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ABSTRACT 

While traditionally the understanding of cardiovascular morbidity relied on the 

acquisition and interpretation of health data, the advances in health technologies has 

enabled us to collect far larger amount of health data. This thesis explores the 

application of advanced analytics that utilise powerful mechanisms for integrating 

health data across different modalities and dimensions into a single and holistic 

environment to better understand different diseases, with a focus on cardiovascular 

conditions. Different statistical methodologies are applied across a number of case 

studies supported by a novel methodology to integrate and simplify data collection. 

The work culminates in the different dataset modalities explaining different effects on 

morbidity: blood biomarkers, electrocardiogram recordings, RNA-Seq measurements, 

and different population effects piece together the understanding of a person morbidity. 

More specifically, explainable artificial intelligence methods were employed on 

structured datasets from patients with atrial fibrillation to improve the screening for the 

disease. Omics datasets, including RNA-sequencing and genotype datasets, were 

examined and new biomarkers were discovered allowing a better understanding of 

atrial fibrillation. Electrocardiogram signal data were used to assess the early risk 

prediction of heart failure, enabling clinicians to use this novel approach to estimate 

future incidences. Population-level data were applied to the identification of 

associations and temporal trajectory of diseases to better understand disease 

dependencies in different clinical cohorts. 
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CHAPTER 1 INTRODUCTION 

Typically, health studies have focused on generating data to explore specific scientific 

hypotheses. This process of collecting data is expensive and burdensome – it requires 

designing studies, recruiting participants and collecting data. In the current times, more 

and more data are made available, and many facets of these datasets are still open to 

investigation. This work proposed to harness the potential of existing datasets and 

repurposing them by developing novel analytical approaches to interrogate them – 

rather than generating them. It aims to better understand clinical outcomes with 

applications as its driving force. 

This thesis is multidisciplinary in nature integrating and developing methods stemming 

from the fields of data science, informatics, computer science, mathematics as well as 

bioinformatics and health informatics for application in health sciences, with a focus on 

cardiovascular diseases. It is structured according to different research work related to 

the investigation of Atrial Fibrillation (AF) and its related comorbidities. Different 

datasets were explored, such as the Birmingham Black Country Atrial Fibrillation 

registry (BBCAF), for the development of methods for AF prediction. Transcriptomic 

analysis of AF-related RNA Sequencing (RNA-seq) data to the identification of novel 

biological targets, from mice and human samples. Signals from electrocardiogram 

(ECG) were applied for patient risk stratification, derived from electronic health records. 

Moreover, this project included the investigation of different patterns of comorbidities 

in different health data sources and the systematic integration of electronic healthcare 

records. 

These different approaches, when combined, provide a wide background of knowledge 

that can be used to assess patient risk, investigate new therapeutic targets, and 

improve patient stratification. 

In the sequence on this chapter, different concepts from information and data to 

different biological terminology are defined. 
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1.1 Information systems and data 

Information systems are instruments that collect, store and provide data. Their use can 

be related to the origin of ancient history with the Sumerian Cuneiform script, as the 

earliest known record of written information. Civilizations could extend their reach with 

this technology that enabled long-distance communications and facilitated trading (18). 

Written information in the past assisted with decision making and its importance in 

decision making is ever increasing. In this thesis, information that can be stored is 

considered data, and data that denotes any knowledge, right or wrong, are facts 

derived from the data perspective. Data have implicit meaning and a universe of 

discourse. It is considered that a collection of related facts is a database (19). 

This definition of databases is not limited to electronic ones. It is possible to consider 

old document systems in hospitals as databases as well. Most of this information would 

be stored in paper archives individually for each patient with reports and exams, but 

others are stored in digital repositories, often limited to a specific type of test, e.g., 

biomarker concentrations or ECG or imaging databases. Since the early 1990s, there 

has been a shift towards Electronic Health Records (EHR) systems (20). These EHR 

systems are a substitute for previous paper systems, providing extensive benefits, 

such as distributed access, collaborative work and faster access to patients’ exam 

results, diagnosis, notes, prescriptions, scheduling, stock management, rotas and any 

other possible event in the context of the hospital. The University Hospitals 

Birmingham NHS Foundation Trust (UHB) introduced an electronic health record in 

2008, and currently has been using different software to support its EHR initiatives 

(21), for example, Birmingham Systems Prescribing Information and Communication 

System (PICS), a rules-based prescription support system. 

EHR systems and their datasets are an example of real-world data. This is the data 

reflecting actual clinical practice. Usually, there are minor limitations on participant 

selection depending on the inclusion criteria. In the context of UHB, limitations could 

be for cases such as hospitals that are focused on children and/or women care, or 

patients that live closer to a point of care. However, these limitations are not as 

penalising as the trial recruitments based on consultations with particular study 
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practitioners. In real-world data, participants are not bound to specific periods of 

registration and follow-up, the research support team, or financial constraints that 

happen in trial studies. Due to participant mixture in these data, research and 

development of novel hypotheses based on such datasets are expected to suffer minor 

deviations when applied to external populations. That is, while a study would have a 

sampled population, these real-world data covering a bigger population sample will 

more closely approach the overall population and thus a standard clinical routine 

scenario, and it is then expected to have a lessened deviation for its created models. 

Despite the existing benefits of real-world data, it does not solve all types of problems, 

particularly when evaluating novel traits and treatments. There are no retrospective 

data for new drugs, neither information on how new treatments will affect patients. The 

use of real-world data might also require special compliance with ethical regulations. 

For example, in the United Kingdom (UK), compliance is required with the National 

Healthcare System (NHS) and other healthcare regulations, such as the Health 

Research Authority approval (22). This is due to cases in the past where participants 

were exposed to great harm and risks. Furthermore, ethical requirements ensure that 

participants data and privacy are kept confidential on a need-to-know basis. 

Regulations also provide clear information to participants and a plan of action to 

researchers in case of any unexpected events. 

Other types of data considered are study data and simulated data. Study data 

contains data collected from trials, these data are usually used to evaluate novel 

markers, medications, or treatments not done in practice. Simulated data mimics real 

behaviour, these are commonly applied for modelling medication behaviour before any 

biological tests. Furthermore, other techniques evolve the generating of new data for 

model creation. These two cases are explored in this thesis. 

The multitude of information in the hospital is an example of big data. Big data is a 

collection of facts, stored in databases or otherwise, in a wide range of structured and 

unstructured formats, typically associated with a great number of data-points and data 

that may contain information that increased exponentially. These characteristics define 

big data: variety, volume and velocity, the 3 V’s of big data (23). Furthermore, datasets 
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contain a multitude of information in them and about them. The former is the data itself, 

the latter is the metadata, the data about the data. 

The metadata contains important information about datasets. Clinical care settings and 

treatment dates are examples of metadata. A patient could have a different treatment 

depending on the accessibility to healthcare, and local infrastructure. And, to some 

extent, the way phenotypes are identified and reported by different clinicians lead to a 

different pattern of the data, e.g., a clinician, due to training and experience, could be 

focused on some symptoms/signs than others. And, as a broad rule, dates on which a 

patient was being treated affect significantly the patient pathway: the availability of 

treatments, new devices, new guidelines, government policies, and external events 

change the data patterns, making a dataset population substantially different. The 

inclusion criteria, i.e., the sets of rules used to select patients in a study, are important 

metadata factors because they could bias the analysis. To some extent, it is possible 

to say that a dataset from the UK was formed based on a region and population 

inclusion criteria, although the genetic background of the population could be diverse. 

Therefore, all factors in the metadata must be considered, as they provide additional 

meaning to the dataset. 

1.1.1 Data modalities 

Data have different dimensions and types. These different dimensions and types, 

similarly to the universe of discourse, discussed previously, help to define the context 

of the data. The dimensions provide information on contexts, or subgroups, of different 

data elements. In a biological context, the dimensions may be a cellular, tissue, organ, 

system, patient and population context. At the patient level, different data types are 

considered. 

Datatypes can be separated into structured, unstructured or semi-structured data. 

These are categorised due to different approaches and analyses that can be applied 

to each of them. Structured data refers to all data that contains a tabular or computable 

structure that is well defined, and the meaning is objectively measured, with clear and 

unambiguous values. This is the case for a dataset of diagnosis data such as ICD-10s, 

as the patient data is either annotated with the ICD-10 or not (24). Other examples are 
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demographics such as age and sex, given that age is marked in a cell and there is no 

ambiguity about the definition of the term. Unstructured data types contain graphical 

or signal information, such as medical imaging datasets or recording data, as in the 

case of electrocardiograms. These data follow a collection protocol and there might be 

a structure, such as a defined procedure with an expected repetition or sequence 

recorded. However, the recording itself does not provide any direct information before 

being interpreted/analysed by a person or algorithm. Semi-structured data are sets of 

data that contains information in a seemly structured form, such as text. These data 

have a grammar defining a structure, but the information cannot be directly used in an 

automatic analysis. 

A type of structured data types, omics-related data is considered a type of data that 

contains quantified data derived from particular measurements of biological processes. 

The data derived from an omics process contains a multitude of variables in a similar 

context. Some examples are RNA-seq data, containing a multitude of information 

about a sample, such as data from transcriptomes expression; proteomics, or blood 

assays, cases that contain information about a range of blood measurements in the 

same context; genomics, with genome-wide genotyping data; radiomics with a large 

number of features extracted from radiographic medical images; and others. 

Similar data can be represented using different modalities, for example, rather than 

annotated with ICD-10 (24) codes, patient data may be available as free text, such as 

the case of a clinical letter or note. Data may be transformed between modalities. For 

example, a patient’s genome is formed of a combination of four bases; the genome 

has a grammar and is an example of semi-structured data. These data can be 

inspected if its grammar is known, but also, this genetic material could be transformed 

to other formats, such as processed into a signal (unstructured data), which can then 

be transformed into a structured datatype, indicating measurements. A final report by 

the investigator could lead to summarised textual data, back to semi-structured data. 

Figure 1 illustrates this process. 
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Figure 1: Flow of data through different modalities. From genome (semi-structured data), the zoomed-

in sequence of bases is read using an approach that considers the signal (unstructured data) for each 

read sequencing, marking them as different bases, the sequenced data can be combined into count 

data (omics, or structured data), which then could be used to generate a clinical output such as a clinical 

letter (semi-structured data). 

These different datasets have different structures and are often stored in different 

locations of sub-systems, where different parts of the data are stored in different 

databases, sometimes with different naming conventions and incomplete linkage 

issues. This is the main challenge of analysing multimodal data. There are also other 

definitions for data modalities, with some similarities (25). 

1.1.2 Data scales 

Data modalities refer to different types of view on a data or element. There is also a 

factor of the resolution of the data. In the following paragraphs is illustrated the different 

scales of data in a human. 

At the deepest resolution, there is information about specific nucleic acids and proteins. 

One could look at directly quantifiable aspects, e.g., the transcriptome, genome, or 

biomarkers levels, or structural and functional aspects, e.g., the interaction between 

proteins. 

Cells and tissues are next on the scale, as proteins and other biomolecules compose 

cells that then compose tissues, cells and tissues behave differently depending on their 

specialisation. For example, cardiomyocytes, cells that make part of the cardiac 

muscle, have a differential expression to cells in the liver, or any other tissue. There 

are also differences in cells and tissues behaviour within the same organ, for instance, 
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tissues from different heart chambers contain marked differences in their genetic 

expression. 

Next are organs and organ systems, which individually or in combination may function 

in a disorderly fashion. An unbalance in a system is sometimes a response to another 

system’s abnormal behaviour. This is seen in diseases that are co-morbid with other 

diseases, and the outcome severity is closely related to another condition. For 

example, patients with chronic kidney disease are more likely to develop atrial 

fibrillation and vice-versa. 

Individuals in populations are the largest scale, these are information associated with 

lifetimes, where different lifestyle choices trigger mechanisms hidden in the lowest 

scale nucleic acids. 

When working with data, the population level is the most common unit of operation, 

with individuals containing depths of information that can be explored on different 

facets. Populations with a clear separation of outcomes in combination with statistical 

frameworks provide the basis for the investigation and discovery of new targets and 

patient stratification.  

There is a wide variety of data available, datasets in different modalities and 

resolutions. This thesis presents the application of approaches to add information 

through the integration rather than the creation of new data with hypothesis generation 

and results from separate data modalities and scales. Different methods were applied 

to integrate and analyse data to advance the knowledge of atrial fibrillation and other 

cardiac and related comorbidities. 

1.2 Heart 

The heart has 4 chambers, 2 atria (upper chambers), and 2 ventricles (lower 

chambers). The heart’s function is to pump blood around the body, and it is composed 

of myocardium, muscle tissues of the heart. The left atrium receives oxygenated blood 

from the lungs through the pulmonary veins and passes it to the left ventricle, which 

sends the oxygenated blood under pressure to the body via the aorta. After passing 

through the body, the deoxygenated blood returns to the right atrium, where it gets 
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pumped to the right ventricle and back to the lungs. The blood gets oxygenated in the 

lungs, before going back to the left atrium, restarting the cycle (26). Figure 2 illustrates 

the blood flow in the heart. 

 

Figure 2: Heart chambers and the flow of blood. Deoxygenated blood arrives from the vena cava to the 

right atrium. The blood flows to the right ventricle, then to the pulmonary artery and to the lungs, which 

is then returned oxygenated from the pulmonary vein to the left atrium, then left ventricle before going 

back to the body by the aorta. 

The heart is regulated by the sinoatrial node, which is the natural pacemaker of the 

heart. Located in the right atrium, the sinoatrial node is also responsible for starting the 

signalling process. The signal sent by the node (a) contracts the atria, (b) spreads 

through the heart, and (c) slows down as it passes the atrioventricular region, the 

region between the atrium and ventricles. In the sequence, the ventricles contract 

rapidly. 

The ejection fraction is a measurement of the heart’s capability to eject blood from a 

heart chamber, it is measured in percentage. A standard measurement comes from 

the left ventricle, the left ventricular ejection fraction (LVEF) is commonly measured by 
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an echocardiogram. LVEF’s normal range is between 55% and 70%. Reduced values 

indicate the likeliness of heart failure (27). 

1.2.1 Atrial Fibrillation 

Atrial Fibrillation (AF) is the most common serious arrhythmia of the heart. It is 

associated with several health complications and can lead to death. AF is caused when 

the atria do not contract properly, and instead quivers, because of an irregular 

activation of the atrium by the sinoatrial node (28).  

AF has three different stages: paroxysmal, persistent, and permanent. In the initial 

form, paroxysmal, the patients have infrequent episodes of AF which are self-

terminating. These episodes may become longer and more frequent, and the disease 

might evolve to persistent AF. A patient with short-standing persistent AF has episodes 

that last for more than 7 days and may potentially be interrupted with direct 

cardioversion. The long-standing persistent AF can last for more than 1 year. The final 

stage, permanent AF, is a type of AF where control of the rhythm is either not 

intervened and is always persistent, or it is resistant to electrical or pharmacologic 

cardioversion (29). Figure 3 illustrates the evolution of the disease. 

 

Figure 3: Evolution of atrial fibrillation. Red indicates atrial fibrillation episodes. As the disease 

progresses over time the atrial fibrillation episodes become longer. 

The start and progression of AF are associated with inflammation. Inflammatory 

pathways contribute to atrial remodelling, and AF leads to inflammation, circling back 

(30). 

AF can be identified by the pulse and then confirmed with an electrocardiogram (ECG) 

or a Holter ECG. Both devices measure electrical activity in the heart over time. A 

standard ECG has a recording of 10s and contains 12 leads, which are different signals 

with different references. Holter ECG is a portable ECG that patients carry for at least 
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a day and sometimes for as long as 2 weeks at a time. It is used to identify silent AFs, 

a subtype of atrial fibrillation in which patients go into advanced stages of the disease 

without being previously identified for AF (29). 

Currently, there is no cure for AF, but the treatment of several domains can prevent 

complications, reduce symptoms, and improve the quality of life in affected patients. In 

brief, these comprise acute restoration of normal rhythm, treatment of concomitant 

cardiovascular conditions, anticoagulation to prevent ischemic strokes, rate control, 

and rhythm control therapy (29). Table 1 describes some treatment approaches for AF. 

Table 1: Description of treatments for AF. All treatments aim to improve the quality of life, autonomy and 

social functioning of AF patients. All but the last treatment also provide the benefit of improved life 

expectancy. Table based on a figure from (29). 

Case Treatment Desired outcome 

Acute rate and rhythm 

control 

Beta-blockers, cardioversion Haemodynamic stability 

Manage precipitating 

factors 

Lifestyle changes, treatment of underlying 

cardiovascular conditions 

Cardiovascular risk reduction 

Assess stroke risk Oral anticoagulation Stroke prevention 

Assess heart rate Rate control therapy Symptom improvement, 

preservation of LV function 

Assess symptoms Antiarrhythmic drugs, cardioversion, catheter 

ablation, AF surgery 

Symptom improvement 

Some of the conditions commonly co-morbid with AF are hypertension, vascular 

disease, notably coronary artery disease (CAD), heart failure (HF), diabetes, and 

stroke (29). AF prevalence is estimated to be 2%, with an increased risk at higher ages; 

0.12%-0.16% in patients under 49 years, 3.7%-4.2% in patients aged 60-70 years and 

between 10% and 17% in patients older than 79 years (31). AF prevalence is expected 

to be higher given that patients are usually identified only after another serious disease, 

for example, in the case of stroke 25% of patients are likely to have AF episodes (29). 
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Of the different comorbidities associated with AF, HF is further studied in this thesis in 

a predictive model. HF is typically associated with a few symptoms, such as dyspnoea 

(difficult breathing), fatigue and swelling (32). One way to identify heart failure is 

through the assessment of left ventricular function using an echocardiogram and its 

LVEF measurement, a reduced value would indicate heart failure. The LVEF measured 

from the echocardiogram could be normal and the patient has heart failure, in this case, 

the patient is categorised as heart failure with preserved ejection fraction. It is also 

possible to diagnose using blood tests, breathing tests and chest x-ray. HF association 

with AF is known for more than a century (33). There are many similarities in their risk 

factors, such as age, hypertension, diabetes, obesity, and other cardiovascular 

conditions, e.g., valvular, ischaemic and non-ischaemic structural heart disease (34).  

Some open research problems addressing AF are the early identification of the 

disease, the discovery of long-term cures and the improved definition and stratification 

of patients into subgroups. Although not validated, there is a suggestion in the literature 

it is that AF could be classified, according to mechanisms, in the following groups: 

monogenic AF, focally induced AF, postoperative AF, valvular AF, AF in the elderly, 

polygenic AF and unclassified AF (35). 

The main data sources related to AF patients are (a) the clinical history of the patient, 

phenotypes of preconditions, and associated measurements, (b) electrocardiogram 

recordings, (c) echocardiogram, images obtained using ultrasound of the frontal 

surface of the heart, and other imaging modalities of the heart, (d) blood biomarkers 

such as haemoglobin, creatinine, and cardiovascular biomarkers that may be more 

specific for AF, and (e) genetic and transcriptomic data, such as RNA-sequencing data 

and antecedents’ information. Their value and the composition of these data is 

discussed later in this thesis. 

Early and correct identification of patients with any condition is crucial to increase 

patient’s quality of life and disease outcomes. There are many models for risk 

assessment of AF, such as CHA2DS2-VASc, which combines different risk-conditions 

to indicate if a patient that suffers from non-rheumatic AF is likely to have a stroke (36, 
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37). Also, the New York Heart Association Functional Classification (NYHA class) 

indicates patients’ limitation on physical activity (38). 

1.2.2 Electrocardiogram and the PQRST Complex 

One of the most common ways to quantify heart activity is by using an 

Electrocardiogram (ECG). The ECG identifies different sections of the heart’s 

movement by its electric discharge using different leads placed around the chest. The 

relative position of the leads to the heart influences the signal data that can be 

obtained. Different leads obtain information focused on specific heart chambers. 

Wrong positioning of the leads and body movements, such as the abdominal 

movement during breathing may influence the reading (39). Other factors, such as sex, 

age, body mass index (BMI) and athlete conditioning alters an ECG signal (40, 41). 

There are some variances in the ECG recordings. Usually, a patient that gets an 

electrocardiogram needs to be in a supine position. The patient rests for a few seconds 

while 4 limb electrodes, Right Arm (RA), Left Arm (LA), Left Leg (LL) and Right Leg 

(RL) and 6 chest electrodes are placed in a range around the heart (Figure 4) (42). A 

standard electrocardiogram recording lasts 10s. 
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Figure 4: Positioning of the leads in the chest. Depending on the protocol, Right Arm (RA) and Left Arm 

(LA) leads can be anywhere between the shoulder and the respective elbow. Right Leg (RL) and Left 

Leg (LL) leads may be placed below the torso and above the respective ankle. 

Whilst 10 electrodes are placed, only 9 are directly used to obtain information, as the 

electrode RL is for grounding. The signals from 9 electrodes are collected and 

combined as if 12 leads were placed (43). The different calculated leads are: 

𝐼 = 𝐿𝐴 − 𝑅𝐴      𝐼𝐼 = 𝐿𝐿 − 𝑅𝐴     𝐼𝐼𝐼 = 𝐿𝐿 − 𝐿𝐴 

𝑇ℎ𝑢𝑠, 𝐼𝐼 = 𝐼 + 𝐼𝐼𝐼 

𝑎𝑉𝑅 =
𝐿𝐴 + 𝐿𝐿

2
    𝑎𝑉𝐿 =

𝑅𝐴 + 𝐿𝐿

2
     𝑎𝑉𝐹 =

𝑅𝐴 + 𝐿𝐴

2
 

𝑎𝑉𝑅 + 𝑎𝑉𝐿 + 𝑎𝑉𝐹 = 0 

Modern ECG devices provide an automatic diagnosis of common conditions that are 

easily identifiable. There are many nomenclatures for these conditions and approaches 

to unify them have been proposed (44). It is informally stated by some clinicians that if 
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the automatic diagnosis does not pick any condition then the patient is very likely to be 

healthy. 

In the first stage of a heartbeat, the P wave indicates the start of the beat with atrial 

depolarisation. After that, there is a time interval with no signal as the blood is moving 

from the atrium to the ventricles. Following, there is the QRS Complex (Q is the lowest 

next point, R the very high point and S the next lower point): the Q wave indicates the 

depolarisation of the septum, when the ventricles are being activated. The R wave 

indicates the activation of the ventricles (as it has more muscle, it requires higher 

electricity) and the S wave is the electric discharge returning to its neutral position. And 

the next wave, the T wave is the repolarisation of the ventricles before the cycle 

repeats. There are different intervals classically used in the analysis of ECG signals. 

Figure 5 illustrates the different parts of a heartbeat and some measurements possible. 

The R-R interval, which denotes the length between two beats, is an important inter-

beat variable. 

 

Figure 5: Different stages of a heartbeat. Some intervals are measured to assess normality and 

diseases. 

The combination of the information from the shape of the wave, intervals and 

amplitudes, and its repetitions can be used to identify diseases. One lead of special 
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interest to AF is lead II, which indicates the rhythm and can be used to identify diseases 

associated with it. Patients who suffer from AF tend to have noisier recordings, irregular 

R-R intervals and the P wave might be absent. Figure 6 displays a comparison 

between an atrial fibrillation patient and a healthy patient. 

 

Figure 6: Electrocardiogram comparing an atrial fibrillation patient and a healthy patient. Note the 

variation in the R-R interval. Signals from MIT-BIH Arrhythmia dataset (45, 46). 

In summary, an electrocardiogram offers information about heart activity. It is possible 

to extract many variables from an ECG, such as P-Q interval, R-R interval, QRS width 

and Q-T interval. The relationship between these variables can be used in the study of 

different conditions (47). 

There are many methods of storing ECG data in an electronic format (48). ECG 

recordings handled on this thesis’ projects used XML formatting (49). This format 

contains a header with metadata, such as device information and patient identifier, 

followed by the different leads in different sections. 
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1.3 Omics 

The genome contains the genetic information for an organism’s development, growth, 

functioning and reproduction. It contains information that is both coded to genes as 

well as non-coding information that may have regulatory functions. In retro-viruses, the 

genome information is contained in some ribonucleic acid (RNA), while in other living 

beings the information is in a deoxyribonucleic acid (DNA), a double helix-shaped 

molecule formed by two chains of polynucleotide strands (50), which are made of a 

chain of the nucleotides adenine, cytosine, guanine and thymine in different sequences 

called chromosomes. In humans, there are 23 pairs of chromosomes which are 

estimated to have around 20,000 protein-coding genes (51). 

The processing of information from genes is enunciated in the central dogma of 

biology, which describes two processes that explain the flow from the DNA molecule 

into proteins. The first process is the transcription of DNA into messenger RNA 

(mRNA), and the second one is the translation of this RNA into proteins (52). These 

processes are required for the functioning of any living cell and the performance of its 

biological purposes. 

There could be alterations in the functional characteristics in any step. In the first 

process, a single nucleotide polymorphism (SNP) could affect the whole chain that 

leads to the expression of a protein. In the second process, the expression of some 

mRNA could be substantially higher or lower. Furthermore, the manifestation of some 

proteins may be different in different scenarios. 

Omics refer to the wide group of different -omics type of analyses. Genomics is the 

scientific field that studies the genome. Transcriptomics is the sub-field that studies 

transcripts, such as the quantification and evaluation of differential expression of the 

mRNA. Proteomics is the study of interactions, modifications, and location of proteins 

(53). 

1.3.1 Transcriptomics 

RNA sequencing (RNA-Seq) is explored in this thesis as an example of omics datasets. 

This data comes from different biological samples that had their mRNA material 
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sampled, then these data are processed into a count of transcripts. The different 

transcripts were then compared for their differential expression. This work aims to 

understand diseases and their underlying mechanisms (54, 55). 

Mice, Mus musculus, are used as model organisms because of the similarity to the 

human genome and the possibility to isolate conditions to be tested, i.e., a knockout 

mouse, a specimen that does not have one gene – homozygous or heterozygous 

absence – that is commonly found in a non-genetically modified mouse. 

RNA-Seq investigations on this project that used mice involved transgenic mouse 

heterozygous on the JUP and the PITX2 genes, separately. PITX2 was picked 

because variants close to it have been associated with AF and is a promising target 

(56). JUP gene (Plakoglobin) has been associated with arrhythmogenic 

cardiomyopathy and it is not widely studied (57). 

Furthermore, data collected from tissue samples of patients undergoing cardiac 

intervention surgery were explored using RNA-Seq techniques. As this dataset has a 

comprehensive view of the patients, and this type of data not being commonly 

available, this dataset provides a new and unique perspective on cardiac patients. 

1.3.2 Genomics 

Genomics is explored in this thesis as another example of omics datatype. This 

datatype was evaluated using Genome-Wide Association Studies (GWAS) analysis 

(58). This type of analysis involves the use of statistical analysis to identify SNPs of 

importance to the groups compared.  

1.4 Work proposed 

As outlined in the introduction, the susceptibility to common cardiovascular rhythm 

disorders and other cardiovascular diseases is dependent on a multitude of risk factors 

which can have genetic or environmental origins. Given the technological advances in 

electronic health record generation, genetic sequencing and protein biomarker 

quantification, there is a growing wealth of data which, when combined with classical 

clinical parameters, offers the possibility of improving the care for patients with 
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underlying cardiac diseases such as AF and HF. As a result, there is a need to better 

identify patients at increased risk of these cardiac diseases and identify patient subsets 

who would benefit from selective therapies. The use of advance data analysis 

methodologies, such as machine learning and artificial intelligence, offers a means to 

better understand patients with cardiovascular diseases. The best understanding of 

patients works similarly to what precision medicine targets: with the better 

understanding of patients, it is possible to personalise their treatment and improve their 

care (59). 

To better understand patients’ pattern of morbidity, different aspects of cardiovascular 

disorders were investigated in this work, separated by their data types and techniques 

that can be explored: Chapter 2 explains broadly the different methodological tools 

used. Chapter 3 illustrates the use of structured data, inclusive of the exploration of 

clinical, biomarkers and socioeconomic data by combining data from the UK Biobank 

and patients recruited to an AF study. Chapter 4 explores the use of omics data, going 

deep into the DNA and RNA data with relevance to AF. Chapter 5 explores the use of 

unstructured data, with ECGs being used as a source of novel morbidity’ markers in 

cardiovascular diseases. Chapter 6 takes a step back and goes into populations, how 

they group together and explain morbidity. Chapter 7 shows a framework for the 

collection and processing of data, from the UHB and the UK Biobank, to a streamlined 

analytics process. Chapter 8 shows the applications of the methods and data 

described to an urgency scenario, relating to the SARS-CoV-2 pandemic. 
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CHAPTER 2 DATA DESCRIPTION AND METHODOLOGY 

2.1 Introduction 

This chapter reviews analysis techniques commonly used in medical studies. These 

techniques compose the basic toolset used in the analysis described throughout the 

thesis. 

There are 5 parts to this chapter, (a) data pipelines, the description of the analytical 

framework used, (b) data sources, different datasets that were used in multiple parts 

of this work, (c) data analysis, basics of statistics, missing values and metrics, (d) 

artificial intelligence, advanced analytical methods, (e) variable importance, different 

approaches to identify important predictors in models. The different parts are 

summarised in Table 2. 

Table 2: Summary of the Data Description and Methodology chapter. 

Category Definition Applications on this thesis 

Data pipeline The end-to-end process to 
perform data analyses, from 
planning the experiment to 
reporting the results achieved. 

This methodology guided the 
analytical process in this thesis. 
This ensured the results 
achieved complied with 
applicable scientific guidelines. 

Data sources Description of the different 
datasets utilised. 

These were used throughout 
the thesis in multiple projects. 

Data analysis Approaches to analyse the 
data, basics of statistics, 
handling unbalanced datasets 
and metrics 

These were used when 
describing data, creating 
models and reporting results. 

Artificial Intelligence, Machine 
Learning 

Advanced modelling 
approaches, basics on 
algorithms such as decision 
trees and neural networks 

In combination with the data 
analysis section, these methods 
were used when creating more 
advanced models, such as ECG 
models (Chapter 5). 

Variable importance The identification of important 
predictors is sometimes more 
important than the 
performance metric of the 
overall model. 

These were employed when 
assessing some models results, 
these were extensively used in 
the BBCAF analysis (Sections 
3.3, 3.4, 3.5, 5.2, 8.3). 
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2.2 Data pipeline 

The process of any data analysis can be separated in different ways. The five main 

steps are design, collection, transformation, analysis, and data reporting. Depending 

on the project type, the different stages are iterated multiple times until project closure. 

This section describes an experimental framework. 

Design. The experiment is planned. Questions are raised and possible approaches 

are hypothesized with or without data available. Requirements raised and complied for 

data governance, ethics and scale of the experimentation, methods and outcomes 

expected; for example, in the UK, the Data Protection Act 2018 and the European 

Union (EU) General Data Protection Regulation (GDPR). The experiment might aim to 

model risk, stratify patients into known or new sub-groups, identify potential new 

biomarkers using traditional interpretability models or maximize its performance metric, 

not limited to these. Some considerations might be about the power of the statistical 

analysis, whether there are enough numbers for the purposed analysis. In 

epidemiological studies, it is recommended to have at least 200 cases and 200 controls 

samples for validation (60). 

Collection. The collection of data consists of processing data into an electronically 

processable format, either by acquisition or transformation. There are three main forms 

of data collection: (a) extraction of a derived dataset from another electronic source, 

such as a derived dataset or a web source, (b) compilation of data from other forms of 

archives, such as typing an exam result or passing the records from written forms into 

a digitalized system, and (c) forms and questionnaires applied to individuals. In the 

studies analysed in this thesis, the data are already in a digital format, type (a), and 

data are combined in different ways for different studies. 

Transformation. Not only transformation but also the selection of the data. An 

electronic processable dataset may not be fit to analysis questions without further 

preparation of the data. A dataset might need to be combined from different tables, 

aggregated data might need to be processed, data transformed from a wide to a long 

format, or vice-versa. Sets of data-points might be further-selected for different 

analysis using the same or different methods, which is called sensitivity analysis (61). 
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Analysis. Before executing any analysis, a performance metric has to be selected, it 

will identify what analytical approach works best, and define a criterion of comparison. 

The analysis steps can be done as described throughout this chapter. Models can be 

created in a supervised or unsupervised way: optimizing the separation of classes, or 

sub-grouping of elements: the metric needs to be compatible with the methodological 

approach involved. 

Data reporting. Data without any visual representation is harder to understand. Data 

visualisation, as well as performance, metrics, and assumptions can assist the model 

interpretation and implications of the analysis performed. One might consider the 

narrative related to a particular dataset and how it is framed (62), key information that 

is depicted and what is recalled (63), different forms of story and degree of freedom for 

interpretation (64), design steps (65), the influence of individuals background on the 

interpretation of results (66), and the influence of spatial patterns on interpretation (67). 

Typically, data pipelines are iterative consisted of multiple cycles. Some checklists 

commonly used to ensure study quality, proper presentation and validation are 

TRIPOD (68), QUIPS (69), CONSORT (70), Prisma (71) and SPIRIT-AI (72). These 

checklists support a better analysing and reporting of data studies. Moreover, Banerjee 

et al. 2021 (73) provide a set of questions for the interpreting and assessment of 

machine learning studies.  

2.3 Data sources 

This thesis explores a number of diverse datasets that were selected based on a 

number of criteria. First, the data needs to be available – although there is a plethora 

of clinical data, these are typically bound to strict rules of use. One criterion is to be 

able to contrast study data with real-world data (section 1.1) – while study data 

provide an angle on novel targets, the use of real-world data provide an invaluable 

source of knowledge, with an efficient re-use of data. Another criterion is to be able to 

explore different modalities and scales of patient data – not all datasets contain the 

same breadth and depth of information, and these different factors help explain 

different biological mechanisms (sections 1.1.1 and 1.1.2, and Chapter 6). There were 

five main datasets used throughout this thesis. The Birmingham Black Country Atrial 
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Fibrillation registry (BBCAF) is an exemplar of study-data, it contains a good breadth 

and depth of data, with information about novel biomarkers, electrocardiogram, and 

omics for some participants. The Characterizing Atrial fibrillation by Translating its 

Causes into Health Modifiers in the Elderly (CATCH-ME) dataset provides similar data 

to the BBCAF dataset, the only difference is a wider inclusion scope, i.e., while BBCAF 

contains participants from the UK, CATCH-ME encapsulates BBCAF and includes 

participants from different centres in Europe. The UK Biobank contains a large number 

of participants, with over half a million participants, it contains a depth of information 

that enables population analysis. University Hospitals Birmingham (UHB) and The 

Health Improvement Network (THIN) are samples of real-world data, the first with 

information from secondary and tertiary care, the latter with primary care. The THIN 

dataset utilises read codes collected from normal practice, and contain a limited 

number of variables and information for all the participants, however, the information 

available and number of participants make them an ideal dataset for retrospective 

analysis on population and morbidity. A summary of these datasets, including their 

uses is provided in the Table 3. 
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Table 3: Summary of the different data sources used. 

Dataset Short description Applications on this thesis 

Birmingham Black Country 

Atrial Fibrillation registry (BBC-

AF) 

It comes from an AF study 

performed in the Black Country 

region. Patients had AF and/or 

risk factors. The patients had a 

follow-up and the 

measurement of multiple 

biomarkers that were used to 

assess patient risk. 

Analysis of patient risk of 

developing AF using 

biomarkers, the influence of 

socioeconomic factors to 

predict patient risk, and some 

investigations using ECGs. 

Characterizing Atrial fibrillation 

by Translating its Causes into 

Health Modifiers in the Elderly 

(CATCH-ME) 

Dataset formed of the junction 

of different study datasets, it is 

formed of the BBCAF dataset 

and other studies in Europe. It 

contains a wide range of 

variables and populations. 

This dataset was used to create 

a model that was validated in 

this thesis. 

UK Biobank A comprehensive biomedical 

dataset. It contains over half a 

million people with a wide 

range of variables, with 

comprehensive information 

about the patient clinical 

journey. 

The main reference for GWAS 

analyses, population analyses 

in scale, evaluation of 

phenotypes, and the data 

collection framework. 

University Hospitals 

Birmingham (UHB) 

Dataset used in the local 

hospital. It contains real-world 

data, with variables used in 

routine care. 

This dataset was used for 

population analyses, creation 

of patient phenotypes 

reference, ECGs to predict 

heart failure study, and the 

data collection framework. 

The Health Improvement 

Network (THIN) 

Primary care dataset containing 

over ten million data samples 

from all over England. 

This dataset was used for 

population analysis. 

 

2.3.1 Birmingham Black Country Atrial Fibrillation registry (BBCAF) 

This cohort comes from the homonymous study aimed to identify important biomarkers 

for the prediction of AF. The study in this dataset was approved by the National 
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Research Ethics Service Committee (BBC-AF Registry, West Midlands, UK, IRAS ID 

97753). 

BBCAF recruited patients from in-patient or out-patient visits between September 2014 

and February 2018 at the Sandwell and West Birmingham NHS Trust (Birmingham, 

UK). Patients were included if they had atrial fibrillation, or if they had at least 2 

CHA2DS2-VASc stroke risk factors (74). There were 1600 patients recruited. All 

patients had a follow-up at 2 years. For patients without diagnosed AF, the patients 

had a 7-day ECG recording for the assessment of silent AF. 

The main dataset contains information about patients such as birth date, sex, ethnicity, 

weight, height, and postcode. The dataset also includes other information such as 

recruitment date and risk factors identified during the recruitment visit: advanced age, 

prior stroke or TIA, arterial hypertension, diabetes mellitus, severe coronary artery 

disease, stable heart failure, left ventricular hypertrophy and peripheral artery disease. 

Overall information about AF, including type, frequency, and time since the first 

occurrence. History of AF treatment, including information if the patient had electrical 

or chemical cardioversion, catheter ablation or another surgical treatment of AF. 

Information about a wide range of severe or cardiovascular-related conditions: 

smoking history, cardiomyopathy, history of syncope, palpitations, unexplained dizzy 

spells, history of resuscitation, presence of a pacemaker, chronic obstructive lung 

disease, malignant diseases, hypothyroidism, hyperthyroidism, heart failure, and 

suspected presence of an acute coronary syndrome. Blood pressure measurements 

in systolic and diastolic blood pressure. Electrocardiogram recording with measured 

intervals such as QRS, PQ, QT and QTc, information about other indications from the 

recording, such as bundle branch block. Echocardiogram recordings, inclusive of 

measurement of LVEF. Basic blood biochemistry, including haemoglobin, white blood 

cell count, platelets, alanine aminotransferase (ALAT/GPT), creatinine, glomerular 

filtration rate, international normalized ratio, prothrombin time, activated partial 

thromboplastin time. Biomarkers obtained from 1 µL EDTA plasma assessed using 

Olink Proteomics, (Uppsala, Sweden) cardiovascular panels I and II (75) – each 

cardiovascular panel assesses 92 protein expression related to different biological 

processes and disease areas - there are 40 common biomarkers between the different 
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Olink Cardiovascular panels that were analysed (Appendix 2.1). The dataset also 

contains the medication history inclusive of inhaled bronchiolitis and steroids, systemic 

steroids, therapy for chronic lung disease or any other therapy as well as the Montreal 

Cognitive Assessment for cognitive function (76). 

Olink panel cohort. The initial biomarker dataset contains a subset of patients (N = 

638). The dataset for analysis with the Olink panels included 7 clinical risk factors: age, 

sex, hypertension, heart failure, history of stroke or transient ischaemic attack, kidney 

function and body mass index. The blood biomarkers were measured using Olink 

cardiovascular panels I and II (75). Sequential participants were separated into a 

discovery set with 384 patients and the remaining 254 patients into the validation set. 

These datasets patients had also been assessed using the first and second 

cardiovascular panel, respectively. The first study describing this dataset is Chua et al. 

(77). Table 4 describes this dataset. 
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Table 4: Description of the BBCAF dataset. Categorical variables are reported as n (%), whereas continuous variables 

are reported as mean (standard deviation) [or median (IQR) for non-parametric distributions]. The independent t-test (or 

Mann–Whitney U test for non-parametric distributions) and X² tests were used to compare continuous and categorical 

characteristics between patients within the two cohorts. ACEi, angiotensin-converting enzyme inhibitor; BMI, body mass 

index; CAD, coronary artery disease; eGFR, estimated glomerular filtration rate; NOAC, non-vitamin K antagonist oral 

anticoagulant; VKA, vitamin K antagonist. a Non-parametric distributions. b A two-tailed significant difference P < 0.05 

between patients with and without AF. Table adapted from Chua et al. (77). 

  
Discovery 

 
Validation   

No AF (N=215) AF (N=169) 
 

No AF (N=129) AF (N=125) 

Age (years) 66.0 (57.0–74.0) 73.0 (63.0–79.0)
b
 
 

67.0 (59.1–74.0) 75.0 (67.0–81.5) 

Male 130 (60.5) 117 (69.2) 
 

83.0 (64.3) 68.0 (54.4) 
Ethnicity 

     
 

Caucasian 133.0 (61.9) 142.0 (84.0)
b
 

 
104.0 (80.6) 116.0 (92.8)

b
  

Asian 55.0 (25.6) 14.0 (8.3) 
 

13.0 (10.1) 5.0 (4.0)  
Afro-Caribbean 25.0 (11.6) 9.0 (5.3) 

 
12.0 (9.3) 4.0 (3.2)  

Unknown 2.0 (0.9) 4.0 (2.4) 
 

— — 

BMI (kg/m²)
a
 28.1 (25.2–32.7) 29.6 (26.0–33.6) 

 
29.1 (25.5–33.4) 28.9 (24.8–32.9) 

eGFR (mL/min/1.73 m²)
a
 72.0 (57.0–87.0) 69.0 (57.5–84.0) 

 
73.0 (58.3–85.0) 64.0 (44.5–79.0) 

Diabetes 89.0 (41.4) 37.0 (21.9)
b
 

 
56.0 (43.4) 26.0 (20.8)

b
 

Stroke 24.0 (11.2) 21.0 (12.4) 
 

13.0 (10.1) 10.0 (8.0) 
CAD 87.0 (40.5) 29.0 (17.2)

b
 

 
78.0 (60.5) 29.0 (23.2)

b
 

Hypertension 142.0 (66.0) 104.0 (61.5) 
 

89.0 (69.0) 61.0 (48.8) 
Heart failure 31.0 (14.4) 28.0 (16.6) 

 
8.0 (6.2) 12.0 (9.6) 

Ejection fraction (%)
a
 60.0 (53.1–67.3) 57.7 (45.0–65.0)

b
 
 

57.0 (45.5–62.5) 55.0 (41.3–61.0) 

Admission criteria 
     

 
Inpatient 160 (41.6) 97 (25.3) 

 
124 (48.8) 97 (38.2)  

Outpatient 55 (14.3) 72 (18.8) 
 

5 (2.0) 28 (11.0) 
Concomitant medication 

     
 

NOAC 4.0 (1.9) 63.0 (37.3)
b
 

 
1.0 (0.8) 44.0 (35.2)

b
  

VKA 5.0 (2.3) 48.0 (28.4)
b
 

 
2.0 (1.6) 41.0 (32.8)

b
  

Aspirin 137.0 (63.7) 39.0 (23.1)
b
 

 
98.0 (76.0) 41.0 (32.8)

b
  

Antiplatelet agents (clopidogrel, 
prasugrel, and ticagrelor) 

94.0 (43.7) 33.0 (19.5)
b
 

 
82.0 (63.6) 27.0 (21.6)

b
 

 
ACEi 44.0 (20.5) 36.0 (21.3) 

 
58.0 (45.0) 37.0 (29.6)

b
  

Angiotensin II receptor blocker 39.0 (18.1) 28.0 (16.6) 
 

22.0 (17.1) 25.0 (20.0)  
Beta-blocker 115.0 (53.5) 83.0 (49.1) 

 
85.0 (65.9) 72.0 (57.6)  

Diuretic 59.0 (27.4) 66.0 (39.1)
b
 

 
37.0 (28.7) 55.0 (44.0)

b
  

Calcium channel antagonist 61.0 (28.4) 42.0 (24.9) 
 

39.0 (30.2) 24.0 (19.2)
b
  

Cardiac glycoside — 33.0 (19.5)
b
 

 
— 28.0 (22.4)

b
  

Aldosterone antagonist 13.0 (6.0) 12.0 (7.1) 
 

5.0 (3.9) 10.0 (8.0)  
Verapamil/diltiazem 12.0 (5.6) 14.0 (8.3) 

 
5.0 (43.9) 7.0 (5.6)  

Antiarrhythmics (amiodarone, 
dronedarone, flecainide, propafenone, 
and sotalol) 

4.0 (1.9) 17.0 (10.1)
b
 

 
3.0 (2.3) 12.0 (9.6)

b
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ECG cohort. This compiled dataset contains only patients with complete labelling 

information and signal data. This dataset also contains 638 patients, patients which 

had their ECG recording in sinus rhythm or during an AF episode, 493 and 145 

patients, respectively, while other rhythms were excluded from the analysis. The ECG 

recording contains 12-lead data at 500Hz over 10 seconds. Patient characteristics are 

similar to the first consolidated version. The distribution of ECG rhythms is shown in 

Figure 7. 

 

Figure 7: Distribution of ECG rhythm on the BBCAF dataset. Most patients that had a 10s ECG recording 

had it whilst in sinus rhythm. Some of these patients reported as sinus rhythm have silent AF identified 

through the holder ECG recording. 

Roche cohort. A part of the dataset (N=1485) included 12 blood biomarkers quantified 

by Roche Diagnostics (Mannheim, Germany) using Elecsys® immunoassays, these 

are cancer antigen 125 (CA125), growth differentiation factor-15 (GDF15), Interleukin-

6 (IL6), N-terminal pro B-type natriuretic peptide (NTproBNP), cardiac Troponin T 

(TnT), cardiac C-reactive protein (CRP), angiopoietin (ANG2), bone morphogenetic 

protein 10 (BMP10), endothelial cell-specific molecule-1 (ESM1), fatty acid binding 

protein 3 (FABP3), fibroblast growth factor 23 (FGF23), and insulin-like growth factor 
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binding protein 7 (IGFBP7). A description of the discovery dataset is shown in Table 

5. 

Table 5: Description of the BBCAF Roche biomarkers dataset. Numerical values with a single number 

in parenthesis indicate mean (standard deviation), other values are non-parametric, and the range is for 

the 1st and 3rd quartile. Table adapted from the submitted study. 

    No AF (N=522) AF (N=411) 

Age, years 67 (58-75) 74 (66-80) 

Sex, males 309 (59%) 256 (62%) 
Ethnicity   

 
 

Caucasian 362 (69%) 350 (85%)  
Asian 112 (22%) 31 (8%)  
Afro-Caribbean 48 (9%) 30 (7%) 

BMI, kg/m² 28.7 (25.5-32.5) 29.0 (25.1-33.1) 

eGFR, mL/min/1.73 m² 71.7 (26.1) 67.8 (25.9) 
Diabetes 238 (46%) 96 (23%) 
Stroke/TIA 46 (9%) 38 (9%) 
Coronary artery disease 252 (48%) 93 (23%) 
Hypertension 333 (64%) 218 (53%) 
Heart failure 222 (43%) 219 (53%) 
Inpatient admission 469 (90%) 293 (71%) 
Biomarkers   

 
 

ANG2 (ng/mL) 2.36 (1.73-3.45) 3.64 (2.28-6.14)  
BMP10 (ng/mL) 1.95 (1.70-2.32) 2.35 (1.94-2.94)  
CRP (mg/L) 4.95 (1.63-18.89) 4.19 (1.57-15.59)  
CA125 (per 10 U/mL) 1.23 (0.82-2.01) 1.57 (0.95-3.40)  
ESM1 (ng/mL) 2.01 (1.47-2.91) 2.36 (1.78-3.43)  
FGF23 (per 100 pg/mL) 1.65 (1.05-2.69) 1.97 (1.35-4.16)  
FABP3 (per 10 ng/mL) 3.53 (2.63-5.19) 3.77 (2.82-5.92)  
GDF15 (per 100 pg/mL) 18.71 (11.42-31.08) 21.29 (13.41-35.22)  
IGFBP7 (ng/mL) 96.23 (82.74-115.30) 110.17 (91.65-140.09)  
IL6 (pg/mL) 6.38 (3.31-14.66) 6.49 (3.37-14.69)  
NTproBNP (per 100 pg/mL) 4.21 (1.08-14.34) 11.20 (3.51-28.61)  
TnT (per 100 pg/mL) 0.30 (0.12-1.09) 0.22 (0.12-0.50) 

BBCAF is contained in the broader Characterizing Atrial fibrillation by Translating its 

Causes into Health Modifiers in the Elderly (CATCH-ME) dataset (78). 

2.3.2 Characterizing Atrial fibrillation by Translating its Causes into Health 

Modifiers in the Elderly (CATCH-ME) 

This incorporates data from different research centres and projects in partnership 

under the European Union’s Horizon 2020 research and innovation programme. This 
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includes international trials, such as the Flecainide short-term versus long-term study, 

and the local BBCAF study (79) (80) (77).  

Due to the different dataset contexts that incorporate this consort study, different types 

of information under different settings were obtained for the study. The data collected 

is sparse, there are many columns and many missing variables. All studies collected 

patient information and some clinical history data. ECG and echocardiograms were 

partially or fully collected. Some studies collected blood material, whilst others also had 

tissue samples. The complete dataset contains 14494 records. 

The dataset contains basic information about a patient: age, sex, weight, height, 

ethnicity, original study origin. Diastolic and systolic blood pressure on recruitment. 

Medical history: type, frequency, and time since the first occurrence of AF; presence 

of a pacemaker, history of cardioversion, catheter ablation or any surgical procedure 

and mention of post-operative AF; presence of diagnosed heart failure, diastolic 

dysfunction, hypertension, stroke, TIA, history of any bleeding, valvular heart disease, 

diabetes, myocardial infarction, chronic obstructive pulmonary disease, sleep apnoea, 

chronic kidney disease, hyperthyroidism, hypothyroidism, rheumatic heart disease, 

pulmonary hypertension, and allergies. History of hospitalisation for any cardiovascular 

reason. Family history of AF or other cardiovascular conditions. Physical activity, 

smoking, alcohol consumption, and drug abuse history. ECG measurements, inclusive 

of intervals and digital recording. Echocardiogram measurements. Laboratory tests, 

inclusive of international normalized ratio: D-Dimer, Creatinine, Troponin I, Troponin T, 

glucose, NTproBNP, total cholesterol level, LDL, HDL, and Triglyceride level. 

Medication history, inclusive but not limited to P2Y12 blockers, beta-blockers, Calcium 

ion antagonists and aldosterone antagonists. 

This dataset also contains some follow-up data: death, AF and other cardiovascular 

events, medication changes and other laboratory measurements. 

2.3.3 UK Biobank 

UK Biobank dataset (81). The UK Biobank dataset contains information about 502,489 

participants recruited in the United Kingdom aged 40-69 years. The average 
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recruitment age is 56 years. The study recruited participants between 2007 and 2010. 

This study collected (and up to 2021 still collects) extensive health-related data about 

its participants. 

The information collected contains baseline questionnaires, assessing 

sociodemographic, family history, psychosocial, environmental, lifestyle, cognitive 

function, health status, and food frequency. Physical measurements. 

Electrocardiogram and magnetic resonance imaging (MRI). Patient primary and 

secondary care diagnosis and operations dates. Biological measures of blood, urine, 

and saliva (82). More information about available data is shown on the UK Biobank 

Data Showcase website (83). 

Types of variables used and applied include demographics, ICD-10 diagnoses (84), 

ICD-9 diagnoses (85), self-reported conditions, medication history, cognitive and 

laboratory tests, (MRI)-derived values, electrocardiogram recordings and genotyping. 

