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Abstract

We introduce a two-sided set theory, Amphi-ZF, based on the pure games of Conway

et al.; we show Amphi-ZF and ZF are synonymous, with the same result for important

subtheories.

An order-theoretic generalisation of Conway games is introduced, and the theory de-

veloped. We show the collection of such orders over a poset possesses rich structure, and

an analogue of Stone’s theorem is proved for posets, using these spaces.

These generalisations are then considered using categories. Compatible set-theoretic

notions are introduced, and ideas of regularity axioms with purely game-theoretic moti-

vations are explored; applications to nonstandard arithmetic and multithreaded software

are proposed.

We consider topological set theory in a nonstandard model M of Peano arithmetic,

and demonstrate that Malitz’ original construction works in a finite set theory interpreted

by M , with the usual cardinal replaced by a special initial segment. This gives a suitably

compact topological model of GPK. Reverse results are also considered: crowdedness

of the topological model holds iff the initial segment is strong. A reverse-mathematical

principle is investigated, and used it to show that completeness of the topological model

is much weaker. Comparisons are made with the standard situation as investigated by

Forti et al.



For Bill.
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CHAPTER 1

INTRODUCTION

This thesis reports the more successful research from a period of study between 2009 and

2013; some results here beg for improvement and are unlikely to be optimal. Chapters 2-5

in particular build upon the author’s MPhil(Qual) thesis, Contributions to the theory of

combinatorial games [16]. As such some material should be recognisable to a reader of

the MPhil(Qual), but also more complete. Chapter 6 is completely new, although it too

has some roots in the predecessor. That chapter is also somewhat unrelated to the rest

of the thesis, but certainly reflects an important part of the author’s PhD studies.

We begin with a brief survey of relevant literature. This will help us to put the current

work into context, and also is an ideal place to introduce necessary concepts and notation.

1.1 Brief survey of relevant literature

1.1.1 Combinatorial game theory

Game theory is a vast subject area, and as such it has been necessary throughout to restrict

attention to a very small subset. This was achieved by considering primarily combinatorial

games1, or two-player games of perfect information, in which players alternate in taking

1By combinatorial game we will always mean a two-player game of perfect information, where the
players alternate turns. Often these will come with some notion of strategy, and moving from one position
to another. Positions tend to be identified with games (so that each position in a game is considered a
game in its own right, and each game may be considered a position in a larger game).
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their turns. Although some of the research below will apply outside this restricted area,

our focus will only be on such games.

Impartial games, Nim, and the Sprague-Grundy theorem

The first significant result of combinatorial game theory was the Sprague-Grundy theorem,

discovered independently by R.P. Sprague [81] and P.M. Grundy [42]. This concerned

impartial combinatorial games: games between two players, where each move available to

one is available to both, and in which the players alternate to take turns and the last to

move wins. One particularly distinguished such game is Nim, in which players take turns

to remove (for instance) counters from a number of stacks. The initial state or position of

the game is some configuration involving any number (0, 1, 2, . . .) of heaps of counters. A

player must, on their turn, select one heap and remove any positive number of counters

from it. Under the normal play condition, the last player to remove any counters is the

winner (so whichever player cannot make a move when required to loses, and the game

terminates).

The outcomes of Nim positions are equivalent to nimbers, defined as follows. The

empty game (having no moves for either player, and hence a definite win for the second

player, II), say {}, is the nimber ∗0. We then set ∗1 = {∗0}, the game in which each

player may move only to the position ∗0 (hence this position is a definite win for the first

player). We define

∗2 = {∗0, ∗1},
...

∗(n+ 1) = {∗0, ∗2, . . . , ∗n},
...

Assuming that the two players play according to the best possible strategies (in the

finite, wellfounded impartial games considered by Sprague and Grundy there is always
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an optimal strategy), we can talk of the outcome class of a position G: say G is an N -

position if the next player to move (i.e. I) wins, and a P-position if the previous player

to move (i.e. II) wins. For wellfounded such games there is always a winner, and hence

every impartial, wellfounded combinatorial game is either an N -position or a P-position.

In particular, ∗0 is a P-position, while every other nimber (allowing the first player to

move to ∗0 and hence to win) is an N -position.

If G,H are games then we may form the disjunctive sum G + H by allowing each

player, on their turn, to pick exactly one of G,H and proceed by moving in that game

as usual. This is an associative operation, and, for the wellfounded combinatorial games,

also commutative.

Two games G and H are said to be equivalent—in this thesis we write G ' H—if and

only if

∀K
(
G+K is N ⇔ H +K is N

)
(or the equivalent statement with N replaced by P). That is, when we play K simulta-

neously with either H or G, the outcome will be the same. Equivalently, G ' H if and

only if G+H is a P-position.

The Sprague-Grundy theorem states that every position in every impartial combina-

torial game is equivalent to a position in a game of Nim, i.e. to a nimber. It is easily

proved by induction, and in fact yields a rule for calculating such equivalence classes: if

G = {G1, . . . , Gm}, and for each i ≤ n, Gi ' ∗ni, then

G ' mex{n1, . . . , nm},

where the right-hand side denotes the minimal excludent of, i.e. the least natural number

not among, n1, . . . , nm. In particular we remark that a single Nim-heap of n counters

therefore has the value ∗n. Much more information on Nim can be easily be found in

various locations, but we refer the reader to On Numbers and Games [13], hereafter

abbreviated as usual as ONAG, and Winning ways for your mathematical plays [5], which

3



Figure 1.1: Nim heaps ∗4 and ∗2 respectively.

we shorten to Winning Ways.

Partisan games

From the 1970s Berlekamp, Conway and Guy contributed a great amount to the theory

of combinatorial games. This class of games, a generalisation of the impartial games

considered by Sprague and Grundy, contained partisan games, i.e. games with similar

structure and rules, but which are allowed to offer different moves to players. Significantly

these are still games of no chance between two players, who alternate to take turns, and

plays (typically) must always end after finitely many turns (implying a certain kind of

foundation axiom; see Chapter 2 for more discussion of this). The normal play condition,

where the last player to move is the winner, is again predominant because the resulting

structure and theory is much richer and more well-behaved (but see the discussion of

misère games below).

Above we implicitly regarded impartial games as hereditary containers—sets—of posi-

tions. The key abstraction of Conway et al. was to consider partisan games as hereditary

two-sided containers: one player, henceforth referred to as Left, may move upon his turn

to any position from the left side of the container, and the other—Right—may choose to

move to any position in the right side of the container. The notation

x = {a, b, . . . | c, d, . . .}

is frequently used, particularly in ONAG. Further, arbitrary positions from the left or

right side of the container x are frequently denoted simply xL or xR.1 The set theory

1We develop this notation further by allowing P to denote either L or R, and hence xP denotes an
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Figure 1.2: A Hackenbush game, after one (poor) move.

of such objects is explored in Chapters 2 (where in particular we are concerned with the

synonymy of a particular theory of two-sided sets and ZF, which behaves well with respect

to subtheories) and 5 (where we are more interested in the order theoretic consequences

of a few basic axioms mixing existence of strategies with players’ available positions).

The games receiving most discussion in ONAG and Winning Ways are wellfounded

combinatorial games, and as such ‘pure’ games may be constructed just as a ZF-universe

of sets may be constructed by iteration of the power set operator; see ONAG [13, Ch.0] and

Chapter 2. However these pure games are not the only games for which we might discuss

a meaningful notion of membership. Equally we might consider any Nim-position ∗n to be

a member (on both sides) of ∗(n+ 1), or the first Hackenbush position of Figure 1.2 to be

a member of the position in Figure 1.3.1 Such membership will often not be extensional,

but this does not affect the rich theory of combinatorial games.

There is a natural preorder on any class of such games, defined by [13, p.4]

x ≤ y ⇔ allxL 6≥ y and x 6≥ all yR, (1.1)

which can tell us a lot about wellfounded games when played under the normal play

element from the left or right (but not necessarily both) side of x. In fact P may be seen as a variable of
a particular sort in a multisorted language, where L and R are constants representing the only values of
that sort. We will frequently form logical formulas such as

∃x
∧
P

(∀y(y 6∈P x)) (there exists an empty game),

and on occasion introduce a second variable, Q, of the same sort.
1Hackenbush is typically played on a graph, where players alternate in removing an edge. Some

versions admit different edge colourings, and each player may only remove edges of their designated
colour. Above we use the convention that the single-lined edges belong to Left, and the double-lined
edges belong to Right. Hence the position in Figure 1.2 is a Left-member of that in Figure 1.3.
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Figure 1.3: A Hackenbush game, before moving.

condition. In particular, ≤∩≥ is precisely the relation ' defined above1. A more general

version requires the definition of a second order, denoted �|:2

x ≤ y ⇔ allxL �| y and x �| all yR

x �| y ⇔ somexR ≤ y or x ≤ some yL

The relations ≤ and �| correspond to preferability for the second and first players respec-

tively: briefly, x ≤ y if and only if Left will fare better in y than in x when playing second

(equivalently, Right will prefer to play in x than y when moving first), and x �| y if and

only if Left will fare better in y than x when moving first.

The advantage of this two-ordered approach is that it allows illfounded, nondetermined

games to be considered under the same framework; when restricted to wellfounded games,

the two notions of ≤ coincide and �| becomes 6≥.

The outcome classes discussed earlier extend to the set {N ,P ,L,R}, where L, R
1See ONAG [13, Theorem 54].
2See ONAG [13, p.78], where the same definition is given. Notice the use of ‘all ’ and ‘some ’. We will

make use of this notation frequently, as it makes many expressions compact but also much more readable.
Informally we define an expression of the form

P (x, ‘some y′)

to mean
∃y P (x, y),

and similarly the occurrence of ‘all y’ in an expression P should be regarded as shorthand for ∀y P . We
will mix this notation with quantifiers, but only when the scope of the ‘all ’ or ‘some ’ quantification is
clear. Occasionally we will use brackets to contain these quantifications (so for example ∀x (x ≤ all y)
is valid shorthand for ∀x (∀y (x ≤ y))), but we stipulate that ‘some ’ and ‘all ’ take precedence over
conjunction, disjunction and implication, so that (1.1) means

x ≤ y ⇔ ((allxL 6≥ y) ∧ (x 6≥ all yR)).

6



indicate a win for Left or Right respectively (regardless of who plays first). Conway et

al. [13, 5] prove several results relating the orders ≤ and �|, these outcome classes and

the disjunctive sum. In particular from this analysis a notion of value—informally, the

equivalence classes modulo '—arises. If Values(G) denotes a class of such values (or

of representatives for the equivalence classes if we are concerned with foundational issues

here) of the wellfounded pure partisan games, then Values(G) is an abelian group with the

disjunctive sum as the group operation. (Moreover, it has been proved to be a universally

embedding abelian group by Lurie [64].) The theory of wellfounded partisan games is a

powerful generalisation of the theory developed by Sprague and Grundy.

There has been much research into the surreal numbers, a distinguished subclass of

the pure combinatorial games. Such a game x is a surreal number if allxL < allxR (that

is, xL ≤ xR and xL 6≥ xR for all xL, xR). The surreal numbers constitute a universally

embedding field of characteristic 0, and there has been much interest in the model theory

of, and analysis within, this class. We will not be interested in the specifics of surreal

numbers, however.

Another interesting and developing field of study in combinatorial game theory is

misère play: where the normal play condition is replaced by the stipulation that the last

player to move loses. Recently there have been fruitful developments in this field—in

particular the use of misère quotients [2, 74, 79, 73]. We do not explicitly exclude the

case of misère games below, but certain order-theoretic properties we are interested in

will generally exclude them1. Therefore we have not considered the literature on misère

games in detail.

Combinatorial games and categories

The generalisations of combinatorial games to category theory are highly relevant to the

discussion of Chapter 4. Such discussion began with a paper of Joyal [51], where he

observed that Conway games could be made into a symmetric monoidal closed and self-

1See in particular Definition 3.1.1.
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dual category, with monoidal product the disjunctive sum, and negation the dualising

functor. The objects in this category are standard combinatorial games; a morphism

f : G → H is a strategy for LII1in the game H − G. This allows one to use the copycat

strategy as an identity arrow, and the swivel chair strategy for composition2.

This has been developed in the context of combinatorial games by Cockett et al. [12],

where the ideas behind Joyal’s category are extended by combinatorial game categories, or

CGCs. These are categories C equipped with a module3 M (sometimes denoted M : C −7→

C) and a diproduct functor

{− |−} : P<ω(C)× P<ω(C)→ C

(here P<ω denotes the finite powerset operator, C 7→ {A ⊆ C : |A| < ω}), with the

following operations of arrow formation.

• If for each g ∈ A we have g −7→ {C |D}, and for each h ∈ D we have {A |B} −7→ h,

then {A |B} → {C |D} (diproduct).

• If x ∈ B and x→ G, then {A |B} −7→ G (injection).

• If G→ x and x ∈ A, then G −7→ {A |B} (projection).

In Chapter 4 we consider the constructive property, which is analogous to the conjunction

of all these properties. We also consider the reverse implications, as the instructive prop-

erty. Notice that these properties are all derivatives of Conway’s recursive definition of ≤

and �|, and merely represent the sensible construction of strategies from the availability

of moves, and the deduction of possible moves from the existence of strategies. In the

category CGC of CGCs [12], the wellfounded combinatorial games constitute an initial

object.

1Throughout we will use L, R, I, II to denote Left, Right, the first and the second player to move
respectively. By LII (for example), we denote Left, playing second.

2A thorough explanation of these strategies is given by Joyal [51]
3Also known as a bimodule, profunctor or distributor. These structures are essentially a second

collection of arrows which are not required to compose among themselves, but which must compose with
the arrows of the associated category to form module arrows; further, this composition is associative in
the obvious ways. These arrows are typically denoted −7→. See Chapter 4 for a more detailed explanation.
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Another interesting abstraction of combinatorial games to category theory takes a

more coalgebraic approach.

Combinatorial games and coalgebra

Recently there has been productive work in a coalgebraic approach to generalisation of

Conway games [46, 47, 48, 49]. This began with a study of hypergames, i.e. the final

coalgebra for the functor

F : A 7→ P(A)× P(A)

defined on possibly illfounded classes A [46, 47]. In particular this includes the Conway

games (being hereditary two-sided, wellfounded sets), which form an initial algebra for

F . Hence there is a nice duality, and many techniques and results from ONAG [13] have

analogues for hypergames.

While Conway et al. [13, 5] considered mainly winning strategies, Honsell et al. consider

primarily non-losing strategies, which are easier to deal with, and much more abundant,

in illfounded games. The corresponding order relations, denoted there by (E,I−)1 [47],

are the greatest fixpoint of the operator +: (R1, R2) 7→ (R+
1 , R

+
2 ), defined by

x R+
1 y ⇔ allxL R2 y and x R2 all yR

x R+
2 y ⇔ somexR R1 y or x R1 some yL.

(1.2)

This operation has been considered in various publications [12, 46, 46] and also by the

current author [16]. Again, this is a simple abstraction of the definitions of ≤,�| presented

in ONAG [13, p.78]. The pair of relations (E,I−) is an important example and we will

discuss it further in Chapters 3 and 5 where we consider a distinguished class of games—

and the resultant order relations (≤,�|)—from a purely order-theoretic perspective.

1Note that we have inverted their relation E; we will continue to do this in later chapters. Further
notice that, although their weak order relation J− appears to indicate that the expression to the left is
in some sense greater than the expression on the right, it is analogous to the relation �| as defined by
Conway, and x �| y asserts that y is preferable to x for LI. The convention of this thesis is to always use
the symbols ≤ and �|, or obvious derivatives such as ≤′, to indicate the intended interpretation.
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Although the relations (E,I−) are shown to satisfy many desirable properties and

analogues of results true for Conway games, transitivity of the first order inevitably breaks

down [47, p.13]: as is often the case, techniques for transferring strategies—for example to

disjunctive compounds—which work in the wellfounded case fail in more general settings.

Sums and negation have also been discussed in this context, defined as appropriate final

morphisms [47].

Equivalences between Conway games are also of interest in this setting. Honsell and

Lenisa [46, 47] consider equideterminacy1 and contextual equivalence, a comparison using

the behaviour of sums of two games x, y with other games.

This work has been extended to include categories with strategies as morphisms [49].

The same coalgebraic construction is used, with sums and negation defined as final mor-

phisms. Two categories in particular have been introduced by Honsell et al. [49]: one of

fixed games (i.e. games in which all infinite plays result in a win for one of the players)

and one of mixed games (i.e. games in which an infinite play can result in a victory for

either player or a draw). The former will be rather intuitive to any reader familiar with,

for example, bisimulation games or Joyal’s category (see above). The latter has as objects

pairs x = (x1, x2) of fixed games, and as morphisms pairs of winning strategies. Both

categories are ∗-autonomous; the latter contains Joyal’s category as a full subcategory,

and also captures the loopy equivalence of Berlekamp et al. [5].

Aside from the developments listed above, much literature in this area focuses on

a fixed combinatorial game and the strategies available to players when playing certain

positions. In particular this restricts such work to finite or short games. We are not

interested in specific games here (though we will consider various examples for the sake of

illustration, they will be familiar to readers of ONAG [13] and Winning Ways [5]), and in

fact our focus will generally be on collections which include illfounded or infinite games.

1Two hypergames x, y are equidetermined [46, 47] if they possess the same outcomes, i.e. if x has an
LI,LII,RI or RII-strategy precisely when y has an LI,LII,RI or RII-strategy respectively.
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1.1.2 Topological set theory

Topological set theory began in earnest with Isaac Malitz’ Ph.D. thesis [67], completed in

1976. Malitz considered the operator + on binary relations in a universe of sets (specifi-

cally, a model of ZF), defined by

x ∼+ y ↔ ∀u ∈ x ∃v ∈ y (u ∼ v) ∧ ∀v ∈ y ∃u ∈ x (u ∼ v).

He then defined the equivalence relations ∼α recursively by

∼0 = V × V

∼α+1 = ∼α+

∼λ =
⋂
α<λ

∼α.

The ∼α-equivalence class of a set x, here denoted x/∼α, was defined using Scott’s trick

to be the set of least representatives. Then the classes

Mα = {x/∼α : x ∈ V }

were shown to be a set for all α. On these sets Malitz defined a sequence of extensional

membership relations ∈α by

u/∼α ∈α x/∼α ↔ ∃v ∈ x (u ∼α x),

and naturally was interested in the structures (Mα,∈α) as models of set theory.

