Fibre-optic sensor development for process monitoring of epoxy resins

King, David Gareth (2018). Fibre-optic sensor development for process monitoring of epoxy resins. University of Birmingham. Ph.D.

[img] King18PhD.pdf
PDF - Accepted Version

Download (9MB)

Abstract

An investigation was undertaken to examine the performance of a Fresnel reflection sensor (FRS) incorporated into a differential scanning calorimeter (DSC) to track the cross-linking of epoxy resins. The initial design used a micrometer translation stage to lower the FRS through an orifice in the DSC platinum lid and onto the pan containing the sample. During exothermic cross-linking experiments, the resin refractive index and the heat evolved were measured simultaneously, allowing for direct comparison between the data.

Combining the two measurement techniques produced a powerful hyphenated analytical procedure that demonstrated the feasibility of using the FRS for in-situ cure monitoring of epoxy resin systems. During the cross-linking of specified resins, the sensor revealed optical phenomena throughout the latter stages and was shown to be sensitive to the glass transition temperature, nano-particulate movement, nano-particulate concentration and phase separation. Therefore, the introduction of the FRS to the DSC provided valuable cross-linking information.

A second modification to the DSC permitted the accommodation of an optical fibre probe, which facilitated simultaneous DSC/FRS/Fourier transform infrared spectroscopy (FTIRS) analysis. Good correlation between the cross-linking kinetics of an epoxy resin system was demonstrated using the hyphenated techniques and hence alleviated the issues of cross-correlation between individual experiments.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Fernando, GerardUNSPECIFIEDUNSPECIFIED
Kukureka, Stephen N.UNSPECIFIEDUNSPECIFIED
Papaelias, MayorkinosUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: None/not applicable
Subjects: T Technology > TN Mining engineering. Metallurgy
URI: http://etheses.bham.ac.uk/id/eprint/8698

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year