Coded diagnosis in the UK Biobank contains in-patient data from 1997 onward, 

outpatient data from 2003 onwards and other accident and emergency data from 2008 

onwards 

CATCH-ME validation cohort. The validation cohort used for the model described in 

section 3.6 required a few fine tunings. The main variables used were the patient’s 

age, sex, height and weight, blood pressure, history of hypertension, AF, diabetes, 

tricuspid valve disease, and myocardial infarction, medications such as P2Y2 blockers, 

beta-blockers and aldosterone antagonists, signs of abnormality in ECG, blood 

pressure and blood sugar (HBA1c) levels, left atrial volume, left ventricular end-systolic 

diameter, and diastolic septal wall thickness were included as variables.  

Variables that indicate areas and volumes of the heart come from the UK Biobank 

return dataset 1362, and it is limited with the number of MRI available when it was 

created. The left ventricular end-systolic diameter is not available, and only the 

respective volume was available. A transformation between the left ventricular end-

systolic volume (LVESV) and the left ventricular end-systolic diameter (LVESD) was 

done using the Teichholz formula (86): 
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𝐿𝑉𝐸𝑆𝑉 =
7.0

(2.4 + 𝐿𝑉𝐸𝑆𝐷)
𝐿𝑉𝐸𝑆𝐷3 

The application of the model required complete-cases data (restricted to participants 

with no missing values). Due to the limitation of cardiovascular measurements from 

MRI, the number of patients was reduced. In total, there were 27 patients with and 

4137 without AF on the validation dataset. A flowchart with the number of patients is 

shown in Figure 8. Table 6 displays the baseline characteristics and the range of 

values. 

 

Figure 8: Flowchart of UK Biobank patients. 
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Table 6: Baseline characteristics in the UK Biobank for the CATCH-ME validation. The samples are 

separated by patients with (AF) and without (No-AF) atrial fibrillation. * (a) Continuous variables with a 

normal distribution are summarized as mean (standard deviation), (b) Continuous variables which were 

not normally distributed are summarized as median (IQR), and (c) Categorical variables are reported as 

the number of cases (%). 

Predictor * Total 
(n=4137) 

AF 
(n=27) 

No-AF 
(n=4110) 

p value 

Age (Years)  b 56 (12) 62 (8) 56 (12) <0.001 

Gender (Female)  c 2181 (52.7) 6 (22.2) 2175 (53.0) 0.003 

BMI (kg/m²) b 26.2 (5.4) 28.3 (4.7) 26.2 (5.4) 0.019 

Height (cm) a 169.4 (4.3) 177 (7.6) 169.3 (9.2) <0.001 

Hypertension  c 1193 (28.8) 16 (59.3) 1177(28.6) 0.001 

Diastolic Blood Pressure (mmHg) a 81.3 (9.9) 
82.4 
(10.1) 81.3 (9.9) 0.59 

Systolic Blood Pressure (mmHg)  a 135.3 (17.7) 
140.8 
(20.1) 

135.3 
(17.7) 0.168 

HbA1c (mmol/mol) b 34.7 (4.8) 36 (7) 34.7 (4.8) 0.192 

Diabetes  c 188 (4.5) 4 (14.8) 184 (4.5) 0.035 

CABG  c 33 (0.8) 2 (7.4) 31(0.8) 0.005 

Myocardial Infarction  c 48 (1.2) 2 (7.4) 46 (1.1) 0.032 

Tricuspid Valve Disease  c 0 (0) 0 (0) 0(0) - 

Coronary Artery Disease  c 87 (2.1) 2 (7.4) 85 (2.1) 0.21 

Left Atrial Volume (mm³)  b 65 (26.35) 
77.0 
(32.93) 

65.0 
(26.45) 0.005 

Left Ventricular End Systolic 
Diameter(mm) b 28.5 (5.83) 

29.48 
(5.98) 

28.50 
(5.84) 0.066 

ECG Parameters           

Signs of old infarction on ECG   
Signs of acute ischemia on ECG  
Left Ventricular Hypertrophy  

c 
c 
c 

394 (9.5) 
167 (4.0) 
151 (3.6) 

5 (18.5) 
3 (11.1) 
0 (0) 

389 (9.5) 
164 (4.0) 
151 (3.7) 

0.205 
0.167 
0.617 

Medication           
Aldosterone-antagonists   
Beta-blockers  
P2Y12 blockers  

c 
c 
c 

8 (0.2) 
313 (7.6) 
64 (1.6) 

0 (0) 
12 (44.4) 
1 (3.7) 

8 (0.2) 
301 (7.3) 
63 (1.5) 

1 
<0.001 
0.898 

2.3.4 University Hospitals Birmingham (UHB) 

University Hospitals Birmingham NHS Foundation Trust (UHB) dataset is an 

aggregation of different data sources from within the hospital closely associated with 

the University of Birmingham. UHB contains data from Queen Elizabeth, Good Hope, 

Heartlands, and Solihull hospitals (87). The use of this data is approved on the Health 

Research Authority Research Ethics Committee reference 20/PR/0659. 

The dataset is formed of different products sub-systems that integrate the operational 

infrastructure for healthcare service. The two main products datasets utilised are the 
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Birmingham Systems Prescribing Information and Communication System (PICS) and 

the Solus Cardiology Solution (21) (88). The local copy of the Hospital Episode 

Statistics (HES) contains compiled information about in-patients. 

PICS contains the most information about a patient. It contains consolidated data 

regarding the patient’s registry: sociodemographic, exams, laboratory tests, 

diagnoses, symptoms, medications, hospitalisation data, alerts, and actions by the 

clinical staff. All the data is associated with event-time. 

Solus Cardiology contains information from the cardiology side, the data explored is 

inclusive of echocardiogram reports and ECG recordings. The ECG recordings have 

10s recordings, stored in a compacted format such as XML or PDF format (89) (90). 

Due to technical differences of the PDF dataset, such as limited precision on the stored 

data and complexity of data extraction, only the XML files were utilised. 

HES dataset contains operations and diagnoses information associated with in-patient 

visits from November 2014 to May 2018. It contains multiple ICD-10s associated with 

each patient episode. This is inclusive of basic sociodemographic information, episode 

start and end date, and the main reason for admission.  

Both HES and PICS diagnoses are recorded as ICD-10 (84), with some terms from the 

NHS Classification ICD-10s, available on the NHS Digital website (91). The operation 

codes are reported as OPCS-4 codes (92). The average age on the system is 54 years.  

In this thesis, the UHB dataset with its subparts is the closest example of a real-world 

dataset. It is composed of data that is routinely collected, without manual filtering and 

selection from a study perspective. 

2.3.5 The Health Improvement Network (THIN) 

The Health Improvement Network (THIN) is a database containing information from 

primary care in the UK. It contains coded information from over 10 million participants 

in over 500 general practitioner clinics (93). 
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This dataset provides a good representation of the UK population care journey, it 

provides a comprehensive description of a patient’s use of medical resources, 

containing information from the administrative side, such as registration and change of 

clinic, clinical tests, dates of each data collection, and extensive use of read codes to 

describe the different patient events (94). 

2.4 Data analysis 

2.4.1 Discovery and validation datasets 

After identifying the dataset and collecting the data, it is imperative to validate the 

results obtained from a dataset into another. This separation will avoid bias on created 

models. This is a similar rationale to having one study identifying a new factor, and 

then further studies checking the real behaviour in other data. In this case, the 

experimental design is already separating the dataset into discovery and validation of 

the findings, making the results more robust and reliable. It also helps when applying 

methods that tend to over-fit on the discovery data, such as the case of models with a 

large number of parameters, such as neural networks. 

The dataset is usually separated into two subsets: the training or discovery dataset 

and the testing dataset (sometimes called validation). The former dataset will be used 

to create the model. The latter will be used to obtain the final results after selecting the 

best model. 

There are cases where the training process may produce different model variants. To 

identify the best performing model on the training dataset it is possible to further split 

the training set into another training and an internal validation set. In no instance, any 

set or part of it should be combined with the training or internal validation sets. Any 

overlap of datasets will overestimate the performance of created models.  

In scenarios where there are multiple data points per real (biological) sample, it is 

strongly suggested to keep the biological samples in the same dataset. This will 

depend on the data type and source, but usually keeping the related data together will 

avoid creating a model that learns individualised data points. For example, a dataset 

with multiple ECG recordings for each patient must have a clear separation of patients 
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into different datasets, avoiding models to learn how to identify specific patients who 

have or not a condition. 

There is no specific rule about how a dataset should be split. In some cases, the 

dataset might be split depending on the time of record, data source or technology used 

for the measurements. For example, in a multi-centre study, the data points could be 

split depending on the centre county. As another example, blood tests that were 

measured using a specific version of a microarray could be separated into the training 

and validation sets and the newer version of the assay as the test set. In most 

scenarios, random sampling without replacement, placing the elements randomly into 

the different sets, is enough. 

It is possible to create models using subsections of the dataset: K-fold cross-validation 

separates the set into K parts which are then used to created K models using K-1 parts 

as training data and 1 part as validation, going through all the parts to identify the best 

performing parameters. Leave-one-out is a variation of the K-fold in which there is one 

part for each data point. This approach is commonly used in cases where a limited 

number of data points is available. 

In other cases of limited data points, a bootstrapping approach can be used. 

Bootstrapping utilizes random subsets of the dataset, sampled with replacement (95). 

These samples are executed with similar methods and the overall results are compiled. 

Bootstrapping repetitions utilises statistical power to provide model robustness. 

In either case of data splitting, it is recommended to keep the same distribution of 

values, especially the ratio of cases and controls. Furthermore, it is a good idea to 

compare the performance of the training and validation sets before going to the test 

set. If the training set gets a much higher performance than the validation set it means 

the models are over-fitting – the model has not learned but is instead memorizing the 

data points. If either the validation set is performing considerably better, or both the 

measurements are unsatisfactory it indicates that the model is under-fitting – it is not 

learning the model and is rather tending to a mean output. For the first problem, 

obtaining more samples may correct the problem, whilst for the former problem 

increasing the number of variables is an option. 
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2.4.2 Unbalanced datasets 

There are some cases where it is not possible to maintain a balance on the whole data 

or part of it. These are unbalanced datasets, and they do not contain a symmetric 

distribution of values, for a dataset and contain one predominant value type. For 

example, a patient dataset has for every 4 healthy patients, 1 patient with AF – this is 

an example of a dataset with 80% of participants in the largest group, the healthy 

group, also called the majority class. These datasets tend to be biased towards the 

majority class. Different reviews describe methods and their applications for handling 

class imbalance problems (96) (97). 

An unbalanced dataset can be corrected through a resampling process, such as up-

sampling, down-sampling, and both. These processes will provide a better balancing 

of the data. This process should only be done on the training set and with care to the 

interpretation of intermediary results because of the new false distribution, duplicate 

points or the differentially reduced number of points. 

The method Random OverSampling Examples (ROSE) generates new samples in the 

neighbourhood of elements from the minority class (98, 99). Another approach used is 

Synthetic Minority Oversampling TEchnique (SMOTE), which generates new samples 

based on a linear combination of a reference sample and a sample near it (100). 

Metrics such as Area Under the Receiver Operating Characteristics Curve (AUCROC) 

and Precision-Sensitivity curves assist to evaluate the model biases, also provide 

support on selecting a threshold cut-off to select the model. 

2.4.3 Structured datasets datatypes 

When progressing into an exploratory and analytical step of data analysis, the use of 

datatype refers to what type of content a structured data column has. There are two 

main data types: numerical (continuous) and categorical variables (discrete variables).  

Continuous variables are quantitative measurements that have a number indicating its 

intensity and a unit indicating its meaning and magnitude. For example, a normal 

glucose level can be assessed as either 5.5 mmol/L or 100 mg/dL. The use of variables 
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in different units will hinder the interpretation of any analysis. Whilst a variable on a 

wider scale with more extreme values has a smaller coefficient, a variable with smaller 

values will have a higher coefficient to compensate. To compensate for unit differences 

a commonly employed approach is to centre each variable to its mean and to scale all 

variables to the standard deviation of the population (Equation 2.4.3.1, where X is the 

variable, μ the mean and σ the standard deviation.). 

𝑋 =
𝑋 − 𝜇

𝜎
 

(2.4.3.1) 

Another transformation that is commonly applied is the minimum-maximum scaler. It 

obtains the minimum and maximum value for a variable and transforms these variables 

into a new range, usually 0 to 1. 

Continuous variables can be discretized into different groups, such as transforming the 

continuous range into normal, abnormally high, or abnormally low values. The 95% 

confidence interval range may be employed for this task. Quartile intervals or other 

reference values from the literature are other alternatives. 

Categorical variables are either assigned numbers of different groups or names for 

these groups that indicate a qualitative value that is not expected to have quantifiable 

steps of increased intensity. For example, in the evolution of AF, a patient goes from a 

normal rhythm to paroxysmal, persistent, and then permanent AF. The different types 

of AF cannot be interpreted in any enumerated continuous scale, as the progression 

into another stage of the disease is either existent or not. 

In the opposite case to the discretization transformation, sometimes it is compulsory to 

use numerical values rather than categorical ones. In this case, new attributes are 

created, one for each possible category of the original column. For each new attribute, 

a value of 1 is assigned if the original sample had this new column category whilst a 

value of  0 or -1 when not (this is usually referred to as one-hot or dummy encoding) 

(101). 
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Different variable types imply different types of knowledge. In some cases, it might be 

easier to think if a value is inside or outside a normality range rather than its real value. 

Similarly, it may be an option to think of a positive case as the numerical case 1 whilst 

the negative case as a 0 or -1 value. 

The selection of the data type is dependent on the analysis goals, data and algorithms 

employed. For the case of logistic regression, the target variable must be 0 or 1 (due 

to the logit function). The independent variables may have any scale, however, if they 

are on a similar scale they can be more directly compared. In most analysis, the 

categorical variables must be transformed into numerical features. Machine learning 

analysis requires continuous variables to be centred and scaled. 

The distribution of the data points for each variable is paramount to the different 

statistical analysis that may be performed. Numerical variables can be in a normal or 

non-normal distribution. Either the values in a variable are distributed in a normal 

distribution and statistical tests that depend on this assumption are used, or different 

non-parametric tests are performed. Categorical variables can have a varying number 

of possibilities: if there are only two options, the variable is binary, such as the patient 

has or has not a disease; a variable can have multiple options with very differing 

proportions. When working with categorical variables the majority class has proportion 

dominance over the others, while the minority class contains the lowest proportion. 

An unbalanced variable has values tending to go into a range or a category of values. 

For the numerical case, whilst most patients are in a close range, there might be 

outliers in either extreme of the distribution. 

From these different distributions or range of values, many metrics are used to 

compare groups of samples. For brevity reasons, some of these metrics will only be 

cited: count (number of samples), minimum value, maximum value, average, standard 

deviation, median, mode (most frequent value), quartiles, confidence interval, ratios 

and percentage. These functions are more adequately applied when describing 

different types of distribution of values, e.g., a continuous variable with a gaussian 

distribution can be described using the mean and the standard deviation; a categorical 



39 
 

or binary variable may be described using the percentage of samples in one or each 

of its options. 

Depending on the distribution of the variables different reporting protocols are 

considered. The distribution of a variable can be visually assessed or inspected 

through a statistical test such as Shapiro-Wilk or Anderson-Darling (102, 103). The 

default reporting of variables includes mean value and standard deviation for normal-

distributed values; in the case of nonparametric distributions, it is usually reported the 

median value and the 1st and 3rd quartile; for categorical variables, the percentage of 

each class, or the majority class for a binary variable, is usually shown. These variables 

will provide some information on the distribution of values. Visualisations, such as 

scatter plot, bar plot, box plot, violin plot and histograms assist in the understanding of 

the variable, avoiding biases from only using descriptive values (104). 

2.4.4 Transformation 

A dataset might contain too many variables to have it analysed directly. 

Transformations offer ways to compare the importance of factors directly. 

Principal Component Analysis (PCA) is a transformation that extracts axes called 

Principal Components (PCs), ordered by decreasing variance from a dataset of 

continuous variables (105). Normally, it is used to extract axis from datasets with 

hundreds to thousands of columns to utilize two axes that explain the most variance – 

PC1 and PC2 – so that the dataset can be plotted in a 2D representation. This 

transformation can be particularly useful when dealing with gene expression datasets 

that normally contain thousands of values. PCA can also be used to find underlying 

patterns in the dataset, for example, in RNA-Seq to group samples and GWAS to group 

ancestry groups (58). PCA transformed variables can be mapped back to identify 

variables that explain the most variance in the dataset. 

Other well-known transformations of variables, focused on visualisation are the t-

Distributed Stochastic Neighbor Embedding (t-SNE) and the Uniform Manifold 

Approximation and Projection (UMAP) (106) (107). These approaches utilise Neural 
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Network to learning representations of the data points, further discussed in section 

2.5.5. 

2.4.5 Missing values 

Missing values are common in any dataset type. Missing values are originated due to 

three major reasons: (a) Missing Not At Random (MNAR) is the case when the value 

is missing because of a condition that is not explicitly explained in the variables, e.g. a 

person did not give the right answer to its financial question because the person was 

not willing to reveal its financial status; (b) If the value is missing because a datasheet 

was lost it is Missing Completely At Random (MCAR); (c) In the case that the 

missingness of data is dependent on other variables it is called Missing At Random 

(MAR) (108). 

There are three main approaches to deal with missing values in datasets. The first 

approach is to ignore the columns or rows with large amounts of missing values or 

replace them with an actual value, such as mean/median value or imputing the value 

using models. A second approach commonly employed is the imputation using 

Multivariate Imputation by Chained Equations (MICE) which suffices for most 

requirements (109, 110). A third possibility is to leave the information that the value 

was missing as another column while imputing the value with one of the approaches 

so that the information of missing value is kept as in the MAR case (111). In this work, 

the first and second approaches were used. 

2.4.6 Null hypothesis 

In statistics, the null hypothesis is the assumption that there is no association between 

two events (112). Rejecting the null hypothesis indicates that there is an association, 

and we confirm our alternative hypothesis. This assures that the probability of the null 

hypothesis being true is low, thus the new theory is considered valid. However, one 

should pay attention to other errors that may occur: a type I error is the probability of 

rejecting the null hypothesis when it is true, and a type II error is the probability of 

accepting a null hypothesis when the alternative hypothesis is true. 
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One way of evaluating a hypothesis is by comparing two groups. For example, a group 

of mice with a mutated gene (case), and another group without a mutated gene 

(control) have their expression levels of multiple genes is compared to validate that a 

gene is differentially expressed between them – the null hypothesis is that there is no 

difference in the mutated one. After exploration, it may be identified to be false, the 

alternative hypothesis is indeed true.  

The threshold used for significance may be different ones and has led to many 

discussions (113). In the medical literature, the probability value (p-value) of 5% is a 

commonly employed threshold to validate a hypothesis type I error (114). 

Tests executed depend on the distribution of the data points. When comparing 

categorical variables, the Fisher exact test may be performed, and for a large number 

of samples, a fast Pearson chi-squared test may be used instead, as it provides similar 

results (115, 116). To evaluate if a distribution is normal, it can be assessed using 

Shapiro-Wilk, Kolmogorov-Smirnov or Anderson-Darling tests (117). For normal 

distributions, Student’s T-test indicates if there is a difference (118). When there is a 

nonparametric distribution Mann-Whitney U or Wilcoxon signed-rank test can be 

performed (119, 120). There are also other tests for specific scenarios: analysis of 

variance (ANOVA) is a test for comparing 2 or more groups of variables (121). These 

approaches were used throughout the thesis to describe dataset variables. 

2.4.7 Logistic regression 

A model has to be created when it is required to understand the behaviour of a 

dependent variable over some independent variables. A model is the result of data, 

algorithm, and learning. This section describes the process of creating a model using 

logistic regression. 

To model multiple independent variables, a regression can be used. Regression 

models employ a mathematical function as follows: 

𝑓 = 𝑎𝑜 + 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛

(2.4.7.1)
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Where the ai describe the coefficients of the different variables i and the xi describe the 

variables. The a0 coefficient is the constant term or intercept. The coefficients of the 

model can be optimized using different approaches, such as least squares or gradient 

descent (122) (123).  

To predict the risk score of having a disease we will need to obtain a range of values 

from 0 to 1 (0% to 100% chance). Given that f may assign “infinitely” negative or 

positive values, it is required to transform these values to a 0 to 1 range. A frequently 

employed transformation function is the logistic function, which is defined as: 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥) =
𝑒𝑥

𝑒𝑥 + 1
=

1

1 + 𝑒−𝑥

(2.4.7.2)
 

The final probabilistic model with multiple independent variables utilizing the logistic 

function is then as follows: 

𝑝(𝑥) =
1

1 + 𝑒−(𝑎𝑜+𝑎1𝑥1+⋯+𝑎𝑛𝑥𝑛)

(2.4.7.3)
 

The model created up to now will be able to give a score to each data point, or patient, 

given some variables. To evaluate the importance of each variable an odds-ratio is 

utilized. The odds-ratio indicates the influence that a variable has on the model and its 

absolute number may be used to indicate the most important variables. 

𝑂𝑅𝑖 = 𝑒−𝑎𝑖

(2.4.7.4)
 

Formula (1.4) above describes the odds ratio for the ith variable. The odds ratio is 

normally used with probabilistic testing, such as the 95% confidence interval, to 

validate that the variable contributes to the model if its mean does not cross the 1 

value. If the odds-ratio is 1 it means that the variable has no importance at all, if the 

value is above 1 it means that the variable leads to the positive case, while below 1 it 

contributes to the negative case. A significance value is also normally assessed. 
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The odds ratio is a good metric to evaluate variable importance when creating linear 

models. There are many other metrics to evaluate model performance and different 

factors over the variables. Mainly focusing on binary problems (case-control), different 

metrics are described in the following section. For the scenario of multi-class 

outcomes, the comparison may be done one primary class against all or all against all. 

2.4.8 Confusion matrix 

For binary problems, the True Positive (TP or hit) indicates the number of predictions 

that were correctly predicted as being in the positive class. True Negative (TN or 

correct rejection) follows as the correct predictions of the negative class (the other 

condition). False Positive (FP) and False Negative (FN) are incorrect predictions of the 

positive and the negative class, respectively. A confusion matrix, Table 7, is used to 

display all these results together, where the columns indicate the actual outcome, and 

the lines indicate the predicted outcome. 

Table 7: Confusion matrix. This table indicates the performance of a model. 

  Actual class 

  Positive Negative 

P
re

d
ic

te
d

 

c
la

s
s

 

Positive TP FP 

Negative FN TN 

One of the most common forms of measurements of performance is accuracy. 

Accuracy measures the number of correct predictions over the total amount of 

predictions as a fraction (Equation 2.4.8.1).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.4.8.1)

 

When evaluating the performance of a model it is useful to consider a combination of 

measurements so to provide a better understanding of the model capabilities. 

Accuracy indicates the overall performance of a model and could be hiding the fact 

that the dataset is unbalanced and thus the predictor might not be working as good as 
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it should – it could be predicting all the instances as the majority class. For example, a 

dataset with 96% of the majority class could yield an accuracy of 96% whilst it is a 

model that cannot segregate the data points. To avoid such issues, the accuracy can 

be seen in conjunction with other measurements, such as sensitivity, specificity, 

precision, and/or F-measure, explained next. 

Sensitivity, also known as True Positive Rate (TPR) or recall in other domains, is the 

rate of true positive predictions over the total amount of positive examples (Equation 

2.4.8.2). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.4.8.2)

 

Specificity or True Negative Rate (TNR) indicates the relation of correctly predicted 

negatives over the total amount of negatives (Equation 2.4.8.3). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(2.4.8.3)

 

Precision or Positive Predictive Value (PPV) measures how good are the positively 

predicted values (Equation 2.4.8.4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.4.8.4)

 

The F-measure is the harmonic mean of sensitivity and specificity (Equation 2.4.8.5), 

and can also be used to strike the right balance between precision and recall (Equation 

2.4.8.6) where β indicates the number of times sensitivity is more important than 

precision: 

𝐹1 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(2.4.8.5)
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𝐹𝛽 = (1 + 𝛽2)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(2.4.8.6)

 

Type I error or False Positive Rate (FPR, Equation 2.4.8.6) indicates the probability of 

having a false identification, such as the probability of having identified as positive a 

disease that is not there. Type II error or False Negative Rate (FNR, Equation 2.4.8.7) 

is the probability of identifying as negative a value that is positive. These two tests are 

essential in comparative statistics to verify if a statistic is significantly different. 

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 = 𝐹𝑃𝑅 =
𝐹𝑃

𝑃
=

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
= 1 − 𝑇𝑁𝑅 

(2.4.8.6) 

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 = 𝐹𝑁𝑅 =
𝐹𝑁

𝑃
=

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
= 1 − 𝑇𝑃𝑅 

(2.4.8.7) 

The metrics sensitivity, specificity, precision and F-measure are good indications for 

model performance. These metrics can be directly applied in a model that does not 

have a score risk, e.g., a rule-based model might say that everyone with stroke and 

HF will have AF. 

However, most models will provide a scoring value for each data point, e.g., a patient 

has a 70% risk of getting AF. This model can be given different cut-off points as a 

decision criterium to action, a percentage value that will define if the patient will be 

treated or not. To assess the overall performance of this model the combined effect of 

multiple prediction thresholds is used. In these cases, metrics such as the Area Under 

the Receiver Operating Characteristic Curve are useful. 

2.4.9 Area Under the Receiver Operating Characteristic Curve 

The Area Under the Receiver Operating Characteristic Curve (AUCROC), or C-

statistic, is a measurement that considers not the number of correct predictions but 

how close to the correct prediction they were. It is calculated using the predicted scores 

originated from a model and provides a way to obtain different performance points 
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measured by the sensitivity and specificity originated from the model when using 

different thresholds (124) (125). 

The rational of a threshold is that if the threshold cut-off is 50% and samples are scored 

higher or equal to 50%, then it means that they are of the positive class. If a sample is 

lower than 50%, then it is in the negative class. If the threshold is changed to another 

number, then the resulting model can be made to a more specific scenario. The 

threshold cut-off can be tailored to predict higher-risk or lower-risk patients. For 

example, if a predictor is not performing well for the classification of a patient as AF/no-

AF, more patients with AF risk can be obtained by lowering the threshold, consequently 

increasing the sensitivity of the prediction, whilst reducing its specificity. A similar effect 

can be obtained by fine-tuning the precision. 

The AUCROC is calculated with the integral of the sensitivity x specificity curve given 

different thresholds. One way of calculating this integral is by summing the rectangle 

area of the finite steps (126). To calculate the AUCROC using the rectangle method, 

a list of prediction scores for the model in increasing order is needed. The different 

predicted scores are used as thresholds. Calculate the different values of sensitivity 

and specificity for all the thresholds. Plot the values in a line plot. The area can be 

calculated by the sum of the partial points, considering the difference of length and 

height between the points. Appendix 2.2 exemplifies this process. The AUCROC 

confidence interval can be calculated and models can be compared using DeLong’s 

algorithm (127) (128). 

AUCROC measurement indicates the overall performance of a model. It can be used 

to compare different risk models, and after selection a threshold cut-off, it can be used 

with its confusion matrix, a table summarising the predictive performance. 

2.4.10 Other metrics 

Other metrics are usually used and may provide another form of interpreting the 

results. 

For regression problems, the coefficient of determination (129), or R² can be calculated 

as: 
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𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
=

𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
 

SSres stands for the residual sum of squares, which represents the accumulated value 

of discrepancy between the real value and the predicted. SStot is the total sum of 

squares, indicating how far from the mean the values are spread, proportional to the 

variance of the data. SSreg is the regression or explained sum of residuals. They are 

calculated using: 

𝑆𝑆𝑟𝑒𝑠 + 𝑆𝑆𝑟𝑒𝑔 = 𝑆𝑆𝑡𝑜𝑡 

𝑆𝑆𝑟𝑒𝑠 = ∑(

𝑖

𝑌𝑖 − Ŷ𝑖)² 

𝑆𝑆𝑟𝑒𝑔 = ∑(

𝑖

Ŷ𝑖 − ȳ)² 

𝑆𝑆𝑡𝑜𝑡 = ∑(

𝑖

𝑌𝑖 − ȳ)² 

ȳ =
1

𝑁
∑ 𝑌𝑖

𝑁

𝑖

 

Where Yi is the true output value, Ŷi is the predicted value, i represent each instance 

in the dataset that goes up to its Nth term, ȳ represents the mean value. 

An R² of 1 indicates that there is no residual, the model has a perfect prediction on the 

dataset used. A model that predicts its mean value has SSres equals to SStot, leading 

to an R² of 0. If SSres is smaller than SStot it means that the model has some predictive 

power, despite not being perfect, has the capability of explaining some of the effects 

on the data, the value will range between 0 and 1. If SSres is bigger than SStot, the 

model is predicting worse than a “mean model”. 

The mean squared error (130) can be calculated as: 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑌𝑖 − Ŷ𝑖)²

𝑁

𝑖=1

 

 



48 
 

Where Yi is the true output value, Ŷi is the predicted value, i represent each instance 

in the dataset that goes up to its Nth term. 

A value of 0 indicates that the model can precisely identify the samples tested, there 

is no upper bound on the error. 

For classification models, the Brier score (131) has an identical formula to the mean 

squared error. The boundaries of the Brier score are 0 and 1, due to classification 

models only being able to predict between 0 and 1, where 0 indicates a model that 

perfectly predicts the samples. 

2.4.11 What measure should be used? 

Different metrics can be traced together for performance measurement. Other than 

AUCROC, the Precision-Sensitivity (Precision-Recall) curve and its area under the 

curve indicates a model performance under unbalanced scenarios. Whilst AUCROC 

considered both classes, the Precision-Sensitivity curve focuses on the minority class. 

Table 8 describes some reference values of classification performance measurements. 

The definition of how good the accuracy of a model is depending on the balance of the 

dataset. The best AUC, in the usual conception, is considered the one farthest from 

0.5. However, if a model is corrected to a new dataset and the performance is 

oscillating from very close to 0 to very close to 1, it is more likely that the model is 

performing due to chance, and the model must be revised. Similarly, if a model strongly 

oscillates its performances from one dataset to another, it indicates that the model has 

a variance problem. 

A model with consistent wrong matches, such that the predictions are precisely off, 

indicate that the model is biased, or have modelled a biased model of the problem. 

This is the case of a model created under a higher risk population, the model will 

baseline, its intercept value in logistic regression, as incremented risk. 

  



49 
 

Table 8: Performance measurements and identification of performance for classification problems. * 

Although commonly the worst model has an area under the curve of 0.5, the worst possible model will 

have AUCROC 0 with its parameters overfit to some specific data points. 

2.5 Artificial Intelligence, Machine Learning 

Artificial Intelligence (AI) is the use of methods that simulate intelligence to make 

decisions. AI includes all the methods that use static rules, algorithms that do not mimic 

learning and all the methods from Machine Learning (ML). ML has methods that 

simulate intelligence with learning. The learning of an ML task is its training, which 

results in a model with trained coefficients or functions. 

Overall, ML is a group of algorithms that can improve their performance with 

experience. Mitchell (132) translates that into this question: “Given performance 

measurement P and task T can this AI perform better with more experience E?”(132). 

For example, an algorithm is used to perform a task of predicting a condition in the 

dataset of patients (experience) and using as a performance measurement the ability 

to correctly separate them, such as a person improving its technique the machine 

model improves with more samples. 

Machine learning encapsulates approaches from classical statistics and computational 

algorithms. The results are backed by statistical testing and are analysed using 

computing approaches enabling it to operate in a larger magnitude of data, rendering 

it possible to obtain more complex solutions to more complex problems. 

Many algorithms and approaches exist within the field of machine learning and most 

of them differ in their fundamental assumptions, bias and applicability to certain 

Performance measure Range of values Best Worst 

Accuracy 0-1 1 0 

Brier score 0-1 0 1 

Sensitivity, specificity, precision 0-1 1 0 

AUCROC 0-1 1 0.5* 

Precision-sensitivity area under curve 0-1 1 0.5* 
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domains. Therefore, it is essential to explore different options and apply different 

approaches. 

2.5.1 Supervised and unsupervised learning 

Before the exploration of different algorithms, it is required to define sub-categories of 

algorithms depending on the aim of the model. 

Supervised learning involves algorithms where the target of learning is known. The 

target is another variable in the dataset, such as a number or a category. The algorithm 

tries to understand the patterns that lead from the other variables to the target one, 

e.g., a model could be aiming to identify if the patient has AF given different blood 

tests, for new patients the model tries predicting the risk of AF. 

Unsupervised learning is the approach when there is no specific goal for the algorithm 

to evaluate a data sample against an output. These algorithms can be used to identify 

subgroups of variables, e.g., a sub-group of patients with a disease, or to identify 

patterns, such as correlations between variables. 

Semi-supervised approaches utilize a dataset that has partial information numerical or 

labels (categories/classes) outputs and with many, potentially predominant, unlabelled 

data points to the creation of a model. This is especially useful to complete a dataset 

that has limited labelling and can be used as an assistant to complete data that is 

complete but requires manual interpretation, such as measurements or diagnosis out 

of images. 

2.5.2 Association rule mining 

Association rule mining, a type of unsupervised learning, is a method to obtain patterns 

on the dataset. It identifies associations between the pairings of categorical values, 

i.e., dataset of all conditions in the hospital EHR can be passed through a rule mining 

algorithm to identify what conditions go together with others and the inference of these 

conditions as rules, e.g., AF patients usually had another condition, such as stroke, 

heart failure and chronic kidney disease. 
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Apriori algorithm can quickly assess these patterns in a population, and identify linked 

conditions with more than two terms (133). This approach is especially useful for rare 

or directly linked conditions, where having a condition is highly conditioned to having 

another condition. 

Apriori algorithm contains two main parts. Initially, frequent itemsets are identified. This 

is done bottom-up through incremental passages on the dataset counting if the number 

of elements sets in a dataset is above a support threshold. After each passage, these 

different sets are combined into bigger item sets, until there is no more combination of 

bigger item sets or all the combinations are tested. After the identification of the item 

sets that are above the support threshold, different rules are evaluated if they are 

above a confidence threshold calculated by the Bayes theorem (134). 

Apriori can also be used on continuous values after transforming them using a 

discretization transformation (135). A discretization transformation is usually done to 

indicate an abnormality of values, e.g., if a blood test indicates that the glucose level 

is outside the 95% confidence interval. 

Another algorithm for the identification of associations in a dataset is the CM-SPADE 

algorithm (136) (137). While Apriori identify rules without time constraints, CM-SPADE 

uses time sequences to identify associations. 

2.5.3 Classical and contemporary machine learning 

It is possible to separate the algorithms into classical and contemporary machine 

learning algorithms. Classical machine learning algorithms may be applied, as a 

baseline, before the use of more advanced methods. These include the static or 

dynamic creation of logical rules, logistic regression and other algorithms, such as 

random forest and support vector machines (138) (139). This includes unsupervised 

and supervised algorithms (132). In the more contemporary aspect, there is increased 

use of neural networks (140), in particular deep neural networks, such as convolutional 

and residual networks. 

The main difference between deep networks and previous algorithms is their capability 

of abstracting their features, i.e., inducing models from raw data like images, texts or 
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sounds – rather than manually extracting and creating the variables from the data. It is 

also capable of estimating and simulating operations from different types of classical 

algorithms using neural networks. Neural networks became popular because of their 

capabilities of abstracting models, performance and the availability of computing power 

in the form of modern graphics cards, cloud computing and other specialized devices 

(141). 

2.5.4 Decision trees and random forests 

One widely used classical machine learning algorithm is decision trees (142). Decision 

trees have a tree-like structure. The root of the tree is the complete dataset, at each 

element of the three a decision is made based on a variable, if the variable is above or 

below a certain value, then the tree branches into other branches. Each other branch 

has other decision rules that further separate the dataset until a decision is reached. 

Figure 9 exemplifies a decision tree for the case of identifying patients with AF in a 

dataset. 
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Figure 9: Sample decision tree. The different variable conditional expression under each node indicates 

the condition required to follow different paths if a condition is fulfilled. For each node, the number on 

top indicates the majority class in the node, the middle numbers indicate the rate of samples in this node 

without and with the outcome class, and the bottom percentage indicates the total percentage of 

elements that reach this node. 

One algorithm for constructing decision trees is the ID3 algorithm. When creating a 

model using decision trees (model fitting), the initial step is to start with the whole 

dataset in the root node. On each node, the variables are assessed to identify the one 

that will have the most information gain or least entropy. This variable is selected to 

divide the branch. The node is identified with its majority class, and it is further divided 

if there are more variables or data points available. 

Random forest is a machine learning that was built upon decision trees (138). This 

algorithm utilises a bootstrapping approach to sample with replacement sets of the 

training set with a limited number of columns. Different decision trees are trained for 

each subset. The final model consists of different decision trees voting for the predicted 

class or averaging the prediction for numerical outputs. 
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Whilst a single decision tree might suffer from the influence of noise, random forests 

can reduce the variance effect due to the bootstrapping, without increasing the bias. 

2.5.5 Neural Networks 

While some algorithms perform well on some datasets, they might fail on others. This 

depends on the data patterns and dataset structure. This is reflected in the literature 

where different algorithms are employed depending on the problem at hand (143). This 

is usually seen in classical machine learning algorithms, artificial neural networks (NN) 

are a versatile type of machine learning algorithm (144). 

The performance of NN tends to be better, or at least as good as classical machine 

learning methods. However, special care is required to keep training, validation and 

testing sets given that NN tend to over-fit due to its increased number of coefficients. 

The application of NN might not be possible in datasets with a reduced number of 

samples. 

A NN requires the transformation of data points into numerical values centralised 

around 0, due to the activation function. For example, a categorical variable such as 

sex will be transformed into 1 for male and -1 for female (or vice-versa), or a 

transformation that considers the proportion of each sex. Categorical variables with 

multiple options will be transformed into one-hot encoded variables. 

NN are formed through the combination of different building blocks. In the lowest level, 

there is a neuron, or a node, which executes some operation on part of the data and 

passes this information to other nodes in different layers. Each layer may contain 

several nodes that execute a similar function. The passage of information between 

nodes is through a link connecting them. The way the connections are made between 

layers and the type of operation executed on the connected data define its functionality. 

There is no limit to the format of a NN, there could be many layers that can be arranged 

in different ways. The only requirement is the presence of at least one input and one 

output layer. As the network grows wider and deeper the abstraction increases. If the 

network is very deep, containing from tens to thousands of layers, it is considered a 

deep neural network (DNN) (145). 
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The way the nodes and layers are connected influence the results that can be obtained. 

These different interconnections are called the architecture of the network. A dense 

network has nodes that are fully interconnected between layers, this abstracts 

combinations of the different variables (Figure 10). A convolutional neural network 

(CNN) operates in blocks of filters and value pooling through vectors of signals, such 

as a 1-D beat signal or a 2-D Magnetic resonance imaging (MRI) figure. The 

abstractions resulting from these operations lead to a network that sees in different 

scales the figures – different layers of a CNN return more specific information than 

previous layers and it is capable of interpreting or classifying something from the 

original signal (146). 

 

Figure 10: Representation of a neural network with 3 layers. The input layer contains the dataset 

variables information, the dense layer operates over the input data, and the output layer operates over 

the dense layer. While each node in the intermediary dense layer can abstract linear functions, the 

output layer can combine these linear functions into a higher dimensional model. 

A NN works like logistic regressions, with an increased number of operations (147). 

For each node in each layer (after the input layer), an activation function is applied. 
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This activation function is analogous to a neuron sending a signal as the output of the 

node. Different functions can be applied, from logit/sigmoid operations to non-linear 

activations such as Rectified Linear Unit and Mish (148) (149). Activation functions 

have the following equation: 

𝑧1 =  ∑ (𝑐𝑗,1 ∗ 𝑖𝑗) +

𝑗∈𝐿−1

𝑐𝑗,0 

𝑎1 = 𝑓(𝑧1) 

Where z1 is the accumulator for the first dense node, coefficients cj,1 are operated over 

the previous layer values ij, added to the bias term cj,0, a1 contains the value after the 

activation function over the accumulator. 

A similar routine is applied to different nodes of the network up to the output layer. The 

output layer will provide the results of the network for specific input. Outputs for the 

data points are compiled and assessed against the true value using a loss function. 

The loss function indicates how wrong the results are, and they exist to emphasize 

different learning aims, such as minimizing the distribution of categorical values, e.g., 

cross-entropy loss, or a generic squared error function for broad cases (150). 

The result of the loss function, the error of the model, is used to optimise the network. 

To do this, the amount of error is passed back to the network propagating from the 

output to the input layer, updating the coefficients. This process is called back-

propagation. 

𝐿2 𝐿𝑜𝑠𝑠 = ∑ √(𝑦𝑖̂ − 𝑦𝑖)2

𝑖 ∈ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 

Where ŷi is the predicted value, yi is the true value for i different samples available. 

The backpropagation takes steps in the direction where the error is going to be 

corrected. To correct the error, coefficients need to be changed in the direction that 
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reduces the error, this direction is the derivate where the error reduces, which is the 

gradient of the function. 

𝑐𝑙 = 𝑐𝑙 − 𝛼
𝑑𝐿

𝑑𝑐𝑙
 

Where cl are the coefficients for the layer l, α is the learning rate, L is the loss function.  

The backpropagation passes the influence of the coefficient from the loss function. If 

all the coefficients are equal, all the coefficients will be updated equally, and there is 

no learning. To avoid this issue, one needs to initialise the coefficients of the model 

with random values, one initializer function that suffices this requirement is the Xavier 

uniform initializer (151). 

There is a multitude of gradient descent algorithms variants, such as Stochastic 

Gradient Descent, Adaptive Gradient Algorithm and Adam (152) (153) (154). These 

variants modify the learning process changing the rate and the influence of previous 

learning iterations. Figure 11 illustrates the process of gradient descent. 



58 
 

 

Figure 11: Gradient descent. The z-axis is the error, the coloured surface symbolises different 

coefficients possible for the model, black points indicate different coefficients and arrows indicate the 

optimization steps descending to the minimal loss or best model. 

Model learning is also affected by the number of samples being seen by the model 

learning at each iteration. When all the data is trained at once, the coefficients can be 

updated with all the available information. If the dataset does not fit the memory, the 

model needs to be trained in batches. These batches can be used to iterate over the 

whole data updating the coefficients after seeing all the data, also called one epoch, 

or as mini-batches updating the coefficients after each batch. 

Furthermore, the use of a pre-trained neural network model to the creation of another 

model on the same type of problem quickens the optimization process. This is called 

pre-training or transfer learning (155). 

Automated Machine Learning 
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The search for the best neural network architecture is a complex problem. In classical 

machine learning approaches, the hyperparameters are well defined: the number of 

features in a decision tree is limited, as well as the number of decision trees in a 

random forest. In NN the hyperparameters are not well defined. The hyperparameters 

encompass the multitude of layers, their activations, types and dimensions, different 

links, and combinations of different blocks. This led to the advance of a meta-

optimisation approach called Automated Machine Learning. Automated Machine 

Learning (AutoML) is a subfield in machine learning aiming at identifying 

hyperparameters for more complex architectures, especially for Neural Architecture 

Search. A formal language for encoding search spaces and a framework for the 

evaluation of architectures were part of this process (156) (157). BANANAS is a recent 

optimization method that at the time of its publication was shown to be the best 

performing through an evolution approach (158) (159). Despite there being other 

providers for AutoML, such as cloud services, some approaches reported in the 

literature are AutoKeras which utilises the well-known Keras framework to implement 

their solution and it is freely available (160), and Chainer focusing on DNNs (161). He 

et al. 2019 has a review on AutoML research (162). 

Whilst PCA is an approach that linearly transforms the data to a lower-dimensional 

state, NN enables the transformation using non-linear transformations. It is also 

possible to reduce the dimensionality of the data, compressing the data using a 

commonly used architecture called autoencoder (163). This architecture is formed by 

two parts: an encoder section of the network, where for each layer the network has a 

reducing number of nodes until an encoded layer, followed by a decoder part, starting 

from the encoded layer and increasing the number of nodes until the original dimension 

of the datapoint. The learning is achieved by reconstructing the output to the original 

input. The encoded layer, with its reduced dimension, forces the network model to 

learn a reduced dimension representation of the signal, compressed variables with the 

most significant information of the data. This enables the creation of a network that 

learns new variables representing higher dimensional data, such as signals or images. 

One direct application is the use of a reduced version of the data, and thus the 

important features, without other biasing noises or elements. It is also capable of 

detecting anomalies where PCA does not detect (164). A different type of autoencoder 
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is variational autoencoder, which encodes a differential representation of the values, 

the mean and variance of the data samples. The resulting encoded representation is 

more continuous than encodings generated in the non-variational approach (165) 

(166). There is a multitude of other approaches for learning the representation of data 

samples, Bengio et al. provide a review on different approaches (163). 

It is possible to generate samples related to the autoencoder when varying the 

encoded distribution of the values, with limited results. Generative adversarial 

networks, another advanced neural network architecture, is capable of better-

generating samples (167) (168). These networks are trained with a dual structure: one 

part tries to generate an image, and the other part discriminates if it is real or 

generated. This architecture forces the networks to compete with each other leading 

to high performing results, and in the case of images, generating high-resolution 

realistic figures (169). This approach can be applied to different types of datasets, from 

structured to unstructured data, collections of variables, signals (such as audio and 

medical recordings) and figures could be generated simulating a distribution of 

samples, which could be normal or abnormal samples (170) (171) (172). Despite not 

being able to learn all the features of samples as an autoencoder, it opens the 

possibility of oversampling the dataset with higher fidelity (173) (174). 

Long short-term memory 

In the case of a continuous stream of information, i.e., a time-based data, long short-

term memory (LSTM) layers can be employed. LSTMs are so-called recurrent 

networks, i.e. the network uses the information of previous time points and predictions 

combined with the current data point to predict future values (175). An example of an 

LSTM network applied to the prediction of AF is Yildirim et al. (176), in which a beat-

by-beat signal from the PhysioNet was applied through a network for the encoding of 

the signal and prediction (45). 

Other applications of Deep Learning are described by Dargan et al. (177). 
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2.5.6 Combining models 

The data problems are getting more complex with time. Machine learning models 

handle a vast amount of data and operate on an ever-increasing number of 

parameters. When a single model is not enough for a prediction it is possible to create 

a model combining different models, this approach is called an ensemble. One way of 

creating an ensemble is by giving each sub-model a vote and then picking the most 

voted results. Alternatively, the ensemble can be done by re-training the output of all 

models giving each of them a coefficient indicating their weight in the final voting (132). 

The voting system is employed in the random forests algorithm, where the different 

decision trees vote towards the best-predicted value (138). 

2.6 Variable importance 

One could aim at different objectives when applying any analytical framework. In some 

cases, the aim is to obtain the best model to separate healthy against unhealthy 

patients. Also, a model can be used to separate data points into novel subgroups of 

related characteristics. In other cases, a model is applied to obtain important predictors 

as targets for further investigations. May et al. 2011 reviewed different approaches 

(178). 

Independent of the scenario, a model can be used to assess important variables. The 

important variables can either be assessed isolated (univariate analysis) or in 

combination with the other predictors (multivariate analysis).  

Investigative models might be focused on the predictors related to the positive case, 

rather than any variable that assists in separating the data points. Variables related to 

the target condition are identified for further investigations given their magnitude. 

Univariate analysis fit the model using the different variables individually. The model 

performance metric and the value of the coefficient can be compared between the 

different predictors. A typical case of variable comparison is using the odds ratio for 

each variable logistic regression, comparing the magnitude of coefficients over scaled 

variables. One ML algorithm that directly assesses the importance of independent 
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variables to a predicted value is the Ranking Instances by Maximizing the Area under 

the ROC curve (RIMARC) algorithm (179). 

Multivariate analysis utilizes the whole set of variables in a single model to evaluate 

the importance of the variables. To compare the effect between the variables they must 

be in a similar range of values. However, no effect can be considered without the other 

co-factors, given that these variables will have this effect due to the combination of the 

different variables. Depending on the algorithm, intrinsic traits will assist in identifying 

important variables. One such model for the evaluation of important variables is the 

elastic net algorithm, which penalises coefficients from logistic regression (180). Each 

model has peculiarities to the identification of important variables, Kuhn et al. (181) 

describes different approaches in the caret package. 

Independent of the variable importance method, repeated experiments such as K-fold 

validation or bootstrapping (95) are suggested for increased statistical power of any 

analysis. 

2.6.1 Correlations 

It is possible to evaluate the importance of a variable with the degree of relation to the 

target variable or other variables. For example, it is possible to visually inspect data 

distributions, indicating predictors of potential. Similarly, correlation measurements 

between the other variables and outcomes can indicate that a group of variables does 

not add value to the model. 

Commonly used metrics for correlation are the Pearson and Spearman correlation. 

The first indicates if the variables are linearly related, whilst the latter indicates if they 

are increasing or decreasing together. The range of correlation goes from -1 to 1, with 

negative results indicating inverse correlation and positive results indicating a direct 

correlation between variables. 
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2.6.2 Wrapper methods: backward, forward, and other searches 

These methods involve the wrapping of the model creation into new steps to select the 

best set of features. This wrapping involves the creation of a model multiple times and 

assessing the performances measured. 

Backward elimination starts the model with all the variables and interactively tests if 

the model would be better without one of the variables. After removing a variable, the 

process is repeated until the removal of variables stops improving the model 

performance. 

Forward selection goes in the opposite direction of backward elimination. Different 

models are created starting from one variable, the best model is selected and a new 

test for adding a variable is made until there is no further performance gain. 

The search can be done in different ways. Exploring exhaustively all the possibilities 

may be feasible for a small number of variables while applying heuristics or selected 

groups of variables that intuitively seem to lead to better performance may be 

necessary for a big number of variables. 

The wrapper methods are classical approaches, and they aim to optimize the overall 

performance score, not necessarily picking the best individual predictors. 

2.6.3 Algorithm-dependent importance 

There are many algorithms that can be employed to generate models, and each of 

them address data under a different prism. To assess the ranking of importance, or the 

magnitude of importance, different methods exist for different algorithms.  

To assess the important variables in a linear model, the odds ratio, derived from the 

model coefficients, indicate what variables are more important, and their absolute 

value indicate the ranking. In other models, such as LASSO, or another generalised 

linear model, a similar approach is employed (182). 

In recursive partitioning algorithms (183), the reduction in the loss attributed to each 

variable at each split is calculated and the sum returned. For random forest, the 
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accuracy on the out-of-bag samples is recorded, then the accuracy is measured after 

shuffling the predictor variables. The mean difference is calculated for all the trees, 

then normalised with the standard error (184). Stochastic gradient boosting algorithm 

utilises a similar algorithm to the one for random forest, but using the entire training 

dataset, rather than the out-of-bag observations (185). 

For the linear support vector machine used in this thesis the importance of variable is 

estimated through the use of AUC calculated for each predictor (181). 

2.6.4 Shapley additive explanations 

SHapley Additive exPlanations (SHAP) is a method of evaluating variable importance 

for more complex models, derived from game-theory approach (186). Although SHAP 

can be applied for different models, it is a state-of-the-art procedure for the 

interpretation of neural networks. It can be applied to other models, such as random 

forests, providing a way of understanding the inside of the machine learning “black 

box”. It enables that contemporary algorithms with high performance also provide 

interpretability. SHAP works by calculating the conditional expectation function for the 

model, providing the measure of additive feature importance for each feature. 

2.7 Applications of statistical methods 

Different questions can be approached by using each of the methods described above, 

but moreover, a whole new set of even more complex problems can be address by 

combining these different methods together. 

The essence of quantitative analysis can be solved by the use of statistical methods. 

This chapter explained principles of the use of different datasets: where different 

datasets are not available, splitting a dataset enables some verification of created 

models, and a degree of bias identification (section 2.4.1). On every dataset there are 

different types of variables available, and the way they are interpreted (either as a 

number or a category) change their meaning, some metrics and variable 

transformations are shown (sections 2.4.3). For the visualisation of complex datasets, 

the whole data need to be transformed: this was traditionally performed using PCA, 

methods such as t-SNE and UMAP are more commonly performed nowadays to 
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handle non-linear relations (section 2.4.4). Missing values are common, especially in 

real-world datasets: different considerations could be made depending on the case, 

and data imputed (section 2.4.5). 