Significant to this investigation was the behaviour of α-sequences (i.e. sequences (xβ)β<α)

of elements of V (equivalently, one can consider such sequences with elements fromMα).

Of particular interest was the convergence of sequences. Such a sequence (xβ)β<α is said
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to converge to a set y if

∀ε < α ∃β < α ∀γ < α (γ ≥ β → xγ ∼ε y).

Also of interest were Cauchy sequences, i.e. sequences (xβ)β<α such that

∀ε < α ∃β < α ∀γ, δ < α (γ, δ ≥ β → xγ ∼ε xδ).

The natural topology associated with these notions has as basic open sets the∼β-equivalence

classes x/∼β for all sets x. This forms a (metrisable) uniform space, where convergence

is exactly as defined above.

Malitz proved that if α is ω or a measurable cardinal, Mα is crowded (that is, every

sequence has a Cauchy subsequence). However he was not able to prove completeness

of Mα for any α (in particular he proved that Mω is certainly not complete [67, p.57]).

Completeness ofMα would have yielded many desirable properties such as closure under

internal union and replacement [67, p.60]

Various authors have adopted and augmented Malitz’ approach [30, 37, 43]. The most

significant addition of Forti et al. [30, 37, 40, 38, 39] has been to work within an illfounded

set theory, rather than ZF like Malitz. Specifically, they chose a model of ZFC without

foundation, plus a free construction axiom1 [36], similar to the antifoundation axiom of

Aczel [1]. This allows a neat definition of a kind of quotient structure Nα which is compact

precisely when α is a strongly inaccessible, weakly compact cardinal2. A consequence of

1The simplest form of free construction axiom is the statement that for every function f , there is a
unique f -inductive function g, i.e. a function g satisfying

∀x g(x) = {g(u) : u ∈ f(x)}.

See Forti [34] and Honsell for a detailed survey of such principles.
2Throughout, we consider ω to be both strongly inaccessible and weakly compact.
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compactness in these models is that the space Nα models the positive set theory1

GPK = Ext + Comp(GPF).

In fact, if α > ω, then Nα is a model of GPK + Inf2. Forti and Honsell [37] provide a

detailed account of these constructions. Models of Self-Descriptive Set Theories [37] is

of particular relevance to this thesis; there the compactness result is broken down into

completeness and κ-boundedness, and necessary requirements discussed to prove each of

these properties. This analysis is invaluable to the work in Chapter 6, where we consider

an analogous construction within a nonstandard model of arithmetic, and consider the

properties necessary for similar sequential properties in such a setting. We remark that the

structure Nω is essentially the Cauchy-completion of Malitz’ Mω; this has been generalised

in an interesting paper of Hinnion [43].

Extensions of the theory GPK have been considered, and of particular interest is the

theory GPK+
∞ of Esser [23, 24]. Although less relevant to the research in this thesis,

Esser’s axiom scheme CL encapsulates an important observation about the nature of sets

in these topological models. The scheme essentially states that each class A has a unique

smallest set B ⊇ A; in other words, each class has a closure which is a set. We remark

that this property was satisfied by Malitz’ own structures (Mα,∈α) and also in the set

theory of Skala [80], which was further investigated by Manakos [68]3 . Esser’s theory

GPK+ is defined by

GPK+ = Ext + Zero + Comp(BPF) + CL,

where Zero postulates the existence of an empty set, and BPF is the collection of bounded

1The class BPF of formulas is generated by the usual rules for creating propositional formulas, except
negation, plus allowing bounded universal quantification. The larger class GPF is formed by using these
rules and also admitting ∀x (θ(x)→ φ), where θ is any arbitrary formula with single free variable and φ
is already in GPF.

2When α = ω, ω ∪ {ω} is the smallest set containing all ordinals.
3Skala’s set theory is actually rather weak, and attempts to add certain ‘sensible’ axioms (such as

singleton comprehension) result in a contradiction; see Libert and Esser [63].
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positive formulas from above. Arguably, this is a more natural topological set theory.

Esser proved [23] that GPK+ implies GPK, and also provided a substitute scheme CL′

(equivalent to CL when we assume the theory Comp(BPF) + Ext + Zero) for CL, which

clarifies the link between GPK and GPK+. The theory GPK+ has been shown to interpret

GPK, ZF and the Morse-Kelley set theory MK. Notions of closure and approximation

schemes have been considered further by, for example, Libert and Esser [63].

1.2 This thesis

Now we are in a position to discuss the work presented here.

1.2.1 Amphi-ZF

We define a two-sided set theory, called Amphi-ZF, intended to represent the pure combi-

natorial games of Conway et al. [13]. The real use of such a theory is to aid discussion of

issues in combinatorial game theory—particularly regularity issues such as candidates for

a foundation axiom. We demonstrate a synonymy (in the sense of Visser [83]) between

Amphi-ZF and ZF, which behaves well with respect to subtheories. The construction

essentially relies on the use of Quine pairs in order to make every object a pair, and every

pair an object.

We conclude with some discussion of wellfoundedness in Amphi-ZF. In particular we

are able to deduce some results regarding the strength of candidate foundation axioms

using Rieger-Bernays permutations, and the consequences in combinatorial game theory.

1.2.2 Order theory of combinatorial games

In Chapter 3 we discuss games from a purely order-theoretic perspective. We identify a

notion of two-order generalising Conway’s pairs (≤,�|) which is of particular interest to

us, and discuss properties of general two-orders, such as a well-defined notion of logical
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duality and its relationship with game-theoretic determinacy. This discussion of duality

leads to the consideration of a second kind of morphism, called an amphimorphism, which

preserves the first order and reverses the second, and has a particular semantic inter-

pretation in terms of strategy preservation for the second player (rather than for Left,

which is the case for the more intuitive notion of morphism). As such these may be of

interest in combinatorial game theory. Also automorphism spaces are considered for both

types of morphism, and towards the end of Chapter 3 we show that any group having

compatible two-order structure arises as an automorphism group—a simple extension of

Cayley’s theorem.

We consider dual spaces for posets arising from two-orders, and derive a generalisation

of Stone’s theorem. These spaces are essentially collections of ‘strategy notions’, with a

rich and natural structure and which form complete bounded distributive lattices; conse-

quently these structures are Heyting algebras, and models of intuitionistic propositional

logic.

1.2.3 Extensions in category theory

Chapter 4 focuses on developing the theory of Chapter 3 further using categories. Many

of the results generalise—in particular the rich spaces of two-orders relate to spaces of

modules over a category, having similarly rich structure.

We define a value map which generalises the notion of value, discussed by Conway

et al. [13, 5] and which originated with Sprague and Grundy, to an adjunction between

appropriate categories of ‘games’1 and the two-ordered structures of Chapter 3.

We conclude Chapter 4 by considering the addition of monoidal and set-theoretic

structure to such categories to form gamuts, and demonstrate that the wellfounded com-

binatorial games of ONAG and Winning Ways form gamuts.

Chapter 5 considers a distinguished collection of game categories, called 2-architectures.

1We use the term game category, though it should be noted that the term has been used previously
with different meanings; see for example Honsell and Lenisa [47].
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These are essentially two-ordered structures with membership relations ∈L and ∈R, and

such that the structure is both constructive and instructive. We show that for any class of

amphisets without self-members (but potentially containing loops of n ≥ 2 elements) there

is a least two-order Tm making the structure a 2-architecture. Moreover the operation of

adorning such a class of amphisets with this structure is part of an adjunction between

an appropriate category of two-ordered structures and one of amphiset collections. In

addition to considering construction of an architecture over a collection of amphisets, we

discuss the much harder problem of extending an existing architecture by iteration of the

powerset functor, which has a less satisfactory answer.

Some discussion of the dual of Tm is also given in Chapter 5; we argue that several

regularity axioms arising from purely game-theoretic considerations can be expressed using

these objects. Further, we relate the relationship of the architecture two-orders on a

collection of amphisets to collections of two-orders in general. In particular much of the

rich structure of two-order collections fails to transfer, and the collection of architectural

two-orders will always be much smaller; we suspect this can be made precise by considering

topological notions, perhaps with the topologies discussed in Chapter 3.

Chapter 5 closes with some discussion of applications for architectures in particular.

The first is an attempt to make some sense of the arithmetic of cuts in a model of PA.

In particular we argue that, by considering a slightly large collection of objects called

rifts, we obtain more sensible addition and multiplication operations, which leads to an

improved algebraic structure. This comes at the cost of the order’s totality, however we

do maintain a suitable two-ordered structure.

The second suggested application is directed at multithreaded software, or more gen-

erally in any area where multiple objects must exist concurrently in space or time. In

particular the existence of a least two-order shows that in any collection of processes where

no object is trivially self-dependent, there is a least two-order dictating, for instance, rel-

ative execution times as well as obstructive dependencies).
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1.2.4 Topological set theory in nonstandard arithmetic

Our final subject is topological set theory within a nonstandard model of Peano arithmetic.

We begin Chapter 6 by emulating the construction of Malitz within (finite set theory

interpreted by) a model of arithmetic; here cuts (that is, initial segments closed under

the successor operation) take the place of ordinals and cardinals, and we consider the

analogous properties required to derive properties such as crowdedness, completeness and

compactness in our quotient model.

This lays the foundation for us to consider the reverse problem, of determining which

properties are necessary to prove conditions such as completeness and crowdedness. We

manage to determine the exact strength of crowdedness (ACA0), and are able to demon-

strate that completeness in this context is significantly weaker.

The discussion of completeness in particular leads to some interesting concepts. We

introduce a notion of witnessing principle (essentially a kind of Skolemisation scheme

for a cut), which turns out to be closely related to very useful topological and sequential

properties. This in particular enables us to demonstrate that completeness holds whenever

our cut (analogous to the cardinals α [30] and κ [37] used by Forti et al.) is coded by

a strong cut, a property analogous to an ordinal having strongly inaccessible, weakly

compact cofinality.

We suspect the latter part of Chapter 6 may have interesting applications in reverse

mathematics. In particular, our results transfer easily to the realm of second-order arith-

metic, and the witnessing principle we introduce is independent of the ‘big theories’ of

traditional interest when the base theory is sufficiently weak.
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CHAPTER 2

A TWO-SIDED SET THEORY FOR
COMBINATORIAL GAMES

The material presented in this chapter has been printed in various forms. Firstly, as part

of the author’s MPhil(Qual) thesis, the theory Amphi-ZF was introduced and shown to be

synonymous with ZF. That synonymy result essentially consisted of one interpretation

(of AZF in ZF) being ‘reflected’ in a uniformly defined, proper subclass of models of

AZF, allowing the recursive definition of an inverse. While appealing and intuitive, the

disadvantage of this approach is a heavy (and, it turns out, unnecessary) dependence on

membership-induction.

By analysing the actual behaviour of this recursively defined inverse in models of

AZF, it was possible to carefully reconstruct the same interpretation1 assuming only

ordinal -induction. This is a significant weakening, as it does not rely on the key theorems

of transitive closure and ∈-induction, allowing us to drop the Infinity and Foundation

axioms from the hypothesis. This also removes dependence on the power set axiom

required to prove the appropriate Foundation axioms. This much improved version of

the main theorem, plus the discussion of Amphi-NBG and Rieger–Bernays permutations,

was published under the title Amphi-ZF: axioms for Conway games, in the Archive for

Mathematical Logic. We have made only minor alterations to the discussion here.

1See Definitions 2.4.4, 2.4.5 and 2.4.6.
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2.1 Preliminaries

In a passage on pages 64–67 of ONAG, Conway discusses options for the formalisation of

his theory of combinatorial games formed as two-sided sets of options for the players Left

and Right, these options themselves being two-sided sets of options. He points out that,

although his theory could be formalised in ZF, it would be more natural to formulate

a theory of two-sided sets and formalise the theory of games in this. More radically,

he proposes a ‘Mathematicians’ Liberation Movement’ [13, p.66] in which some general

foundational principle that should allow all reasonable (‘permissible’) constructions and

inductions to be considered grounded on a foundation essentially equivalent to that of ZF

without requiring further investigation.

In this passage, it is clear that Conway has the idea of a two-sided set theory based on

a principle of induction, and also the idea for an interpretation of it in usual ZF. Indeed

he refers to Kuratowsi ordered pairs and using the Scott trick of equivalence classes of

sets of minimal rank to hint at how this interpretation might be carried out[13, p.65].

Completing this programme of devising the two-sided set theory and interpreting it in ZF

as indicated is straightforward. We believe however that it is much more natural to use

Quine’s ordered pairs [76]—not so much because of the ‘typing’ advantages of the pairing

that was Quine’s original motivation, but because every set can be considered as a pair

of sets using Quine’s pairing. This raises the possibility that ZF and its two-sided version

are actually essentially the same theory, a conjecture that is verified here.

By ‘interpretation’ we shall mean a relative interpretation, as defined by Visser [83].

We briefly describe such objects and their category-theoretic framework, which makes

discussion of the interpretations much simpler, here. The category INT has as objects

logical theories. All theories are assumed to have only relations as non-logical symbols;

among these relations included we assume there is a unary relation δ, indicating the

domain. (Note that equality is also included as a logical symbol). We assume full first-

order logic, including the equality rules and the logical axiom ∀x δ(x). By a relative

translation f : T2 → T1 of an L2-theory T2 into an L1-theory T1 we mean a mapping f
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of atomic formulas R(x0, . . . , xn−1) of L2 to formulas R(x0, . . . , xn−1)
f of L1, in the same

free variables. In particular δ(x)f is some domain formula δf(x), and (x = y)f is in our

case required to be simply (x = y). This mapping is extended to all L2-formulas by

taking (¬θ(x))f to be ¬ θ(x)f, (φ(x) → ψ(x))f to be φ(x)f → ψ(x)f, and (∀xφ(x))f to

be ∀x (
∧
i δ

f(xi) → φ(x)f). A relative interpretation f : T2 → T1 is a relative translation

satisfying T1 ` ∃x δ(x)f and also T2 ` φ⇒ T1 ` φf for all statements φ in the language of

T2. Following Visser we require that, for theories U, V,W in INT:

• the interpretation idU : U → U leaves relations unchanged;

• if f : U → V and g : V → W then R(x)fg is (R(x)f)g.

Further, two interpretations f, g : U → V are considered equivalent if

• V ` ∀x
(
δ(x)f ↔ δ(x)g

)
, and

• V ` ∀x
(∧

i δ(xi)
f → (φ(x)f ↔ φ(x)g)

)
for all formulas φ in the language of U .

Finally, the morphisms in INT are these interpretations, modulo equivalence, though

generally we shall refer here to specific interpretations. The interpretations f : U → V

and g : V → U are said to be inverse to each other if the corresponding morphisms are;

that is, if fg = idU and gf = idV in this category.

Having introduced AZF, we shall show that there are interpretations f : AZF → ZF

and g : ZF→ AZF which are inverse to each other. In Visser’s terminology, AZF and ZF

are synonymous ; less formally, they are essentially the same theory.

We also briefly look at the state of von Neumann–Bernays–Gödel set theory (NBG)

and its two sided analogue, NBG2, and report the expected result that these are also

synonymous.

Even though ZF and AZF (or NBG and NBG2) are equal, there are sometimes strong

psychological reasons to prefer the two-sided theory. Conway’s games provide one exam-

ple: there is an elegance in studying combinatorial games and their ‘one line proofs’ in a

system which shows that not only are these games a generalisation of number, but they
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are also the only notion of ‘set’ that is required. We found, for example, these two-sided

theories to be very useful aids in the discussion of regularity axioms below. That Rieger–

Bernays permutations work so easily in the new context hints at the real use of these

concepts: being synonymous, our theory remains unchanged. The language, however, is

distinct and—for our purposes—much more expressive.

2.2 Amphi-ZF

In this section we shall present the axioms for Amphi-ZF or AZF. Let L2 denote the

first-order language with non-logical symbols ∈L,∈R, both denoting binary relations.

Throughout we shall use ‘=’ to denote the usual logical identity in the first-order

language L2. So for example, for us { 0, 1 | } 6= { 1 | }. The axiom of extensionality

(below) will identify = with the notion of two games having the same Left and Right

options or members. In other words our = is the notion which Conway calls identity and

notates as ≡ [13, p.15]. We believe adhering to standard usage in first-order logic is more

important here than adhering to Conway’s usage. We will hardly need Conway’s notion

of equality here; when we do need it we use the symbol ≈ for it.

An object of an L2-structure will be called an amphiset, or less formally, a game.

The relations ∈L and ∈R are intended to represent the usual Left and Right membership

relations of Conway et al. There is also a symmetric membership relation defined by

• x ∈L
R y ⇔ (x ∈L y ∨ x ∈R y).

We define appropriate subset relations as follows. Let x, y be amphisets. Then

• x ⊆L y ⇔ ∀z ∈L x (z ∈L y);

• x ⊆R y ⇔ ∀z ∈R x (z ∈R y);

• x ⊆ y ⇔ (x ⊆L y ∧ x ⊆R y).
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Due to the symmetric nature of the system of axioms to be presented, it is useful to

adopt the P-notation described in the introduction. Recall that we described a separate

sort with exactly two objects, represented by the constant symbols L and R; P and

occasionally Q will denote variables of this sort. We therefore allow statements of the

form ∀x ⊆P z ∃y (y ∈P x), referring to either ∀x ⊆L z ∃y (y ∈L x) or ∀x ⊆R z ∃y (y ∈R x).

If φL, φR are first-order sentences we define
∧

P φP to be φL ∧ φR, and so on.

Axiom 0 (Zero Game Axiom). There exists a zero game, i.e.

∃x ∀y
(
y 6∈L x ∧ y 6∈R x

)
.

Axiom 1 (Extensionality). Two games are equal if and only if their respective options

are equal;

∀x ∀y
(∧

P

(
∀z (z ∈P x↔ z ∈P y)

)
→ x = y

)
.

Extensionality justifies the use of the familiar notation from ONAG, for example using

{u, v | x, y } to denote the game with Left and Right options u, v and x, y respectively.

Axiom 2 (Pair-game Axiom). If x, y are games there is a game with these games as left

options;

∀x ∀y ∃z (x ∈L z ∧ y ∈L z).

The replacement axiom will imply that there is a game with only these options, and

will also guarantee that a similar game with right options x, y and no left options exists.

