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ABSTRACT 

Vehicle durability assessment in the automotive industry requires a good knowledge 

of the road load input the vehicle will experience while in service. This research 

explored the approach of artificial intelligence for predicting the road load input for 

road load simulation in the CAE environment prior to the development of a vehicle 

prototype. 

The multi-body dynamics (MBD) simulation of a quarter vehicle test rig, built with the 

specification of a commercial SUV, and the full vehicle of the same SUV were 

modelled and validated in SIMPACK using a simple tyre model developed using the 

tri-axial tyre test rig at the University of Birmingham. The models were used to carry 

out a road load data characterisation based on the variation in vehicle parameters. 

An artificial road input tool (ARIT) based on an optimised NARX artificial neural 

network architecture was developed to predict the road input for variants of vehicle 

for a particular vehicle behaviour over a road event. The results of the ARIT were 

used to run MBD simulations and compared with those from drive file iteration. The 

results of this research show a successful method of artificial intelligence for the 

generation of road load data from CAE simulations. 
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Now all glory to God, who is able, through his mighty power at work within us, to 

accomplish infinitely more than we might ask or think. 

 

 

To Strive, To Seek, To Find and Not To Yield 

Per Ardua Ad Alta 
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1 CHAPTER ONE: INTRODUCTION 

1.1 INTRODUCTION 

Durability assessment in the automotive industry refers to procedures that are taken 

to ensure the service life span of a component or system of components meet a 

predetermined specification with a minimal likelihood of failure. Considering the 

vehicle as a system of various sub-systems with each sub-system comprising its 

own components, a vehicle can be said to be a system of components. Hence, the 

durability assessment of a vehicle would involve the individual durability assessment 

of each of the sub-systems it comprises. In the early days of the automotive 

industry, vehicles were manufactured without much knowledge of how the 

customers would use them and hence, the durability testing of these vehicles did not 

consider the customer usage but in the last two decades, much work has been 

carried out on durability testing in vehicles in order to ensure they meet specific 

industry standards or government legislative requirements. The earliest and most 

common method for carrying out this vehicle durability assessment is the physical 

vehicle test where a prototype of the final production vehicle is driven in conditions 

similar to those it would experience in its service life. The physical vehicle testing 

involved the driving of the vehicles on chosen road tracks for a pre-determined 

mileage or until a component in the vehicle failed while different types of data were 

collected from various locations in the vehicle. This method has been proven to 

provide useful information which could be used to optimise the vehicle design and 

configuration. The main disadvantages of this method were the huge cost and time 

requirement.  
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Even with the huge cost and time requirements for accurate durability testing, the 

automotive industry, similar to many modern industries, is under the pressure to 

design and manufacture state-of-the-art vehicles and to also release them to the 

market at a minimal cost and in good time to leverage on the build technology while 

it is still relevant [1]. In order to meet these targets, many processes in the design 

cycle would need to change to accommodate the shorter design and manufacture 

cycles. The vehicle durability testing is one of the processes in the design cycle 

which if not gotten right could lead to huge loss if the affected vehicles were to be 

recalled from the market. Hence, even though the market of today requires that the 

automotive industry has a shorter product cycle time, it would not tolerate an 

unreliable product in terms of durability. 

The development of computers came with an advantage for the durability 

assessment of vehicles in the automotive industry; Computer Aided Engineering 

(CAE). The early implementations of CAE in product design [2] showed how 

effective the techniques were in reducing the product development period. Further 

down the time line and with advances in the speed and robustness of computers, it 

is clear that CAE is the future of product design with many industries aiming for a 

zero-prototype product design cycle [3] where the design goes directly from the CAE 

phase to the manufacturing lines. 

Even with the advent of CAE, the place of physical vehicle testing has not been 

removed in the automotive industry for the following reasons: 

1. The inaccuracy of some results from CAE modelling 

2. Government Legislation 
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The motivation for this research comes from the first reason. The accuracy of any 

CAE modelling is dependent on the accuracy of the components that make up the 

model. So also, the accuracy of a durability assessment from a CAE model is 

dependent on the accuracy of the knowledge of the road load (which is the forces 

and moments experienced by the vehicle from its interaction with the road surface) 

the vehicle would experience in its service life. The prediction of the road load the 

vehicle would experience is particularly difficult when the vehicle has not been built, 

i.e. in the early stages of the vehicle programme. This is because the road load is 

influenced by the design and performance characteristics of the various systems in 

the vehicle. A change in one component or system could result in unexpected 

changes in the vehicle’s reaction to the road input as a result of the dynamic nature 

of the loads generated.  

Though there have been a number of endeavours at artificially generating road load 

data from the road loads of predecessor models of vehicles [4-10], which is made 

possible by the evolutionary nature of vehicle design in the automotive industry 

where many characteristics are carried over from a predecessor model to the newer 

model, there is currently no method that takes the effect of the various vehicle 

configuration setups into consideration in predicting the input for artificial road load. 

The service loads the vehicle experiences in its operational life is known to be 

affected by different vehicle parameters such as the wheel diameter, spindle load, 

the suspension spring stiffness and the damping characteristics to mention a few. 

Hence, the knowledge of the road input that the vehicle would experience in service 

is therefore important to engineering design and development teams in order to 

ensure that the vehicle is not over designed or under designed. This is especially 
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useful in the early stage of the vehicle development when a physical test cannot be 

carried out because a prototype hasn’t been built. All these were the precursor for 

the research question of this thesis which is: 

“How can accurate road input data be predicted for a new vehicle variant durability 

test in CAE from the road load data collected from predecessor models of the 

vehicle while considering the differences in the configuration parameters of the new 

vehicle variant?” 

With all the aforementioned in mind, this research proposes the use of an artificial 

intelligence system [11]; artificial neural network (ANN), which is capable of 

accurately predicting the road input for a vehicle in order to generate road load data. 

The advantage of the ANN is its capacity to gain implicit knowledge from training 

and to accurately generalise when presented with similar problems from which it has 

been trained. The artificial intelligence system is able to solve problems in a similar 

way as the natural human nervous system, hence its name; artificial neural network. 

With the application of ANNs, the huge amount of road load data collected by 

vehicle original equipment manufacturers (OEMs) in the course of durability testing 

over the years, and used for the optimisation of the durability performance for 

predecessor vehicles for which they were collected, can be put to use in generating 

realistic road load data which can be used for durability assessments in the pre-

prototype stage.  

The aim of the research work presented in this thesis is to develop an ANN based 

Artificial Road Input Tool, which is capable of modelling the effects of the different 
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vehicle configurations and design parameters on the road input signal for driving 

vehicle models in the pre-prototype stage. 

In order to achieve the aim of this research project, the following objectives are 

defined: 

1. Develop and Validate CAE models of the target vehicle 

2. Characterise the effects of the vehicle parameters on the road load data 

statistically 

3. Select a suitable ANN Architecture 

4. Train and Optimise the ANN to produce the Artificial Road Input Tool 

1.2 THESIS OUTLINE 

This thesis comprises the work carried out to meet the objectives of this research as 

stated in the preceding section and is laid out as follows: 

Chapter 1 sets the scene with an introduction to the research and an outline of the 

objectives and motivation. 

Chapter 2 is a review of relevant literature on the subject of durability assessment, 

road load data acquisition and artificial neural networks.  

Chapter 3 discusses the modelling hardware and software tools used in this current 

research. This chapter contains the details of the laboratory test equipment and 

software used for the modelling of the target vehicle as well as its validation. 



 

6 

Chapter 4 describes the development and validation process of the CAE models of 

the quarter and full vehicles. The various components of the models are discussed 

and the details of a simple tyre model are also presented. 

In Chapter 5, the effects of the variation in the quarter vehicle and full vehicle 

configuration parameters are presented to describe the variation in road load data. 

The variation in road input as the vehicle parameters are modified is also presented 

and the hypothesis of variation in road input for different vehicle configuration 

parameter setups is presented. 

Chapter 6 presents the development, training and optimisation of the ANN 

architecture for the prediction of road input with the vehicle configuration taken into 

account. Results from the application of the Artificial Road Input Tool are also 

presented. 

The conclusions and recommendations for future works from this project are 

discussed in Chapter 7. 
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2 CHAPTER TWO: LITERATURE SURVEY 

2.1 INTRODUCTION 

This chapter contains a review of various literatures on road load data, vehicle 

variants and artificial intelligence. The literatures are by no means exhaustive but 

provide a basis for the ideas implemented in this current research. 

 

2.2 ROAD LOAD DATA 

Road Load Data is the data collected from various locations on a vehicle as it 

traverses road profiles. These data are a direct result of the effect of the road a 

vehicle traverses on the chassis and various components of the vehicle as well as 

the load transfer path from the road surface. These road load data include wheel 

spindle moment, wheel spindle acceleration, wheel spindle force, sprung mass 

acceleration, unsprung mass acceleration, strain etc. 

Road load data provides information on the prospective customer usage of the 

vehicle, how the vehicle components respond to the use of the vehicle and most 

importantly how much fatigue and damage the usage imposes on the vehicle 

components. Road load data is important to the design engineer as it enables the 

engineer to make informed decisions for modifications to the design of a vehicle in 

order to ensure that it meets the durability performance level chosen by the 

manufacturer and in some cases, the legislation of the country the vehicle would be 

used in. 
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Therefore, the aim of a road load data acquisition exercise is to obtain information 

that would be used to optimise both the behaviour of the various components of the 

vehicle and the interaction of these components and ultimately, the overall 

performance of the vehicle while in service. Examples of useful information obtained 

from road load data include the work of Backer et al. [12] who discovered the effect 

of the low gear on the yaw mode of a new bus type from the road load data 

collected in the early testing phase. Similarly, Haq et al. [13] were able to quantify 

the variability effects in a vehicle as a result of an increase in the unsprung mass 

from the use of Wheel Force Transducers instead of standard tyres as a result of 

the analysis of the road load data collected from testing the different vehicle 

configurations. Reddy et al. [14] were also able to discover statistical trends in the 

spindle loads for vehicles with variants using the road load data acquired. More 

recently, Babu et al. [15] used the road load data acquired from testing as well as 

CAE to optimise the design of the steering system of a mini-truck. So, it is quite 

clear that the road load data plays an important role in the design and optimisation 

of a vehicle design. 

2.2.1 Application of Road Load Data 

As highlighted in previous sections, Road Load Data is needed for the accurate 

optimisation of the design of a vehicle before it is released to the commercial market 

for the customers’ use and the following explain how the road load data is used to 

achieve the optimisation: 
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2.2.1.1 Road Test Simulator (RTS) 

A primary application of road load data is in the road test simulator (RTS). The use 

of RTS was made popular in the early 1950s with the invention of W.C. Moog’s 

servo valves [16] and has developed from 4-post simulators which could replicate 

only the vertical displacement of the wheel to very advanced 6-degree-of-freedom 

simulators which are able to replicate the displacement, forces and moments in the 

wheel. These simulators have become very good alternatives to running the vehicle 

on a proving ground as they can be run in a controlled environment such as a 

laboratory for long periods of time. The use of the RTS relies directly on the 

availability of road load data from physical vehicle testing or other methods as these 

are the quantities that are back-calculated into displacement inputs to drive the 

simulators. The aim of using these measured road load data is that they represent 

some sort of damaging effect which could impact on the vehicle’s durability and 

hence, a play back of those damaging road scenarios are quite useful for optimising 

the durability of the vehicle in the laboratory. 

2.2.1.1.1 Types of RTS 

There are mainly two types of road test simulators [17] and this classification is 

based on the method in which the vehicle is coupled to the simulator. 

a) Tyre Coupled RTS: In this simulator setup, the vehicle’s tyres sit on a pan on 

top of servo-hydraulic actuators with vertical strokes and the drive signal is 

sent via a controller to the actuator to excite the tyres in the vertical direction. 

Because of this setup, only the vertical displacement of the tyre can be 

controlled using this simulator type. Moreover, the simulator is only able to 
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capture events that occur when the tyre contact patch is in contact with the 

road but not events where the tyre of the vehicle loses contact with the road 

surface. Figure 2.1 is an example of a Tyre Coupled RTS. 

 

Figure 2.1: A Tyre-Coupled RTS courtesy of MTS Systems Corporation 

 

b) Spindle Coupled RTS: This simulator setup is able to replicate the 

longitudinal, lateral and vertical displacements of the wheel. It is also able to 

replicate acceleration and braking events via the spindle connection. The 

most sophisticated spindle coupled RTS can produce up to 6 degrees 

freedom at each wheel. In this case, an event where the tyre is not in contact 

with road surface can be accurately simulated. Figure 2.2 is an example of a 

Spindle Coupled RTS 
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Figure 2.2: Spindle Coupled RST Courtesy of MTS Systems Corporation 

 

2.2.1.1.2 RTS Procedure 

The procedure for running a Road Test Simulator for durability testing is a 

systematic one and is illustrated in figure 2.3 overleaf. 
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Figure 2.3: Road Test Simulation Process [17] 
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2.2.1.1.3 Drive File Development 

The drive file development process is an iterative method where the measure road 

load data from a physical vehicle test or simulation is back-calculated into 

displacement signals to drive the durability test of a vehicle or vehicle component on 

a road test simulator [16]. The back-calculation is necessary in order to develop 

drive signals with which the road test simulators can excite the target vehicle. The 

back-calculation is usually carried out to vehicle responses which are classed as 

damaging hence, reproducing them on an RTS can be used to study and accelerate 

the durability performance of the vehicle. The stages of the drive file development 

are highlighted as follows: 

1. System Identification: The vehicle is excited with a white noise and a 

mathematical model is fitted to the known input actuator drive signal and the 

measured vehicle responses. 

2. Model Inversion: The model identified in step 1 is inverted so the model 

generates as output, the actuator drive signal to a measured vehicle 

response. 

3. Drive Signal Calculation: The actuator drive signal for a chosen target 

vehicle response signal is calculated by running the response signal through 

the inverted system model. The output of the model generates the first drive 

signal which can be used to drive the target vehicle. 

4. Drive File Generation: The generated first drive signal in step 3 is used to 

drive the actuator for the target vehicle while the vehicle’s responses are 

collected and the errors between the expected vehicle responses and actual 

vehicle responses are calculated. 
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5. Drive File Iteration: The response errors calculated in step 4 are passed 

through the inverted system model and the drive signal generated from the 

errors is added to the first drive signal to generate the second drive file. 

6. Steps 4 and 5 are repeated until the response errors reach an acceptably 

small value. 

 The drive file development process is illustrated in the diagram in figure 2.4. 

 

Figure 2.4: Drive File Development Process 

 



 

15 

2.2.1.2 Other Applications 

Besides the use of road load data in the Road Test Simulator for play-back of road 

events in full vehicle road simulation, road load data is also used in other vehicle 

optimisation such as those described in the works of Yang et al. [18] where the 

loading of suspension components were studied from the back-calculation of wheel 

spindle loads from previously collected road load data, Reddy et al. [14] where the 

road load data is used to characterise the effects of vehicle variation on the spindle 

loads and Babu et al. [15] where the road load data collected from customer usage 

is used to optimise the design of the steering system. An additional example is Kim 

et al. [19] who used the acquired road load data to validate a simulation programme 

for the estimation of cumulative damage to an automatic transmission. Similarly, 

You and Joo [20] used the collected road load data to validate their method of virtual 

testing. 

2.2.2 Acquisition of Road Load Data 

A search through literature has revealed different methods of collecting road load 

data and these can be classified into three groups as follows: 

 Empirical Methods 

 Analytical Methods 

 Semi-Analytical Methods 
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2.2.2.1 Empirical Methods 

Empirical methods of road load data acquisition involve actual testing of the vehicle 

on a road surface to collect the response data to the road input. This method is 

divided into the following:  

 Customer Usage Road Load Data Acquisition 

 Proving Ground Road Load Data Acquisition 

2.2.2.1.1 Customer Usage Road Load Data Acquisition 

Collection of road load data from customer usage is carried out in two ways. 

The first is the active customer usage road load data which is carried out by placing 

transducers in various points in the vehicle and running the vehicle over the road 

surface types the customer would use the vehicle on in service while the data from 

the transducers is collected. In order to accurately determine the road surface types 

a customer would use the vehicle on, data is gathered from the experiences of the 

customers as done by Backer et al. [12] where customer questionnaires provided an 

insight into the customer usage profile for the test vehicle. The information gathered 

was processed so that it showed the customer usage profile in terms of the 

percentage of usage on each road type. This method of road load data acquisition 

process usually includes the use of bulky data acquisition loggers with various wires 

and transducer running around various parts of the vehicle and can be said to be 

obtrusive [21] as additional components that would not be present in a normal 

customer usage scenario are installed into the vehicle just for the purpose of the 

road load data acquisition. Furthermore, this method doesn’t accurately represent 

the driving style of the customer and the effects of the severity or placidity of the 
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driving style as these cannot be replicated by mere filling of questionnaires by 

customers. 

The second method is the passive customer usage road load data where the road 

load data is collected via the data loggers installed into customer vehicles such that 

the logging is done without altering the way the driver interacts with the vehicle or 

without a reminder that the vehicle is instrumented for data collection [21]. The 

purpose of this method is to collect the normal usage data from the driver without 

altering the driver’s style of driving. 

In the past, collection of road load data from active customer usage was the only 

way of collecting data and this data collection continued for a predetermined range, 

typically 100,000km, which is the limit of the mileage most manufactures would 

provide a warranty cover for. In order to achieve the predetermined distance range, 

the vehicle had to be driven by trained test drivers on the selected road surfaces till 

the target mileage was met or till a component failed. The advantage of this method 

of road load data acquisition is that it is the most detailed way of collecting road load 

data from actual customer usage. The disadvantages of such method of road load 

data acquisition are the large amount of time required for data acquisition; such as 

time for transducer installation setup on the test vehicle, transducer calibration and 

data logger testing apart from the time required to run the acquisition itself, the high 

cost of running the acquisition and the inability to control the data acquisition 

environment to ensure the security and safety of the test vehicle. Of great 

importance to the success of the data acquisition exercise also is the availability of 

representative vehicle hardware. In the case where the vehicle setup is not 

representative of the final vehicle in production, the collection of data prior to the 
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availability of a hardware that represents the final vehicle on the production line 

would jeopardize the accuracy and fidelity of the road load data collected. 

2.2.2.1.2 Proving Ground Road Load Data Acquisition 

This method of road load data collection also involves instrumenting the test vehicle 

with transducers as in the case of the active customer usage method and thereafter, 

the vehicle is run on a proving ground. A vehicle proving ground is an area 

specifically reserved and laid out for running a variety of vehicle road tests. 

Commercial proving grounds such as IDIADA1 (figure 2.5) have a variety of test 

track courses such as washboard road, comfort road, pave road (figure 2.6), 

repaired asphalt road, gravel road and cobblestones road (figure 2.7) among others. 

The test vehicle is run severally on a combination of two or more test track courses 

which represents the most damaging effects similar to those from the customer 

usage profile. The data from the run is collected and post-processed in order to 

make design modifications, such as a change in spring stiffness etc., to the vehicle. 

                                            
1
 Applus IDIADA is a commercial proving ground in Spain with over 12 test track courses 
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Figure 2.5: An Overview of the Proving Ground in IDIADA Spain 

 

 

 

Figure 2.6: A Belgian Pave Road in IDIADA 
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Figure 2.7: A Cobblestone Road in IDIADA 

 

The advantage of this method is the reduced time it offers compared with the 

customer usage methods as the data acquisition environment is controlled and 

much more mileage can be attained in a shorter time. In addition, the security and 

safety of the test vehicle is much more assured compared with the customer usage 

methods. As more data is being collected in the same period as a customer usage 

method, it is possible to fix errors in the collected data due to failed transducers 

much faster than in the customer usage methods as the data is collected and 

checked at more regular time intervals. The data collected from proving ground road 

load data acquisition is a good representation of the road load the vehicle would 

experience in service and a good number of studies in automotive engineering have 

had to depend to a great extent on the data collected from proving grounds for 

durability analysis and prediction [22] [14, 23-25] 

The major drawbacks of proving ground method are the high cost, large time 

consumption and time delay associated with it as with any method of physical 
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vehicle testing. Though, compared with customer usage methods, the proving 

ground method has better time scales.  