Logistic regression is the first approach shown to model a set of input traits to an output 

categorical feature (section 2.4.7). This enables the creation of risk models, and the 

understanding of how much a feature influences the outcome variable. When creating 

models, it is essential to understand the performance of the predicted output, 

AUCROC, confusion matrix, and other metrics assist the interpretation and support 

their use (sections 2.4.9, 2.4.8, and 2.4.10). These metrics are essential to understand 

if, and how different models behave. 

The use of artificial intelligence enables the creation of different types of models: 

supervised and unsupervised models are exposed, with a main focus on supervised 

learning, the creation of models that predict an outcome, including logistic regression 

(sections 2.5.1 and 2.5.3). Decision trees, random forest, and neural networks provide 

other ways of handling the data and creating models, models that become capable of 

abstracting non-linear relations (sections 2.5.4 and 2.5.5). Models that can be used 

isolated, or with other models, approaches such as ensemble enable the use of them 

together (section 2.5.6). 

Independent of the method employed, it is essential to understand the magnitude of 

the features, towards the outcome or themselves (section 2.6). 

A summary of the different methods and how they are used is shown in Table 9.  
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Table 9: Procedures, objectives and methods applications. A summary of the different methods exposed 

in the chapter and how they can be used. 

Method (section/s) Objective Example of use (section) 

Data separation (2.4.1) To enable the verification of 
model performance and increase 
the robustness of analyses. 

Structured data (chapter 
3). 

Variable type interpretation 
(2.4.3) 

To support the interpretation of 
data’ features. 

Throughout this work. 

Visualisation of complex 
datasets (2.4.4) 

To help the visualisation of 
complex datasets through the 
reduction of feature numbers. 

Data-driven discovery and 
validation of circulating 
blood-based biomarkers 
associated with prevalent 
atrial fibrillation (3.3) 

Missing variables and 
imputation (2.4.5) 

To support the interpretation of 
missing values rational and the 
re-insertion of features into 
missing values. 

Covid-19 risk model (8.3) 

Logistic regression (2.4.7)1 To obtain a model between a set 
of input features to an output 
categorical value. 

CATCH-ME model 
validation (3.6) 

Performance metrics 
(2.4.9, 2.4.8 and 2.4.10) 

To enable the verification of a 
statistical model performance. 

Throughout this work. 

Machine learning 
supervised models (2.5.1, 
2.5.3, 2.5.4, 2.5.5 and 
2.5.6). 

To obtain a model between a set 
of input features to an output 
feature using non-linear 
abstractions. 

Early prediction of heart 
failure using 
electrocardiograms (5.4) 

Machine learning 
association rule mining 
(2.5.2) 

To obtain patterns of association 
between features. 

Temporal analysis of data 
(6.4) 

Variable importance (2.6) To interpret the different features 
that contribute to a model 
prediction. 

Development and 
validation of a multiple 
blood biomarker model 
(3.4) 

 

 
1 Logistic regression is kept separated from other machine learning methods in this table. 
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CHAPTER 3 STRUCTURED DATA: CLINICAL VIEW OF THE PATIENT 

3.1 Introduction 

Structured datasets provide a direct link between the data point, patient, and the 

information fields associated with them. This type of data is defined as having a fixed 

structure, and the measured values are related to the dictionary of variables, with fixed 

units or options. Different units identify the scale on which the continuous variables 

operate, and the magnitude quantifies its effect. Options, despite being also valid when 

considering continuous variables in a limited measurement resolution, are considered 

to be the levels in a categorical variable. 

All data are susceptible to collection bias, and structured datasets are not exempt from 

that. Although data dictionaries provide definitions of parameters, interpretation of 

these definitions that are passed through the body of data generators and curators, 

varying in time and space, can introduce bias. It is possible to separate these issues 

into explicit and implicit data bias. It is considered an implicit bias when, for example, 

patients undertake different treatment pathways when going to specialist care, 

especially in different countries with different healthcare rules. Studies might consider 

different definitions for diseases, and different exclusions criteria to what is relevant to 

the hypothesis or context. These can be made explicit with the definition of terms.  

Besides, measurement techniques (for example, different assays) can have a varying 

resolution, although this difference is negligible when considering standard clinical 

tests. Variables collected may be influenced by the time and day of the week of the 

measurement, to a minor effect. Approaches such as human phenotype ontology and 

different Caliber phenotype portal try to systematise these differences (187) (188). 

Despite these issues, structured data provides a direct way of analysing datasets. 

Inconsistencies are treated as noise. The data need to be cleaned and readied for 

analysis, and the fields are made consistent for analysis. The most common format a 

structured dataset can be presented is as a table, such as a spreadsheet file or in a 

SQL database (189). This chapter introduces and discusses the development and 
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analytical framework and the results of its application across four different cases of 

structured data related to atrial fibrillation. 

Atrial fibrillation (AF) is often identified only after a complication, such as a stroke (190) 

(191). Most times AF is missed, especially due to paroxysmal presentation in the earlier 

stages and not seen in standard 10 s electrocardiogram recordings. Furthermore, AF 

screening is burdensome for patients (192). Early identification of AF can support 

preventive treatment of associated conditions (193) (74) (194). 

Different comorbidities and clinical information are associated with AF and could be 

used to predict its presence, such as hypertension, ischaemic heart disease, heart 

failure, prior stroke, diabetes, obesity, and age. The performance when using this 

information is often limited and requires specialised knowledge. 

3.2 BBCAF machine learning pipeline 

The cases explored in this chapter consist of data that is structured. Either the 

information was collected and compiled for a particular study, or the data is available 

as part of a clinical system formulated in a manner that renders them amenable for 

structured data analysis. 

These data typically contain a set of input variables, such as clinical characteristics, 

laboratory test results, and other derived variables. A common outcome variable is 

whether or not the patient has AF – its risk score. 

Such datasets can be useful to address aims such as identification of patterns between 

the variables and subgroups, such as correlations and statistics, creation of 

supervised/risk models, and the identification of important predictors for these 

conditions from risk models. 

There are different approaches in the literature to the identification of important 

features, e.g. the RIMARC algorithm is capable of identifying important predictors of 

persistent AF or death (179) (195). 
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To facilitate the analysis of structured datasets, a pipeline was built as a 

methodological approach for the automated development of models and the 

identification of important biomarkers using different machine learning approaches. 

This pipeline was created utilising the R language for statistical computing (196). It is 

based on the caret library (181). The main algorithms utilised are from the libraries 

ROSE, randomForest, e1071, glmnet, rpart, gbm and pROC (197) (184) (198) (182) 

(183) (185) (199). 

This pipeline has three main steps: data preparation, the definition of execution 

settings and the execution of the pipeline (Figure 12). 

 

Figure 12: Three steps of the BBCAF machine learning pipeline. Data preparation gets the input data 

ready for analysis. Settings definition identifies the different options available in the pipeline. Pipeline 

execution starts the tool and obtains the results. 

Data preparation. In this step, the data must be prepared before plugging into the tool. 

Whenever a dataset is loaded into the system its column definition and types might not 

be loaded properly. The operator needs to check and correct the column types, 

recoding categorical columns that might have been assigned as numerical, and 

transforming cases with missing values e.g., indicated by the numeric value 99. It will 

also require that the output variable be defined. This step needs to be done manually 

on a case-by-case basis depending on the dataset. 

Settings definition. The tool supports a range of settings with different options: the 

proportion of split sets, randomised key seed, types of training (cross-validation, 

repeated cross-validation, bootstrapping or direct train-test), number of folds and 
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repetition of tests, number of processing cores, criteria for the elimination of rows and 

columns due to amount of missing values; MICE iterations to impute missing values, 

selection of algorithms (as support by the caret platform); sampling using up, down or 

ROSE sampling; if columns that have near-zero variance should be removed; if 

columns should be centred and scaled; different modalities of feature selection and the 

number of iterations, grid or random search, feature selection before the algorithms 

pass or with the algorithm using a wrapper; and other options. 

In its default settings, variables are centred and scaled to unit variance – this is done 

to improve interpretation of model variables, and to improve model training and 

performance, a step that is for learning algorithms such as support vector machines, 

where quadratic elements in the algorithm will lead to improper training. Models split 

the data into training and test sets and explore the training set using cross-validation. 

Pipeline execution. Dataset is loaded and executed following the sequence of loading 

the data, executing a post-loading data preparation as defined by the settings, followed 

by feature selection and algorithm execution. The results are returned to the operator 

for evaluation. In the case of a regression model, the performance is measured in R² 

or mean squared error, classification models are evaluated using the AUCROC. 

3.3 Data-driven discovery and validation of circulating blood-based 

biomarkers associated with prevalent atrial fibrillation – Case 1 

3.3.1 Introduction 

Blood biomarkers, like those measured in clinical practice, provide an alternative and 

potentially enhance the predictive performance of AF risk models. Numerous 

candidate biomarkers for the identification of AF have previously been identified, for 

example, N-terminal pro-B-type natriuretic peptide (NTproBNP) and brain natriuretic 

peptide (BNP) indicating myocardial stretch, C-reactive protein (CRP) towards 

inflammation, Galectin 3 for cardiac fibrosis and glomerular filtration rate (GFR) 

indicating renal function (200) (201) (202) (203) (204). These blood biomarkers are 

commonly evaluated individually or grouped, and they are often utilised for other 

cardiovascular diseases, such as coronary artery disease and heart failure (205). 
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It is hypothesised that there are biomarkers that can better contrast the pattern of risk 

between patients that have prevalent AF and no AF diagnosis at recruitment. 

3.3.2 Data description and analysis 

To assess the hypothesis, data at baseline were collected and used to identify 

differences in patients that have or have not AF. The dataset used for this analysis is 

the BBCAF cohort containing the assay biomarkers (described in section 2.3.1). 

The initial dataset exploration was based on visualisation as well as unsupervised tests 

through PCA transformation analysis (105). Correction of data points batch-effect was 

performed using an empirical Bayes method using R package sva (206) (207). Missing 

variables were imputed using the MICE method in R (109, 110). 

Statistical tests evaluated the differences in biomarker expression between 

participants with identified AF against sinus rhythm; comparisons were performed 

using t-test or Mann-Whitney tests depending on the normality of the data distributions, 

assessed using Kolmogorov-Smirnov tests (118) (119) (208). Models using logistic 

regression and the BBCAF machine learning pipeline were created, using a 5-fold 

cross-validation approach, and a random forest feature selection before executing 5 

algorithms representing different machine learning approaches: lasso and elastic-net 

regularized generalized linear model, support vector machines with linear kernel, 

random forest, stochastic gradient boosting and recursive partitioning. The 

performance was measured using AUCROC. Important variables for the logistic 

regression model were assessed using odds ratio, for the machine learning models 

their importance was calculated from the scaled importance (more details on variable 

importance methods are in section 2.6). 

3.3.3 Results and discussion 

PCA transformation and visualisation indicates that variances in the dataset can be 

split into two main subgroups, and it shows that there is a bias on the dataset from the 

different cardiovascular assays utilised (Figure 13). In addition to bias introduced by 

using 2 different assays, when plotting the variable points one-by-one (Figure 14), 
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there are also indications of batch effects with strong separation between the different 

groups of patients within each cardiovascular assay. 

 

Figure 13: Principal component analysis of the BBCAF dataset. Two subgroups were identified on the 

data because of batch effects due to differences in the cardiovascular panels utilized. CVD1 stands for 

Cardiovascular panel I and CVD2 is Cardiovascular panel II. 
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Figure 14: Distribution of the values for Proto-oncogene tyrosine-protein kinase Src before any pre-

processing. On the y-axis the estimated measurement of the assay, on the x-axis the patient number in 

order of recruitment. In black (left) are some samples from the Cardiovascular panel I, in red, green, and 

blue are different batches of panels for the Cardiovascular panel II. 

Issues raised from the batch-effects led to the investigation of correction methods with 

the assay provider. A correction of batch effect was required and it was done using an 

empirical Bayes method (206). The method employed fixed the identified batch effects. 

Logistic regression indicated increased risk for increased values of different variables 

(odds ratio): age (1.06 95% CI 1.035 – 1.095), male sex (2.022 1.275-3.564), BMI (1.06 

1.021 – 1.115), BNP (1.293 1.112 – 1.627) and FGF23 (1.667 1.363 – 2.344). TRAIL-

R2 was shown to indicate higher risks of AF for lower values (0.242 0.135-0.323). 
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Machine learning models confirmed features BNP, Age and FGF23 as top predictors 

for AF risk (Figure 15). The best-identified model in the cross-validation step was the 

Lasso and elastic-net regularized generalized linear model with a final validation set 

AUCROC score of 0.697 (95%CI 0.63-0.76). 

 

Figure 15: Framework for the BBCAF machine learning pipeline analysis and feature importance results. 

A indicates the framework and the final scores of models tested, B shows the ranking of variable 

importance identified in the feature selection stage. 

Other machine learning models repeatedly show important variables, such as FGF-23 

showing up within the top predictors for most algorithms, in combinations with age, 

BNP, and sex (Table 10). 
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Table 10: Relation of important variables for different models applied in the BBCAF machine learning 

pipeline. Variables in bold were identified in the logistic regression model. 

 Lasso and 

Elastic-Net 

Regularized 

Generalized 

Linear Model 

Support 

Vector 

Machines 

with Linear 

Kernel 

Random 

Forest 

Stochastic 

Gradient 

Boosting 

Recursive 

Partitioning 

 

Ranking 

1 Age BNP Age PIGF PSGL-1 

2 TRAIL-R2 Sex FGF-23 FGF-23 FGF-23 

3 RAGE FGF-23 IL-27 SCF CXC1 

4 TM VEGF-D BNP PAPPA TIE2 

5 PAR-1 IL-27 PDGF sub-B VEGF-D Age 

6 VEGF-D RAGE SRC IL-27 IL-27 

7 IL-1ra CCL3 TRAIL-R2 Age PAPPA 

8 PAPPA ADM ADM TRAIL-R2 RAGE 

9 PSGL-1 SCF Sex PSGL-1 TM 

10 Sex PAPPA IL-1ra BNP IL-1ra 

 

Starting from an initial number of 40 biomarkers, repeated analysis and validation using 

different approaches point to the predominant relevance of FGF23, BNP and TRAIL-

R2, the first two indicating an increased risk of AF for increased values, later biomarker 
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indicating increased risk for lower presence. Furthermore, age and sex predictors were 

re-identified of valuable importance when creating these models. 

Brain natriuretic peptide (BNP) is a peptide discovered in the porcine brain. However, 

its highest concentrations are found in the heart (209). It is produced by the 

cardiomyocytes in response to stretch or pressure increase. It is a known marker for 

cardiovascular risk (209). 

TNF-related apoptosis-induced ligand receptor 2 (TRAIL-R2) is associated with the 

risk of myocardial infarction (210). Univariate analysis did not show a significant 

difference for this biomarker between AF and sinus patients (P=0.727). The influence 

on the models is related to other clinical variables. 

Fibroblast growth factor 23 (FGF-23) levels are elevated in patients with chronic kidney 

disease, at it is associated with mortality (211). In the literature, there are studies with 

a significant difference of FGF-23 between AF and a non-AF population (212) and 

studies that show a difference but are not significant (213). FGF-23 is linked with higher 

risks of cardiac hypertrophy, which may lead to AF (214). 

3.3.4 Limitations 

Despite classical techniques and novel machine learning analysis producing similar 

results, this study has some limitations. Namely, there are potential biases on the 

patient selection criteria, and imputation of data. Furthermore, external validation of 

the findings is required, including the exploration of the biomarkers in broad 

populations, and longitudinal studies with incident development of AF. 

Although confounding effects were not explored in this use-case, another study co-

authored investigated the effects of comorbidities against some of the biomarkers, 

those are the cases of heart failure and chronic kidney disease, against NTproBNP 

and FGF23, which showed that their predictive value for AF remains significant (5). 
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3.4 Development and validation of a multiple blood biomarker model – Case 

2 

3.4.1 Introduction 

Blood biomarkers measured using research assays provide an estimate of a wide 

range of parameters that could be used in the assessment of AF risk. After identifying 

some candidate markers using that technology, it is hypothesized that advanced tests 

of blood biochemistry, at the same time will reduce the measurement noise, improving 

the predictive power and also be closer to measurements applied in standard clinical 

practice biochemistry tests. 

3.4.2 Data description and analysis 

This study further explored the Birmingham Black Country Atrial Fibrillation registry 

(described in section 2.3.1). The cohort utilised in this analysis contains the 12 Roche 

biomarkers. 

Dataset for analysis was split into 60% discovery and 40% validation set. Statistical 

analysis was done creating different risk models using univariate and multivariate 

logistic regression with backward feature selection, BBCAF machine learning pipeline, 

and neural networks (NN). Logistic models were adjusted by age, sex, BMI, eGFR, 

heart failure, stroke/TIA, and hypertension. Important features were identified through 

logistic regression odds ratio and machine learning models scaled feature importance. 

NN models were created using the Keras framework (215). Data were processed using 

Scikit-learn (216), categorical variables, sex and comorbidities, were transformed 

using a Min-Max scaler. Continuous variables were centred towards mean and scaled 

to unit variance using the training set as reference. Models were optimized by 

assessing a range of hyperparameter (further explored in Appendix 3.1). The final 

model created contains 2 layers with 256 hidden dense variables with RELU activation 

(217), and a dropout layer (218). After these, an output layer with sigmoid activation 

contains the prediction. The model was trained with adam optimizer (219), and early 

stopping with 20 epochs patience. The best model was selected using the best 

performing model using binary cross-entropy loss. Further ten models were created 
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using different randomization parameters to verify the importance of variables using 

the Shapley Additive explanation (SHAP) (220). 

3.4.3 Results and discussion 

Univariate analysis indicated a significant increase of AF risk for increased levels of 

ANG2, BMP10, FGF23, IFGBP7 and NTproBNP. High levels of TnT were linked to 

sinus rhythm patients. Other biomarkers were not confirmed significant. The 

multivariate logistic model performed with an AUCROC of 0.743 (95% CI 0.712-0.775), 

features selected and positively associated with AF were age, sex, BMI, ANG2, BMP10 

and FGF23.  

After execution of the steps from the BBCAF machine learning pipeline, the best 

performing model identified is a support vector machine model, which yields in the 

validation set an AUCROC of 0.733 (95% CI 0.691-0.775), NN model performed with 
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an AUCROC of 0.784 (0.745-0.822). Figure 16 shows the AUCROC plot for the 

models. 

 

Figure 16: Comparison between the BBCAF machine learning pipeline result (5-fold cross-validation) 

and the NN performance measure using an AUCROC metric. In the validation set, the BBCAF machine 

learning pipeline best performing model yielded an AUCROC of 0.733 (95% CI 0.691-0.775), and the 

NN model scored 0.784 AUCROC (0.745-0.822). 

Further to the predicted AUCROC, which provides an overview of the behaviour in the 

dataset, identifying some cut-offs in the model allows analysing a model that would be 

used in practice. Cut-offs are representative of the points where a decision will be taken 

in practice. Table 11 shows different resulting metrics for different hand-picked 

thresholds. A model that aims to identify most patients as possible, even with lower 

risk, would pick a low threshold value, such as 0.1, which is expected to collect 95.4% 

of the positive cases, whilst a threshold of 0.9 will obtain positive patients that are more 
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likely to be true positives, however in higher numbers of patients than an even higher 

cut-off. There are different ways of making a decision, such as net benefit, which are 

left for future improvements in this study (221). 

Table 11: Performance metrics for different model thresholds. Changing the threshold value affects the 

risk level of patients that are obtained and segregate these patients that would be selected in a model 

in use. 

Threshold Accuracy PPV NPV Sensitivity Specificity 

0.01 47.1% 47.1% 50.0% 99.6% 0.3% 

0.1 53.3% 50.2% 79.3% 95.4% 15.8% 

0.25 66.7% 60.1% 80.7% 86.9% 48.6% 

0.5 71.0% 72.7% 69.9% 61.5% 79.5% 

0.75 66.5% 87.9% 61.8% 33.5% 95.9% 

0.9 60.9% 92.3% 57.6% 18.5% 98.6% 

0.99 54.2% 88.9% 53.6% 3.1% 99.7% 

BBCAF machine learning pipeline indicated that the variables BMP10, ANG2, TnT, 

FGF23 and age are the most relevant variables for the created models. When 

evaluating the NN (Figure 17), it is shown that the ANG2, BMP10 and FGF23 are 

biomarkers associated with AF risk. Variables such as male, age and BMI are shown 

again of importance to the risk stratification of AF. 
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Figure 17: SHapley Additive exPlanations measures the impact of the different variables in the NN 

model. Increased values of SHAP indicate a positive influence toward predicting AF. Feature values 

indicate the magnitude of the variable. Increased values of ANG2, BMP10 and FGF23 are indicators of 

a higher risk of AF. Being a male, having heart failure or increased BMI are also show as increased risk 

of AF. 

Angiopoietin-2 (ANG2) in increased levels is associated with the presence of oedema 

in patients with heart failure and worsened outcomes (222). ANG2 has been previously 

shown a significant difference for AF patients (223). Due to AF pathophysiology being 

associated with atrial fibrosis, ANG2 may be associated with inflammation in the 

regions. Further understanding of its role at the cellular level is required to understand 

its effect on AF. 
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Bone morphogenetic protein 10 (BMP10) is expressed in cardiomyocytes. The family 

of BMP proteins are essential to the regulation of cardiovascular structure and function, 

and it circulates through blood (224).  

Different analyses confirm an increased risk of AF for patients who are male, older, 

and have increased BMI shown in the literature. Biomarkers ANG2, BMP10 and 

FGF23 are identified as strong candidates for assessment of patient risk. Different 

models identified (Table 11) can be personalised for practice use, and thresholds can 

be used to balance the number of participants selected for treatment. 

3.5 Socioeconomic factors to atrial fibrillation: a study of the influence of the 

patient location Birmingham Black Country Atrial Fibrillation dataset – Case 3 

3.5.1 Introduction 

Patient’s lifestyle may be an indication that they have an increased risk of having AF 

(225) (226). Lifestyle information is not collected in a standardised format on clinical 

records, sometimes it is collected only as punctual information such as patient’s job, 

residence type, religion, marital status or residence postcode. 

A patient residence postcode can be used to infer information from Census data. The 

Census provides information such as income, employment, education, health, crime, 

housing, services, and living environment (227). The information contains an 

aggregation of data from a region, and it is assumed that the aggregated information 

is very close to the individual level. 

In the BBCAF dataset, variables expose different clinical factors, such as age, 

diseases, medications, and associated risk scores. Furthermore, there are ECG 

recordings and family disease history. There are limited data about a patient’s quality 

of life: SF-12 and EQ5D variables provide a summarized perspective (228) (229). 

Information such as participants’ professions, and their associated stress levels, 

education, income, air pollution where they live, accessibility to healthcare, and living 

conditions are not available. It is hypothesised that exogenous variables derived from 

the Census can provide further knowledge to improve the understanding of both the 

patient and its health outcomes to the development of AF. These variables extracted 
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from the postcode are hypothesised to behave as proxy variables for these data not 

available. 

3.5.2 Data description, integration and analysis 

The initial locked data for the BBCAF analysis (described in section 2.3.1) was 

enriched with information extracted from public databases. Despite the UK census 

providing information from different aspects about a region, it is not enough and directly 

usable for some analysis considering only a few aspects of a resident’s life. The 

different datasets utilised are the 2011 UK census (230), UK police statistics dated 

from March 2016 to February 2019 (231), index of multiple deprivation 2015 (232), and 

income data (233). All these different datasets are available under the Open 

Government License (234). 

These different datasets provide a wide range of variables explaining different aspects 

of an average person lifestyle to a region. Census provides information about housing, 

civil status, dependent children, qualification, economic activity, jobs and occupation, 

qualification, healthcare, age structure, usual resident population, ethnicity, country of 

birth, and other information. The census is the most complete source of data for a 

region, however, due to its frequency and the broad range of variables, it does not 

provide easy separation of variables that may be used in an analysis. The index of 

multiple deprivation is commonly applied in the literature for population studies – it is 

often associated with worse medical outcomes (235). Index of multiple deprivation is 

more frequently available than the broad census data. Furthermore, crime statistics 

and income data provide another aspect of information to different small areas. 

These different datasets contain a range of variables explaining different aspects of a 

person’s residential region. Data are made available in different scales depending on 

the type of data. In its primary format, the data is collected to an individual level, 

aggregated datasets are released with grouped regions of different sizes. For example, 

the index of multiple deprivation is linked to lower layer super output area, while the 

basic housing census is released in census output areas.  
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To preserve the identity of the census participants, postcodes are grouped into output 

areas, with a minimum of 40 households, recommended more than 125 households. 

These output areas are further aggregated into different levels, lower layer super 

output area (LSOA), middle layer super output areas (MSOA), upper layer super output 

area, and local authority districts. The most commonly used levels for census output 

are the LSOA and MSOA. A postcode lookup is used to link the postcode to the census 

output areas (236). Figure 18 illustrates the mapping from a postcode to different 

outputs areas. 

 

Figure 18: Representation of postcode and output areas. Postcode contains different parts, the outer 

code indicates the area, district and sub-district; the incode part is formed of the sector and with the unit 

forms a postcode. Postcodes are grouped into census output areas, further grouped into lower layer 

super output areas (LSOA) and middle layer super output area (MSOA). There is no clear distinction of 

postcode districts into an output area level. Larger representation areas are not shown. 
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BBCAF dataset was linked and complemented of variables from the UK Census 2011 

(227), crime reports between March 2016 and February 2019 (231), income estimates 

for the financial year ending 2018 (233), and index of multiple deprivation for England 

in 2015 (232). More than 500 new variables were collected from these datasets  (237). 

Models were created using the BBCAF machine learning pipeline, performance was 

evaluated using AUCROC and the variable importance. 

3.5.3 Results and discussion 

The goal of using this linked dataset is to provide a better understanding of general 

lifestyle qualities that might be affecting the patient health, information that are not 

routinely collected in a clinical appointment. Figure 19 shows the distribution of patients 

stratified by conditions and their locations in the country. 

 

Figure 19: BBCAF patients distributed over the country and concentrated around Birmingham 
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The best performing model yielded a performance not significantly different from 

previously created models. Although an increased number of variables was used, and 

BBCAF machine learning pipeline filtering variables, the only derived variable that 

showed predictable power was the median age of the participant’s region. Other 

variables were not considered to have enough power to influence the model created 

in this setting.  

The outcomes for this case are: (1) a tool for inclusion of associated data and different 

data sources, grouped by different levels of geographical (237) which can be applied 

to other datasets; and (2) different visualizations for the spatial distribution of these 

patients. Future studies can use the tool for different types of spatial analysis, with the 

potential to show effects in a more diverse dataset. 

3.6 CATCH-ME model validation – Case 4 

3.6.1 Introduction 

BBCAF is one of the datasets repurposed in the Characterizing Atrial fibrillation by 

Translating its Causes into Health Modifiers in the Elderly (CATCH-ME) consortium 

(238). This is a collaborative project between partners in different European countries. 

The project aimed at integrating and evaluating new insights from 12 AF studies 

contributed by 6 centres from the United Kingdom, Germany, France, Spain, and the 

Netherlands. 

The CATCH-ME project created different risk models for AF in different scenarios, 

including models derived from individual patient data across multiple studies. External 

validation of the created models is paramount to ensure the applicability of the created 

models into broader practice. 

3.6.2 Data description and analysis 

A previously created model based on the CATCH-ME dataset (described in section 

2.3.1), with parameters age, gender, BMI, height, indication of ECG abnormality, LA 

volume, LVESD and morbidities hypertension, diabetes, coronary artery disease, 

tricuspid valvular disease, and medications aldosterone, beta-blockers and P2Y12 
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inhibitors, was missing an external validation, which was performed across the UK 

Biobank (described in section 2.3.3). 

The equation for the risk model is: 

𝑓(𝑥)  =  −12.27683 +  0.002120737631986 ∗ 𝐴𝑔𝑒𝐶𝑢𝑏𝑒𝑑𝐷𝑒𝑐𝑎𝑑𝑒𝑠  

+  −1.01193908416263 ∗ 𝐺𝑒𝑛𝑑𝑒𝑟𝐹𝑒𝑚𝑎𝑙𝑒 +  0.019560817190605

∗ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑔𝑒𝐺𝑒𝑛𝑑𝑒𝑟  +  0.038705190440557 ∗ 𝐵𝑀𝐼 

+  0.044485448003914 ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 − 0.449706014329128

∗ 𝑀𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛  −  0.67676466318835 ∗ 𝑀𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠  

− 0.503494449575835 ∗ 𝑀𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝐶𝑜𝑟𝑜𝑛𝑎𝑟𝑦𝐴𝑟𝑡𝑒𝑟𝑦𝐷𝑖𝑠𝑒𝑎𝑠𝑒  

−  0.218267179280336 ∗ 𝐸𝐶𝐺𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙  +  0.295309761910202

∗ 𝑀𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝑇𝑟𝑖𝑐𝑢𝑠𝑝𝑖𝑑𝑉𝑎𝑙𝑣𝑢𝑙𝑎𝑟𝐷𝑖𝑠𝑒𝑎𝑠𝑒  − 0.388837016630487

∗ 𝑀𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑑𝑜𝑠𝑡𝑒𝑟𝑜𝑛𝑒  + 0.485159907600036 ∗ 𝑀𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐵𝑒𝑡𝑎𝐵𝑙𝑜𝑐𝑘𝑒𝑟𝑠

− 1.29272860983173 ∗ 𝑀𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑃2𝑌12 + 0.02916503904998

∗ 𝐿𝐴𝑣𝑜𝑙𝑢𝑚𝑒 +  0.012977946947688 ∗ 𝐿𝑉𝐸𝑆𝐷 

Where AgeCubedDecades is the patient age divided by 10 and cubed, InteractionAgeGender 

the result of age in year times gender, ECGAbnormal is if there are signs of infarction, 

hypertrophy, or ischemia on ECG, LAvolume (left atrial) was measured in cm3 and 

LVESD (left ventricular end systolic diameter) in mm, morbidity variables are different 

conditions reported as ICD-10, medications were identified in patient recruitment. 

Categorical variables were transformed into one or zero values indicating if the 

condition is present or not. 

The analysis was done using Stata v15 (239). The known coefficients for the previously 

created model were placed into a polynomial formula, and the new dataset was loaded 

to conform to the term names. Model performance was assessed using AUCROC. 

3.6.3 Results and discussion 

The total number of patients with complete data collected were 4137, out of these 27 

had atrial fibrillation. A summary description is provided in Table 12, the main 
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differences between the patients with and without AF identified in this cohort are the 

age, height, presence of hypertension and the prescription of beta-blockers. 

Table 12: Summary description for UK Biobank participants identified in the CATCH-ME validation. (a) 

Continuous variables with a normal distribution are summarized as mean (standard deviation), (b) 

Continuous variables which were not normally distributed are summarized as median (IQR), (c) 

Categorical variables are reported as number of cases (%). 

Variable Total (n=4137) AF (n=27) No AF (n=4110) p-value 

Age, years (b) 56 (12) 62 (8) 56 (12) <0.001 

Gender, female (c) 2181 (52.7) 6 (22.2) 2175 (53.0) 0.003 

BMI, kg/m2 (b) 26.2 (5.4) 28.3 (4.7) 26.2 (5.4) 0.019 

Height, cm (a) 169.4 (4.3) 177 (7.6) 169.3 (9.2) <0.001 

Hypertension (c) 1193 (28.8) 16 (59.3) 1177(28.6) 0.001 

Diastolic Blood Pressure, mmHg (a) 81.3 (9.9) 82.4 (10.1) 81.3 (9.9) 0.59 

Systolic Blood Pressure mmHg (a) 135.3 (17.7) 140.8 (20.1) 135.3 (17.7) 0.168 

HbA1c, mmol/mol (b) 34.7 (4.8) 36 (7) 34.7 (4.8) 0.192 

Diabetes (c) 188 (4.5) 4 (14.8) 184 (4.5) 0.035 

CABG (c) 33 (0.8) 2 (7.4) 31(0.8) 0.005 

Myocardial Infarction (c) 48 (1.2) 2 (7.4) 46 (1.1) 0.032 

Tricuspid Valve Disease (c) 0 (0) 0 (0) 0(0) - 

Coronary Artery Disease (c) 87 (2.1) 2 (7.4) 85 (2.1) 0.21 

Left Atrial Volume, mm3 (b) 65 (26.35) 77.0 (32.93) 65.0 (26.45) 0.005 

LVESD, mm (b) 28.5 (5.83) 29.48 (5.98) 28.50 (5.84) 0.066 

ECG Parameters 
    

Signs of old infarction on ECG (c) 394 (9.5) 5 (18.5) 389 (9.5) 0.205 

Signs of acute ischemia on ECG (c) 167 (4.0) 3 (11.1) 164 (4.0) 0.167 

Left Ventricular Hypertrophy (c) 151 (3.6) 0 (0) 151 (3.7) 0.617 

Medication 
    

Aldosterone-antagonists (c) 8 (0.2) 0 (0) 8 (0.2) 1 

Beta-blockers (c) 313 (7.6) 12 (44.4) 301 (7.3) <0.001 

P2Y12_blockers (c) 64 (1.6) 1 (3.7) 63 (1.5) 0.898 

The validation model resulted in an AUCROC of 0.71, 95%-CI 0.60-0.81, while the 

original discovery set had an AUCROC of 0.78, CI 0.76-0.80 (unpublished data). 
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Despite the number of patients in the validation, it is shown that there is predictive 

power in this validation, with its predictive scores’ confidence interval crossing the 

confidence interval of the initial model creation. To get a more relevant and conclusive 

result, a larger number of patients is required, which will be possible when more MRI 

data is collected by the UK Biobank. Further to the imaging data, it is expected with 

the added risk of AF by higher age, more patients will have developed AF, and the 

model can be further explored. This shows the model can be further explored and be 

used in predictive scenarios. 

Figure 20 displays a histogram of AF patients compared to the recruitment date. The 

UK Biobank targeted to recruit patients between 40-69 years old. The mean age at 

recruitment in the UK Biobank is circa 56 years. Due to the increased risk with age, the 

number of patients with AF increases over time as the patients get older. The number 

of patients with atrial fibrillation diagnosed before recruitment is 6390, and the number 

of patients with atrial fibrillation after the first year is 7622. As of February 2018, 22160 

of the total number of 502,616 patients had atrial fibrillation. 

 

Figure 20: UK Biobank distribution of atrial fibrillation occurrence related to the date of recruitment. The 

blue line indicates the reference recruitment date, red lines indicate a period of 1, 5 and 10 years before 

and after recruitment. 



90 
 

3.7 Chapter summary 

In this chapter, we explored structured datasets applied to the creation of models 

evaluating a patient’s risk of developing AF. 

Previous studies demonstrated the association of AF with other cardiovascular 

diseases, such as congestive heart failure, valve disease and other conditions such as 

hypertension, diabetes and age using a follow-up study to evaluate these conditions 

as independent risk factors (240). 

The BBCAF machine learning pipeline allows for a broad search for optimal results in 

a broad range of datasets tests. It allows for the flexibility of adding a new structured 

dataset, either following a close approach to methodological approaches used before 

or changing the settings for different scenarios. The BBCAF machine learning pipeline 

provided a streamlined structure for the evaluation of different models. Age was 

repeatedly re-identified in models as one of the major risk factors of AF. Increased BMI 

and male sex are shown in different cases as relevant markers for atrial fibrillation risk. 

Biomarkers BNP, FGF23 and TRAIL-R2 were shown to be of marked importance in 

the first case explored. Biomarkers ANG2, BMP10, BNP and FGF23 have been shown 

as relevant for the stratification of AF risk. These biomarkers are targets for improved 

predictive power and the application of newer models for improved patient 

stratification. Its applications improve on the availability of different approaches to 

determine AF patients. 

In conclusion, structured datasets are shown as a powerful format for the investigation 

of different clinical outcomes in the diverse context of variables.  Models can be built 

upon other models, and data can be enhanced for exploration on a wide range of 

variables in different models.
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CHAPTER 4 OMICS: TRANSCRIPTOMICS AND GENOMICS ANALYSIS FOR 

IMPROVED AF PATIENT-DISEASE STRATIFICATION 

4.1 Introduction 

Omics datasets, are a type of structured datasets, containing a wide range of 

information, usually on a limited number of samples (241). There are some exceptional 

large-scale studies, such as the UK Biobank, which contain a wide range of omics 

data, such as genotyping, whole-genome, and metabolomics for hundreds of 

thousands of participants linked to various pathologies. 

Data collected from these samples contain several features measured by a variety of 

biological protocols including array assays and sequencing. Of the types of data 

available, omics-based biological datasets can exist as proteomics, transcriptomics, 

metabolomics and genomics. Proteomics study the set of proteins in a cell or 

organisms, and these can be measured with protein microarrays. Transcriptomics 

studies the transcripts expressed in a biological material, sourced from a cell, tissue or 

organ, with these measured with RNA Sequencing (RNA-Seq) techniques, yielding 

information that has at least fifty thousand transcripts/features in mice, and in the case 

of the human genome, more than eighty thousand transcripts (242). Genomics 

indicates variables collected from genome-wide genotyping data, containing data on a 

much larger scale, e.g. Affymetrix UK Biobank Axiom® array measured circa eight 

hundred thousand variants and imputed the data to over ninety million single 

nucleotide polymorphisms (SNP) (81). Metabolomics study metabolites, small 

molecule substrates that are products or intermediaries of cell metabolism (243). 

These molecules change all the time, and using this data there is another way of seeing 

the functioning of the system/body. In the UK Biobank, the metabolomics biomarkers 

are being collected using nuclear magnetic resonance. 

It is important to develop an approach that integrates the various omics with other 

clinical feature, a multi-omics data integration. This chapter explores analyses of RNA-

Seq analysis from mouse and human tissue to further understand gene expression 
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patterns in AF patients. Followed by Genome-Wide Association Studies (GWAS) 

investigations in the UK Biobank. 

The use of RNA-Seq and GWAS can potentially aid the understanding the 

pathobiology and pathophysiology of AF. Despite both investigating genetic-related 

outcomes, they assess different biological patterns. 

RNA-Seq explores functional genetics, this technique assesses the expression of 

biologically active regions that contain proteins and other long/non-coding RNA. It has 

the potential of identifying how much of a protein, or how much of any mRNA is being 

produced from the sample material biological function. RNA-Seq allows the exploration 

of specific tissues, such as evaluating the expression on heart tissues, left and right 

atria and how much they differ. The use of RNA-Seq also enables the use of transgenic 

mice to identify signals that surpass species. That is, rather than depending on limited 

samples collected during open heart surgery, homologous genes behaviour can be 

explored in different scenarios. This includes the further understand of pathways when 

partially or fully disabling a specific gene. 

On the other side, GWAS measures the genetic aspect of the population, without 

quantifying the expression. By measuring over hundreds of thousands of SNPs, GWAS 

is capable of identifying signals that transcend ethnicity and populations. This can be 

applied to the identification of novel targets associated with a disease, such as the 

case of atrial fibrillation, where PITX2 was identified to be was strongly associated with 

atrial fibrillation (264). 

In summary, RNA-Seq and GWAS provide views on different scales (section 1.1.2). 

RNA-Seq enables the investigation of novel targets, with understanding of biological 

pathways (sections 4.3 and 4.4), while GWAS enables the broader identification of 

targets associated with genetic predisposition (section 4.6). 

4.2 Analytical framework 

Before going into different scenarios explored, this section describes the analytical 

framework. 
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4.2.1 RNA Sequencing 

The procedure for RNA-Seq analysis requires different steps, from in-vivo to in-silica. 

The process is formed of experimental design, mice training or patient recruitment, 

sample collection, sequencing procedures, and other laboratory experiments. 

Experimental design plans the experimental setup, hypothesis to protocol, from the 

number of samples to any process from the start of the experiment to sample collection 

and analysis to be performed. The hypotheses explored in the different studies are 

from different literature evidence, described in each subsection. The protocol for the 

mice training also depends on the hypothesis explored, e.g., mouse sample may be 

swim-trained or fed a different diet. For reasons of statistical relevance, it is necessary 

to have at least 3 paired samples, although this depends largely on the analysis 

protocol (244). Different laboratory experiments were conducted in the samples, and 

then samples were sequenced.  

The sequencing procedure involves the preparation of the library, which goes through 

the sequencer. The sequencer utilised for the samples is the Illumina NextSeq 500 

(245). It outputs digital files with RNA sequences with different markers for each 

sample. The files can be directly transformed into different FASTQ files for each 

sample (246). 

The acquisition of the different biological samples was done by other personnel. The 

involvement of this project is in the in-silica stage. After completing the biological 

analysis protocol, sample material was sent, and data files were received from 

collaborators in the Institute of Human Genetics, University of Münster. Sample 

information was compiled from internal sources and matched with the sample files. 

The RNA-Seq analysis involves different steps: quality assessment of the samples, 

filtering of sequences, transformations of data files, alignment of reads into a reference 

genome, counting of the aligned reads, and differential expression evaluation.  

The first step of quality assessment is operated manually and is usually decided on 

qualitative analyses. In the sample collection stage (in-vivo), metrics such as RNA 

Integrity Number (RIN – values range from 1 to 10, fully degraded to intact samples, 
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respectively) indicates the quality of the samples, however, this metric does not suffice 

as a clear indication of inclusion criteria (247). In the literature, samples with RIN as 

low as 4 were capable of picking differences between samples (248). On the 

computational side, there are a few checks that can be performed: FastQC (249) 

provides a good set of tools to check the samples, if the metrics are very abnormal the 

sample is removed, other cases the sample is kept to increase the analysis numbers. 

After assessing the quality of the samples, the data is aligned. The alignment ratio 

shows the percentage of reads that are aligned to the reference genome and indicates 

the quality of the samples. Samples with a low alignment ratio indicate contamination 

or even a wrong reference genome. After alignment, the transcripts are counted and 

are processed using differential expression analysis. In the differential expression 

analysis, the data can be further checked for quality issues, this involves running 

methods such as PCA to evaluate if the samples are off the norm for the condition 

type, mislabelled, or if the data is skewed. 

Different tools were utilised to accomplish the steps above: data quality was checked 

utilizing FastQC (249), Trimmomatic was utilized when required to cut lower 

portion/quality of the reads (250), Samtools was utilised to transform the data as 

required (251), HTSeq is a counter tool for finalising the quantification of the values 

(252), alignment was done utilizing hisat2 (253), and processing of transcript counts 

and differential expression between the groups was done in R utilizing DESeq 2 (196) 

(254). The mapping from a reference genome to gene symbols was done using 

BioTools (255). 

The reference genomes used on this study for mice and human, respectively, were, 

Mus Musculus (GRCm38.p6) and Homo sapiens (GRCh38), both genome assemblies 

releases of the Genome Reference Consortium (256). Furthermore, two main 

reference annotations were applied: UCSC and ENSEMBL (257) (258). 

4.2.2 RNA Sequencing automation 

The different analysis using RNA-Seq data required to perform a set of common 

operations using different parameters and reference organisms. The main operations, 
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as described above, are the filtering of reads, alignment to a reference genome, 

counting of the aligned transcripts and then differential expression comparison using 

different sets. 

To perform these operations in different scenarios and samples, an RNA-Seq pipeline 

was implemented (259). It contains functions to download and prepare the reference 

genome. When executing the RNA-Seq pipeline, it will use the reference genome 

specified, and generate intermediary files for the trimming, alignment and counting 

steps. 

The differential expression step requires the manual setting of sample values and the 

definition of case-control samples. Output values are the differential expression 

spreadsheet, volcano plots, and normalized sample values. These generated files 

contain the results of RNA-Seq analysis, which can be further explored for enrichment 

analysis (260), or visualisation of samples using PCA. 

4.2.3 Genome-Wide Association Studies 

Bush & Moore (261) described the GWAS workflow, used as base for this study. SNPs 

are base-pair changes in the genome. It could be a base-pair that was changed, 

deleted, or added. These changes may happen either in coding or non-coding 

sequences of genes. Some of these changes do not necessarily affect the expression 

of proteins due to genetic code degeneracy. It is considered that very infrequent 

changes are mutations, whilst common changes (at least 1% of the population) are 

SNPs. 

GWAS data collection involves the application of enriched DNA material into SNP-

arrays. SNP-arrays contain probes that attach to different sequences. Then the 

sequences attached are quantified to the identification of variants. 

Association analysis can be performed using Plink (262). It uses a set of statistical 

tests, Fisher’s exact test and variants, and it has further generalized linear and logistic 

regression models that allow correcting for interactions. 
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The number of results when applying these methods is long due to the number of 

SNPs. Methods such as Benjamini-Hochberg for p-value correction may be used 

(263). 

A standard way of reporting GWAS analysis is through the use of a Manhattan plot. It 

is a scatter plot, on the x-axis the chromosomes and the y-axis the p-value. There are 

usually dashed horizontal lines on significant adjusted p-values and auxiliary for 

extreme significance values. 

4.3 Murine RNA-Seq Heterozygous PITX2 – Case 1 

4.3.1 Introduction 

Initial GWAS explorations in the Icelandic population then validated in European and 

Chinese populations indicated a strong association between risk of AF and variants on 

locus 4q25, adjacent to PITX2 (264). PITX2 is a homeobox gene (a gene that regulates 

development in multicellular organisms). During the embryonic stage, PITX2 regulates 

left-right asymmetry in the heart and other organs (265). In the human heart, its 

expression is dominant to the left side, with its isoform PITX2c being most highly 

expressed (56) (266). In mice, reduced Pitx2 or Pitx2c leads to a predisposition to AF 

without marked structural changes (56). 

It is not well understood the underlying behaviour that led to the significance of PITX2c 

in atrial fibrillation. In this case we explored mice samples to explore if there are more 

patterns to be learned. 

4.3.2 Data description and analysis 

Biological materials were collected from 12 mice from the MF1 strain at 12 weeks old. 

8 male and 4 female, samples paired between wild type and genetically modified 

heterozygous (+/-) Pitx2c knockout (56). These samples weren’t challenged in addition 

to the genetic deletion. Samples were collected for both left and right atria. In total 

there were 24 data samples. 

The analysis was performed using the RNA-Seq framework described in section 4.2.1 

using the UCSC GRCm38/mm10 reference genome (257). 
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4.3.3 Results and discussion 

Analysis indicated differentially expressed transcripts between the subgroups of Pitx2c 

+/- and the wildtype mice left atrium. Figure 21 shows the differentiation between the 

samples. 

 

Figure 21: Heatmap comparing the wildtype to the transgenic Pitx2c mice. The transcripts selected are 

the ones that showed a differential expression between the wild type and the transgenic mice on the left 

atrium. Blue indicates reduced expression, and red indicates increased expression. The samples were 

clustered by similarity. 

All the samples compared showed a trending profile towards increased expression of 

some transcripts on the differential expression analysis. Table 13 exposes these 

differences. 

  



98 
 

Table 13: Differential expression comparing wild type and Pitx2c +/-. Log2 fold-change indicates how 

much more expression was identified in the Pitx2c +/- case. P-values were adjusted using the Benjamini-

Hochberg approach (263). 

Gene log2 fold-change p-adjusted 

Cd207 4.446945505 9.11E-05 

Cxcl13 3.280999901 0.000168927 

Bmp10 3.939048513 0.000289024 

Myoc 2.02975104 0.010565334 

Vsig4 1.720448913 0.010565334 

A930005H10Rik 1.37425925 0.013549833 

Mrap 0.628376467 0.047386574 

Cd207 is a protein-encoding gene. Its upregulated expression was identified in 

epicardial adipose samples from patients that developed postoperative atrial 

fibrillation, suggesting a pre-existing inflammatory state of epicardial adipose tissue 

(267). Cxcl13 was shown to be involved with the cardiac remodelling in patients with 

heart failure (268). Bmp10 is a key marker, as it plays a key role in murine 

cardiogenesis, with perturbations leading to different heart diseases (269). There is not 

much information in the literature about Myoc and cardiovascular diseases, its 

homonymous protein is associated with skeleton structural changes and glaucoma 

(270). Mrap gene is associated with glucocorticoid deficiency (271). Vsig4 is implicated 

in inflammation (272). A930005H10Rik is a long non-coding RNA. 

Out of the measured biomarkers, C-X-C motif chemokine 13 (CXCL13) and (Bone 

morphogenetic protein 19 (BMP10) proteins are soluble, and thus are biomarkers that 

are of increased importance for the assessment of atrial fibrillation through blood 

samples. Reyat et al. 2020 demonstrate a case for BMP10 (8). 
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4.4 Murine RNA-Seq Jup +/- – Case 2 

4.4.1 Introduction 

Arrhythmogenic cardiomyopathy (AC) increases the risk of different life-threatening 

conditions, inclusive of arrhythmias. It was identified that mutations in genes encoding 

desmosomes are predominant factors to patients developing AC (273). 

Desmosomes are involved in the intercellular junctions of cardiac muscle and they are 

also involved in embryonic development with alternating adhesive affinity status (274).  

One of the first genes identified from the desmosomes causative of AC is JUP, which 

encodes the junction plakoglobin protein. Deletion of Jup in mice offered the first model 

to investigate AC. 

This led to the experimentation design with this model organism. The model organism 

is a heterozygous knockout of the Jup gene, due to recessive homozygous leading to 

embryonic development problems. Samples were paired by sex, then were randomly 

allocated into endurance swim-training or sedentary lifestyle. The protocol consisted 

of 8 weeks of swim training. Left and right atrial samples were collected and 

sequenced.  

4.4.2 Data description and analysis 

The dataset contains 12 mice from the 129/Sv train (275), 6 mice of each sex, each 

sex with 3 wildtypes and 3 heterozygous Jup knockout, with samples available for left 

and right atria. In total there were 24 samples. Some mice had AF identified, others 

not. The average RIN value was 8.65, the lowest value was 7.2. Table 14 summarises 

the samples. 
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Table 14: Description of Plakoglobin experiment samples. Transgenic mice are heterozygous knockout 

of the JUP gene. Arrhythmia indicates atrial arrhythmia. 

 Left Atrium Right Atrium   

  Female Male Female Male Total 

Transgenic         

No arrhythmia   2   2 4 

Arrhythmia 2 2 2 2 8 

Wild type         

No arrhythmia 2 4 2 4 12 

Data analysis were performed using the RNA-seq framework described above, using 

ENSEMBL Mus musculus GRCm38.91 reference genome (258). Left atrial samples 

from wildtype and transgenic mice were compared in subsequent analyses. Differential 

expression formula corrected for the sequencing batch. 

4.4.3 Results and discussion 

Swim-training led to more atrial arrhythmias in Jup hearts only. RNA-Seq analysis 

confirmed that Jup is significantly different between the genotype groups. Transcripts 

that indicate genes Ankyrin repeat domain 2 (Ankrd2) and Actin alpha 1 skeletal 

muscle (Acta1) had reduced expression in the transgenic groups, although no 

significant difference is shown (Table 15). 

Table 15: RNA-Seq results for Plakoglobin analysis. 

Transcript Gene Symbol log2-FoldChange p-value adjusted 

ENSMUSG00000001552 Jup 0.855755706 0.004050806 

ENSMUSG00000025172 Ankrd2 -1.793113321 0.436866578 

ENSMUSG00000031972 Acta1 -2.319484251 0.783772261 

Ankrd2 protein is associated with stress response, it is not essential to cardiovascular 

development, although there are associations between its absence and conditions 

such as hypertrophic and dilated cardiomyopathies (276) (277). Acta1 is also 

associated with dilated cardiomyopathy (278). The link between AF and hypertrophic 

cardiomyopathies (HCM) is not fully understood, despite AF being a common 

complication of HCM (279) (280). 
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4.5 Human RNA-Seq – Case 3 

4.5.1 Introduction 

Model organisms can be used to understand the interactions and effects when altering 

specific genomic regions of those samples. It is an essential tool to explore the 

dynamics when specific genes are either silenced or enhanced. These alterations 

provide insights on pathways, facilitating the targeting of specific markers. Knowing 

pathways and differences associated with a marker can assist the understanding of a 

disease, however, this does not provide the whole picture. 