Axiom 3 (Replacement). If φL(x, y, ā) and φR(x, y, ā) are first-order formulas in the free

variables shown, then

∀ā ∀I
(∧

P

(
∀x ∈L

R I ∃!y φP(x, y, ā)
)
→ ∃A ∀z

∧
P

(
z ∈P A↔ ∃x ∈L

R I φP(x, z, ā)
))
.

The next axiom is not really required; as in ordinary ZF it can be deduced from the

Replacement axiom. Still, we shall refer to this theorem as Separation when working in
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Amphi-ZF.

Axiom 4 (Separation). For all first-order formulas φL(ū, v), φR(ū, v) in free variables

shown we have

∀x̄ ∃y ∀z
∧
P

(
z ∈P y ↔ z ∈P x ∧ φP(x̄, z)

)
.

If x is a game for which
∧

P(y ∈P x↔ φP(y)), we write

x = { yL : φL(y) | yR : φR(y) }

or even (extending our useful shorthand notation using the P) x = { yP : φP(yP) }P.

Separation guarantees the existence of any amphiset of the form { yP : yP ∈P a∧φP(yP) }P.

If x is a game, i.e. an object of our theory, Conway uses xL as a variable ranging over

Left-elements of x, i.e. over z such that z ∈L x. Similarly xR ranges over Right-elements

of x, i.e. z such that z ∈R x. For example {xL | xR } is an abbreviation for { z : z ∈L x |

z : z ∈R x }, which is of course x itself. We shall frequently use such notation too.

We still require an axiom of Union. There are several different types of union we may

wish to use, and so for clarity we designate a symbol for each, as follows.

⊔
+ x = { z : ∃y ∈L

R x (z ∈L

R y) | z : ∃y ∈L

R x (z ∈L

R y) };⊔
x = { z : ∃y ∈L x (z ∈L

R y) | z : ∃y ∈R x (z ∈L

R y) };⋃
+ x = { z : ∃y ∈L

R x (z ∈L y) | z : ∃y ∈L

R x (z ∈R y) };⋃
x = { z : ∃y ∈L x (z ∈L y) | z : ∃y ∈R x (z ∈R y) }.

Our Union axiom simply states that the largest of these,
⊔
+x, exists for all games x. From

this the existence of each other type follows simply by Separation.

Axiom 5 (Union).

∀x ∃y ∀z
∧
P

(
z ∈P y ↔ ∃w ∈L

R x (z ∈L

R w)
)
.
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We can also define binary operations of unions and intersections of games, along these

lines. If x, y are games then {x, y | } exists, and so the game {xL, yL | xR, yR } (which is

the Conway notation for { z : z ∈L x ∨ z ∈L y | z : z ∈R x ∨ z ∈R y }) does by Union and

Separation. We call this game x ∪ y. Analogously we define

x ∩ y = { z : z ∈L x ∧ z ∈L y | z : z ∈R x ∧ z ∈R y },

and x \ y = { z : z ∈L x ∧ z 6∈L y | z : z ∈R x ∧ z 6∈R y }.

Notice that we may also form successor games sL(x) = {xL, x | xR } = x ∪ {x | } and

sR(x) = x ∪ { | x }, and define 1 = sL(0), 2 = sL(1) and −1 = sR(0), etc. From this we

can state that there exists a Left- and Right-inductive game.

Axiom 6 (Infinity).

∃x
∧
P

(
0 ∈P x ∧ ∀y ∈P x(sP(y) ∈P x)

)
.

We choose the following—the ∈L
R-induction principle [13, p.64] is derived from it in

the usual way.

Axiom 7 (Foundation).

∀x 6= 0 ∃y ∈L

R x ∀z ∈L

R x (z 6∈L

R y).

Remark 2.2.1. There are other natural choices for a foundation axiom. Let wf(R) be

the statement that R is a wellfounded relation, i.e.

∀x
(
∃y (y R x)→ ∃y R x ∀z R x (z 6R y)

)
.

Then our foundation axiom is simply wf(∈L
R). We might instead choose to posit that each

membership is wellfounded; that is,
∧

P wf(∈P). This is a clear consequence of wf(∈L
R), but

the converse is not obvious. In fact we will see in Section 2.6 that this second statement

is strictly weaker than the first.
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For the final axiom, we use the symmetric subset relation ⊆ defined above.

Axiom 8 (Power Game).

∀x ∃y ∀z
(∧

P

z ∈P y ↔ z ⊆ x
)
.

By the Power Game and Separation axioms

y = {u : u ⊆ x and u is inductive | u : u ⊆ x and u is inductive }

is a game, as are { yL | } and { | yR }. Defining the operator
⋂

in the obvious way, i.e.

⋂
u = {w : ∀v ∈L u (w ∈L v) | w : ∀v ∈R u (w ∈R v) },

we may define the game ω =
⋂
{ yL | }. Finally here, we issue a word of warning. Taking

‘≈’ to be equality as defined by Conway and + to be Conway’s addition of games, while

is is the case that sL(n) ≈ n + 1 for all n ∈L ω, we do not in general have that they are

identical ; for example,

2 = sL(1) = { 0, 1 | } 6= { 1 | } = 1 + 1.

Nor, in fact, do we have the equality sL(x) ≈ x+ 1 for all games.

There are many ways to define ordered pairs, but it is convenient to say that an

ordered pair (u, v) is simply the amphiset {u | v }; a function is an amphiset f with

no Right options and only ordered pairs for Left options, subject to the condition that

∀x ∀y ∀z
(
(x, y) ∈L f ∧ (x, z) ∈L f → y = z

)
. We write f(x) = y if (x, y) ∈L f , and

remark that
⋃
+x is the object whose left elements are those in the domain of f , and whose

right members are those amphisets in the image of f .

It is easily seen that ω is left-inductive. Using this we can define a transitive closure
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of an amphiset, and proceed to prove an appropriate ∈L
R-induction principle, i.e.

∀x
(
∀y ∈L

R x φ(y)→ φ(x)
)
→ ∀xφ(x)

for all formulas φ(u). In fact, for each union type U of
⊔
,
⊔
+ ,
⋃
,
⋃
+ the transitive clo-

sure TC(x,U) of an amphiset x is defined recursively by setting TC(x, 0,U) = x, and

TC(x, sL(n),U) = UTC(x, n,U) for n ∈L ω; then TC(x,U) is the object

{ z : ∃n ∈L ω ∃y ∈L TC(x,U, n) (z ∈L y) | z : ∃n ∈L ω ∃y ∈R TC(x,U, n) (z ∈R y) },

i.e. TC(x,U) =
⋃
A, where A = {TC(x,U, n) : n ∈L ω | TC(x,U, n) : n ∈L ω }. In

particular TC(x,
⊔
+) is transitive in the relations ∈L,∈R,∈L

R, while TC(x,
⋃

) is transitive

in ∈L,∈R, but not necessarily in ∈L
R.

By ∈L
R-recursion we can define the operations of negation, addition, multiplication,

etc. We can also repeat Conway’s definitions of what it means for a game to be less than,

greater than, equal to, etc., another game, exactly as in ONAG.

2.3 Interpreting Amphi-ZF in ZF

Working in ordinary ZF now, and basing the following on Quine’s notion of ordered

pairs [76], we make the following definitions.

Definition 2.3.1. For all sets x we define

fL(x) = { s(u) : u ∈ x ∩ ω } ∪ (x \ ω),

fR(x) = { 0 } ∪ { s(u) : u ∈ x ∩ ω } ∪ (x \ ω).

(Here s(u) denotes the set successor of u, {u } ∪ u.)
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It is useful to note that fL, fR have a mutual left-inverse, defined by

g(x) = {u ∈ ω : s(u) ∈ x } ∪ (x \ ω).

We can use fL and fR to define relations ∈L,∈R by x ∈P y ⇔ fP(x) ∈ y. Formally, this is

as follows.

Definition 2.3.2. We define a translation v : AZF → ZF by setting (x ∈P y)v to be

equivalent to (fP(x) ∈ y).

We argue that v is an interpretation, i.e. that for all axioms A of Amphi-ZF, ZF ` Av.

Most of these are easy to see. We shall prove here the most difficult case that, if Fnd2

denotes the amphi-foundation axiom, then ZF ` Fndv
2; the other axioms are left to the

reader. First define a cumulative hierarchy of games in ZF as follows.

G0 = 0;

Gα+1 = { fL(z) : z ⊆ Gα } ∪ { fR(z) : z ⊆ Gα }; and

Gλ =
⋃
δ<λ

Gλ for limit ordinals λ.

Notice that this is exactly the interpretation in ZF of an obvious cumulative hierarchy

of games, since for all sets x, z we have z ⊆ x ⇔ z vv x. By showing that every set is a

member of this hierarchy, we can deduce the translation of Amphi-foundation in ZF.

Proposition 2.3.3. In ZF, for ordinals α, β we have the following.

• If α < β then Gα ⊆ Gβ.

• Gα is ∈-transitive.

• Every set is in some Gα.

Proof. Each claim is proved by induction. Assume that whenever γ < α < β we have

Gγ ⊆ Gα. If β = α + 1, say, and x ∈ Gα then for some γ < α there is z ⊆ Gγ such that
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x = fP(z). As z ⊆ Gγ we have z ⊆ Gα and so x ∈ Gα+1; thus Gα ⊆ Gα+1. The claim is

clear when β is a limit.

To see the second claim suppose Gα is transitive (in ∈) for all α < β. If β = α+ 1 and

y ∈ x ∈ Gα+1 then x = fP(z) for some z ⊆ Gα, and y ∈ fP(z). If y /∈ ω then y ∈ z ⊆ Gα,

so by monotonicity y ∈ Gβ.

If instead y ∈ ω then y = 0 (in which case 0 = fL(0) ∈ G1 ⊆ Gβ) or y = s(u) for some

u ∈ z ∩ ω. Assuming the second case, u ∈ Gα, and so by transitivity u ⊆ Gα. Since the

successor map and fR coincide on ω, y = fR(u) ∈ Gβ. If instead β is a limit ordinal then

Gβ is a union of transitive sets, and hence the claim.

For the final claim, suppose x ⊆ Gα, but x /∈ Gα+1. Then g(x) 6⊆ Gα. Let y ∈ g(x)\Gα.

If y /∈ ω then y ∈ x ⊆ Gα, a contradiction. Therefore y ∈ ω, so y ∈ s(y) ∈ x ⊆ Gα. By

transitivity of Gα we have y ∈ Gα, a contradiction. Therefore x ⊆ Gα ⇒ x ∈ Gα+1,

i.e. P(Gα) ⊆ Gα+1 for all α. In particular as V0 = G0 we have that Vα ⊆ Gα for all α. The

claim follows.

Theorem 2.3.4. v : AZF→ ZF.

Proof. We show here that Fndv
2 follows from ZF; the remaining axioms are easily verified.

Define the ‘game rank’ grank(y) of a set y to be the least ordinal α such that y ⊆ Gα. Let x

be an arbitrary set, and pick y ∈L
R x of minimal game rank α. Supposing z ∈L

R x∧ z ∈L
R y,

some fP(z) ∈ y and so z ⊆ Gβ for some β < α. Hence grank(z) ≤ β < grank(y),

contradicting our choice of y.

Everything we have done here works in a similar way for weaker theories. In particular

we consider the 1-sided set theory EST, with axioms of extensionality, empty set, pair

set, sum set, separation and replacement.

It is important to note that we can define ω in EST and use the principle of induction

and recursion on it (a proof of this is given by, for example, Cox [16]). This is because

either the axiom of Infinity holds and ω is a set as usual, or else ω is a definable class—the

class of all ordinals. The functions fL, fR and g defined above may then be defined in
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EST.

AST is the two-sided version of EST with the two-sided versions of all these axioms

as described above.

The following is immediate from the above discussion.

Theorem 2.3.5. v : AST→ EST.

2.4 Interpreting ZF in Amphi-ZF

Firstly we observe that ZF can be interpreted easily as a class in any model G of Amphi-

ZF. This allows us to define a set-membership relation E in G , essentially copying ∈.

More precisely, we may define GL to be the subclass of games which are hereditarily

Right-empty; formally this is an interpretation l : ZF → AZF where we let δl(x) be the

formula TC(x,
⋃
+) ⊆R 0, and (x ∈ y)l is (x ∈L y).

Proposition 2.4.1. The subclass (GL,∈L) satisfies the axioms of ZF; hence l : ZF→ AZF.

In order to find an interpretation g : ZF→ AZF whose domain contains all games we

may construct a (definable) bijection F : GL → G , and mimic the behaviour of ∈ in G .

This bijection can be defined in such a way that g is inverse to v.

Working in Amphi-ZF, functions f l
L, f

l
R are determined (uniquely) by

f l
L(x) = { sl(u) : u ∈L x ∩ ω | } ∪ (x \ ω),

f l
R(x) = { 0 } ∪ { sl(u) : u ∈L x ∩ ω | } ∪ (x \ ω).

(Here we use ω to denote the game { 0, 1, . . . | } in GL). The appropriate definition of F

is then rather straightforward: if x is a set then we interpret it as the game { y : fL(y) ∈

x | y : fR(y) ∈ x }, where each set y is already interpreted as a game. Thus we define

F (x) = {F (y) : f l
L(y) ∈L x | F (y) : f l

R(y) ∈L x },
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and notice that F has an inverse according to the rule

F−1(x) = { f l
P(y) : F (y) ∈P x | }.

We define ∈ by the rule ∀x ∀y
(
y ∈ x ↔ F−1(y) ∈L F

−1(x)
)
, i.e. we define a mapping of

L∈-formulas by taking (y ∈ x)g to be (F−1(y) ∈L F
−1(x)). Then the following are not

difficult (for full proofs, see Cox [16]).

Theorem 2.4.2. g : ZF→ AZF.

Theorem 2.4.3. The morphisms v and g are inverse to one another in INT. That is,

ZF and AZF are synonymous.

The problem with this approach, natural as it is, is that it appeals to induction and

recursion in a strong way, so is not available in models of AST. We must define g in AST

directly. As the definitions are technical and perhaps not obvious we will spend a little

time motivating them.

Start by considering 0, 1, 2, . . . in V � EST. These are of course given by n = {0, 1, . . . , n−

1} but each corresponds to a set nv in G = V v. We calculate its notation in G . As 0

is empty it has no members, so no fP(x) is in 0 so 0v = {|}. Similarly 1 = {0} has sin-

gle member 0 = fL(0), so 0v = {0v |} = {0 |}. 2 = {0, 1} has members 0 = fL(0)

and 1 = {0} = fR(0) so 2v = {0v | 0v} = {0 | 0}. Similarly, 3 = {0, 1, 2} =

{fL(0), fR(0), fR(1)} so 3v = {0 | 0, {0 |}}, 4 = {0, 1, 2, 3} = {fL(0), fR(0), fR(1), fR(2)}

so 4v = {0 | 0, {0 |}, {0 | 0}}, and so on.

This motivates the following curious notation for the integers.

Definition 2.4.4 (AST). For n ∈ ω, define ν(n) as follows. Let ν(0) = { | } and ν(1) =

{0 | }. For n ∈ N, we define

ν(n+ 2) = ν(n+ 1) ∪ { | ν(n)}

= {ν(0) | ν(0), . . . , ν(n)}.
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We also define ν(ω) = {ν(0) | ν(0), ν(1), . . .}. Notice that ν(ω) may not exist as a set in a

model of AST (its existence requires an infinity axiom), but is a definable ‘amphi-class’.

Now, using the new notions, we may repeat Definition 2.3.1.

Definition 2.4.5 (AST). Define

f̃L(x) = {| ν(n+ 1) : ν(n) ∈R x} ∪ (x \ ν(ω)) if 0 6∈L x

= {| 0} ∪ {| ν(n+ 1) : ν(n) ∈R x} ∪ (x \ ν(ω)) otherwise

f̃R(x) = {0 |} ∪ fL(x)

Also,

g̃(x) = {| ν(n) : ν(n+ 1) ∈R x} ∪ (x \ ν(ω)) if 0 6∈R x

= {0 |} ∪ {| ν(n) : ν(n+ 1) ∈R x} ∪ (x \ ν(ω)) otherwise.

Now we can define our interpretation.

Definition 2.4.6 (AST). For all x, y,

(x ∈ y)g ↔ (0 6∈L x ∧ g̃(x) ∈L y) ∨ (0 ∈L x ∧ g̃(x) ∈R y).

The following are now straightforward.

Lemma 2.4.7 (AST). For all n ∈ ω and all x, (ν(n) ∈ x)g if and only if (ν(n + 1) ∈

f̃L(x))g. Consequently, f̃P(x) = f g
P(x) and g̃(x) = gg(x).

Proposition 2.4.8. Let G � AST. Then G � ESTg.

Finally we show that the interpretations are inverse to one another, i.e. gv = 1 and

vg = 1. First, we require a preparatory lemma within a model of EST.

Lemma 2.4.9. In any model of EST, f̃ v
P = fP; g̃v = g.
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Proof. Induction on ω.

This immediately gives the following.

Proposition 2.4.10. (a) In AST, for all x, y, x ∈P y if and only if (x ∈P y)gv.

(b) In EST, for all x, y, x ∈ y if and only if (x ∈ y)vg.

Corollary 2.4.11. The theories EST and AST are synonymous in the sense of Visser.

It may be of interest to develop a catalogue of equivalent subtheories of ZF and AZF

extending EST and AST respectively, equivalent via the interpretations just defined. This

involves showing EST +A ` Av
2 and AST +A2 ` Ag for various axioms A where A2 is the

two-sided version of A. Of course a great many such results may be given, and we give a

very small sample here.

The proof of the following is straightforward.

Proposition 2.4.12. For sentences A ∈ {Inf,Pow, Inf ∧Pow}, EST +A ∼= AST +A2.

The case for foundation is less straightforward. It is not immediately obvious whether

EST + Fnd ∼= AST + Fnd2, although we can say that, by constructing a cumulative hi-

erarchy for each theory within the other (as in Proposition 2.3.3), we can show that

EST + Pow + Fnd is synonymous with its amphi-equivalent. However there is good rea-

son to avoid considering foundation alone. Foundation’s role is essentially to provide us

with ∈-induction (denoted Ind(∈)), or its amphi-equivalent, Ind(∈L
R). However this does

not follow from EST + Fnd (or AST + Fnd2) alone: we require the additional axiom that

every object has a transitive closure, which is normally provided by the infinity axiom

(see Kaye and Wong’s article [54] or Mancini and Zambella [69]).