In summary, physical vehicle testing whether via the customer road load data 

acquisition or proving ground data acquisition, are known to be time and cost 

consuming [26] because the test vehicle needs to be first built before any road load 

data measurement can take place and this in turn leads to delays in obtaining the 

data required for making cost and time efficient changes in the early stages of the 

vehicle development programme. This road load data acquisition process also 

involves heavy instrumentation of the vehicle in order to ensure that every important 

data is collected [27]. Furthermore, a proving ground road load data acquisition, like 

the customer usage method, would require a trained driver or drivers driving the 

vehicle for long periods of time till sufficient data is collected which in some vehicle 

development programmes could be from a few weeks to several months. 

2.2.2.2 Analytical Methods 

The analytical methods of road load data collection involve the use of mathematical 

equations to model the behaviour of a vehicle as it traverses a road profile. These 

analytical methods have proven to be cost and time efficient as no physical vehicle 

needs to be tested in order to collect the needed road load data for the vehicle’s 

durability and performance optimisation. 

Olatunbosun & Dunn [28], Tianbing et al. [29] and Andersen et al. [30] developed 

vehicle models by using forms of the Lagrange equation to derive the equations of 

motion. Olatunbosun & Dunn created a full vehicle model to study ride performance 

under both steady-state and transient conditions and this model was created as a 
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rigid body model with 2-degree-of-freedom suspension systems. Tianbing et al.’s 

quarter vehicle model was able to represent the dynamic behaviour of a quarter 

vehicle as it traversed a road profile and was used to study the ride quality and 

vibration characteristics. Tianbing et al. furthermore, investigated the effect of the 

sprung/unsprung mass ratio, tyre/suspension spring stiffness and damping 

coefficient ratio of the suspension system on the response of the quarter vehicle to 

the input from the road. Andersen et al. developed a multi-body dynamics models of 

a McPherson strut suspension for a quarter-car rig using the Lagrange form of the 

equation of motion to derive a set of differential algebraic equations (DAE) which 

were used to predict the dynamic behaviour of the model. The aforementioned 

examples express the use of analytical methods to model and study the vehicle’s 

behaviour without the use of a physical vehicle. 

The recent advances in computing technology have made it possible to harness the 

power of computers in vehicle engineering analyses. Computer Aided Engineering 

(CAE) techniques have made the development time of products shorter in various 

fields of engineering and this advantage is applied in the automotive industry. CAE 

now allows engineers to model, simulate and investigate the effect of vehicle 

parameters and other external constraints on the vehicle systems. CAE methods 

have made deriving and solving modelled mathematical equations less time 

consuming and therefore more cost efficient.  CAE is now being applied much more 

in the areas of road load prediction, analyses of suspension systems[23], durability 

evaluations [27], NVH analyses [31], handling performance [32] etc. CAE in road 

data acquisition is especially important in the early stages of a vehicle development 

programme where the prototype of the vehicle has not yet been built. 
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The application of CAE in automotive durability assessment can be classified into 

two groups; Finite Element Analysis (FEA) and Multi-Body Dynamics Simulation 

(MBDS). 

2.2.2.2.1 Finite Element Analysis (FEA) 

Finite Element Analysis, as the name implies, is a numerical method that discretizes 

the domain of a continuous structure [33]. Continuous structures such as vehicle 

chassis components can be modelled with finite elements in order to investigate the 

effects of loading on the deflection and therefore, the fatigue and damage effects of 

such loading. The results from the fatigue analysis provide engineers with 

information on the service life of the structure. Some examples of commercial FEA 

software packages are ABAQUS, Nastran, ANSYS, LS-DYNA and COMSOL 

Multiphysics®. The accuracy of the finite element model depends on factors such as 

the size of the mesh, the geometry of the finite elements, the physical 

characterisation of the component to be analysed and the boundary conditions for 

the component among others. The use of FEA has expanded in the automotive 

industries over the last decade. For example, Zhang et al. [34] modelled a full 

vehicle four-post analysis using FEA. The model comprised the tyre, wheel, body 

and the suspension system. Similarly, Shahidi et al. [35] used a finite element 

method to model the interaction between connected components in a vehicle with 

the aim to understanding the boundary interaction between them and hence, 

optimise the design of such components. More recently, Bakir et al. [36] used FEA 

to optimise the design of a leaf spring for a heavy duty truck. 
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2.2.2.2.2 Multi-Body Dynamics Simulation (MBDS) 

The MBDS is used to model the dynamic behaviour of the different interconnected 

bodies in the vehicle system [37]. The interconnected bodies can be modelled as 

either rigid body components; where the body has a defined mass and a stiffness of 

infinity and hence, would not deform under loading or a flexible body component; 

where the body has a mass and a stiffness matrix defined from pre-processing from 

Finite Element Analysis. These flexible body MBDS models are referred to as 

Hybrid MBDS [38]. Multi-Body systems have been in existence and used in vehicle 

engineering  for over forty years  [39] [40] [41] [42]. Hence, they have evolved from 

simple MBD simulations solving a few equations of motion to much more robust 

ones which are able to model complex systems. 

Commonly used commercial MBDS software packages are ADAMS™, SIMPACK, 

CarSIM®, LMS Virtual.Lab, Recur­Dyn and COMSOL Multiphysics®. An example of 

the application of MBDS is seen in the work of Subramanyam et al.[43] who 

developed an All-Wheel Drive minivan model using ADAMS and compared the 

results of simulation with that from the suspension kinematics and compliance 

testing. This study showed that a good static correlation could be obtained from the 

MBDS modelling with the only short coming being that some of the results of 

dynamic test of the model didn’t show as good a correlation as the static case. 

In spite of the progress made by MBDS in reducing the time and cost of road load 

data acquisition, it is necessary to state that the accuracy of the MBDS relies on the 

modelling data provided to the MBDS software. The masses and inertia for the rigid 

bodies, the masses and stiffness of the flexible bodies and the characterisation of 
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other linear and non-linear components and the fidelity of the representation of 

these components determine the accuracy of the model and the reliability of the 

results from the simulation. Components such as shock absorbers, bushes and the 

tyre which play an important part in the MBDS modelling are in real life non-linear 

components with hysteretic behaviours. Hence, the better the accuracy of the 

MBDS representation of each of the components, the better the vehicle model 

obtained. Shawn and Sang-Gun [20] reported in their study, the MBDS method to 

complete virtual durability evaluations on a passenger car coupled to a spindle-

coupled test system. Their work involved building both a vehicle model and the 

spindle-coupled test system in ADAMS™, reproducing road load data collected from 

physical vehicle testing on the road in the simulation environment and comparing 

the results obtained from the 4 degree-of-freedom virtual test rig with that from the 6 

degree-of-freedom virtual test rig. In their simulation, a good correlation of the 

simulation with physical test data was achieved even though the study did not 

consider the flexibility of the vehicle body. Also, the results showed that the 6 

degree-of-freedom system simulates the road loads better than the 4 degree-of-

freedom test system when compared with physical test results though the 

acceleration response in a case showed a bad correlation in both magnitude and 

phase. Lin et al. [23]in their study went further by developing a flexible body vehicle 

model to perform a CAE based analyses using FEA; a full vehicle model using LS-

DYNA was developed. The collected road load data from physical testing was used 

to validate the accuracy of the model and fatigue damage estimation carried out 

thereafter with the validated model.  The work of Dannbauer et al. [44] also 

discussed a method of integrating virtual tests and physical tests in order to achieve 
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a reduction in time and effort towards vehicle development. The results of their work 

on the fatigue life prediction for physical test rig data and simulation were compared 

and these showed better prediction from the simulation than from the test rig 

measured forces. 

The summary of these is that the development of an accurate CAE model is reliant 

on the accuracy of the individual components in the model and the test scenario the 

model is aimed at simulating. 

As mentioned earlier, one of the most important components in the CAE modelling 

of a vehicle is the tyre as it is the only part of the vehicle that interacts with the road 

surface. The next section examines the role of the tyre model in CAE accuracy and 

fidelity. 

2.2.2.2.3 Tyre Models 

The tyre is a very important part of the vehicle as it is the only component of the 

vehicle that connects the rest of the vehicle to the road. The tyre functions as the 

support to the vehicle’s weight to provide sufficient tractive and braking force and 

also dampen out the effects of an irregular road surface on the vehicle [45]. Various 

tyre models have been developed up to date to capture the non-linear and dynamic 

characteristics of the tyre and of particular importance to this work are those 

developed and optimised for use in road load analyses when prediction of durability 

loads are important. The models are able to predict the forces in the vertical, 

longitudinal and lateral tyre directions. These models are cited by Li et al. [46] as 

Ring on Elastic Foundation Model [47], Mousseau’s Model [48], Zegelaar’s Model 

[49], RMOD-K Model [50], Kao’s BAT Model [51], Schmeitz’s Model [52], MF-SWIFT 
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[53], FTire Model [54], CD-Tire [55], Baecker’s Model [56], ABAQUS-Based 

Surrogate Tire Model [57]. These tyre models have been developed for use in 

conjunction with FEA and MBDS and each has a test scenario for which it performs 

best. The important thing is to choose the most suitable model for a particular 

simulation application. In this current research, a simple tyre model and the FTire 

model were used for the MBD simulations. The choice of the FTire and simple tyre 

models was based on the ability to use both of them with the chosen MBDS 

package and the scope of this current research which included only the prediction of 

the vertical loads from the tyre model. 

2.2.2.3 Semi-Analytical Method 

This method of road load data acquisition combines both the analytical method and 

the empirical method to create a hybrid. These hybrid methods make use of some 

data collected via physical testing and combine these with those from CAE 

simulation to generate the required road load data. Various researchers have used 

this method and they include Schdut et al. [58] who showed how road load data 

generated from CAE could be used to supplement those from physical road tests in 

General Motors. Similarly, da Cruz et al. [3] presented a typical procedural example 

of the semi-analytic method. In their study, the wheels of a sport utility vehicle (SUV) 

were instrumented with Wheel Force Transducers and the vehicle ran over a road 

track sequence, selected particularly to study the vehicle’s durablity performance, to 

acquire the spindle forces and moments to drive a Rigid body MBDS model in 

ADAMS. The data collected from the physical test was also used to validate the 

fidelity of the results from the ADAM model while further simulations were carried 

out using the validated model in order to minimise the time and costs associated 
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with the physical test. Bäcker et al. [26] also used a similar method referred to as 

the Hybrid road approach to generate road load data for a new generation model of 

a vehicle by back-calculating the effective road profile from the data collected from a 

predecessor model and running an MBDS model of the new generation model of the 

vehicle with the longitudinal and lateral spindle forces as well as the back-calculated 

effective road profile iterated from the vertical spindle force. The results of the use of 

this hybrid road approach showed a good correlation with the road load data 

measured from the new vehicle after its manufacture. Also, Liu et al. [59] used a 

semi-analytic method by developing and validating an MBDS model of a vehicle in 

ADAMS and validating the fidelity of the model with data from the kinematic testing 

of the physical vehicle. Once the validation was complete, the model was used to 

generate chassis loads and the results of the data collected from the model showed 

a very good correlation with those from the proving ground test of the physical 

vehicle. 

As the capabilities and accuracy of CAE improves, more automotive manufacturers 

would favour CAE road load data acquisition especially in the early development 

stages of the vehicle over physical testing. At the current stage of the development 

of CAE, the virtual road load data collected cannot yet be used to completely 

replace those from physical testing but would be good enough to provide very useful 

information needed to carry out a vehicle durability and performance optimisation. 

2.2.3 Efforts at Artificial Road Load Data Acquisition 

An apparent conclusion from the review of the various methods of road load data 

acquisition is that though the physical test provides the most accurate and reliable 
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source of the data, the cost and time required for the acquisition of the data is much 

higher than the other methods of data acquisition. Also, the method of physically 

testing the vehicle either on the road as in the customer usage methods or on the 

test tracks as in the proving ground method is only possible when a representative 

prototype of the vehicle has been manufactured. As this is not the case in the very 

early stages of the vehicle development programme, it is necessary to explore other 

methods of road load acquisition. From the various aforementioned methods of road 

load data acquisition, the analytic and semi-analytical methods are the feasible 

options in the pre-prototype stage of the vehicle development, hence recent studies 

on artificial road load data acquisition methods are reviewed here. 

One of the earliest methods used the effective road profile method for the simulation 

of road load data. Rui et al. [60] presented the concept of the use of the effective 

road profile iterated from the spindle responses of the vehicle on the road and a tyre 

model in the frequency domain. The study assumed that the new vehicle would 

have the same simplifications as the preceding model and that the longitudinal and 

lateral effective road profiles were the same. The results of spindle vertical 

acceleration as well as the radius arm force produced a good correlation in the 

frequency domain. This method showed the effectiveness of the road profile 

provided the new variant of the vehicle had a very similar configuration to the 

predecessor, thereby limiting the application of this method to a new variant if it was 

significantly different in configuration. 

Similar to the effective road profile method is the hybrid road approach [26] where 

the effective road profile was calculated and transferred to the next generation 

design of the target vehicle. The method presented by Backer et al. included the use 
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of an unconstrained vehicle for a full vehicle simulation. The effective road profile 

was calculated only in the vertical direction while the measured longitudinal and 

lateral loads were transferred directly from measurement to the MBDS model of the 

next generation target vehicle. A simple linear tyre model was used in this process. 

The back-calculation of the effective road profile is similar to the method of drive file 

iteration used on Road Test Simulators for accelerated durability testing of vehicles 

in the laboratory. The results produced by using this method showed a good 

correlation with the measured loads from the physical testing of the next generation 

vehicle. The accuracy of this method depends, to a good extent, on how different 

the next generation vehicle is from the predecessor. The bigger the difference, the 

less accurate this method would be as the longitudinal and lateral spindle forces 

were transferred directly from the preceding vehicle to the new one. 

Kang et al. [61] developed a virtual road profile using the spindle loads collected via 

a wheel force transducer on an SUV which ran on a Belgian and Washboard road. 

The collected load data was back-calculated to a road profile using an iterative 

method in the frequency domain and was used as an input to run an MBDS model 

of the vehicle in ADAMS/Car and using the FTire tyre model. The method of the 

road profile iteration is similar to that used in the hybrid road approach by Backer et 

al. [26] with its difference being the use of a dynamic tyre model; FTire. Though the 

results showed a good correlation between the measured road load data and the 

simulated load, the effect of the changes in vehicle parameter configuration was not 

taken into account. 

Scime’s [9] approach was different from the aforementioned methods in that a 4-

post durability simulation using a tire coupled setup without measuring any road 
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load data from a physical vehicle was carried out. This was done by using digitized 

road surfaces representative of the durability schedules of a proving ground test, 

creating 4-post displacement signals via an algorithm that accounts for the tyre 

enveloping effect on the digitized road surface and then running a fully analytic 4-

post simulation. The enveloping effect of the tyre is the variation in the vertical force 

and its deformation as the tyre traverses an uneven road surface as a result of its 

flexibility hence, the tyre can be said to envelop the road surface. The results 

indicated a good correlation of the spindle acceleration from the simulation with that 

collected from the physical test in the frequency domain and the time history shape 

and peak also indicated a good correlation. The challenge of this approach is 

reliance on the accuracy of the digitized road surface. Digitization of road surfaces 

requires high technical and cost resources. The work of Tasci et al. [62] indicate 

how a significant cost and time investment are required in developing accurate and 

efficient road surface profiles for use in simulation.  

Schudt et al. [7] implemented a virtual road load data acquisition which allowed the 

switching of the measured data for synthetic data in the development of vehicles at 

General Motors. This method was also used for the virtual acquisition of road load 

data for a rear suspension of a vehicle under development [8]. The implementation 

of this method was successful because of the amount of time spent in the 

development of the processes involved with the significant ones being the 

development and generation of digital road surfaces and development. This method 

would pose a big challenge to a smaller volume manufacturer because of the huge 

costs and time required for acquiring adequate digital road profile information. 
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Having reviewed the various methods of road load data acquisition and various 

procedures of implementing them, the import of these as regards vehicles with 

variants is considered in the next section. 

2.2.4 Vehicle Variants 

In order to reduce vehicle development time, the associated costs and in order to be 

able to also transfer the knowledge gained from the development of a predecessor 

vehicle model, automobile manufacturers design some of their newer vehicles 

based on already existing models. These next generation models are here 

described as the vehicle variants and would generally have similar properties such 

as body shape, engine type, aerodynamics etc. as the existing model with some 

modifications to other configuration parameters. In other cases, variants of vehicles 

are developed in order to meet a custom design requirement as in the work of 

Sivashankar et al. [63] where their commercial vehicles were developed to customer 

specifications for the loading and usage of the vehicle. Traditionally, the measured 

data and knowledge gained from the development of the predecessor vehicle are 

transferred and used for the development of the newer model during the pre-

prototype stage because of the similarities in both vehicle architectures but the 

configuration modifications in the new vehicle reduce the accuracy of data collected 

from predecessor model when used for the new vehicle. The introduction of new or 

modified components into a vehicle have been known to cause an increase in the 

reliability problems [1] and hence, being able to determine the effects of the 

changes in the vehicle configuration on the service loading of the vehicle is of great 

benefit. 
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Not many studies have been carried out on the effect of variation of vehicle 

configuration parameters on the road load data. One of the earliest studies was 

carried out by Reddy et al. [14] where the trends in the wheel spindle loads for 

vehicle variants were examined. This was based on the data collected from different 

variants of the same vehicle. The variants had different types of leaf spring 

shackles, loading conditions and number of mounting points from the frame to the 

body. The road load data was collected by running the variants of the vehicle on the 

same road track and at a single vehicle speed. The results from this study showed 

the variation in the spindle forces, moments, acceleration and the associated 

pseudo damage for each of the vehicle variants. This was a first step in 

understanding the effects of the parameter changes on the road load data. This 

work was carried out successfully primarily because the variants of the vehicles 

already existed and could be run on a track and road load data collected and 

analysed. As mentioned earlier in this chapter, the associated costs with physical 

testing are much higher than other means of vehicle testing. Hence, a cost saving 

method such as the analytical or semi-analytical method of vehicle testing would be 

a preference for many manufacturers. This was the motivation for Backer et al. [26] 

when they implemented the hybrid road approach for a vehicle variant using the 

wheel spindle load from the predecessor model of the vehicle as described in the 

earlier section above and though this yielded some success, the effect of the 

changes in the new vehicle parameters were not accounted for in the back-

calculated vertical road input. 

All the CAE methods covered in this literature survey, though they provide plausible 

solutions to road load data prediction, either do not account for the parameter 
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variations in the variants of the vehicle or are very cost and time intensive especially 

at the pre-prototype stage where vehicle optimisation is much more cost effective. 

Hence, this research proposes the use an Artificial Intelligence method for the 

generation of road load data. The Artificial Intelligence method will take into 

consideration, the configuration variations in predicting the road input for generating 

the road load data. The following section details the Artificial Intelligence methods. 

2.3 ARTIFICIAL INTELLIGENCE SYSTEMS 

Artificial Intelligence (AI) is a method of providing solutions to problems that would 

require human intelligence. AI has been applied in various fields of engineering and 

has proven to reliably provide solutions [64]. The aim of Artificial Intelligence 

systems is to be able to model the human intelligence and the method of human 

learning. Examples of the implementation of artificial intelligence systems are 

artificial neural networks, fuzzy logic systems, expert systems, inductive learning 

and genetic algorithm [11]. One of the many implementation of AI in automotive 

engineering is the Artificial Neural Network. 

2.3.1 Artificial Neural Networks 

Artificial neural networks are systems of artificial neurons interconnected in such a 

way that they imitate the behaviour of the human nervous system and are able to 

solve problems which have characteristics or behaviours that have not been fully 

understood yet and hence, cannot be modelled accurately. 