The human genetic material is a complex structure. Its interactions and dynamics are 

not completely understood. Ancestry information can provide some perspective on 

risks inherited to a patient, subtle mutations over generations make the problem even 

more complicated. 

Analyses of patient data provide an understanding of the effects of a patient and its 

complex dynamics under clinical observation. It is also the analysis that generates new 

targets for further investigations in model organisms. 

Previous studies showed a strong association between AF and variants on loci 4q25, 

adjacent to PITX2 (264). PITX2 regulates the asymmetry between the left and right 

side of multiple organs, inclusive of the heart (265). It is of paramount importance the 

evaluation of the differential expression between atria, to further understand the 

differences and any mechanism that might assist in understanding AF. Further to the 

marked difference between atria, and due to a marked difference in AF between males 

and females (281), gender differences were also evaluated. 

4.5.2 Data description and analysis 

Experimental data were collected from consented patients in the CATCH-ME project. 

Patient data contain a comprehensive clinical view of the patient, included of 

comorbidity history, cardiovascular operations, and lifestyle including physical activity 

(the complete description of variables is shown in 3.6.2).  
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The tissue samples were collected from consented patients undergoing heart surgery, 

e.g., bypass surgery, with material coming from the left and right atrial appendages. 

The material was sourced from different institutes in Europe and sequenced in the 

University of Münster, Germany. Due to this and other factors, the data quality is 

heterogeneous. 

Table 16 indicates the profile of the set of patients that underwent RNA-Sequencing 

and had data available. Most patients had samples from either the left or the right 

atrium, 74 and 39, respectively, 17 patients had samples from both sides. The relation 

between sex and atrium samples available is shown in Table 17. 
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Table 16: Summary of Human RNA-Seq dataset. Smoker indicates if the patient has a smoking history. 

Coronary artery disease (CAD), myocardial infarction (MYOC), heart failure (HF), diabetes (DIA), 

chronic kidney disease (CKD), stroke, and transient ischaemic attack (TIA) indicate the patient morbidity 

history. 

  Heart Rhythm  

  

Paroxysmal 
AF 

Permanent 
AF 

Persistent 
AF 

Sinus 
Rhythm Missing Total 

S
e
x

 

Female 13 1 9 12   35 

Male 22 2 18 52   94 

Missing         1 1 

S
m

o
k
e

r Yes 9 2 8 26   45 

No 7 1 9 16   33 

Missing 19   10 22 1 52 

C
A

D
 

Yes 20 1 13 36   70 

No 15 2 14 26   57 

Missing       2 1 3 

M
Y

O
C

 Yes 7  5 20   32 

No 26 3 21 41   91 

Missing 2   1 3 1 7 

H
F

 

Yes 5  12 25   42 

No 30 3 14 35   82 

Missing     1 4 1 6 

D
IA

 

Yes 2 1 8 17   28 

No 33 2 19 44   98 

Missing       3 1 4 

C
K

D
 

Yes 2  1 5   8 

No 29 3 24 57   113 

Missing 4   2 2 1 9 

S
tr

o
k
e

 Yes 3  4 5   12 

No 32 3 23 58 1 117 

Missing       1   1 

T
IA

 

Yes 1  1 4   6 

No 34 3 26 59 1 123 

Missing       1   1 

 Total 35 3 27 64 1 130 

 

Samples were sequenced in batches; some samples were replicated in different 

sequencing batches. These samples are considered technical replicates. The 

differential expression design formula corrects the batch and the sex of the samples. 

Participants with missing sex data were ignored. 
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Differential expression results with adjusted p-values below 0.05 were grouped into 

more highly expressed transcripts in the left atrium and right atrium. Top 3000 hits were 

selected to run Metascape gene analysis (282). 

Table 17: RNA-Seq data available for the human dataset. 

 

Right 
Atrium Left Atrium Total 

Male 40 68 108 

Female 16 22 38 

Missing   1 1 

Total 56 91 147 

These RNA-Seq data were processed using reference genome ENSEMBL Homo 

sapiens GRC38.93. 

4.5.3 Results and discussion 

Left and right atria 

The overall comparison led to 11,403 significant transcripts, inclusive of PITX2 as the 

most significantly differentially expressed, more highly expressed in the left atrium. A 

list of 122 highly differential expression (absolute log2FoldChange above 2) significant 

transcripts is in Appendix 4.1. A representation of the differential expressed transcripts 

is shown in Figure 22. 
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Figure 22: Volcano plot for the Human RNA-Seq LAxRA. The horizontal line indicates significance of 

values. The vertical lines on -2 and 2 indicate values that have a very significant differential expression. 

Gene enrichment analysis on more highly left atrium expressed transcripts indicated a 

few pathways (shown in Table 18).  

Actin cytoskeleton organization pathway is associated with immune pathology (283), 

and it is associated with changes in motor proteins linked to cardiomyocyte 

electrophysiology. Extracellular structure organization is linked to changes in 

cardiomyocytes size. Cell junction organization and response to wounding are 

implicated from AF. 
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Table 18: Relevant pathways identified in more highly expressed left atrium transcripts. 

GO identifier Description 

GO:0034330 cell junction organization 

GO:0009611 response to wounding 

GO:0030036 actin cytoskeleton organization 

GO:0043062 extracellular structure organization 

4.6 Sampled GWAS of Atrial Fibrillation – Case 4 

4.6.1 Introduction 

For a set of AF patients, it is unclear what their AF origins are. First and foremost, in 

some datasets, such as the UK Biobank (81), the definition of AF severity is unclear, 

with most patients defined under the broad WHO ICD-10 term I48 Atrial fibrillation and 

flutter (24). Furthermore, it is suggested that AF patients could be categorized 

according to their AF mechanistic origins (35). Although there are signs that might 

indicate an origin for AF, e.g., clinical history and biochemistry results, there is no clear 

indication that a patient had AF due to genomic predisposition. 

In this analysis, it is assumed that the different mechanistic origins for AF are valid, 

and that, for a subgroup of patients identified with AF, there must be at least a 

considerable number of participants with a genomic predisposition. 

In a contrast to standard analysis comparing overall sample population, i.e. all cases 

compared against all controls (284), it is hypothesized that when analysing sub-

samples of these participants it is possible to probe sub-groups, which would have a 

marked genomic difference, and exposing a stronger signal. These signals would then 

indicate new genomic targets.  
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4.6.2 Data description and analysis 

This analysis used the UK Biobank dataset, inclusive of patient comorbidity history and 

genotyped data (81). Participants were identified using the Hospital Episode Statistics 

set, resulting in 21,486 AF cases, and 466,891 controls. Samples were also matched 

with their age, sex, and ancestry information, and these data were used as correction 

terms. 

Table 19: Samples description for the sampled GWAS analysis on AF participants in the UK Biobank. 

There were 21,486 AF cases and 466,891 controls (total of 488,377 participants identified). 

                                           Cases  Controls 

Variable Number Percentage   Number Percentage 

Age Recruitment (Median) 64     57   

Atrial Fibrillation 21486 100.0%   0 0.0% 

Coronary Artery Disease 8141 37.9%   33862 7.3% 

Chronic Kidney Disease 2287 10.6%   7665 1.6% 

Diabetes 3789 17.6%   26365 5.6% 

Heart Failure 4120 19.2%   4474 1.0% 

Hypertension 13467 62.7%   96214 20.6% 

Ischaemic Heart Disease 8141 37.9%   33862 7.3% 
Peripheral Vascular 
Disease 939 4.4%   2861 0.6% 

Pulmonary Embolism 760 3.5%   4453 1.0% 

Sex (Male)   66.0%     44.0% 

Stroke Tia 238 1.1%   7958 1.7% 

Valvular heart disease 1866 8.7%   1932 0.4% 

In an approach similar to bootstrapping (285), a 10% subset of case and control 

samples were sampled over each 100 executions. Samples were filtered for similarity 

to avoid biasing the results (286). GWAS analysis and sample multiple testing 

correction was performed as described in section 4.2.3. 

4.6.3 Results and discussion 

The experiments resulted in 1328 SNP variants with p-values adjusted under 0.05. 

Those variants are in 21 regions on chromosomes 1, 4, 12 and 16, as indicated in 

Table 20. 
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Table 20: Significant regions identified on the sampled GWAS analysis on AF participants in the UK 

Biobank. 

rs2723298 rs1375302 rs1448817 rs17042081 rs17042171 rs2200733 rs6843082 

rs13141190 rs7193343 rs2106261 rs879324 rs3853445 rs11931959 rs35323363 

rs6666258 rs6658392 rs13376333 rs521511 rs883079 rs1895585 rs13124249 

All regions identified were reproduced and previously identified in the literature (287). 

Some analyses in the literature involve the increased use of bigger datasets and a 

combination of genomic comparison techniques (288), e.g. standard GWAS, GWAS 

meta-analysis, gene set enrichment analysis (289), expression quantitative trait loci 

(eQTL) analysis (290), and phenome-wide association analysis (291). Combining 

these techniques there is an increase in the analysis power, although limited by the 

availability of data. 

Although a limited number of regions were identified, it is shown that analysis using 

sub-samples of the population yield targets loci for AF. In future steps, the use of 

different analysis approaches, or enhanced datasets is suggested for improved results. 

4.7 Chapter summary 

Since the identification of PITX2 on loci 4q25, the number of variants identified is ever 

increasing with the wide use of different population data (288). Experiments performed 

to verify and reinforce some of the results previously obtained, both in the case of 

GWAS and RNA-seq, the first performed in a well-known dataset and the latter in novel 

data. The analyses carried out aid towards a better understanding of the different 

mechanisms that interact with biological targets associated with cardiovascular 

disease predisposition.  
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CHAPTER 5 UNSTRUCTURED DATA: ELECTROCARDIOGRAMS 

5.1 Introduction 

Images carry more meaning than words. And unstructured datasets can carry more 

information that structured or semi-structured data. 

Unstructured datasets contain information about signals that are usually measured in 

a limited time or space-resolution constraints, e.g., recording of an output signal and 

images, respectively. These types of data contain embedded information, which can 

be extracted and expanded into other types of data, especially structured data. They 

contain information that is not directly interpretable for people without practical 

knowledge, or to people absent of tools to the identification of features that can then 

be understood. Some features are repeating patterns in a dataset, abnormality, and 

artefacts, e.g., time between signal peaks, alterations and inversions of signals, and 

the presence of recording errors not natural to the signals. 

Numerous techniques have been developed to exploit unstructured datasets. These 

techniques usually target the extraction of features or the direct creation of models for 

decision-making. In other words, the signals can be plugged into models to support 

other models with additional variables (unsupervised learning) or to learn the direct 

use of the information for the prediction of an outcome (supervised learning) (292). 

One can think of different ways to handle unstructured datasets. An unstructured 

dataset can be transformed into a structured one through the use of aggregative 

functions, such as collecting specific points in intervals, e.g., the first point each day, 

or the average for each minute of recording. The data can be collected in conjunction 

with an event, for example, when the patient was under a crisis, or after a certain 

amount of time as a procedures follow-up. The values can also be collected about 

values reaching a critical point, such as a peak in heart rate being an important point 

to the collection of its associated blood biomarkers. 

Unstructured datasets can also be directly applied in a model. This is commonly seen 

in image models. Tags in images can be classified using the VGG-19 model on 
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ImageNet, a model which is both capable of differentiating outcome classes and 

creating intermediary variables from an input (293). Further to the identification of 

outcome classes, models are capable of identifying elements and their boundary boxes 

on images (294). 

In the cardiovascular domain, those techniques are applied to a wide variety of cases 

(295). There is a wealth of literature on the analysis of electrocardiogram (ECG) signals 

preceding the use of deep learning, an analysis that use hand-engineered features to 

explicitly transform the signal into more useful variables. This scenario is exemplified 

by Lankveld et. al. 2016, in which a range of features is extracted from an ECG 

recording, and the best features are selected as predictors to the condition explored 

(296). More modern approaches adopt the direct application of the unstructured data 

in a deep learning model, for example, extraction of data from ECG recording images 

(297), identification of cardiovascular movement (298), and the identification of 

diseases (299). 

In this chapter, ECGs are applied and exemplified in the case of unstructured datasets. 

ECG recordings contain a range of signals from different leads placed in different spots 

in the chest. The signals are hypothesized to not only contain direct information about 

different heart chambers and their physical and electrical movement but also 

underlying information that can provide hints on the understanding of cardiovascular 

patterns and the evolution of diseases. Two scenarios are investigated: the extraction 

of features from a study ECG dataset for the identification of atrial fibrillation, and the 

use of real-world routinely collected ECG data for the early identification of heart failure 

risk. Further to these two cases, a section explores and expands the optimization of 

neural networks for the learning of complex models, describing a framework for this 

process. 

5.2 Feature extraction from electrocardiogram-derived images – Case 1 

5.2.1 Introduction 

An ECG contains information that is easily identifiable by a trained cardiologist. For 

example, it is possible to identify a patient that suffers from AF using their recording, 
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the patient will usually have irregular R-R intervals, noisy recording, and/or absent P 

wave. These visual metrics are directly identifiable by a human and are usually 

composed of variables formed of linear relationships. These features are well known 

in the literature, and recording devices normally assess some of these features. 

In an approach, closely related to omics analysis described in the previous chapter 

(radiomics), it is hypothesized that it is possible to automatically extract a wide range 

of features from an ECG recording, and those variables can provide advanced features 

for the identification of AF patients. 

Similar approaches have been applied to the identification of features from tumour 

images (300), and ECG recordings (301).  It is expected that the extraction of data 

from multiple beats at once can identify traits associated with inter-beat dynamics and 

the method is not bounded by the use of special methods for irregular beats (302). 

Furthermore, the investigation of variables from all leads, rather than just lead II, might 

provide more information on patient outcomes and insights not related to rhythm. This 

contrasts to the Rahhal et. al. 2018 (301) study that utilised single-beats on lead II 

recordings extracted from the MIT PhysioNet dataset (45). 

5.2.2 Data and methods 

This study utilises the ECG cohort of the BBCAF dataset (section 2.3.1).  

The state of the art approach for the prediction of AF using ECG signals, published in 

early 2019, utilizes convolutional neural networks resulting in an almost perfect 

stratification of AF patients as well as of patients suffering from several other 

conditions, exceeding the performance of most clinical practitioners (303). This further 

justifies the potential of the use of modern machine learning processes for the analysis 

of ECG signals. The approach proposed differs from this as well as other studies in 

that, in this use case, electrocardiogram signals are considered as merely another set 

of variables, that can be used both in combination with other variables as well as 

independently.  

A wavelet transform was applied to the ECG signal and then features were extracted 

using VGG-19 (from ImageNet) (293). This approach is similar to Rahhal et. al. 2018 
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(301). The difference is that it employs a larger signal, containing at least 2 complete 

beats, followed by VGG-19 data transformation. Then features are then collected from 

the second last dense layer (Figure 23). 

While the application of a wavelet transform does not generate variables that can be 

directly used from the original data, it generates different views on the data structures 

and patterns. Each wavelet transformation is similar to a single layer of an image 

(Figure 23 A): a computer image is formed of three channels, red, green and blue, and 

the output of the proposed models are formed of channels, from the wavelet 

transformations of Daubechies 4, Coiflet 1 and Biorthogonal (304). To transform the 

intermediary image-like features to a variable-like format, pre-trained image-capable 

CNN models were applied, namely, the VGG-19 was used to extract these features 

(Figure 23 B). 
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A 

 

 

 

C 

B 

 

D 

Figure 23: Simplified version of the executed pipeline. A is the first step, transforming the signal of each 

lead using a continuous wavelet transform (CWT). B is a summarized version of the neural network 

applied; in the end the dense layers contain “interpreted features” from the input data. C is the set of 

extracted variables (4096 features) for the AVL lead, in orange variables from a sample sinus patient 

and in blue variables for a sample atrial fibrillation patient. D represents all the features extracted for the 

12 leads (12x4096 features). The order of leads shown is AVF, AVL, AVR, I, II, III, V1, V2, V3, V4, V5, 

V6. 

Each patient had a feature vector collected after applying the process, resulting in 

49,152 features (12x4,096). These features were treated as a set of variables and 

applied within the BBCAF machine learning pipeline. Important variables were 

identified using their relative importance to the created models. Different algorithms 

were evaluated in an initial step, then these models were further enhanced with the 

addition of other features from the BBCAF cohort, clinical factors and biomarkers. 

CWT 
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5.2.3 Results and Discussion 

In the model created with only the ECG-derived variables selected to use only 1,136 

variables of the whole set. The best performing model reached an AUCROC 

performance of 0.78 in the training set, whilst performing with an AUCROC of 0.71 in 

the test set. 

In the model combined with the clinical variables, it is possible to achieve a slightly 

higher performance value (95% confidence interval 0.5862-0.7876). Despite the similar 

performance, the created models show new targets from the ECG that can improve 

prediction.Figure 24 depicts the important variables for the combined model. 

 

Figure 24: Scaled importance of the different variables of the best performing model using the features 

extracted from lead II, combined with biomarkers and clinical parameters. In green clinical variables, 

blue biomarkers and red variables extracted from ECGs. 

The resulting performance of those models shows that the models allow a degree of 

separation between patients. These experiments show the potential of markers derived 

from a neural network for the assessment of atrial fibrillation risk. Highlighted variables 

can be treated as biomarkers, and can be handled in a similar way to other omics 

datasets. These biomarkers could also be considered new targets to be further 

explored. The use of systematic approaches in higher dimensional datasets could 

provide insights into ECG mechanisms. Future work should consider investigating the 
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important features in the recording that lead to a specific variable, and approaches 

such as SHAP should assist in this process (220). 

Related to the application of this approach to this problem, there are other methods for 

the direct extraction of features. Approaches such as Yildirim et. al. 2018 (305) that a 

signal is compressed through the use of an autoencoder neural network, and the 

compressed signal can be decompressed in another device for computation. Despite 

the capabilities of compression, the compression is not lossless. An application of a 

similar method to the compression of an ECG signal and its use for the evaluation of 

patient risk could not converge in experiments realised. Chen et. al. 2018 (306) 

explored the use of variational autoencoders in the identification of anomalous ECGs. 

Also considering the use of NN in ECGs, there are approaches in the literature making 

use of generative adversarial networks to the synthesis of ECG signals based on other 

recordings for a patient, performing denoising and selecting features on single beats 

(307), possibly enabling the creation of a model using a reduced amount of data. 

Similarly, LSTM approaches are seen in the literature as an alternative to the 

application of convolutional neural networks (308). 

While AF is a condition diagnosed by the explicit indication of abnormalities in an ECG 

recording (section 1.2.1), it causes pathophysiological changes in the heart, which 

reinforce these changes seen in recordings. Other heart conditions, despite not being 

directly diagnosed or predicted using ECGs, may have underlying patterns, that 

advanced machine learning models could pick. The next sections explore a 

background knowledge on neural networks, and their application to the identification 

of heart failure, a disease associated with AF.  

5.3 Neural Network optimization 

Many aspects affect Neural Networks (NN). There are different types of architectures, 

layers, functions and settings that have differing effects on the outcome (309). 

In section 2.5.5, it was seen that an optimizer iteratively updates the 

weights/coefficients of the model over epochs and batches. Section 3.4.2 describes a 

NN optimization approach and the implementation of NN for the BBCAF problem. This 
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section describes the methodology for the training of advanced neural networks in 

unstructured datasets, inclusive of different layer types. 

The BBCAF model created previously (section 3.4) utilised a range of variables that 

had no direct structure between them, a dense network sufficed. On the dense 

network, it was required to select parameters such as the number of nodes and the 

depth of the network. When working with unstructured data, the network is required to 

handle the interaction between the different variables, the relationships between the 

current sampled point and the previous/next ones. This interaction between these 

signal points is done with convolutional layers, and when applied with other blocks they 

form building blocks with many different settings. 

Further to the use of convolutional and dense layers, the main building blocks for 

unstructured signal analysis are batch normalization, pooling layers, and addition 

layers. Batch normalization improves the learning of a NN reducing the covariate shift 

in the layers, speeding the training whilst reducing generalization error (310). Pooling 

layers are aggregative functions that combine the output of a previous layer, usually a 

convolutional layer into min or max operators that will then reduce the dimension of the 

output (311 347). Addition layers can be used to connect branches of the network that 

were separated, for example, a network can be separated into two paths, one that goes 

through some layers and another that bridges directly, then these parts can be merged. 

When a branch of the network bridges over another branch the formed block is a 

residual block. 

Residual blocks improve models through the abstraction of new features, at the same 

time using older features on the next steps of the model (312). Residual blocks can be 

formed in different ways. In experiments realised, the residual block is formed of two 

paths, starting with an input signal. On a path, the input signal passes through two 

blocks with convolution and batch normalization, on the other path the signal goes 

through convolution and max pooling. The values are then combined and output. The 

size of the kernel and filters can be altered for each of these building blocks, altering 

how the network will detect small features of a signal. This is usually done from a bigger 
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to a smaller kernel size, whilst increasing the number of features. Figure 25 illustrates 

the network architecture used. 

 

Figure 25: Illustration of the network architecture utilised for the unstructured analysis of 

electrocardiograms. Activation functions are not shown. Each rectangle indicates a type of layer on the 

network. (A) shows an overall structure of the network, hyperparameter search tested different numbers 

of layers in different sections of the network. (B) indicates the structure of a residual block, where there 

is a path where more computation is performed and another path that bridges data to the other layers. 

There is a large number of optimization decisions to make, from the number, order and 

size of layers; kernel and strides; activation and loss functions, and so on. To obtain a 

more robust model, different network alternatives are required to be tested. 

The framework developed contains three main parts: (1) generation of search settings, 

composed of different search hyperparameters, (2) model creation with settings 

generated and (3) compilation of the results with performance assessment. 
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Generation of search settings goes through alternatives, making sure that the 

network is compatible with the input signal and output prediction. This involved the 

selection of input files, such as specific signal and dataset versions, output 

performance files and model checkpoints for each case number. It also specified the 

number of epochs, early termination protocols, and whether to execute normal 

sampling or random sampling of batch samples, all with different settings for layers 

and number of filters. 

Model creation. The creation of models follows a parallel paradigm using the 

resources available. Slurm is utilized to control the GPU resources, queueing the 

different search architectures tried (313). 

Results compilation. Model creation assessed the samples using binary cross-

entropy, weighting the unbalanced state of the dataset. The best performing model as 

assessed in the validation set had its AUCROC calculated, and confusion matrices 

were generated for different thresholds over the curve. 

5.4 Early prediction of heart failure using electrocardiograms – Case 2 

Our analysis of ECG in AF demonstrated that there are patterns that can be explored 

in a computational fashion. In the literature, the work of Attia et al. 2020 has shown 

that the ECG itself can be used for the development of models that can predict incident 

AF (299). The prediction of incident AF is due to the physiological changes that come 

with the evolution of AF morbidity, i.e., while the patient had no clear ECG of the 

disease, their heart was already changing. In other cardiovascular morbidities, such as 

HF, there are also underlying physiological changes in the heart that lead to the 

evolution of the disease. As such, and as a natural extension to our work and given 

the association of atrial fibrillation to heart failure, we hypothesised whether standard 

12-lead ECG can be used to the early prediction of HF risk. To be able to assess this 

hypothesis, NN were employed at the UHB dataset. The UHB dataset provides a larger 

number of ECG recordings, facilitating NN to learn rarer patterns. 
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5.4.1 Introduction 

HF is a complex clinical disease triggered by various causes. It has significant 

importance due to high treatment costs, rising prevalence and impact on morbidity and 

mortality. The early identification of factors can help prevent the development of heart 

failure and reduce costs (32). There are a multitude of models to incident heart failure 

in the literature considering different predictors for patient risk (314). All models 

consider age, followed by a substantial number considering blood pressure and sex as 

well. Some models use the left ventricular hypertrophy score from ECG recordings as 

well.  

5.4.2 Data and methods 

This study uses the UHB dataset (section 2.3.4). ECGs were collected between 

December 2008 and March 2018. The ECGs had either a sampling of 500 Hz or 1 kHz. 

Clinical information was collected from internal systems up to October 2019. Patient 

data was collected and matched to the date of ECG recording: age, sex, presence of 

coronary artery disease, hypertension, diabetes, chronic kidney disease, AF, HF. For 

a patient with multiple recordings the data is matched up to the date of each recording. 

Patients were excluded if they had HF diagnosis before the ECG date, when the ECG 

data was not suitable for analysis, such as invalid lead signal, and in cases where at 

the end of follow-up the patients had a reported myocarditis, cardiomyopathy or any 

congenital malformation. Patients were allocated to cases if they had a diagnosis of 

HF, while patients without a coding were marked as controls (Figure 26). 



120 
 

 

Figure 26: Patient inclusion for the heart failure model using electrocardiograms. On top a patient without 

a diagnosis of heart failure is considered a control case. On the bottom, a patient with a heart failure 

coding has all data added as case up to the date of diagnosis, and further ECGs are excluded. 

The 500 Hz ECG dataset was used for model training, selection and initial evaluation, 

with 70%, 15% and 15% splits, respectively. The 1 kHz was down sampled to 500 Hz 

and used as an external validation set, it was separated into two 50% cohorts. If a 

patient would be separated into multiple sets it was instead kept on a single set to 

avoid biasing the models; patients that were both in the 500 Hz and 1 kHz cohort were 

excluded from the 500 Hz set. After exclusions there were 137,018 valid ECGs (65,565 

patients) in the 500 Hz set and 11,886 valid ECGs (9,508 patients) in the 1 kHz set 

(Figure 27). A description of the population is shown in Table 21. 
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Figure 27: Patient flowchart for the electrocardiogram for the prediction of heart failure case. The 

numbers indicate the number of ECGs, followed by patients in parenthesis. cli indicates the cohort with 

complete set of clinical variables. 
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Table 21: Patient description for the cohort used on the electrocardiograms to the prediction of incident 

heart failure model. The patient information reported in this table comes from the first ECG recording for 

each patient. A is reported as mean (standard deviation) B indicates continuous variables, reported as 

median with inter-quartile range (1st-3rd quartile), C are discrete variables reported as the number of 

participants (percentage). Anderson-Darling test was applied to assess the normality of the continuous 

variables, and all continuous variables were identified as non-normal distributions. 

 Characteristic 
 

500 Hz cohort 
n = 65,565 

Missing 1 kHz cohort 
n = 9,508 

Missing 

B
a
s
ic

 

  

ECGs per patient 
 

2.09 (2.31) A - 1.25 (0.62) A - 

Develop HF 
 

3520 (5%) C - 668 (7%) C - 

Age at exam, years 
 

60 (44-73) B 4% 61 (45-73) B 4% 

Sex, female 
 

30268 (46.2%) C 3% 4300 (45%) C 3% 

BMI 
 

27.5 (24-31) B 28% 28 (24.5-32) B 33% 

B
io

c
h

e
m

is
tr

y
  

Sodium (mmol/L)  
 

140 (138-142) B 29% 140 (138-142) B 23% 

Creatinine (mmol/L)  
 

79 (66-97) B 28% 80 (67-96) B 33% 

GFR (mL/min/1·73m²)  
 

86 (59-116) B 48% 85 (60-114) B 50% 

Haemoglobin (g/dL)  
 

13 (12-14) B 60% 13 (12-14) B 48% 

Potassium (mmol/L)  
 

4 (4-5) B 29% 4 (4-5) B 33% 

Urea (mmol/L)  
 

5 (4-7) B 28% 5 (4-7) B 33% 

C
o

-m
o

rb
id

it
ie

s
  

     

Atrial fibrillation 
 

2578 (3.9%) C - 312 (3%) C - 

Coronary artery disease 
 

4980 (7.6%) C - 690 (7%) C - 

Chronic kidney disease 
 

1146 (1.8%) C - 113 (1%) C - 

Diabetes mellitus 
 

4466 (6.8%) C - 575 (6%) C - 

Hypertension 
 

8945 (13.6%) C - 1072 (11%) C - 

Leads that have a linear relation with other leads were ignored. Leads I, II, and V1-6 

were used for analysis. 

CNN models were created using the Keras framework with Tensorflow backend (315). 

Secondary models were created using logistic regression on the clinical variables and 

DNN output. Model performance was assessed using the AUCROC, confidence 

interval was calculated using the Delong’s method (127). Comparisons between these 

models were performed using the Net Reclassification Index (NRI), a comparison 



123 
 

metric between models with defined thresholds of risk, and Integrated Discrimination 

Improvement (IDI), a metric that compares two models without defined thresholds, 

were calculated in R using PredictABEL (316) (317). For the use of NRI, the bins were 

separated into 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%. 

5.4.3 Results and discussion 

The main CNN model yields an AUCROC of 0.806 (95% CI 0.797-0.816), where a 

model with only clinical parameters on the same cohort yields 0.727 AUCROC (0.715-

0.740). The categorical NRI is 0.355 (0.306-0.403), numerical NRI 0.495 (0.440-

0.549), while the IDI is 0.145 (0.128-0.162). A model that uses both the CNN output 

and the clinical values parameters yields an AUCROC of 0.824 (0.814-0.834). When 

evaluating these models against the external dataset, the 1 kHz set, the CNN model 

yields 0.763 (0.743-0.783), the clinical model performs with AUCROC 0.735 (0.710-

0.760). When combining the CNN output into the logistic model, the model yields 0.782 

AUCROC (0.761-0.804). The categorical NRI calculated is 0.123 (0.40-0.207), 

continuous NRI 0.271 (0.174-0.369), and the IDI was 0.063 (0.033-0.093). All 

measures are significant with p-value < 5e-3. Figure 28 shows these results. 
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Figure 28: Performance results for the electrocardiogram model to predict incident heart failure. On the 

left side is a comparison between the CNN and the clinical variables-only models, the shaded part is the 

95% CI, orange CNN, green clinical model. On the right is the performance AUC plot for the CNN and 

clinical variables model. Top and bottom parts indicate the performance of the model on the testing data 

for 500 Hz and 1 kHz. 

We found a model that can be used for the prediction of heart failure. The proposed 

model contrasts well against a risk model for heart failure based only on clinical 

information and biochemistry. The proposed model enables the use of ECG data that 

would not be used to the full extent in heart failure risk assessment. 
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The developed model can be fine adjusted to the identification of higher risk, or discard 

patients with lower risk of incident heart failure. More experiments or a clinical trial 

would be necessary to evaluate with the created models can be effectively used to 

manage incidence of heart failure. 

5.5 Chapter summary 

This chapter showed the application of advanced machine learning approaches to the 

processing and modelling of signal data. While the performance of models using only 

structured data can provide predictions that support care, advanced solutions using 

unstructured signals are capable of further assisting the identification of diseases and 

provide potential to be used in clinical use, both due to their use with routine clinical 

data, and the novel use of data to improve the clinical risk assessment. 

The first case demonstrated that the extraction of (novel) biomarkers from ECG signals 

can be further explored to aid the identification of patterns that can be used in 

combination with other variables so as to improve patient/disease stratification. The 

second case demonstrated a model that can be used to assess patient risk of heart 

failure. Despite requiring clinical evaluation, this last model shows a great potential to 

support the diagnosis. 
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CHAPTER 6 POPULATION DATA 

6.1 Introduction 

Typically population studies include a set of participants recruited based on a set of 

rules delineated in the study design, and these rules can sometimes be very limited. 

In the context of this thesis, these limited rules were exemplified in the BBCAF study 

(section 3.2), where participants recruited had either AF or other risk factors, and were 

referred to a hospital setting. These rules can be broader, such as the case of the UK 

Biobank study, aiming its recruitment to the age range of 40-79 years old (81). 

Whilst other chapters explored intrinsic values of different data types, based on small 

cohorts, this chapter aims to use a limited set of variables and leverage the power of 

large populations to understand epidemiological features, in terms both of static and 

longitudinal features. Rather than exploiting patient datasets at an individualised level, 

patient data are rendered as weighting sample representatives across a big population. 

This chapter investigates patient populations behaviors in the context of a real-world 

datasets (section 1.1). In particular, it examines different patterns across different 

viewpoints, namely, comorbidities, diseases, as well as the translation between 

comorbidities and phenotypes, across 4 different use-cases. The approach adopted is 

generic and can be applied outside the cardiovascular domain and has been used to 

identify potential relations between non-cardiovascular conditions and cardiovascular 

specific manifestations. 

Moreover, this chapter explores the possibility of better describing a population and of 

their traits. It introduces clustering, followed by the analysis of prevalence, correlation, 

and precedence of some diseases. Some of these analyses were performed across 

different cohorts, using data extracted from a secondary care setting, selected cohorts 

participating in the UK Biobank, and primary care data collected in THIN. 

The first use case explores the admissions of patients into the hospital, and how they 

could be better separated and treated, through the identification of differences in 

prevalence and association of comorbidities in difference datasets. In the second use 
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case, the patterns of comorbidity evolution are investigated from a longitudinal point of 

view depicting that participants with reported comorbidities are more likely to develop 

new ones. The third use case explores datasets related to participants that were 

hospitalised for pulmonary related complications and assess whether they form 

different subgroup populations. The fourth use case utilises population data to derive 

potential links between diseases and particular phenotypic manifestations that can be 

then used to semantically define them (354). 

6.2 Clustering of patients 

Clustering is a method that aims to identify the best separation of subgroup populations 

from a given cohort, using a set of features from the dataset.  Each subset clusters 

together participants with more similar features than the overall population. These 

subsets of participants can then be the target for specific treatments, actions, or further 

explorations. For example, the identification of comorbidity subgroups associated with 

different risks can assist the risk assessment of ischaemic heart disease patients (318), 

in a similar way that the identification of heart failure patient subgroups can assist the 

practitioner to provide personalised care (319). 

Many variations affect clustering: data distribution, shape, how the performance is 

assessed, and clustering algorithm. Moreover, clustering algorithms may utilise 

multiple settings ranging from the dissimilarity functions to inherent parameters, also 

affecting the outcome of the clustering model. A clustering model has strong qualitative 

features, and many patterns may not be exclusive due to the clustering, but by the 

interpretation of the analyst. 

Despite the variety of clustering approaches, there is no definite approach to the 

clustering of patients in a comorbidity scenario (320). For this thesis, major clustering 

methods are considered: k-means, hierarchical clustering and mixture models (321). 

k-means clustering is an iterative algorithm that aims to separate the samples into 

subgroups using some reference points as clusters centres, and a distance metric is 

evaluated between each sample and the different reference points. k-means clustering 

has different variations (322). Lloyd’s algorithm starts with randomized points for the 
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reference points, called centroids, with one centroid for each number of clusters. The 

algorithm allocates samples to the nearest centroids, and at each iteration of the 

algorithm, new centroids are created based on the nearest points (323). k-medoids, a 

variation of k-means, utilises real sample points rather than centroids (324). An 

implementation of the k-means algorithm is available in R in the package NbClust; this 

package contains many metrics that can be used both independently or aggregated 

(325).  

After executing clustering algorithms it is necessary to evaluate what is the best 

number of clusters, a classical method for the evaluation of a good number of clusters 

is using the elbow method, which identifies the number of clusters where the loss 

function starts to stabilise (326). 

Hierarchical clustering seeks to group the samples from the bottom-up, forming other 

levels of groups that are re-combined. The algorithm works iteratively. After each 

iteration, the distance between all the samples, or grouped elements, is re-calculated. 

The samples, or grouped elements, that are closest are combined. Then, this process 

is repeated until all the elements are in a single group. It is possible to vary the distance 

metric between the points as well as how the distance between the groups is 

calculated. An implementation of this algorithm is available in standard R using function 

hclust (196). 

Mixture models premise that there are sub-groups of populations within the overall 

population, and models probabilistically the participation of a sample in sub-

populations. These models aim to identify latent classes that describe underlying 

phenomena. For continuous features, sub-groups are expected to have some 

geometric features, with different parameters, such as distribution, volume, shape and 

orientation. There are many packages in R for these analyses, for continuous variables 

is mclust (327), for categorical variables poLCA (328) (329), and for both data types, 

there is clustMD (330). These models can be assessed using the Bayesian information 

criterion (BIC), which penalises the performance as the number of parameters 

increases (331). 
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These approaches require the analyst to decide the number of clusters that will be 

used. Typically, a range of cluster numbers are tested, for example, 2 to 10, and then 

a final decision is made based on the available metrics. Stability is considered a good 

indication of the quality of the modelled clusters (332). It is a good indication if models 

will be recreated using the specific number of clusters and if minor variations in the 

dataset and/or model settings affect the model creation. One approach of assessing 

the stability of a model is through the use of a bootstrapping technique: datasets are 

sampled with replacement, analyses are performed and the variance of the clusters 

are evaluated (333). For example, in an approach by Dolnicar & Leisch 2010 (334), 

bootstrapping was applied using the Calinski-Harabasz index to assess the variance 

of the clusters (this index is calculated using the variance of clusters centres divided 

by the sum of within clusters variances, i.e., the separation of the data points divided 

by the compactness of the values), and the Rand-index (ratio of samples that are in 

the same sub-group for different models) was collected to measure the concordance 

between different cluster models (335) (336). 

The analyses performed in this chapter utilise, in addition to the model creation, the 

assessment of variables difference through statistical testing, creation of risk models, 

survival curves for each subgroup, sub-group prediction modelling, and transformation 

of data points using PCA to assist understanding. 

6.3 Comorbidities associations – Case 1 

6.3.1 Introduction 

When someone has a condition, they are more likely to have other extenuating 

conditions. Although many comorbidity associations are known in the literature, some 

populations have a slightly different comorbidity pattern (337). The understanding of 

the population comorbidity patterns can assist the clinical decision and facilitate the 

treatment course selection. In this activity, we are exploring the different disease 

associations in the UHB dataset and comparing it to the UK Biobank. By performing 

this analysis, we aim to obtain a better overall picture of different datasets and their 

patterns of comorbidity. 
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6.3.2 Data and methods 

The UK Biobank and the UHB datasets were used for this analysis (sections 2.3.3 and 

2.3.4). For this study, a list of 65 clinical important comorbidities, such as AF, heart 

failure, stroke, hypertension and diabetes, was employed for this analysis (Appendix 

6.1). ICD-10 codes were collected from the whole patient record. 

Two main statistical analysis were employed. First, the overall prevalence was 

calculated using the number of patients with a condition divided by the total number of 

patients. Then, associations between diseases were calculated using the Bayes 

theorem (134), with its formula described below, where condition B is the pre-existing 

condition and condition A is the secondary condition, in the form that the resulting 

probability is “given that you have condition B what is the probability that you’ll have 

condition A”. 

𝑃(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐴 | 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐵) =
𝑃(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐴, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐵)

𝑃(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐵)
 

The associations were measured in a pairwise approach for all comorbidities. After the 

generation of the associations, the differences between the different population’ 

associations were evaluated. 

6.3.3 Results and discussion 

Figure 29 depicts graphically the overall disease prevalence. Hypertension is a 

common disease in these populations, with around 25% prevalence, followed by 

diabetes around 10% depending on the dataset. Some of the conditions can be 

associated with complications, such as type 2 diabetes mellitus, whilst “at risk of falls” 

indicate a predisposition from older patients that led to hospitalization. The differences 

for these cohorts do not surpass 10%. 
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Figure 29: Prevalence of different conditions in the UHB (A) and the UK Biobank (B). Comparison (C) 

of the prevalence of diseases between the UHB (blue) and the UK Biobank (red) - the vertical axis 

indicates the percentage of prevalence difference between the sets. 
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The associations for the different conditions and each dataset are presented in 

Appendixes 6.2 and 6.3. Appendix 6.4 presents the differences between comorbidities 

associated with the two datasets.  

For example, atrial fibrillation, dementia, osteoporosis and osteoarthritis have 

increased associations with patients at risk of fall within the UHB dataset. Patients that 

have more falls with injury are usually older, in a similar way that the conditions cited 

above are associated with increased age. This shows an underlying difference 

between the datasets: UHB patients had more at risk of falls reported, possibly due to 

being a more emergency care setting, while the UK Biobank population would have 

more diseases reported with or without falls. 

Mental health conditions, such as depression and bipolar disorder are shown to be 

more commonly associated with the UK Biobank. These conditions are more 

commonly reported in primary care settings, where they are usually identified and 

treated, and when patients have treatments in a hospital, they do not usually need to 

report these conditions. 

Different cohorts may have different patterns of comorbidity, for example, there might 

be an inherent population predisposition, care setting, and or data processing reasons. 

These approaches help to pinpoint these differences and provide a starting point for 

investigating the population differences. We could identify associations in the 

population, describe the data, and provide a comparative description of the cohorts. 

6.4 Temporal analysis of data – Case 2 

6.4.1 Introduction 

While the prevalence for a population provides insights on the final picture seen in a 

cohort, as seen in the previous case, sometimes it is important to know the temporal 

pathogenesis of relative conditions, as it could be the case that a set of patients 

following a different pathway may have a different set of outcomes. 

Other  studies have previously investigated patterns of disease evolution, among 

those, the Danish Disease Trajectory Browser investigated relation pairs for 
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comorbidities in the Danish population (338), Zemedikun et al. 2018 investigated 

relations between comorbidities in clusters from the UK Biobank (339), and Vetrano et 

al. 2020 investigated patterns of comorbidities in clusters in a Swedish population of 

older adults (340). 

In this case study, we hypothesize that there is a time factor that provides new insights 

into the evolution of diseases and the cohort. 

6.4.2 Data description and analysis 

This case utilises the UK Biobank dataset (section 2.3.3). A set of 28 important 

comorbidities is selected for analysis (Appendix 6.5). All patients with comorbidities 

from the UK Biobank are used, and each disease is identified from the HES records, 

where a coded diagnosed affirms that the patient had the condition on a specific date, 

while missing codes are considered that the patient was not diagnosed with it. The 

analysis is separated into two aspects, a pairwise patterns of comorbidity between a 

set of important diseases, and a rule mining algorithm is performed over the time-

sequence. 

Pairwise disease precedence. To evaluate the precedence of diseases, all pairs of 

the 28 conditions were assessed. For each pair, all patients that had both conditions 

were selected, and the difference in days between the dates of diagnosis for the pair 

was calculated. Then, these values were plotted in a histogram. 

Time-sequence mining. This analysis uses the CM-SPADE algorithm to identify time-

based rules for diseases (section 2.5.2) (137). To make this algorithm work, for each 

patient the different times of diagnosis are compiled. For each different time, the patient 

is marked with the conditions that happened before or at the time of the event. CM-

SPADE algorithm goes through the different patients and events building a sequence 

of common events with their related statistics. Figure 30 illustrates how the data was 

selected. 
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Figure 30: Illustration for the different time points used for time-based analysis. The vertical lines indicate 

the beginning and end of the records and all the different diagnosis events for a hypothetical patient. A 

patient might have up to 28 different events recording new diagnoses. 

6.4.3 Results and discussion 

Pairwise disease precedence. The mean number of patient-disease pairs is 1,415.39 

(standard deviation 2,936.01). Ischaemic heart disease and hypertension are part of 

the pair with the highest number of patients, with 29,810. Results are shown in Figure 

31. The V-shape comes from the reduced number of days in the centrally selected 

bins. After visual inspections, two diseases were identified to have marked contrasts 

in their histograms, those are asthma and HIV. 

Asthma tends to be identified before other diseases; it has a strong genetic 

predisposition component. Different studies have seen asthma precedence over other 

diseases, cases where asthma was diagnosed before anxiety (341), arthritis (342), and 

chronic kidney disease (343). Asthma treatment with or without steroids influences the 

outcomes of these patients. Patients that had steroids medication have a higher risk 

of developing chronic kidney disease. Not only the initial presence of asthma and its 

treatment influences the predisposition to other conditions, but it also leads to lifestyle 

changes (343). 

HIV has a much different pattern than other comorbidities. This is due to it being an 

infectious condition. It is not an estimated subsequent step of any condition. But it might 

Anxiety 

HIV 

Stroke/TIA 

Asthma 
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proceed with the development of multiple conditions if the patient contracted it early 

enough or if it was left untreated. 

 

Figure 31: Representation of pairwise disease precedence in the UK Biobank.  Histogram of time 

between disease on the row against the one on the columns. Ticks in the middle indicate a close interval 

between diseases. Positive (to the right of centre line): column disease before; row disease after. 

Negative (to the left of centre line): column disease after; row disease before. The V pattern is due to 

the bins selected. The bins boundaries are: -20 years, -10 years, -5 years, -2 years, -1 year, -6 months, 

0, +6 months, +1 year, +2 years, +5 years, +10 years, +20 years. Empty relations indicate there is no 

data available for the pair. Bin height is scaled to the row of pairwise relations. 

Time-sequence mining. Due to the intention of knowing the different pathways 

between the diseases, only participants with at least 3 comorbidities were selected for 

analysis. This reduced the UK Biobank dataset to 65,537 participants. 
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Despite the large number of rules found in the algorithm, the results are exemplified 

on participants having asthma. In the UK, the prevalence of asthma is 6.5% (344). For 

patients that had at least 3 reported comorbidities, the prevalence of asthma goes to 

26.52%. Out of these patients, 71.43% are reported with asthma twice, falling to 

54.64% on thrice (this due to the prevalence of other conditions/how early the patient 

had asthma). The population that had asthma reported after anxiety is 1.54%, and the 

population of the dataset that had reported anxiety after asthma is 2.50%.  It is also 

the case that 13.61% of the population have asthma before reported hypertension, 

whilst 13.41% have it the other way around (hypertension before asthma), and while 

the former has the confidence of 51.31% of happening, the latter only 17.03%, i.e., 

patients that have asthma are more likely to have hypertension coded after an asthma 

diagnosis, rather than the other way around. 

Furthermore, there are some associations between the 3 terms identified, such as 

2.11% of the patients will have asthma followed by diabetes then hypertension. For 

those with the two first conditions, 41.30% will have hypertension. Looking at it the 

other way, 2.42% of the patients will have asthma followed by hypertension and then 

diabetes, for those participants with the two first conditions, only 17.79% will have 

diabetes. 

Figure 32 illustrates the trajectories explored. Despite similar numbers of patients that 

have one condition then another, the ratio of those with some conditions that end up 

developing other conditions is very different, with conditions such as hypertension 

predominantly happening last. 
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Figure 32: Illustration of patients’ trajectory. The different circles indicate different conditions in the 

dataset, the edges indicate trajectories identified, the numbers indicate the prevalence and incidence of 

different subgroups. Population (pop) percentages are for patients that had both (A) or all 3 (B) 

conditions. “Then developed” percentages indicate patients that had the first (A) or the two initial 

conditions (B) that would then develop the second (A) or third (B) condition. 

The patterns of comorbidity are very complex, and there are different ways of 

assessing them. This study has exposed a way of investigating these medical datasets 

on a big scale. This way provides an overview of the population and might be done as 

the first assessment of the population morbidity trajectory. 

6.5 Chronic obstructive pulmonary disease patients’ stratification – Case 3 

6.5.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a common disease, it can be 

prevented and treated. Patients usually have some symptoms: dyspnoea, cough and 

sputum production. The development of COPD is propitiated by genetic predisposition, 

smoking, pollution, and low air quality. Other chronic diseases increase COPD 

morbidity and mortality (345). 
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The degree of COPD is determined by the relation of two measurements: the forced 

expiratory volume in 1s (FEV1), and the forced vital capacity (FVC). These 

measurements are obtained in a spirometry test, and a value of are 
𝐹𝐸𝑉1

𝐹𝑉𝐶
<  70% is a 

common threshold to indicate at least a moderate airflow limitation. 

Decreased values of either FEV1 or FVC are associated with AF incidence (346), and 

the hospitalization of AF patients is higher among those with low FEV1. The Rotterdam 

study showed a 28% increase in risk of AF for COPD patients (347). Furthermore, 

COPD is associated with other cardiovascular conditions, with an effect where one 

conditions worsen the other - patients require a combined treatment to supress the 

worsening of either conditions (348) (349). 

In this case we hypothesized that a more personalised treatment for a COPD patient 

could improve care. We investigated the presence of subgroups of COPD patients are 

the time of first admission with diagnosed COPD into the hospital. This study was 

performed using the UK Biobank data. 

6.5.2 Data description and analysis 

The UK Biobank dataset was utilised for this analysis. 14,689 participants that had a 

diagnosis of COPD were included. Participants without FEV1 or FVC data, or a value 

above 70% were excluded from analysis. In total, 6,195 participants were included on 

analysis (Figure 33). 
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Figure 33: Patient flowchart for the COPD clustering study. Patients were collected from the UK Biobank. 

Dashed boxes indicate excluded participants. 

Patients had extensive data collected: demographic variables: age, sex, smoking 

status and body mass index; biochemistry results inclusive of eosinophils count and 

percentage, neutrophil count and percentage, lymphocyte count and percentage, white 

cell count and percentage, platelet count, haemoglobin, C-reactive protein, estimated 

glomerular filtration rate (derived using the Modification of Diet in Renal Disease Study 

formula (350)), urine albumin creatinine ratio, haemoglobin A1c, total cholesterol, LDL 

cholesterol, HDL cholesterol, triglycerides, and vitamin D concentration; symptoms: 

shortness of breath walking on ground level, chronic cough, chronic phlegm, wheeze, 

fatigue, chronic pain, weight change (loss/gain), poor sleep/insomnia, chest pain, 

anxiety and low mood; comorbidities: ischaemic heart disease, stroke, transient 

ischaemic attack, peripheral vascular disease, heart failure, hypertension, atrial 

fibrillation, asthma, bronchiectasis, diabetes, chronic kidney disease, dementia, 

duodenal and gastric ulcer, epilepsy, HIV, hyperthyroidism, hypothyroidism, 

inflammatory bowel disease, chronic liver disease, malignant neoplasms, 

osteoarthritis, osteoporosis, Parkinson’s disease, sleep apnoea, rheumatoid arthritis, 
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depression, and anxiety; other clinical measurements such as systolic and diastolic 

blood pressure, restring pulse rate, total bone mineral density score, FEV1, FEV1 z-

score, FEV1 percent predicted, FVC, FVC z-score, peak expiratory flow rate (PEFR), 

predicted PEFR, percentage of predicted PEFR, LVEF. 

All comorbidities were collected up to the date of COPD diagnosis using UK Biobank 

HES records. Other variables were collected at the time of patient recruitment. 

Clustering analysis was performed in R using the poLCA package (196) (328). The 

experiment was repeated 100 times with bootstrapping. Comorbidities data was used 

for analysis and the remaining variables were used for reporting. The best number of 

clusters was identified using the BIC (331). After the identification of the best number 

of clusters, models were created using the whole data. Rand-index was used to 

compare cluster models (335) (section 6.2). Fisher test was performed on the 

categorical variables, analysis of variance (ANOVA) on the numeric variables.  

6.5.3 Results and discussion 

After model creation, the best number of classes differed between the models. The 

best number of clusters is 3, with some bootstraps showing best performance on up to 

5 clusters (Figure 34). 

 

Figure 34: Frequencies of the best number of clusters over the bootstrapping iterations.  
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The agreement, as measured by the Rand-index, was of at least 72%, and up to 86% 

between the different models. These indicate that, although there are some variations 

using a different number of clusters, the participants in a group are commonly grouped 

together by other models. A final model with 3 clusters was used.  Most of the patients 

were in a same group 1, with 4,081 patients, a smaller group 2 contained 348 patients, 

whilst a group 3 contained 1,766 patients. 

The overall distribution of comorbidities in shown in Table 22. A relation of numerical 

variables is shown in Table 23, information of number of comorbidities is shown in 

Table 24. A complete relation of categorical variables is available in Appendix 6.6. 

Table 22: Distribution of comorbidities in each COPD clusters. Values are reported as number of 

participants (percentage in group). 