Proposition 2.4.13. The theories EST + Ind(∈) and AST + Ind(∈L
R) are synonymous,

via the interpretations g and v.

Proof. Working in EST + Ind(∈), define a ‘game rank’ inductively, by

grank(x) = sup{grank(u) : u ∈ g(x) + 1}.
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If φ(x, ā) is any formula such that

∀x
(
∀y ∈L

R

g xφ(y, ā)→ φ(x, ā)
)
.

Then ∀xφ(x) can be proved by considering some x of minimal game rank for which ¬φ(x).

Analogously, if we work within AST + Ind(∈L
R) we can define a set rank by

rank(x) = sup{rank(u) : g̃(u) ∈L

R x}+ 1,

and proceed as above.

Of particular interest in combinatorial game theory are the so-called short (hereditarily

finite) games. We obtain a suitable theory for such games by negating our infinity axiom,

Inf, and ensuring that full induction is available as in the last proposition. By ZFInf and

AZFInf we denote the theories of ZF and AZF minus their respective infinity axioms. By

ZF∗Inf and AZF∗Inf we denote these theories plus an appropriate axiom, TC, of transitive

containment. (In ZF we take ∀x ∃y(x ⊆ y ∧ ∀u∀v(u ∈ v ∧ v ∈ y → u ∈ y)); in amphi-ZF

we take the same, but with ∈ replaced by ∈L
R.) Notice that ZF∗Inf is equivalent to the

theory EST + Ind(∈) + Pow (and analogously for the appropriate amphi-variants). This

immediately gives us the following.

Theorem 2.4.14. g : ZF∗Inf → AZF∗Inf and v : AZF∗Inf → ZF∗Inf are inverse to one another

in INT.

Notice that by a result of Kaye and Wong [54] this implies AZF∗Inf
∼= PA in INT,

where PA is the theory of Peano Arithmetic.

2.5 Amphi-NBG

For the sake of completeness, in particular as Conway [13, p.67] mentions it, we briefly

describe the two-sided version NBG2 of von-Neumann–Bernays–Gödel set theory, NBG.
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Following one of the popular formulations of NBG without choice, we take a two-sorted

language with variables for Class-like Games A,B,C, . . . and (set-like) games a, b, c, . . ..

The well-formed atomic formulas are of the form A = B (identity of Class-like Games),

a = b (identity of games), a ∈L B, a ∈R B, a ∈L b, and a ∈R b (membership). We use

a = B as an abbreviation for
∧

P ∀x (x ∈P a↔ x ∈P B).

Axiom 9 (Extensionality).

∀x ∀y
(∧

P

(
∀z (z ∈P x↔ z ∈P y)

)
→ x = y

)

and

∀X ∀Y
(∧

P

(
∀z (z ∈P X ↔ z ∈P Y )

)
→ X = Y

)
.

Axiom 10 (Pair).

∀x ∀y ∃z (x ∈L z ∧ y ∈L z).

Axiom 11 (Union).

∀x ∃y ∀z
∧
P

(
z ∈P y ↔ ∃w ∈L

R x (z ∈L

R w)
)
.

Axiom 12 (Power).

∀x ∃y ∀z
(∧

P

z ∈P y ↔ z ⊆ x
)
.

Axiom 13 (Infinity).

∃x
∧
P

(
0 ∈P x ∧ ∀y ∈P x(sP(y) ∈P x)

)
.

Axiom 14 (Foundation).

∀X 6= 0 ∃y ∈L

R X ∀z ∈L

R X (z 6∈L

R y).

Axiom 15 (Comprehension). For all first-order formulas φL(Ū , ū, v), φR(Ū , ū, v) in free
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variables shown we have

∀X ∀x̄ ∃Y ∀z
∧
P

(
z ∈P Y ↔ φP(X̄, x̄, z)

)
.

Axiom 16 (Replacement).

∀FL, FR ∀x
(∧

P

(∀u ∀v ∀w
(
(u, v) ∈L FP ∧ (u,w) ∈L FP → v = w)

→ ∃y
∧
P

∀z (z ∈P y ↔ ∃u (u ∈P x ∧ (u, z) ∈L FP)
)

Our formulation of NBG is the obvious one-sided version of these axioms. One could

if one wished add to either NBG or NBG2 any of the usual forms of the axiom of global

choice.

Working in NBG, Definition 2.3.1 applies to both sets and classes, sending sets to sets

and classes to classes. This gives an interpretation v : NBG2 → NBG formally similar

to the one in Section 2.3 where (x ∈P y)v is (fP(x) ∈ y), equality is preserved and

the property of being set-like is preserved. Without any difficulty the arguments above

show this is indeed an interpretation. Working in the other direction, the interpretation

l of Section 2.4 is extended to preserve the ‘set-like’ predicate on objects, and gives

l : NBG → NBG2, restricting to hereditarily right-empty sets and right-empty classes of

such sets. The class GL of hereditarily right-empty sets is in 1–1 correspondence with the

class of all set-like games, for the same reason as in Section 2.4, and this yields also a

bijection between the subclasses of GL and the class-like games. Thus the technique of

mimicking ∈ in the whole collection of games goes through too, giving an interpretation

g : NBG→ NBG2 which is inverse to v. The straightforward details are omitted.

2.6 Rieger–Bernays permutation models

In defining AZF we have chosen certain axioms almost arbitrarily, where other obvious

axioms might have been equally intuitive. For instance, our choice of a Pair-set axiom is
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simple, though it could be argued that a symmetric version would be more fitting. More

interestingly, various different types of union are available—none of which is obviously

more appropriate than the rest—and any axiom positing the existence of one such union

would suffice. In these cases each choice of axiom is equivalent, modulo the other axioms

of AZF, to the axioms it has been chosen above. In the case of union axioms it may be

interesting to consider much smaller fragments of AZF (perhaps obtained by weakening

the replacement scheme) which do not necessarily provide this equivalence, though we

will not do so here.

Of more importance to us is the weakening of foundation. Foundation is of particular

interest in the theory of games through potential applications of illfounded games in the

semantics of computer processes.

The Rieger–Bernays permutation construction (see for example Forster [28]) can be

used to obtain models of AZF in which the full foundation axiom fails but some form of

foundation remains, perhaps just enough to preserve certain structure present in Conway

games, while also allowing one to consider illfounded games. (See also the questions at

the end of this chapter.)

As usual, we let Sym(G ) denote the collection of permutations of G .

Definition 2.6.1. Let G � AZF, and suppose π ∈ Sym(G ). For x, y ∈ G we write x ∈πL y

for x ∈L πy and x ∈πR y for x ∈R πy. By Gπ we denote the first-order structure (G ,∈πL ,∈πR).

It will be useful to use AZF− to refer to the theory with all the axioms given above

for AZF except for the foundation axiom A7.

The following is an easy translation of the usual result in ZF.

Theorem 2.6.2. Suppose G � AZF. If π ∈ Sym(G ) is definable, then Gπ � AZF−.

In Remark 2.2.1 we discussed a variant (denoted
∧

P wf(∈P)) of our amphi-foundation

axiom (wf(∈L
R)). We can use Rieger-Bernays permutation models to prove that the variant

is strictly weaker.
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Theorem 2.6.3. Let G � AZF, with as usual 1 = {0 | }, −1 = { | 0}, and (for this

theorem only1) use Conway’s definition of 2 = {1 |} and −2 = {| −1}. Let π be the

permutation

(1 − 2) · (−1 2).

Then Gπ is a model of

AZF−+
∧
P

wf(∈P) + ¬wf(∈L

R).

Proof. Let wfP(x) denote the formula

∃y (y ∈P x)→ ∃y ∈P x ∀z ∈P x (z 6∈P y), (2.1)

the statement that x is wellfounded. Note that if we can prove ∀x wfL(x) then ∀x wfR(x)

follows by the symmetry of π and AZF.

Fix an amphiset x and assume that G π � ¬wfL(x). Suppose first that x ∈ X =

{±1, ±2 }. Since 1 and 2 are ∈πL-empty, they satisfy wfL; therefore x = −1 or x = −2.

These contain sole ∈πL-members 1 and 0 respectively, which are ∈πL-empty. Hence wfL(x),

a contradiction.

Now suppose x 6∈ X. Let

x′ = {u ∈L x : u /∈ X |u ∈R x }.

As G � wfL(x′), we can pick u ∈L x
′ such that ∀v ∈L x

′ (v 6∈L u). As x′ ⊆L x, u ∈L x;

since x /∈ X, u ∈πL x. Since x is not ∈πL-wellfounded, there is v ∈πL x such that v ∈πL u.

Since v ∈πL x, v ∈L x, so that v 6∈L u. As v ∈πL u ∧ u 6∈L u, u ∈ X. This contradicts the

choice of u.

Finally, 1 ∈L
π −1 ∈R

π 1 showing ¬wf(∈L
R).

Given G � AZF there are two ‘obvious’ permutations to look at. The first swaps the

left and right members, x 7→ x∗ = {u : u ∈R x | v : v ∈L x}. Then it is easy to see that

1See the discussion towards the end of Section 2.2.
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x ∈L
∗ y if and only if x ∈L y

∗, i.e. x ∈R y and similarly for R, so the permutation model

(G ∗,∈L
∗,∈R

∗) is just (G ,∈R,∈L) with ∈L and ∈R swapped. Another way of saying this is

that the map x 7→ −x given as usual by

−x = {−u : u ∈R x | −v : v ∈L x}

is an isomorphism (G ,∈L,∈R)→ (G ∗,∈L
∗,∈R

∗).

The second ‘obvious’ permutation is the additive inverse x 7→ −x itself. It is easy to

check that x ∈L
− y if and only if x ∈L −y, i.e. −x ∈R y and similarly for R. Since the rank

of −x is the same as that of x it follows that G − satisfies full foundation, i.e. G − � AZF.

In fact, (G −,∈L
−,∈R

−) is actually isomorphic to (G ,∈L,∈R) via the isomorphism defined

recursively in G by

φ(y) = {φ(u) : −u ∈R y | φ(v) : −v ∈L (y)}.

It is unclear what this φ operation is, except that it too is a permutation and may be

used to give a further permutation model also isomorphic to the original, via yet another

somewhat obscure map. We are not sure if this is an interesting or profitable line of

enquiry and have left it here.

This concludes our outline of what might be called the ‘traditional’ permutation model

construction. But since we are working in a two-sided set theory, we may consider a two-

sided analogue of these permutations.

In the following we use relations ≡L and ≡R defined by by x ≡P y ↔ x ⊆P y ⊆P x.

Definition 2.6.4. Assume G � AZF. Suppose π = (πL, πR) is a pair of permutations

from G . For x, y ∈ G , we write

x ∈πL y ↔ x ∈L πLy;

x ∈πR y ↔ x ∈R πRy.
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By Gπ we denote the structure (G ,∈πL ,∈πR). If, in addition,

∀x, y
(
(
∧
P

πPx ≡P πPy)→ x = y
)
, (2.2)

then we call π an amphi-permutation. We say that π is a proper amphi-permutation if

additionally it is not the case that

∀x ∃y (x ≡L πLy ∧ x ≡R πRy).

Remark 2.6.5. It is interesting to note that our interpretation in Section 2.3, (x ∈P y)v,

takes a form that is ‘dual’ to the amphi-permutation model, with x ∈P y if and only

if (fP(x) ∈ y), for 1–1 (but not bijective) functions fL, fR. In the same way, amphi-

permutations may be used to build models with two-sided membership from single-sided

models: x ∈P y if and only if x ∈ πP(y).

Remark 2.6.6. The reason for the condition (2.2) is that we would like Gπ to satisfy

extensionality. It is easily checked that this condition is equivalent to extensionality in

Gπ. In the case of a definable amphi-permutation π (meaning, of course, that each πP is

definable) in a model of AZF, condition (2.2) is also equivalent to the assertion that the

map

π̂(x) = {u : u ∈L πLx | v : v ∈R πRx}

is 1–1. If this map were also onto our Gπ would be the same as G π̂ and this reduces to

the case of the single permutation. The condition that the map π̂ is onto is equivalent to

the assertion that π is improper; this explains the choice of terminology.

It follows also, by a pigeonhole argument, that if π = (πL, πR) is an amphi-permutation

and π̂ has finite support then π is improper. For if S = supp(π̂) then π̂ maps S into S

since it is 1–1. Note too that supp(π̂) ⊆ supp πL ∪ supp πR.

Example 2.6.7. We give an example of an definable amphi-permutation π = (πL, πR) of

G � AZF such that G π satisfies extensionality but does not contain an empty set. This
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shows that proper amphi-permutations exist and that the amphi-permutation construc-

tion does not preserve stratified formulas. For simplicity, our π will have πR = π−1L .

As usual, let 0 = {|}, n + 1 = {0, 1, . . . , n |} and −(n + 1) = {| −n, . . . ,−1, 0} for

n ∈ ω. Now define copies of these amphisets by

nk = {0, 1, . . . , (n+ k − 1) | 0,−1, . . . ,−(k − 1)}

and

(−n)k = {0, 1, . . . , (k − 1) | 0,−1, . . . ,−(n+ k − 1)}

for all n, k ∈ ω. (By the only sensible convention for the meaning of ‘0, 1, . . . ,−1’ we have

n = n0 for all n.) Note that the amphisets ni are all distinct.)

We define

πL : zk 7→ (z + 1)k

for z = n or −n, and n, k ∈ ω, and πR = π−1L .

To check the properties of G π it suffices to check that π̂ � S maps into S and is 1–

1, where S = suppπL = suppπR = {nk : n, k ∈ ω}. A simple calculation shows that

π̂(nk) = (n + 1)k, π̂((−n)k) = −(n + 1)k for k ∈ ω and n > 0 and that π̂(0k) = 0k+1 for

k ∈ ω. So π̂ is 1–1 and 0 = 00 is the only amphiset not in its image.

We know of no easily stated conditions on an improper amphi-permutation that en-

sures Gπ � AZF−. The following proposition is the unsatisfactory result of our investiga-

tion into this question.

Proposition 2.6.8. Suppose G � AZF and π = (πL, πR) is a definable amphi-permutation

with the stronger property that

∧
P

∀x, y (x ≡P y ↔ πPx ≡P πPy).

Then π is improper.
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Proof. Given x, let u, v satisfy x = πLu and x = πRv, and define y so that y ≡L u and

y ≡R v. Then by the condition πLy ≡L πLu ≡L x and similarly for R, so π is improper.

2.7 Open questions and suggestions for future re-

search

Our intuition about AZF is based on that of ZF but the theory AZF is finer-structured

with respect to its subtheories. A full investigation of subtheories of AZF and in particular

the effect of weakening the union, power set and foundation axioms should be given.

Theorem 2.6.3 presents a small start in this direction.

We have shown that ZF and its amphi version AZF are the same theory via two

inverse interpretations v and g. These interpretations are natural but may not be the

only possibilities. The main question concerns exactly what axioms are required to define

these interpretations and to give a catalogue of equivalent subtheories of ZF and AZF. A

start was made to this programme in Section 2.4.

Given a model G � AZF, which we regard as a collection of combinatorial games, the

operations of addition and additive inverse are definable using recursion as usual,

x+ y = {u+ y : u ∈L x | v + y : v ∈R x} ∪ {x+ u : u ∈L y | x+ v : v ∈R y}

and

−x = {−u : u ∈R x | −v : v ∈L x}.

These operations are central to the theory of games, as are

0 ≤ x↔ ∀u ∈R x ∃v ∈L u (0 ≤ v)

and

0 Cp x↔ ∃u ∈L x ∀v ∈R u (0 Cp v)
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with x ≤ y ↔ 0 ≤ y−x and x Cp y ↔ 0 Cp y−x. Obviously foundation is required for all

these definitions, but how much? Is the full axiom of foundation required to make sense

of these notions?

Given G � AZF−, we might not be able to define +,−,≤,Cp internally, but we can at

least regard each x ∈ G as an (external) game (in the metatheory) with three outcomes:

either L or R wins, or there is a draw—meaning that after standardly many (i.e. N in

the metatheory) turns there is no winner. Then +,−,≤,Cp can all be defined on these

games in the metatheory (with the proviso that we need to account for games that go on

for infinitely many turns). It would seem to make sense to study these notions for various

models G � AZF−.

The amphi-permutation construction for AZF is richer than that of single-sided mem-

bership, and this needs a thorough investigation. What sentences are necessarily preserved

by such a construction? Also, the amphi-permutation construction (and its ‘dual’, see Re-

mark 2.6.5) also enables other models of two-sided theories to be obtained from one-sided

memberships. This should also be investigated.

We will revisit some of these themes—particularly illfounded amphisets—in chapter 5,

where we consider the addition of two-orders (see the next chapter), representing the

existence of strategies. In Chapter 5 we show that, assuming no amphisets are self-

membered (but allowing loops of length greater than 1), there exists a possibly external

notion of strategy which coincides with the interpretation of members as available moves.

Some further discussion of foundation principles is given there, focusing on regularity

imposed by more game-theoretic assumptions.
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CHAPTER 3

TWO-ORDERED STRUCTURES

In this chapter we generalise the order-theoretic aspects of Conway games. We consider

the addition of a second order �| (as used by Conway et al.[13, 5]) to a preordered structure

(X,≤), but with a basic set of axioms instead of a recursive construction in a wellfounded

universe of amphisets. In particular we do not require that �| be the complement of ≥;

rather we view this as a special consequence of wellfoundedness in Conway games.

We discuss the problem of augmenting these two-orders, and show that the collection

of such objects on a poset (X,≤) has the rich structure of a Heyting algebra. These spaces

are then used in a poset representation result generalising Stone’s theorem for boolean

algebras.

Finally we consider the addition of group structure. We prove homomorphism theo-

rems for two types of morphism, and demonstrate that—by a simple extension of Cayley’s

theorem—such groups arise as precisely the automorphism groups of two-ordered struc-

tures. We conclude with a discussion of determinacy and duality of two-orders.
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3.1 Two-ordered structures

3.1.1 Definitions and examples

Definition 3.1.1. A pre-two-order on a nonempty set X is a pair T = (≤,�|) of binary

relations satisfying the following.

• The relation ≤ is a preorder:

∀x ∈ X (x ≤ x);

∀x, y, z ∈ X (x ≤ y ∧ y ≤ z → x ≤ z);

• the relation �| is a module over ≤:

∀x, y, z ∈ X (x ≤ y ∧ y �| z → x �| z);

∀x, y, z ∈ X (x �| y ∧ y ≤ z → x �| z);

• and the relation �| is antireflexive:

∀x ∈ X (x 6�| x).