The history of Artificial Neural Networks dates back to the development of the 

concept of neural networks in the late 19th century [65] by scientists in the fields of 
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physics, neurophysiology and psychology. The development involved the general 

establishment of theories on the operation of human functions such as vision, 

learning etc. Further into the 20th Century, the works of various scientists such as 

Warren McCulloch and Walter Pitts [66], Donald Hebb [67], Frank Rosenblatt [68], 

Windrow and Hoff [69], Minsky and Papert [70], Teuvo Kohonen [71], Rumelhart 

and McClelland [72] as described by Downes [73] and Hagan et al. [65] highlighted 

the capability of artificial neural networks in solving both logical and arithmetic 

problems. The benefit of artificial neural networks is their capacity to solve problems 

in a similar way as the human brain does [64]. Though the full functional behaviours 

of the human brain are not completely understood yet, the main characteristics of 

learning and adaptation, generalization, robustness among others have been 

assembled for the development of artificial neural networks. The ability of artificial 

neural networks to learn in a similar way as the human brain, by training to impart 

implicit knowledge, has made them popular in a variety of fields in the last decade. 

Examples of the application of neural networks include input-output and curve fitting, 

pattern recognition and classification, dynamic time series prediction and clustering. 

An example of a popular neural network type is the Multilayer Perceptron Network. 

The multilayer perceptron network comprises 3 layers of artificial neurons viz. the 

input layer, the hidden layer and the output layer. The flow of data in the multilayer 

perceptron network is forward from the input layer, through the hidden layer, to the 

output layer. Each neuron comprises a weight, a summer, a transfer function and an 

offset often referred to as a “bias.” The training of the multilayer perceptron network 

is carried out by a training method where a training data set consisting of both inputs 

and the corresponding target outputs are presented to the network. The neurons’ 
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weights and biases in the network are by default randomly initiated and are modified 

via an error back propagation algorithm until the error from the output of the neural 

network reaches a satisfactory level. The back propagation algorithm feeds 

backwards the error, between the network’s output and the expected corresponding 

output, to an input through the neural network so the weights and biases are 

modified in accordance with the error from the network’s output. A schematic of the 

multilayer perceptron is shown in figure 2.8. 

 

Figure 2.8: Schematic of a Multilayer Perceptron Network [64] 

 

Besides automotive engineering, various other fields have put to use the capabilities 

of the artificial neural networks such as Material Engineering [74] where neural 

networks were used to model fatigue behaviour and predict the fatigue life of a 

composite, Hydrology [75] where the capabilities of an artificial neural network were 

used to estimate the safe pumping rate in order to maintain the groundwater’s salt 

content and Oil and Gas exploration [76] where artificial neural networks were used 
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to estimate the parameters of a reservoir from the well test data and these are just a 

few of the many applications of artificial neural networks. 

A number of neural network architectures exist to solve different problems 

depending on the requirements of the problem. 

2.3.1.1 Artificial Neural Network Architectures 

Artificial Neural Network Architectures can be defined by the types of neurons they 

are made up of, the arrangement of the connections among the neurons, the 

training algorithm and other components [64]. 

2.3.1.1.1 Neurons 

The artificial neurons in the network comprises an input, p; an associated weight, w; 

a summing function, a singular input to the summer with a value of 1 and an 

associated weight referred to as the bias, b and a transfer function, f which is 

activated by the sum of the inputs, n to produce an output, a. The transfer function 

could be a linear or non-linear function of the input signal. The figure 2.9 below 

represents a neuron with a single input. 

 

Figure 2.9: A Single-Input Neuron [77] 
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In training a neural network, the associated weight parameter, w and the bias, b are 

those that are adjustable by a learning rule. 

Some common examples of the types of transfer function are described as follows: 

1. Hard Limit Transfer Function (Figure 2.10) 

This transfer function produces an output of zero below a certain input 

threshold value or an output of one at and above the input threshold value. 

 𝑎 = 0 𝑓𝑜𝑟 𝑛 < 0 (2.1) 

 
𝑎 = 1 𝑓𝑜𝑟 𝑛 ≥ 0 (2.2) 

 

Figure 2.10: Hard Limit Transfer Function [77] 

 

 

2. Linear Transfer Function (Figure 2.11) 

The linear transfer function produces an output that is exactly the same as 

the input value. 

 𝑎 =  𝑛 (2.3) 
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Figure 2.11: Linear Transfer Function [77] 

 

 

3. Log Sigmoid Transfer Function (Figure 2.12) 

This transfer function produces an output according to equation 2.4. 

 
𝑎 =  

1

1 + 𝑒−𝑛
 

(2.4) 

 

Figure 2.12: Log Sigmoid Transfer Function [77] 

 

4. Hyperbolic Tangent Sigmoid (Figure 2.13) 

The output of this transfer function is according to equation 2.5. 

 
𝑎 =  

𝑒𝑛 − 𝑒−𝑛

𝑒𝑛 + 𝑒−𝑛
 

(2.5) 

 

Figure 2.13: Hyperbolic Tangent Sigmoid Transfer Function [77] 
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2.3.1.1.2  Arrangement of Neuron Connections 

The arrangement of the connections of the neuron in an artificial neural network 

defines if neurons are connected, partially connected or not connected at all as 

identified by Kasabov [64]. The connectivity of the neurons also depends on the 

number of input and output neurons. A network that has the input neurons serving 

as the output neurons as well is termed an associative network (Figure 2.14) while 

one which has the input neurons separate from the output neurons is termed a 

heteroassociative network (Figure 2.15). 

 

Figure 2.14: Autoassociative Network [64] 

 

 

 

Figure 2.15: Heteroassociative Network [64] 
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2.3.1.1.3  Training Algorithm 

The Training algorithm refers to the method of updating the associated input weights 

and biases of the artificial neural network. As the name suggests, the training 

algorithm imparts implicit knowledge into the neural network so it can carry out a 

predetermined operation [11]. This is also referred to as the learning rule. Examples 

of Training Algorithm are as follows: 

1. Gradient descent: The weights and biases are modified with training in the 

direction of the negative gradient of the network’s performance. 

2. Gradient descent with momentum: This is similar to the gradient descent 

but in addition, has the ability to allow the network ignore local minimums; like 

a low pass filter acting on the error surface. 

3. Variable Learning Rate: This algorithm is similar to the gradient descent 

with the exception that the learning rate parameter is adjusted as the training 

proceeds. This ensures that the algorithm doesn’t become unstable and it 

converges fast. 

4. Resilient Backpropagation: This algorithm eliminates the problems 

associated with partial derivatives which occur when gradient descent 

algorithms are used on sigmoid transfer functions multilayer networks. 

Because the sigmoid transfer function normalise a large range of input to a 

finite range in the output, gradient descent algorithms tend to reflect very 

small changes in the magnitude of the gradient hence, not accurately 

optimising the weights and biases. 
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5. Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton: This 

algorithm is based on the Newton method of optimisation but unlike the 

Newton method, doesn’t require the computation of the second derivatives of 

the network’s performance index in the course of the training. Hence, this 

algorithm produces fast optimisations but its performance diminishes as the 

network becomes larger. 

6. Levenberg-Marquardt: This algorithm is similar to the BFGS method and 

was developed for minimising functions that are sums of squares of some 

other non-linear functions [65]. The main drawback of this algorithm is that it 

requires quite a large memory than other algorithms for some problems. 

7. Bayesian Regularization: This algorithm updates the weights and biases 

according to the Levenberg-Marquardt optimisation and in addition, 

minimises the linear combination of squared errors and weights so the 

network has good generalisation [78]. 

The speed of each algorithm for a given problem could be difficult to know as these 

depend on factors such as the size of the training data set, the size of the input, 

hidden and output layers, the complexity of the problem and the problem type. 

Though these algorithms are usually chosen by trial, the works of various 

researchers seem to favour the Levenberg-Marquardt and Bayesian Regularization 

for an application such the drive signal prediction carried out in this current 

research. 

Training algorithms can be classified into three groups: supervised training, 

unsupervised training and reinforcement training [64, 65]. 
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2.3.1.1.3.1  Supervised Training 

The implementation of this training algorithm requires that sample inputs and targets 

which represent the system or phenomenon the network is being trained for be 

presented to the neural network. As the training proceeds, the outputs from the 

network are compared with the targets presented and the difference is used via the 

training algorithm to modify the associated weights of the inputs and the biases. 

2.3.1.1.3.2  Unsupervised Training 

This training algorithm requires that only the training inputs to the network be 

presented. The associated input weights and biases are modified only by reason of 

the training inputs. This type of training is mainly used for pattern recognition and 

classification applications [79] 

2.3.1.1.3.3  Reinforcement Training 

The reinforcement training can be said to be somewhat similar to the supervised 

training in that instead of presenting the network with the correct training set of input 

and output as the case of the supervised training, the network is scored based on its 

performance to the input. The implication of this score it that the network weights 

are either increased for a good score or decreased for a poor score. 

2.3.1.1.4 Other Components 

A number of other components help in defining the structure of the artificial neural 

network and an important one to this current research is the time delay block. The 

block could be either on an input line where it functions as an input delay block or on 

the feedback line where it functions as a feedback delay block. The function of the 
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delay block is to delay its output by a specified number of time steps. The illustration 

in figure 2.16 shows a time delay for one time step. 

 

Figure 2.16: Delay Block [77] 

 

2.3.2 Application of ANN in Automotive Engineering 

Artificial Neural networks have found many applications in the area of automotive 

engineering. Kurniawan et al. [80] used a back-propagation artificial neural network 

to predict the engine performance and the CO and NO levels from a compressed 

natural gas spark ignited engine. The results from the neural network show very 

good correlation with those obtained from the Computational Flow Dynamics 

simulation. Johrendt et al. [81] as well used a neural network in conjunction with a 

multi-body dynamics simulation model in representing the non-linear damping force 

in a one degree-of-freedom system. In their case study, the damping force and 

velocity were collected from a proving ground durability road load data acquisition 

and normalised for use in a neural network. A co-simulation of the MBDS system in 

ADAMS and the neural network in MATLAB was carried out with the results showing 

very good correlations with the ADAMS simulation using an approximated damper 
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behaviour characterisation. Similarly, Leser et al. [82] achieved a significant 

improvement in the modelling of shock absorbers with the use of neural network 

which was trained with data collected from physical vehicle testing. The results from 

their study showed very good prediction of the damping force in the time domain 

and also an excellent fatigue life prediction.  

Lolas & Olatunbosun [1] as well developed a vehicle reliability performance system 

using artificial neural networks. This system was capable of predicting the reliability 

behaviours of the target vehicles at 6000km using information available at 0km. The 

success of their neural network can be attributed to the network optimisation 

methods which explored the sensitivity of various components in the network 

architecture such as the training algorithm, the size of the hidden layer, the number 

of hidden layers etc. Particularly clear from their study is the importance of a large 

amount of training data in obtaining a minimum network error 

Recently, Balakrishnan et al. [83] used an artificial neural network to predict the 

strain time histories in various locations in a two-wheel vehicle from data measured 

from a few other channels. In their study, road load data was collected from 

transducers installed to various components on the two-wheeler during a proving 

ground measurement. A comparison of the actual measured data from the target 

locations on the two-wheeler with the prediction from the neural network used 

indicated a very good correlation. 
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2.4 SUMMARY 

The literature survey has revealed the significance of road load data acquisition in 

vehicle durability testing and its various applications. The survey also identified 

three methods of acquiring the road load data; empirical, analytical and semi-

analytical. In addition, the efforts at artificially generating road load data and their 

limitation with regards to vehicle variants and cost implications were examined and 

this led to the review of the efforts of various researchers towards the artificial road 

load data generation prior to the availability of representative vehicle hardware. This 

revealed that the current methods do not account for the parameter variation in the 

final production vehicle. 

The novelty in this current research is based on these reviewed literatures which 

showed very little consideration for variation in the input drive signal for vehicles with 

different configuration parameters. Therefore, this research examines the changes 

in input drive signal as the vehicle’s suspension configuration parameters change 

and also prediction of the road input data using an artificial intelligence method. 

The application of artificial intelligence (AI) methods examined in the literature 

survey revealed a plethora of applications and particularly, its application in 

automotive engineering. The AI method of artificial neural network and its 

application by various researchers also revealed the possibility of its application for 

the generation of road input data which can be used to accurately generate road 

load input for use in the pre-prototype stage of a vehicle programme and particularly 

for vehicles variants. 
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With the successes of the methods of implementing neural networks highlighted in 

literature survey in mind, the choice of neural networks in the implementation of 

road load data input prediction is a leap forward in the application of artificial 

intelligence in the engineering design process. 
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3 CHAPTER THREE: MODELLING AND VALIDATION TOOLS 

3.1 INTRODUCTION 

The cost and time saving advantages of CAE in automotive engineering are 

achieved through the elimination of long and costly vehicle test procedures in the 

vehicle development programme and such CAE methods are the first points of call 

in the vehicle development process. The advantages of CAE are made possible by 

the advances in computing technology which has led to the development of high 

speed computers as well as robust CAE modelling tools. 

This chapter presents the hardware and software tools used for the development 

and validation of the CAE model used in this current research. These tools comprise 

the instrumentation and features of a laboratory test rig – the Quarter Vehicle test 

rig, the CAE Modelling software platform implemented in this research and the 

validation of the CAE models using the data collected from the laboratory test rig 

and a proving ground road load data acquisition. 

3.2 HARDWARE TOOLS 

3.2.1 The Quarter Vehicle Test Rig 

The quarter vehicle test rig was designed and manufactured in the Vehicle 

Dynamics Laboratory at the University of Birmingham with the specifications and 

parts for a popular commercial SUV. The test rig comprises the left hand front side 

suspension of the target vehicle and removable steel blocks to represent the weight 

of the chassis on the suspension. The original configuration of the test rig has a 

Continental Cross Contact 235/60R18 107V tyre inflated to a pressure of 234kPa. 
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The test rig comprises three units: the Quarter Vehicle and Suspension Unit, the 

Hydraulic Power Unit and the Control System Unit. The Quarter Vehicle was used 

for the generation of correlation data for the validation of the MBD model. 

3.2.1.1 Quarter Vehicle and Suspension Unit 

As highlighted in the preceding section, the Quarter Vehicle and Suspension unit 

stand alone as a functional unit adapted from a commercial SUV. This unit is 

instrumented with the following transducers: 

1. Accelerometer: At the outset of this research, a piezoelectric accelerometer 

was attached to the centre of the wheel hub of the test rig to measure the 

vertical acceleration at the wheel hub but this was replaced with a variable 

capacitance accelerometer further into the research. The change from the 

piezoelectric to the variable capacitance accelerometer was implemented in 

order to take advantage of the high sensitivity of the variable capacitance 

accelerometer and its low frequency response which goes down to zero Hz. 

Table 3.1 shows the different sensitivities of both accelerometer types used 

in this research. The accelerometers have a range of up to ±50g. 
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Table 3.1: Accelerometer Types 

Accelerometer Sensitivity Frequency 

Response 

(Hz) 

Mass  

(grams) 

Case 

Material 

Piezoelectric 7.86 (pC/g) 1 – 10000 3.5 Titanium 

Grade 2 

Variable 

Capacitance 

80 (mV/g) 0 – 1500 10.0 Anodized 

Aluminium 

 

2. Load Cell: A flat load cell is installed between the top of the actuator and the 

base of the tyre contact plate. The cell contains sealed strain gauges which 

generate electrical signals as the magnitude of the force on them varies. The 

full scale capacity of the load cell installed on the test rig is 33kN for both 

tension and compression and is able to accurately measure forces in the 

range of 0.1% of the full scale (33kN) to 100% of the full scale. 

3. Linear Variable Differential Transformer (LVDT): An LVDT measures the 

displacement via changes in electrical signals. These electrical signals are 

proportional to the displacements and a constant gain factor. An LVDT is 

installed in the casing of the Actuator at the bottom of tyre contact. The LVDT 

provides displacement feedback to the control system during the signal 

excitation.  

The locations of these transducers are shown in the image of the Quarter Vehicle 

and Suspension Unit in figure 3.1. 
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Figure 3.1: Quarter Vehicle and Suspension Unit 

 

Removable Steel Blocks  

Accelerometer  

Load Cell 

LVDT 

Tyre Contact Plate  
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3.2.1.2 Hydraulic Power Unit (HPU) 

The hydraulic power unit comprises the components that generate the oil pressure 

needed to drive the Quarter Vehicle and Suspension unit. This unit consists of the 

following parts: 

1. Oil Tank: The tank contains about 1000 litres of Nuto™ H32 oil which is 

circulated through the HPU by the hydraulic pump. 

2. Hydraulic Pump: The function of the Bucher Hydraulics Pump is to convert 

mechanical energy to hydraulic energy in the HPU. The pump has an 

effective displacement 80cm3/rev and is powered with a Brook Crompton 

electric motor with a 3-phase connection (415V @50Hz) to the electricity grid 

and is rated at 55kW and 1475rpm. 

3. Piping: The piping of the HPU comprises both pipes and hoses. The hoses 

are SAE 100R13 Size ¾” with a working pressure of up to 35MPa and carry 

the oil from the oil tank outlet to the suction of the hydraulic pump, out 

through the discharge, through the entire HPU and back to the oil tank. 

4. Servo Valves: The MOOG servo valves control the in-flow and out-flow of 

the oil to the actuator cylinder chamber in response to the electrical signal 

sent from the controller. The opening and closing of the valves produces the 

vertical upwards and downwards displacement of the actuator. 

5. Hydraulic Actuator: The actuator is the part of the HPU that converts the 

hydraulic energy from the unit to displacement. The displacement is 

controlled by signals sent to the servo valves via the controller. The total 

length of the actuator stroke is 150mm. 
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3.2.1.3 Control System Unit 

This unit comprises the Digital servo controller and the Test Rig Computer. Both 

devices are connected to each other via Registered Jack (RJ) – 45 ports located on 

their main processor boards. The detail of each device is as follows: 

1. Digital Servo Controller: The digital servo controller is the Control Cube 

developed by CaTs3 UK and it monitors, records and processes analogue 

transducer feedback signals from the test rig; controls and generates the 

digital input to the test rig’s servo valves via a software interface on the test 

rig computer. The Control Cube is capable of generating simple constant 

amplitude tests, static ramp test and external signals generated from external 

software. 

2. Test Computer: A computer system equipped with an Intel® Core™ 2 Quad 

CPU Q9400@2.66GHz Processor, 6GB of RAM and running Microsoft 

Windows 7 was used in conjunction with the digital controller software for the 

execution of dynamic tests, control of the test rig and analysis of the data 

acquired from tests. The computer’s configuration was adequate in processor 

computing power, memory capacity and storage for running all the test 

experiments. 

3.2.2 Tri-Axial Tyre Test Rig 

The Tri-axial tyre test rig at the University of Birmingham was used for the 

determination of the stiffness and damping of the tyre installed on the Quarter 

Vehicle test rig. The rig comprises a 2.44 meter drum, two hydraulic actuators in the 

vertical and longitudinal tyre axes and some instrumentation for the collection of test 
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data. The instrumentation on the tri-axial tyre test rig are the same as those on the 

quarter vehicle test rig; accelerometer, load cell and LVDT. The digital servo 

controller connected to the test rig generates displacement drive signals as the input 

to the tyre-wheel assembly in either the longitudinal or vertical tyre axis while the 

data from the transducers; acceleration time history from the accelerometer, force 

time history from the load cell and displacement time history from the LVDT, were 

the outputs from the test rig. The stiffness and damping data calculated from the 

tyre test was used for the definition of the tyre properties in the MBD simulation of 

the Quarter Vehicle test rig. 

 

Figure 3.2: Tri-axial Tyre Test Rig 
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3.2.3 Simulation Computer 

The Simulation computer was equipped with an Intel® Core™ i7 CPU 

870@2.93GHz Processor, 14GB of RAM and ran the Microsoft Windows 7 

operating system. The configuration of the simulation computer was found to be 

adequate for the execution of the Multi-Body Dynamics simulations, Drive File 

Generation and MATLAB Simulations. 

3.3 SOFTWARE TOOLS 

3.3.1 Digital Controller Software 

The digital controller required a control interface where various test configurations 

could be setup in order to carry out a specific test procedure on the Quarter Vehicle 

test rig. The digital controller software also provides the electronic means of setting 

the gain, polarity, offset on the input and output signals from the controller in 

addition to the execution of a variety of experimental tests. The Digital Controller 

Software programmes used in this current research were Cubus, QanTiM and 

LabVIEW. 

