing processes were simulated using a dynamic in vitro Small Intestine Model (SIM). Of particular interest was to study the effect that mixing and food formulation has on glucose absorption and starch hydrolysis.

Results showed the effect of segmentation motion on nutrient delivery to the intestinal wall as a consequence of changes in the mass transfer coefficient. This is most likely due to the increased mixing in the SIM. Experiments of starch digestion with and without the presence of guar gum have shown that viscous fibres reduce the rate of starch digestion and glucose absorption by impairing mixing and reducing diffusion within the fluid. Similarly, use of
particulate systems demonstrated a significant effect on the delivery rates. Flow visualization techniques used for studying flow paths in the SIM showed that this in vitro model reproduces the characteristic flow events and mixing found in the small intestine in vivo.

This research provides insights into the role of mixing on enhancing mass transfer on the course of digestion-absorption processes and also the action of viscous polysaccharides on the delay of glucose absorption in the small intestine. The end findings resulted in a better
understanding of the factors which control the development of new functional food that could be applied both in academia and industry.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Fryer, P. J.UNSPECIFIEDUNSPECIFIED
Bakalis, Serafim UNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemical Engineering
Funders: None/not applicable
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
T Technology > TA Engineering (General). Civil engineering (General)
URI: http://etheses.bham.ac.uk/id/eprint/3522

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year