When (X,≤,�|, . . .) is some structure with T = (≤,�|) a pre-two-order, we call (X, . . .)

a pre-two-ordered structure.

If the relation ≤ is a partial order (i.e. ≤ satisfies

∀x, y (x ≤ y ∧ y ≤ x→ x = y)

in addition to the above), then we call T a two-order, and (X, . . .) a two-ordered structure.

When (X,≤) is a preordered structure, we write x ≥ y for y ≤ x, x < y for x ≤

y ∧ y 6≤ x, etc.
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Whenever a structure (X,≤, . . .) has a preorder, it can be equipped with at least one

additional order �| such that (X,≤,�|, . . .) is a two-ordered structure.

Example 3.1.2. Let (X,≤) be any preordered set. Then the following definitions give

relations �| for which (X,≤,�|) is a pre-two-ordered structure. If ≤ is a partial order,

these make X a two-ordered structure.

Minimal ∀x, y (x �| y ↔ ⊥);

Strict ∀x, y (x �| y ↔ x < y);

Maximal ∀x, y (x �| y ↔ y 6≤ x).

Example 3.1.3. Dually, if X is a nonempty set and �| is any irreflexive relation on X,

then the trivial partial order ≤ on X defined by x ≤ y ⇔ x = y makes (X,≤,�|) a

two-order (and is the minimal such relation). There is no canonical maximum ≤ that can

be chosen in this case, though by Zorn’s lemma there are certainly maximal partial orders

≤ so that (X,≤,�|) is a two-order.

Clearly the relation ', defined by x ' y ↔ x ≤ y ∧ y ≤ x, is an equivalence relation.

Since the quotient X/' has two-ordered structure given by

x/' ≤ y/' ↔ x ≤ y

x/' �| y/' ↔ x �| y

in most cases we can restrict attention to consideration of two-ordered structures without

losing any information. The relation ' represents the equivalence of Sprague-Grundy and

Conway et al.

Example 3.1.4. Let G be any model of amphi-ZF from the previous chapter, i.e. a class

of two-sided sets as seen in ONAG and Winning Ways. There the orders are defined by:

g ≤ h↔ ∀gL ∈L g (gL �| h) and ∀hR ∈R h (g �| hR);

g �| h⇔ ∃hL ∈L h (g ≤ hL) or ∃gR ∈R g (gR ≤ h).
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The induced relations on the quotient make Values(G) = G/' into a two-ordered struc-

ture.

Under the normal play condition1, this has the following intuitive description. Given

two games g and h, g ≤ h means h is better than g for Left playing second, and g �| h

means h is better than g for Left playing first. One rapidly verifies the axioms for a pre-

two-order by induction, and that g �| h holds iff h 6≤ g, i.e. these games are determined.

Definition 3.1.5. A two-ordered structure (X,≤,�|, . . .) is said to be determined if

∀x, y ∈ X (x �| y ↔ x 6≥ y);

that is, if �| is the complement of the reversed order ≥.

It is easily shown by induction that in Example 3.1.4, the collection of games is de-

termined.

Examples from poset morphisms

Given a morphism of posets ϕ : (X,≤) → (Y,≤), we can derive a second order �| on X

such that (X,≤,�|) is a two-ordered structure.

Proposition 3.1.6. Each of the following defines a compatible second order.

Maximal u �|ϕ v ↔ ϕu 6≥ ϕv

Strict u �|ϕ v ↔ ϕu < ϕv

Notice that the above orders are direct generalisations of those in Example 3.1.2, and

of course we could add a third for the trivial, empty relation. In each case, if we take the

corresponding relation from 3.1.2 in Y , then ϕ becomes an amphimorphism.

1Under the normal play condition, the players take alternating moves in a game; the first player unable
to move is the loser, and his opponent the winner. Thus the empty game 0 is won by the second player,
regardless.
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The Full method in particular can be seen as encoding the image of a homomorphism

from X: If ϕ : X → Y is a homomorphism of posets and �| = �|ϕ then knowing the

behaviour of �| on X tells us exactly the behaviour of ≤ in imϕ.

Proposition 3.1.7. A weak order �| on (X,≤) encodes a morphism by the Full method

if and only if 6�| is transitive.

Proof. If �| = �|ϕ and x 6�| y 6�| z then ϕx ≥ ϕy ≥ ϕz, so ϕx ≥ ϕz and x �| z.

Conversely if 6�| is transitive, let ≤′ = 6|� (which is also transitive). It is easily shown

that (X,≤′,�|) is a pre-two-ordered structure. Notice that ≤′⊇≤, and so the identity

map ϕ : X → X is a pre-order homomorphism from (X,≤) to (X,≤′). If required we

can always factor by the equivalence relation ≤′ ∩ ≥′ to obtain a poset and the desired

result.

Not every weak order encodes the image of a morphism in this way, however.

Example 3.1.8. Let X = {x, y} with x �| y �| x and the trivial strong order =. If

�| = �|ϕ then some ϕ satisfies ϕx ≤ ϕy ≤ ϕx, hence ϕx ≥ ϕy, contradicting the

assumption.

If �| = �|ϕ then instead, ϕx < ϕy < ϕx, again a contradiction.

3.1.2 Morphisms of two-ordered structures

There are several different types of ‘morphism’ we might consider:

Definition 3.1.9. If (X,≤,�|) and (Y,≤,�|) are (pre-)two-ordered sets a map f : X → Y

is a

promorphism if x ≤ y ⇒ f(x) ≤ f(y) and x �| y ⇒ f(x) �| f(y)

amphimorphism if x ≤ y ⇒ f(x) ≤ f(y) and x 6�| y ⇒ f(x) 6�| f(y)

co-promorphism if x 6≤ y ⇒ f(x) 6≤ f(y) and x 6�| y ⇒ f(x) 6�| f(y)
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co-amphimorphism if x 6≤ y ⇒ f(x) 6≤ f(y) and x �| y ⇒ f(x) �| f(y)

for all x, y ∈ X.

For a given X, natural objects for study include the various semigroups of promor-

phisms, amphimorphisms, co-promorphisms, or co-amphimorphisms, f : (X,≤,�|) →

(X,≤,�|) under composition, and the category of all (pre-)two-orders ≤,�| on X as

objects with promorphisms (amphimorphisms, co-promorphisms, co-amphimorphisms)

as arrows.

If (X,≤,�|, . . .) is a two-ordered structure, in many problems it is particularly inter-

esting or important to investigate the different ways to change or extend the orders to

make the structure determined. This can be described as a modal logic, in which the pos-

sible structures (X ′,≤′,�|′, . . .) that are images of (X,≤,�|, . . .) under one of the notions

of morphisms are the ‘possible worlds’ of the logic, with the existence of the morphisms

as the accessibility relation. This is investigated further in Cox and Kaye [15].

For various reasons, it appears that promorphisms and amphimorphisms are the most

natural of these four, with amphimorphisms having the more useful algebraic properties.

(See below.)

Example 3.1.10. In the space of pure Conway game values, say Values(G), addition by

a fixed element G, i.e.

G+ • : g 7→ G+ g,

is a promorphism.

Example 3.1.11. In Values(G), given G ∈ Values(G) we may define

{G | •} : g 7→ {G | g}.

Then {G | •} is an amphimorphism. So also is {• | G}.

Proof. Given g ≤ h, we must show {G | g} ≤ {G | h}. But clearly G ≤ G, and this shows

G �| {G | h} and hence {G | g} ≤ {G | h}, as required. Also, given {G | g} �| {G | h}

48



we must show g �| h. But the assumption implies {G | g} ≤ G or g ≤ {G | h}. The first

of these is clearly false as G ∈L {G | g} and G 6�| G. Therefore g ≤ {G | h} and hence

g �| h.

Example 3.1.12. Continuing on from Example 3.1.3, categories of irreflexive relations

�| on nonempty sets X may be defined taking either as arrows promorphisms f : X → Y

such that x �| y ⇒ f(x) �| f(y) or amphimorphisms f : X → Y such that f(x) �|

f(y)⇒ x �| y.1

3.1.3 Two-orders and boolean algebras

Orders, two-orders, and the interplay between ≤ and �| in particular is full of ideas of

dualism. The following extended example shows how two-orders develop the dualism in

boolean algebras.

Example 3.1.13. Let B = (B,≤,∧,∨,¬,>,⊥) be a boolean algebra and F ⊆ B satisfy

⊥ 6∈ F ∧ ∀x, y ∈ B(x ≥ y ∈ F → x ∈ F ).

Then we define �| = �|(F ) by

b �| a⇔ a ∧ ¬b ∈ F.

This defines a two-order (B,≤,�|) such that

b �| a⇔ ⊥ �| a ∧ ¬b (3.1)

for all a, b ∈ B. Note that it follows from (3.1) that a 6�| ⊥ and > 6�| b for all a, b. We

1The prefix ‘amphi’ does not really apply here as such objects are one-sided, but it is easier to overload
this word that to introduce a new word to remember.
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can also note a useful duality law for �|.

∀a, b ∈ B(b �| a⇔ ¬a �| ¬b),

hence b �| a ⇔ ¬a ∨ b �| >. The proofs are easy. In the case F = {⊥}c we have

b �| a ⇔ a 6≤ b. All two-orders satisfying (3.1) arise in this way from some F . This is

seen by defining

F (�|) = {a : ⊥ �| a}

and observing that F (�|) and �|(F ) are inverse operations.

Note that (3.1) implies the cancellation laws

a ∧ b �| a ∧ c⇒ b �| c

and

a ∨ b �| a ∨ c⇒ b �| c.

The set F is nonempty if and only if > ∈ F and this corresponds to the relationship

⊥ �| >. (3.2)

Such F are filters if they are additionally closed under ∧: ∀a, b ∈ Fa ∧ b ∈ F . Equiv-

alently, F (�|) is a filter if (3.2) and

⊥ �| a and ⊥ �| b⇒ ⊥ �| a ∧ b (3.3)

for all a, b ∈ B. One can check that this is equivalent to

b �| c and d �| e⇒ b ∨ d �| c ∧ e.
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Note also the familiar dual to this,

b ≤ c and d ≤ e⇒ b ∧ d ≤ c ∨ e.

It is interesting to note that the quotient B/F of the boolean algebra B by a filter can be

obtained directly from �| = �|(F ) by redefining ≤ by using a rule that is in some sense

dual to (3.1): we define the new ≤′ by

x ≤′ y ⇔ ⊥ �| ¬x ∨ y.

Then ≤′ is evidently reflexive and transitive, and also if x ≤ y then ¬x ∨ y = > |� ⊥

by (3.2), so x ≤′ y. When we factor out by the equivalence relation x ≤′ y ∧ y ≤′ x we

obtain the quotient algebra B/F .

If relations such as �| correspond to filters, ultrafilters correspond to two-orders ≤,�|

satisfying the two laws above, (3.1), (3.2) and (3.3), such that

⊥ �| a or ⊥ �| ¬a (3.4)

for all a, or, equivalently,

⊥ �| a or a �| > (3.5)

for all a, b ∈ B. This in turn is equivalent (using (3.1), (3.2) and (3.3)) to the law

a �| b or a �| ¬b or b �| a or ¬b �| a

for all a, b ∈ B, and its easy to check (using (3.1), (3.2) and (3.3) again) that the four

possibilities here are mutually exclusive.

Thus two-orders for boolean algebras encode and generalise the idea of (ultra)filters.

This discussion leads us to consider the structure of spaces of weak orders and of

two-orders.
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3.2 Structures of two-orders

First we show that any space of weak orders compatible with a preorder has a rich struc-

ture.

3.2.1 Extending and reducing two-orders

There is a familiar construction that ‘linearises’ a partial order ≤ on X, by defining

x ≤′ y ⇔ x ≤ y ∨ (x ≤ a ∧ b ≤ y) so that ≤′ is a new partial order extending ≤ so that

a ≤′ b. (Here, and below, ‘extending’ and ‘reducing’ mean as sets of ordered pairs.) This

works provided the obvious necessary condition b 6≤ a holds. Several variations of this

result are possible, including analogous results for (pre-)two-orders that are useful lemmas

towards making a two-order determined. We now present several such methods available

for extending and reducing two-orders; these will be useful below, both in application of

two-orders and in understanding the rich structure in spaces of two-orders over a given

set or poset.

Proposition 3.2.1. Let (X,≤,�|) be a pre-two-order and a, b ∈ X. If a 6≤ b then there

is a unique minimal pre-two-order ≤′,�|′ on X extending ≤,�| such that b �|′ a. In fact

we may take ≤′ = ≤ and

x �|′ y ⇔ x �| y ∨ (x ≤ b ∧ a ≤ y).

Proof. Given a 6≤ b, define ≤′,�|′ to be as in the statement of the result. It is easy to

check axioms (c), (d) and (e).

Note that, by the axioms, if ≤′′,�|′′ extend ≤,�| with b �|′′ a then x �|′′ y holds

whenever x �|′ y, i.e. whenever x �| y or both x ≤ b and a ≤ y, so the above is necessary,

and thus the one given is the unique minimal such extension.

Proposition 3.2.2. Let (X,≤,�|) be a pre-two-order and a, b ∈ X. If a 6≤ b and a 6�| b

then there is a unique minimal pre-two-order ≤′,�|′ on X with a canonical definition

52



extending ≤,�| such that b ≤′ a. The relation ≤′ is antisymmetric if ≤ was.

Proof. Given a 6≤ b and a 6�| b, define

x ≤′ y ⇔ x ≤ y ∨ (x ≤ b ∧ a ≤ y)

and

x �|′ y ⇔ x �| y ∨ (x ≤ b ∧ a �| y) ∨ (x �| b ∧ a ≤ y).

Again, the cases given above are clearly necessary for b ≤′ a. Checking the axioms is

somewhat lengthy, but easy.

The �| relation acts in many ways as a dual to ≤. Given this it is not surprising that

it is sometimes easy to reduce it as well as to expand it.

Proposition 3.2.3. Let (X,≤,�|) be an (antisymmetric) two-order and a, b ∈ X. Then

there is a unique maximal two-order ≤′,�|′ on X with a canonical definition such that

≤′ = ≤ and �|′ ⊆ �| such that b 6�|′ a.

Proof. Given a, b ∈ X, define ≤′ = ≤ and

x �|′ y ⇔ x �| y ∧ (x 6≥ b ∨ a 6≥ y).

It’s easy to check b 6�|′ a, and the cases given above are clearly necessary for b 6�|′ a.

Checking the axioms is again easy.

For a somewhat more interesting example, we now make a ≤ b true in some two-order

in which b 6≤ a by reducing �| to ensure b 6�| a and expanding ≤. The actual definition

of ≤′,�|′ took some time to find as this is not simply a matter of combining previous

propositions.

Proposition 3.2.4. Let (X,≤,�|) be a two-order and a, b ∈ X with b 6≤ a. Then there

is a unique minimal/maximal two-order ≤′,�|′ on X with a canonical definition such that

≤′ ⊇ ≤ and �|′ ⊆ �| such that a ≤′ b and b 6�|′ a.
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Proof. The correct definition for ≤′,�|′ is

x ≤′ y ⇔ x ≤ y ∨ (x ≤ a ∧ b ≤ y)

(as before) and

x �|′ y ⇔ x �| y ∧ (y 6≤ a ∨ x �| b) ∧ (b 6≤ x ∨ a �| y).

The check that these conditions are necessary is straightforward (though considering 6�|′

rather than �|′ may be easier). Axiom checking is also straightforward, but lengthy.

This completes the list of such ‘simple’ extensions or reductions of two-orders, for if

X = {0, 1, 2, 3} with 0 ≤ 1 ≤ 3 and 0 ≤ 2 ≤ 3 then there is no canonical ≤′ ⊆ ≤ with

0 6≤′ 2.

These propositions show that there may be a number of ways of extending a two-order

to a maximal (i.e. determined) one, not just by adding information of the type ‘b �|′ a’.

We can also construct two-orders from chains of such orders, as the following propo-

sition shows.

Proposition 3.2.5.

1. If �| is a binary relation on X and (≤i : i ∈ I) a chain of strong orders (ordered by

⊆ or ⊇), such that for each i ∈ I, (≤i,�|) is a (pre-)two-order, then (limi ≤i,�|) is

also a (pre-)two-order.

2. If ≤ is a (pre-)order and W a set of weak orders over (X,≤) then (≤,
⋃
W ) and

(≤,
⋂
W ) are (pre-)two-orders.
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3. If (Ti : i ∈ I) is a chain of (pre-)two-orders, ordered by any of the relations

T ≤ S ↔ ≤T ⊆ ≤S ∧�|T ⊆ �|S

T ≤ S ↔ ≤T ⊇ ≤S ∧�|T ⊆ �|S

T ≤ S ↔ ≤T ⊆ ≤S ∧�|T ⊇ �|S

T ≤ S ↔ ≤T ⊇ ≤S ∧�|T ⊇ �|S

then limi Ti is also a (pre-)two-order.

Proof. Notice that in each case, the limit is obtained by taking unions, intersections, or a

combination of the two in an obvious fashion. For the first point, clearly the transitivity

and reflexivity axioms hold at limits of chains. If each order is antisymmetric and ≤ =⋃
i≤i, and x ≤ y ≤ x, then for some i, j, x ≤i y ≤j x; therefore if m = max(i, j),

x ≤m y ≤m x, so x = y. If ≤ =
⋂
i≤i, then for all i, x ≤i y ≤i x, so x = y if any of the

≤i are antisymmetric.

For (2), notice that since x 6�| x for all �|∈ W , the same holds for unions or inter-

sections of weak orders. Therefore it remains to check amphitransitivity. If x
⋃
W y ≤ z

then for some �|∈W , x �| z—hence x
⋃
W z. If x

⋂
W y ≤ z then for all �| ∈ W we

have x �| z, so x
⋂
W z. The cases where x ≤ y �| z are similarly checked.

For the final point, in each case the strong order ≤ is a preorder/partial order ac-

cordingly, by (1). By (2), the limit weak order �| satisfies ∀x (x 6�| x). This leaves

amphitransitivity: we check the case where x �| y ≤ z, and the other case is similarly

proved. Let (≤,�|) = limi Ti. In the first case, for some i we have x �|i y ≤i z, whence

x �| z. In the second case, y ≤i z for all i and x ≤j y for some j, so x �|j z. Since �|

is the union of all the �|i, x �| z. For the third case, x �|i y for all i and y ≤i z for all

i greater than some j, so for all i > j we have x �|i z. Therefore x �|i z for all i, and

in particular x �| z. For the final case, we have x �|i y ≤i z, hence x �|i z, for all i;

therefore x �| z.