3.3.1.1 CUBUS 

Cubus is the computer software that interacts with the Digital Controller (Cube) for 

sending and retrieving signals from the test rig. The Cubus interface is divided into 3 

modules: Rig, Data and Test. 

The Rig module is for the configuration of the test rig and the transducers attached 

to the test rig. The data module provides the tools for the configuration of data 

sampling rate and the acquisition of the data measured by the transducers. The test 
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module enables the user to run a simple test such as cyclic constant amplitude sine 

input or to give the digital controller access to an external test software package. 

Cubus directly controls the drive signal to the actuator via the digital controller to 

produce the displacement on the test rig while the LVDT, load and acceleration 

channels provide the feedback of measured signals.  

 

3.3.1.2 QanTiM® 

QanTiM is a time domain based software tool for the laboratory reconstruction of the 

input loads required to generate the dynamic response on a structure as measured 

in its operating environment. QanTiM works using a state space model in the time 

domain using the method called: “the parametric dynamic system identification.” The 

state space model in QanTiM is able to generate a displacement time history drive 

signal as an output to a measured dynamic response, which in this research is the 

acceleration response of the wheel. The generated output displacement drive signal 

is thereafter used to drive the quarter vehicle test rig and model from the tyre 

contact patch. The advantage of using the time domain for the identification is the 

significant reduction in the amount of system identification data required compared 

with the same process in the frequency domain [84]. 

The QanTiM simulation steps are as follows[85]: 

1. Acquisition of Road Load Data 

In order to reconstruct the load input to the vehicle, road load data of the 

representative service usage of the vehicle is collected either through an 
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empirical, analytical or semi-analytical method as discussed in the literature 

survey section in chapter 2. 

2. Preparation of Road Load Data 

This step requires that the collected road load data be transferred to QanTiM 

via its data acquisition system. The data is pre-processed by filters to remove 

the spikes and other noisy sections from the data and thereafter resampled to 

the chosen sampling rate. 

3. System Modelling 

The dynamic system in a laboratory test rig setup comprises the hydraulic 

actuator, the digital controller, the test vehicle and the transducer. In order to 

identify this system, a short white noise signal which covers the frequency 

spectrum of the acquired road load data is generated in QanTiM and used to 

drive the test rig while the output data is collected from the connected 

transducers. QanTiM then calculates an inverse dynamic system model 

which is capable of producing displacement inputs commensurate with the 

measured output signal. 

4. Generation of Linear Drive File 

Once the system modelling is complete, QanTiM is ready to generate a drive 

file using the identified dynamic system model and the previously acquired 

road load data. The output from the model is the displacement time history 

which corresponds to the road load data acquired. Exciting the test rig with 

this generated drive file would produce a laboratory simulated road load data 

response. The comparison of the laboratory simulated response and the 

acquired response would usually contain some errors as the dynamic system 
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model identified doesn’t account for the non-linearity that may exist in the test 

rig setup. The error in the response from the use of the linear drive file is 

defined by a quantity referred to as the QanTiM error (Qer). 

 

The error in the response is defined in Eq. 3.1 

 𝑒(𝑟) = 𝑅𝑑𝑒𝑠(𝑟) − 𝑅𝑎𝑐ℎ(𝑟) (3.1) 

Where 

Rdes(r) = desired response 

Rach(r) = achieved response 

 

The QanTiM error is the percentage of the error in response to the desired 

 signal, Eq. (3.2) 

 𝑄𝑒𝑟 =
∑|𝑒(𝑟)|

∑|𝑅𝑑𝑒𝑠|
× 100% 

(3.2) 

 

5. Iteration of Drive file 

In order to eliminate the errors in the response generated from the laboratory 

simulation, the error from the comparison of the simulated and acquired road 

load data responses are processed through the identified dynamic system 

model and added to the linear drive file to create the next generation drive 

file. The responses from exciting the test rig with the next generation drive file 

are also compared with the acquired road load data responses and any 
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errors are processed through the identified system model. This process 

continues until the errors reach an acceptable level when the final drive file is 

saved for use in the durability testing. 

3.3.1.3 LabVIEW 

LabVIEW is an intuitive graphical programming language for the development and 

implementation of laboratory test routines as well as processing data from the tests 

into useful information. A programme developed in LabVIEW is referred to as a 

virtual instrument (VI) because it has the resemblance and emulates the operational 

behaviour of physical instruments. LabVIEW comprises two user interfaces; the 

front panel where the test input controls such as knobs, dials, numeric input boxes 

etc. as well as indicators such as LEDs, graphs and numeric indicators are located 

and the block diagram where the various components of the programming code can 

be added and connected in order to execute the overall VI’s function. 

LabVIEW was used in this current research for the design of the control and data 

processing interface for the characterisation of the simple tyre model. The 

advantage of LabVIEW is the intuitive, simple and user friendly programming 

environment which allows the programmer to easily visualise and implement an 

experimental procedure. The front panels from the simple tyre model 

characterisation test are shown in figures 3.3 and 3.4. 
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Figure 3.3: Simple Tyre Characterisation Test Setup Front Panel 

 

 

Figure 3.4: Simple Tyre Characterisation Test Control and Result Front Panel 
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3.3.2 SIMPACK 

SIMPACK is a Multi-Body Dynamics Simulation software which has applications in 

various industries such as railway technology, oil and gas, renewable energy as well 

as automotive engineering. SIMPACK is divided into two parts: SIMPACK/Pre 

where the modelling of the components takes place and SIMPACK/Post where the 

simulated information is processed and viewed. 

SIMPACK solver works by converting the elements of the model into ordinary 

differential equations. The inclusion of a constraint in the model requires an 

additional set of differential-algebraic equations (DAE) [86]. 

In this current research, SIMPACK 9.6 was used for the modelling of the Quarter 

Vehicle Rig and a Full Car model. Both models were used in conjunction with 

QanTiM in the latter part of the research for the iteration of virtual drive files. The 

properties of the components in SIMPACK were populated with data collected from 

the Quarter Vehicle and Tri-axial Tyre Test rigs. 

A Basic SIMPACK MBD model comprises the following: 

1. Body: This is where all the mass and inertia properties of the structure being 

modelled are defined. The body can be modelled as a rigid or flexible 

structural body. 

2. Joint: The joint is a massless element which connects bodies to each other. 

The joint provides degrees of freedom. 

3. Constraint: A constraint is a massless element used to connect bodies to 

each other kinematically. Unlike the joints which give degrees of freedom, 

constraints restrain degrees of freedom. 
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4. Force Element: The force element introduces force and torque into the MBD 

model. Like the joint and constraint, they are also massless components. 

 

3.3.3 MATLAB 

MATLAB is high-level computing language with a user friendly interactive 

environment used for numerical calculation, data analysis, signal processing and 

various other analyses. The tools built into MATLAB enable faster solving of 

problems compared with other programming languages such as C++ and Java [87]. 

The Neural Network Design Toolbox™ in MATLAB R2014a was used in this current 

research for the development and deployment of a neural network architecture for 

the generation of artificial road load inputs for use in the MBD simulation. The 

toolbox provides functions for the modelling of nonlinear and complex systems.  

3.4 SUMMARY 

The details of the various hardware and software tools used in this current research 

were presented in this chapter. Of particular importance were the Quarter Vehicle 

and the Tri-axial Tyre Test rigs which provided information for the modelling of the 

components of the Quarter Vehicle in SIMPACK. The identified computer hardware 

was also determined to be adequate for running both experimental tests and 

computer simulations. The drive file iteration software, QanTiM, was used for the 

development of drive files for the Quarter Vehicle test rig as well as the virtual drive 

files for the Quarter Vehicle model. QanTiM was particularly chosen because of the 
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speed it offers in generating drive files as well as its ability to model dynamic 

systems with few data samples. 

SIMPACK 9.6 was identified as the MBD software platform for the development of 

the CAE models used in this research. The advantage of SIMPACK is its ability to 

integrate easily with QanTiM for the development of virtual drive files. Finally, 

MATLAB, alongside the Neural Network Toolbox, was used for the implementation 

of the artificial neural network architecture. 
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4 CHAPTER FOUR: CAE MODEL DEVELOPMENT 

4.1 INTRODUCTION 

There are two major methods of CAE modelling for durability analysis as discussed 

in the literature survey; Multi-Body Dynamics Simulation (MBDS) and Finite Element 

Analysis (FEA) with MBDS being used for road load analysis and FEA for fatigue life 

analysis [88]. In the last decade, researchers have implemented both methods of 

CAE modelling using various software platforms with much success. [4, 12, 24, 34, 

89]. In executing this research, MBDS was chosen as the method for CAE 

modelling. Although there are a good number of commercial MBDS software such 

as those mentioned in the literature survey, SIMPACK was chosen as the preferred 

option because of the ease of integrating the development of the virtual drive file 

from QanTiM with the MBDS in the latter section of this thesis. 

As the reliability of the MBDS model is dependent, to a great extent, on the 

accuracy and quality of the representation of the physical properties of each 

component that makes up the model and their interactions [17], it is important that 

the physical properties of the components are accurately characterised for use in 

the MBDS. In this chapter, the MBDS model of the Quarter vehicle test rig is 

developed as well as a Full vehicle model. The characterisation of its various 

components and validation of the accuracy of the model are also presented. 

4.2 QUARTER VEHICLE MODELLING 

The procedure for the development of the quarter vehicle model is divided into the 

following sections. 
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4.2.1 Components Modelling 

The development of the model starts with the modelling of each individual 

component of the Quarter vehicle test rig and thereafter, an assembly of these 

components with the appropriate joints and constraints to give degrees of freedom 

to the model. The test rig comprises a MacPherson strut suspension system (as 

shown in Figure 4.1) with the following components: 

1. 18-inch wheel 

2. 235/60R18 107V tyre 

3. Brake Disk 

4. Brake Calliper 

5. Knuckle and Hub Assembly 

6. Shock Absorber 

7. Spring 

8. Steering Tie Rod 

9. Lower Control Arm 

10. Chassis Frame 

11. Chassis Mass 

For an accurate representation of the test rig in the SIMPACK model environment, 

the physical properties of each component part of test rig was collected and used to 

define the model properties in SIMPACK. The properties of these components are 

divided into Geometry, Mass and Force Element Characteristics. 
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4.2.1.1 Geometry  

The geometry of a component is only as important as the information of the physical 

properties of the component it can provide. It is known that in FEA, an accurate 

geometrical representation of a component is usually necessary [90] but this is only 

true for MBDS modelling if the model consists of a flexible body structure which 

would have been pre-processed in an FEA environment. In the case of this current 

research, the body structures were modelled as rigid bodies hence, approximate 

geometrical representation were used for most of the components. In SIMPACK, the 

geometry enables the user to visually inspect the interactions of the components but 

does not contribute to the computation of the results for a fully rigid body structure 

model. 

The geometry information of some of the components of the test rig was obtained 

from the computer aided design (CAD) data of the individual components while the 

other components were represented by simple geometrical shapes. The figure 4.1 

shows the exploded view of the quarter vehicle test rig model. 
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Figure 4.1: Exploded View of Quarter Vehicle Test Rig Model 
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4.2.1.2 Mass Properties 

The mass properties are important characteristics of a component which define its 

response to an applied force. These properties are the mass of the component, the 

location of the centre of gravity (CoG) and the mass moment of inertia (MoI). For 

MBDS modelling, these provide the information for the solution of the equations of 

motion for the interacting components. Any inaccuracy in the mass properties would 

ultimately jeopardize the fidelity of the model. 

The most evident method of obtaining the mass properties is via direct 

measurement in the case of the mass and calculations in the case of the location of 

the CoG and the MoI. The availability of Computer Aided Design (CAD) software 

has made possible the accurate development of three-dimensional designs of 

automotive parts and also the possibility of accurate computation of the CoG and 

MoI [33]. The CAD software is also able to accurately calculate the mass of 

component provided the density information is available. Various researchers have 

been successful in the accurate determination of mass properties from CAD data 

[20, 38, 59]. 

With the availability of CAD data, the CoG and MoI properties were obtained from 

the CAD design of the individual components. The mass of each component was 

obtained from direct measurement using a digital weighing scale. The table 4.1 

below contains the mass and inertia of the components of the test rig.  
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Table 4.1: Mass and Inertia Properties of Quarter Vehicle Test Rig 

Component 

Mass 

(kg) 

Inertia 

(kgm2) 

X-axis Y-axis Z-axis 

18-inch wheel 12.65 0.40 0.59 0.40 

235/60R18 107V tyre 14.40 0.73 1.34 0.73 

Brake Disk 8.56 0.07 0.12 0.07 

Brake Calliper 6.50 0.03 0.03 0.03 

Knuckle and Hub 

Assembly 
6.36 0.19 0.21 0.15 

Shock Absorber 8.08 0.08 0.09 8.75e-4 

Spring 3.42 2.33e-8 2.48e-8 4.47e-8 

Steering Tie Rod 0.75 8.44e-5 0.01 0.01 

Lower Control Arm 7.00 0.16 0.11 0.27 

Chassis Frame 56.50 2.43 2.80 1.35 

Chassis Mass 450 8.28 11.65 19.32 
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4.2.1.3 Force Element Characteristics 

The force elements are the components in the model which carry load and allow 

forces to be applied in the model via different force laws. A variety of these exist in a 

vehicle such as the spring, tyre, shock absorber, anti-roll bar, bushing, bump stop 

etc. All these components are in place to ensure the comfort of the passengers in 

the vehicle and optimum performance of the vehicle. The quarter vehicle model was 

developed with some of these force elements and their characteristics were 

determined by physical testing carried out at Jaguar Land Rover (for the Spring, 

Shock Absorber Damping and Bump Stop) and the University of Birmingham (for 

the Simple Tyre). These force elements were selected because they were the only 

ones present in the physical quarter vehicle test rig being modelled. 

In this current research, the following components’ force elements were 

characterised: 

a) Spring 

b) Bump Stop 

c) Shock Absorber 

d) Tyre 

 

4.2.1.3.1 Spring 

The spring is characterised by a stiffness constant obtained from the constant 

velocity compression of the spring while the spring compression displacement and 

force are recorded. The relationship between the force and displacement is linear 
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and the factor of the proportionality is the spring stiffness constant as defined by 

Hooke’s law in Equation 4.1. 

 𝐹𝑠 = 𝐾𝑑 
(4.1) 

Where  Fs = Spring Force 

K = spring stiffness constant 

d = spring compression displacement 

The stiffness, K, was determined as 29kN/m and was entered directly into 

SIMPACK to model the spring stiffness. 

4.2.1.3.2 Bump Stop 

The bump stop characterisation is similar to that of the spring in that the relationship 

between the force and the bump stop displacement is determined by collecting the 

compression displacement and applied force on the bump stop and plotting the 

resulting data. The bump stop is usually non-linear and has a higher stiffness as the 

compression displacement increases. The relationship between the force and 

displacement of the bump stop is shown in figure 4.2. 



 

72 

Displacement (m)

0.00 0.02 0.04 0.06 0.08 0.10

F
o

rc
e

 (
N

)

0

5000

10000

15000

20000

25000

30000

35000

40000

 

Figure 4.2: Bump Stop Characteristic Courtesy of Jaguar Land Rover 

 

4.2.1.3.3 Shock Absorber 

The characterisation of the shock absorber damping was obtained by stroking the 

damper at a constant amplitude and through different frequencies. The results of the 

peak damping force and peak velocity at the different frequencies are plotted to 

describe the damping characteristics. The relationship is not linear like the spring 

but differs in the direction of the compression and rebound as indicated in figure 4.3. 
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Figure 4.3: Shock Absorber Damping Characteristic Courtesy of Jaguar Land Rover 

 

4.2.1.3.4 Tyre 

The tyre is indeed very important in road load analysis because it functions as the 

intermediary between the road surface and vehicle. Various tyre models highlighted 

in the literature survey present a plethora of options for modelling.  

SIMPACK has in-built functions that allow the use of various tyre models such as 

those highlighted in the literature survey section of this thesis. FTire and a simple 

tyre were chosen for comparison in order to determine the best performing tyre 

model for this current research. The FTire model was developed by an industry 

affiliate and provided for this study while the stiffness and damping of the simple tyre 

model were determined by modal analysis on the Tri-axial tyre rig. The idea of the 

simple tyre was to simplify the tyre characteristic parameters while ensuring that the 

simulation was time efficient.  
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4.3 SIMPLE TYRE MODEL DEVELOPMENT  

This section focuses on the development of the simple tyre model as described by 

Olatunbosun [91]. The simple tyre comprises a spring element and a damper 

element connected in parallel. The simple tyre model was chosen because the tyre 

parameters could be determined with the available equipment at the University of 

Birmingham. Though the model consists of linear force components, these elements 

were assumed to sufficiently describe the tyre’s behaviour in the tyre vertical axis in 

the frequency range of the road input of 0 to 50Hz and hence, sufficient for the 

purpose of this research. The validity of the assumption was tested and is presented 

in the model validation section of this thesis. 

The tyre is set up as shown in figure 4.4 with a pre-load of 4kN in the tyre vertical 

axis direction. A swept sine wave signal is sent to the actuator in the tyre vertical 

axis direction to produce an excitation with a displacement amplitude of 2mm for the 

frequency range 1 – 20Hz and a step size of 0.1Hz. The amplitude of 2mm was 

chosen based on the limitation of the tyre test rig as the servo valves of the rig 

cannot maintain amplitudes larger than 2mm as the test frequency increases. While 

the sine wave was generated on the test rig, the acceleration and the load at the 

wheel hub were recorded and used for the analysis of the magnitude and phase of 

the response of the tyre assembly and hence, the stiffness and damping properties. 
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Figure 4.4: Tyre Modal Test Setup on Tri-axial Test Rig 

The test setup can be represented as a one-degree of freedom system as in the 

figure 4.5 with the rigid surface representing the drum. 
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Figure 4.5: Schematic of Test Setup 

 

Where MT is the total moving mass of the wheel-tyre assembly, the axle and the 

moveable fork 

 
𝑀𝑇 = 𝑀𝑤 + 𝑀𝑎 + 𝑀𝑓 (4.2) 

Mw = Mass of wheel-tyre assembly 

Ma = Mass of axle 

Mf = Mass of moveable fork  

Kt = Stiffness of Tyre 

Ct = Damping of Tyre 

F = Tyre Vertical Force 
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x = Tyre Vertical displacement 

 

The equation of motion of the system shown in figure 4.5 is given in Eq 4.3 below 

 𝑀𝑇𝑥̈ + 𝐶𝑡𝑥̇ + 𝐾𝑡𝑥 = 𝐹 (4.3) 

For a harmonic force, F is defined as 

 𝐹 = 𝐹0𝑒𝑖𝜔𝑡 
(4.4) 

Where 

F0 = amplitude of force 

ω = angular frequency of excitation 

t = time 

i = complex number operator 

The displacement, x is defined as 

 𝑥 = 𝑋𝑒𝑖𝜔𝑡 
(4.5) 

Where 

X = amplitude of displacement 

Hence, the velocity is defined as 
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 𝑥̇ = 𝑖𝜔𝑋𝑒𝑖𝜔𝑡 = 𝑖𝜔𝑥 
(4.6) 

And the acceleration is defined as 

 𝑥̈ = 𝑖2𝜔2𝑋𝑒𝑖𝜔𝑡 = 𝑖𝜔𝑥̇ 
(4.7) 

Hence, substituting Eq 4.4 – Eq 4.7 into Eq 4.3 gives 

 𝑀𝑇𝑖𝜔𝑥̇ + 𝐶𝑡𝑥̇ + 𝐾𝑡𝑥̇ 𝑖𝜔⁄ = 𝐹 (4.8) 

The input mobility of the test setup is derived from Eq 4.8 and represented in Eq 4.9 

 
𝑥̇

𝐹
=

𝑖𝜔

(𝐾𝑡 − 𝑀𝑇𝜔2) + 𝑖𝜔𝐶𝑡
 (4.9) 

Rationalising the Denominator of Eq 4.9 gives Eq 4.10 

 
𝑥̇

𝐹
=

𝜔2𝐶𝑡 + 𝑖𝜔(𝐾𝑡 − 𝑀𝑇𝜔2)

(𝐾𝑡 − 𝑀𝑇𝜔2)2 + (𝜔𝐶𝑡)2
 

(4.10) 

The modulus of the mobility is obtained from Eq 4.10 

 |
𝑥̇

𝐹
| =

𝜔

√(𝐾𝑡 − 𝑀𝑇𝜔2)2 + (𝜔𝐶𝑡)2
 (4.11) 

The peak of a bode magnitude plot of the mobility is the point of resonance where 

the derivative of the mobility with respect to the angular frequency is equal to zero. 