 Comorbidities Fisher tests (p-value) Group 1 (4081) Group 2 (348) Group 3 (1766) 

C
o

m
o

rb
id

it
ie

s 

Anxiety p < 1e-3 13 (0%) 143 (41%) 56 (3%) 

Asthma p < 1e-3 850 (21%) 147 (42%) 490 (28%) 

Atrial Fibrillation p < 1e-3 105 (3%) 26 (7%) 450 (25%) 

Bronchiectasis 0.148425787 115 (3%) 12 (3%) 66 (4%) 

Chronic Kidney Disease p < 1e-3 28 (1%) 19 (5%) 186 (11%) 

Chronic Liver Disease p < 1e-3 29 (1%) 28 (8%) 22 (1%) 

Dementia p < 1e-3 9 (0%) 6 (2%) 20 (1%) 

Depression p < 1e-3 139 (3%) 199 (57%) 89 (5%) 

Diabetes p < 1e-3 117 (3%) 23 (7%) 612 (35%) 

Duodenal and Gastric Ulcer p < 1e-3 144 (4%) 27 (8%) 110 (6%) 

Epilepsy p < 1e-3 49 (1%) 33 (9%) 46 (3%) 

Heart Failure p < 1e-3 24 (1%) 6 (2%) 314 (18%) 

HIV 1 3 (0%) 0 (0%) 1 (0%) 

Hypertension p < 1e-3 985 (24%) 118 (34%) 1554 (88%) 

Hyperthyroidism p < 1e-3 10 (0%) 30 (9%) 25 (1%) 

Hypothyroidism p < 1e-3 189 (5%) 75 (22%) 117 (7%) 

Inflammatory Bowel Disease p < 1e-3 44 (1%) 20 (6%) 42 (2%) 

Ischaemic Heart Disease p < 1e-3 265 (6%) 46 (13%) 1048 (59%) 

Malignant Neoplasms p < 1e-3 706 (17%) 96 (28%) 333 (19%) 

Osteoarthritis p < 1e-3 35 (1%) 29 (8%) 37 (2%) 

Osteoporosis p < 1e-3 128 (3%) 85 (24%) 53 (3%) 

Parkinson’s Disease p < 1e-3 5 (0%) 6 (2%) 12 (1%) 

Peripheral Vascular Disease p < 1e-3 69 (2%) 19 (5%) 356 (20%) 

Rheumatoid Arthritis p < 1e-3 83 (2%) 55 (16%) 62 (4%) 

Severe Mental Illness p < 1e-3 20 (0%) 17 (5%) 9 (1%) 

Sleep Apnoea p < 1e-3 38 (1%) 12 (3%) 79 (4%) 

Stroke Tia p < 1e-3 42 (1%) 17 (5%) 189 (11%) 
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These groups have different comorbidity patterns. Patients in the first group tend to 

have a smaller comorbidity history than the others. Group 2 have the most patients 

that have some mental issues and malignant neoplasms, whilst group 3 contains 

patients that suffer the most from cardiovascular conditions. 

Table 23: Relation of numerical features for each COPD cluster. Values are reported as median (1st-3rd 

quartile). 

Numerical features ANOVA (p-value) Group 1 (4081) Group 2 (348) Group 3 (1766) 

Age (disease) 1.41E-40 65.31 (59.94-69.57) 65.32 (58.88-69.68) 67.97 (63.43-71.37) 

BMI 6.25E-63 26.23 (23.34-29.61) 26.16 (23.21-29.46) 28.72 (25.44-32.54) 

Weight 4.72E-71 74.4 (64.30-84.93) 72.65 (62.83-84.40) 82.6 (71.62-95.60) 

Time until death 1.86E-08 1054 (243.00-2536.00) 612 (122.33-1378.33) 745 (229.83-1616.33) 

Time until re-admission 2.99E-13 37 (0.00-518.00) 21.5 (0.00-242.50) 32.5 (0.00-316.08) 

Further to the comorbidity separation, group 3 has higher BMI and older patients. Ages 

of groups 1 and 2 are similar, although ANOVA analysis showed differences between 

all groups. 

Table 24: Information about number of comorbidities for each COPD cluster. Values are reported as 

number of patients (percentage in group). 

Number of comorbidities Group 1 (4081) Group 2 (348) Group 3 (1766) 

comorbidities (>=1) 2820 (69%) 348 (100%) 1766 (100%) 

comorbidities (>=2) 1146 (28%) 348 (100%) 1766 (100%) 

comorbidities (>=3) 259 (6%) 290 (83%) 1353 (77%) 

comorbidities (>=4) 18 (0%) 169 (49%) 809 (46%) 

comorbidities (>=5) 1 (0%) 81 (23%) 400 (23%) 

comorbidities (>=6) 0 (0%) 37 (11%) 178 (10%) 

comorbidities (>=7) 0 (0%) 12 (3%) 75 (4%) 

comorbidities (>=8) 0 (0%) 6 (2%) 21 (1%) 

median (IQR) 1 (200%) 3 (100%) 3 (100%) 

Patients in the groups 2 and 3 have more comorbidity history.  
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Figure 35: Survival analysis for each COPD cluster. In A the readmission curves censored to 180 days, 

in B the mortality curves up to 360 days. 

Patients in group 1, with a reduced severity and number of comorbidities tend to take 

longer to be readmitted and have a lower mortality rate. Patients with mental issues 

and malignant neoplasms tend to be admitted earlier, and their mortality, although 

varying is very similar to group 3, with predominantly cardiovascular diseases (Figure 

35). 

The analysis shows that, for a new patient being admitted with COPD diagnosis, this 

patient tends to belong to one of 3 distinct groups: a cardiovascular group, where a 

quarter of the patients have atrial fibrillation; a mental issues/higher risk patient group, 

where there is not a predominant profile of cardiovascular disease, but the severity risk 

of the group is high. Group 1 contains lower risk patients, these tend to have a lower 

number of comorbidities, and are shown to take longer to be readmitted and tend to 

survive longer. These different groups can then be considered for targeted clinical 

care. 
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6.6 Patient phenotypes – Case 4 

6.6.1 Introduction 

Reference values can simplify the interpretation of laboratory tests, values that are too 

far from normally seen values indicate that a patient might suffer from a condition and 

could indicate the need for a clinical investigation. In some cases, the abnormal 

measurement is an indication of the disease itself, such as the case of haemoglobin, 

where the measurement of haemoglobin A1c, glycated haemoglobin, which is linked 

to sugar, when in elevated numbers indicate a higher risk for diabetes, a much higher 

number indicates that the patient has diabetes. 

Despite not always having a cut-off to indicate the definition of diseases, abnormal 

values can be good indicators of conditions, such as the case of BNP and heart failure, 

or other cardiovascular conditions. 

In this case, we explore the associations between conditions and patient biochemistry 

results. These associations could be used as a comprehensive relation between these 

terms, even indicating conditions that are not usually referenced in the literature, and 

it is hypothesised that by applying this relation it is possible to capture genetic 

differences. 

6.6.2 Data description and analysis 

The UHB dataset was utilised for this analysis, the part of the dataset used contains 

patient biochemistry phenotypes, and comorbidities coded using ICD-10. The UK 

Biobank dataset is utilised to validate the results, the dataset used contains patient 

comorbidity history and SNP information. 

Each phenotype result available contains a value, date when the exam was performed, 

and a label indicating if the patient had a measurement that was higher or lower than 

the defined NHS Biochemistry Reference Ranges (351). For normally distributed 

values, this normality range is calculated with the 95% confidence interval for a 

population. The normality range has differences depending on sex, age, and genetic 

ancestry. 
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For each patient and each test available, the first phenotype instance was collected up 

to September 2019, e.g., for a patient that had 3 glucose tests and a single potassium 

test: only the first glucose test and the single potassium test were collected. Then, for 

each exam instance, all ICD-10s up to 7 days after the date the phenotype were 

collected. These criteria assure that any diagnosis due to a blood test is taken into 

consideration and that a patient is not used more than once for comparison. 

For each pair of biomarker and condition, the following analysis was performed: when 

the number of samples was under 5, Fisher’s exact test was performed to obtain the 

significance, other cases chi-squared test was employed (115, 116). The odds ratio 

was assessed using Fisher’s contingency matrix, between each abnormality term and 

the normality status of the blood test. The formula is: 

𝑂𝑅 =
𝑁𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑒𝑠𝑡 × 𝑁𝑛𝑜 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑒𝑠𝑡

𝑁𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑒𝑠𝑡 × 𝑁𝑛𝑜 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑒𝑠𝑡
 

Cases without 5 patients available for each possibility were ignored. P-values were 

corrected using the Benjamini-Hochberg method (352) (353), comparisons with an 

adjusted p-value under 0.05 were kept for investigations. 

Significant abnormal terms with OR above 1 were then combined to form a simplified 

set of abnormal terms: above, not above, normal, not below, below, and not normal. 

The combined OR was calculated as the distance magnitude (square root of the sum 

of the squared terms). 

After compiling the relation of terms, the list of significant associations was matched 

against the UK Biobank cohort. For each patient disease, the corresponding phenotype 

and the abnormality status was added to the patient data. For the different phenotypes, 

patients were separated into normal and abnormal samples, then evaluated for 

genomic differences using GWAS. 

6.6.3 Results and discussion 

There were 140 phenotypes collected, including biomarkers that have minor 

differences, such as being reported in different units (a full relation is available in 
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Appendix 6.7). Despite having similar terms, they represent technical variations and 

represent traits associated with a period. After filtering for significant conditions, there 

were 134 phenotypes with valid associations and, 67,643 relations were generated on 

3,628 unique ICD-10 terms, the mean number of relations per ICD-10 term was 18.64. 

In the UK Biobank, 392,296 patients with a least one ICD-10 coded were selected and 

11,469 unique ICD-10s, and 134 blood phenotypes. In total, there are 3,449,190 

connections between the nodes, a total of 3,396,584 reported ICD-10s, an average of 

8.65 ICD-10 per patient, and 52,606 relations between ICD-10s and phenotypes. 

The relationships between diseases and phenotypes were created using abnormality 

information. A disease can be associated with a phenotype that is normal, abnormally 

low, abnormally high, abnormally high and low, not low, or not high – these cases cover 

all the options for values that can be normal, higher or lower than normal. It could also 

be the case that a disease is not associated with any phenotype value range, while a 

disease can't be associated with all of these intervals at the same time. 

GWAS investigations on different phenotypes did not yield novel significant SNPs. 

However, evaluating glucose phenotype measured by haemoglobin results, some top 

SNPs were found to be associated with diabetes (Appendix 6.8 list some highly 

important SNPs). Furthermore, the representation might enable the translation of terms 

between different dataset types, and, if expanded on other terms and datasets, can 

provide links to data analysis, as an ontology (354). 

Limitations. We did not investigate if associations change when going up the ICD-10 

hierarchy. It could be the case that E10.0 Type 1 diabetes mellitus with coma indicates 

one association, E10 Type 1 diabetes mellitus another, E10-E14 Diabetes mellitus 

something else, and the overall Chapter IV Endocrine, nutritional and metabolic 

diseases, which contains all the terms, could indicate another phenotype relation. It 

was expected that the strongest signal would be in the lowest terms. 

Many variations could give different insights on the dataset, such as the use of a more 

comprehensive dataset, such as primary healthcare records that rather than using 

blood tests would use more described phenotypes from Read Codes. There could be 
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different groups of normality ranges, directly generated from the population used, and 

the use of a different exam, rather than limiting the analysis to the first clinical 

presentation. 

6.7 Chapter summary 

This chapter challenged patient cohorts to identify disease patterns. It showed that 

datasets on a population scale are powerful to identify patterns between multiple 

diseases and variables. We demonstrated it through different epidemiological 

exploratory analysis.  

Cases 1 and 2 provide an overall description of a dataset, it is possible to identify 

conditions that are more highly expressed in a cohort, and the data-driven approaches 

employed to assist the analyst to understand broad data patterns. These approaches 

start separating the patients into comorbidity subgroups. Case 3 shows that within the 

population, there are also sub-populations with distinct subtypes of a disease, a 

separation that enables a targeted treatment. Case 4 illustrates the generation of novel 

representations for patient characteristics, with the passage of these representations 

between different datasets to the increment of patient data. All cases explored the 

power of datasets at a population level, and applications to a better understanding of 

the data, improving the knowledge about patients and diseases. 

Despite no case specifically focusing on cardiovascular disease, there are marked 

results that show cardiovascular insights in this scale of population data. In the first 

case, the prevalence of cardiovascular conditions is exposed with a highlight on the 

severity of NHS patients, and the differential of cardiovascular morbidity expression 

(Appendix 6.4). The identification on patients’ pathway of hypertension when asthma 

or diabetes are involved also show the effect of cardiovascular conditions on the 

temporal development of morbidity (Figure 32). In the third case studied, the use of 

machine learning techniques to cluster patients shows a clear sub-grouping of 

cardiovascular patients. 
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CHAPTER 7 A NOVEL CLINICAL DATA INTEGRATION FRAMEWORK ACROSS 

MULTIMODAL MULTIDIMENSIONAL DISPARATE RESOURCES 

7.1 Introduction 

A multitude of tools exists for the storage and handling of data. The storage of data 

may be in different formats, such as flat files, comma-separated values, spreadsheets, 

or in more traditional table-structured relational databases systems, such as 

PostgreSQL and Microsoft SQL (355, 356). 

Data scientists frequently operate with datasets available from one or multiple sources, 

which may range in format, mode, or subject. If there are a multitude of datasets there 

is an overhead of extracting and concatenating datasets tailored to the available data 

sources; this process of data integration imposes a challenge for a data scientist who 

already usually expends the majority of their time processing and cleaning the data. 

In the infrastructure of a usual hospital, there are different datasets with either different 

systems or operated from different locations due to a variety of products handling parts 

of the operation. None of the different datasets fit into a workstation memory (e.g., in 

the local UHB data a single database backup uses over 130GB of disk space) and the 

different datasets may require filters and other corrective procedures before use. 

Nonetheless, the dataset may contain facts spread over different tables and schemas, 

requiring the scientist to learn data details, further complicating and delaying actual 

analysis. 

One widely used way of integrating data in the biomedical literature is through the use 

of ontologies (357). Ontologies are a hierarchy of concepts, providing a common 

language to the representation of things. Ontologies have a domain vocabulary, e.g. 

the human phenotype ontology (358). Ontologies are composed of classes, identifiers 

indicating phenomena, and logical axioms indicating relationships between these 

classes. A formal definition of knowledge allows ontologies to be used in a 

computational fashion: the use of the same identifier in different datasets can be used 

to link the knowledge together, and the relationship between classes can be used to 

expand on its knowledge. For example, in the human phenotype ontology (358), the 
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term HP:0005110 indicates Atrial fibrillation, this term is a child of the Atrial arrhythmia 

term, which is a child of the Supraventricular arrhythmia term, and so on until the root 

term of the ontology. Furthermore, the Atrial fibrillation term is connected to other 

hierarchies with other equivalent terms, such as the Medical Subject Headings (359), 

enabling the use of information in different scopes. 

There are many tools for the handling of data passage and concatenation of different 

datasets.  Many solutions are private software, some of them offer cloud solutions to 

data integration, e.g., Oracle (Austin, USA) and Microsoft Azure (Mountain View, USA). 

These solutions aim to compile data from different data sources for real-time business 

analytics. Despite the offerings of private solutions to data analysis, the availability of 

data integration solutions to research study construction is limited, usually limited to 

individual packages and solutions that handle some data operations, such as transform 

and merge datasets.  

Analysts work and integrate data using a set of computing language and tools. A recent 

survey of the Kaggle data science website shows R, Python and SQL as the top used 

languages (360). SQL (Structured Query Language) is a database language 

specialised in the handling of large datasets; it offers capabilities for data integration, 

however, is very limited on the analysis in itself, and is usually used to integrate and 

pre-format datasets before exporting them for further analysis in other statistical 

analysis languages (189). Python and R contain different solutions to the integration 

of data. Whilst in default R, operations to read and merge datasets can be performed, 

libraries such as tidyverse can improve the process, with its comprehensive set of 

functions to do any type of data preparation and transformation (361). Python has 

different libraries that are capable of reading and operating upon datasets, interacting 

with different formats of data, software and frameworks; some well-known packages 

are numpy and pandas (362). 

Further to standardised packages, other specialised tools are capable of extracting 

data for analysis. These packages collect data from a format, transform and load into 

another format, these are Extract-Transform-Load (ETL) tools. Bonobo is an ETL 

package in Python that utilizes a graph architecture for the matching of data, however 
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does not allow the specification of rules for data extraction and requires a specific 

implementation for each data source (363). Bubbles is an ETL package in Python for 

data processing and data quality measurement, it works on top of other data extraction 

packages, it is capable of data integration however does not allow filtering with rules 

based on each data-point values (364). Karma utilises an ontology approach to the 

integration of different data sources, it contains semantic rules from the RDF data 

model (365) (366). And, in a similar approach, LinkSuite utilises ontologies for the 

integration of data in different scales (367). 

In the healthcare context, there are large amounts of data, followed by a broad range 

of solutions for data management (25). The systematic handling of healthcare data 

aims toward a system that can enable personalised medicine and reduced time for the 

development of trials. In addition to these, the governance, reproducibility and 

interpretation of models are of increased importance in medicine (368). The green 

button is an approach that illustrates the re-use of EHR data, where a patient is 

matched against a patient in a similar scenario (369). Hemingway et al. 2018 explore 

tendencies for big data analysis in cardiovascular research, with an increased number 

of trial datasets that can be re-explored for further research questions (370). And on 

the other side, the use of EHR systems can improve the results from trial datasets, as 

seen in cerebrocardiovascular death risk assessment, where EHR models perform 

better than the Framingham dataset (371). 

In the NHS there are a few approaches that illustrate the use of data integration: 

OpenPrescribing.net unifies open England’s NHS drug prescription datasets and 

provide an online tool for analysis (372); schematise a framework for correlation 

analysis (373). These approaches represent different data in a unified framework, 

enabling the re-use of data. 

There are different tools and approaches to extracting, integrating, and managing 

healthcare datasets. While they may be able to handle big datasets, they do not handle 

dependencies between datasets or have a limited performance for bigger datasets. 

Moreover, some approaches ignore aspects of time boundaries for reproducible data 

extraction and do not have standardised data. Still, there are requirements to (1) 
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integrate data in different silos, (2) simplify the data collection pipeline and (3) handle 

datasets in a generic interface. This chapter describes a framework for the handling of 

big tabular datasets, and integrator, a study cohort preparation tool that is included of 

cross-mapping references over different datasets and fast compilation of data with 

complex relations. 

7.2 Integrator – Case 1 

7.2.1 Introduction 

It was described in the chapter introduction that there are different tools for the 

extraction and integration of data, such as Bonobo, Karma, and R or Python with their 

many packages. Still, these packages require multiple steps and internal knowledge of 

underlying datasets. 

A solution to combining datasets is through the transformation of the data into the 

OpenEHR standards (374), but it requires big transformations to the underlying 

dataset. There is a balance between changing the whole system for the generation of 

research datasets, and the use of the normal dataset. Furthermore, there is a barrier 

to the understanding of the whole system for the construction of datasets for analysis. 

This tool proposes to become an intermediary, solving the problem without big 

transformations; it collects the data from different sources and output a dataset ready 

for analysis (Table 25 compares the different methods). 
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Table 25: Comparison between different data approaches to study data collection. Despite the 

differences between the tools, it is exposed as in the different tools found. Knowledge of databases 

indicate how much of the databases you need to know to efficiently work using the different tools; 

Modification of databases indicate if the underlying database needs to be changed to use the approach; 

Data collection toolset indicates how much of the process needs to be implemented to efficiently use 

the approach; Extraction rules indicate if it is supported, included of time-based rules on time and 

association with other terms. 

Solution Knowledge of 
databases 

Modification of 
databases 

Data collection 
toolset 

Extraction 
rules 

Standard 
R/Python 
packages 
(361) 
(362) 

Yes No Manual Manual 

ETL tools 
(363) 
(364) 

Yes Depends Yes Some 

OpenEHR 
(374) 

No Yes Yes Yes 

Integrator 
(proposed 
approach) 

No No Yes Yes 

7.2.2 Data description and analysis 

Integrator framework is built in Python on top of the pandas package and is available 

online on GitHub (15). First, the different components of the approach are discussed, 

the mapping and data extractors, then the main architecture, which unites the 

framework. 

Mapping different contexts. Data may be labelled using different identifiers, which 

may be equivalent, indicate different scales, mode of presentation, or different data 

sources altogether. It is very often the case that the data needs to be linked before 

compiling related data. To do that, two types of reference mappings were implemented: 
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a mapping from a sub-scale into an upper-scale, such as the case of different levels of 

identifiers, and mapping from different reference identifiers, such as the case of 

synonym identifiers, for the same thing, in different datasets (Figure 36). 

 

Figure 36: The different data mapping modes. A represents the case of identifiers that are in different 

scales, such as postcode, where census uses groupings of identifiers. B indicates the case where a 

data point is in different datasets with a different set of identifiers. 

A variable can be associated with others through different mappings. The mapping 

framework extracts the minimum number of steps using a breadth-first search (375), 

combining operations that have the same source (Algorithm 1). The complexity of the 

algorithm is O(E*I + E²*O²), where E is the number of mapping extractors, I the number 

of input variables, and O the number of output variables (target required columns). 

Despite the apparent complexity of the algorithm, this method reduces the requirement 

of multiple extractions on the database, i.e., this method is run once, while multiple 

extractions would be data intensive. 
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Algorithm 1: Python pseudocode for the matching algorithm. Edges indicate different 

data source extractors with links between mappings. Path is formed of information from 

the input variable, the extractor for the link, and the output variables. 

procedure Ends (list of paths) 
 ends = empty list 
 for path in list of paths: 
  ends.append(“last item of path”) 
 return ends 
 
procedure HasSameEdge (path, other_path) 
 for InputVariable, ConnectingEdge in path 
  for OtherInputVariable, OtherConnectingEdge in other_path 
   if InputVariable == OtherInputVariable and ConnectingEdge == 
OtherConnectingEdge 
    return true 
 return false 
 
procedure CombinePaths (path, other_path) 
 for InputVariable, ConnectingEdge, OutputVariable in path 
  for OtherInputVariable, OtherConnectingEdge, OtherOutputVariable in other_path 
   if InputVariable == OtherInputVariable and ConnectingEdge == 
OtherConnectingEdge 
    NewPath = path 
    NewPath.remove(InputVariable, ConnectingEdge) 
    NewPath.append(InputVariable, ConnectingEdge, [OutputVariable, 
OtherOutputVariable]) 
    return NewPath 
 return failure 
 
procedure Mapping (InputVariables, Edges, OutputVariables) 
 PathsToExplore = InputVariables 
 CompletePaths = empty 
 for path in PathsToExplore 
  for NewVariable in Edges[path] 
   NewPath = path 
   NewPath.append(Edges[path]) 
   if NewVariable in “output variables” 
    if NewVariable not in Ends(CompletePaths) 
     CompletePaths.add(NewPath) 
   else 
    PathsToExplore.add(NewPath) 
 for variable in OutputVariables 
  if variable not in Ends(CompletePaths) 
   return failure 
 CompiledTargets = empty 
 for path in CompletePaths 
  for other_path in CompletePaths 
   if HasSameEdge(path, other_path) 
    CompletePaths.remove(path) 
    CompletePaths.remove(other_path) 
    CompletePaths.add(CombinePaths(path, other_path)) 
 return CompletePaths 
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Data extractors. Extractors are components that return data from a set of identifier 

variables. These components must be implemented to fit the underlying dataset, and 

it must return a pandas data frame. The two types of extractors defined in the 

framework are directly associated variables and time-associated variables. The first 

type is initialised with the required reference columns for direct matching when 

executed other data associated with the identifiers of relevance are merged into the 

original dataset; the latter type requires the specification of the identifier and time 

reference for each of them, and the data source is matched with the identifier and event 

time, returning features associated with an event. Figure 37 illustrates these different 

data sources. 

 

 

Figure 37: Illustration of the datasets involved in the process. (A) The input dataset, which contains at 

least one identifier column and may contain other reference mapping columns, such as other identifiers 

and date variables. (B) Different source datasets that an extractor will query, on the top two columns 

different features are extracted from different sources, in the bottom dataset a date column provides 

advanced questions that can be asked. 

Abstract implementation for these extractors is available, and for some data problems 

explored in this thesis, problems described in sections 4.6, 5.4 and 6.5, were 

implemented to fit the UK Biobank and the UHB data. 
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Architecture. The tool combines the use of the mapping and data extractor 

functionalities. Figure 38 illustrates how the tool works. 

 

Figure 38: The different components in Integrator. The Collector component interfaces with mapping 

handles and the data extractors, mapping handler maps one identifier to another type, data extractors 

handle the collection of data from the database back to Collector. 

Collector orchestrates the different parts of the tool, it goes through identifiers needed 

and set mapping transformations, add these operations as a data extractor, and 

handlers the data collection and concatenation. Mapping indicates different mappings 

that could be in a dataset and that may be required to select all the required data. Data 

extractor is separated into two main types of data that may be collected: data directly 

mapped via an identifier and data that is associated with a time. 

The Collector procedure has three main steps: an initial setup step for configuration, a 

step for data collection and a final step for data return. 

1) Initial setup. Check for a valid input dataset format. Make a copy of the data 

extractors’ relation. Verify mappings and build a graph to map reference 

variables. 

2) Data collection. 

i. Identify missing reference variables and append to the beginning of the 

extractors relation if required, using the mapping sources. 

ii. For each chunk in the dataset: 

a. For each data source/extractor in the mapping: 

1. Collect relation of reference variables to mapping. 
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2. Call data extractor with reference variables. 

3. Merge extracted variables in batches. 

3) Return new dataset. The dataset can be returned in a file that is appended, or 

as a data-frame ready for analysis. 

Applied cases. This tool was applied in different scenarios, explored differently 

throughout this thesis: 

1. Sampled GWAS of Atrial fibrillation – Section 4.6 

2. Early prediction of heart failure using electrocardiograms – Section 5.4 

3. Chronic obstructive pulmonary disease patients’ stratification – Section 6.5 

These cases involved the implementation of the solution to the underlying data and the 

application of the tool to the collection of data. The UK Biobank dataset, despite being 

static for most of it, had some different files, and refreshes of the data, which were 

handled with the creation of a special purpose locator for the different fields; these 

were combined with extractors that handle the unique format of the UK Biobank 

dataset, that is formed of several fields, instances, and arrays on its main part – ranges 

of lists – and HES extractors for another set of important data. The UHB dataset is 

formed mostly of events, and the data had to be pre-located and readied into data 

extractors; the main requirement being the implementation of connectors that link the 

application to the anonymised data in SQL format. 

7.2.3 Results and discussion 

The solution implemented was capable of handling the different data sources available 

in the UK Biobank and UHB scenarios. In the problem described in Section 4.6, it was 

required to collect age, sex and comorbidity data for the UK Biobank patients. Initially, 

all the patient identifiers were collected, and data sources that collect UK Biobank data 

fields of age and sex were directly matched, and information of comorbidity was 

extracted for different sets of ICD-10s. The problem described in Section 6.5 has some 

similarities to the above, as some basic variables were collected, such as age and sex, 

but in this problem, the comorbidities had to be collected up to the date of COPD 

admission. The patients were identified when was COPD first reported, and then the 

comorbidities were time-restricted up to the date of COPD, with the use of a time-

associated extractor for comorbidities. The problem in Section 5.4 required that the 

complete patient history be matched up to the different dates of ECG recordings; this 
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resembles a lot of the COPD case, just now using the extractors developed for the 

UHB data, collecting basic clinical data, biochemistry results, and comorbidity 

information for each patient’s ECG. 

For the explorations considered, the main benefit was seen in qualitative terms. On the 

setup of the tool, it was required to understand the database, but then followed by a 

reduced burden to understand the underlying database structure, the specifications of 

the dataset, locations, column types, and how the different data sources are linked. 

This led to savings to the time an analyst would require understanding and collecting 

from different data sources. When there are minor changes to the type of data an 

analyst is looking for, such as the alteration in a set of ICD-10 values, time reference 

of extraction, or the addition of one or another field, the modification to the data 

collection procedures is trivial. When there are efforts to link another dataset there is 

still a development task that needs to be fulfilled and underlying knowledge of the 

dataset is still required. 

Underlying knowledge of the database is essential when linking individual data points, 

e.g., patient identifiers. Disease codes are commonly represented in a defined 

language, such as ICD-10s, which contain a hierarchy that resembles the use of 

ontology of integrating knowledge (24), these can be widely used, both for its use on 

extraction and to link external knowledge over different datasets (a mention of the 

cross-use of ICD-10s is shown in section 6.6). 

While an exclusively ontological approach to data extraction avoids some ETL 

procedures, e.g. creating a common data model (376), the use of ontologies for data 

integration requires the definition of a vocabulary, semantic relationships, variable 

links, and extraction protocol (377) (378). The proposed solution is an intermediary 

solution, it allows for flexible data extraction, with proved use-cases, without the 

requirements for an ontological framework or data model. 

The approach provides a solution to the problem of collecting and integrating data for 

analysis. It enables the quick collection of data for different types of retrospective 

cohort studies, enabling the whole process of analysis in shorter times. As a 

comparison, the BBCAF study collected data for 2 years, while the collection of 
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equivalent data using Integrator would take circa 30 minutes, although with only 

retrospective data. 

7.3 USARE Framework – Case 2 

7.3.1 Introduction 

The analysis of Big Data in healthcare has the potential to generate an enormous 

amount of value to healthcare, as it is expected that using different data sources can 

be leveraged to reduce care costs and increase the quality of care (379). 

There is a plethora of issues and challenges for the application of Big Data in 

healthcare settings (380) (381). Some of these challenges are related to 

organizational, processual, and compliance of the data use – those are the cases of 

shifting the company to become more data-driven, the insertion of the analytical 

methods into the daily routine and matters of governance and ethical approvals to the 

use of the data, respectively. In the context of the UHB, these issues are in the process 

of ongoing implementation to being solved, with initiatives such as Health Data 

Research (HDR) UK on the hospital side, and the enveloping of research into clinical 

practice. 

On the technical side, some of the challenges of Big Data are associated with the 

veracity of the data: it is fragmented, not standardised, and inaccuracy or inconsistency 

(379). In this section we explore a framework to solve these technical limitations, 

including how to use the data, and structure it in a way to comply with regulations, 

reducing the know-how requirements, with a use case in the UHB. 

One of the main technical challenges in EHR is having the data in a common format 

that can be analysed. There are different standards, and for a complete makeover of 

the data, big transformations are required. This is the case of formats such as 

Observational Medical Outcomes Partnership Common Data Model (376), where it 

proposes that different centres and data formats are transformed into a common one, 

where the data can be commonly treated and analysed. 
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The EHR systems in the UHB are composed of different software to handle parts of 

the healthcare routine, for example, PICS handles most information about a patient, 

from biochemistry results to diagnosis and symptoms (21). Solus Cardiology contains 

some cardiovascular information, such as ECG records (88), whilst the local copy of 

HES contains information about in-patients, inclusive of diagnosis and operations. 

They have a common identifier for participants, and where available, they utilise the 

same hierarchy for diagnosis, ICD-10s (84). 

The different data sources are not directly compatible with each other, as they have 

dissimilar format and structures. Furthermore, staff do not necessarily know details 

about the different databases, and how to effectively combine the different sources for 

analysis. 

7.3.2 Proposed framework 

The variables required from the UHB dataset are laboratory results, inclusive of 

biochemistry tests and other physical measurements. Diagnosis and operations, 

inclusive of ICD-10s and OPCS-4, and ECG recordings. All these data have their 

associated patient and date of the event. 

The main requirements proposed to be solved are: 

1. Collection of data sources into a single structure. 

2. Increase the veracity of the available data. 

3. Reduce barrier to healthcare data analysis. 

4. Non-disturbance of clinical EHR systems. 

5. Compliance with regulations and policies. 

These issues can be solved with the use of the Usable Summarised Anonymised Re-

loaded External data (USARE) framework proposed. It is paramount that the clinical 

EHR systems are not affected by any change, due to it, backup copies of the original 

databases are used, and no live system is used. Moreover, the handling of the dataset 

is all made within the hospital systems, and protected by the network firewall, with 

access permissions checks both on the outside and the internal network. 



161 
 

The different backups of data sources were re-loaded into Docker containers (382), 

these containers maintain isolation of the server used and the re-loaded SQL database 

(189). To combine the different data sources in the hospital, data integration is needed 

(383), and a common way of doing it is loading different datasets and transforming 

them to fit a new format, this is done through an extract transform load (ETL) method 

(384), data is read, transformed and loaded into a new database. 

To facilitate the data transformation, a set of randomised identifiers were created from 

the list of collected identifiers in the different data sources used. This was used as a 

key element of the anonymization layer, as with it, it is not possible to trace back the 

order of the participants. When transformations were done from the original data 

sources, the newly created sets contained transformed identifiers, and for the different 

variables required, data were read and transformed into a common way, variables that 

were not relevant were ignored and not compiled into the new format, this formed a 

summarised view of the data. 

Due to ethical agreements, variables such as age were approximated, and other 

identifiable data were ignored. Moreover, due to data inconsistencies, some data 

points had to be processed and cleaned. For example, some laboratory results had 

invalid values, sometimes with non-numeric values, others with values that were out of 

boundaries, such as extremely high values or unexpected numbers, for example, BMI 

values above thousands, and blood pressure lower than 10 mmHg. In some places, 

there was a non-conformity of formatting, where a dot would be interchanged with a 

comma on the decimal sign (385). These issues were handled with the creation of 

transformation rules for the set of imported variables. 

The newly created data passed through the different layers up to the final summarised 

layer, this does not contain any direct link to the original data, in a format that can be 

read using Integrator, which can be directly input by an analyst. The complete 

framework is described in Figure 39. 
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Figure 39: USARE framework for re-usable data. From the bottom-up, external data contains data 

sources from different databases. The datasets are reloaded into intermediary data storages that are 

combined into an anonymised dataset. A summarised version of the data is created and used in the 

analysis. 

7.3.3 Results and discussion 

The proposed framework complies with the different technical requirements aimed. 

The framework works with external data, isolated from other operating data, they are 

re-loaded internally, anonymised, processed to only keep what is needed, summarised 

and then being available in a usable format to the analyst, it provides an intermediary 

solution to enable the analysis of healthcare data. It facilitates the demonstration of the 

benefits of the increased use of big data systems before a bigger transformation is 

employed. This was seen on models such as the ECG HF models (section 5.4). 
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In the literature, conceptual models such as Pecoraro et al. 2014 (386) involved the 

transformation of data on multiple stages, an intermediary stage, called the staging 

data model, contains similar data to the approach employed. The data in this 

intermediary state could be further transformed into a data model that other systems 

use. 

7.4 Chapter summary 

There is an overall trend in the use of big data approaches for healthcare. There is an 

expected cost reduction, time to results, and the possibility of the application of new 

insights into healthcare problems (387). The approaches described in this chapter 

enable the use of healthcare data for analysis. Approaches such as the Integrator, as 

part of the USARE framework or not, can be used to collect big data that can be used 

by an analyst. It reduces the burden of knowing the underlying database structure, 

compiling and pre-processing the data, with its uniform structure. It was shown to work 

in scenarios explored in this thesis, such as the collection of comorbidities for analysis, 

and the modelling of heart failure using electrocardiograms. This systematic integration 

enables the use of real-world dataset selectively, in opposition to the realisation of 

research with just controlled study data. 
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CHAPTER 8 COVID-19 

8.1 Introduction 

In December of 2019, an increased number of pneumonia cases was associated with 

a novel coronavirus, deemed to be originated from a seafood market in Wuhan, China 

(388). The novel coronavirus quickly expanded to several cities in China, and in 

Europe, the first country to have identified cases was Italy, followed by other European 

countries and worldwide. Transmissibility, or the R0 rate of the coronavirus, was 

identified to be high and adds to the severity of the disease (389). The coronavirus, 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was classified as a 

pandemic by the World Health Organization and several countries started with 

measures to counter the spread and damage of the newfound disease, which patients 

were usually admitted with fever, cough, and shortness of breath; there was commonly 

a need for intensive care unit (ICU) treatment and ventilators are often necessary 

(390). 

People with SARS-CoV-2 with cardiovascular complications were more likely to be 

admitted into ICU (391). It has been shown that the virus binds to ACE2, leading to 

hypertension and heart failure complications (392). Patients with SARS-CoV-2 have 

increased IL-6 levels, an inflammation marker, showing myocarditis and arrhythmias 

(393). Patients with AF, especially as a new-onset condition, were associated with 

higher mortality (394). Furthermore, “long covid” has been associated with cardiac 

symptoms, such as chest pain and palpitations (395). Despite all these links with 

arrhythmias and cardiovascular conditions, the link between SARS-CoV-2 and 

cardiovascular diseases is not well understood. 

To understand more about the disease and to improve the care of cardiovascular 

patients, the multitude of data being generated related to the condition must be 

explored in a unified fashion similar to the approach depicted in this thesis. Different 

tools described through the thesis were applied to different scenarios on handling the 

novel coronavirus projects. 
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There are three main projects involved: first and foremost, (a) improving the prediction 

of Covid-19 models, then (b) we assessed the risk of patients undergoing elective and 

emergency surgery, and (c) we explored a solution to assist the rescheduling of 

patients that were affected from limited healthcare services during the pandemic. 

The surgery risk dataset contains patients which had coronavirus and had to undergo 

surgery. Usually, the surgery is under emergency and there are both risks of not doing 

the surgery, risk of surgery with coronavirus and further risks of obtaining coronavirus 

when hospitalized. These patients have the highest risk on the datasets explored. 

The patient rescheduling project investigates the patients which had their routine 

treatment postponed or cancelled due to modified hospital treatment and strategy 

during the pandemic. These patients do not have a risk per se of coronavirus, however, 

their continued specialised treatment can be affected, leading to increased risks of 

complications. This project aims to assist clinicians in the rescheduling of patients. 

8.2 Improving the performance of risk models – Case 1 

8.2.1 Introduction 

Not long after countries started with lockdown, many researchers shifted their focus 

onto understanding Covid-19, trying to assess patient risk and looking for solutions to 

counter the pandemic. In the literature, there was a deluge of risk models, over a 

hundred mortality risk models created up to the 1st of July 2020, most of them with a 

high risk of bias (396). 

To make the models more robust, it is hypothesized that an ensemble model, a model 

formed of multiple submodels, will be more generalizable, countering bias that would 

be found looking at some models individually, and synergise the models. My 

involvement was supporting the analysis, discussing, and presenting the results. 

8.2.2 Data description and analysis 

Four datasets were used in the analysis, a first Wuhan cohort (Wuhan01), with 2869 

adults with Covid-19 admitted into Wuhan Sixth Hospital or Taikang Tongji Hospital, 

this dataset contains patients admitted between the 1st and 23rd of February 2020, who 



166 
 

died or were discharged on or before the 29th of March 2020; another Wuhan dataset 

(Wuhan02) contains 357 adults from Tongji Hospital, data collected between 1st and 

4th of March 2020. Two UK datasets were used, a King’s College Hospital (KCH) with 

1475 adults hospitalised between the 1st of March and 2nd of April 2020, who were 

followed up to 8th April 2020; a UHB dataset containing 693 adults hospitalised in the 

Queen’s Elizabeth Hospital Birmingham between the 14th of March and 13th of April 

2020 and had follow-up data up to the 19th of April 2020. The mortality rates of these 

datasets are 2.4%, 45.7%, 26.9%, and 19%, respectively.



167 
 

Table 26: Description of patients in the Covid-19 ICU dataset. 

 Wuhan01 Cohort (N=2869) Wuhan02 Cohort (N=357) KCH Cohort (N=1475) UHB Cohort (N=693) 

Variables 

Not Poor 
Prognosis 
(N=2738) 

Poor 
Prognosis 
(N=131) 

Did Not Die 
(N=194) Died (N=163) 

Not Poor 
Prognosis 
(N=949) 

Poor 
Prognos
is 
(N=526) 

Not Poor 
Prognosis (N=477) 

Poor Prognosis 
(N=216) 

Age, years 60 (49-68)  70 (63-78)  51 (37-62)  69 (62-77)  69 (54-81)  
75 (60-
86)  72 (57-82)  70 (56-80)  

Male, 
percentage 1389 (50.7)  84 (64.1)  91 (46.9)  118 (72.4)  514 (54.2)  

330 
(62.7)  254 (53.2)  144 (66.7)  

Red cell 
distribution 
width, 
percentage 

12.9 (12.3-
13.5)  

13.0 (12.5-
14.0)  

12.0 (11.8-
12.7)  

12.9 (12.3-
13.9)  –  –  13.7 (12.7-15.4)  13.9 (13.2-15.1)  

Albumin, g/L 
38.3 (35.5-
40.7)  

31.6 (28.7-
35.0)  

37.5 (34.2-
40.2)  

30.1 (27.6-
33.0)  

38.0 (35.0-
41.0)  

36.0 
(33.0-
39.0)  31.0 (26.0-35.0)  28.0 (22.0-32.0)  

C-reactive 
protein, mg/L 2.1 (0.8-7.3)  

59.9 (14.2-
120.0)  

19.5 (3.8-
49.8)  

114.1 (61.9-
178.8)  

72.5 (28.8-
127.9)  

112.2 
(56.8-
216.5)  83.0 (42.0-140.2)  

180.0 (102.5-
267.0)  

Serum blood 
urea nitrogen, 
mmol/L 4.3 (3.6-5.4)  6.8 (5.0-11.0)  –  –  –  –  6.3 (4.5-10.4)  8.1 (5.4-13.1)  
Lymphocyte 
count, 10^9/L 1.5 (1.1-1.9)  0.7 (0.5-1.1)  1.1 (0.8-1.5)  0.6 (0.4-0.8)  1.0 (0.7-1.4)  

0.9 (0.6-
1.4)  0.9 (0.7-1.3)  0.9 (0.6-1.2)  

Direct bilirubin, 
umol/L 3.3 (2.5-4.4)  5.4 (3.5-7.2)  3.5 (2.5-4.7)  6.2 (4.4-9.2)  –  –  10.0 (7.0-14.0)  11.0 (8.0-20.0)  
Lactate 
dehydrogenase
, IU/L 

174.6 (150.3-
210.2)  

332.2 (244.9-
461.0)  

250.0 (202.2-
310.5)  

567.0 (427.5-
762.0)  –  –  

316.5 (245.8-
411.0)  

436.0 (340.0-
623.0)  

Serum sodium, 
mmol/L 

141.6 (140.0-
143.2)  

139.8 (137.4-
143.4)  

139.2 (136.5-
141.2)  

138.9 (135.8-
143.6)  –  –  

137.0 (134.0-
140.0)  

138.0 (135.0-
143.0)  

Neutrophil 
count, 10^9/L 3.5 (2.7-4.5)  6.7 (4.8-9.9)  –  –  5.1 (3.7-7.4)  

6.6 (4.5-
9.4)  4.7 (3.4-6.7)  6.7 (4.8-9.4)  

Oxygen 
saturation, 
percentage 

97.8 (97.0-
98.2)  

96.6 (94.5-
97.7)  –  –  19 (18-20)  

23 (20-
28)  94.0 (93.0-96.0)  92.0 (88.0-94.0)  
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Seven models from the literature were chosen from the literature, Ji et al. 2020 (397), 

Shi et al. 2020 (398),  Gong et al. 2020 (399), Lu et al. 2020 (400), Levy et al. 2020 

(401), and Yan et al. 2020 (402). These models come from 6 different regions, from 

two countries, China and the United States. The original datasets where these models 

were created contain median ages between 44 and 65 years old, with mortality rates 

varying between 7% and 52%. The models had their parameters collected from 

published material and reimplemented for analysis. Then, the different models were 

ensembled using a bagging predictors approach (403). 

The bagging approach employed uses a competence assessment framework to assist 

when grouping the results from the different models, this is done using 3 key elements: 

(a) similarity of a model with the patient, (b) general competence of the model, where 

bigger datasets used for model derivation are ranked higher, and (c) data 

completeness of the patient related to the model employed. Further details are 

available in Wu et al. 2020 (12). 

8.2.3 Results and discussion 

For each dataset, a different model performed best. On Wuhan01, Xie et al. 2020 

performed (AUCROC of 0.888 95%CI 0.874-0.926), on Wuhan02, Dong et al. 2020 

(AUCROC of 0.881 95%CI 0.841-0.913), on KCH and UHB, Levy et al. 2020 performed 

best (AUCROC 0.658 95%CI 0.629-0.685, and AUCROC 0.660 95%CI 0.617-0.713). 

No model performed consistently across the different datasets, whilst the ensemble 

model had consistent discrimination in all cases: 0.914 (95%CI 0.891-0.937), 0.890 

(95%CI 0.856-0.921), 0.665 (95%CI 0.640-0.692), and 0.683 (95%CI 0.643-0.723) on 

Wuhan01, Wuhan02, KCH and UHB, respectively. 

These analyses showed that a single model did not perform consistently well on 

different datasets. While a model was best in a cohort it was often the case that it could 

not be used to the same performance power in another dataset. This is partially due to 

patients having different eligibility to hospital care, as in the UK only patients in a more 

severe state were admitted into hospitals, and the different stages of the pandemic 

when these patients were admitted. The combination of the models into an ensemble 

provided a model that performed better, and more consistently on different datasets. 
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8.3 Surgery risk – Case 2 

8.3.1 Introduction 

CovidSurg is an initiative under the GlobalSurg project (404). The overall project and 

different initiatives investigate factors that may affect a surgery outcome: patient 

clinical history, biochemistry profile, surgery type, urgency modality, patients’ follow-

up, and other factors, such as the experience of the surgical team, centre and country 

of operation. At the time of writing, GlobalSurg collaborative is formed by surgeons and 

anaesthetists from 122 countries. 

Due to the pandemic, it was estimated in May 2020 that over 28 million surgeries could 

be cancelled (405). The assessment of the patient risk of undertaking surgery is 

extremely important, as for different operations there is always a balance of risk of 

them taking the procedure and having Covid-19 complications, or the risk of not doing 

the procedure and risking evolving the condition. Half the patients that had Covid-19 

undergoing surgery had postoperative pulmonary complications and were associated 

with higher mortality risk (406).  

We explored the use of CovidSurg data to better understand the mortality risk during 

the Coronavirus pandemic. This study is approved under clinical audit terms in the UK, 

and in other countries equivalent ethical approvals were done. My involvement was 

supervising, discussing, verifying and re-executing the analytical framework, and 

presentation of results. 

8.3.2 Data description and analysis 

The data comes from 756 hospitals across 69 countries.  

Adult patients were included if they had Covid-19 infection between 7 days before and 

30 days after surgery. The dataset is formed of basic patient information: age, sex, 

haemoglobin, white cell count, C-reactive protein, American Society of 

Anaesthesiologists (ASA) grade, Revised Cardiac Risk Index (RCRI) score, 

information about respiratory comorbidities, and smoking status; Covid-19 status: need 

of preoperative respiratory support, the timing of diagnosis before or after the surgery; 
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operation factors: surgical speciality, surgery indication, urgency, grade, and type of 

anaesthesia. The primary outcome was mortality at 30 days after surgery.  

Variables with more than 20% missing values were ignored from the analysis. Data 

were imputed using MICE (109, 110). Different algorithms were applied and used to 

identify important predictors: generalised linear models, random forest, and elastic net 

(182)  (184) (180). Hyperparameter search was done using a grid search over 10- and 

5-fold resampling. Then, feature important was formed merging the ranked important 

features from both resampling, up to a maximum of 5 features. 

The analysis dataset contains 8492 patients, patients had mostly abdominal surgery 

(40.6%), orthopaedic (33.8%), and head and neck surgery (9.8%). Most surgeries were 

emergency (80.8%), and 57.3% of all surgeries were for benign diseases. The overall 

mortality rate was 17.2%. The dataset was separated in the order of events into 6777 

derivation and 1715 validation patients. The patients from the derivation cohort had 

surgery between February 1st and May 31st, 2020, while the validation cohort had 

surgery between June 1st and July 31st, 2020. 

8.3.3 Results and discussion 

The best performing model performed with an AUCROC of 0.73 (95%CI of 0.71-0.74) 

in the derivation set, and 0.80 (0.77-0.83) in the validation set (Figure 40). The 

important predictors identified were age, ASA grade, RCRI score, and preoperative 

respiratory support. 
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Figure 40: Comparative of AUCROC performance between derivation and validation sets for the 

CovidSurg case. 

The developed model was made available online as a risk identification tool (407). 

The created models utilise data from many countries, it is diverse and generalised. It 

utilises a single number of variables that can be easily obtained and applied in practice. 

Patient risk assessment is a paramount tool to evaluate if a surgery should be done or 

not. Despite the situation in some countries starting to becoming more controlled, with 

vaccinations and a reduced number of Covid-19 cases, it is still essential to understand 

the risk of operations, especially in low-income countries, where vaccination will still 

take years to occur (408). 

The created models assist the evaluation of patient risk, can assist the identification of 

patients with higher mortality risk, providing a way to reducing the backlog of surgeries 

affected by Covid-19. 

8.4 Patient rescheduling – Case 3 

8.4.1 Introduction 

Further to disruptions in operations, in the UHB there were disruptions to appointments 

as well. Clinicians that would normally be on out-patient clinic work had to support 
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Covid-19 hospitalisations. The overall healthcare operated into hard strains in the UK; 

primary care had the routine changed, with some routine procedures cancelled, and 

dentistry services were temporarily stopped; patients had appointments only in acute 

situations at the beginning of the pandemic (409) (410). This led to an accumulation of 

patients that should have had follow-up but could not be slotted for it. 

To improve the situation of care in the UHB, we created a tool to identify patients that 

would be of higher risk and provided this tool as a webpage to clinicians. The main 

requirements are communication with other hospital systems, identification of 

comorbidities and other risk factors for the different patients, and the presentation of 

the results to clinical staff. My involvement in this work was idealising the project, 

collecting from hospital data sources, setting up the tool, discussing, and testing. 

8.4.2 Data description and analysis 

For this use case, we utilised the UHB dataset, the main body of UHB data described 

previously (section 2.3.4) was incremented with scheduling data from patient 

administration systems and clinical documents stored as EMC Documentum (411). 

The tool was created as an internal website, with an application programming interface 

that could be accessed by other software on the network. The tool was formed of a few 

key elements: (a) its internal representation of patients, formed of data collected 

internally, and updated on demand; (b) components to extract data from other sources; 

and (c) web interface system. 

The internal representation of patients. There are key elements required by this 

tool. For each clinician, there is a set of patients that they are providing specialised 

care, these were used for authentication and organisation purposes; a clinician was 

not able to see other colleagues’ patients unless explicitly given permission. Patients 

have their age, sex and BMI collected, also the information if they had any of 65 

important comorbidities (Appendix 6.1). A relation of conditions obtained from textual 

inferences of the patient and their families were also represented as categorical terms. 

These data were stored on an object format in a MongoDB server that communicates 

with the webpage (412). 



173 
 

Extraction of data from other sources. Main data elements come from the internal 

PICS database (21), as it contains the basic clinical information, and records of 

important comorbidities, these were extracted using SQL queries (189). Diseases 

information from documents were collected from data files available for the target 

patients, Komenti performs a Natural language processing over the files and identifies 

relevant diseases (413). These data are format into the internal representation used 

for the patients. 

Web interface system. The overall product was created as a webpage in Python using 

the gunicorn library (414). The server was integrated into a Docker image so that this 

system can be run independently of the environment setup of a server (382). The 

different components were executed on-demand, for example, when a new clinician is 

registered on the system, or when this clinician needs a refresh of their patients’ data. 

For a patient, the last appointment date was shown, with the list of comorbidities that 

could be relevant when prioritising their care. 

8.4.3 Results and discussion 

This tool showed some capabilities of the UHB infrastructure and the group to find 

solutions to the urgent needs of the hospital. It provided a system to identify patients 

that could require a priority of care needs.  

At the time of writing this tool has been used mainly by a clinician that is our UHB point 

of contact, but still requires validation from more practitioners to evaluate if there is a 

benefit to both the speed and the efficiency of care. 

8.5 Chapter summary 

This chapter explored three initiatives to challenges of clinical care during the Covid-

19 pandemic. First and foremost, there were many studies published in the literature 

to assess patient mortality risk in hospitals. While some models performed well in their 

derivation cohorts they could not be used more extensively. A model formed of an 

ensemble of other models performed more consistently over different patient cohorts. 