Remark 3.2.6. While Proposition 3.2.5 can be used to prove, for example, the existence
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of a minimal two-order satisfying some property, in general that two-order will not be

definable from the old in the language Ltos, having nonlogical binary relation symbols ≤

and �|. The preceding propositions, however, show that in certain cases we can define

useful new orders (using a ∆0 formula), and as such we can better tell their effects on the

whole of X.

These results give us a lot of information about the space of orders on X, which will

be useful in proving a representation theorem below.

Definition 3.2.7. If (X,≤) is a preordered set then

WOrd(X,≤) = {�| : (≤,�|) is a two-order}.

Corollary 3.2.8. If (X,≤) is a preordered set then WOrd(X,≤) is a complete, bounded,

distributive lattice—and hence a Heyting algebra.

Since WOrd(X,≤) is a Heyting algebra, it is natural to enquire whether the implication

objects, �|1 → �|2, are definable in the same sense that the atomic extensions and

reductions of Propositions 3.2.1- 3.2.4 are:

Question 1. Supposing �|1 and �|2 are weak orders compatible with (X,≤), is it possible

to give a first-order definition of �|1 → �|2 in terms of the relations ≤, �|1 and �|2? In

particular, when is ¬�| definable in terms of �|?

3.2.2 A representation theorem for posets

We are now in a position to obtain a representation theorem for posets, using these spaces

of two-orders. Specifically, we mimic Stone’s theorem for boolean algebras; in this setting

orders �| compatible with an original partial order take the place of filters, much as we

discussed above. We define a ‘dual space’ using such orders, analogous to the Stone space

of ultrafilters over a boolean algebra. Then we prove that each nontrivial poset X embeds
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into the boolean algebra of clopen subsets of its dual space. This is in some sense a direct

generalisation of Stone’s theorem.

Throughout this section we assume (X,≤) is a nontrivial (i.e. nonempty, non-singleton)

partial order. As mentioned above, over a boolean algebra the filers correspond to a par-

ticular kind of order �|. Here we define several separate notions of dual space, which are

distinct in general but which coincide when our structure is a boolean algebra, or when

we require compatibility with the additional structure (∧, ∨, ¬) there.

Definition 3.2.9. The hom-space, and order space of X are, respectively, the sets

Hom(X, 2) = {ϕ : ϕ is a homomorphism X → 2};

WOrd(X) = {�| : (X,≤,�|) is a two-order};

As usual, 2 denotes the 2-point boolean algebra {⊥,>}, and a homomorphism is a function

ϕ such that x ≤ y → ϕx ≤ ϕy for all x, y in its domain.

Notice that in the case where X is a boolean algebra, the maximal filters are precisely

the ultrafilters (assuming some amount of choice). In this more general construction,

there is no requirement of compatibility with lattice operations (for example, filters are

closed under meet and join). The removal of this restriction has the effect that there is

precisely one maximal order, namely �| = 6≥ (in fact this is the ‘strict’ order from the

previous section).

Remark 3.2.10. The hom-space embeds into the order space, but the reverse is not

always true. Given ϕ ∈ Hom(X, 2), define an order �|ϕ by

x �|ϕ y ↔ ϕx = ⊥ ∧ ϕy = >.

It is easy to see that this order composes with the partial order on x, and further that no

x satisfies x �|ϕ x.
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To see that the reverse does not always hold, consider any two-ordered structure with

points x, y, z such that

x �| y �| z.

Then �| cannot arise from any ϕ : X → 2, since orders derived from homomorphisms split

X into a bipartite graph, the nodes of which are split by the preimages of > and ⊥, with

an edge x→ y precisely when x �| y.

Above we described how a particular order �| corresponds to a filter, and what those

orders corresponding to ultrafilters look like. Call an order �| ultra if

∀x∃y(y �| x ∨ x �| y).

We let

UOrd(X) = {�| : �| is an ultra-order on X} ∪ {∅}.

Remark 3.2.11. If X is a boolean algebra, this condition is equivalent to both of

∀x(⊥ �| x ∨ x �| >);

∀x(⊥ �| x ∨ ⊥ �| ¬x).

Ignoring closure under meets and joins, this is what makes a filter an ultrafilter: ∀x (x ∈

F ∨ ¬x ∈ F ).

There is also a topology on the dual spaces corresponding to that used in Stone’s

theorem.

Definition 3.2.12. The topology on WOrd(X) is that generated by the basic open sets

Ux = {�| : ∃y(y �| x)},

Vx = {�| : ∃y(x �| y)},
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and their complements. We endow the spaces Hom(X, 2) and UOrd(X) with the subspace

topology (we identify Hom(X, 2) with its image under the above-mentioned embedding).

Remark 3.2.13. In Stone’s theorem the Stone space topology is often described as being

generated by the sets

Bx = {F : x ∈ F},

where x is an element of the boolean algebra, and the F are ultrafilters. These Bx

correspond to the collection of ultra-orders �| for which ⊥ �| x (as outlined above (3.4)1).

Since in general we do not have a least element ⊥, we generalise this by requiring only

that some element y satisfies y �| x; therefore we may consider the Ux an abstraction of

the basic open sets Bx. Furthermore, in a boolean algebra we have

B¬x = {F : ¬x ∈ F},

corresponding to the collection of orders �| such that x �| >, or equivalently x �| y for

some y; that is, B¬x corresponds to Vx above. Since for an ultrafilter F , x ∈ F ↔ ¬x /∈ F ,

U c
x = Vx. In general, without a dual operator ¬ this does not follow, so we include the

sets U c
x and V c

x .

Lemma 3.2.14. The dual spaces Hom(X, 2) and UOrd(X) are totally disconnected.

Proof. This is an immediate consequence of our choice of basic open sets.

Theorem 3.2.15. The map U : x 7→ Ux is an embedding of X into the collection of

open sets in WOrd(X). Moreover, the induced maps onto the subspaces Hom(X, 2) and

UOrd(X) are embeddings onto the collections of clopen sets.

Proof. As mentioned above, Ux is open in WOrd(X), clopen in Hom(X, 2) and UOrd(X).

If x ≤ y then clearly Ux ⊆ Uy; suppose now that x 6≤ y. Define a map ϕ : X → 2 by setting

ϕz = > when z ≥ x, and ϕz = ⊥ otherwise. If u ≤ v and ϕv = ⊥, then v 6≥ x. Therefore

1Notice that we have do not, however, require closure under meets, since this extra structure is not
present in general.
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u 6≥ x, and so ϕu = ⊥. Therefore ϕ is a homomorphism, and the derived relation �|ϕ is

an ultra-order which makes y �| x; hence Ux 6⊆ Uy. Thus U is an embedding.

3.3 Two-ordered groups

We will now discuss the addition of compatible group structure.

Definition 3.3.1. A right two-ordered group is a group G equipped with a two-order

T = (≤,�|), such that

TR1 ∀x, y, z ∈ G (x ≤ y → zx ≤ zy);

TR2 ∀x, y, z ∈ G (x �| y → zx �| zy);

We also define left two-ordered groups to be groups having two-orders satisfying the ob-

vious left-sided analogues of TR1 and TR2, and two-ordered groups to be groups which

satisfy all four axioms.

A pre-(right/left) two-ordered group is a group G equipped with a pre-two-order which

satisfies the above axioms as appropriate.

The meaning of these additional axioms should be clear: they merely ensure compat-

ibility with the group multiplication. For simplicity we consider only two-ordered groups

here.

Remarks 3.3.2. • As above, any partially ordered group can be given a compatible

two-order, by taking �| to be any of 6≥, < or ∅. It is easily checked that these

are compatible with the group multiplication. In particular, every group has a

compatible two-order, and every partially ordered group admits a compatible weak

order.

• Notice that any subgroup H of the two-ordered group G will automatically be a

two-ordered group under the inherited relations.

60



Positive cones

It is useful to have specific notation for the classes {x : x ≥ 1} and {x : x |� 1}. We

define, for any two-ordered group G, the positive cones

P = PG = {x ∈ G : x ≥ 1};

Q = QG = {x ∈ G : x |� 1}.

It is well known that for a group G, the compatible preorders on G correspond to the

collection of normal submonoids. We can show the following.

Proposition 3.3.3. Let P,Q ⊆ G and define binary relation ≤,�| on G by

x ≤ y ↔ yx−1 ∈ P ;

x �| y ↔ yx−1 ∈ Q.

Then (G,≤,�|) is a two-ordered group if and only if

• P is a normal submonoid of G;

• Q is a normal subset of G not containing 1;

• PQ = QP = Q.

Proof. The normality of P and Q is equivalent to the compatibility of the corresponding

order with the multiplication in G. The transitivity of ≤ and the closure of P under

multiplication are equivalent, and 1 ≤ 1 if and only if 1 ∈ P . If G is a two-ordered group

then the first two conditions are true, and so the axiom T3 implies PQ = QP = Q as

1 ∈ P . Conversely if the three conditions are satisfied then x ≤ y �| z if and only if

zy−1 ∈ Q and yx−1 ∈ P , hence zx−1 ∈ Q, and x �| z. Analogously, if x �| y ≤ z then

x �| z, and therefore G is a two-ordered group.
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Definable closures

Let L1 be the language Ltos plus the constant symbol 1.

Proposition 3.3.4. Suppose G is a two-ordered group and for some L1-formula φ(x)

with free variable x, S = {x ∈ G : φ(x)}. Then SG = S and 〈S〉 P G.

Proof. Suppose ψ(x, y) is a quantifier-free L1-formula. We prove by induction on the

number of logical connectives in ψ that for all x, y, g in G, ψ(x, y) ↔ ψ(xg, yg). An

atomic such formula will be of the form uRv, where R is a binary relation among ≤, �|,

=; clearly the claim holds for these cases. If the claim is true of the formulas ψ0 and ψ1,

then clearly ψ0(x, y)∧ψ1(x, y), ψ0(x, y)∨ψ1(x, y), ¬ψ0(x, y) also satisfy. This proves the

claim.

Now suppose that φ(x) defines the class S, and find a logically equivalent formula θ(x)

which is in prenex normal form. Rename the bound variables so θ(x) becomes

Q0y0 Q1y0 . . .Qnyn ψ(x, y),

where the Qi are quantifiers and ψ is quantifier free. If g ∈ G is fixed then ψ(x, y0, . . . , yn)

is true if and only if ψ(xg, yg0 , . . . , y
g
n). By considering the universal and existential cases

separately, we see that, since conjugation by g is a bijection G → G, Qnyn ψ(x, y) is

equivalent to Qnyn ψ(xg, yg0 , . . . , y
g
n−1, yn). Proceeding in this way we can prove, by induc-

tion on the number of quantifiers in θ, that θ(x) is true if and only if θ(xg). Since g was

arbitrary and θ logically equivalent to φ, S is closed under conjugation. Since conjugation

by g is a homomorphism G→ G for each g ∈ G, it follows that 〈S〉 P G.

The same proof can apply to a similar proposition. Suppose we fix a two-ordered

group G, and take as our language Lrm the relations ≤,�|, along with unary function

symbols rg, representing right multiplication by g, for each g ∈ G, and constant symbol

1. Then any subset S of G which is definable by a unary Lrm-formula is normal in G (i.e.

closed under conjugation).
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Aside from the cases L1,Lrm there are still useful extensions to L1 for which propo-

sition 3.3.4 still holds. The obvious choices, however, fail. For instance we might consider

the addition of an inversion or (binary) multiplication function symbol, or the scalar mul-

tiplication functions above with an identity. The following example demonstrates that in

these cases proposition 3.3.4 fails.

Example 3.3.5. Let G = D6 = 〈x, y : x3 = y2; yxy = x2〉, and consider H = 〈y〉. Since

xyx−1 = yx /∈ H, H is not normal in G. However, we can define H using the equalities

H = {g : g = g−1}

= {g : ry(g) = 1 ∨ g = 1},

in the appropriate language L . Furthermore, the set {g : ∀h(ggh = h)} = {1, y, xy, x2y}

is not normal in G.

Although sets definable using multiplication and inversion are not necessarily normal,

we can generalise proposition 3.3.4 as follows.

Proposition 3.3.6. Let LS be the language L1 with additional unary relation symbol

S. Assume X ⊆ G is normal, and that X = {g ∈ G : S(g)}. Then for any LS-formula

φ(x), {g ∈ G : φ(g)} is normal in G.

Proof. We proceed as above. If ψ(x, y) we prove that G � ψ(x, y) ↔ ψ(x, yg) for all

g ∈ G. Suppose ψ(x, y) is an atomic LS-formula. In proposition 3.3.4 we covered all

possible cases where ψ is an L1-formula; we are left with the cases where ψ is S(x) or

S(y). Since X is normal, the claim also holds in this case. The remainder of the proof is

identical.

Using this result we can consider a general notion of closure. Suppose φ(x) is an LS-

formula with single free variable, and define φS(x) to be the formula obtained by replacing

all occurrences of S(v) in φ(x) by φ(v). So, for example, if φ(x) is ∃y (S(y)∧y ≤ x∧x ≤ y),
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then φS is the formula ∃y (φ(y) ∧ y ≤ x ∧ x ≤ y). We will call φ a closure formula on G

if, whenever {x : S(x)} is normal,

G � ∀g (S(g)→ φ(g)), and

G � ∀g ((φ(g)↔ φS(g))).

If C : P(G) → P(G) is any function then we say C is a definable closure if and only if

there is a closure formula φ such that whenever X = {x ∈ G : S(x)} is normal, C(X) =

{g ∈ G : φ(g)}.

Notice that, by definition, definable closures are closures, in that C(C(X)) = C(X)

and C(X) ⊇ X for all X.

In particular we define

X = {y ∈ G : ∃x ∈ X y ' x},

and

X̃ = {y ∈ G : ∃x, x′ ∈ X (x ≤ y ≤ x′)},

(the convex closure) are definable closures, and so in particular each preserves normality

of subsets of G. If g ∈ G we define C(g), for a closure C, to be C({g}).

3.3.1 Morphisms and quotients

We define morphisms as above: a promorphism of (pre-)two-ordered groups is a group

homomorphism which preserves both the strong order and the weak order; an amphimor-

phism of (pre-)two-ordered groups is a group homomorphism which preserves the strong

order and reflects the weak order. We also call a function ϕ a preembedding if it is both

preserving and reflecting of both orders. A bijective preembedding is an isomorphism.

If we are interested in quotients of two-ordered groups we need to consider the related

concepts of equivalence, morphism and normal substructure. There are various ways in
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which a quotient might be defined; we opt for a simple definition which is highlights the

dual nature of≤ and �|, but also makes every group quotient a quotient of pre-two-ordered

groups, and behaves well with respect to amphimorphisms. Let K be a normal subgroup

of the pre-two-ordered group G (clearly this is a necessary requirement), and attach the

inherited orders ≤,�|. We know that these groups will factor nicely, so it remains to

check that the quotient G/K inherits compatible orderings from G which preserve some

two-order structure. For all x, y ∈ G, set

xK ≤ yK ↔ ∃k ∈ K xk ≤ y; (3.6)

xK �| yK ↔ ∀k ∈ K xk �| y. (3.7)

Since K is normal in G the analogous conditions with xk replaced by kx are equivalent. If

xK ≤ yK then some k ∈ K satisfies xk ≤ y, and so xk 6|� y, implying xK 6�| yK; that is,

G/K satisfies T4. Since K is a group ≤ is a preorder on G/K. It should also be clear that

the compatibility axioms (T1 and T2) are satisfied. If xK ≤ yK �| zK then for some

fixed k1 and all k2 in K, xk1 ≤ y and yk2 �| z. Therefore xk1k2 ≤ yk2 �| z, implying

xk1k2 �| z, for all k2 ∈ K. If we are given k ∈ K, fix k2 = k−k1 ∈ K so xk = xk1k2 �| z,

and hence xk �| z. Since k was arbitrary, xK �| zK. The case xK �| yK ≤ zK is

essentially the same.

Since a quotient can be defined whenever K P G (as groups), it makes sense to call

any normal subgroup K endowed with the inherited orders normal, and write this simply

as K P G, using the standard notation from group theory.

Example 3.3.7. Let G = Z with the usual addition and ordering ≤, but with an empty

relation �|. The only subgroups of Z are of the form kZ. With the construction above,

Z/kZ inherits the trivial ordering: x ' y for all x, y. Notice that if we were to reverse

the quantifiers in our definitions of the inherited orders, we would have that no x satisfies

x ≤ x, and so ≤ would not be a preorder, and nor would Z/kZ be a two-ordered group.

Proposition 3.3.8. Let G be a pre-two-ordered group, and K P G. Then
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• G/1 is a two-ordered group;

• G/K is a two-ordered group if and only if K is convex.

Proof. If x1 ' 1 there are k1, k2 ' 1 such that 1 ' k1 ≤ x ≤ k2 ' 1; so x ' 1. For the

second statement, notice that G/K is partially ordered if and only if for all x,

xK ' K ⇐ x ∈ K. (?)

Since xK ' K if and only if there exist k1, k2 ∈ K such that k1 ≤ x ≤ k2, the implication

(?) is equivalent to the statement that K is convex.

3.3.2 Homomorphism theorems

A morphism theorem states that, given a morphism ϕ : G→ H, G/ kerϕ and imϕ are iso-

morphic via a canonical isomorphism ψ, defined in terms of ϕ. We present homomorphism

theorems for both kinds of morphism here.

Promorphisms

We can prove a similar, weaker result for promorphisms.

Theorem 3.3.9 (Promorphism theorem). Suppose G,H are pre-two-ordered groups, and

ϕ : G → H is a promorphism. Define ψ : G/ kerϕ → imϕ by ψ(x kerϕ) = ϕx as usual.

Then ψ is a (bijective) promorphism.

Moreover, ϕ is a preembedding if and only if both ψ is an isomorphism and kerϕ = 1.

Proof. We know that ψ is well-defined, and a group isomorphism; it remains to show ψ

is a promorphism. Let K = kerϕ and suppose xK ≤ yK. Then for some k ∈ K, xk ≤ y,

so ϕx = ϕ(xk) ≤ ϕy; that is, ψ(xK) ≤ ψ(yK). If xK �| yK then in particular x �| y, so

ϕx �| ϕy, and ψ(xK) �| ψ(yK).