Therefore, 

 
𝑑

𝑑𝜔
|
𝑥̇

𝐹
| = 0 

(4.12) 
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Hence, the following is obtained at the peak: 

 𝐾𝑡
2 − (𝑀𝑇𝜔2)2 = 0 

(4.13) 

And since the stiffness constant Kt is not a negative value, Eq 4.13 is true when 

 𝐾𝑡 = 𝑀𝑇𝜔2 
(4.14) 

The plot of the magnitude of the mobility and frequency from the experimental test 

on the tyre as shown in figure 4.6 below indicates a resonant frequency of 𝑓0 =

11.4𝐻𝑧.  
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Figure 4.6: Mobility Bode Plot 

 

At the resonant frequency, the damping coefficient can also be calculated by 

substituting Eq 4.14 into Eq 4.11. This gives Eq 4.15 which shows that the damping 

coefficient is the inverse of the mobility at the resonant frequency. 
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 |
𝑥̇

𝐹
| =

1

𝐶𝑡
 (4.15) 

 The total moving mass MT is computed from the impedance of the moving mass 

defined by the inverse of the mobility. The force F acting on the total moving mass 

when it is not in contact with the rigid drum surface is defined as: 

 𝐹 = 𝑀𝑇𝑥̈ 
(4.16) 

Replacing the acceleration term with velocity from Eq 4.7 gives the impedance as: 

 
𝐹

𝑥̇
= 𝑖𝜔𝑀𝑇 

(4.17) 

The gradient of the bode plot of the Impedance in the figure 4.7 gives the total 

moving mass MT as 75.15kg. 
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Figure 4.7: Impedance Bode Plot 
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With all the values for MT and f0 determined as 75.15kg and 11.4Hz respectively, the 

values of Kt and Ct were calculated by substituting MT and f0 into equations 4.14 and 

4.15. Hence, Kt and Ct were computed as 385.57kN/m and 552.50Ns/m 

respectively. 

 

4.4 QUARTER VEHICLE MODEL VALIDATION 

The final test rig model is assembled by defining the mass and inertia properties of 

the components, the geometry of each part, the characteristics of the force element 

and finally, the joints which connect them together. The final assembly of the model 

is shown in figure 4.8. 

 

Figure 4.8: Quarter Vehicle Test Rig Model 
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The next phase of the model development is the validation of the model in 

SIMPACK. It is important that the data generated from the Quarter Vehicle Test rig 

model correlates with that from the physical test rig and is also reliable. Hence, the 

data from the model is correlated with data from the test rig. The correlation of the 

data is done for both the frequency and amplitude responses of the model and test 

rig.  

In carrying out this validation, both the physical Quarter vehicle test rig (figure 3.1) 

and SIMPACK model (figure 4.8) were excited with the same drive signal of fixed 

displacement amplitude. The drive signals chosen to drive the test rig and 

SIMPACK model were the square wave, sine wave and triangle wave. These drive 

signal types were chosen because they were available as in-built functions in the 

digital controller. Each validation test involved setting a signal amplitude and 

frequency and driving the test rig and model with the selected drive signal then 

comparing the responses of the test rig with that from the model. The amplitudes for 

the drive signals were chosen in line with the health and safety consideration of 

running the test rig with the chosen signals and the severity of the input drive 

signals. Hence, the square and triangle wave, which have a greater shock impact 

than the sine wave on the test rig, had amplitudes of 10mm while the sine wave had 

an amplitude of 15mm. Likewise, the frequencies of the drive signals were chosen 

based on the safe frequencies for the chosen amplitudes of running the test rig. 

Though the actual deflection of the tyre contact patch on the Quarter vehicle test rig 

was not measured, based on the setup of the quarter vehicle test rig (moving 

contact patch), the tyre’s additional deflections from the validation drive signals are 

in the range of the 2mm amplitude used for the characterisation of the simple tyre as 
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the entire test rig is moved vertically upwards and downwards from the contact 

patch. 

4.4.1 Validation 1 

The first validation was carried out using a square wave road input at the tyre 

contact patch. The signal had the following specification: 

 Amplitude: 10mm 

 Frequency: 0.5Hz 

The feedback of the displacement from the test rig is used as the drive signal in the 

model in order to ensure the consistency of the drive signal in both cases as the 

feedback from the test rig is usually not the same as the drive command signal 

which in this case is the square wave. The results from the excitation are shown in 

figures 4.9 - 4.11. 
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Figure 4.9: Square Wave Input Acceleration Response - Up Stroke 
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Figure 4.10: Square Wave Input Acceleration Response – Down Stroke 

The wheel hub acceleration response as displayed in figures 4.9 and 4.10 indicate a 

good correlation between the test and simulation model based on a visual 

inspection. The quality of the correlation is examined by the root mean square error 
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(RMSE) computed for both the simple tyre and FTire models. The error value is also 

computed as a percentage of the peak test rig acceleration response.  

The root mean square error is computed as: 

 
𝑅𝑀𝑆𝐸 = √

∑(𝑒(𝑠))
2

𝑛𝑠
  

(1.1) 

Where  

e(s) = error in the signal 

ns = number of samples in signal 

 

The RMSE for the simple tyre and FTire models was computed as 0.15g (2.77% of 

peak value) and 0.25g (4.62% of peak value) respectively. This implies that the 

response from the FTire model doesn’t perform as well as that from the simple tyre 

model. 

The next step in this validation was the comparison of the frequency response of the 

test rig and simulation model. The result of the power spectral density (PSD) 

analysis of the square wave wheel acceleration response in figures 4.9 and 4.10 is 

shown in figure 4.11. 



 

86 

Frequency (Hz)

0 10 20 30 40 50

P
o

w
e

r 
S

p
e

c
tr

a
l D

e
n
s
it
y 

(g
2
/H

z)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Test

Model_FTire

Model_Simple_Tyre

 

Figure 4.11: Power Spectral Density of Wheel Hub Acceleration 

 

The frequency response result shows the peaks for the test, FTire model and simple 

tyre model as 13.5Hz, 12.2Hz and 12.8Hz respective. This again shows that the 

simple tyre model’s behaviour in the quarter vehicle model is better than that from 

the FTire model. The difference in the FTire behaviour can be attributed to the fact 

that the model was developed for a rolling tyre while the simple tyre properties were 

obtained from a non-rolling tyre test. For this reason, the use of the FTire model is 

not considered any further in this current research; all simulations are carried out 

using the simple tyre model. 

The peak frequency of 13.5Hz observed in figure 4.11 for the wheel hub 

acceleration response of the entire quarter vehicle is somewhat close to the 

resonant frequency of 11.4Hz for the tyre-wheel assembly alone as shown in figure 

4.6. The variation in the frequency is due to the inclusion of the various suspension 
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elements, such as the spring and damper, as well as the sprung mass in the quarter 

vehicle test rig (figure 3.1); these suspension components were not present in the 

tyre-wheel assembly as seen in figure 4.4 The effects of these suspension 

components and sprung mass on the resonance frequencies are investigated in 

chapter 5 of this thesis. 

4.4.2 Validation 2 

The second validation is carried out using a sine wave input drive signal with the 

following specification: 

 Amplitude: 15mm 

 Frequency: 1Hz 

The comparison of the wheel acceleration response from the test and simulation 

model is shown in the figure 4.12. The result again shows a good correlation 

between the test rig response and model. 
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Figure 4.12: Sine Drive Input Acceleration Response 

4.4.3 Validation 3 

The final validation is carried out using a triangle wave input drive signal with the 

following specification: 

 Amplitude: 10mm 

 Frequency: 1Hz 

The comparison of the wheel acceleration response from the test and simulation 

model is shown in the figure 4.13. The result, once again, shows a good correlation 

for the peaks and troughs in the test rig and model response. 
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Figure 4.13: Triangle Wave Drive Input Acceleration Response 

 

The results of the model validation indicate the accuracy and fidelity of the CAE 

model. Hence, the model was classed as fit for generating reliable data for use in 

the latter sections of this thesis. 

4.5 FULL VEHICLE MODELLING 

The full vehicle model is an approximate model of the commercial SUV from which 

the Quarter vehicle test rig was developed. The model has a total of 17 degrees of 

freedom in all the vehicle axis directions as shown in figure 4.14 except the vehicle’s 

longitudinal direction (translation on the horizontal axis) and the yaw direction 

(rotation about the vertical axis). This model comprises the left hand front (LHF), left 

hand rear (LHR), right hand front (RHF) and right hand rear (RHR) suspension 

units, the wheels and tyres, the chassis and anti-roll bars. 
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Figure 4.14: SAE Vehicle Axis System [92] 

 

The chassis, vehicle body and other mass elements were represented as simple 

geometrical shapes with the MoI and CoG calculated from the available CAD data. 

The tyre, spring, bump stop and shock absorber characteristics are the same as 

used in the quarter vehicle model setup as highlighted in the preceding section. In 

addition to the components identified for the quarter vehicle model, front and rear 

anti-roll bars were included in the full vehicle model. The force properties of these 

anti-roll bars were supplied by the vehicle manufacturer of the SUV. The full vehicle 

model assembly is shown in figure 4.15. 
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Figure 4.15: Full Vehicle Model 

4.6 FULL VEHICLE MODEL VALIDATION 

In the absence of any usable road input drive for the validation of the full vehicle 

mode, a drive file for a kerb drive over event collected from a proving ground data 

acquisition exercise is generated from this model using QanTiM. The aim of this was 

to observe how well this model could reproduce the acquired data, hence indicating 

a level of similarity to the original vehicle. The results from the developed drive file 

produced the results in figures 4.16 – 4.19. 
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Figure 4.16: LHF Wheel Acceleration Response 
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Figure 4.17: RHF Wheel Acceleration Response 
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Figure 4.18: LHR Wheel Acceleration Response 
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Figure 4.19: RHR Wheel Acceleration Response 
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These results show the acceleration response of the wheel to the iterated road input 

drive file and it can be observed that there’s a good visual correlation between the 

data collected from the proving ground data acquisition and that from the simulation. 

 

4.7 CONCLUSION 

The validation of the developed MBD simulation models of both the quarter vehicle 

and the full vehicle show reliable results. With the fidelity of the results in place, 

these models would be used for the generation of road load data for use in the latter 

section of this thesis and would also provide a platform to test the accuracy of the 

artificial neural network method adopted in this research. 

 

4.8 SUMMARY 

CAE models of the quarter vehicle test rig and a full vehicle were developed in 

SIMPACK with the physical characteristics of the various suspension system 

components obtained from testing and the manufacturer of the SUV. A simple tyre 

model was developed for the CAE model using a one degree of freedom system. 

The developed model of the quarter vehicle test rig was thereafter validated using a 

square wave, sine wave and triangle wave input drive signals to drive both the test 

rig and model. The presented results of the comparison of the response from both 

the test rig and model indicated a good correlation. Similarly, the full vehicle model 

was validated by iterating the drive file for a kerb run-over road event and comparing 

the response of the model with that collected from the proving ground data 

acquisition with the results showing a good model performance. Hence, the Quarter 
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Vehicle model and Full Vehicle model were proven as fit for the generation of data 

for use in the latter section of this thesis. 
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5 CHAPTER FIVE: CHARACTERISATION OF THE EFFECTS OF 

VEHICLE PARAMETER VARIATION 

5.1 INTRODUCTION 

Having completed the development of the MBS model of the quarter vehicle (QV) 

test rig and full vehicle (FV) models in the last chapter, this chapter investigates the 

effects of the changes in vehicle parameters on the vehicle’s response as it 

traverses the road surface. The aim of this chapter is to represent the effects of the 

variation of the vehicle configuration parameters on the road load data as a way to 

understand the trends in the road load data. The effects of the changes in the 

vehicle configuration parameter on the effective road input signal is also 

investigated. The effective road input signal can in future works be used for 

durability testing as done by Backer et al.[26] 

The chapter is divided into two sections; the first is the characterisation of the road 

load data from the variation of the vehicle parameters in the QV and FV models and 

the second is the characterisation of the effective road input signal with the variation 

of the vehicle parameters in both the QV and FV models. 

5.2 ROAD LOAD VARIATION IN VEHICLE VARIANTS 

Vehicle variants were discussed in the literature survey section where the 

advantage of the transfer of knowledge from the development of a predecessor 

model to newer model was highlighted. Various vehicle parameters could be altered 

in response to meeting design or durability performance targets for a production 

vehicle. Some of such parameters that are changed in a vehicle configuration 

include spring stiffness, shock absorber damping characteristics, bump stop 
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damping characteristics, wheel base, kerb weight, number of chassis frame to body 

mount points etc. The implementation of these parameter variations in the vehicle 

would induce a change in the behaviour and response of the vehicle. These are 

changes that need to be captured so that the design engineer can optimise the 

performance of the new vehicle configuration. 

In order to understand how the vehicle parameter changes affect the response of 

the vehicle, the road load data from the various vehicle configurations are 

investigated and presented as statistical trends to characterise the peak values, 

range and the frequency content of the vehicle responses [14, 93]. 

5.3 QUARTER VEHICLE ROAD LOAD DATA CHARACTERISATION 

The characterisation of the road load data for the variants of the quarter vehicle was 

considered first because of its simplicity. The quarter vehicle is the simplest system 

that captures the behaviour of the vehicle while excluding the effects of vehicle roll 

and pitch. 

In order to drive the quarter vehicle with a realistic road input, a proving ground (PG) 

road load data of the commercial SUV from which the quarter vehicle test rig was 

designed is back calculated via QanTiM to provide a corresponding displacement 

time history drive file to the PG road load data. The event from the PG is a “3-inch 

kerb drive-over” event at a vehicle speed of 10 km/h. The assumption in this 

analysis is that the effective road input signal for all the vehicle variants is constant. 

The PG road load data for which a back-calculated drive file was generated is the 

left hand front (LHF) wheel hub vertical acceleration response to the kerb drive-over 
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event. The section corresponding to the wheel hub’s impact with the kerb is as 

shown in figure 5.1. 
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Figure 5.1: LHF Wheel Hub Vertical Acceleration for the 3-Inch Kerb Drive Over Event 

 

The back-calculated drive file is generated from the original quarter vehicle 

configuration with the following details: 

Total Quarter Vehicle Mass: 520kg 

Spring Stiffness: 29kN/m 

Damping Characteristic Factor: 1 

The damping characteristic factor is the numerical factor by which the original shock 

absorber damping characteristic, as indicated in Figure 4.3, is multiplied in order to 

scale up or down the values of the damping characteristic curve. 
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The generated input drive file is shown in figure 5.2. 

Time (s)

6 8 10 12 14

D
is

p
la

c
e

m
e

n
t 
(m

m
)

-40

-30

-20

-10

0

10

20

30

40

 

Figure 5.2: LHF Drive File Generated from PG Event 

 

The investigation of the effects of the variation of the quarter vehicle parameters 

was carried out in 3 categories based on the variant parameter while other 

parameters were kept constant. The varying parameter categories are as follows: 

QV1. Damping Characteristic factor 

QV2. Spring Stiffness 

QV3. Quarter Vehicle Weight 

The table 5.1 summarises the simulation scenarios based on the 3 categories. 
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Table 5.1: Quarter Vehicle (QV) RLD Characterisation Simulation Scenarios 

Simulation 

Scenario # 

Damping 

Characteristic 

Factor 

Spring 

Stiffness 

(kN/m) 

Quarter Vehicle 

Weight 

(kg) 

1 0.75 29 520 

2 1.00 29 520 

3 1.50 29 520 

4 1.25 29 520 

5 1.00 25 520 

6 1.00 29 520 

7 1.00 35 520 

8 1.00 40 520 

9 1.00 29 520 

10 1.00 29 650 

11 1.00 29 780 
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The results from the simulation of scenarios presented in table 1 are displayed in 

charts to show the variation in the road load data. These results are categorised 

using the peak values and the range of the hub acceleration response for each 

simulation scenarios in table 5.1. The peak values are the maximum acceleration 

values while the range values are the difference between the maximum and 

minimum acceleration values. The range and peak values are as shown in figure 

5.3. 

  

Figure 5.3: Sample Hub Acceleration Response 

Range 

Peak 
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5.3.1 QV 1 (Variable Damping Characteristic factor) Results 

 

Figure 5.4: QV 1 Unsprung Mass Acceleration (Peak) 

 

 

Figure 5.5: QV 1 Sprung Mass Acceleration (Peak) 
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Figure 5.6: QV 1 Unsprung Mass Acceleration (Range) 

 

 

Figure 5.7: QV 1 Sprung Mass Acceleration (Range) 
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Figure 5.8: QV 1 Frequency Response Variation of Unsprung Mass Acceleration with Damping 
Characteristic Factor 
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Figure 5.9: QV 1 Frequency Response Variation of Sprung Mass Acceleration with Damping 
Characteristic Factor 
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The results from category 1 simulation scenarios in figures 5.4 – 5.7 indicate a 

decreasing trend in the unsprung mass acceleration and an increasing trend in the 

sprung mass acceleration as the damping characteristic factor increases. This is an 

expected trend because the damping force increases with the damping 

characteristic factor thereby limiting the oscillation of the unsprung mass and 

increasing the peak acceleration of the sprung mass. 

The frequency response plot for the unsprung mass acceleration in figure 5.8 shows 

a negative shift in the first resonance frequency of unsprung mass as well a positive 

shift of the second resonance frequency of the unsprung mass though the second 

resonance frequency seems to be a harmonic of the first frequency. The frequency 

response for the sprung mass acceleration in figure 5.9 indicates a positive shift in 

the resonance frequency and is similar to the trend of the second resonance 

frequency of the unsprung mass acceleration in figure 5.8. 
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5.3.2 QV 2 (Variable Spring Stiffness) Results 

 

Figure 5.10: QV 2 Unsprung Mass Acceleration (Peak) 

 

 

Figure 5.11: QV 2 Sprung Mass Acceleration (Peak) 
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Figure 5.12: QV 2 Unsprung Mass Acceleration (Range) 

 

 

Figure 5.13: QV 2 Sprung Mass Acceleration (Range) 
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Figure 5.14: QV 2 Frequency Response of Unsprung Mass Acceleration to Spring Stiffness 
Variation 
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Figure 5.15: QV 2 Frequency Response of Sprung Mass Acceleration to Spring Stiffness 
Variation 
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The effect of the increasing spring stiffness has a noticeable negative trend on the 

unsprung mass acceleration and a positive trend on the sprung mass acceleration 

as observed in figures 5.10 – 5.13. This implies a decrease in the vibrational 

response of the unsprung mass and an increase in the vibration of the sprung mass 

as the spring stiffness increases. The frequency response plots shown in figure 5.14 

and 5.15 also confirm this as the power spectral density of the unsprung mass 

acceleration decreases at the resonance frequency as the spring stiffness increases 

while that of the sprung mass acceleration increases at the resonance frequency as 

the spring stiffness increases. 