The newly formed model and the approach employed can be further combined with 

other models and used to assess patient's risk, as, at the time of writing, there are still 
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a large number of hospitalisations, especially in countries that are only now going 

through the second wave of the disease. The second use case investigated a way to 

alleviate the situation of delayed surgeries, with the creation of a model that could 

improve clinical decision of patient risk undergoing surgery. In the last case, we 

focused on handling the backlog of patient appointments, some patients had higher 

complication risks and a way to prioritise then was implemented. These different 

initiatives focused on different aspects of the pandemic and provided different solutions 

to the challenges seen. 
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CHAPTER 9 CONCLUSION 

Data come in different shapes and sizes, unstructured, semi-structured and structured, 

from the very fine graded genotype data to population scales. The major aim of this 

work was to investigate different methodological approaches to different data types to 

the better understanding and risk assessment of patients disease, with a particular 

focus on cardiovascular diseases. 

9.1 Investigations and outcomes 

Structured datasets were explored in chapter 3, different methods were applied to the 

better identification of patients with AF. Factors of risk from the literature were re-

identified: morbidities of risk, age, BMI, and male sex. Novel biomarker predictors were 

identified, and risk models with these biomarkers were created, showing the potential 

of these biomarkers to the improvement of patient stratification. The work employed in 

this chapter led to a few published/under-review outcomes (4) (5) (6). 

Omics datasets, examined on chapter 4, were explored to both assess the potential 

identifying novel AF biomarkers. Due to the fact that locus 4q25, adjacent to gene 

PITX2, showed very significant differences between healthy and AF patients, 

investigations on their pathophysiological patterns were warranted. The initial case 

examined the differences on mice that were +/- knockout on PITX2. This study showed 

a few protein-coding transcripts with possible implications to AF. Two of these 

transcripts are protein-encoding. The proteins CXCL13 and BMP10 were of increased 

importance due to their solubility and of potential biomarker value (8). 

Unstructured datasets, investigated in chapter 5, form a data type that is not commonly 

explored to the full extent in the literature. Using a combination of signal processing 

and machine learning, biomarkers were extracted from the different leads of an ECG 

recording. Novel approaches to the use of ECGs to predict HF were explored in real-

world data with promising results. HF is commonly diagnosed using imagining 

techniques, and the risk is usually assessed using models such as age and NTproBNP. 

The use of ECG recordings to support HF diagnosis is another tool that can be added 

to the cardiologist clinical toolset (11). 
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Population data, chapter 6, were explored to better understand patient cohorts and 

stratify for potential targeted treatment. While the other chapters studied different data 

modalities and their application to different use cases within the cardiovascular space, 

this chapter explored the use of larger scale cohorts, aiming to explore patterns that 

transcend cardiovascular morbidities – to converge back in cardiovascular patterns 

and a multitude of other morbidity relations. A multitude of associations and morbidity 

patterns were identified linking cardiovascular and other diseases patterns. 

In chapter 7, an approach to combine datasets was proposed. The proposed 

framework was employed in a number of cases (sections 4.6, 5.4 and 6.5) to handle 

the extraction of a complex number of variables and elements from diverse datasets. 

The first case relates to how complex multivariate datasets can be compiled. The 

second case exposed a logical framework to enable the use of the proposed solution 

to real-world, routine healthcare systems. The third case illustrated the collection of 

data related to the date of patients first diagnosis, where the date of one event was 

used as reference to the collection of other data. 

Chapter 8 focused on the unprecedented pandemics and its effect on cardiovascular 

patients. Analytical pipelines developed for different applications were repurposed to 

respond to the real-time need of the pandemic, demonstrating the power and flexibility 

of these approaches. The approaches employed to support the crisis led to a good 

extent of results (12) (13) (14). 

9.2 Limitations and future work 

The work on this thesis focused on a variety of data sources, including clinical trial data 

and routinely collected secondary datasets, model organisms datasets and biological 

data related to human participants. The approaches employed can be applied beyond 

the datasets used in this thesis, however further experimentation is required to validate 

the results and expand the usability of data methods.  

The use of data is a problem of its own. It is not trivial to collect and get data into a 

shape that can be analysed. Data that were originally collected to answer a scientific 

research question are often not suitable for interrogation of unplanned analysis. There 
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are assumptions that need to be made and reported. Such assumptions get even more 

complicated on real-world dataset, where a curated dataset might not be available, the 

data might be situated in different silos and in different modalities. This is a line of work 

that can be further explored. How to make data simpler, and more traceable.  

There is an ever-growing number of risk models created in the medical domain. As 

explored in this thesis, a risk model can be just a mouse click away. There is limited 

knowledge on how they work, how to make the best use of them, and apply them. That 

is not even considering how to make models properly. These are problems that can be 

better explored, especially when the care is more integrated with research. 

Methodologies employed to some problems can be translated to other problems of 

equivalent data scales and modalities. For example, the analysis that employed 

unstructured data, the ECG signals, can be applied on electroencephalography to 

assess brain function; analysis using biomarkers can be applied to a variety of other 

biological hypothesis; techniques to the integration of datasets can be further 

expanded to cover different data scenarios. 

Data and models can also be thought as different building blocks, and one is limited 

without the other. These two elements could be combined, and tools that can handle 

the different analytical steps could be integrated to quicker evaluation of research 

questions and enable a more widespread use. 
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APPENDICES 

Appendix 2.1 Biomarkers collected for BBCAF study 

The list of biomarkers is compiled from Chua et al. (77). 

Biomarker Abbreviation 

Adrenomedullin ADM 

Agouti-related protein AGRP 

Angiopoietin-1 receptor TIE2 

Cathepsin L1 CTSL1 

C-C motif chemokine 3 CCL3 

CD40 ligand CD40L 

C-X-C motif chemokine 1 CXCL1 

Dickkopf-related protein 1 Dkk-1 

Fibroblast growth factor 23 FGF-23 

Follistatin FS 

Growth hormone GH 

Heat shock 27 kDa protein HSP 27 

Heparin-binding EGF-like growth factor HB-EGF 

Interleukin-1 receptor antagonist protein IL-1ra 

Interleukin-16 IL-16 



II 
 

Biomarker Abbreviation 

Interleukin-18 IL-18 

Interleukin-27 IL-27 

Interleukin-6 IL-6 

Lectin-like oxidized LDL receptor LOX-1 

Leptin LEP 

Matrix metalloproteinase-12 MMP-12 

Matrix metalloproteinase-7 MMP-7 

Melusin ITGB1BP2 

Natriuretic peptides B BNP 

NF-kappa-B essential modulator NEMO 

Pappalysin-1 PAPPA 

Pentraxin-related protein PTX3 PTX3 

Placenta growth factor PIGF 

Platelet-derived growth factor subunit B 
PDGF subunit 
B 

Proteinase-activated receptor 1 PAR-1 

Proto-oncogene tyrosine-protein kinase Src SRC 

P-selectin glycoprotein ligand 1 PSGL-1 

Receptor for advanced glycosylation end products RAGE 



III 
 

Biomarker Abbreviation 

Renin REN 

Stem cell factor SCF 

Thrombomodulin TM 

TIM.1 TIM-1 

Tissue factor TF 

TNF-related apoptosis-induced ligand receptor 2 TRAIL-R2 

Vascular endothelial growth factor D VEGF-D 
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Appendix 2.2 Calculating Area Under the Receiver Operating Characteristic 

Curve  

Given a list of samples, the AUCROC can be calculated using the predicted scores. 

True class indicates the real value of the sample, the prediction indicates the sample 

risk on the model. 

True class Prediction/threshold TP TN FP FN TNR 1-TNR TPR 

  0 5 0 5 0 0 1 1 

1 0.1 4 0 5 1 0 1 0.8 

0 0.15 4 1 4 1 0.2 0.8 0.8 

0 0.18 4 2 3 1 0.4 0.6 0.8 

0 0.2 4 3 2 1 0.6 0.4 0.8 

1 0.45 3 3 2 2 0.6 0.4 0.6 

0 0.46 3 4 1 2 0.8 0.2 0.6 

1 0.7 2 4 1 3 0.8 0.2 0.4 

1 0.8 1 4 1 4 0.8 0.2 0.2 

0 0.81 1 5 0 4 1 0 0.2 

1 0.97 0 5 0 5 1 0 0 

  1 0 5 0 5 1 0 0 
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AUCROC plot sample. The blue dots indicate the different thresholds of the model.  

∑ 𝑇𝑃𝑅𝑡

∀𝑡 𝑖𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠

∗ (𝑇𝑁𝑅𝑡−1 − 𝑇𝑁𝑅𝑡) 

This equation calculates the AUCROC in steps. 
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Appendix 3.1 Neural network hyperparameter optimization 

There are two main aspects to a model, its parameters, these are configuration 

variables inherent to the data and model. Hyperparameters are tuneable elements 

external to the data and model, these are defined by the data practitioner to configure 

the model creation and evolution. Hyperparameters are elements such as the number 

of trees and depth of a random forest model (138), the regularization term in the least 

absolute shrinkage and selection operator (LASSO) model (415). 

Due to the influence of these parameters, the same network using different settings, 

or hyperparameters, can achieve higher performance than a model without 

hyperparameter optimization. This applies to any application of machine learning, 

even, for example, RoBERTa neural language model (416). 

One can modify the architecture and the number of elements in a neural network 

without limits. Some patterns work better in some situations, those identified by 

exploratory works. For example, images operate better with convolutional neural 

networks of decreasing kernel sizes, and incremented feature maps, rather than 

having dense layers only. For variables that contain intensity data, and not mapped or 

connected, such as biomarkers, dense layers suffice in a neural network. There are 

matters of the number of dense nodes in each layer, regularization which can be done 

using dropout layer/s, optimizer choice, activation functions and early stopping rules. 

To evaluate these different combinations, another dataset is required. The discovery 

dataset was further split into training and internal validation sets (80%, 20%). The best 

model from this selection is then returned to have a final comparison against the 

original validation data. 

Early stopping was fixed as 20 epochs (Figure A2). Activation function was limited to 

RELU on hidden layers, and sigmoid in the output node. The optimizer was restricted 

to adam. A different number of layers were evaluated, from 1 to 3 hidden layers, dense 

layers were tested with 256, 512 and 1024 nodes, dropout ratio tested were 0.05, 0.1 

and 0.2. All models were tested 3 times, each with different initialization seeds. In total 

81 models were created. Figure A1 illustrates the training process. 
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Figure A1: Different hyperparameters evaluated and their performances on the internal validation set. 

Different graphs indicate the differences in AUC for A dense nodes, B number of dense layers, C dropout 

ratios, D all the different settings. 

There is not much difference between the different settings. The most difference 

comes from varying the initialization seed of the network. However, as following the 

criteria of maximizing the AUC value, the network picked contains 2 dense layers with 

256 dense nodes each and a dropout ratio of 0.2. 

 

Figure A2: Early stopping criteria. Whilst the performance in the training set is ever-increasing, tending 

to over-fit, the internal validation performance plateau after some training epochs. A model stopped at 

this stage prevents worsened generalization performance. 
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Appendix 4.1 List of significantly expressed genes Human LAxRA 

Ensemble ID GeneSymbol log2FoldChange p-val adj 

ENSG00000164093 PITX2 5.470003641 2.02E-173 

ENSG00000250103 PANCR 6.042799819 1.60E-169 

ENSG00000230943 LINC02541 5.521013851 2.15E-149 

ENSG00000135439 AGAP2 2.604749826 1.81E-132 

ENSG00000143867 OSR1 2.066359897 4.07E-126 

ENSG00000250511 AC098798.1 5.113739231 5.52E-121 

ENSG00000145242 EPHA5 2.429359655 3.27E-90 

ENSG00000112214 FHL5 2.45696871 9.69E-82 

ENSG00000105697 HAMP -4.402966178 4.21E-81 

ENSG00000115705 TPO 2.708508129 3.84E-76 

ENSG00000250846 EPHA5-AS1 3.098416201 9.30E-75 

ENSG00000109991 P2RX3 3.961595981 3.00E-72 

ENSG00000239402 CYP4F62P -4.703220574 1.17E-68 

ENSG00000081277 PKP1 3.538850955 1.03E-63 

ENSG00000163217 BMP10 -5.750039089 1.34E-63 

ENSG00000066405 CLDN18 3.716571513 1.63E-60 

ENSG00000162981 FAM84A -2.132603108 7.37E-59 

ENSG00000225670 CADM3-AS1 3.282068525 1.52E-58 

ENSG00000142973 CYP4B1 2.611042779 2.09E-57 

ENSG00000153976 HS3ST3A1 -2.339592424 4.93E-56 

ENSG00000240253 FAR2P3 -3.365040066 3.07E-54 

ENSG00000188803 SHISA6 2.484058672 2.82E-51 

ENSG00000163395 IGFN1 -2.540693211 1.08E-50 

ENSG00000181408 UTS2R -2.209696091 3.68E-46 

ENSG00000169507 SLC38A11 2.132490012 3.37E-45 

ENSG00000145423 SFRP2 2.914448347 6.04E-45 

ENSG00000249306 LINC01411 -3.564365425 1.44E-44 

ENSG00000148942 SLC5A12 -2.569254486 3.24E-44 

ENSG00000236081 ELFN1-AS1 2.904542162 4.95E-41 

ENSG00000214081 CYP4F30P -4.006277315 7.42E-41 

ENSG00000180053 NKX2-6 -3.954381375 1.10E-40 

ENSG00000268297 CLEC4GP1 2.613016075 7.95E-40 

ENSG00000183134 PTGDR2 2.398143223 2.69E-39 

ENSG00000163017 ACTG2 2.256640038 2.25E-38 

ENSG00000228826 AL592494.1 -2.97101456 2.32E-38 

ENSG00000196834 POTEI -2.938744439 7.50E-38 

ENSG00000222038 POTEJ -3.472946834 6.22E-36 

ENSG00000196990 FAM163B -2.588881078 1.00E-35 

ENSG00000137077 CCL21 2.350376586 6.20E-35 

ENSG00000213088 ACKR1 2.280205941 1.49E-34 

ENSG00000132975 GPR12 2.794484518 1.88E-31 

ENSG00000185559 DLK1 4.099831016 2.83E-30 

ENSG00000248479 AC104137.1 2.436802393 3.44E-29 

ENSG00000165970 SLC6A5 3.068726776 4.60E-29 

ENSG00000283646 LINC02009 2.064619066 2.92E-28 

ENSG00000283221 AC007218.2 2.534789321 7.64E-28 

ENSG00000079435 LIPE 2.114638371 1.87E-27 

ENSG00000177359 AC024940.2 -2.349692025 2.81E-27 

ENSG00000223349 KLF2P3 -3.345967264 4.14E-27 

ENSG00000198914 POU3F3 -2.538422478 4.71E-27 

ENSG00000124882 EREG 2.217026464 1.61E-26 

ENSG00000168447 SCNN1B 2.660074171 1.85E-26 

ENSG00000264727 AC005725.1 2.177379808 2.31E-26 

ENSG00000272583 AL592494.3 -2.470152537 4.69E-26 

ENSG00000100678 SLC8A3 2.038773703 5.51E-25 

ENSG00000172061 LRRC15 2.595176211 1.54E-24 

ENSG00000130876 SLC7A10 2.903589561 4.98E-23 

ENSG00000106178 CCL24 2.815576067 7.59E-23 

ENSG00000126733 DACH2 -2.319885416 3.16E-22 

ENSG00000224940 PRRT4 2.016005835 3.26E-22 

ENSG00000111245 MYL2 2.494377094 2.32E-21 

ENSG00000173432 SAA1 2.902763767 3.80E-21 

ENSG00000283586 GKN3P -2.614855865 7.90E-21 

ENSG00000105509 HAS1 2.619598633 9.30E-21 

ENSG00000128040 SPINK2 -2.07267951 1.84E-20 

ENSG00000261319 LINC02152 -2.441425195 2.10E-20 

ENSG00000167588 GPD1 2.086906235 3.13E-20 

ENSG00000166819 PLIN1 2.38596848 2.24E-19 

ENSG00000134962 KLB 2.100708678 4.25E-19 

ENSG00000158571 PFKFB1 2.169068151 6.21E-19 

ENSG00000146352 CLVS2 3.313764021 7.87E-18 

ENSG00000181092 ADIPOQ 2.492721917 8.30E-18 

ENSG00000138207 RBP4 2.046499443 2.23E-17 

ENSG00000174697 LEP 2.431766243 2.92E-17 

ENSG00000253434 LINC02237 2.208700302 3.03E-17 

ENSG00000135917 SLC19A3 2.07464291 5.76E-17 

ENSG00000149124 GLYAT 2.477564954 1.67E-16 

ENSG00000187288 CIDEC 2.311491726 2.95E-16 

ENSG00000168333 PPDPFL -2.482179431 6.28E-16 

ENSG00000152785 BMP3 2.492125739 6.63E-16 

ENSG00000275385 CCL18 2.023327327 8.23E-16 

ENSG00000197632 SERPINB2 3.474779459 1.53E-15 

ENSG00000226482 ADIPOQ-AS1 2.802352656 1.75E-15 
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ENSG00000100739 BDKRB1 2.669288033 1.83E-15 

ENSG00000145863 GABRA6 2.726174706 2.70E-15 

ENSG00000159387 IRX6 2.228848255 2.90E-15 

ENSG00000233639 LINC01158 -2.183526207 6.78E-15 

ENSG00000133317 LGALS12 2.057873719 2.01E-14 

ENSG00000248869 LINC02511 2.091527476 2.22E-14 

ENSG00000184811 TUSC5 2.142827201 3.31E-14 

ENSG00000220553 RPL5P19 -2.298695423 3.38E-14 

ENSG00000214064 RPL6P5 -2.095533267 4.10E-14 

ENSG00000211890 IGHA2 2.133082319 4.43E-14 

ENSG00000165478 HEPACAM 2.020484053 5.97E-14 

ENSG00000143839 REN -3.351895738 9.78E-14 

ENSG00000118231 CRYGD -3.277031878 2.43E-13 

ENSG00000268416 AC010329.1 -2.319525484 3.98E-13 

ENSG00000166104 AC126323.1 2.292393034 4.09E-13 

ENSG00000162761 LMX1A 2.512139594 2.54E-12 

ENSG00000253369 AC131902.1 -2.069175413 1.21E-11 

ENSG00000147647 DPYS 2.339998309 1.76E-11 

ENSG00000114771 AADAC 2.153290204 3.80E-11 

ENSG00000271239 AC007423.1 2.394412285 5.93E-11 

ENSG00000186081 KRT5 2.229028347 6.63E-11 

ENSG00000157765 SLC34A2 2.864462833 2.58E-10 

ENSG00000128652 HOXD3 2.026460776 4.03E-10 

ENSG00000257671 KRT7-AS 2.47517599 1.40E-09 

ENSG00000134339 SAA2 2.424098676 3.19E-09 

ENSG00000174145 NWD2 2.239504222 5.67E-09 

ENSG00000230778 ANKRD63 -2.061815626 6.16E-09 

ENSG00000182585 EPGN 2.093758438 7.56E-09 

ENSG00000274295 AC131902.3 -2.096248797 7.76E-09 

ENSG00000170484 KRT74 -2.269750569 1.66E-08 

ENSG00000261618 AC083837.1 2.310090896 1.78E-08 

ENSG00000211976 IGHV3-73 2.057242283 5.64E-08 

ENSG00000166396 SERPINB7 2.254171541 1.39E-07 

ENSG00000205420 KRT6A 2.382528691 1.11E-06 

ENSG00000135477 KRT87P 2.132578852 1.27E-06 

ENSG00000203783 PRR9 2.090805801 2.49E-06 

ENSG00000243264 IGKV2D-29 2.176407322 4.52E-06 

ENSG00000258793 AL355102.4 2.087923954 8.56E-06 

ENSG00000162891 IL20 2.014121401 1.10E-05 
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Appendix 6.1 List of 65 important comorbidities 

Condition ICD-10 

Acute renal failure N17.9 

Alcohol dependence F10.2 

Alcoholic liver disease K70 K70.0 K70.1 K70.2 K70.3 K70.4 K70.9 

Asthma J45.9 

At risk of falls R29.6 

Atrial fibrillation I48 I48.0 I48.1 I48.2 I48.3 I48.4 I48.9 

Benign prostatic hyperplasia N40 N40X 

Bipolar disorder F31 F31.0 F31.1 F31.2 F31.3 F31.4 F31.5 F31.6 F31.7 F31.8 F31.9 

Bladder cancer C67 C67.0 C67.1 C67.2 C67.3 C67.4 C67.5 C67.6 C67.7 C67.8 C67.9 

Breast cancer C50 C50.0 C50.1 C50.2 C50.3 C50.4 C50.5 C50.6 C50.8 C50.9 

Bronchiectasis J47 J47X 

Cardiac pacemaker Z95.0 

Celiac disease K90.0 

Chronic bronchitis J42 J42X 

Chronic renal failure N18.9 

Colon cancer C18 C18.0 C18.1 C18.2 C18.3 C18.4 C18.5 C18.6 C18.7 C18.8 C18.9 

Chronic obstructive pulmonary disease J44.9 

Crohn's disease K50 K50.0 K50.1 K50.8 K50.9 

Dementia F03 F03X 

Depression F33.9 
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Diverticular disease K57 K57.0 K57.1 K57.2 K57.3 K57.4 K57.5 K57.8 K57.9 

Duodenal ulcer K26 K26.0 K26.1 K26.2 K26.3 K26.4 K26.5 K26.6 K26.7 K26.9 

Emphysema J43.9 

Epilepsy G40 G40.0 G40.1 G40.2 G40.3 G40.4 G40.5 G40.6 G40.7 G40.8 
G40.9 

Gastric ulcer K25 K25.0 K25.1 K25.2 K25.3 K25.4 K25.5 K25.6 K25.7 K259 

Gastroesophageal reflux K21 K21.0 K21.9 

Glaucoma H40 H40.0 H40.1 H40.2 H40.3 H40.4 H40.5 H40.6 H40.8 H40.9 

Gout M10.9 M109.0 M109.1 M109.2 M109.3 M109.4 M109.5 M109.6 
M109.7 M109.8 M109.9 

Heart disease I25 I25.0 I25.1 I25.2 I25.3 I25.4 I25.5 I25.6 I25.8 I25.9 

Heart failure I50 I50.0 I50.1 I50.9 

Hepatitis c B18.2 

Human immunodeficiency virus B24 B24X 

Hyperlipidaemia E78.5 

Hypertension I10 I10X 

Hyperthyroidism E05 E05.0 E05.1 E05.2 E05.3 E05.4 E05.5 E05.8 E05.9 

Hypothyroidism E03 E03.0 E03.1 E03.2 E03.3 E03.4 E03.5 E03.8 E03.9 

Iron-deficiency anaemia D50 D50.0 D50.1 D50.8 D50.9 

Irritable bowel syndrome K58 K58.0 K58.9 

Lung cancer C34 C34.0 C34.1 C34.2 C34.3 C34.8 C34.9 

Multiple myeloma C90.0 

Multiple sclerosis G35 G35X 
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Myocardial infarction I21.9 

Obesity E66 E66.0 E66.1 E66.2 E66.8 E66.9 

Osteoarthritis M15.9 

Osteoporosis M81 M81.0 M81.1 M81.2 M81.3 M81.4 M81.5 M81.6 M81.8 M81.9 

Parkinson’s disease G20 G20X 

Peptic ulcer disease K27 K27.0 K27.1 K27.2 K27.3 K27.4 K27.5 K27.6 K27.7 K27.9 

Peripheral vascular disease I73.9 

Pneumonia J18 J18.0 J18.1 J18.2 J18.8 J18.9 

Prostate cancer C61 C61X 

Psoriasis L40 L40.0 L40.1 L40.2 L40.3 L40.4 L40.5 L40.8 L40.9 

Pulmonary embolism I26.9 

Renal cancer C64 C64X 

Renal colic N23 N23X 

Rheumatoid arthritis M06.9 M06.90 M06.91 M06.92 M06.93 M06.94 M06.95 M06.96 
M0697 M06.98 M06.99 

Schizophrenia F20 F20.0 F20.1 F20.2 F20.3 F20.4 F20.5 F20.6 F20.8 F20.9 

Sickle cell disease D57 D57.0 D57.1 D57.2 D57.3 D57.8 

Systemic lupus erythematosus M32.9 

Sleep apnoea G47.3 

Stroke I63 I63.0 I63.1 I63.2 I63.3 I63.4 I63.5 I63.6 I63.8 I63.9 

Transient ischaemic attack G45 G45.0 G45.1 G45.2 G45.3 G45.4 G45.8 G45.9 

Type 1 diabetes mellitus E10 E10.0 E10.1 E10.2 E10.3 E10.4 E10.5 E10.6 E10.7 E10.8 E10.9 
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Type 2 diabetes mellitus E11 E11.0 E11.1 E11.2 E11.3 E11.4 E11.5 E11.6 E11.7 E11.8 E11.9 

Ulcerative colitis K51 K51.0 K51.2 K51.3 K51.4 K51.5 K51.8 K51.9 

Venous thromboembolism I80.2 
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Appendix 6.2 Associations of diseases in the UHB 

For a row condition, there is a % of patients that also have the column condition. These columns are ordered in descent order by the sum of probabilities. 

Note: even though the data in the UHB does not contain all the patient life data there are comorbidities associated with the patient visit. N = 167737. 

Source: UHB Trust in-patient HES. Minimum episode start date: 2014/11/03. Maximum episode end date: 2018/05/31.  
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hypertension - 30% 24% 12% 15% 10% 12% 11% 9% 8% 8% 8% 7% 6% 5% 5% 5% 4% 4% 2% 5% 3% 4% 3% 3% 3% 3% 1% 3% 2% 3% 1% 1% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 1% 1% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%

type 2 diabetes mellitus 66% - 26% 14% 13% 11% 13% 12% 9% 8% 10% 8% 6% 5% 7% 9% 4% 4% 3% 2% 5% 3% 3% 4% 2% 5% 3% 1% 4% 2% 2% 1% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%

heart disease 69% 34% - 14% 21% 13% 11% 22% 10% 12% 11% 8% 7% 7% 6% 6% 6% 8% 4% 3% 7% 2% 5% 6% 3% 4% 3% 1% 3% 3% 3% 2% 1% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0%

acute renal failure 61% 33% 26% - 25% 32% 11% 27% 21% 11% 24% 10% 7% 6% 8% 6% 7% 7% 9% 4% 4% 4% 6% 4% 3% 5% 3% 3% 3% 3% 4% 3% 4% 2% 3% 2% 1% 2% 1% 2% 1% 1% 1% 2% 1% 1% 1% 1% 1% 2% 1% 1% 1% 2% 1% 1% 1% 1% 0% 0% 0% 1% 0% 0% 0%

atrial fibrillation 62% 25% 31% 20% - 20% 10% 28% 16% 11% 12% 9% 8% 5% 6% 5% 6% 11% 6% 3% 4% 3% 5% 4% 3% 2% 3% 1% 3% 4% 3% 3% 1% 2% 2% 2% 1% 1% 1% 2% 1% 0% 1% 1% 1% 1% 2% 1% 0% 1% 1% 1% 1% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0%

pneumonia 54% 25% 23% 31% 24% - 14% 24% 21% 13% 14% 9% 7% 7% 8% 5% 5% 5% 9% 8% 3% 5% 4% 4% 3% 3% 3% 3% 3% 3% 3% 5% 2% 2% 4% 2% 1% 2% 2% 4% 1% 1% 1% 1% 1% 1% 1% 1% 1% 2% 1% 1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 1% 0% 0% 0%

asthma 34% 17% 11% 6% 7% 8% - 6% 5% 6% 4% 6% 6% 7% 4% 5% 2% 2% 2% 1% 2% 4% 2% 1% 2% 2% 2% 1% 2% 1% 1% 2% 1% 1% 1% 1% 2% 1% 1% 1% 1% 1% 1% 0% 1% 1% 1% 1% 0% 0% 0% 1% 0% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

heart failure 67% 34% 47% 32% 42% 30% 12% - 19% 15% 21% 11% 8% 6% 9% 8% 6% 16% 7% 5% 5% 3% 7% 6% 3% 4% 3% 1% 4% 3% 3% 3% 1% 3% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 1% 1% 1% 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0%

at risk of falls 62% 27% 23% 28% 26% 28% 11% 20% - 12% 15% 12% 8% 7% 9% 3% 7% 7% 17% 4% 4% 6% 4% 4% 4% 3% 5% 4% 2% 4% 4% 3% 2% 4% 2% 4% 1% 2% 2% 2% 2% 2% 1% 1% 1% 1% 1% 0% 0% 4% 1% 1% 1% 1% 0% 1% 0% 1% 1% 0% 0% 0% 0% 0% 0%

copd 56% 25% 29% 15% 19% 18% 14% 17% 12% - 9% 8% 10% 9% 6% 7% 6% 5% 4% 11% 4% 4% 3% 5% 4% 3% 3% 3% 4% 2% 3% 6% 2% 2% 2% 2% 2% 1% 1% 5% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%

chronic renal failure 74% 41% 35% 43% 27% 25% 12% 31% 21% 12% - 13% 10% 7% 10% 7% 8% 10% 9% 3% 5% 3% 9% 6% 3% 6% 4% 1% 3% 3% 4% 3% 2% 3% 2% 2% 1% 2% 1% 1% 1% 1% 1% 2% 1% 1% 1% 1% 1% 2% 1% 1% 1% 2% 1% 0% 1% 1% 0% 0% 1% 0% 0% 0% 0%

hypothyroidism 50% 22% 17% 12% 14% 11% 14% 11% 11% 7% 8% - 7% 6% 6% 5% 2% 4% 5% 2% 4% 4% 2% 2% 4% 3% 3% 1% 2% 2% 1% 2% 1% 2% 1% 2% 2% 1% 1% 1% 1% 2% 1% 0% 1% 0% 2% 1% 0% 1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

diverticular disease 49% 19% 16% 9% 12% 9% 13% 8% 8% 10% 7% 8% - 8% 10% 3% 5% 3% 3% 3% 3% 2% 3% 2% 3% 2% 3% 1% 2% 1% 2% 2% 1% 2% 2% 1% 2% 1% 0% 1% 1% 1% 2% 1% 1% 1% 1% 1% 0% 1% 1% 1% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

gastroesophageal reflux 46% 18% 17% 9% 9% 10% 17% 7% 7% 9% 6% 8% 9% - 7% 5% 4% 2% 2% 3% 4% 3% 3% 2% 3% 2% 2% 2% 3% 2% 2% 2% 2% 3% 1% 2% 3% 1% 1% 1% 2% 1% 1% 1% 1% 2% 1% 1% 0% 1% 1% 2% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

iron deficiency anaemia 50% 30% 20% 16% 15% 15% 14% 14% 13% 8% 10% 9% 15% 9% - 5% 4% 4% 4% 3% 3% 3% 3% 3% 3% 3% 3% 1% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 1% 1% 1% 1% 3% 2% 1% 2% 1% 3% 1% 1% 1% 1% 3% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

obesity 59% 45% 24% 13% 13% 11% 18% 14% 5% 11% 8% 9% 6% 8% 5% - 3% 3% 1% 2% 6% 3% 4% 3% 3% 4% 1% 1% 16% 1% 2% 2% 2% 3% 2% 1% 2% 1% 2% 1% 2% 2% 1% 1% 2% 1% 1% 1% 0% 0% 0% 3% 1% 1% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%

benign prostatic hyperplasia 58% 22% 23% 15% 18% 12% 9% 11% 12% 10% 10% 4% 9% 6% 5% 3% - 6% 5% 4% 4% 2% 4% 3% 1% 2% 4% 1% 2% 2% 5% 2% 0% 2% 2% 1% 1% 1% 1% 1% 0% 0% 1% 1% 1% 1% 1% 0% 0% 2% 1% 0% 1% 4% 0% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0%

cardiac pacemaker 59% 29% 43% 20% 40% 16% 10% 40% 15% 10% 16% 10% 8% 5% 7% 4% 8% - 6% 3% 5% 3% 6% 4% 2% 3% 3% 1% 3% 3% 3% 2% 1% 2% 2% 1% 1% 1% 0% 1% 1% 0% 1% 1% 1% 0% 1% 0% 0% 2% 1% 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

dementia 59% 26% 23% 28% 25% 28% 9% 18% 40% 9% 16% 12% 7% 5% 7% 1% 7% 7% - 2% 3% 6% 3% 3% 3% 3% 5% 1% 1% 4% 3% 1% 1% 3% 2% 3% 1% 2% 2% 1% 1% 1% 1% 1% 1% 0% 1% 0% 0% 4% 2% 1% 1% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

emphysema 49% 19% 27% 16% 19% 34% 11% 18% 13% 34% 8% 7% 11% 10% 6% 4% 7% 4% 3% - 3% 3% 3% 6% 4% 2% 3% 4% 3% 2% 2% 11% 2% 2% 3% 3% 1% 1% 2% 7% 2% 1% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 1% 0% 0%

hyperlipidaemia 79% 40% 39% 12% 17% 11% 11% 13% 9% 9% 9% 10% 7% 9% 6% 9% 5% 5% 3% 2% - 2% 5% 5% 3% 4% 3% 1% 3% 5% 3% 2% 1% 3% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 1% 0% 0% 1% 2% 2% 1% 1% 0% 0% 1% 0% 0% 0% 0% 1% 0% 0% 0%

epilepsy 29% 14% 9% 8% 7% 10% 15% 6% 9% 6% 3% 7% 4% 4% 4% 3% 2% 2% 4% 2% 1% - 1% 1% 1% 2% 2% 5% 2% 2% 1% 1% 2% 1% 1% 1% 2% 1% 2% 1% 1% 2% 1% 1% 1% 1% 0% 1% 1% 1% 1% 0% 0% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

gout 71% 30% 31% 20% 23% 15% 11% 20% 12% 9% 18% 7% 8% 8% 5% 8% 7% 8% 4% 2% 6% 2% - 5% 3% 3% 3% 2% 4% 3% 4% 2% 2% 3% 2% 1% 1% 1% 0% 1% 1% 0% 1% 1% 2% 1% 1% 1% 0% 1% 1% 0% 1% 1% 0% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0%

peripheral vascular disease 75% 42% 50% 22% 25% 21% 10% 24% 15% 20% 17% 7% 8% 7% 8% 6% 7% 6% 6% 7% 9% 3% 6% - 4% 8% 4% 2% 3% 4% 4% 3% 1% 3% 1% 2% 1% 2% 1% 2% 1% 1% 1% 2% 2% 1% 1% 1% 1% 1% 2% 1% 1% 2% 1% 0% 1% 1% 1% 0% 0% 1% 0% 0% 0%

rheumatoid arthritis 51% 21% 20% 12% 14% 14% 15% 11% 11% 10% 7% 12% 8% 8% 7% 5% 2% 3% 4% 4% 4% 3% 3% 3% - 3% 3% 1% 2% 2% 2% 4% 1% 5% 2% 5% 2% 1% 1% 1% 1% 1% 1% 1% 3% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0%

type 1 diabetes mellitus 48% 41% 21% 16% 8% 11% 13% 11% 8% 6% 11% 9% 4% 5% 6% 6% 3% 3% 3% 1% 4% 4% 2% 5% 2% - 3% 1% 3% 1% 1% 1% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 0% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%

glaucoma 59% 26% 20% 12% 15% 12% 12% 10% 13% 8% 9% 9% 9% 6% 6% 3% 6% 4% 6% 3% 3% 3% 3% 3% 3% 3% - 1% 2% 3% 3% 2% 1% 2% 1% 2% 1% 1% 1% 1% 0% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 1% 1% 1% 0% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0%

alcohol dependence 27% 10% 9% 15% 7% 13% 13% 5% 14% 11% 3% 3% 4% 7% 4% 3% 2% 1% 2% 5% 2% 11% 3% 2% 1% 2% 1% - 1% 1% 1% 1% 26% 1% 1% 1% 1% 2% 4% 1% 5% 4% 0% 2% 2% 2% 0% 1% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

sleep apnea 60% 43% 24% 11% 15% 13% 19% 16% 6% 14% 8% 8% 7% 9% 4% 34% 4% 5% 1% 3% 5% 3% 5% 3% 3% 4% 2% 1% - 2% 2% 3% 1% 2% 2% 1% 2% 1% 2% 1% 2% 1% 1% 0% 2% 1% 1% 1% 0% 1% 1% 1% 1% 1% 0% 0% 1% 0% 0% 1% 0% 0% 0% 0% 0%

stroke 62% 24% 22% 15% 25% 16% 9% 14% 13% 8% 8% 9% 5% 5% 5% 3% 5% 5% 6% 2% 7% 5% 4% 4% 2% 2% 4% 1% 2% - 2% 1% 0% 2% 2% 1% 1% 2% 1% 1% 0% 1% 1% 1% 1% 1% 1% 0% 0% 1% 4% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0%

prostate cancer 52% 20% 17% 13% 14% 11% 8% 8% 10% 8% 7% 4% 6% 5% 3% 4% 8% 4% 4% 2% 3% 2% 4% 3% 1% 1% 3% 1% 2% 2% - 2% 0% 1% 1% 1% 0% 1% 0% 1% 0% 0% 1% 1% 0% 0% 0% 0% 0% 1% 1% 0% 1% 2% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%

bronchiectasis 49% 22% 21% 17% 21% 31% 27% 17% 12% 26% 9% 9% 9% 10% 7% 4% 5% 4% 3% 16% 3% 2% 4% 3% 6% 2% 3% 1% 4% 2% 3% - 1% 3% 2% 3% 2% 2% 1% 3% 1% 0% 2% 1% 1% 1% 1% 1% 0% 1% 1% 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0%

alcoholic liver disease 34% 21% 9% 21% 7% 13% 11% 6% 10% 11% 5% 4% 3% 8% 6% 5% 1% 1% 1% 3% 2% 5% 3% 1% 1% 3% 1% 32% 1% 1% 1% 1% - 0% 1% 2% 1% 1% 2% 1% 2% 1% 1% 3% 3% 3% 0% 1% 6% 0% 0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

osteoarthritis 63% 24% 23% 16% 18% 15% 18% 15% 18% 12% 10% 11% 10% 13% 8% 8% 4% 4% 5% 4% 7% 3% 6% 3% 8% 3% 3% 1% 3% 3% 2% 3% 1% - 2% 3% 3% 1% 1% 1% 2% 1% 1% 0% 1% 1% 2% 1% 0% 1% 1% 3% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

pulmonary embolism 43% 18% 15% 19% 15% 29% 12% 13% 12% 9% 7% 8% 9% 7% 8% 6% 5% 4% 4% 5% 3% 3% 4% 2% 3% 2% 2% 2% 3% 3% 3% 2% 1% 2% - 1% 2% 10% 1% 5% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 2% 2% 2% 0% 1% 2% 0% 0% 0% 0% 0% 0% 0% 0%

osteoporosis 52% 15% 18% 15% 19% 19% 15% 13% 25% 15% 10% 13% 10% 11% 8% 3% 2% 4% 7% 6% 4% 4% 2% 3% 10% 3% 5% 2% 1% 2% 1% 4% 2% 4% 2% - 2% 1% 0% 1% 1% 1% 2% 1% 1% 1% 2% 3% 0% 2% 1% 2% 1% 0% 2% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0%

irritable bowel syndrome 29% 12% 9% 5% 6% 6% 24% 4% 4% 6% 3% 8% 10% 12% 4% 5% 1% 1% 2% 2% 2% 4% 2% 2% 3% 2% 1% 1% 2% 1% 1% 1% 1% 2% 1% 1% - 0% 0% 0% 3% 2% 2% 1% 2% 0% 1% 2% 0% 0% 1% 1% 0% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

venous thromboembolism 36% 16% 10% 13% 11% 14% 12% 8% 10% 7% 8% 7% 7% 6% 7% 4% 4% 2% 5% 3% 3% 3% 3% 3% 2% 1% 3% 3% 2% 3% 3% 2% 1% 2% 12% 1% 1% - 1% 1% 2% 1% 1% 1% 1% 1% 1% 1% 4% 1% 0% 1% 2% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0%

schizophrenia 25% 21% 9% 10% 6% 15% 14% 7% 11% 8% 4% 5% 3% 4% 5% 6% 3% 1% 6% 3% 2% 8% 1% 1% 1% 3% 1% 7% 3% 2% 1% 1% 3% 1% 2% 0% 1% 1% - 1% 4% 11% 0% 1% 1% 1% 1% 1% 3% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0%

lung cancer 46% 17% 19% 12% 15% 29% 8% 9% 12% 25% 6% 7% 7% 7% 4% 2% 5% 2% 2% 13% 3% 2% 3% 4% 3% 2% 2% 1% 1% 2% 3% 3% 1% 1% 5% 1% 1% 1% 1% - 1% 0% 1% 1% 1% 0% 1% 0% 0% 0% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

depression 30% 14% 9% 9% 6% 10% 19% 5% 9% 7% 4% 10% 5% 10% 4% 6% 1% 1% 2% 3% 3% 5% 2% 1% 2% 2% 1% 9% 3% 1% 1% 2% 3% 3% 2% 1% 5% 2% 4% 1% - 5% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 0% 1% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0%

bipolar disorder 27% 19% 9% 12% 5% 10% 19% 5% 11% 7% 5% 11% 4% 4% 4% 7% 1% 1% 3% 2% 2% 8% 0% 1% 2% 3% 2% 6% 3% 2% 0% 1% 2% 1% 1% 1% 3% 1% 12% 0% 5% - 0% 0% 1% 0% 1% 1% 1% 2% 1% 1% 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

ulcerative colitis 22% 12% 8% 7% 5% 6% 12% 3% 2% 4% 3% 4% 6% 4% 7% 2% 1% 1% 1% 1% 1% 2% 1% 1% 2% 2% 1% 0% 1% 1% 1% 2% 1% 1% 1% 1% 2% 1% 0% 1% 0% 0% - 0% 1% 0% 0% 8% 0% 1% 0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

duodenal ulcer 47% 22% 20% 23% 17% 20% 12% 14% 15% 11% 12% 4% 12% 15% 13% 4% 4% 4% 3% 5% 2% 4% 5% 5% 3% 3% 3% 6% 1% 2% 2% 2% 7% 1% 2% 1% 2% 2% 1% 1% 1% 1% 1% - 1% 12% 1% 3% 1% 1% 1% 0% 2% 0% 1% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0%

psoriasis 42% 21% 16% 10% 9% 10% 14% 6% 7% 8% 5% 7% 6% 6% 6% 7% 3% 3% 2% 3% 3% 2% 4% 3% 6% 3% 2% 3% 3% 2% 1% 2% 4% 2% 1% 1% 3% 1% 1% 1% 2% 1% 1% 1% - 0% 0% 3% 1% 0% 0% 1% 1% 1% 1% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0%

gastric ulcer 51% 23% 18% 18% 13% 13% 13% 12% 9% 9% 9% 4% 10% 19% 17% 4% 3% 2% 2% 3% 3% 4% 4% 4% 3% 3% 4% 4% 2% 3% 2% 2% 6% 1% 2% 1% 1% 1% 1% 1% 1% 0% 1% 12% 1% - 1% 1% 2% 0% 2% 1% 2% 1% 1% 0% 1% 0% 2% 0% 0% 0% 0% 0% 0%

hyperthyroidism 44% 18% 15% 11% 20% 10% 11% 12% 9% 9% 7% 17% 9% 6% 8% 3% 3% 4% 3% 3% 4% 2% 2% 2% 2% 4% 2% 0% 2% 1% 1% 1% 1% 2% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% - 0% 1% 0% 0% 1% 0% 1% 1% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0%

crohns disease 19% 8% 7% 7% 5% 6% 13% 3% 2% 5% 3% 4% 5% 3% 10% 2% 1% 1% 0% 1% 1% 2% 1% 1% 2% 1% 1% 1% 1% 1% 1% 1% 2% 1% 1% 2% 2% 1% 1% 0% 1% 0% 11% 1% 2% 1% 0% - 0% 0% 0% 0% 1% 0% 1% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0%

hepatitis c 28% 19% 8% 12% 5% 10% 10% 5% 3% 6% 5% 3% 2% 4% 5% 2% 2% 1% 1% 3% 1% 4% 1% 1% 2% 5% 1% 10% 1% 1% 1% 0% 13% 1% 2% 0% 0% 6% 5% 0% 2% 2% 0% 1% 1% 2% 1% 1% - 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

parkinsons disease 40% 19% 18% 15% 14% 15% 7% 9% 25% 5% 7% 7% 5% 5% 5% 1% 8% 4% 11% 1% 2% 3% 2% 2% 1% 2% 3% 0% 1% 1% 3% 1% 0% 1% 1% 2% 1% 1% 1% 0% 1% 2% 1% 0% 0% 0% 0% 0% 0% - 1% 1% 1% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%

tia 64% 24% 21% 13% 22% 13% 11% 11% 15% 9% 9% 10% 6% 6% 5% 2% 5% 4% 7% 2% 7% 4% 5% 4% 3% 4% 5% 1% 2% 11% 2% 2% 0% 2% 1% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 2% 1% 0% 0% 1% - 1% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

breast cancer 33% 12% 6% 8% 6% 7% 11% 4% 6% 5% 4% 8% 5% 8% 3% 8% 0% 1% 2% 1% 4% 1% 1% 1% 2% 1% 1% 1% 1% 1% 0% 0% 0% 3% 2% 2% 1% 1% 1% 1% 1% 1% 1% 0% 1% 0% 1% 0% 0% 1% 0% - 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

colon cancer 50% 21% 14% 16% 15% 13% 9% 6% 12% 8% 6% 8% 18% 7% 19% 3% 6% 3% 3% 3% 2% 2% 3% 2% 2% 1% 3% 1% 1% 2% 2% 1% 1% 1% 4% 1% 1% 3% 1% 1% 0% 0% 2% 1% 1% 1% 1% 1% 0% 1% 1% 0% - 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

bladder cancer 65% 25% 25% 21% 18% 10% 8% 9% 11% 11% 13% 7% 10% 7% 4% 5% 25% 5% 3% 3% 5% 2% 4% 5% 2% 1% 4% 0% 2% 1% 8% 2% 0% 2% 3% 1% 0% 2% 1% 2% 0% 1% 1% 0% 1% 1% 2% 0% 0% 1% 0% 1% 1% - 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%

celiac disease 26% 11% 11% 7% 6% 8% 13% 5% 4% 5% 4% 11% 7% 7% 8% 2% 2% 2% 1% 2% 2% 3% 2% 1% 2% 6% 1% 1% 1% 1% 1% 1% 2% 1% 1% 3% 2% 1% 0% 0% 1% 1% 2% 1% 1% 1% 1% 2% 0% 0% 1% 1% 1% 1% - 1% 0% 1% 0% 0% 1% 0% 0% 0% 0%

multiple sclerosis 11% 6% 4% 5% 3% 5% 9% 2% 6% 2% 1% 5% 1% 2% 2% 2% 1% 1% 1% 1% 0% 3% 0% 0% 1% 2% 1% 1% 1% 0% 0% 1% 0% 0% 1% 1% 1% 1% 0% 1% 1% 1% 1% 0% 1% 0% 1% 1% 0% 0% 0% 1% 1% 0% 0% - 0% 0% 0% 0% 0% 0% 0% 0% 0%

renal cancer 56% 23% 13% 18% 10% 11% 10% 8% 6% 7% 11% 8% 6% 5% 4% 5% 5% 2% 1% 2% 4% 3% 4% 3% 1% 3% 3% 1% 3% 1% 4% 1% 1% 1% 5% 1% 1% 1% 0% 0% 1% 0% 0% 0% 0% 1% 1% 1% 0% 1% 0% 1% 1% 2% 0% 1% - 0% 0% 0% 1% 0% 0% 0% 0%

multiple myeloma 36% 14% 9% 19% 11% 13% 7% 8% 6% 4% 12% 5% 4% 2% 2% 2% 5% 2% 2% 1% 0% 1% 2% 2% 1% 2% 2% 0% 2% 1% 2% 1% 0% 1% 0% 1% 0% 1% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 1% 0% 0% 1% 1% 0% - 0% 0% 0% 0% 0% 0% 0%

peptic ulcer disease 59% 21% 32% 18% 18% 16% 17% 14% 22% 9% 10% 8% 14% 16% 12% 5% 6% 6% 5% 3% 2% 4% 5% 10% 6% 5% 2% 5% 1% 3% 2% 3% 4% 2% 1% 2% 1% 2% 2% 1% 3% 2% 1% 8% 1% 8% 2% 1% 0% 2% 1% 1% 2% 1% 2% 0% 1% 1% - 0% 1% 1% 1% 1% 0%

sickle cell disease 29% 16% 5% 8% 4% 8% 13% 6% 1% 2% 5% 1% 3% 2% 5% 6% 3% 1% 0% 1% 2% 2% 1% 0% 1% 3% 2% 1% 3% 1% 3% 1% 0% 1% 1% 0% 1% 1% 2% 1% 1% 1% 1% 0% 0% 1% 2% 0% 0% 0% 0% 1% 1% 0% 0% 1% 0% 0% 0% - 0% 0% 0% 0% 0%

sle 42% 13% 14% 13% 6% 10% 10% 5% 3% 5% 9% 11% 4% 5% 6% 4% 1% 2% 1% 1% 1% 5% 3% 2% 9% 2% 2% 0% 2% 2% 1% 2% 0% 1% 1% 4% 2% 0% 1% 1% 1% 1% 1% 1% 2% 0% 1% 2% 0% 0% 1% 1% 1% 0% 2% 1% 1% 0% 0% 0% - 0% 0% 0% 0%

myocardial infarction 68% 35% 75% 34% 28% 26% 12% 38% 11% 9% 13% 7% 11% 6% 9% 6% 3% 8% 5% 3% 8% 3% 2% 13% 4% 7% 3% 2% 2% 7% 1% 1% 1% 3% 3% 2% 1% 1% 1% 1% 0% 2% 0% 1% 2% 0% 2% 1% 1% 0% 1% 0% 1% 1% 1% 1% 0% 0% 1% 1% 0% - 0% 0% 0%

chronic bronchitis 60% 26% 22% 20% 18% 25% 22% 12% 14% 33% 9% 5% 11% 15% 3% 7% 4% 7% 7% 14% 4% 4% 1% 7% 9% 4% 4% 2% 2% 0% 5% 14% 1% 4% 0% 2% 2% 0% 1% 4% 2% 0% 0% 0% 1% 0% 4% 0% 0% 0% 0% 2% 0% 1% 0% 1% 0% 0% 1% 1% 0% 0% - 0% 0%

renal colic 20% 11% 9% 3% 3% 3% 15% 0% 2% 7% 1% 2% 10% 6% 2% 3% 0% 2% 0% 1% 0% 4% 1% 0% 3% 2% 1% 1% 1% 2% 0% 0% 0% 0% 0% 2% 3% 0% 3% 0% 1% 3% 2% 0% 2% 0% 1% 2% 1% 0% 1% 0% 0% 0% 0% 0% 2% 0% 1% 0% 1% 0% 0% - 0%

hiv 14% 0% 0% 14% 5% 5% 5% 5% 0% 5% 0% 5% 0% 0% 0% 0% 0% 0% 0% 5% 5% 0% 0% 0% 0% 0% 0% 5% 0% 5% 0% 0% 10% 0% 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 14% 0% 5% 0% 0% 0% 0% 0% 0% 5% 0% 5% 0% 0% 0% 0% -
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Appendix 6.3 Associations of diseases in the UK Biobank 

 