Suppose in addition ϕ is a preembedding. Then ϕx = 1 implies x ' 1, so kerϕ = 1.

If ψ(xK) ≤ ψ(yK), i.e. ϕx ≤ ϕy, then x ≤ y, so xK ≤ yK. If ψ(xK) �| ψ(yK) then
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ϕx �| ϕy, so x �| y. If k ∈ K then k ' 1, so xk �| y. Therefore xK �| yK. This shows

ψ is an isomorphism.

Conversely, assume ψ is an isomorphism and kerϕ = 1. If ϕx ≤ ϕy then ψ(xK) ≤

ψ(yK), so xK ≤ yK. Since K = 1, this is equivalent to x ≤ y. The same argument

shows that ϕx �| ϕy implies x �| y. Therefore ϕ is a preembedding.

It may be that some reasonable condition equivalent to ψ being a preembedding can

be found, weakening the hypothesis of theorem 3.3.9. However this definition of morphism

also creates problems for projections onto quotients. We make the following definitions

to clarify the situation.

Definition 3.3.10. A game k is called

• neutral or I-neutral if ∀x ∈ G (x |� 1↔ x |� k);

• null (or perhaps II-neutral) if ∀x ∈ G (x ≥ 1↔ x ≥ k);

If all the elements in a subclass H are null/neutral in G then we say H is null/neutral in

G respectively.

A game k is T -neutral in G if and only if we cannot affect the T -strategies in any game

when multiplying by k. Notice that the null objects represent the zero games of Conway

et al., and the smaller class of neutral games have a similar interpretation, namely that

they can be composed with other games without affecting the first player’s strategies.

Proposition 3.3.11. Suppose G is a pre-two-ordered group. Let

Null(G) = {x : x is null};

Neu(G) = {x : x is neutral}.

Then Null(G) and Neu(G) are normal subgroups, with Null(G) = 1.

Proof. Suppose k is null. Then k ≥ k, so k ≥ 1. If x ≥ k−1 implies kx ≥ 1, and so kx ≥ k

by nullity of k; hence x ≥ 1. As k ≥ 1, if x ≥ 1 then x ≥ k−1. So k−1 is also null. In

particular k−1 ≥ 1 also, so k ' 1. Clearly every k′ ∈ 1 is null; therefore Null(G) = 1 P G.
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If k is neutral, then x |� k−1 is equivalent to kx |� 1, so to kx |� k, and hence

to x |� 1. Therefore k is neutral if and only if k−1 is neutral. Since NeuG is clearly

L1-definable, it is normal in G. Further, since this class is also closed under inverses and

clearly contains 1, it is a normal subgroup of G.

Proposition 3.3.12. Let K be a subgroup of the pre-two-ordered group G. Then K is

normal if and only if K is the kernel of a preordered group morphism (G,≤) → (H,≤).

If we know K is normal in G, then

• K is neutral if and only if the canonical projection π : G→ G/K is a promorphism;

• K is null if and only if the canonical projection π : G→ G/K is a preembedding.

Proof. If K P G as groups then K is the kernel of the projection π : G→ G/K. By our

definition of quotient, this projection is also a morphism of preordered groups. Clearly

the converse is true: if ϕ : G→ H is a preordered group morphism, then kerϕ is normal.

For the next point, we show that π is �|-monotonic if and only if K is neutral. If

π is �|-monotonic and 1 �| x then K �| xK, whence k �| x for all k ∈ K. If instead

x |� k ∈ K then xK |� K, whence x |� 1. Conversely, if K is neutral, then for k ∈ K,

k �| x is equivalent to 1 �| x, and so π is monotonic.

For the final point, if K P G is null then x �| y if and only if πx �| πy, for all x, y ∈ G.

Since nullity implies neutrality, π is a promorphism. If xK ≤ yK then for some k ∈ K,

xk ≤ y; but then x ≤ y since k ' 1. Hence π is a preembedding. If, conversely, π is a

preembedding and k ∈ K, then π(k) = 1 so k ' 1.

This result, along with the weak nature of our morphism theorem, suggests that an

alternative may be preferable. We choose to look at morphisms which exploit the apparent

duality between ≤ and �|, but are also fairer to Right. In keeping with the theory of

normal play in ONAG, we prioritise favourability for the second player.
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Amphimorphisms

Definition 3.3.13. Let G,H be two-ordered groups, and ϕ a homomorphism G → H.

We call ϕ an amphimorphism if both

whenever x ≤ y in G, ϕx ≤ ϕy; (3.8)

whenever ϕx �| ϕy in H, x �| y. (3.9)

Notice that if II prefers y to x, i.e. y ≥ x (if Left plays second) or y ≤ x (if Right

plays second) then this preference is preserved by every amphimorphism ϕ. Further, if I

does not prefer y to x, i.e. y 6|� x or x 6|� y, then I has no preference in the image of ϕ.

So favourability for II is preserved, while that for I is at worst the same. That is, these

morphisms favour the second player. Notice that amphimorphisms can be composed to

form amphimorphisms.

For any function ϕ and any class S we let ϕ[S] denote the class {ϕ(s) : s ∈ S}.

Proposition 3.3.14. If ϕ : G → H is a group homomorphism then ϕ is an amphimor-

phism if and only if

1. ϕ[PG] ⊆ PH ;

2. ϕ−1[QH ] ⊆ QG.

As with promorphisms, given an amphimorphism ϕ : G → H we can prove that the

induced group isomorphism ψ : G/ kerϕ → imϕ is an amphimorphism. Later we will

prove a more detailed result.

Theorem 3.3.15 (Amphimorphism theorem, part 1). Suppose ϕ : G→ H is an amphi-

morphism. Then the induced map ψ : G/ kerϕ → imϕ is an amphimorphism. Further-

more ϕ is a preembedding if and only if ψ is an isomorphism and kerϕ is null.

Proof. In light of the analogous theorem for promorphisms, we need only prove ψ preserves

�| in the backwards direction. Let K = kerϕ, and suppose xK 6�| yK. Then there exists
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k ∈ K such that xk 6�| y. Since ϕ is an amphimorphism ϕx = ϕ(xk) 6�| ϕy, i.e.

ψ(xK) 6�| ψ(yK).

We can also show that projections are amphimorphisms, a significant improvement on

the analogous result for promorphisms.

Proposition 3.3.16. Suppose K P G and π : G → G/K is the canonical projection.

Then π is an amphimorphism.

Proof. We have seen that π necessarily preserves ≤ in the forwards direction. If xK �| yK

then in particular x �| y, so π is an amphimorphism.

We aim to extend theorem 3.3.15 by identifying precisely when ψ is an isomorphism.

With this in mind we make the following definitions.

Definition 3.3.17. Let ϕ : G→ H be an amphimorphism. We call ϕ

• ≤-good if for all h ∈ imϕ, if h ≥ 1 there is g ∈ G such that g ≥ 1 and ϕg = h;

• �|-good if for all h ∈ imϕ, if h 6|� 1 there is g ∈ G such that g 6|� 1 and ϕg = h;

• good if ϕ is ≤-good and �|-good.

We can concisely state these definitions as

• ϕ is ≤-good if Pimϕ ⊆ ϕ[PG];

• ϕ is �|-good if Qc
imϕ ⊆ ϕ[Qc

G].

Proposition 3.3.18. Suppose ϕ : G → H is an amphimorphism, and K = kerϕ. Then

ϕ is

1. ≤-good if and only if

∀x, y ∈ G (ϕx ≤ ϕy → xK ≤ yK); (†)
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2. �|-good if and only if

∀x, y ∈ G (xK �| yK → ϕx �| ϕy). (‡)

Proof. Assume ϕ is ≤-good, and ϕx ≤ ϕy; then 1 ≤ ϕ(yx−1), so there is g ∈ PG such

that ϕg = ϕ(yx−1). Hence g−1yx−1 ∈ K, and

xK = (g−1yx−1)K xK = g−1yK.

As g−1 ≤ 1, g−1K ≤ K and so xK = g−1yK ≤ yK. This proves (†).

Conversely, suppose (†) holds and ϕu ≥ 1. Then by (†) uK ≥ K, i.e. there is a k ∈ K

such that u ≥ k. Therefore uk−1 ≥ 1, and ϕ(uk−1) = ϕu.

To see the second equivalence, proceed similarly. If ϕ is �|-good and ϕx 6�| ϕy in H,

ϕ(yx−1) 6|� 1, so there is g ∈ G such that g 6|� 1 and ϕg = ϕ(yx−1), proving (‡).

Conversely if (‡) is true and ϕu 6|� 1, then uK 6|� K, so for some k ∈ K, u 6|� k.

Therefore uk−1 6|� 1, and ϕ(uk−1) = ϕu.

Immediately we can extend our morphism theorem.

Theorem 3.3.19. Suppose ϕ : G → H is an amphimorphism. Then the induced group

isomorphism ψ : G/ kerϕ is an isomorphism of two-ordered groups if and only if ϕ is good.

There are various ways of closing the kernel kerϕ for a morphism ϕ : G → H. A

relatively useful closure, which is not generally definable without adding a function symbol

to our language, is given by

ker' ϕ = ϕ−1 “1.

Notice that

kerϕ ≤ kerϕ ≤ k̃erϕ ≤ ker' ϕ,

and that, for example, if ϕ is a preembedding then kerϕ = ker' ϕ.
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Another direction we might take in extending our morphism theorem is to alter the

induced morphism ψ. Suppose that G,H are groups and ϕ : G → H, K = kerϕ. If C

denotes any kind of closure which preserves normality, then CK P G and CK/K P G/K.

Therefore CK/K has an isomorphic image N P imϕ. By the isomorphism theorems,

there is an isomorphism

ψC : G/CK ∼= (G/K)/(CK/K) ∼= imϕ/N.

It may be interesting to consider whether, under appropriate restrictions, such a construc-

tion might provide a two-ordered group isomorphism, for some C.

Question 2. Suppose L ′ is an appropriate 2-sorted language with constant symbol 1,

unary function symbol f , unary relation symbol S, and binary relation symbols ≤,�|.

Let T be the theory stating that the elements of each sort form two-ordered groups, and

that f is an amphimorphism between them. Is there a nontrivial, or minimal, formula φ

in L ′ such that T proves both

• φ is a closure formula;

• the group isomorphism ψC described above is necessarily an isomorphism of two-

ordered groups?

3.3.3 Automorphisms of two-ordered structures

Groups of (pro- or amphi-) morphisms are also equipped with compatible two-orders.

Clearly the composition of two morphisms is also a morphism. Let AutG denote the

class of two-ordered group automorphisms of G (that is, the bijective preembeddings

G→ G). We now consider general two-ordered groups as collections of automorphisms.
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If ϕ, ψ : S → T are morphisms of two-ordered structures, we write

ϕ ≤ ψ ⇔ ∀s ∈ S (ϕs ≤ ψs);

ϕ �| ψ ⇔ ∃s ∈ S (ϕs �| ψs).

Proposition 3.3.20. If S is a two-ordered structure, then AutS is a two-ordered group

with these relations.

Proof. Clearly AutS is a group; we show that the composition operation is compatible

with the orders ≤,�|, and that these define a two-ordered structure.

Suppose that ϕ, ψ, ϑ ∈ AutS with ϕ ≤ ψ. If s ∈ S, we have ϕ(ϑs) ≤ ψ(ϑs), so

ϕ ◦ ϑ ≤ ψ ◦ ϑ. Also ϕs ≤ ψs so ϑϕs ≤ ϑψs; hence AutS satisfies axiom T1.

If ϕ �| ψ there is s ∈ S such that ϕs �| ψs; hence ϑ ◦ ϕ(s) �| ϑ ◦ ψ(s). Also, if

t = ϑ−1s, then ϕ ◦ ϑ(t) = ϕs �| ψs = ψ ◦ ϑ(t). Therefore AutS satisfies axiom T2.

If ϕ �| ψ ≤ ϑ, take s ∈ S such that ϕs �| ψs; then since ψs ≤ ϑs, ϕs �| ϑs and

ϕ �| ϑ. Similarly we can prove that ϕ �| ψ ≤ ϑ implies ϕ �| ϑ, and so AutS satisfies T3.

Finally, if ϕ ≤ ϑ then given any s ∈ S, ϕs ≤ ϑs and so ϕs 6|� ϑs, implying T4.

Remark 3.3.21. Here we could replace the existential quantifier with a universal one,

without affecting the above result. For simplicity here we keep a single definition; however,

in future we may prefer to (for example) use the ∀-variant for promorphisms.

Notice that our choice preserves the duality between ≤ and �|, which has been a

productive observation up to this point.

Theorem 3.3.22. Let G be a two-ordered group. Then the usual embedding, ϑ, which

takes g ∈ G to the map defined by ϑg(x) = xg, is an embedding of two-ordered groups. In

particular every two-ordered group arises as an automorphism group for some two-ordered

structure.

Proof. Indeed, ϑg ≤ ϑh if and only if xg ≤ xh for all x ∈ G, a condition equivalent to

g ≤ h. Similarly ϑg �| ϑh is equivalent to the existence of some x ∈ G such that xg �| xh,
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and so to g �| h.

3.4 Duality and determinacy

Much of the material covered in this chapter hints at some form of duality between the

orders ≤ and �|. In this section we show that this is indeed the case, and explicitly

describe how the duality works and can be used.

Many statements above regarding one order are accompanied by a similar statement

regarding the other. The duality is not always clear, since at times (for example) quanti-

fiers are reversed, and at others they remain the same. This is because the dual φ? of a

first-order formula φ is obtained by swapping and negating relations as follows. Assume

L is any first-order language containing the binary relation symbols ≤ and �|, and φ(v)

an L -formula. Then φ?(v) is obtained by swapping occurrences of ≤ or �| with 6�| or 6≤

respectively. The following points make this explicit.

• If φ(v) is t0(v) ≤ t1(v) or t0(v) �| t1(v), where the ti represent terms, then φ?(v) is

t0(v) 6�| t1(v) or t0(v) 6≤ t1(v) respectively. If φ(v) is t0(v) = t1(v) then φ? is φ.

• If φ(v) is ψ0(v)∧ψ1(v) or ¬ψ0(v), then φ?(v) is ψ?0(v)∧ψ?1(v) or ¬ψ0(v) respectively.

• If φ(v) is ∃w ψ(v, w), then φ?(v) is ∃w ψ?(v, w).

Examples 3.4.1.

• Suppose G is a two-ordered group and K P G. We work in an appropriately

expanded language L . Recall xK ≤ yK if and only if ∃k ∈ K (xk ≤ y); the dual

of this statement is

∃k ∈ K (xk 6�| y); (†)

if we define �| on G/K by declaring that xK 6�| yK if and only if (†) holds, then we

get the original definition of �|, since (†) is equivalent to the negation of the usual

definition.
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• Suppose G,H are two-ordered groups with ϕ : G → H any function, and we work

in an appropriate 2-sorted language, with a function symbol which we interpret as

ϕ. For ϕ to be an amphimorphism, we require both

∀x, y ∈ G (x ≤ y → ϕx ≤ ϕy); (3.10)

∀x, y ∈ G (ϕx �| ϕy → x �| y). (3.11)

The second statement is clearly equivalent to the sentence

∀x, y ∈ G (x 6�| y → ϕx 6�| y),

which is dual to statement (3.10) above.

• The formula φ(k) which states that k is neutral is clearly equivalent to the formula

∀x ∈ G (1 6�| x↔ k 6�| x),

say ψ(k). Notice that ψ?(k) is the statement that k is null.

• It should be clear that the notions of ≤-good and �|-good are also dual.

Notice that even the axioms of two-ordered groups exhibit some duality. To illustrate

this point further we give an alternative axiomatisation to that given above, which is

equivalent when G is a group:

T1 ∀x, y, z ∈ G
(
(x ≤ y ↔ zx ≤ zy) ∧ (x ≤ y ↔ xz ≤ yz)

)
;

T2 ∀x, y, z ∈ G
(
(x 6�| y ↔ zx 6�| zy) ∧ (x 6�| y ↔ xz 6�| yz)

)
;

T3 ∀x, y, z ∈ G
(
(x �| y ∧ y ≤ z) ∨ (x ≤ y ∧ y �| z)→ x �| z

)
;

T4 ∀x ∈ G (x 6�| x);

T5 ∀x, y, z ∈ G (x ≤ y ∧ y ≤ z → x ≤ z);
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T6 ∀x (x ≤ x).

It should be clear that these axioms are equivalent to those for pre-two-ordered groups.

We remark that T1 and T2 are dual to one another, and also T4 is dual to T6, the

statement that ≤ is reflexive.

We aim to show that the remaining axioms (T3 and T5) are also dual to statements

worth consideration. First, however, we require the following definition.

Definition 3.4.2. Let S be a two-ordered group. An element g of G is determined if we

have

(g ≤ 1 ∨ 1 �| g) ∧ (g �| 1 ∨ 1 ≤ g).

We denote the formula above by det(g).

Given our usual interpretation of ≤ and �|, a determined game x is one for which one

player will always be favoured, regardless of who moves first (although precisely which

player is favoured may depend on who moves first). Clearly such objects are of interest in

game theory, and in particular we remark that the wellfounded games considered in ONAG

and Winning Ways are determined. In fact, as we aim to show, this kind of determinacy

is a natural concept to study in the logical and algebraic theory of two-ordered structures.

In particular, we can prove the following. Let Det denote the statement ∀x det(x).

Proposition 3.4.3. Let G be a two-ordered group. Then G � Det if and only if G � T3?.

Proof. Suppose G is determined. If x 6�| y 6≤ z, i.e. x ≥ y |� z, then x |� z so x 6≤ z.

Similarly x 6≤ y 6�| z implies x 6≤ z, proving T3?.

Conversely if G � T3? and x 6≤ 1 6�| x in G, then x 6≤ x, a contradiction. Thus x ≤ 1

or 1 �| x. Similarly we prove x �| 1 ∨ 1 ≤ x, and so x is determined.

Notice that the dual of T5 above is the statement that �| is the complement of a tran-

sitive relation on G, which is implied by determinacy. An immediate consequence of this is

that, if ThTOG is the theory of two-ordered groups, then ThTOG + Det is self-dual, i.e. for

all Ltog-sentences σ, σ ∈ ThTOG ∪{∀x det(x)} if and only if σ? ∈ ThTOG ∪{∀x det(x)}.
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Question 3. Let Ltog be the language of two-ordered groups, i.e. L1 with additional

binary function symbol · and unary function symbol −1. Assuming G is a determined

two-ordered group, is Th(G; Ltog), the theory of G in the language Ltog, self-dual?