5.3.3 QV 3 (Variable Quarter Vehicle Weight) Results 

 

Figure 5.16: QV 3 Unsprung Mass Acceleration (Peak) 

 

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

520 650 780

A
cc

e
le

ra
ti

o
n

 (
g)

 

Quarter Vehicle Weight (kg) 



 

110 

 

Figure 5.17: QV 3 Sprung Mass Acceleration (Peak) 

 

 

Figure 5.18: QV 3 Unsprung Mass Acceleration (Range) 
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Figure 5.19: QV 3 Sprung Mass Acceleration (Range) 
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Figure 5.20: QV 3 Frequency Response of Unsprung Mass acceleration to Quarter Vehicle 
Weight Variation 
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Figure 5.21: QV 3 Frequency Response of Sprung Mass acceleration to Quarter Vehicle 
Weight Variation 

 

The visible trend in the sprung mass and unsprung mass acceleration as shown in 

figures 5.16 – 5.19 are positive upward trends for the increasing quarter vehicle 

weight. It can be clearly observed that the relationship between the quarter vehicle 

weight and the unsprung mass acceleration is fairly linear while that of the sprung 

mass acceleration is non-linear. The frequency response plot in figure 5.20 shows 

that there is a positive shift in the first resonance frequency of the unsprung mass as 

the quarter vehicle mass increases. The frequency plot, however, shows a negative 

shift in the second resonance frequency as the vehicle weight is increased. The 

frequency plot in figure 5.21, for the sprung mass acceleration, shows a consistent 

and positive trend at the resonance frequency as the quarter vehicle weight 

increases. The trends observed particularly in the frequency plot of the unsprung 

mass acceleration are as a result of the non-linear bump stop being engaged as the 
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quarter vehicle weight increases. The results for QV3 without the bump stop are 

presented as follows to observe the effects of the bump stop: 

 

Figure 5.22: QV 3 Unsprung Mass Acceleration without Bump Stop (Peak) 

 

 

Figure 5.23: QV 3 Sprung Mass Acceleration without Bump Stop (Peak) 
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Figure 5.24: QV 3 Unsprung Mass Acceleration without Bump Stop (Range) 

 

 

Figure 5.25: QV 3 Sprung Mass Acceleration without Bump Stop (Range) 
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Figure 5.26: QV 3 Frequency Response of Unsprung Mass acceleration to Quarter Vehicle 
Weight Variation without Bump Stop 
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Figure 5.27: QV 3 Frequency Response of Sprung Mass acceleration to Quarter Vehicle 
Weight Variation without Bump Stop 
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The results in figures 5.22 – 5.25 indicate an increasing trend for the unsprung mass 

acceleration and a decreasing trend for the sprung mass acceleration. This is 

considerably different from those in figures 5.16 – 5.19 where the sprung mass 

acceleration had an increasing trend as the quarter vehicle weight increased. This 

clearly indicates the effect of the bump stop being engaged for the higher quarter 

vehicle weights. With the bump stop engaged, an additional stiffness is introduced 

to the suspension and this generates higher acceleration responses in the sprung 

mass compared with if it were not present. Likewise, a comparison of the plots of 

the frequency content of the sprung and unsprung mass acceleration without the 

bump stop in figures 5.26 and 5.27 with those in figures 5.20 and 5.21 show similar 

results for the sprung mass acceleration while the unsprung mass acceleration from 

the QV without the bump stop indicates a negative shift in the first resonance 

frequency as the quarter vehicle weight increases. This negative shift is what would 

be expected in a system with increasing vehicle weight without any limits on the 

suspension travel or increase in the suspension stiffness. 

 

 

5.4 FULL VEHICLE ROAD LOAD DATA CHARACTERISATION 

A follow up to the completed characterisation of the road load data collected from 

the quarter vehicle model which excluded the effect of roll and pitch is the full 

vehicle road load data characterisation. This is carried out using the same method 

applied for the quarter vehicle model. The vehicle parameters considered for the full 

vehicle variants are categorised as follows: 



 

117 

FV1. Overall Vehicle Weight 

FV2. Front Spring Stiffness 

FV3. Rear Spring Stiffness 

FV4. Front Damping Characteristic Factor 

FV5. Rear Damping Characteristic Factor 

Carrying out a full factorial Design of Experiment characterisation on all the vehicle 

configuration parameters chosen would require a large number of simulation runs, 

hence a few design cases for the characterisation are carried out as highlighted in 

table 5.2. The drive signal for the full vehicle road load characterisation is the drive 

file generated from the “3-inch kerb drive-over” PG event. The file was back-

calculated from the acceleration response of all the wheels (LHF, RHF, LHR, RHR) 

using QanTiM. These drive file signals are shown in figure 5.28. 
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Figure 5.28: Full Vehicle Drive File from PG Event 

 

The chosen values of each of the vehicle parameters considered for the variants as 

previously listed are summarised in tables 5.2 and 5.3 as simulation scenarios. 

 

 

 

 

 

 



 

119 

Table 5.2: Full Vehicle RLD Characterisation Simulation Scenarios – 1 

Simulation 

Scenario # 

Overall 

Vehicle 

Weight 

(kg) 

Front 

Spring 

Stiffness 

(kN/m) 

Rear 

Spring 

Stiffness 

(kN/m) 

Front 

Damping 

Characteris

-tic Factor 

Rear 

Damping 

Characteris

-tic Factor 

1 1500 29 31 1 1 

2 1900 29 31 1 1 

3 2300 29 31 1 1 

4 1900 25 31 1 1 

5 1900 35 31 1 1 

6 1900 40 31 1 1 

7 1900 29 26 1 1 

8 1900 29 36 1 1 

9 1900 29 41 1 1 
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Table 5.3: Full Vehicle RLD Characterisation Simulation Scenarios – 2 

Simulation 

Scenario # 

Overall 

Vehicle 

Weight 

(kg) 

Front 

Spring 

Stiffness 

(kN/m) 

Rear 

Spring 

Stiffness 

(kN/m) 

Front 

Damping 

Characteris

-tic Factor 

Rear 

Damping 

Characteris

-tic Factor 

10 1900 29 31 0.75 1 

11 1900 29 31 1.50 1 

12 1900 29 31 1.25 1 

13 1900 29 31 1 0.75 

14 1900 29 31 1 1.50 

15 1900 29 31 1 1.25 

 

The results of the simulation scenarios identified in tables 5.2 and 5.3 are put into 

column charts for easy visualisation of the variation in the road load data for the 

vehicle variants. 
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5.4.1 FV 1 (Vehicle Weight Variation) Results 

 

Figure 5.29: FV 1 Peak Unsprung Mass Acceleration vs Vehicle Weight 

 

The results in figure 5.29 indicate that the acceleration of the rear wheels (unsprung 

mass) increases as the vehicle weight increases while that of the front wheels 

decrease. This can be attributed to the location of the centre of gravity of the vehicle 

which in this case is closer to the front wheels of the vehicle than the rear. 
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Figure 5.30: FV 1 Peak Sprung Mass Acceleration vs Vehicle Weight 

 

Figure 5.30 indicates a positive incremental trend in the sprung mass acceleration 

as the vehicle weight increases. This is similar to what was observed in the case of 

the quarter vehicle characterisation. 
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5.4.2 FV 2 (Front Spring Stiffness Variation) Results 

 

Figure 5.31: FV 2 Peak Unsprung Mass Acceleration vs Front Spring Stiffness 

 

The results of increasing the front spring stiffness values on the unsprung mass 

acceleration of the front and rear wheels are shown in figure 5.31. These indicate a 

positive trend only on the front wheels while the responses of the rear wheels 

remain fairly constant. This positive trend is opposite to the trend obtained from the 

quarter vehicle as shown in figure 5.10 and it can be inferred that the positive trend 

is an effect of both the vehicle roll and pitch in response to the road input. 
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Figure 5.32: FV 2 Peak Sprung Mass Acceleration vs Front Spring Stiffness 

 

Likewise, figure 5.32 shows a negative trend in the sprung mass acceleration 

response to the changes in the front spring stiffness values which is opposite to the 

positive trend, in figure 5.11, obtained for the quarter vehicle. The negative trend 

indicates that less of the input from the road is transmitted to the sprung mass 

because the spring displacement is decreasing as the stiffness value increases. 

This is consistent with the power spectral density observed for increasing the spring 

stiffness in figure 5.14. 
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5.4.3 FV 3 (Rear Spring Stiffness Variation) Results 

 

Figure 5.33: FV 3 Peak Unsprung Mass Acceleration vs Rear Spring Stiffness 

 

Figure 5.33 shows the variation in the unsprung mass acceleration to the changes in 

the rear spring stiffness values. It can be observed from the results that the 

response from the front wheels are unaffected by the variation in the rear spring 

stiffness values while the response of the rear wheels indicate a negative trend to 

the increasing stiffness value. The response of the rear wheels to the variation in the 

rear spring stiffness is the opposite of the response of the front wheels to the 

variation in the front spring stiffness. 
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Figure 5.34: FV 3 Peak Sprung Mass Acceleration vs Rear Spring Stiffness 

 

The acceleration response of the sprung mass as shown in figure 5.34 indicates a 

positive trend as the rear spring stiffness values increase. This is opposite to the 

trend observed for the front spring stiffness values as shown in figure 5.32. 
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5.4.4 FV 4 (Front Damping Factor Variation) Results 

 

Figure 5.35: FV 4 Peak Unsprung Mass Acceleration vs Front Damping Characteristic Factor 

 

 

Figure 5.36: FV 4 Range of Unsprung Mass Acceleration vs Front Damping Characteristic 
Factor 
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Figures 5.35 and 5.36 show a steady negative trend in the magnitude of the 

unsprung mass acceleration response of the front wheels while the response of the 

rear wheels remain constant. The response of the front wheels is consistent with the 

trend observed from the quarter vehicle in figures 5.4 and 5.6. 

 

Figure 5.37: Peak Sprung Mass Acceleration vs Front Damping Characteristic Factor 
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Figure 5.38: Range of Sprung Mass Acceleration vs Front Damping Characteristic Factor 

 

Figures 5.37 and 5.38 show a positive trend in the sprung mass acceleration 

response to the increasing front damping characteristic factor similar to the trend 

observed for the quarter vehicle 
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5.4.5 FV 5 (Rear Damping Factor Variation) Results 

 

Figure 5.39: FV 5 Peak Unsprung Mass Acceleration vs Rear Damping Characteristic Factor 

 

 

Figure 5.40: FV 5 Range of Unsprung Mass Acceleration vs Rear Damping Characteristic 
Factor 
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The result of the increase in the rear damping characterisation factor on the 

unsprung mass acceleration as shown in figure 5.39 and 5.40 indicate a negative 

trend in the rear wheels and no change in the response of the front wheels. This 

trend is similar to that observed in the front wheels to the change in the front 

damping characteristic factor in figure 5.36. 

 

Figure 5.41: FV 4 Peak Sprung Mass Acceleration vs Rear Damping Characteristic Factor 
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Figure 5.42: FV 4 Range of Sprung Mass Acceleration vs Rear Damping Characteristic Factor 

 

Figure 5.42 indicates a positive trend in the response of the sprung mass 

acceleration to the increasing rear damping characteristic factor. Though the peak 

values decrease as the damping factor increases in figure 5.41, the magnitude of 

the response increases as observed in the range of the response in figure 5.42. 
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requirements of the vehicle. Although the information from the characterisation of 

the road load is useful, it would not suffice as the variability in the effective drive 

signal was not accounted for. The next section considers the effect of the changes 

in the vehicle parameters on the effective drive signals in a bid to determine how 

much variability occurs in them as the vehicle parameters change. 

5.6 EFFECTIVE ROAD DRIVE SIGNAL VARIATION 

In the preceding section, the effect of vehicle parameter variations on the road load 

data was examined and characterised using a fixed effective road drive signal. A 

summary of the results from the three categories of the quarter vehicle simulation 

scenarios and the five categories of the full vehicle simulation scenarios show the 

variability in the road load data as the vehicle parameters change. The assumption 

in those simulation scenarios was that the drive signal was constant for all the 

vehicle variants which would be the case if the durability event road surfaces could 

be accurately digitized and deployed for use in driving the vehicle variant models as 

done by Roy and Villaire [5] and Scime [9]. In the absence of a digitized road, it is 

hypothesised that the effective drive input signal for each vehicle variant would 

change as the vehicle parameters are modified. To illustrate this hypothesis, the 

drive signal for a set of quarter vehicle variants and the full vehicle variants were 

developed and compared to elucidate the variability in the effective drive input. The 

variation of the effective drive input was quantified by calculating the root mean 

square error (RMSE) of the higher vehicle parameter drive signal in comparison to 

the lower vehicle parameter drive signal and also as a percentage of the peak value 

of the lower vehicle parameter drive signal.  The drive signals for the quarter vehicle 
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and full vehicle variants are presented in order to compare the drive files as the 

vehicle parameters change. 

 

The root mean square error is computed as: 

 
𝑅𝑀𝑆𝐸 = √

∑(𝑒(𝑠))
2

𝑛𝑠
  

(5.1) 

Where  

e(s) = error in the signal 

ns = number of samples in signal 

The drive signals are generated in QanTiM while ensuring that the response from 

the final drive signal for each vehicle variant achieved a RMSE ≤ 0.1g. 
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5.6.1 Results 
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Figure 5.43: Drive Signal Variation with Quarter Vehicle Weight 

 

The result in figure 5.43 above shows a slight variation in the drive signals for the 

quarter vehicle weight of 900kg in comparison with the weight of 520kg. The 

variation is particularly noticeable at the peaks and troughs of the drive signal after 

the 9-second mark. The root mean square error of the 900kg vehicle weight drive 

signal is computed as 0.614mm (2.14%). This indicates a fairly minimal variation in 

the drive signal for the 900kg quarter vehicle weight compared with 520 kg. 
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Figure 5.44: LHF Drive Signal Variation with Vehicle Weight 
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Figure 5.45: LHR Drive Signal Variation with Vehicle Weight 

 

Figures 5.44 and 5.45 are the LHF and LHR drive signal variation for the vehicle 

weights respectively. The root mean square error for the drive signals are 1.074mm 
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(5.62%) for the LHF vehicle weight and 0.451mm (2.29%) for the LHR. The error in 

the drive signal can be observed to be smaller in the rear side signal compared with 

the front side signal and more visible at the peaks and troughs of the drive signals. 
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Figure 5.46: Drive Signal Variation with Quarter Vehicle Spring Stiffness 

 

The effect of the spring stiffness variation on the quarter vehicle drive signal is 

shown in figure 5.46 and the variation in drive signal is also noticeable at the peaks 

and troughs, similar to that noticed in figure 5.43 for the quarter vehicle weight 

variation. The root mean square error for the 40kN/m spring is computed as 

1.450mm (4.85%). This signifies a larger variation in the drive signal as the spring 

stiffness value is increased. 
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Figure 5.47: LHF Drive Signal Variation with Front Spring Stiffness 
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Figure 5.48: LHR Drive Signal Variation with Front Spring Stiffness 
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The LHF and LHR drive signals are presented in figures 5.47 and 5.48 with root 

mean square errors of 0.415mm (2.04%) and 0.258mm (1.32%) respectively. The 

error values indicate that the variation in the drive signal for a change in the spring 

stiffness is minimal for the full vehicle compared with the quarter vehicle where the 

error was as large as 1.450mm. 

Time (s)

11.0 11.5 12.0 12.5 13.0

D
is

p
la

c
e

m
e

n
t 
(m

m
)

-10

0

10

20
26kN/m

41kN/m

 

Figure 5.49: LHF Drive Signal Variation with Rear Spring Stiffness 
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Figure 5.50: LHR Drive Signal Variation with Rear Spring Stiffness 

 

The variation in drive signals for the changes in the rear spring stiffness values are 

presented in figures 5.49 and 5.50 with root mean square errors of 0.300 (1.43%) 

and 0.272 (1.38%) for the LHF and LHR respectively. The results are similarly low 

like those obtained for the front spring stiffness values. 
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Figure 5.51: Drive Signal Variation with Quarter Vehicle Damping Characteristic Factor 

 

Figure 5.51 shows the variation of the quarter vehicle drive signal to changes in the 

shock absorber damping characteristics. The mean square error for the damping 

factor of 1.50 is 0.655 (2.2%). This indicates a larger variation in the drive signal as 

the damping characteristic changes compared with that observed from changing the 

quarter vehicle weight. 
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Figure 5.52: LHF Drive Signal Variation with Front Damping Characteristic Factor 
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Figure 5.53: LHR Drive Signal Variation with Front Damping Characteristic Factor 

 



 

143 

Similar to figure 5.51, figures 5.52 and 5.53 show the drive signal variation for the 

full vehicle with the front damping characteristic factor. The root mean square error 

for the front drive signal is 3.286mm (30.66%) while that for the rear is 0.481mm 

(2.60%). A visual inspection of the drive signals in both figures 5.51 and 5.52 also 

show that the change in the front damping has larger effect on the front drive signal 

than it does on the rear drive signal. 
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Figure 5.54: LHF Drive Signal Variation with Rear Damping Characteristic Factor 
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Figure 5.55: LHR Drive Signal Variation with Rear Damping Characteristic Factor 

 

Finally, Figures 5.54 and 5.55 present the LHF and LHR drive signal variation 

respectively for the changes in rear damping characteristic factor. The root mean 

square errors in the LHF and LHR drive signals are 0.636mm (3.36%) and 3.621mm 

(27.04%) respectively. Similar to the case of the change in the front damping 

characteristic factor, the larger error is noticeable in the LHR drive signal where the 

damping characteristic factor was increased to 1.50. 

The results presented thus far in this chapter have demonstrated the variability in 

the road load data acquired from the vehicle as the parameters are modified. This 

variability is in alignment with the hypothesis of this current research. 
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5.7 CONCLUSION 

The method of describing the road load data as vehicle parameters are altered, as 

explained in this chapter, provide a graphical representation for the easy 

understanding of how the road load varies with the vehicle’s configuration 

parameters. Though this would prove useful to the vehicle design engineer, the 

variation in the road input as the vehicle’s parameters change would affect its 

accuracy. The variation in the road input signal as the configuration parameters of 

the vehicle changes as observed in the preceding section is most prominent for the 

variation in the shock absorber damping characteristic than the spring stiffness and 

the vehicle weight. Having shown how the road input varies as the vehicle’s 

configuration parameters change, the use of an artificial intelligence system which is 

capable of accurately predicting the road input signal as the vehicle’s parameters 

change is proposed and implemented in the subsequent chapter of this thesis. 

5.8 SUMMARY 

A method of characterising the road load collected from both the quarter vehicle 

model and full vehicle model using a realistic road input signal was presented to 

study how the variations in the vehicles’ parameters affect the road load data. The 

characterisation of the variability in the effective road drive signal for changes in 

some vehicle parameters (vehicle weight, spring stiffness and damping 

characterisation) was carried out and the results of the characterisation of the 

indicated variability in the drive signals for changes in the vehicle parameters were 

most prominent for changes in the damping characterisation. The results of the 

characterisation of the input drive signal confirmed the hypothesis that the drive 

signals vary as the vehicle parameters are changed.  
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6 CHAPTER SIX: ARTIFICIAL ROAD INPUT TOOL (ARIT) 

DEVELOPMENT 

6.1  INTRODUCTION 

The effects of the variation of vehicle parameter configuration on the effective road 

drive signal were highlighted in the preceding chapter where the variability in the 

drive signal was observed. A method of artificial neural networks is described in this 

chapter to demonstrate and investigate the use of an artificial intelligence method in 

accurately predicting the effective road input for variants of the target vehicle. The 

details of the selection of the artificial neural network architecture and its 

optimisation for use in the quarter vehicle and full vehicle models are presented in 

this chapter. This optimised artificial neural network is named the artificial road input 

tool (ARIT). 

6.2 ARIT DEVELOPMENT PROCEDURE 

The following steps were taken in the development of the ARIT’s artificial neural 

network for both the quarter vehicle and full vehicle: 

1. Collation and Pre-processing of Network Training Data 

2. Selection of Artificial Neural Network Design Architecture 

3. Optimisation of the Artificial Neural Network 

4. Deployment and Testing of the Artificial Road Input Tool 
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6.3 QUARTER VEHICLE ARIT DEVELOPMENT 

6.3.1 Collation and Pre-processing of Network Data 

The data collection process involves gathering of the data that could be used for the 

training, testing and validation of the neural network. This process of data collection 

usually takes place outside the neural network design software. In this current 

research, the data for the artificial neural network comprised the input and the 

corresponding target data. Some of the vehicle suspension parameters in addition 

to the wheel vertical acceleration were selected as the input data to the artificial 

neural network while the effective road drive signal was selected as the output from 

the network. The data was further divided into three subsets at the outset of the 

neural network training; training data, validation data, testing data. 