For a row condition, there is a % of patients that also have the column condition. These values are ordered in descent order by the sum of probabilities 

from Appendix 5.2. Note that the UK Biobank contain data from a patients’ “whole life”. N = 392296. Source: UK Biobank Main and Secondary ICD-10s.  
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hypertension - 18% 22% 4% 11% 5% 13% 5% 1% 5% 3% 8% 14% 11% 4% 9% 7% 2% 0% 1% 5% 2% 3% 2% 2% 3% 2% 1% 3% 3% 3% 1% 1% 2% 2% 2% 2% 1% 0% 1% 0% 0% 1% 2% 1% 2% 1% 1% 0% 1% 2% 3% 1% 1% 1% 0% 1% 0% 0% 0% 0% 3% 0% 1% 0%

type 2 diabetes mellitus 71% - 27% 7% 11% 8% 15% 8% 2% 7% 5% 8% 14% 11% 7% 15% 7% 3% 1% 1% 7% 2% 4% 4% 3% 11% 3% 1% 6% 3% 3% 1% 1% 3% 2% 1% 3% 2% 1% 1% 0% 1% 2% 2% 2% 3% 1% 1% 0% 1% 2% 3% 2% 2% 1% 0% 1% 0% 0% 0% 0% 4% 0% 1% 0%

heart disease 68% 21% - 5% 18% 7% 13% 13% 1% 9% 4% 7% 13% 12% 5% 10% 8% 5% 1% 2% 11% 2% 4% 5% 3% 4% 2% 1% 4% 3% 3% 1% 1% 2% 2% 2% 2% 1% 0% 1% 0% 0% 1% 2% 1% 3% 1% 1% 0% 1% 2% 1% 1% 1% 1% 0% 1% 0% 1% 0% 0% 13% 0% 1% 0%

acute renal failure 67% 29% 31% - 26% 30% 15% 22% 5% 13% 21% 9% 16% 12% 11% 14% 10% 5% 2% 3% 6% 4% 8% 7% 4% 8% 3% 5% 5% 5% 5% 3% 4% 2% 6% 3% 2% 4% 1% 4% 1% 2% 3% 4% 2% 4% 2% 2% 0% 2% 2% 3% 4% 3% 1% 1% 2% 3% 1% 0% 1% 7% 0% 1% 0%

atrial fibrillation 59% 16% 32% 8% - 12% 13% 17% 2% 8% 4% 8% 13% 10% 5% 9% 9% 8% 1% 2% 6% 2% 4% 4% 3% 2% 2% 2% 4% 6% 4% 2% 1% 2% 3% 2% 2% 2% 0% 2% 0% 0% 1% 2% 1% 3% 2% 1% 0% 1% 3% 2% 2% 1% 1% 0% 1% 1% 0% 0% 0% 5% 0% 1% 0%

pneumonia 47% 17% 21% 15% 19% - 20% 13% 3% 15% 6% 8% 14% 13% 7% 9% 7% 3% 1% 6% 4% 4% 4% 4% 4% 4% 2% 3% 4% 4% 3% 6% 2% 2% 8% 3% 3% 4% 0% 7% 0% 1% 2% 2% 2% 3% 1% 1% 0% 1% 2% 4% 3% 1% 1% 1% 1% 2% 0% 0% 1% 4% 1% 1% 0%

asthma 40% 12% 13% 3% 7% 7% - 3% 1% 10% 2% 8% 13% 13% 5% 8% 4% 1% 0% 2% 3% 2% 2% 2% 3% 2% 2% 1% 3% 1% 2% 3% 1% 2% 2% 2% 4% 2% 0% 1% 0% 1% 1% 1% 1% 2% 1% 1% 0% 1% 1% 4% 1% 1% 1% 0% 0% 0% 0% 0% 0% 2% 0% 1% 0%

heart failure 71% 28% 62% 18% 45% 21% 17% - 3% 16% 12% 9% 14% 12% 9% 15% 9% 14% 1% 4% 11% 3% 7% 9% 4% 6% 3% 2% 7% 6% 3% 3% 1% 3% 4% 3% 2% 3% 0% 2% 0% 1% 2% 3% 2% 4% 3% 1% 0% 1% 3% 2% 2% 1% 1% 0% 1% 1% 1% 0% 0% 12% 0% 1% 0%

at risk of falls 63% 26% 27% 19% 20% 24% 18% 12% - 14% 9% 12% 17% 14% 11% 11% 10% 4% 7% 3% 6% 9% 5% 6% 6% 6% 4% 8% 5% 9% 4% 2% 4% 5% 5% 8% 4% 5% 2% 4% 1% 3% 2% 3% 2% 5% 2% 1% 0% 11% 4% 4% 3% 1% 1% 3% 1% 1% 0% 0% 0% 4% 0% 1% 0%

copd 58% 20% 31% 8% 16% 19% 38% 12% 3% - 5% 9% 20% 18% 8% 12% 9% 3% 1% 12% 6% 3% 3% 7% 5% 3% 3% 4% 6% 3% 3% 7% 2% 4% 4% 5% 4% 3% 1% 6% 1% 1% 2% 3% 2% 4% 2% 1% 0% 1% 3% 3% 2% 2% 1% 0% 1% 0% 1% 0% 0% 5% 1% 1% 0%

chronic renal failure 77% 36% 39% 38% 25% 22% 16% 25% 4% 13% - 13% 18% 15% 14% 15% 12% 8% 1% 3% 9% 3% 13% 10% 5% 12% 3% 2% 6% 6% 4% 3% 2% 4% 5% 4% 4% 4% 0% 2% 1% 2% 3% 4% 2% 5% 3% 2% 0% 2% 3% 3% 2% 3% 1% 1% 2% 3% 1% 1% 1% 8% 1% 2% 0%

hypothyroidism 42% 12% 13% 3% 8% 5% 15% 4% 1% 5% 2% - 13% 12% 6% 8% 3% 2% 0% 1% 3% 2% 1% 1% 3% 3% 2% 1% 2% 2% 1% 1% 0% 3% 2% 2% 4% 1% 0% 1% 0% 1% 1% 1% 1% 2% 5% 1% 0% 1% 1% 6% 1% 1% 1% 1% 0% 0% 0% 0% 0% 2% 0% 1% 0%

diverticular disease 40% 11% 13% 3% 7% 5% 13% 3% 1% 5% 2% 7% - 13% 6% 6% 6% 1% 0% 1% 3% 1% 2% 2% 2% 1% 2% 1% 2% 1% 3% 1% 0% 2% 2% 2% 4% 1% 0% 1% 0% 0% 2% 2% 1% 3% 1% 1% 0% 1% 1% 3% 3% 1% 1% 0% 1% 0% 0% 0% 0% 2% 0% 1% 0%

gastroesophageal reflux 38% 10% 14% 2% 6% 5% 15% 3% 1% 6% 2% 7% 15% - 6% 7% 5% 1% 0% 1% 3% 2% 2% 2% 2% 1% 2% 1% 3% 1% 2% 1% 1% 3% 1% 2% 5% 1% 0% 1% 0% 0% 1% 3% 1% 4% 1% 1% 0% 1% 1% 3% 1% 1% 1% 0% 0% 0% 1% 0% 0% 2% 0% 1% 0%

iron deficiency anaemia 42% 18% 16% 6% 9% 8% 15% 6% 2% 7% 5% 10% 21% 16% - 8% 5% 2% 1% 2% 4% 3% 2% 3% 4% 4% 2% 2% 3% 2% 2% 2% 1% 2% 3% 3% 3% 2% 0% 1% 0% 1% 3% 3% 1% 6% 2% 2% 0% 1% 2% 3% 4% 1% 3% 1% 1% 0% 0% 0% 1% 3% 0% 1% 0%

obesity 62% 28% 23% 6% 12% 7% 20% 7% 1% 8% 3% 11% 14% 15% 6% - 5% 2% 0% 1% 7% 2% 4% 3% 3% 4% 2% 1% 11% 2% 2% 1% 1% 6% 3% 2% 4% 2% 0% 1% 0% 1% 1% 2% 2% 3% 1% 1% 0% 1% 1% 4% 1% 1% 0% 0% 1% 0% 0% 0% 0% 3% 0% 1% 0%

benign prostatic hyperplasia 46% 13% 19% 4% 11% 5% 10% 4% 1% 6% 3% 3% 14% 11% 3% 5% - 2% 1% 1% 4% 2% 3% 2% 1% 1% 3% 1% 3% 2% 9% 1% 0% 2% 2% 1% 2% 2% 0% 1% 0% 0% 1% 2% 1% 2% 1% 1% 0% 1% 2% 0% 2% 5% 1% 0% 1% 0% 0% 0% 0% 3% 0% 1% 0%

cardiac pacemaker 66% 22% 52% 11% 49% 12% 15% 33% 2% 10% 9% 10% 14% 12% 7% 11% 11% - 1% 2% 12% 5% 6% 7% 2% 4% 3% 1% 6% 5% 4% 2% 1% 3% 3% 2% 3% 2% 0% 1% 0% 1% 2% 2% 1% 3% 3% 1% 0% 1% 4% 2% 2% 2% 1% 0% 1% 0% 1% 0% 0% 8% 0% 1% 0%

dementia 57% 23% 26% 14% 17% 17% 13% 11% 17% 8% 6% 10% 13% 13% 9% 5% 12% 5% - 2% 6% 10% 2% 4% 4% 4% 3% 6% 4% 8% 4% 1% 3% 2% 4% 4% 3% 3% 1% 1% 1% 3% 3% 3% 2% 3% 2% 1% 0% 16% 4% 3% 2% 2% 1% 1% 1% 1% 0% 0% 0% 3% 0% 1% 0%

emphysema 52% 15% 28% 10% 17% 31% 26% 13% 3% 51% 5% 7% 19% 16% 8% 8% 9% 3% 1% - 5% 4% 3% 7% 6% 2% 3% 4% 5% 3% 3% 11% 1% 3% 6% 6% 4% 3% 1% 12% 1% 1% 2% 3% 2% 4% 1% 2% 1% 1% 2% 4% 2% 3% 1% 1% 0% 1% 1% 0% 1% 3% 2% 1% 0%

hyperlipidaemia 75% 27% 55% 6% 17% 7% 15% 12% 1% 9% 4% 9% 15% 15% 6% 15% 8% 5% 1% 2% - 3% 4% 6% 3% 5% 3% 1% 4% 5% 3% 1% 1% 4% 2% 2% 3% 2% 0% 1% 0% 1% 1% 2% 1% 3% 1% 1% 0% 1% 3% 2% 1% 1% 1% 0% 1% 0% 1% 0% 0% 8% 0% 1% 0%

epilepsy 40% 11% 15% 5% 9% 9% 16% 4% 3% 7% 2% 8% 10% 11% 5% 7% 5% 3% 1% 2% 4% - 2% 2% 2% 2% 2% 5% 3% 5% 2% 1% 2% 2% 3% 3% 3% 3% 1% 2% 1% 1% 1% 1% 1% 3% 1% 1% 0% 1% 3% 3% 1% 1% 1% 1% 1% 0% 0% 0% 0% 2% 0% 1% 0%

gout 70% 23% 29% 12% 20% 10% 14% 12% 2% 8% 10% 6% 18% 13% 5% 14% 10% 4% 0% 1% 7% 2% - 4% 3% 3% 3% 3% 6% 4% 5% 2% 2% 4% 3% 1% 2% 3% 0% 1% 0% 1% 1% 3% 2% 4% 1% 1% 0% 1% 2% 1% 2% 2% 1% 0% 1% 0% 1% 0% 0% 5% 0% 1% 0%

peripheral vascular disease 74% 32% 53% 12% 22% 15% 16% 19% 3% 19% 9% 7% 16% 15% 10% 13% 9% 6% 1% 4% 13% 3% 5% - 4% 9% 3% 3% 5% 6% 3% 2% 2% 3% 4% 2% 2% 3% 0% 4% 0% 0% 2% 4% 1% 5% 2% 1% 0% 1% 4% 2% 2% 2% 1% 1% 1% 0% 1% 0% 1% 9% 0% 1% 0%

rheumatoid arthritis 46% 12% 16% 5% 9% 9% 17% 5% 2% 8% 3% 11% 14% 13% 8% 9% 3% 1% 0% 2% 3% 2% 2% 2% - 3% 3% 1% 3% 2% 1% 3% 1% 6% 2% 7% 4% 2% 0% 2% 0% 1% 2% 2% 5% 4% 2% 1% 0% 1% 1% 4% 1% 1% 1% 1% 1% 0% 0% 0% 2% 2% 0% 1% 0%

type 1 diabetes mellitus 68% 70% 30% 13% 11% 11% 15% 11% 3% 8% 10% 13% 10% 11% 10% 15% 5% 3% 1% 1% 9% 2% 3% 8% 4% - 4% 2% 6% 4% 2% 1% 1% 3% 2% 2% 2% 2% 1% 2% 0% 1% 2% 2% 2% 4% 3% 1% 0% 1% 2% 3% 2% 2% 2% 1% 0% 0% 0% 0% 0% 5% 0% 1% 0%

glaucoma 42% 13% 13% 3% 8% 5% 13% 3% 1% 4% 2% 7% 12% 10% 4% 5% 6% 2% 0% 1% 4% 2% 2% 2% 2% 3% - 1% 2% 2% 3% 1% 0% 2% 2% 2% 2% 1% 0% 1% 0% 0% 1% 1% 1% 2% 1% 1% 0% 1% 1% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 2% 0% 1% 0%

alcohol dependence 47% 15% 18% 11% 13% 15% 16% 7% 5% 15% 3% 4% 13% 17% 6% 7% 5% 2% 2% 3% 4% 10% 5% 4% 2% 3% 2% - 2% 4% 2% 2% 25% 2% 2% 3% 2% 3% 2% 2% 2% 4% 1% 5% 3% 6% 0% 0% 2% 1% 2% 1% 1% 1% 1% 0% 0% 0% 1% 0% 0% 3% 1% 1% 0%

sleep apnea 52% 24% 21% 5% 12% 8% 17% 8% 1% 9% 4% 7% 13% 13% 5% 25% 8% 3% 0% 2% 4% 3% 4% 3% 2% 4% 2% 1% - 2% 3% 2% 0% 3% 2% 1% 3% 2% 0% 1% 1% 1% 1% 1% 2% 2% 1% 1% 0% 1% 2% 1% 1% 1% 0% 0% 1% 0% 0% 0% 0% 3% 0% 1% 0%

stroke 64% 19% 25% 8% 26% 11% 11% 10% 4% 8% 5% 7% 11% 9% 6% 6% 7% 3% 1% 2% 9% 6% 4% 5% 2% 4% 3% 2% 3% - 3% 1% 1% 2% 4% 2% 2% 3% 0% 2% 0% 1% 1% 2% 2% 3% 1% 1% 0% 1% 8% 2% 1% 1% 1% 0% 1% 1% 1% 0% 0% 4% 0% 1% 0%

prostate cancer 42% 10% 14% 4% 9% 5% 8% 3% 1% 4% 2% 2% 12% 8% 3% 4% 17% 1% 0% 1% 3% 1% 3% 1% 1% 1% 2% 1% 2% 2% - 1% 0% 1% 2% 1% 1% 2% 0% 1% 0% 0% 2% 1% 1% 2% 0% 0% 0% 1% 1% 0% 2% 4% 0% 0% 1% 0% 0% 0% 0% 2% 0% 1% 0%

bronchiectasis 43% 12% 19% 7% 13% 27% 37% 9% 2% 27% 4% 9% 17% 15% 7% 7% 6% 2% 0% 10% 4% 3% 3% 3% 8% 2% 3% 2% 4% 2% 3% - 1% 3% 4% 7% 4% 2% 0% 2% 0% 0% 3% 2% 1% 3% 1% 1% 0% 1% 1% 4% 2% 1% 1% 0% 0% 1% 0% 0% 1% 2% 2% 1% 0%

alcoholic liver disease 51% 23% 18% 19% 14% 18% 17% 9% 6% 14% 6% 5% 15% 20% 11% 10% 5% 2% 2% 2% 5% 8% 7% 7% 3% 5% 1% 56% 2% 2% 1% 1% - 2% 3% 4% 2% 3% 1% 2% 1% 1% 2% 9% 5% 11% 1% 1% 3% 1% 1% 2% 2% 1% 1% 0% 0% 0% 2% 0% 0% 3% 1% 1% 0%

osteoarthritis 54% 15% 16% 3% 9% 5% 19% 4% 2% 8% 3% 11% 17% 18% 6% 18% 6% 2% 0% 1% 6% 2% 4% 2% 7% 2% 2% 1% 4% 2% 2% 2% 1% - 2% 5% 6% 2% 0% 1% 0% 1% 1% 2% 2% 3% 2% 1% 0% 1% 2% 4% 1% 2% 1% 0% 0% 0% 0% 0% 1% 2% 0% 1% 0%

pulmonary embolism 40% 11% 14% 7% 12% 20% 14% 7% 2% 8% 4% 7% 13% 10% 6% 8% 7% 2% 1% 3% 3% 3% 3% 3% 3% 2% 2% 1% 3% 3% 4% 2% 1% 2% - 2% 3% 15% 0% 5% 0% 1% 2% 2% 1% 3% 1% 1% 0% 1% 1% 6% 4% 1% 1% 1% 1% 1% 0% 0% 1% 2% 0% 1% 0%

osteoporosis 42% 9% 13% 5% 10% 10% 19% 5% 3% 11% 3% 12% 17% 16% 7% 6% 3% 2% 1% 3% 4% 4% 1% 2% 10% 2% 3% 2% 2% 2% 2% 4% 1% 5% 3% - 6% 3% 0% 2% 1% 1% 2% 2% 2% 3% 2% 3% 0% 2% 2% 8% 2% 1% 4% 1% 1% 1% 0% 0% 1% 2% 1% 1% 0%

irritable bowel syndrome 35% 9% 11% 2% 5% 5% 18% 2% 1% 5% 2% 9% 20% 20% 5% 7% 4% 1% 0% 1% 3% 2% 1% 1% 3% 1% 2% 1% 3% 1% 1% 1% 0% 4% 2% 3% - 2% 0% 1% 1% 1% 4% 2% 2% 3% 1% 2% 0% 0% 1% 4% 1% 1% 1% 1% 0% 0% 1% 0% 0% 1% 0% 1% 0%

venous thromboembolism 38% 12% 12% 7% 9% 11% 15% 5% 2% 7% 3% 7% 13% 11% 5% 9% 6% 2% 0% 2% 3% 4% 3% 3% 3% 2% 2% 2% 3% 4% 4% 1% 1% 2% 19% 3% 3% - 0% 3% 0% 1% 2% 2% 1% 2% 1% 1% 0% 1% 1% 5% 3% 2% 1% 1% 1% 1% 0% 0% 1% 2% 0% 1% 0%

schizophrenia 34% 19% 11% 6% 6% 7% 13% 4% 3% 9% 2% 6% 6% 10% 5% 8% 4% 1% 1% 3% 3% 7% 1% 2% 2% 3% 2% 7% 3% 2% 1% 1% 2% 1% 3% 1% 2% 2% - 2% 4% 13% 1% 2% 1% 2% 1% 1% 1% 2% 1% 2% 1% 1% 1% 0% 0% 0% 1% 1% 0% 2% 0% 1% 0%

lung cancer 40% 13% 17% 8% 14% 28% 12% 6% 2% 22% 2% 6% 11% 10% 4% 4% 6% 1% 0% 10% 3% 3% 2% 5% 3% 3% 2% 2% 2% 3% 3% 2% 1% 1% 9% 2% 2% 4% 1% - 0% 0% 1% 2% 1% 2% 1% 1% 0% 0% 2% 6% 3% 2% 0% 1% 1% 0% 1% 0% 0% 3% 1% 0% 0%

depression 41% 15% 17% 7% 7% 8% 17% 3% 4% 10% 4% 13% 13% 16% 8% 11% 5% 2% 1% 2% 4% 8% 2% 3% 3% 3% 2% 10% 6% 3% 2% 2% 2% 2% 3% 4% 7% 3% 5% 1% - 23% 1% 1% 3% 2% 2% 1% 0% 2% 1% 2% 1% 1% 1% 2% 1% 0% 0% 0% 1% 2% 0% 1% 0%

bipolar disorder 35% 15% 11% 7% 6% 8% 17% 3% 4% 8% 5% 14% 10% 10% 6% 10% 4% 1% 1% 2% 3% 5% 2% 1% 2% 3% 2% 7% 4% 3% 2% 0% 1% 2% 2% 2% 4% 2% 8% 1% 9% - 1% 2% 3% 3% 2% 1% 1% 2% 2% 4% 1% 1% 1% 1% 0% 0% 1% 1% 0% 2% 0% 1% 0%

ulcerative colitis 32% 10% 12% 4% 6% 5% 12% 3% 1% 4% 2% 5% 17% 9% 7% 4% 5% 1% 0% 1% 2% 2% 1% 1% 3% 2% 2% 1% 2% 1% 3% 2% 1% 2% 2% 2% 7% 2% 0% 1% 0% 0% - 2% 1% 2% 1% 13% 0% 1% 1% 3% 2% 1% 1% 1% 1% 0% 0% 0% 0% 2% 0% 1% 0%

duodenal ulcer 41% 13% 18% 6% 8% 7% 11% 5% 1% 7% 3% 5% 17% 23% 9% 5% 6% 2% 0% 2% 4% 2% 3% 3% 3% 2% 2% 3% 2% 2% 3% 1% 2% 2% 2% 2% 3% 1% 0% 1% 0% 1% 2% - 1% 15% 1% 2% 0% 1% 1% 2% 2% 1% 1% 0% 1% 0% 2% 0% 0% 3% 0% 1% 0%

psoriasis 43% 14% 15% 4% 9% 7% 14% 4% 1% 6% 2% 7% 13% 11% 4% 10% 5% 2% 0% 1% 3% 2% 3% 2% 9% 2% 2% 3% 3% 2% 2% 1% 2% 4% 2% 2% 4% 2% 0% 1% 1% 1% 2% 1% - 3% 1% 2% 0% 1% 1% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 3% 0% 1% 0%

gastric ulcer 44% 14% 19% 4% 9% 6% 14% 5% 1% 7% 3% 7% 19% 24% 12% 7% 6% 1% 0% 1% 4% 3% 3% 3% 3% 2% 2% 3% 3% 2% 2% 1% 2% 3% 2% 2% 4% 1% 0% 1% 0% 1% 2% 11% 1% - 1% 1% 0% 1% 2% 2% 2% 1% 1% 0% 0% 0% 2% 0% 0% 3% 0% 1% 0%

hyperthyroidism 44% 12% 16% 5% 16% 7% 16% 7% 1% 6% 4% 40% 13% 13% 8% 8% 3% 4% 0% 1% 4% 2% 2% 2% 4% 4% 3% 0% 3% 2% 1% 1% 0% 3% 2% 3% 4% 2% 0% 1% 0% 1% 2% 2% 1% 3% - 1% 0% 1% 2% 6% 2% 1% 2% 1% 1% 0% 0% 0% 1% 3% 0% 1% 0%

crohns disease 32% 9% 9% 5% 6% 7% 13% 3% 1% 5% 2% 5% 16% 12% 11% 5% 4% 1% 0% 2% 2% 2% 2% 1% 4% 2% 2% 0% 2% 2% 1% 1% 0% 1% 2% 5% 7% 2% 0% 1% 0% 1% 24% 3% 2% 3% 1% - 0% 1% 1% 3% 2% 1% 2% 1% 1% 0% 0% 0% 0% 2% 0% 1% 0%

hepatitis c 31% 15% 12% 6% 5% 7% 10% 4% 2% 7% 3% 4% 6% 9% 4% 4% 4% 1% 0% 3% 1% 4% 2% 3% 2% 4% 1% 10% 2% 2% 2% 1% 7% 1% 2% 2% 0% 3% 3% 2% 0% 2% 1% 3% 1% 4% 1% 1% - 0% 0% 1% 0% 1% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 2%

parkinsons disease 42% 11% 18% 6% 11% 11% 12% 5% 12% 5% 3% 8% 12% 11% 6% 6% 11% 3% 7% 1% 3% 5% 2% 2% 3% 2% 2% 1% 3% 2% 4% 1% 1% 3% 3% 5% 2% 3% 1% 1% 1% 2% 2% 2% 1% 3% 1% 1% 0% - 3% 2% 1% 1% 1% 2% 1% 1% 1% 0% 0% 3% 0% 1% 0%

tia 60% 15% 23% 4% 17% 7% 13% 6% 2% 8% 3% 8% 14% 12% 5% 6% 8% 3% 1% 1% 7% 5% 3% 4% 2% 3% 3% 1% 3% 10% 3% 1% 0% 3% 2% 2% 2% 2% 0% 1% 0% 1% 1% 2% 1% 3% 2% 1% 0% 1% - 2% 1% 1% 1% 0% 0% 0% 1% 0% 0% 3% 0% 1% 0%

breast cancer 26% 6% 4% 2% 3% 3% 10% 1% 0% 2% 1% 8% 8% 7% 2% 4% 0% 0% 0% 1% 1% 1% 0% 0% 2% 1% 1% 0% 1% 1% 0% 1% 0% 1% 2% 2% 2% 1% 0% 1% 0% 0% 1% 1% 1% 1% 1% 0% 0% 0% 0% - 1% 0% 0% 1% 0% 0% 0% 0% 0% 1% 0% 0% 0%

colon cancer 40% 11% 11% 6% 9% 8% 10% 3% 1% 5% 2% 6% 24% 10% 11% 5% 6% 1% 0% 1% 2% 2% 2% 2% 1% 2% 2% 1% 2% 2% 3% 1% 0% 1% 5% 2% 2% 3% 0% 2% 0% 0% 2% 2% 1% 2% 1% 1% 0% 1% 1% 3% - 1% 1% 0% 1% 0% 0% 0% 0% 2% 0% 1% 0%

bladder cancer 51% 16% 18% 6% 10% 6% 11% 4% 1% 7% 4% 5% 14% 11% 4% 8% 26% 2% 0% 2% 3% 2% 4% 3% 2% 2% 3% 1% 3% 2% 10% 1% 0% 3% 3% 2% 2% 2% 0% 2% 0% 0% 1% 1% 1% 2% 1% 1% 0% 1% 2% 2% 2% - 1% 0% 3% 1% 0% 0% 0% 3% 0% 1% 0%

celiac disease 26% 6% 10% 2% 6% 4% 13% 2% 1% 4% 1% 11% 13% 14% 14% 3% 3% 1% 0% 1% 2% 2% 1% 1% 2% 3% 2% 1% 1% 2% 1% 1% 0% 2% 1% 7% 4% 1% 0% 0% 0% 0% 2% 2% 1% 3% 2% 2% 0% 1% 1% 3% 1% 1% - 1% 0% 0% 0% 0% 0% 2% 0% 1% 0%

multiple sclerosis 26% 7% 7% 2% 4% 8% 10% 2% 3% 2% 1% 7% 7% 7% 4% 4% 3% 0% 0% 1% 2% 4% 1% 1% 2% 1% 1% 1% 1% 1% 1% 1% 0% 1% 2% 3% 3% 2% 0% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 4% 1% 1% 1% - 0% 0% 0% 0% 0% 1% 0% 1% 0%

renal cancer 51% 13% 15% 9% 9% 11% 10% 4% 1% 4% 6% 7% 14% 11% 5% 8% 11% 2% 0% 1% 3% 2% 3% 2% 3% 2% 1% 1% 4% 2% 5% 1% 0% 2% 5% 2% 2% 3% 0% 2% 1% 0% 2% 2% 1% 2% 1% 1% 0% 1% 1% 3% 3% 6% 0% 0% - 1% 0% 0% 0% 2% 0% 1% 0%

multiple myeloma 43% 11% 13% 26% 16% 28% 11% 9% 3% 5% 12% 5% 11% 9% 5% 5% 7% 1% 1% 2% 2% 2% 3% 2% 3% 2% 3% 0% 2% 3% 4% 4% 0% 2% 5% 3% 2% 4% 0% 1% 0% 1% 1% 1% 1% 1% 1% 0% 0% 1% 1% 2% 1% 2% 1% 0% 1% - 0% 1% 0% 2% 0% 1% 0%

peptic ulcer disease 49% 16% 30% 7% 13% 10% 18% 7% 1% 13% 4% 9% 21% 27% 8% 9% 6% 3% 0% 4% 7% 3% 5% 8% 4% 3% 3% 5% 4% 4% 3% 2% 4% 3% 3% 3% 7% 3% 1% 3% 0% 2% 2% 13% 1% 16% 2% 1% 0% 2% 3% 2% 3% 1% 1% 0% 1% 1% - 1% 1% 5% 1% 1% 0%

sickle cell disease 40% 16% 8% 5% 4% 7% 13% 3% 1% 2% 4% 4% 7% 9% 7% 10% 3% 1% 0% 1% 3% 3% 2% 2% 2% 3% 2% 1% 3% 3% 3% 1% 0% 2% 2% 0% 5% 3% 1% 0% 0% 2% 1% 1% 1% 3% 3% 0% 0% 0% 2% 2% 2% 0% 0% 0% 0% 1% 1% - 2% 2% 0% 1% 1%

sle 44% 9% 14% 7% 8% 13% 20% 5% 2% 8% 7% 18% 12% 15% 11% 7% 1% 2% 0% 2% 4% 5% 2% 4% 17% 2% 2% 1% 2% 3% 1% 4% 1% 6% 6% 10% 7% 6% 1% 1% 1% 1% 4% 2% 2% 4% 3% 2% 0% 1% 1% 3% 2% 1% 2% 2% 0% 0% 1% 2% - 2% 1% 1% 0%

myocardial infarction 67% 20% 89% 8% 18% 9% 12% 18% 1% 9% 5% 7% 12% 12% 5% 10% 8% 5% 0% 1% 11% 2% 4% 6% 3% 4% 2% 1% 3% 4% 3% 1% 1% 2% 2% 2% 2% 1% 0% 2% 0% 1% 2% 2% 2% 3% 1% 1% 0% 1% 2% 1% 1% 1% 1% 0% 0% 0% 1% 0% 0% - 0% 1% 0%

chronic bronchitis 53% 20% 29% 6% 11% 21% 33% 8% 2% 33% 6% 8% 23% 22% 7% 13% 9% 2% 1% 10% 6% 2% 4% 5% 4% 3% 4% 4% 7% 5% 4% 14% 2% 4% 4% 7% 7% 2% 1% 7% 1% 1% 1% 4% 1% 4% 2% 1% 0% 1% 2% 2% 1% 1% 1% 0% 0% 0% 1% 0% 1% 4% - 1% 0%

renal colic 35% 12% 12% 3% 5% 4% 11% 3% 1% 3% 2% 4% 11% 10% 2% 6% 8% 1% 0% 1% 3% 2% 2% 1% 2% 2% 2% 1% 2% 1% 2% 1% 0% 1% 2% 1% 3% 1% 0% 1% 0% 1% 2% 2% 1% 2% 1% 1% 0% 0% 1% 2% 1% 1% 1% 0% 1% 0% 0% 0% 0% 2% 0% - 0%

hiv 15% 10% 4% 5% 2% 9% 5% 1% 0% 2% 4% 0% 5% 4% 2% 2% 3% 0% 0% 1% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 0% 1% 1% 1% 2% 1% 1% 2% 0% 1% 0% 0% 3% 2% 1% 2% 1% 2% 6% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 2% 0% 1% 0% 2% -



XVI 
 

Appendix 6.4 Comorbidities patterns between the UHB to the UK Biobank 

 

The difference from the UHB to the UK Biobank. A positive value, marked in blue, indicates more association of a row condition to the column condition 

in the UHB set of patients. Negative values, highlighted in orange, indicate a higher association in the UK Biobank. Note that the UK Biobank contains 

the whole life records, while the UHB data is from secondary care.
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hypertension - 11.9% 1.6% 7.7% 4.1% 5.0% -1.8% 5.6% 8.0% 2.4% 5.3% 0.5% -6.1% -5.1% 0.7% -3.6% -1.8% 1.9% 3.2% 1.1% -0.2% 0.6% 0.9% 0.4% 0.1% 0.2% 0.6% -0.1% -0.5% -0.1% -0.2% 0.5% 0.5% -0.6% -0.6% -0.5% -1.4% -0.6% 0.4% 0.1% 0.5% 0.1% -0.5% -1.0% -0.3% -1.7% -0.2% -0.2% 0.3% 0.3% -1.0% -2.4% -0.7% -0.4% -0.2% -0.2% -0.1% 0.1% -0.1% 0.0% 0.1% -3.0% -0.1% -0.8% 0.0%

type 2 diabetes mellitus -5.0% - -0.8% 6.9% 2.1% 3.2% -2.6% 4.2% 7.0% 0.5% 4.8% -0.7% -8.0% -5.8% -0.6% -6.6% -3.2% 1.5% 2.9% 0.6% -1.7% 0.5% -0.3% -0.5% -0.2% -5.2% -0.1% -0.6% -1.5% -0.9% -0.3% 0.3% 0.5% -1.0% -0.9% -0.7% -1.6% -0.9% 0.6% -0.4% 0.4% 0.2% -0.5% -1.4% -0.6% -2.2% -0.4% -0.3% 0.4% 0.3% -1.1% -2.1% -0.9% -0.9% -0.2% -0.2% -0.1% 0.1% -0.2% 0.0% 0.0% -3.6% -0.2% -1.2% -0.1%

heart disease 0.6% 13.4% - 8.7% 3.0% 5.6% -1.7% 8.3% 8.2% 2.9% 6.7% 0.7% -6.1% -5.7% 0.6% -3.9% -2.4% 3.5% 3.5% 1.6% -4.3% 0.0% 1.0% 0.2% 0.2% 0.0% 0.7% -0.4% -0.9% -0.6% -0.4% 0.5% 0.2% -0.3% -0.8% -0.4% -1.4% -0.7% 0.4% 0.0% 0.3% 0.1% -0.6% -1.4% -0.3% -2.5% -0.4% -0.1% 0.2% 0.4% -1.4% -1.0% -0.6% -0.4% -0.2% -0.1% -0.2% 0.0% -0.2% 0.0% 0.1% -12.5% -0.2% -0.9% 0.0%

acute renal failure -5.8% 3.2% -4.8% - -0.7% 2.6% -4.4% 5.0% 16.1% -2.2% 2.6% 0.7% -8.6% -5.9% -2.7% -8.6% -3.3% 1.5% 7.5% 0.4% -2.7% -0.3% -2.5% -2.7% -1.3% -3.4% 0.8% -1.6% -2.6% -2.2% -1.2% 0.0% 0.0% -0.2% -2.8% -1.6% -1.5% -2.5% 0.5% -1.9% 0.5% -0.2% -1.5% -2.2% -1.0% -2.9% -1.2% -0.9% 0.6% 0.3% -1.4% -2.3% -2.6% -1.0% -0.3% 0.0% -0.9% -1.9% -0.3% -0.1% -0.1% -6.3% -0.1% -1.1% -0.1%

atrial fibrillation 3.3% 9.6% -1.9% 11.6% - 8.2% -3.1% 10.6% 14.2% 3.3% 7.6% 1.5% -5.6% -4.7% 1.2% -4.3% -2.4% 3.1% 5.8% 1.6% -2.1% 0.3% 0.7% 0.1% 0.4% -0.2% 0.7% -0.4% -1.2% -1.6% -0.6% 1.0% 0.0% -0.1% -1.3% -0.3% -1.1% -0.8% 0.3% -0.3% 0.4% 0.0% -0.6% -0.9% -0.5% -2.0% -0.5% -0.1% 0.2% 0.5% -1.6% -1.5% -0.8% -0.4% -0.4% 0.0% -0.2% -0.1% -0.1% 0.0% 0.0% -4.5% -0.1% -0.6% 0.0%

pneumonia 6.4% 8.4% 2.0% 16.3% 5.8% - -6.1% 11.6% 17.2% -2.2% 7.3% 1.4% -6.5% -6.2% 0.3% -3.7% -1.6% 2.3% 7.9% 2.1% -0.7% 0.8% 0.5% -0.2% -0.6% -0.4% 0.8% -0.6% -1.4% -0.4% 0.0% -0.6% 0.4% 0.2% -3.9% -1.2% -1.7% -2.0% 1.4% -2.8% 0.8% 0.2% -0.8% -1.0% -0.5% -2.2% -0.4% -0.5% 0.5% 0.5% -1.0% -2.8% -1.6% -0.6% -0.1% -0.5% -0.6% -0.9% -0.2% 0.0% -0.2% -3.3% -0.4% -0.9% -0.1%

asthma -5.9% 5.2% -1.2% 3.4% -0.2% 1.1% - 2.1% 3.9% -4.7% 2.2% -1.8% -7.3% -6.7% -0.6% -3.8% -2.0% 0.7% 1.3% -0.1% -0.9% 1.6% 0.0% -0.4% -0.5% 0.4% -0.4% 0.3% -0.7% -0.3% -0.5% -0.2% 0.5% -0.9% -0.9% -1.2% -1.4% -0.8% 0.7% -0.4% 1.1% 0.6% -0.1% -0.9% -0.3% -1.8% -0.5% 0.2% 0.3% -0.1% -0.7% -3.0% -0.7% -0.6% -0.3% 0.2% -0.1% 0.0% -0.1% 0.1% -0.1% -1.6% -0.2% -0.7% 0.0%

heart failure -4.6% 6.0% -14.9% 13.9% -3.2% 8.9% -4.7% - 15.7% -0.7% 9.0% 1.9% -6.4% -5.9% -0.1% -6.9% -2.9% 2.7% 6.0% 1.3% -5.9% 0.2% -0.3% -3.0% -0.2% -2.2% 0.8% -1.1% -2.5% -2.4% -0.7% 0.3% -0.3% -0.2% -2.1% -0.9% -1.1% -1.6% 0.6% -0.9% 0.5% 0.0% -0.9% -1.6% -0.7% -2.7% -1.1% -0.4% 0.2% 0.4% -1.9% -1.6% -0.9% -0.7% -0.3% -0.1% -0.3% -0.3% -0.3% 0.1% -0.1% -11.4% -0.3% -0.9% 0.0%

at risk of falls -0.5% 1.4% -4.0% 8.9% 6.1% 3.8% -6.7% 8.3% - -2.8% 6.8% 0.5% -8.6% -7.2% -1.9% -7.6% -3.3% 2.5% 10.3% 0.5% -2.1% -3.1% -0.7% -1.6% -2.3% -2.8% 1.2% -4.3% -3.1% -5.4% 0.2% 0.1% -1.7% -1.5% -2.8% -3.9% -3.3% -3.3% 0.3% -1.6% 0.1% -1.3% -1.3% -1.7% -1.4% -4.1% -0.6% -0.7% -0.1% -7.0% -2.2% -2.7% -1.3% -0.3% -0.4% -1.8% -0.6% -0.6% 0.1% -0.2% -0.3% -3.9% -0.3% -0.9% 0.0%

copd -2.1% 5.2% -1.8% 6.5% 3.5% -0.7% -23.9% 5.2% 9.6% - 4.7% -1.4% -9.1% -8.8% -1.9% -5.3% -2.8% 1.8% 3.2% -0.6% -2.3% 0.1% -0.1% -1.4% -1.1% -0.5% 0.1% -1.0% -1.5% -1.1% 0.1% -1.3% 0.8% -1.4% -1.9% -2.4% -2.3% -1.6% 0.7% -1.6% 0.6% 0.0% -0.7% -1.9% -0.7% -3.1% -0.5% -0.4% 0.4% 0.1% -1.7% -2.0% -1.0% -0.8% -0.4% 0.0% -0.1% -0.1% -0.6% 0.0% -0.2% -4.3% -0.8% -0.7% 0.0%

chronic renal failure -2.9% 4.7% -4.0% 5.2% 2.4% 3.1% -4.1% 6.4% 16.9% -0.7% - 0.0% -7.9% -7.4% -4.7% -8.1% -3.9% 1.8% 8.0% 0.2% -3.7% -0.1% -3.9% -3.4% -1.3% -5.4% 0.8% -1.1% -3.4% -3.1% -0.4% 0.2% -0.2% -0.9% -3.3% -1.6% -2.7% -2.1% 0.5% -0.4% 0.2% -1.0% -1.6% -2.5% -0.8% -3.9% -1.7% -0.9% 0.4% 0.1% -2.0% -1.5% -1.4% -1.4% -0.5% -0.3% -1.2% -1.2% -0.4% -0.2% -0.5% -7.2% -0.5% -1.6% -0.2%

hypothyroidism 8.2% 10.1% 4.0% 9.0% 6.0% 6.3% -1.6% 7.5% 9.8% 2.1% 6.1% - -5.2% -5.5% -0.1% -3.1% -0.4% 2.2% 4.2% 1.0% 0.3% 1.5% 1.1% 0.3% 0.3% 0.7% 0.7% 0.2% -0.2% 0.5% 0.5% 0.6% 0.5% -0.8% -0.3% -0.6% -1.9% -0.5% 0.5% 0.2% 1.0% 0.5% -0.2% -0.8% -0.1% -1.9% -3.3% 0.0% 0.2% 0.3% -0.4% -4.1% -0.4% -0.1% -0.4% 0.1% 0.0% 0.2% -0.1% -0.1% 0.0% -1.7% -0.1% -0.6% 0.0%

diverticular disease 8.5% 8.0% 3.6% 6.5% 4.8% 4.5% -0.1% 5.3% 7.2% 4.2% 5.0% 1.1% - -4.7% 3.2% -2.8% -1.0% 2.0% 2.7% 2.1% -0.2% 0.6% 0.6% 0.5% 0.5% 0.4% 1.0% 0.1% -0.4% 0.1% -0.5% 0.7% 0.2% -0.5% -0.2% -0.5% -1.8% -0.3% 0.3% 0.3% 0.6% 0.1% -0.4% -0.9% -0.2% -2.1% 0.2% -0.2% 0.1% 0.2% -0.7% -2.1% -0.7% -0.1% -0.2% -0.2% -0.1% 0.1% 0.0% 0.0% 0.0% -1.5% -0.1% -0.7% 0.0%

gastroesophageal reflux 7.2% 8.4% 3.2% 6.5% 3.2% 4.5% 1.5% 4.0% 6.4% 3.5% 4.0% 0.2% -5.7% - 1.2% -2.0% -1.4% 1.1% 1.9% 2.1% 0.7% 0.9% 1.0% 0.4% 0.5% 0.5% 0.2% 0.8% 0.1% 0.3% -0.2% 0.9% 1.1% 0.1% 0.0% -0.4% -1.7% -0.4% 0.5% 0.3% 1.4% 0.3% -0.1% -1.6% 0.0% -2.5% -0.2% -0.3% 0.4% 0.2% -0.7% -1.3% -0.4% -0.3% -0.4% -0.1% -0.1% 0.0% -0.1% 0.0% 0.0% -1.8% 0.0% -0.8% 0.0%

iron deficiency anaemia 7.3% 12.4% 3.3% 9.7% 5.9% 6.5% -1.3% 7.9% 10.8% 1.1% 5.5% -1.1% -6.7% -6.9% - -3.6% -0.6% 2.4% 3.9% 1.1% -0.7% 0.6% 0.6% 0.0% -0.6% -0.3% 0.9% 0.0% -0.8% -0.2% -0.3% 0.4% 0.8% -0.1% -0.5% -1.0% -1.9% -0.3% 0.9% -0.1% 0.5% 0.2% 0.0% -1.6% 0.0% -4.1% -0.4% 0.6% 0.6% 0.4% -0.9% -2.1% -0.9% -0.4% -2.0% -0.1% -0.3% -0.1% 0.0% 0.1% -0.1% -2.2% -0.2% -0.5% 0.0%

obesity -3.6% 17.3% 0.5% 6.7% 1.5% 4.2% -2.1% 6.8% 3.8% 2.8% 4.9% -1.2% -8.9% -7.1% -0.7% - -2.3% 0.6% 0.7% 0.6% -1.0% 1.1% 0.5% -0.2% -0.5% 0.2% -0.7% 0.2% 5.3% -0.6% 0.2% 0.3% 1.0% -3.0% -0.8% -0.9% -1.4% -1.3% 1.1% -0.2% 1.3% 0.7% -0.4% -1.0% -0.3% -2.1% -0.6% 0.0% 0.2% -0.4% -1.0% -1.3% -0.8% -0.6% -0.2% 0.1% -0.1% 0.0% -0.2% 0.2% 0.0% -3.1% -0.2% -0.9% 0.0%

benign prostatic hyperplasia 11.5% 9.0% 4.9% 11.1% 6.8% 6.8% -0.9% 6.7% 10.9% 4.1% 7.2% 0.9% -5.0% -4.5% 1.5% -2.1% - 3.8% 4.4% 2.5% 0.0% 0.7% 1.5% 1.1% 0.1% 0.4% 1.0% 0.0% -1.4% 0.2% -3.7% 1.0% 0.0% -0.2% -0.4% -0.1% -1.2% -0.5% 0.6% 0.3% 0.1% -0.1% -0.8% -1.0% -0.2% -1.7% 0.2% -0.2% 0.2% 1.2% -0.7% 0.0% -0.5% -0.7% -0.1% 0.0% -0.3% 0.4% 0.0% 0.2% 0.0% -2.4% -0.1% -1.4% 0.0%

cardiac pacemaker -7.3% 6.3% -8.2% 9.4% -8.8% 4.1% -4.5% 7.1% 12.5% 0.6% 6.8% -0.8% -6.5% -7.2% 0.0% -7.4% -3.0% - 5.1% 0.8% -7.6% -1.7% -0.1% -2.8% -0.1% -0.7% -0.3% -0.7% -2.7% -1.9% -0.3% 0.2% 0.0% -1.0% -1.2% -1.0% -2.3% -1.4% 0.1% -0.2% 0.1% 0.0% -0.8% -1.3% -0.6% -2.2% -1.7% -0.3% 0.1% 0.1% -2.7% -1.6% -1.0% -0.7% -0.2% 0.1% -0.6% 0.0% -0.3% -0.1% -0.1% -7.3% 0.0% -0.7% 0.0%

dementia 2.0% 3.4% -3.6% 14.0% 8.0% 10.9% -4.9% 7.5% 23.2% 0.3% 9.9% 2.2% -5.5% -8.4% -1.8% -3.7% -5.7% 1.9% - 0.1% -2.6% -4.2% 1.2% -0.2% -0.6% -1.5% 2.2% -4.8% -3.2% -3.4% -0.3% 0.4% -2.6% 0.0% -2.0% -1.1% -1.9% -1.1% 1.4% -0.3% -0.1% -1.4% -2.1% -2.3% -1.5% -2.7% -0.6% -0.8% 0.1% -11.4% -2.8% -2.7% -0.7% -0.9% -0.8% -0.5% -0.6% -0.2% -0.1% -0.3% -0.1% -3.0% -0.1% -0.8% 0.0%

emphysema -2.6% 3.8% -1.4% 6.9% 1.8% 2.6% -14.5% 5.3% 10.1% -17.0% 2.9% -0.5% -7.4% -6.2% -1.7% -4.7% -2.1% 1.3% 2.6% - -2.1% -0.6% -0.1% -0.6% -1.6% -0.3% 0.2% 0.2% -1.9% -1.5% -1.1% -0.2% 1.0% -0.2% -3.0% -2.7% -2.4% -1.8% 0.5% -4.9% 1.3% -0.4% -1.0% -1.7% -0.7% -2.9% -0.2% -0.9% 0.5% -0.2% -1.6% -3.1% -0.8% -1.6% -0.3% 0.1% 0.0% -0.2% -0.8% 0.0% -0.4% -3.2% -0.9% -0.9% -0.1%

hyperlipidaemia 4.2% 13.5% -15.7% 6.1% -0.5% 3.8% -3.4% 1.8% 7.5% 0.5% 5.0% 0.5% -8.3% -5.6% -0.6% -6.1% -2.9% -0.2% 2.6% 0.8% - -0.6% 0.6% -0.9% 0.6% -1.2% -0.4% -0.2% -0.5% -0.5% -0.2% 0.1% 0.0% -0.6% -1.1% -0.8% -2.1% -0.6% 0.4% -0.1% 1.1% 0.0% -0.6% -1.8% -0.3% -2.7% -0.3% -0.4% 0.2% 0.2% -1.5% -0.6% -0.8% 0.1% -0.3% -0.3% 0.0% -0.1% -0.5% 0.0% -0.1% -7.4% -0.2% -1.2% 0.0%

epilepsy -10.8% 2.1% -6.3% 3.1% -1.6% 1.1% -0.6% 1.3% 6.5% -1.1% 1.4% -1.2% -6.8% -6.5% -1.9% -3.3% -2.9% -0.6% 2.8% 0.0% -2.4% - -0.2% -0.8% -0.8% 0.6% -0.8% 0.2% -1.6% -3.1% -0.5% -0.5% 0.1% -1.3% -2.3% -1.9% -1.6% -2.0% 1.2% -0.9% 0.6% 0.7% -0.6% -0.7% -0.5% -2.4% -0.4% 0.0% 0.3% -0.6% -2.4% -2.1% -0.8% -0.8% -0.4% -0.5% -0.3% 0.0% -0.2% -0.1% 0.0% -2.1% -0.1% -0.9% -0.1%

gout 1.5% 6.8% 1.9% 8.8% 3.5% 5.1% -3.0% 8.3% 10.4% 1.0% 7.5% 1.5% -10.0% -5.6% -0.2% -6.3% -3.2% 3.3% 3.6% 0.8% -1.4% 0.5% - 0.6% 0.1% -0.1% 0.7% -0.6% -1.6% -1.1% -1.1% 0.6% 0.3% -0.7% -0.8% -0.5% -0.7% -1.6% 0.3% 0.0% 0.7% -0.5% -0.5% -1.6% -0.7% -3.0% -0.5% -0.2% 0.1% 0.2% -0.7% -0.7% -0.9% -1.4% -0.2% -0.1% -0.3% 0.1% -0.3% -0.1% 0.1% -4.4% -0.3% -1.3% 0.0%

peripheral vascular disease 0.9% 10.7% -2.8% 9.5% 3.4% 6.1% -5.5% 5.3% 12.2% 0.8% 7.5% -0.4% -7.6% -7.4% -1.6% -6.4% -2.1% 0.7% 4.9% 3.0% -4.2% 0.0% 1.3% - -0.3% -1.2% 0.5% -1.6% -1.9% -2.2% 1.1% 0.6% -1.0% -0.6% -2.4% -0.7% -1.0% -1.8% 0.2% -1.8% 0.3% 0.0% -0.7% -2.2% 0.1% -3.5% -0.5% -0.2% 0.2% 0.3% -2.3% -1.0% -1.1% -0.2% -0.3% -0.4% -0.2% 0.2% -0.4% -0.2% -0.2% -8.0% -0.1% -1.1% 0.0%

rheumatoid arthritis 5.2% 9.1% 3.7% 6.9% 5.4% 4.8% -2.1% 6.0% 8.9% 2.0% 4.5% 0.3% -5.6% -5.1% -1.0% -3.9% -1.0% 1.7% 3.5% 1.3% 0.5% 0.5% 0.9% 0.3% - -0.3% 0.3% -0.3% -0.7% 0.0% 0.4% 0.5% 0.0% -1.0% -0.8% -2.6% -2.2% -1.1% 0.3% -0.2% 0.7% 0.2% -0.5% -1.2% -2.2% -2.8% -0.8% -0.1% 0.4% -0.1% -0.5% -3.0% -0.3% -0.3% -0.3% -0.1% -0.3% -0.1% 0.0% 0.0% -0.3% -2.1% 0.1% -1.0% 0.0%

type 1 diabetes mellitus -20.7% -29.1% -9.4% 3.4% -2.4% -0.4% -2.9% -0.6% 5.5% -1.3% 1.2% -3.8% -5.9% -6.9% -4.2% -8.9% -2.8% 0.6% 2.2% 0.1% -5.1% 1.3% -0.6% -2.8% -1.8% - -1.2% -0.6% -2.7% -2.8% -1.0% 0.1% 0.4% -1.5% -1.4% -0.7% -0.9% -1.5% 0.8% -1.1% 0.5% 0.0% -0.9% -1.2% -0.6% -2.9% -1.4% -0.6% 0.7% -0.1% -1.5% -2.1% -1.5% -1.4% 0.0% 0.0% 0.0% 0.1% -0.1% 0.0% -0.1% -4.9% -0.2% -1.2% 0.0%