The inputs to the neural network are the following: 

a. Wheel Vertical Acceleration 

b. Quarter Vehicle Weight 

c. Damping Characteristic Factor 

d. Spring Stiffness 

The wheel vertical acceleration is the time history of the response of the quarter 

vehicle to the effective drive signal generated from the kerb drive-over proving 

ground event while the output from the neural network is the time domain effective 

drive signal. This output is the input signal intended to be used to drive the MBDS 

model of the vehicle in SIMPACK. 
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The inputs to the neural network were combined in a full factorial [94] design of 

experiments to generate various quarter vehicle configurations for MBD simulation 

in order to collect a variety of data for the training of the neural network. The input 

parameters chosen are shown in table 6.1. 

Table 6.1: Quarter Vehicle MBD Simulation Parameters 

Quarter Vehicle Weight  

(kg) 

Spring Stiffness 

(kN/m) 

Damping Characteristic 

Factor 

200 (W1) 25 (S1) 0.5 (D1) 

400 (W2) 35 (S2) 2.0 (D2) 

600 (W3) 45 (S3) 3.5 (D3) 

 

The design of experiments from the combination of the parameters in table 1 

generated 27 sets of quarter vehicle configuration as listed in the table 6.2. 

Table 6.2: Quarter Vehicle Variant Configurations 

W1,S1,

D1 

W1,S1,

D2 

W1,S1,

D3 

W1,S2,

D1 

W1,S2,

D2 

W1,S2,

D3 

W1,S3,

D1 

W1,S3,

D2 

W1,S3,

D3 

W2,S1,

D1 

W2,S1,

D2 

W2,S1,

D3 

W2,S2,

D1 

W2,S2,

D2 

W2,S2,

D3 

W2,S3,

D1 

W2,S3,

D2 

W2,S3,

D3 

W3,S1,

D1 

W3,S1,

D2 

W3,S1,

D3 

W3,S2,

D1 

W3,S2,

D2 

W3,S2,

D3 

W3,S3,

D1 

W3,S3,

D2 

W3,S3,

D3 
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The quarter vehicle configurations identified in table 6.2 were used to generate input 

drive signals in SIMPACK and QanTiM and the results were exported and saved for 

the neural network training. The data from the simulation was processed with a 2nd 

order Butterworth low-pass filter with an upper corner frequency set at 50Hz. That 

was done to ensure that the signals above 50Hz, which is the upper limit of the 

spectrum of the measured signal as shown in figure 5.7, were cut off. 

The final stage of the pre-processing was the conversion of the non-time domain 

drive input parameters to time domain signals in order to ensure that all the input 

parameters had the same data format. The parameters were converted to a time 

domain signal at a sampling rate of 512Hz, the same as the rate of the wheel 

vertical acceleration input. After the data conversion, the input parameters were 

concatenated into MATLAB cells with each cell containing a time-step value of each 

input data. The input data were arranged in the following order in the cell: 

1. Wheel Vertical Acceleration 

2. Quarter Vehicle Weight 

3. Damping Characteristic Factor 

4. Spring Stiffness 

It is important to note that the artificial neural network training can only be as 

accurate as the data presented for its training because the training builds knowledge 

of the input-output relationship into the neural network. Following the collation and 

pre-processing of the neural network data, the artificial neural network design 

architecture is selected. 
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6.3.2 Selection of Artificial Neural Network Design Architecture 

A variety of artificial neural network architectures are available in the MATLAB 

Neural Network toolbox and each one has a suitable purpose. The first criterion for 

choosing the neural network architecture is that the neural network training method 

should be supervised as highlighted in the literature survey chapter; unsupervised 

training methods are commonly used in pattern recognition, self-organization and 

classification applications. The second criterion is that the network should be 

capable of accepting time history input data and also produce a time history output 

data. With the two aforementioned criteria in place, the following neural network 

architectures which met the criteria in the Neural Network Toolbox of MATLAB were 

selected: 

1. Nonlinear Autoregressive Network with External Input (NARX) 

2. Nonlinear Input-Output Network (NION) 

3. Cascade-Forward Back propagation Network (CFBPN) 

4. Feed-forward Back propagation Network (FFBPN) 

5. Feed-forward distributed time delay Network (FFDTDN) 

Each of the neural network architectures was trained with the data previously 

collected in step 1 of the ARIT development procedure and the performances of the 

networks were assessed by the Mean Squared Error of the network’s prediction. 

The Mean Squared Error (MSE) is defined as: 

 𝑀𝑆𝐸 =  
1

𝑁
∑(𝑇𝑗 − 𝑎𝑗)

2
𝑁

𝑗=1

 (6.1) 
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Where  a = network outputs 

T = target outputs 

N = number of network output & target 

j = summation index 

The data collated in step 1 above was divided into the three subsets; training data, 

test data and validation data in the ratio 14:3:3. 

The transfer function used in the neural network designs are summarised in table 

6.3 below. 

Table 6.3: Neural Network Transfer Functions 

Transfer Function 
Input/Output 

Relation 

MATLAB 

Function 

Linear a =  n purelin 

Hyperbolic Tangent 

Sigmoid 

a =
en − e−n

en + e−n
 

tansig 

 

Where  a = output 

n = Input 

The hyperbolic tangent sigmoid transfer function was chosen for the hidden layer 

and the linear transfer function was chosen for the output layer of the NARX and 

NION while CFBPN, FFBPN and FFDTDN used the hyperbolic tangent sigmoid in 
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the output layer. These were chosen because they are common choices in this type 

of prediction application [1, 65]. 

The Levenberg-Marquardt (LM) training algorithm was used for the training of the 

chosen neural network architecture because of its offering of a good training speed 

in comparison to other algorithms [77]. Following the completion of the network 

training, the results of the neural network training are presented in table 6.4. The 

results presented are the averages of three training trials. 

Table 6.4: Neural Network Training Result - Section 1 

Network 

Type 

Training 

Algorithm 
MSE 

Number 

of Input 

delays 

Hidden 

Layer 

TF 

Output 

Layer TF 

NARX LM 0.000293 10 Tansig Purelin 

NION LM 8.17 10 Tansig Purelin 

CFBPN LM 9.0281 0 Tansig Tansig 

FFBPN LM 9.04 0 Tansig Tansig 

FFDTDN LM 7.79 10 Tansig Tansig 

The results of the performance testing of the neural networks reveal that the 

Nonlinear Autoregressive Network with External Input (NARX) produced the best 
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performance results compared with the other network types. Hence, the NARX is 

used for further analysis in this current research. 

6.3.2.1 Background of the NARX Network 

The NARX network is an artificial network architecture which has feedback 

connection between its component layers. The NARX network is built on the linear 

autoregressive model. The equation (6.2) defines the NARX network model [77]. 

 
𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), 

𝑢(𝑡 − 3), … , 𝑢(𝑡 − 𝑛𝑢)) 

(6.2) 

 

Where  y(t) = Network Output Time Series 

  u(t) = Network Input Time Series 

The Input u(t) in the case of this current research is multi-dimensional and consists 

of the wheel vertical acceleration, quarter vehicle weight, damping characteristic 

factor and the spring stiffness. The output, y(t), is the effective drive signal. 

There are basically two different configurations of the NARX network. These are the 

parallel and the series-parallel configurations. In the parallel setup, the estimate of 

the output of the network is used as the feedback input. Since the true network 

outputs are available during training, the actual values can be fed back instead of an 

estimated value; this is called the series-parallel configuration. These different 

configurations are illustrated in figures 6.1 and 6.2. 
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Figure 6.1: Parallel NARX Configuration [77] 

 

 

Figure 6.2: Series-Parallel NARX Configuration [77] 

Where 𝑦̂(𝑡) = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑂𝑢𝑡𝑝𝑢𝑡 

 𝑦(𝑡) = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑂𝑢𝑡𝑝𝑢𝑡 𝑢𝑠𝑒𝑑 𝑎𝑠 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 

The main advantages of the series-parallel network over the parallel NARX 

configuration is the ability to train the artificial neural network in a purely feedforward 

manner like a perceptron network. TDL abbreviates the “Tapped Delay Line” which 

is a group of delay blocks. 
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6.3.3 Optimisation of the Artificial Neural Network 

Having chosen the NARX network in step 2, the next step is the optimisation of the 

network considering the following properties of the network: 

a. The Training Algorithm 

b. Number of Input Delays 

c. Number of Feedback Delays 

d. Size of Hidden layer 

e. General Data Processing 

The mean squared error in the optimisation of the artificial neural network is 

computed from the average of three training trials with the exception of the training 

algorithm selection where the stability of the network over ten training trials was 

considered. 

 

6.3.3.1 Training Algorithm 

The training algorithm is responsible for the readjustment of the biases and the 

weights of the artificial neurons during the neural network’s training. The algorithm 

readjusts the weights and biases of the neurons in accordance with the performance 

of the overall network as the training is carried out. A good number of training 

algorithms have been developed over the years and the performance of each of 

these algorithms depends on a number of factors such as the type of the artificial 

neural network, the number of training data, the type of neural network application 

etc. In order to choose an appropriate training algorithm, seven training algorithms 

(table 6.5) were tested over ten training trials of the NARX Neural Network. 
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Table 6.5: Training Algorithm 

Neural 

Network 
Training Algorithm 

MATLAB 

Function 

Average 

Training 

Time (s) 

NN 1 Levenberg-Marquardt (LM) trainlm 1169.2 

NN 2 Bayesian Regularization (BR) trainbr 12808.9 

NN 3 BFGS Quasi-Newton (BFGS) trainbfg 1446.5 

NN 4 Resilient Backpropagation (RB) trainrp 290 

NN 5 Scaled Conjugate Gradient (SCG) trainscg 306.4 

NN 6 Conjugate Gradient (CG) traincgb 314.1 

NN 7 Variable Learning Rate Gradient Descent (GDX) traingdx 38.1 

 

 

Figure 6.3: Quarter Vehicle Neural Network Performance with Training Algorithm 1 
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Figure 6.4: Quarter Vehicle Neural Network Performance with Training Algorithm 2 

 

The results of the network training shown in figures 6.3 and 6.4 indicate the 

variability in the performance of the network with the training algorithms. The worst 

performing training algorithm was the variable learning rate gradient descent (NN 7) 

and hence, not included in figures 6.3 and 6.4 for the sake of clarity. The results of 

this test clearly indicate that the most suitable training algorithms for this purpose 

are the Levenberg-Marquardt and the Bayesian Regularization. The advantage of 

the Levenberg-Marquardt algorithm over the Bayesian Regularization is the training 

speed; the Bayesian Regularization requires up to 1000% more time than the 

Levenberg-Marquardt algorithm in training. While the Bayesian Regularization 

requires much more time to train the network, the performance and stability are 

better than those of the Levenberg-Marquardt as observable in figure 6.3. The 
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performance of the Bayesian Regularization is consistent with the observation of 

other researchers [95, 96]. 

6.3.3.2 Number of Input Delays 

Following the choice of the training algorithm is the optimisation of the number of 

input delays to the NARX network. As earlier stated in the literature survey, the 

function of the input delay block is to delay the output by a number of time steps. 

The number of input delays is the number of time steps delays in the data that is 

presented to the network. In order to optimise this parameter, the effect of the input 

delay on the performance of the network is examined. The training was carried out 

using the Levenberg-Marquardt algorithm because of its time efficiency and the 

effects of the variation in number of input delays is presented in figure 6.5.  

 

Figure 6.5: Quarter Vehicle NARX Network Performance with Number of Input Delay 
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The result in figure 6.5 indicates a positive trend in the MSE as the number of input 

delays increases. The observable conclusion is that the error in the performance of 

the network increases as the number of input delays increases. Hence, the smallest 

number of input delays should be considered for use in the NARX network. 

 

6.3.3.3 Number of Feedback Delays 

The feedback delay is similar to the input delay in structure and operation but 

different in the source of the input data to the delay block. The source of the data for 

feedback delay is the network’s output. The optimisation process of the number of 

feedback delays investigates the effects of the number of delays on the 

performance of the network. The result of this investigation is shown in figure 6.6. 

 

Figure 6.6: Quarter Vehicle NARX Network Performance with Number of Feedback Delays 

 



 

160 

The figure 6.6 shows a fairly slow decline in the mean squared error performance of 

the network from the point of two feedback delays upwards. This indicates that the 

minimum number of feedback delays acceptable for a good network performance is 

two. 

6.3.3.4 Size of Hidden Layer 

The size of the hidden layer also requires optimisation in order to ensure a good 

network performance when it is deployed with new input data sets. A small number 

of neurons in the hidden layer could lead to the under fitting of the network’s 

performance while too many could lead to over fitting where the network is not able 

to accurately generalise. The optimum size of the hidden layer was investigated by 

comparing the network’s performance with the size of the hidden layer. The result of 

the investigation is shown in figure 6.7. 

 

Figure 6.7: Quarter Vehicle NARX Network Performance with Size of Hidden Layer 
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The result in figure 6.7 doesn’t show any observable trend though the network with 

6 neurons in the hidden layer performed better than all others. 

6.3.3.5 General Data Processing 

The survey of literature shows that processing the input data for the training of the 

neural network produces more efficient training and deployment network 

performance [1, 77, 97, 98]. The data processing works by pre-processing the input 

data prior to being fed to the neural network and post-processing the output from the 

neural network. By default, MATLAB applies a data processing method based on 

the type of data presented for training the neural network. The data processing 

procedure is illustrated in figure 6.8. In order to understand how the data processing 

affects the network’s performance, the effects of these processing methods were 

investigated. 

 

Figure 6.8: Data Processing for Neural Network [77] 

 

The Neural Network Toolbox™ in MATLAB offers a good number of pre-processing 

and post-processing methods as follows: 

a. Fixunknowns - Processes data by replacing each row containing unknown 

values  
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b. Mapminmax - Normalizes the inputs and target values to the range of -1 to 1 

c. Mapstd - Normalizes the inputs and target to have a mean of zero and 

variance of one 

d. Processpca - Processes rows of matrix with the principal component analysis 

e. Removeconstantrows - Removes matrix rows with constant values 

f. Removerows - Removes matrix rows with specified indices 

All the data processing methods were used except the fixunknowns which is 

applicable only when non numeric data are included in a network’s input. The 

network was trained with the Levenberg-Marquardt algorithm, a hidden layer of 10 

neurons, and input and feedback delay size of 10. The results of the investigation 

are shown in figures 6.9 and 6.10. 

 

Figure 6.9: Quarter Vehicle NARX Network Performance with Data Processing Methods – 1 
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Figure 6.10: Quarter Vehicle NARX Network Performance with Data Processing Methods – 2 

 

Figures 6.9 and 6.10 show that mapminmax and mapstd produce better network 

performance than the other methods of data processing for this application. Both 

methods of data processing indicate a good stability over the 10 trials though 

mapstd has a better network performance than the mapminmax. 

6.3.4 Deployment and Testing of the Quarter Vehicle Artificial Road Input 

Tool 

With the completion of the artificial neural network optimisation for the various 

configuration parameters of the NARX network, the network was configured using 

the recommended settings from the optimisation investigations. The network was 

trained and the accuracy of the network was tested. 
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6.3.4.1 Quarter Vehicle Artificial Neural Network Configuration 

The NARX network for deployment was trained with the Bayesian Regularisation 

training algorithm as a result of the performance of this training algorithm as seen in 

figure 6.3. The Bayesian Regularisation algorithm was chosen over the Levenberg-

Marquardt algorithm because of its better performance even though the training time 

is much slower. Also, the number of input delays was specified as one. The number 

of feedback delays was chosen as two because it was the smallest number of 

feedback delays to produce a good network performance. The size of the hidden 

layer was set at six neurons based on the performance result in figure 6.7. Though 

there isn’t a visible pattern in the network performance with the changes in the 

number of neurons in the hidden layer, the network with six neurons produced the 

best results. Both mapminmax and mapstd were chosen for the data processing 

based on their good performance and both were implemented in the neural network 

design. The summary of the NARX network configuration is shown in table 6.6. 
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Table 6.6: NARX Network Configuration 

Configuration Parameter  

Training Algorithm 
Bayesian 

Regularisation 

Number of Input Delays 1 

Number of Feedback 

Delays 
2 

Size of Hidden Layer 6 

General Data Processing 

Method 
mapminmax  & mapstd 

 

6.3.4.2 Quarter Vehicle Artificial Road Input Tool Training and Testing 

Once the final network configuration was chosen, a new data set was generated 

from the MBD simulation and QanTiM drive signal iteration to train the newly 

created network. The performance results of the training are as follows: 

Training Performance (MSE): 3.4286e-4  

Test Performance (MSE): 3.375e-4 

In order to test the Quarter Vehicle ARIT, new vehicle variant configurations 

parameters were considered as the input parameters to the neural network. The 
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drive signal outputs of the neural network were then compared with the iterated 

drive signal outputs from QanTiM for each of the quarter vehicle variants. The 

quarter vehicle variants are listed in table 6.7. 

Table 6.7: Quarter Vehicle Parameters for ARIT Input 

Quarter Vehicle 

Variant Number 

Chassis Mass 

(kg) 

Spring 

Stiffness(kN/m) 

Damping 

Factor 

1 450 29 1.00 

2 750 22 1.30 

3 620 40 2.00 

 

The quarter vehicle parameters and the vertical wheel acceleration served as the 

input for the training of the neural network. The output of the neural network was the 

drive signal for the MBD simulation. The results of the network output were 

quantified by determining the correlation coefficient of the predicted drive signal and 

reference signal in each case. 

The equation for the correlation coefficient is 

 𝑟 =  
∑(𝑔 − 𝑔̅)(𝑚 − 𝑚̅)

√∑(𝑔 − 𝑔̅)2 ∑(𝑚 − 𝑚̅)2
 (6.3) 

 Where  r = correlation coefficient 

  g = reference signal 

  m = correlated signal 
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The results from the calculation of the correlation coefficients indicated that the 

correlation was very good. 

6.3.4.3 Quarter Vehicle Artificial Road Input Tool Testing Results 

 

Figure 6.11: Drive Signal for Quarter Vehicle Variant 1 
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Figure 6.12: Response Signal for Quarter Vehicle Variant 1 

 

The correlation coefficient for the drive signal for variant 1 (figure 6.11) was 

calculated as 0.99626 while that for the response signal for the same variant (figure 

6.12) was computed as 0.956672.  

 



 

169 

 

Figure 6.13: Predicted Drive Signal for Quarter Vehicle Variant 2 
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Figure 6.14: Response Signal for Quarter Vehicle Variant 2 
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The coefficient of correlation for the drive signal for variant 2 (figure 6.13) and the 

response signal for the same variant (figure 6.14) was calculated as 0.99647 and 

0.95608 respectively. 

 

Figure 6.15: Drive Signal for Quarter Vehicle Variant 3 
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Figure 6.16: Response Signal for Quarter Vehicle Variant 3 

 

Finally, the correlation coefficient for the drive (figure 6.15) and response (figure 

6.16) signals for variant 3 were calculated as 0.99593 and 0.95812 respectively. 

The results from the testing of the neural network as indicated by the correlation 

coefficient values indicate a very good correlation between the predicted drive signal 

and the iterated (expected) drive signal. 

The next stage is the application of the same ANN Development procedure to the 

full vehicle to develop the Full Vehicle ARIT. 
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6.4 FULL VEHICLE ARIT DEVELOPMENT 

6.4.1 Collation and Pre-processing of Network Data 

In this stage, the data for the training of the neural network for the full vehicle 

deployment was gathered and processed for use. The procedure for the collation 

and processing of the data is similar to that in the quarter vehicle ARIT 

development, the difference being the larger number of vehicle configuration 

parameters in the full vehicle case. The vehicle configuration parameters as well as 

the vertical wheel acceleration of each wheel are used as the network’s input. 

These inputs to this neural network are as follows: 

a. Left-Front Wheel Vertical Acceleration 

b. Right-Front Wheel Vertical Acceleration 

c. Left-Rear Wheel Vertical Acceleration 

d. Right-Rear Wheel Vertical Acceleration 

e. Vehicle Weight 

f. Front Damping Characteristic Factor 

g. Rear Damping Characteristic Factor 

h. Front Spring Stiffness 

i. Rear Spring Stiffness 

These network inputs are arranged in the order they were used in the ANN 

development for the full vehicle. 
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The outputs from the neural network are as follows: 

a. Left-Front Drive Signal 

b. Right-Front Drive Signal 

c. Left-Rear Drive Signal 

d. Right-Rear Drive Signal 

The inputs to the neural network were combined in a 2-level design of experiments 

to generate various vehicle configuration scenarios for the MBD simulation. The 

MBD Simulation Parameters considered are shown in the table 6.8. 

Table 6.8: Full Vehicle MBD Simulation Parameters 

Vehicle 

Weight (kg) 

Front 

Damping 

Characteristic 

Factor 

Rear Damping 

Characteristic 

Factor 

Front 

Stiffness 

(kN/m) 

Rear 

Stiffness 

(kN/m) 

1500 (W1) 0.75 (FD1) 0.75 (RD1) 25 (FS1) 26 (RS1) 

2300 (W2) 1.5 (FD2) 1.5 (RD2) 40 (FS2) 41 (RS2) 

 

The various combinations of the parameters in table 6.8 produced from the design 

of experiment is presented in table 6.9. 
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Table 6.9: Full Vehicle Variant Configurations 

W1,FD1,RD1,FS1,

RS1 

W2,FD1,RD1,FS1,

RS1 

W1,FD2,RD1,FS1,

RS1 

W2,FD2,RD1,FS1,

RS1 

W1,FD1,RD2,FS1,

RS1 

W2,FD1,RD2,FS1,

RS1 

W1,FD2,RD2,FS1,

RS1 

W2,FD2,RD2,FS1,

RS1 

W1,FD1,RD1,FS2,

RS1 

W2,FD1,RD1,FS2,

RS1 

W1,FD2,RD1,FS2,

RS1 

W2,FD2,RD1,FS2,

RS1 

W1,FD1,RD2,FS2,

RS1 

W2,FD1,RD2,FS2,

RS1 

W1,FD2,RD2,FS2,

RS1 

W2,FD2,RD2,FS2,

RS1 

W1,FD1,RD1,FS1,

RS2 

W2,FD1,RD1,FS1,

RS2 

W1,FD2,RD1,FS1,

RS2 

W2,FD2,RD1,FS1,

RS2 

W1,FD1,RD2,FS1,

RS2 

W2,FD1,RD2,FS1,

RS2 

W1,FD2,RD2,FS1,

RS2 

W2,FD2,RD2,FS1,

RS2 

W1,FD1,RD1,FS2,

RS2 

W2,FD1,RD1,FS2,

RS2 

W1,FD2,RD1,FS2,

RS2 

W2,FD2,RD1,FS2,

RS2 

W1,FD1,RD2,FS2,

RS2 

W2,FD1,RD2,FS2,

RS2 

W1,FD2,RD2,FS2,

RS2 

W2,FD2,RD2,FS2,

RS2 

 

The full vehicle configurations in table 6.9 were executed in SIMPACK and the drive 

files iterated in QanTiM in order to generate data for the training of the neural 
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network. The same method of data processing as used for the quarter vehicle was 

applied to the case of the full vehicle ANN development. The data was divided into 

training data set, testing data set and validation data set in the ratio 8:1:1. 

6.4.2 Selection of Artificial Neural Network Design Architecture 

Based on the investigation carried out in the earlier sections of this chapter on the 

suitability and performance of various neural network architectures, the Nonlinear 

Autoregressive Network with External Input (NARX) was selected for the prediction 

of the drive signal. Similar to the quarter vehicle ANN development, the performance 

of the network is assessed by the Mean Squared Error (MSE) as defined in 

Equation 6.1. 

6.4.3 Artificial Neural Network Optimisation 

A method similar to that used for the optimisation of the quarter vehicle ANN is used 

for the full vehicle. The following elements of the NARX network are optimised for 

performance: 

1. The Training Algorithm 

2. Number of Input Delays 

3. Number of Feedback Delays 

4. Size of Hidden layer 

5. General Data Processing 

As with the quarter vehicle ANN, the mean squared error in the optimisation of the 

full vehicle artificial neural network is computed from the average of three training 
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trials with the exception of the training algorithm selection where the stability of the 

network over five training trials was considered. 

6.4.3.1 Training Algorithm 

The results from the choice of the training algorithm for the quarter vehicle ANN 

optimisation in figures 6.3 and 6.4 indicated that the Bayesian Regularization 

produced the best result among other training algorithms. To confirm this result was 

applicable to the case of the full vehicle ANN, five training trials were carried out on 

all seven algorithms highlighted in table 5 and the results of the best performing 

networks are shown in the figure 6.17. 

Number of Trials

1 2 3 4 5

M
S

E

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.0010

0.0011

Levenberg-Marquardt 

Bayesian Regularization 

BFGS Quasi-Newton 

 

Figure 6.17: Full Vehicle Neural Network Performance with Training Algorithm 

 

The results in figure 6.17 show that both the Levenberg-Marquardt and the 

Bayesian Regularization algorithms produce good network performance but the 
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performance of the Bayesian Regularization gives the best network performance 

compared with the other algorithms. The only constraint with using both the 

Levenberg-Marquardt and the Bayesian Regularization algorithms was the training 

time as well as the huge amount of computing memory they required. It was 

observed that the larger the training set, the larger the amount of computing 

memory both algorithms required for training the network. It was observed that the 

BFGS Quasi-Newton algorithm produced a fairly good result as well and required 

much less computing memory to train the network compared with the other training 

algorithms. 

6.4.3.2 Number of Input Delays 

The number of input delays is optimised by investigating the performance of the 

number of input delays on the performance of the network.  
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Figure 6.18: Full Vehicle NARX Network Performance with Number of Input Delay 
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The results from the quarter vehicle input delays optimisation (figure 6.5) showed 

that one input delay produced a better result than a larger number of input delays 

and this is confirmed again from the results in figure 6.18 for the full vehicle neural 

network. 

6.4.3.3 Number of Feedback Delays 

The initial investigation into the effects of the number of feedback delays in figure 

6.6 revealed that the minimum number of feedback delays should be two and 

thereafter, the MSE of the network performance declined at a very small rate as the 

number of feedback delays increased. The results from the same investigation for 

the full vehicle ANN revealed a similar result as shown in figure 6.19. 
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Figure 6.19: Full Vehicle NARX Network Performance with Number of Feedback Delays 
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6.4.3.4 Size of Hidden Layer 

In investigating the effect of the size of the hidden layer, the results from the quarter 

vehicle ANN development did not reveal any particular trend though the size which 

produced the smallest MSE was observed. In developing the ANN for the full vehicle 

application, the results of the investigation into the effect of the size of the hidden 

layer shows an interesting trend as shown in figure 6.20. 

Number of Neurons in Hidden Layer

0 5 10 15 20

M
S

E

0.0

0.2

0.4

0.6

0.8

 

Figure 6.20: Full Vehicle NARX Network Performance with Size of Hidden Layer 

 

The results show an initial decline in the mean squared error as the size of the 

hidden layer increased up to a layer size of 5 after which the mean squared error 

remains fairly constant. An increase in the MSE can be observed just after the layer 

size of 16 which indicates that the network would provide reliable results provided 

the number of neurons in the hidden layer is not more than 15.  
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6.4.3.5 General Data Processing 

The data processing methods applied in the case of the quarter vehicle ANN 

development were again applied to determine the most suitable data processing 

method. 
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Figure 6.21: Full Vehicle NARX Network Performance with Data Processing Methods 

 

The results in figure 6.21 indicate again that the mapstd produces a better network 

performance in five cases out of 6 trials compared with the performance of the 

mapminmax method. The results of the other methods of data processing were 

excluded for the sake of clarify. 
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6.4.4 Deployment and Testing of the Full Vehicle Artificial Road Input Tool 

With the completion of the optimisation of the NARX network configuration 

parameters, the recommended configuration for the network was implemented, 

trained and tested. 

6.4.4.1 Full Vehicle Artificial Neural Network Configuration 

The NARX network for the deployment of the full vehicle ANN was trained with the 

Bayesian Regularisation algorithm based on the results in figure 6.17. The number 

of input delays selected was one based on the network performance as shown in 

figure 6.18 and one being the smallest number of input delays to produce an 

acceptable network performance. The number of feedback delays is selected as 

three. This was chosen on the basis of that it is the minimum number of input delays 

to produce a good network performance. The size of the hidden layer is once again 

chosen as six, similar to that of the quarter vehicle ANN development, on the basis 

of being the smallest number of hidden layer neurons to produce a good network 

performance. Finally, “mapstd” is selected as the general data processing method 

from the results observed in figure 6.21. The Full vehicle NARX configuration is 

compiled in the table 6.9. 

  



 

182 

Table 6.10: NARX Network Configuration 

Configuration Parameter  

Training Algorithm Bayesian 

Regularisation 

Number of Input Delays 1 

Number of Feedback 

Delays 

3 

Size of Hidden Layer 6 

General Data Processing 

Method 

Mapstd 

 

6.4.4.2 Network Training and Testing 

The final artificial neural network configuration as stated in table 6.10 above is 

trained once again with the data collected from the MBD simulation and QanTiM 

drive signal iteration. The results of the network’s performance are as follows: 

Training Performance (MSE): 2.9930e-4 

Test Performance (MSE): 2.9559e-4 

The testing of the deployed neural network is carried out using the two different 

vehicle variants. The configurations of the variants are listed in the table 6.11. 
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Table 6.11: Full Vehicle Parameters for Neural Network Input 

Full 

Vehicle 

Variant 

Number 

Chassis 

Mass 

(kg) 

Front 

Damping 

Factor 

Rear 

Damping 

Factor 

Front 

Spring 

Stiffness 

(kN/m) 

Rear 

Spring 

Stiffness 

(kN/m) 

1 2000 1.00 0.75 29 31 

2 2500 1.00 1.00 35 31 

 

The drive signal output from the neural network for each of the vehicle variants in 

table 6.11 were compared to the iterated drive signal output from QanTiM and the 

results show a very good correlation similar to what was obtained in the case of the 

quarter vehicle ARIT. 

6.4.4.3 Full Vehicle Artificial Road Input Tool Testing Results 

This section comprises the comparison of the ARIT’s output drive signal with the 

iterated drive signal from QanTiM as well as the comparison of the results from 

running the MBDS model with both drive signals. The correlation coefficient for each 

of the results is also collated in order to examine the quality of the similarities in the 

drive signals and acceleration response in the MBD simulation. 

6.4.4.3.1 Full Vehicle Variant 1 

The results of the comparison of the drive signals and acceleration response signals 

for the full vehicle variant 1 are shown in figures 6.22 to 6.25 and figures 6.26 to 
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6.29 respectively. The table 6.12 shows the calculated correlation coefficients for 

both the drive and response signals. 
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Figure 6.22: LHF Drive Signal for Full Vehicle Variant 1 
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Figure 6.23: RHF Drive Signal for Full Vehicle Variant 1 
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Figure 6.24: LHR Drive Signal for Full Vehicle Variant 1 
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Figure 6.25: RHR Drive Signal for Full Vehicle Variant 1 
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Figure 6.26: LHF Response Signal for Full Vehicle Variant 1 
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Figure 6.27: RHF Response Signal for Full Vehicle Variant 1 
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Figure 6.28:  LHR Response Signal for Full Vehicle Variant 1 
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Figure 6.29: RHR Response Signal for Full Vehicle Variant 1 
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Table 6.12: Correlation Coefficient for Full Vehicle Variant 1 

 Drive Signal Response Signal 

Left Hand Front (LHF) 0.999945 0.999859 

Right Hand Front (RHF) 0.999929 0.999831 

Left Hand Rear (LHR) 0.999861 0.999826 

Right Hand Rear (RHR) 0.999873 0.999908 

 

The results of the ARIT shown in figures 6.22 to 6.25 show a very good correlation 

with those iterated from QanTiM. The correlation coefficients shown in table 6.12 

confirm that the ARIT’s performance with the variation in the vehicle parameter is as 

good as iterating the drive signal from the actual vehicle variant. In addition, the 

response signal comparison results shown in figure 6.26 to 6.29 show a very good 

correlation as shown in table 6.12; the comparison of the variation in the response 

of the full vehicle to the ARIT’s output is very similar to that from QanTiM’s iterated 

drive signal. The results generally show, from table 6.12, that the ARIT’s predictions 

are 99.9% accurate.  

6.4.4.3.2 Full Vehicle Variant 2 

In order to further test the accuracy and reliability of the ARIT, it is used to predict 

the drive signal for a second full vehicle variant and the correlation coefficients are 
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calculated. The result of the comparison of the drive signals are shown in figures 

6.30 to 6.33 while the response signals are shown in figures 6.34 to 6.37. The 

correlation coefficients are shown in table 6.13. 
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Figure 6.30: LHF Drive Signal for Full Vehicle Variant 2 
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Figure 6.31: RHF Drive Signal for Full Vehicle Variant 2 
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Figure 6.32: LHR Drive Signal for Full Vehicle Variant 2 
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Figure 6.33: RHR Drive Signal for Full Vehicle Variant 2 
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Figure 6.34: LHF Response Signal for Full Vehicle Variant 2 
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Figure 6.35: RHF Response Signal for Full Vehicle Variant 2 
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Figure 6.36: LHR Response Signal for Full Vehicle Variant 2 
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Figure 6.37: RHR Response Signal for Full Vehicle Variant 2 

 



 

193 

Table 6.13: Correlation Coefficient for Full Vehicle Variant 2 

 Drive Signal Response Signal 

Left Hand Front (LHF) 0.999389 0.997743 

Right Hand Front (RHF) 0.999497 0.998608 

Left Hand Rear (LHR) 0.999628 0.999394 

Right Hand Rear (RHR) 0.999487 0.999508 

 

The results shown in figures 6.30 to 6.37 further endorse the accuracy of the ARIT. 

A simple visual inspection of the results show a very good correlation and this is 

corroborated by the correlation coefficients in table 6.13 which indicate that the 

ARIT’s performance is at least 99.94% accurate. 

6.5 CONCLUSION 

The results in figures 6.11 to 6.16 and 6.21 to 6.37 for the Quarter Vehicle and Full 

Vehicle Artificial Road Input Tool (ARIT) deployment respectively indicate a very 

good performance of the artificial neural network in predicting the drive signals for 

the variations in vehicle configuration parameters. The results of the responses to 

the drive signal in the MBD simulation also corroborate the effectiveness of the 

ARIT. Though the results presented in this chapter are each about four seconds 

long, it is believed that the Artificial Road Input Tool, with sufficient training data, can 

produce a much longer representative vehicle usage time history which can be used 
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to drive MBS simulations from the early stages in the vehicle design programme. 

With the level of accuracy obtained from the ARIT, it would be possible for design 

engineers and teams to carry out realistic durability and fatigue testing on various 

components in the vehicle using the output of the ARIT as the drive signal. As 

highlighted earlier in this chapter, the fidelity of the training data is very important to 

the accuracy of the output of the ARIT. Hence, a pre-processing method for the 

training data is very important in guaranteeing the reliability of the ARIT’s output. 

 

6.6 SUMMARY 

An Artificial Neural Network was developed and optimised for the prediction of road 

input for driving MBD simulation models for the quarter vehicle and full vehicle 

variants. The resulting Artificial Road Input Tool was tested for both the Quarter 

Vehicle and Full Vehicle and the results of the comparison of the predicted drive and 

response signals showed a very good correlation. These results of the correlation of 

the drive signal from the Artificial Road Input Tool shows the capability of the 

artificial neural network method in modelling the relationship between the input drive 

signal and the vehicle parameters. 
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7 CHAPTER SEVEN: PROJECT CONCLUSIONS AND FUTURE 

WORKS 

7.1 INTRODUCTION 

Following the development of the Artificial Road Input Tool, the project conclusions 

and recommendations for future work from this current research project are 

presented in this chapter. 

 

7.2 PROJECT CONCLUSION 

In this study, a review of the existing literature on road load data acquisition and 

application revealed the importance of road load data for the optimisation of the 

durability performance of a vehicle particularly in the early stage of the vehicle 

programme when modifications are more cost effective. Also, the literature survey 

showed that there are currently no methods for generating virtual road input data 

which take into consideration the variation in vehicle configuration parameters; the 

existing methods of road load prediction involved cost intensive methods. With the 

aforementioned in mind, this current research introduced a method of artificial 

intelligence for the prediction of the road load which was able to transform existing 

road load data for use in a newer vehicle development programme. Hence, the 

contributions resulting from this research are summarised as follows: 

1. The efficiency of a simple tyre model for the accurate determination of the 

vertical acceleration response of a quarter vehicle in the multi-body dynamics 

(MBD) simulation environment was established. This showed that a simple 
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tyre model could effectively replace a complex tyre model for the vehicle 

excitation and response in the vertical direction. 

2. A method of characterising road load data from MBD simulation as vehicle 

parameters changes in order to understand the effect of the varying vehicle 

parameters on the vehicle’s behaviour to a realistic road input was 

developed. This method was reported in a technical paper at the Society of 

Automotive Engineers (SAE) Congress [93].  

3. A novel method of artificial neural networks was used to design an artificial 

road input tool (ARIT) which was capable of using collected road load data 

and some vehicle suspension parameters of the vehicle from which the data 

was collected to generate a road input signal to drive the MBDS model of a 

variant of the chosen vehicle. The result of the implementation of this tool 

was published and presented at the Society of Automotive Engineers (SAE) 

Congress [99]. 

4. The accuracy of the ARIT for the vehicle parameters considered is a 

precursor to the further use of artificial intelligence in accurately predicting 

road loads for vehicles in the pre-prototype stage of a vehicle programme. 

Though a few vehicle parameters have been used in this current research, 

the method presented for selection and optimisation of a neural network can 

be used in determining the road input for a larger selection of vehicle 

parameters. 
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7.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

Although the work carried out in this current research for the development of the 

ARIT demonstrated very good results for predicting the road input for the generation 

of road load data, there are still a good number of improvements that can be made 

to increase the robustness of the ARIT. These recommendations are as follows:  

1. The ARIT developed in this project was used for the prediction of just the 

vertical input to the vehicle. Hence, further work should be carried out to 

modify it for predicting road input in the three axes of vehicle motion. This 

would make the tool robust and ready for deployment in a real vehicle 

programme environment. 

2. The ARIT should be tested on a more complex vehicle model with a larger 

number of non-linear components such as bushes, active shock absorbers, 

flexible body chassis etc. to expand on the capacity of the tool. This may 

require the use of other neural network types, configuration, training 

algorithms or data processing. 

3. A method for optimising the training of the neural network should be 

investigated. It was discovered in the course of developing the full vehicle 

ARIT, which had more training data than the quarter vehicle ARIT, that the 

computer memory requirement of the neural network training algorithms was 

proportional to the amount of data used for the training. This could pose a 

challenge in the event that a very large amount of training data is presented 

to the neural network. 

4. A programme with a user friendly graphical interface for the implementation 

of the ARIT should be designed. The current implementation of the ARIT 
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requires a good knowledge of the MATLAB programme and is implemented 

in a text-based user environment. The user friendly graphical interface would 

enable the ARIT to be used by anyone without the need to have background 

knowledge of MATLAB or neural network design. This programme should be 

able to pre-process the network training data, implement a neural network 

architecture, train the network, optimise the network and thereafter deploy the 

neural network for use. The programme should be able to store the 

configurations of the ARIT for different applications and call them up when 

needed. It would also be a good addition if the programme is able to directly 

load, read and extract data from the industry standard RPC® III file format as 

that is the file format in which most acquired road load data are stored. 

5. Based on the successful implementation of the ARIT using data from MBD 

simulation, a real life implementation of this tool should be considered for 

application in a vehicle programme of an original equipment manufacturer 

(OEM). This should be carried out by developing a road load database from 

the proving ground and customer usage road load data acquisition exercises 

carried out in the past by the OEM and applying the methods highlighted in 

this thesis for the implementation of an artificial road input tool. This method 

can be implemented as a pilot programme to predict the road input on a 

component basis and thereafter expanded to the entire vehicle durability 

testing. 
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