glaucoma 17.4% 13.2% 7.2% 9.9% 7.2% 7.7% -0.8% 7.4% 12.4% 3.6% 6.7% 2.2% -2.9% -4.1% 2.2% -2.7% -0.5% 2.2% 5.5% 1.7% -0.3% 0.8% 1.6% 0.9% 0.5% 0.7% - -0.1% -0.3% 1.4% 0.3% 0.7% 0.6% 0.0% -0.7% -0.1% -1.5% -0.1% 0.3% 0.2% 0.3% 0.4% -0.1% -0.5% -0.3% -1.1% -0.5% -0.2% 0.1% 0.8% -0.1% -2.5% -0.5% -0.3% -0.3% 0.0% 0.2% 0.1% -0.1% 0.1% 0.0% -1.3% -0.1% -0.6% 0.0%

alcohol dependence -19.7% -5.3% -9.5% 3.5% -5.1% -2.4% -3.0% -1.8% 8.7% -4.8% -0.2% -1.2% -9.4% -9.1% -2.6% -3.7% -3.5% -0.5% 0.5% 1.3% -1.9% 1.6% -1.9% -2.9% -1.3% -1.0% -1.0% - -0.6% -2.2% -0.8% -0.8% 0.4% -1.3% -1.0% -2.3% -1.5% -1.0% 1.8% -1.5% 3.1% -0.3% -1.0% -3.1% -1.2% -4.8% -0.3% 0.3% 2.1% -0.5% -1.3% -1.0% -1.0% -1.0% -0.3% 0.0% -0.1% -0.1% -0.8% -0.2% -0.2% -2.7% -0.5% -1.2% 0.0%

sleep apnea 8.7% 19.5% 3.1% 6.4% 3.3% 4.7% 2.1% 8.2% 4.3% 5.1% 4.2% 1.1% -6.2% -4.2% -0.2% 8.1% -4.1% 1.9% 0.6% 1.3% 0.4% 0.8% 1.3% 0.0% 0.0% 0.5% 0.2% 0.5% - -0.1% -0.6% 1.6% 0.5% -1.2% -0.4% -0.6% -1.2% -0.8% 1.2% 0.0% 1.1% 0.5% -0.3% -1.0% 0.1% -1.8% -0.2% -0.3% 0.2% -0.2% -0.7% -0.6% -0.6% -0.6% -0.1% 0.0% -0.2% 0.2% -0.3% 0.4% 0.2% -2.6% -0.3% -1.0% 0.0%

stroke -2.4% 5.4% -2.9% 7.3% -0.8% 5.7% -1.8% 3.7% 9.4% 0.3% 2.9% 1.5% -5.6% -3.6% -0.6% -3.5% -2.6% 1.2% 5.3% 0.4% -1.4% -1.4% -0.3% -1.2% -0.1% -1.8% 1.5% -0.8% -0.9% - -0.5% 0.2% -0.2% 0.0% -1.5% -0.9% -1.1% -1.6% 0.8% -0.5% 0.1% 0.2% -0.9% -1.2% -0.5% -1.8% -0.6% -0.3% 0.1% -0.2% -3.7% -1.0% -0.7% -0.7% -0.6% -0.1% -0.3% -0.2% -0.2% 0.0% -0.1% -3.8% -0.4% -0.8% 0.0%

prostate cancer 10.4% 10.7% 3.0% 9.2% 4.3% 5.9% -0.3% 4.5% 9.4% 4.2% 5.4% 2.0% -6.4% -3.6% 0.2% -0.3% -9.4% 2.5% 3.5% 0.9% 0.3% 0.7% 0.9% 1.5% 0.6% 0.1% 0.6% 0.2% -0.6% 0.1% - 0.7% 0.2% -0.1% -0.9% -0.6% -0.5% -0.5% 0.3% 0.2% 0.2% -0.2% -0.8% -0.9% -0.4% -1.2% -0.1% 0.0% 0.1% 0.6% -0.5% -0.1% -0.9% -1.5% 0.0% 0.0% -0.1% 0.1% -0.1% 0.2% 0.0% -1.9% 0.0% -0.7% 0.0%

bronchiectasis 5.3% 9.8% 2.9% 10.5% 7.9% 4.6% -9.9% 8.5% 10.5% -1.2% 5.9% 0.3% -7.9% -5.6% -0.5% -2.9% -0.7% 2.1% 2.5% 6.4% -0.9% -0.2% 1.1% 0.5% -1.2% 0.7% 0.3% -0.6% 0.5% -0.2% 0.2% - 0.5% -0.1% -1.5% -4.2% -2.2% -0.4% 0.4% 0.1% 0.8% 0.3% -0.7% -1.5% -0.2% -1.9% -0.3% -0.1% 0.0% 0.1% -0.5% -3.3% -1.1% 0.0% -0.6% 0.0% -0.1% -0.6% 0.0% 0.0% -0.4% -2.2% -1.1% -0.6% 0.0%

alcoholic liver disease -17.2% -2.2% -9.5% 1.8% -7.6% -5.6% -6.3% -3.5% 4.1% -3.7% -0.3% -1.2% -11.5% -11.9% -4.9% -4.8% -3.6% -0.3% -0.6% 0.7% -3.3% -2.7% -3.4% -5.3% -1.8% -1.5% 0.0% -24.6% -1.0% -1.9% -0.8% -0.2% - -1.6% -2.0% -2.0% -1.0% -2.4% 1.2% -1.2% 1.1% 0.0% -1.2% -5.9% -1.9% -8.3% -0.3% 0.7% 3.5% -0.6% -0.8% -1.6% -1.0% -0.9% -0.2% 0.1% 0.3% -0.3% -1.5% 0.0% -0.3% -2.8% -0.5% -0.8% 0.0%

osteoarthritis 8.5% 9.7% 6.8% 12.2% 8.7% 9.8% -0.3% 10.3% 16.4% 3.8% 7.3% 0.0% -7.8% -4.7% 2.7% -10.0% -1.1% 2.3% 5.1% 2.7% 1.2% 0.3% 2.2% 1.1% 1.5% 0.2% 0.9% -0.3% -1.4% 1.0% 0.2% 1.4% 0.0% - -0.3% -1.6% -2.8% -0.6% 0.4% 0.3% 2.0% 0.2% -0.7% -1.5% -1.0% -2.9% 0.0% 0.3% 0.2% 0.1% -0.8% -1.0% -0.8% -0.6% -0.6% 0.0% 0.0% -0.1% -0.1% 0.1% -0.5% -1.6% 0.0% -0.8% 0.0%

pulmonary embolism 2.5% 6.5% 0.5% 11.7% 2.8% 8.2% -2.1% 6.2% 10.3% 1.5% 3.4% 1.2% -4.4% -2.5% 1.8% -2.5% -1.6% 2.4% 3.4% 2.3% -0.8% -0.7% 1.5% -0.9% 0.1% -0.1% -0.4% 0.6% -0.2% -0.3% -1.0% 0.4% 0.4% -0.2% - -0.8% -1.2% -5.2% 0.9% -0.7% 1.0% -0.2% -0.6% -0.7% -0.8% -1.6% 0.0% 0.0% 0.8% -0.6% -0.8% -3.3% -1.4% 0.2% -0.3% 0.0% 0.3% -0.7% -0.3% 0.2% -0.3% -1.7% -0.3% -0.9% -0.1%

osteoporosis 10.5% 6.1% 5.1% 9.8% 9.4% 9.0% -3.7% 7.8% 21.4% 3.7% 6.9% 1.9% -6.9% -5.8% 0.9% -2.9% -0.2% 2.0% 6.3% 3.3% 0.1% 0.6% 0.7% 0.9% 0.4% 1.0% 1.5% -0.1% -0.7% -0.1% -0.8% -0.4% 1.3% -1.3% -0.8% - -3.5% -1.4% 0.3% -0.8% 0.7% 0.2% -0.4% -1.6% -0.3% -2.6% -0.2% -0.1% 0.1% 0.4% -0.3% -5.8% -1.3% -0.7% -1.9% -0.3% -0.3% -0.1% -0.2% -0.1% 0.0% -1.6% -0.4% -0.6% -0.1%

irritable bowel syndrome -5.4% 3.0% -1.8% 3.0% 0.7% 1.6% 5.4% 2.2% 3.2% 1.3% 1.2% -1.4% -9.9% -8.3% -0.7% -1.8% -2.3% 0.0% 1.4% 0.5% -1.1% 1.6% 0.8% 0.4% -0.5% 1.1% -0.7% 0.3% -0.4% -0.2% -0.3% 0.1% 0.7% -1.3% -0.6% -1.8% - -1.2% 0.2% -0.2% 2.6% 1.0% -1.9% -0.8% -0.1% -2.7% -0.1% -0.3% 0.2% -0.1% -0.4% -3.0% -0.5% -0.6% -0.3% 0.0% -0.1% -0.2% -0.4% 0.0% -0.1% -1.0% -0.2% -1.0% 0.0%

venous thromboembolism -1.6% 4.1% -1.9% 6.8% 1.4% 2.3% -2.2% 2.5% 8.0% -0.1% 4.5% -0.4% -5.7% -5.3% 1.4% -4.9% -2.2% 0.5% 4.1% 0.8% -0.2% -0.3% -0.4% -0.3% -0.8% -0.7% 0.6% 1.1% -1.1% -0.7% -0.4% 0.9% 0.4% -0.7% -6.6% -1.6% -2.5% - 1.0% -1.1% 1.5% 0.2% -1.2% -0.5% -0.6% -1.2% -0.2% -0.1% 3.8% -0.3% -1.1% -3.5% -0.8% -0.5% -0.1% 0.4% -0.4% -0.1% -0.2% -0.2% -0.8% -1.8% -0.2% -0.9% 0.0%

schizophrenia -8.2% 2.4% -2.4% 4.6% -0.1% 7.9% 1.6% 2.8% 7.8% -0.9% 2.2% -0.7% -3.7% -5.6% 0.3% -2.6% -1.6% 0.0% 5.2% 0.2% -1.1% 1.3% 0.3% -0.6% -0.6% 0.4% -0.8% -0.5% 0.1% 0.3% -0.3% 0.1% 1.5% -0.3% -1.2% -0.2% -1.7% -0.8% - -1.3% 0.7% -1.7% -0.6% -0.9% -0.7% -1.5% -0.3% -0.3% 1.7% -0.6% 0.2% -1.3% -0.4% -0.7% -0.6% 0.2% 0.1% 0.0% -0.2% 0.1% -0.2% -1.9% -0.3% -0.3% 0.0%

lung cancer 5.3% 4.2% 2.1% 4.7% 1.7% 0.6% -4.9% 2.8% 9.8% 3.5% 3.6% 0.5% -4.4% -3.2% -0.3% -2.3% -1.7% 1.0% 1.9% 3.3% -0.5% -0.7% 0.6% -1.6% -0.4% -0.9% 0.1% -0.8% -0.5% -0.8% -0.1% 0.8% 0.2% -0.2% -3.9% -1.6% -1.1% -2.2% 0.2% - 0.7% -0.1% -0.2% -1.6% -0.8% -2.1% -0.3% -0.4% -0.2% 0.1% -1.1% -4.9% -1.9% -0.8% -0.1% 0.0% -0.9% 0.1% -0.4% 0.2% -0.1% -2.8% -0.5% -0.5% 0.0%

depression -10.9% -0.7% -8.1% 2.0% -0.4% 1.6% 1.8% 1.4% 5.1% -2.9% 0.0% -3.5% -8.0% -5.9% -4.4% -5.0% -3.8% -0.9% 1.2% 1.5% -0.3% -2.3% 0.5% -1.6% -0.8% -0.9% -1.2% -1.5% -3.4% -2.0% -1.1% -0.2% 0.7% 0.4% -1.0% -2.5% -2.1% -1.2% -1.0% 0.0% - -17.9% 0.2% -0.6% -1.7% -1.8% -1.0% 0.6% 1.2% -0.8% -0.8% -0.7% -0.5% -0.9% -0.2% -0.9% -0.8% -0.1% 0.5% 0.2% -0.4% -1.6% -0.2% -1.1% 0.0%

bipolar disorder -8.2% 4.6% -2.0% 4.7% -0.9% 1.8% 2.6% 1.5% 7.0% -0.9% 0.0% -2.7% -6.9% -5.3% -1.4% -3.0% -2.9% 0.3% 2.1% -0.3% -1.2% 3.4% -1.5% -0.3% -0.6% -0.1% 0.0% -0.6% -1.5% -0.8% -1.3% 0.3% 0.9% -1.0% -1.7% -0.7% -1.5% -1.2% 4.5% -0.4% -4.0% - -0.9% -1.6% -2.0% -2.6% -1.5% -0.3% 0.5% -0.5% -1.2% -2.4% -0.8% 0.0% 0.0% -0.2% -0.1% -0.3% -0.3% -0.3% 0.0% -1.6% -0.3% -0.8% 0.0%

ulcerative colitis -9.9% 2.2% -3.8% 2.9% -1.2% 0.4% 0.4% 0.3% 1.6% -0.2% 1.0% -1.2% -10.8% -4.9% 0.3% -2.3% -3.6% 0.2% 0.4% 0.1% -1.1% 0.1% -0.2% -0.4% -0.7% -0.1% -0.3% -0.5% -0.7% -0.9% -1.7% 0.1% 0.1% -1.0% -1.1% -1.1% -4.8% -1.4% 0.1% -0.1% 0.4% -0.3% - -1.5% -0.4% -1.8% -0.7% -4.8% 0.1% 0.0% -0.6% -2.5% -1.0% -0.4% -0.2% -0.2% -0.7% -0.1% -0.2% 0.1% -0.4% -2.1% -0.1% -0.9% -0.1%

duodenal ulcer 6.7% 8.7% 2.2% 17.6% 8.7% 12.8% 0.7% 9.3% 13.5% 4.0% 8.8% -1.0% -4.6% -7.6% 4.6% -1.7% -1.7% 2.8% 2.8% 3.2% -2.0% 2.2% 1.8% 1.4% 0.5% 1.4% 1.1% 2.7% -0.8% 0.3% -0.3% 0.3% 4.2% -1.3% 0.2% -1.0% -0.7% 0.4% 0.9% -0.2% 1.1% 0.0% -0.7% - 0.2% -3.7% -0.2% 1.0% 0.9% 0.0% -0.7% -1.9% -0.1% -0.5% -0.6% -0.1% -0.6% 0.1% 0.2% 0.1% 0.1% -2.5% -0.4% -1.2% -0.1%

psoriasis -1.2% 6.8% 0.3% 5.7% 0.7% 3.3% -0.6% 2.4% 5.6% 1.4% 3.2% 0.2% -7.1% -4.3% 1.0% -3.0% -2.3% 1.0% 1.4% 1.2% -0.3% 0.4% 0.4% 0.9% -3.0% 0.9% -0.3% 0.8% -0.1% -0.4% -1.1% 0.5% 2.0% -1.9% -1.4% -0.9% -1.5% -1.0% 0.4% -0.6% 1.0% -0.5% -0.4% -0.7% - -2.1% -0.6% 1.0% 0.7% 0.0% -1.0% -2.1% -0.6% -0.3% -0.2% 0.1% -0.4% -0.2% -0.1% -0.1% 0.4% -2.6% -0.1% -0.7% -0.1%

gastric ulcer 6.3% 9.8% -1.0% 13.9% 3.5% 6.0% -1.3% 7.0% 7.8% 2.1% 6.1% -3.0% -8.8% -4.5% 5.1% -2.8% -2.4% 0.6% 1.5% 1.6% -1.2% 1.0% 0.7% 0.7% -0.8% 0.4% 1.4% 1.6% -0.7% 0.7% -0.4% 0.6% 3.9% -1.5% -0.1% -1.1% -2.8% -0.1% 0.8% -0.4% 0.7% -0.4% -0.5% 0.3% -0.6% - -0.4% 0.0% 1.4% -0.6% 0.1% -1.7% 0.0% -0.4% -0.6% -0.1% 0.3% 0.0% 0.4% 0.0% -0.4% -2.6% -0.3% -0.8% -0.1%

hyperthyroidism 0.5% 5.9% -1.1% 5.2% 3.8% 3.9% -4.4% 4.7% 7.5% 2.3% 3.1% -22.6% -3.9% -6.6% -0.1% -4.2% 0.0% 0.8% 2.9% 1.5% -0.2% 0.3% 0.0% -0.1% -1.3% -0.4% -1.0% 0.0% -0.8% -0.8% -0.4% 0.3% 0.3% -0.6% -0.4% -1.1% -1.5% -0.5% 0.5% -0.1% 0.7% -0.4% -1.0% -1.1% -0.7% -2.1% - -0.6% 0.5% -0.3% -1.6% -4.9% -1.3% 0.3% -0.7% 0.4% -0.3% 0.0% 0.0% 0.3% -0.2% -2.6% 0.2% -0.8% 0.0%

crohns disease -12.8% -0.8% -2.8% 1.7% -1.0% -1.3% -0.3% 0.0% 1.3% -1.0% 0.5% -1.7% -11.6% -9.0% -0.5% -2.6% -2.8% 0.1% 0.2% -0.3% -1.5% 0.6% -0.4% -0.4% -1.1% -0.7% -1.0% 0.5% -1.5% -0.8% -0.7% -0.2% 1.2% -0.5% -1.2% -2.7% -4.6% -1.0% 0.2% -0.6% 0.8% -0.1% -12.8% -1.9% 0.0% -2.4% -0.9% - 0.2% -0.2% -0.8% -2.5% -1.1% -0.9% -0.8% 0.2% -0.4% 0.0% -0.3% 0.0% 0.2% -1.7% -0.1% -1.1% -0.1%

hepatitis c -3.5% 4.3% -4.2% 6.6% 0.0% 2.7% -0.5% 1.2% 1.3% -0.7% 2.2% -1.0% -4.1% -4.7% 0.7% -1.8% -2.2% 0.0% 1.0% 0.3% -0.3% -0.2% -0.9% -1.4% -0.3% 0.2% -0.3% 0.1% -1.1% -0.9% -1.1% -0.8% 6.0% -0.2% 0.0% -1.5% -0.1% 3.2% 2.4% -1.5% 2.0% -0.4% -0.3% -2.3% -0.1% -2.1% 0.1% -0.2% - 0.4% -0.3% -1.2% 0.0% -0.7% -0.4% 0.2% -0.7% -0.1% -0.2% 0.1% -0.3% -0.2% -0.2% -0.1% -2.0%

parkinsons disease -1.2% 7.4% 0.0% 8.7% 2.9% 4.5% -5.5% 4.5% 13.0% 0.3% 4.1% -1.1% -7.1% -6.6% -0.7% -5.4% -2.9% 1.5% 4.3% -0.1% -0.8% -1.4% 0.2% 0.0% -1.4% -0.2% 0.7% -0.8% -2.0% -1.3% -0.6% -0.1% -0.4% -1.6% -2.8% -2.7% -1.7% -2.1% 0.3% -0.2% 0.4% -0.4% -0.7% -1.8% -0.6% -2.6% -0.9% -0.4% 0.3% - -2.0% -1.3% -0.7% -0.4% -1.1% -1.1% 0.0% -0.2% -0.3% -0.1% -0.2% -2.5% -0.2% -0.6% 0.0%

tia 3.9% 8.8% -2.4% 8.8% 4.9% 5.6% -1.3% 4.3% 12.7% 1.4% 6.0% 2.5% -7.3% -6.0% 0.1% -3.9% -2.2% 1.0% 6.0% 0.4% 0.4% -0.2% 2.1% 0.1% 0.8% 0.7% 2.0% -0.2% -0.6% 0.9% -0.3% 0.9% 0.0% -0.4% -1.0% 0.1% -0.7% -1.1% 1.3% -0.3% 0.6% 0.3% -0.2% -1.2% -0.6% -1.2% -1.0% -0.4% 0.1% -0.2% - -1.5% -0.2% -0.9% 0.0% -0.3% -0.2% -0.1% -0.4% -0.2% 0.1% -3.2% -0.2% -0.8% 0.1%

breast cancer 7.0% 6.6% 2.0% 6.0% 2.7% 3.8% 1.3% 2.8% 5.8% 3.0% 3.0% 0.2% -3.2% 1.2% 0.7% 3.5% 0.2% 0.6% 1.6% 0.6% 2.3% 0.4% 0.3% 0.3% -0.1% 0.6% -0.3% 0.4% 0.4% 0.5% 0.1% -0.2% 0.0% 1.7% 0.2% -0.8% -1.0% -0.3% 0.4% -0.4% 0.9% 0.5% -0.4% -0.5% 0.0% -0.7% -0.3% -0.2% 0.0% 0.5% -0.2% - -0.7% -0.1% -0.2% -0.1% 0.0% 0.1% 0.1% 0.1% 0.0% -0.5% 0.1% -0.4% 0.0%

colon cancer 10.3% 9.5% 3.6% 10.2% 5.7% 4.5% -0.8% 3.4% 10.4% 2.8% 4.3% 1.7% -6.2% -2.8% 7.7% -2.2% -0.5% 1.8% 3.1% 2.1% -0.4% 0.8% 0.7% 0.4% 0.7% -0.8% 0.8% -0.3% -0.5% 0.2% -1.1% 0.1% 0.6% -0.7% -0.6% -1.1% -0.8% 0.0% 0.9% -0.8% 0.0% 0.0% 0.0% -0.6% 0.1% -0.9% -0.6% 0.1% 0.2% 0.4% -0.1% -2.5% - -0.5% -0.1% 0.4% -0.6% 0.0% 0.0% 0.1% 0.2% -1.3% -0.1% -0.6% 0.0%

bladder cancer 14.8% 9.5% 7.0% 15.2% 7.9% 4.6% -3.8% 5.5% 10.2% 4.7% 9.5% 2.0% -3.6% -4.2% 0.5% -2.3% -1.5% 3.0% 3.0% 1.1% 2.4% -0.1% -0.1% 2.4% 0.3% -1.2% 0.8% -0.7% -1.0% -0.5% -1.8% 1.3% 0.0% -0.7% 0.8% -1.0% -1.6% -0.4% 0.3% 0.3% 0.2% 0.7% -0.2% -1.0% 0.0% -1.5% 0.8% -0.8% -0.1% 0.5% -1.1% -1.4% -0.8% - 0.2% -0.3% -1.2% -0.4% 0.0% -0.1% 0.0% -2.5% 0.0% -0.7% 0.0%

celiac disease -0.9% 5.3% 0.9% 5.0% 0.1% 4.6% -0.4% 2.8% 3.6% 1.4% 2.5% 0.0% -6.2% -7.2% -6.1% -1.2% -1.1% 1.5% 1.2% 1.0% -0.3% 1.2% 0.4% 0.2% -0.1% 3.8% -0.5% 0.0% -0.2% -0.6% 0.2% 0.1% 1.2% -1.1% -0.6% -3.7% -1.6% -0.1% 0.0% -0.1% 0.7% 0.6% 0.4% -1.6% 0.0% -2.6% -0.5% 0.2% 0.2% -0.4% -0.3% -2.0% -0.4% 0.1% - 0.1% 0.1% 0.4% 0.2% 0.1% 0.4% -1.7% -0.1% -0.6% 0.0%

multiple sclerosis -15.5% -1.3% -3.0% 2.6% -0.5% -3.0% -0.6% 0.4% 3.4% -0.1% 0.1% -2.3% -6.3% -5.3% -1.7% -2.0% -1.7% 0.5% 0.9% 0.4% -1.4% -0.6% -0.3% -0.9% -0.8% 0.2% -0.4% 0.0% -0.7% -0.6% -0.4% 0.0% 0.3% -0.4% -1.2% -1.8% -2.1% -0.5% 0.3% -0.3% 0.3% -0.1% -0.8% -0.7% -0.2% -1.0% -0.1% 0.1% 0.2% -0.9% -0.8% -3.5% -0.3% -0.6% -0.4% - 0.0% 0.2% -0.1% 0.3% -0.1% -1.1% 0.0% -0.7% 0.0%

renal cancer 4.6% 10.1% -1.3% 9.4% 1.0% -0.2% -0.3% 3.5% 4.4% 3.0% 4.8% 1.2% -7.6% -5.3% -1.6% -2.5% -5.6% -0.3% 1.1% 1.0% 0.4% 0.1% 0.4% 0.4% -1.3% 1.4% 1.3% 0.2% -1.2% -0.9% -1.2% 0.0% 1.1% -0.3% -0.4% -1.1% -1.2% -1.5% 0.2% -2.0% 0.3% 0.0% -2.2% -2.0% -0.9% -1.1% -0.6% -0.6% -0.3% 0.6% -0.9% -2.2% -2.3% -3.6% 0.0% 0.4% - -0.5% 0.1% 0.1% 0.6% -1.8% 0.0% -0.9% 0.0%

multiple myeloma -7.6% 3.0% -4.0% -7.6% -5.6% -15.1% -3.1% -1.4% 3.8% -1.3% 0.2% 0.2% -6.9% -6.8% -3.3% -3.6% -1.8% 0.6% 1.5% -0.3% -1.6% -0.3% -0.3% -0.1% -1.9% 0.3% -1.1% -0.3% -0.5% -2.0% -1.9% -2.6% -0.5% -1.3% -5.0% -2.3% -2.3% -2.9% 0.0% -0.2% 0.2% -0.6% -0.7% -0.9% -0.9% -0.9% -0.6% -0.1% 0.0% -0.5% -0.7% -1.3% -1.0% -1.8% -0.1% 0.4% -0.9% - -0.3% -0.4% -0.3% -2.3% 0.0% -1.2% 0.2%

peptic ulcer disease 9.5% 4.3% 2.6% 11.7% 5.1% 6.3% -0.3% 6.5% 20.6% -4.0% 5.5% -0.6% -7.0% -11.1% 3.8% -4.3% 0.3% 2.8% 4.2% -1.1% -5.3% 0.8% 0.1% 1.9% 1.4% 1.8% -0.9% -0.3% -3.2% -0.9% -0.7% 1.2% 0.3% -0.9% -2.6% -1.5% -5.9% -1.1% 1.6% -1.5% 3.5% 0.2% -1.5% -5.6% -0.2% -8.6% 0.2% -0.7% -0.2% 0.2% -2.6% -0.9% -0.9% -0.2% 0.8% -0.2% 0.4% 0.0% - -0.8% -0.2% -4.3% -0.2% -0.6% 0.0%

sickle cell disease -11.0% 0.6% -2.8% 2.6% -0.5% 1.1% -0.1% 3.4% 0.2% 0.1% 1.2% -3.3% -4.0% -6.6% -2.2% -4.2% 0.0% -0.6% -0.5% 0.1% -1.6% -0.6% -0.9% -1.8% -1.2% -0.2% -0.6% -0.8% 0.4% -1.4% -0.2% -0.4% 0.0% -0.8% -0.5% -0.5% -4.0% -2.2% 1.1% 0.6% 0.9% -0.7% 0.2% -0.4% -0.7% -2.7% -0.6% -0.2% 0.3% -0.2% -1.8% -1.5% -1.1% -0.5% -0.2% 0.9% 0.0% -0.7% -0.9% - -1.8% -1.6% 0.3% -1.4% -0.4%

sle -1.8% 4.4% 0.0% 6.0% -1.4% -3.1% -9.1% -0.2% 1.3% -2.9% 1.6% -7.1% -8.0% -10.1% -5.6% -3.2% 0.1% 0.3% 0.7% -1.1% -2.4% 0.7% 0.8% -1.7% -7.9% -0.8% -0.4% -1.0% 0.3% -1.7% 0.0% -2.0% -0.6% -5.6% -4.8% -6.0% -5.0% -6.1% 0.0% -0.7% 0.0% 0.1% -3.3% -1.3% 0.6% -4.1% -1.8% 0.6% -0.1% -0.6% -0.7% -2.6% -0.8% -0.3% 0.0% -0.5% 0.9% -0.4% -0.6% -1.6% - -2.4% -0.6% -1.0% 0.0%

myocardial infarction 0.9% 15.0% -14.7% 25.8% 9.6% 17.3% 0.1% 20.2% 9.6% 0.2% 8.0% -0.2% -1.5% -5.7% 3.5% -3.7% -4.3% 3.7% 5.1% 1.3% -2.6% 1.1% -1.6% 6.4% 1.2% 2.4% 1.4% 0.8% -1.2% 3.4% -2.3% -0.6% 0.5% 1.0% 1.3% 0.6% -0.6% -0.9% 0.8% -1.0% -0.2% 1.1% -1.7% -1.6% 0.4% -2.9% 0.2% -0.2% 1.1% -0.8% -1.6% -1.4% -0.1% -0.9% -0.3% 0.1% -0.5% -0.3% 0.0% 0.4% -0.2% - -0.3% -0.9% 0.0%

chronic bronchitis 7.1% 6.1% -6.5% 14.3% 6.2% 4.7% -10.8% 3.8% 12.1% -0.5% 2.7% -2.5% -12.0% -7.0% -4.1% -6.0% -4.5% 4.8% 6.0% 4.8% -1.7% 1.9% -2.9% 2.0% 5.1% 1.0% 0.1% -1.8% -4.6% -4.6% 1.2% 0.2% -0.7% 0.7% -4.3% -4.6% -4.6% -2.5% 0.2% -2.4% 1.6% -1.2% -0.6% -4.3% -0.1% -4.3% 2.9% -0.6% -0.3% -0.9% -1.5% -0.3% -0.6% 0.2% -0.9% 0.8% 0.0% 0.0% -0.1% 1.1% -0.9% -3.7% - -1.2% 0.0%

renal colic -14.9% -1.7% -3.8% 0.5% -1.6% -1.1% 4.3% -2.6% 1.5% 4.3% -1.0% -2.2% -1.7% -4.1% -0.3% -2.6% -8.3% 1.2% -0.2% 0.3% -3.1% 2.4% -1.1% -1.5% 0.9% 0.2% -0.6% -0.1% -1.4% 0.6% -2.2% -0.6% -0.3% -1.4% -1.7% 0.9% -0.2% -1.3% 3.0% -0.5% 0.8% 2.6% 0.5% -2.0% 1.1% -1.7% 0.2% 1.0% 1.0% -0.3% -0.1% -1.9% -0.9% -0.8% -0.6% -0.5% 1.4% -0.3% 0.8% -0.3% 0.8% -1.8% -0.2% - -0.1%

hiv -0.4% -9.8% -4.3% 9.4% 2.3% -3.8% -0.1% 4.1% 0.0% 2.9% -3.7% 4.8% -4.9% -3.7% -2.5% -1.8% -3.1% 0.0% 0.0% 3.5% 2.9% -1.8% -0.6% -0.6% -0.6% -0.6% -0.6% 3.5% -1.2% 3.5% 0.0% -0.6% 8.9% -1.2% -2.5% -1.2% -1.2% 2.3% 0.0% -0.6% 0.0% 0.0% -3.1% -1.8% -1.2% -1.8% -0.6% -1.8% 8.2% 0.0% 4.8% 0.0% 0.0% 0.0% -0.6% 0.0% 0.0% 4.8% 0.0% 2.9% 0.0% -0.6% 0.0% -1.8% -
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Appendix 6.5 List of 28 important conditions 

Condition ICD-10 

Anxiety F40 F41 

Asthma J45 

Atrial fibrillation I48 

Bronchiectasis J47 

Chronic bronchitis J41 J42 J43 J44 

Chronic kidney disease N18 N19 

Chronic liver disease K70 K71 K72 K73 K74 

Dementia F00 F01 F02 F03 

Depression F32 F33 

Diabetes E10 E11 E12 E13 E14 

Duodenal and gastric ulcer K25 K26 K27 K28 

Epilepsy G40 

Heart failure I50 

Human immunodeficiency 
virus B20 B21 B22 B23 B24 

Hypertension I10 I11 I12 I13 I15 

Hyperthyroidism E05 

Hypothyroidism E02 E03 E01.8 

Inflammatory bowel 
disease K50 K51 

Ischaemic heart disease I20 I21 I22 I23 I24 I25 

Malignant neoplasms 
C00 C01 C02 C03 C04 C05 C06 C07 C08 C09 
C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 
C20 C21 C22 C23 C24 C25 C26 C30 C31 C32 
C33 C34 C37 C38 C39 C40 C41 C43 C44 C45 
C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 
C56 C57 C58 C60 C61 C62 C63 C64 C65 C66 
C67 C68 C69 C70 C71 C72 C73 C74 C75 C76 
C77 C78 C79 C80 C81 C82 C83 C84 C85 C86 
C88 C90 C91 C92 C93 C94 C95 C96 C97 

Osteoarthritis M15 

Osteoporosis M80 M81 M82 

Parkinson’s disease G20 

Peripheral vascular 
disease I70 I71 I72 I73 I74 

Rheumatoid arthritis M05 M06 

Severe mental illness F20 F31.4 F31.5 F32.3 

Sleep apnoea G47.3 

Stroke/TIA G45 I61 I62 I63 I64 
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Appendix 6.6 Description of COPD clusters 

  Categorical Variables 
Fisher tests (p-
val) Group 1 (4081) Group 2 (348) Group 3 (1766) 

B
as

ic
 in

fo
rm

at
io

n
 

Sex (Male) p < 1e-3 2212 (54%) 132 (38%) 1263 (72%) 

BMI p < 1e-3       

Normal   1473 (36%) 129 (37%) 370 (21%) 

Obesity   912 (22%) 77 (22%) 699 (40%) 

Overweight   1581 (39%) 131 (38%) 671 (38%) 

Unclear   17 (0%) 0 (0%) 13 (1%) 

Underweight   98 (2%) 11 (3%) 13 (1%) 

Smoking packs per year p < 1e-3       

<20   567 (14%) 58 (17%) 228 (13%) 

>60   509 (12%) 39 (11%) 289 (16%) 

20-40   1217 (30%) 107 (31%) 491 (28%) 

40-60   919 (23%) 77 (22%) 388 (22%) 

Unclear   869 (21%) 67 (19%) 370 (21%) 

Smoking Status p < 1e-3       

Mixed   1730 (42%) 184 (53%) 659 (37%) 

Prefer not to answer   34 (1%) 3 (1%) 15 (1%) 

Unclear   438 (11%) 44 (13%) 167 (9%) 

White   1879 (46%) 117 (34%) 925 (52%) 

Blood pressure diastolic p < 1e-3       

high   804 (20%) 59 (17%) 401 (23%) 

normal   3043 (75%) 267 (77%) 1272 (72%) 

Unclear   234 (6%) 22 (6%) 93 (5%) 

Blood pressure systolic p < 1e-3       

high   2056 (50%) 149 (43%) 1004 (57%) 

normal   1791 (44%) 177 (51%) 669 (38%) 

Unclear   234 (6%) 22 (6%) 93 (5%) 

Pulse rate 0.789605197       

High   8 (0%) 0 (0%) 3 (0%) 

Normal   223 (5%) 22 (6%) 87 (5%) 

Unclear   3850 (94%) 326 (94%) 1676 (95%) 

C
o

m
o

rb
id

it
ie

s 

Anxiety p < 1e-3 13 (0%) 143 (41%) 56 (3%) 

Asthma p < 1e-3 850 (21%) 147 (42%) 490 (28%) 

Atrial Fibrillation p < 1e-3 105 (3%) 26 (7%) 450 (25%) 

Bronchiectasis 0.148425787 115 (3%) 12 (3%) 66 (4%) 

Chronic Kidney Disease p < 1e-3 28 (1%) 19 (5%) 186 (11%) 

Chronic Liver Disease p < 1e-3 29 (1%) 28 (8%) 22 (1%) 

Dementia p < 1e-3 9 (0%) 6 (2%) 20 (1%) 

Depression p < 1e-3 139 (3%) 199 (57%) 89 (5%) 

Diabetes p < 1e-3 117 (3%) 23 (7%) 612 (35%) 

Duodenal and Gastric Ulcer p < 1e-3 144 (4%) 27 (8%) 110 (6%) 

Epilepsy p < 1e-3 49 (1%) 33 (9%) 46 (3%) 

Heart Failure p < 1e-3 24 (1%) 6 (2%) 314 (18%) 

HIV 1 3 (0%) 0 (0%) 1 (0%) 

Hypertension p < 1e-3 985 (24%) 118 (34%) 1554 (88%) 

Hyperthyroidism p < 1e-3 10 (0%) 30 (9%) 25 (1%) 

Hypothyroidism p < 1e-3 189 (5%) 75 (22%) 117 (7%) 
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Inflammatory Bowel 
Disease p < 1e-3 44 (1%) 20 (6%) 42 (2%) 

Ischaemic Heart Disease p < 1e-3 265 (6%) 46 (13%) 1048 (59%) 

Malignant Neoplasms p < 1e-3 706 (17%) 96 (28%) 333 (19%) 

Osteoarthritis p < 1e-3 35 (1%) 29 (8%) 37 (2%) 

Osteoporosis p < 1e-3 128 (3%) 85 (24%) 53 (3%) 

Parkinson’s Disease p < 1e-3 5 (0%) 6 (2%) 12 (1%) 

Peripheral Vascular Disease p < 1e-3 69 (2%) 19 (5%) 356 (20%) 

Rheumatoid Arthritis p < 1e-3 83 (2%) 55 (16%) 62 (4%) 

Severe Mental Illness p < 1e-3 20 (0%) 17 (5%) 9 (1%) 

Sleep Apnoea p < 1e-3 38 (1%) 12 (3%) 79 (4%) 

Stroke/TIA p < 1e-3 42 (1%) 17 (5%) 189 (11%) 

B
io

ch
e

m
is

tr
y 

te
st

s 

Albumin to Creatinine 
Ratio p < 1e-3       

High   289 (7%) 20 (6%) 238 (13%) 

Intermediate   1247 (31%) 114 (33%) 638 (36%) 

Normal   9 (0%) 0 (0%) 4 (0%) 

Unclear   2536 (62%) 214 (61%) 886 (50%) 

eGFR p < 1e-3       

Low   132 (3%) 13 (4%) 167 (9%) 

Normal   3709 (91%) 314 (90%) 1491 (84%) 

Unclear   240 (6%) 21 (6%) 108 (6%) 

Cholesterol HDL p < 1e-3       

High   3222 (79%) 265 (76%) 1196 (68%) 

Normal   345 (8%) 32 (9%) 326 (18%) 

Unclear   514 (13%) 51 (15%) 244 (14%) 

Cholesterol LDL p < 1e-3       

High   2680 (66%) 206 (59%) 730 (41%) 

Normal   1155 (28%) 119 (34%) 927 (52%) 

Unclear   246 (6%) 23 (7%) 109 (6%) 

Cholesterol Total p < 1e-3       

High   2711 (66%) 220 (63%) 709 (40%) 

Normal   1128 (28%) 107 (31%) 951 (54%) 

Unclear   242 (6%) 21 (6%) 106 (6%) 

CRP p < 1e-3       

High   897 (22%) 72 (21%) 504 (29%) 

Normal   2932 (72%) 255 (73%) 1152 (65%) 

Unclear   252 (6%) 21 (6%) 110 (6%) 

Eosinophil percent 0.043478261       

High   1308 (32%) 114 (33%) 558 (32%) 

Moderate/high   972 (24%) 76 (22%) 447 (25%) 

Normal   1629 (40%) 130 (37%) 691 (39%) 

Unclear   172 (4%) 28 (8%) 70 (4%) 

Haemoglobin count p < 1e-3       

High   53 (1%) 3 (1%) 14 (1%) 

Low   212 (5%) 27 (8%) 221 (13%) 

Normal   3650 (89%) 291 (84%) 1466 (83%) 

Unclear   166 (4%) 27 (8%) 65 (4%) 

HBA1c p < 1e-3       

High   94 (2%) 12 (3%) 286 (16%) 
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Normal   3749 (92%) 302 (87%) 1363 (77%) 

Unclear   238 (6%) 34 (10%) 117 (7%) 

Lymphocytes percent p < 1e-3       

High   55 (1%) 11 (3%) 19 (1%) 

Normal   3854 (94%) 309 (89%) 1677 (95%) 

Unclear   172 (4%) 28 (8%) 70 (4%) 

Neutrophils percent 0.002998501       

High   293 (7%) 37 (11%) 142 (8%) 

Normal   3616 (89%) 283 (81%) 1554 (88%) 

Unclear   172 (4%) 28 (8%) 70 (4%) 

Platelets count 0.002998501       

High   138 (3%) 6 (2%) 41 (2%) 

Normal   3777 (93%) 315 (91%) 1660 (94%) 

Unclear   166 (4%) 27 (8%) 65 (4%) 

Triglycerides p < 1e-3       

High   1173 (29%) 102 (29%) 655 (37%) 

Normal   2666 (65%) 225 (65%) 1002 (57%) 

Unclear   242 (6%) 21 (6%) 109 (6%) 

Vitamin D 0.23838081       

Low   2221 (54%) 197 (57%) 1016 (58%) 

Normal   1437 (35%) 118 (34%) 587 (33%) 

Unclear   423 (10%) 33 (9%) 163 (9%) 

White cell count 0.005997001       

High   326 (8%) 32 (9%) 170 (10%) 

Normal   3589 (88%) 289 (83%) 1531 (87%) 

Unclear   166 (4%) 27 (8%) 65 (4%) 

Sy
m

p
to

m
s 

Anxiety p < 1e-3       

No   452 (11%) 15 (4%) 155 (9%) 

Unclear   3433 (84%) 311 (89%) 1543 (87%) 

Yes   196 (5%) 22 (6%) 68 (4%) 

Chest Pain p < 1e-3       

No   2541 (62%) 193 (55%) 982 (56%) 

Unclear   79 (2%) 9 (3%) 35 (2%) 

Yes   1461 (36%) 146 (42%) 749 (42%) 

Chronic Cough 0.00149925       

No   227 (6%) 14 (4%) 63 (4%) 

Unclear   3608 (88%) 321 (92%) 1617 (92%) 

Yes   246 (6%) 13 (4%) 86 (5%) 

Chronic Pain p < 1e-3       

No   19 (0%) 0 (0%) 4 (0%) 

Unclear   3935 (96%) 319 (92%) 1689 (96%) 

Yes   127 (3%) 29 (8%) 73 (4%) 

Chronic Phlegm 0.001999       

No   275 (7%) 16 (5%) 83 (5%) 

Unclear   3608 (88%) 321 (92%) 1617 (92%) 

Yes   198 (5%) 11 (3%) 66 (4%) 

Fatigue p < 1e-3       

No   256 (6%) 6 (2%) 62 (4%) 

Unclear   3429 (84%) 311 (89%) 1543 (87%) 
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Yes   396 (10%) 31 (9%) 161 (9%) 

Low mood p < 1e-3       

No   2755 (68%) 152 (44%) 1179 (67%) 

Unclear   236 (6%) 14 (4%) 129 (7%) 

Yes   1090 (27%) 182 (52%) 458 (26%) 

Poor sleep 0.117441279       

No   771 (19%) 49 (14%) 341 (19%) 

Unclear   11 (0%) 1 (0%) 2 (0%) 

Yes   3299 (81%) 298 (86%) 1423 (81%) 

Shortness of breath p < 1e-3       

No   687 (17%) 42 (12%) 235 (13%) 

Unclear   2799 (69%) 265 (76%) 1236 (70%) 

Yes   595 (15%) 41 (12%) 295 (17%) 

Weight Change p < 1e-3       

Gained weight   1263 (31%) 114 (33%) 581 (33%) 

Lost weight   676 (17%) 93 (27%) 333 (19%) 

No   2031 (50%) 127 (36%) 818 (46%) 

Unclear   111 (3%) 14 (4%) 34 (2%) 

Wheeze 0.035482259       

No   1031 (25%) 95 (27%) 514 (29%) 

Unclear   113 (3%) 12 (3%) 50 (3%) 

Yes   2937 (72%) 241 (69%) 1202 (68%) 

R
e

sp
ir

at
o

ry
 t

e
st

s 

FEV1/FVC z-score p < 1e-3       

low   0 (0%) 0 (0%) 1 (0%) 

normal   3692 (90%) 299 (86%) 1539 (87%) 

Unclear   389 (10%) 49 (14%) 226 (13%) 

FEV1 % predict p < 1e-3       

mild   383 (9%) 46 (13%) 159 (9%) 

moderate   1287 (32%) 107 (31%) 557 (32%) 

severe   443 (11%) 31 (9%) 147 (8%) 

Unclear   1903 (47%) 162 (47%) 893 (51%) 

very severe   65 (2%) 2 (1%) 10 (1%) 

FEV1 z-score p < 1e-3       

Normal   3692 (90%) 299 (86%) 1540 (87%) 

Unclear   389 (10%) 49 (14%) 226 (13%) 

FVC z-score p < 1e-3       

Low   16 (0%) 2 (1%) 4 (0%) 

Normal   3676 (90%) 297 (85%) 1536 (87%) 

Unclear   389 (10%) 49 (14%) 226 (13%) 

Peak expiratory flow rate p < 1e-3       

Low   3033 (74%) 277 (80%) 1143 (65%) 

Normal   1031 (25%) 71 (20%) 610 (35%) 

Unclear   17 (0%) 0 (0%) 13 (1%) 
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Appendix 6.7 Phenotypes collected 

Phenotype 

Urine 5-HIAA Excrn 

A1AT 

Angiotensin 

Albumin 

AlkP (until 21 Nov 11) 

AlkP 

ALT 

AST 

Antithrombin 

B12 (Diaverum) 

B12 

Basos 

Bilirubin 

CD 16/56+ NK cells 
(x10^9/L) 

Immunochemical C1 
esterase inhibitor 

Complement C3 

Complement C4 

Calcium 

Caeruloplasmin 

Corrected Ca 

CD 19+ cells (x10^9/L) 

CD3+ cells (x10^9/L) 

CD4+ cells (x10^9/L) 

CD8+ cells (x10^9/L) 

Creatine Kinase 

LA Normalised Ratio 

Creatinine Clearance 

Creatinine 

CSF Glucose 

CSF Protein 

D4 Androstenedione 

Diab Clinic Creat 

DHA Sulphate 

DRVVT Screen Ratio 

dsDNA abs ELISA 

Eosinophils 

ESR 

Factor XI 

Factor VIII clotting 

Iron 

Ferritin 

Fibrinogen 

Folate 

Fructosamine 

Follicle-stimulating 
hormone 

Free T3 

Free T4 

FVIIIrag 

CD3+ T cells 
(cells/mm3) 

CD4+ T cells 
(cells/mm3) 

CD8+ T cells 
(cells/mm3) 

Glom. Filt Rate 

Gamma GT 

Globulin 

Glucose 

Finger-stick Glucose 

Hydrogen ion conc. 

Haptoglobin 

Hb (g/dL) 

Haemoglobin A1c 

Haemoglobin A2 

Haemoglobin F 

HCT 

Hb (g/L) 

IgA 

IGF-1 (Old test 
method) 

IGF-1 

IgG 

IgG1 

IgG2 

IgG3 

IgM 

HbA1c-IFCC 

INR 

K 

Kappa/Lambda ratio 

Lupus Anti Screen 

Lactate Dehyd'nase 
(until 11 Mar 2012) 

Lactate Dehyd'nase 

Luteinizing hormone 

Lymphocytes 

MCH 

MCHC (g/dL) 

MCHC (g/L) 

MCV 

MG 

Monocytes 

Neutrophils 

Ammonia 

Noradrenaline (Excn) 

17-OH-Progesterone 

Osmolality 

Protein C function 

pCO2 

Platelets 

pO2 

Phosphate 

Prolactin 

Free Protein S 

ParaThyroid Hormone 
(Immulite) 

Parathyroid Hormone 
(ng/L) 

Parathyroid Hormone 
(pmol/L) 

PTT Ratio 

Plasma viscosity 

CO Hb 

Ionised Calcium PoC 

Blood Cl 

Blood Glucose 

HCT on Blood Gas 
analyser 

Hb 

Blood K 

Lactate 

Met Hb 

Blood Na 

PoC SO2 

RBC 

RDW 

Reticulocytes 

Serum creatinine 

Serum free kappa 

Serum free lambda 

Sex H'mone Bind Glob 

Total Carbon Dioxide 

Testosterone 

Testosterone (mass 
spec) 

Total Protein 

Transferrin 

Trig 

TSH 

Thrombin time (ratio) 

Thrombin time 
(seconds) 

Urine Cal (Excn.) 

Urine creatinine 

Urine Creat (Excn.) 

Kappa (g/l) 

Ur 

Urate 

Urine Urea (Excn.) 

vWF Collagen Binding 
Activity 

WBC 
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Appendix 6.8 SNPs associated with high glucose 

CHR SNP BP A1 TEST N MISS OR STAT P 

16 rs111285796 20361087 TTCTGCCAGA ADD 170340 0.8632 -4.785 1.71E-06 

16 rs4293393 20364588 G ADD 170393 0.8642 -4.753 2.00E-06 

16 rs13333226 20365654 G ADD 170410 0.8655 -4.712 2.46E-06 

17 rs8065820 1957893 A ADD 170257 1.192 4.708 2.50E-06 

16 rs12917707 20367690 T ADD 170318 0.8667 -4.631 3.65E-06 

8 rs591346 9818065 C ADD 170036 1.11 4.595 4.32E-06 

8 rs62500966 52992325 A ADD 170487 1.276 4.587 4.50E-06 

11 rs900145 13293905 C ADD 170327 0.8904 -4.553 5.29E-06 

22 rs28582261 43883747 G ADD 170102 0.9024 -4.503 6.70E-06 

11 rs118018586 80839429 T ADD 170245 1.401 4.427 9.56E-06 

18 rs41378153 47516411 T ADD 170431 0.7349 -4.414 1.02E-05 

9 rs117311531 115859898 G ADD 170322 0.6994 -4.401 1.08E-05 

6 rs118034128 94935813 C ADD 170129 1.324 4.388 1.14E-05 

3 rs9844829 139979092 T ADD 169909 0.8731 -4.371 1.24E-05 

20 rs4346455 10879336 C ADD 170225 1.104 4.366 1.26E-05 

18 rs10503084 61804949 A ADD 170209 1.153 4.356 1.32E-05 

19 rs3108586 37230491 T ADD 170410 0.9008 -4.349 1.37E-05 

9 rs4740912 7791515 G ADD 168380 0.9047 -4.315 1.60E-05 

12 rs11183609 47167837 C ADD 170123 1.141 4.286 1.82E-05 

6 rs59856354 104277260 A ADD 170345 0.7916 -4.281 1.86E-05 

20 rs75637135 6803897 T ADD 169965 1.257 4.281 1.86E-05 

16 rs9924441 9047198 T ADD 169946 0.8925 -4.228 2.35E-05 

6 rs72988541 104241528 T ADD 169863 0.7916 -4.227 2.36E-05 

8 rs656319 9814411 A ADD 170267 1.1 4.205 2.61E-05 

7 rs117076099 93956047 C ADD 170110 1.398 4.17 3.05E-05 

15 rs79287552 57592248 T ADD 170285 1.181 4.15 3.32E-05 

4 rs13114161 116378597 G ADD 169521 0.7573 -4.138 3.50E-05 

11 rs10832021 13324530 G ADD 169948 0.8994 -4.13 3.62E-05 

7 rs73227485 93516460 A ADD 169727 1.195 4.13 3.63E-05 

7 rs58919541 156297224 A ADD 170377 0.7332 -4.125 3.71E-05 

1 rs75129533 247531139 A ADD 170139 1.238 4.124 3.72E-05 

4 rs75138976 19225971 A ADD 170125 0.8494 -4.123 3.74E-05 

1 rs74850688 63506318 T ADD 169737 1.227 4.102 4.10E-05 

17 rs35394823 1943880 G ADD 170446 1.163 4.098 4.17E-05 

3 rs1596152 3749436 G ADD 169461 1.099 4.09 4.32E-05 

10 rs4897807 133490980 T ADD 169548 0.9103 -4.078 4.55E-05 

21 rs2234694 33038865 C ADD 170373 1.228 4.077 4.56E-05 

21 rs2833507 33163612 A ADD 170049 1.141 4.077 4.57E-05 

9 rs4740935 8340155 A ADD 169960 1.1 4.07 4.70E-05 

Relation of SNPs with p-value < 5e-5 identified when comparing patients with high glucose against the 

ones without high glucose phenotype reported in the UK Biobank. 