If the answer is positive, then the implication is an equivalence, by proposition 3.4.3.

Measuring determinacy in two-ordered structures

Given the applications of two-ordered structures to game theory, it would be very useful

to have some measure of determinacy in arbitrary structures, which works similarly to

the commutator subgroup (for example) in group theory.

Question 4. Is there a definable ‘determinator’ (sub-) structure which indicates in some

sense how determined a two-ordered structure/group is?

One such possibility comes from our representation theorem for posets. Recall that

WOrd(X,≤) denotes the class of relations �| such that (X,≤,�|) is a two-ordered struc-

ture. For �| ∈WOrd(X,≤), define

WOrd(X;�|) = {�|′ ∈WOrd(X,�|) : �|′ ⊇ �|}.

If (X,≤,�|X) is a two-ordered structure, then WOrd(X;�|) is trivial (i.e. equal to {�|X})

if and only if X is determined. Therefore WOrd(X;�|) itself gives an indication of how

determined X is, but we might also consider two-ordered groups built on top of this

structure, such as

X∗ = Hom(X,WOrd(X;�|))

(admitting some choice of poset, pro- or amphimorphism as appropriate). Proposi-

tions 3.2.1-3.2.4 may be useful here.
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CHAPTER 4

GAME CATEGORIES

In this chapter we discuss the generalisation of Conway games using categories; this

is common practice since category theory provides an excellent framework for studying

games (in particular, arrows are often useful for describing strategies, which can be of

more interest than the games themselves). As such, much of the preliminary work has

been done; see in particular Joyal’s article [51], where it was first demonstrated that

Conway games could be realised as a monoidal category, and the more recent work of

Cockett et al. [12], where this is extended to accommodate first-player strategies using

module categories.1

Once we have introduced our notation we will focus on generalising the work of Chap-

ter 3 and also laying the foundation for Chapter 5.

4.1 Preliminaries

If A is a category then Obj(A) and Arr(A) will denote the object and arrow classes

respectively. Our categories will be two-sorted structures satisfying an appropriate first-

order theory in a language providing the relevant symbols (in particular the domain and

1We use ‘module’ in the sense of Cockett et al. [12]. Other terminology for these objects (or equivalent
notions) includes ‘bimodule’, ‘profunctor’ and ‘distributor’; see in particular the nlab page on profunc-
tors [78]. Below we have chosen to define these objects explicitly for the sake of clarity. Further, in our
definitions there is no reliance on the category of sets; since we frequently consider proper classes, we will
also benefit by avoiding this limitation.
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w
m� // x

h

��
v

g

OO

hmg� // y

k

��
u

f

OO

khmgf� // z

Figure 4.1: Composition with module arrows.

codomain functions). Occasionally this theory will be assumed to provide an appropriate

choice axiom. We will also admit numerous categories of sets; typically these categories

may be assumed to be ZF-like in nature, though we do not rule out other kinds of sets

(in particular ill-founded sets will be of interest). Typically a category A will be denoted

as a pair (Obj,Arr), where Obj is the object class and Arr is the arrow class.

Definition 4.1.1. If A is a category, a module M is a class of arrows m (written m : x −7→ y

or x
m−7→ y) such that the following axioms hold.

• If f : a→ b and g : b −7→ c there is a composite arrow g ◦ f : a −7→ c in M ;

• if g : a −7→ b and f : b→ c there is a composite arrow f ◦ g : a −7→ c in M ;

and this composition makes the diagram in Figure 4.1 commute.

Since the composition of arrows in a module category is associative, we will avoid

bracketing where the meaning of an expression is clear.

Module categories will typically be denoted as triples (Obj,Arr,Mod), where the first

two items form the underlying category, and the final item is the module. Given a module

category A, we will use Mod(A) for the module of A. If a, b ∈ Obj(A), we use A[a, b] and

A(a, b) to denote the classes of arrows a→ b and arrows a −7→ b respectively.

4.2 Game categories

The notion of ‘game category’ is often used. The objects we reserve this term for are

merely those required in order to generalise the work of Chapter 3.
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Definition 4.2.1. A game category is a module category A such that

∀a ∈ A ¬(a −7→ a).

Notice that our game categories form a strict subclass of the collection of module

categories discussed by Cockett et al. [12]. We will, however, be discussing additional

notions of functor for this class which correspond to the amphimorphisms of Chapter 3.

Since normal arrows (that is, elements of Arr(A)) are intended to represent second-

player strategies between games (in the sense of Joyal [51], when there is sufficient struc-

ture), and module arrows represent first-player strategies (in the sense of Cockett et

al. [12]), we will often refer to them as such. We will also refer to the elements of Arr(A)

as strong arrows and elements of Mod(A) as weak arrows, using the terminology of Chap-

ter 3.

The definition we have given for game categories has various equivalent characterisa-

tions. One such definition is that A is enriched over some category S of sets and that

there is a profunctor or distributor Φ: Aop × A → S, such that Φ(a, a) is always empty.

In fact, this is essentially the definition of an enriched game category given below.

4.2.1 Functors of game categories

As in chapter 3 we define two different types of morphism. In this case, however, the

theory of amphimorphisms breaks down with the discussion of natural transformations.

We begin with the analogue of promorphisms, which are precisely module functors.

Promorphisms

Definition 4.2.2. Let A,B be game categories. A module functor from A to B is a

functor F : A→ B of the underlying categories which also assigns to each module arrow

80



g : x −7→ y in A a module arrow Fg : Fx −7→ Fy in B such that whenever

w
f−→ x

g−7−→ y
h−→ z

in A, we have

F (h ◦ g ◦ f) = Fh ◦ Fg ◦ Ff

in B.

We let GC denote the collection of game categories, and consider promorphisms

F : A→ B as arrows between objects A,B in GC. It is easily checked that this forms a

category.

Definition 4.2.3. If A,B ∈ GC and F,G : A → B are module functors then a natural

transformation τ : F → G of the underlying functors is a strong transformation in GC if,

whenever m : x −7→ y in A, the diagram in Figure 4.2 commutes.

Strong transformations are simply the appropriate 2-cells for GC; hence we will occa-

sionally call them natural transformations, when it is clear that the extra module structure

is being used.

Fx
τx //

Fm_
��

Gx

Gm_
��

Fy τy
// Gy

Figure 4.2: A natural transformation of module functors.

It is routine to show that the composition of strong transformations is also a strong

transformation; moreover this composition is associative, since the underlying functions

remain the same. Therefore for game categories A and B the homset GC[A,B] is also a

category.

There are many reasons for us to study a corresponding notion of module arrow

in the category GC[A,B]; for instance, if we wish to embed a game category A onto
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some endomorphism space, this can only be done if there is a sensible notion of module

transformation. This will become more apparent when we consider additional monoidal

structure. As with two-ordered structures there are (at least) two sensible notions of

module transformation. For the sake of simplicity here we choose the existential analogue.

Notice this is ‘dual’ to the notion of strong transformation, in the sense of Chapter 3.

Definition 4.2.4. Suppose F,G : A→ B are promorphisms of game categories. A weak

transformation µ : F −7→ G is a module arrow µ : Fx −7→ Gx, for some x ∈ A.

Composition of weak and strong transformations is performed in the obvious way: if

F
τ−→ G

µ−7−→ H
η−→ K,

then µ is a weak arrow Gx→ Hx for some x, and we define η ·µ · τ to be the weak arrow

ηxµτx.

Proposition 4.2.5. Let A,B ∈ GC. Then GC[A,B] is a game category, with strong

transformations as arrows and module arrows as above.

Proof. To see GC[A,B] is a category we must prove that transformations compose ap-

propriately. Suppose

F
τ−→ G

η−→ H,

and let η · τ be the usual composite transformation. If g : x −7→ y in A then both squares

of the rectangle in figure 4.3 commute, and hence the entire diagram commutes. Thus

Fx
τx //

Fg_
��

Gx
ηx //

Fg_
��

Hx

Hg_
��

Fy τy
// Gy ηy

// Hy

Figure 4.3: Composition of natural transformations in GC.

η · τ is a natural transformation F → H. It should be clear that the composition of

natural transformations with weak transformations results in a weak transformation, and

moreover that this composition is associative.
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Amphifunctors

We now address the issue of generalising amphimorphisms from chapter 3. This is not

quite so simply done as with promorphisms, and while we can give a useful notion of nat-

ural transformation, it is not immediately clear that our definition of weak transformation

cannot be improved.

Definition 4.2.6. Let A,B be game categories, and suppose F : A → B is a functor of

the underlying categories. Assume there is a map
←−
F such that whenever arrows

w
f // x y

h // z

Fx
g� // Fy

exist in A and B,
←−
Fx,yg is an arrow x −7→ y in A satisfying

←−
Fw,z(Fh ◦ g ◦ Ff) = h ◦

←−
Fx,y(g) ◦ f (4.1)

(see Figure 4.5). Then we call (F,
←−
F ) an amphifunctor.

An amphifunctor F as above ensures the existence of an arrow
←−
Fx,yg, as in Figure 4.4.

Moreover, the function
←−
F (denoted in both figures by ⇒ arrows) commutes with the

functor F ; see Figure 4.5.

x
←−
Fx,y(g)� // y

Fx
g� // Fy

KS

Figure 4.4: An amphifunctor acting on a weak arrow.

In practice we will sometimes denote both maps simply by F . Since the respective

images are in separate categories and the domains distinct, this should not cause confusion.

We will also occasionally omit the subscript x, y when x and y are clear from the context.

Notice that in particular if A,B are two-ordered structures then the amphifunctors A→ B

are precisely the amphimorphisms from A to B.
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w
f
//

�h◦
←−
Fw,z(g)◦f

��
x
←−
Fx,y(g)� // y

h
// z

Fw
Fh
//

�F (h)◦g◦F (f)

  
Fx

g� // Fy
Fh
// Fz

6>

7?

Figure 4.5: Commuting diagram for an amphifunctor

Proposition 4.2.7. The collection GCam, with object class GC and amphifunctors as

appropriate arrows, forms a category.

Proof. We must prove that the composition of two amphifunctors is also an amphifunctor,

and that this composition is associative. Assume

A
F−→ B

G−→ C

in GCam. If we have w, x, y, z ∈ A satisfying

w
f // x y h // z

GFx
g� // GFy

then

←−
Gw,z(GFh ◦ g ◦GFf) = Fh ◦

←−
Gx,yg ◦ Ff,

so that

←−
GFw,z(GFh ◦ g ◦GFf) =

←−
Fw,z(Fh ◦

←−
Gx,yg ◦ Ff)

= h ◦
←−
Fx,y ◦

←−
Gx,yg ◦ f

= h ◦
←−
GFx,yg ◦ f.

Therefore GF is an amphifunctor.
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Now suppose

A
F−→ B

G−→ C
H−→ D

in GCam. We know that the underlying functor composition is associative. Further, for

x, y ∈ A,

(
←−−−−
(HG)F )x,y =

←−
Fx,y ◦ (

←−−
HG)Fx,Fy

=
←−
Fx,y ◦

(←−
GFx,Fy ◦

←−
HGFx,GFy

)
=
(←−
Fx,y ◦

←−
GFx,Fy

)
◦
←−
HGFx,GFy

=
←−
GFx,y ◦

←−
HGFx,GFy

=
←−−−−
H(GF )x,y.

Therefore the composition of amphifunctors is associative.

Henceforth we shall occasionally omit the subscript x, y for the map
←−
F . Otherwise the

notation can be cumbersome, and in all cases it should be clear from the context which

objects x and y are intended.

Since GCam is a category, we should expect that GCam[A,B] is a category for all

objects A,B in GCam. With this in mind we make the following definition of appropriate

natural transformation.

Definition 4.2.8. Suppose F,G : A → G in GCam, and that τ : F → G is a natural

transformation of the underlying functors. Assume also that whenever g : Gx −7→ Gy in

imG, there is an arrow ←−τx,y(g) : Fx −7→ Fy, satisfying

←−
Gx,y(g) =

←−
Fx,y(

←−τx,y(g)).

Then (τ,←−τ ) is called an amphitransformation.

Since this definition is much less conventional than the analogue for promorphisms,

some explanation is required. Consider τ as above in terms of advantage for the second
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player. If II has a strategy in F , τ allows him to transfer this strategy to imG, in such a

way that, regardless of when (i.e. for which game x) the transfer takes place from Fx to

Gx, composition of strategies will always be the same. Dually, if I has a strategy in the

image imG, then he has a strategy in imF which corresponds to the same root strategy

in A; that is, τ ensures that Player I will fare no better playing in imG than in imF .

Amphitransformations benefit the second player just as amphimorphisms do

The following is easily proved.

Proposition 4.2.9. Let A,B be game categories. Then GCam[A,B], the collection of

amphifunctors A→ B, is a category with amphitransformations as arrows.

4.3 Extending and reducing game categories

Here we generalise the problem of extending and reducing from Chapter 3. The following

is proved similarly to Proposition 3.2.5.

Proposition 4.3.1.

1. If M is collection of weak arrows on A and (Arri(A) : i ∈ I) a chain of arrow classes

making A a category, such that for each i ∈ I, M is a module on (A,Arri(A)), then

M is a module on limi(A,Arri(A)).

2. If A is a category and M a class of modules on A, then
⋃
A,
⋂
A are modules on

A.1

3. If (Ai)i∈I is a chain of module categories on the same object space, ordered by

inclusion of arrow classes and modules (any combination; see Proposition 3.2.5),

then limiAi is also a module category.

Again, this proposition is useful but its value is limited by the lack of definability. We

can also generalise the results in Chapter 3 where two-orders were extended and reduced

1We assume that, whenever M1,M2 ∈ M intersect, their compositions on the intersection coincide;
otherwise the arrows must be considered distinct.
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by ∆0-formulas. We can extend these results to the case of categories, but notice that

in this case we sometimes must quantify over arrows—obtaining Π1-, rather than ∆0-,

definable modules and arrow classes.1 If M is a module, we write M : a −7→ b to indicate

that there exists m ∈M such that m : a −7→ b.

Proposition 4.3.2. Let A be a game category, such that b 6→ a and b 6−7→ a. Then there

is a least module M ⊇ Mod(A) over the category (Obj(A),Arr(A)) such that M : b −7→ a.

Further, no a will have a module arrow a −7→ a in M .

Proof. If

v
f−→ b and a

g−→ w,

define a new weak arrow (f : g) : u −7→ v. For strong arrows h, k in A such that

u
k−→ v

f−→ b and a
g−→ w

h−→ x,

define h ◦ (f : g) ◦ k = (f ◦ k) : (h ◦ g). Clearly this composition is associative, and so

M = Mod(A) ∪ {(f : g) : cod(f) = b ∧ dom(g) = a}

is a module over (Obj(A),Arr(A)). If M : u −7→ u, then for some strong arrows f, g we

have (f : g) : u −7→ u, i.e.

u
f−→ b and a

g−→ u,

hence f ◦ g : a→ b, a contradiction. Hence (Obj(A),Arr(A),M) is a game category.

Finally, if N is a module also extending A in this way, select any n : b −7→ a in N . Define

F to be the identity functor on the underlying category of A, and F (f : g) = g ◦ n ◦ f for

appropriate arrows f, g; clearly F embeds M onto N .

Proposition 4.3.3. Suppose A is a game category with no arrows a→ b or a −7→ b. Then

there is a least pair L,M such that (Obj(A), L,M) is a game category with L : b → a,

1If we augment the language by adding operators A[−,−] and A(−,−) for the arrow classes and an
appropriate enrichment, however, these definitions will all be ∆0.
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L ⊇ Arr(A), and M ⊇ Mod(A).

Proof. If f : u→ b and g : a→ v, let f : g be a new arrow u→ v. If either

u
f−→ b and a

g−7−→ v

or

u
f−7−→ b and a

g−→ v

we let f : g evaluate to a new, unique weak arrow u −7→ v. As above, composition is

defined by

h ◦ (f : g) ◦ k = (f ◦ k) : (h ◦ g),

and is associative. If (f : g) : u −7→ u, then f ◦ g : a −7→ a, a contradiction. Hence

(Obj(A), L,M) is a game category.

If L′, M ′ also extend A in this way, pick any L′-arrow k : b → a, and define an

embedding F by setting Fu = u for objects u; Ff = f for A-arrows; and F (f : g) =

g ◦ k ◦ f . Clearly F is a faithful functor.

Proposition 4.3.4. Suppose A is a category and M a module on A, with m : a −7→ b in

M . Then there is a greatest, Π1-definable module N ⊆M such that ¬(N : a −7→ b).

Proof. Let

N = {g ∈M : A[a, dom(g)] = ∅ ∨ A[cod(g), b] = ∅}.

We need only check amphi-transitivity, since clearly ¬(N : x −7→ x) for all x ∈ A. Suppose

t
f // u

g� // v h // w.

If k : a→ t, then fk : a→ u; if k : w → b then kh : v → b. So A[a, t] = ∅ or A[w, b] = ∅.

So N composes with Arr(A). Further, any module N ′ ⊆ M for which ¬N ′ : a −7→ b must

clearly be contained in N .

Under certain conditions it will be possible to remove an individual arrow g : a −7→ b
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while leaving other arrows a −7→ b intact. However the above Proposition will suffice for

our needs.

Proposition 4.3.5. Let A be a game category and a, b ∈ A such that b 6−7→ a and b 6→ a.

There are L ⊇ Arr(A) and M ⊆ Mod(A) such that L : a → b and (Obj(A), L,M) is a

game category.

Proof. If f : x→ a and g : b→ y, define f : g as usual. Let

L = Arr(A) ∪ {(f : g) : cod(f) = a ∧ dom(g) = b},

and

M =

f ∈ Mod(A) :
(A[cod(f), a] = ∅ ∨ A(dom(f), b) 6= ∅) ∧

(A[b, dom(f)] = ∅ ∨ A(a, cod(f)) 6= ∅)

 .

As above, (Obj(A), L) is a category. Suppose f ∈ M , and g, h ∈ Arr(A). Then

cod(hfg) = cod(h) and dom(hfg) = dom(g). If A[cod(h), a] 6= ∅ then A[cod(f), a] 6= ∅,

hence A(dom(f), b) 6= ∅, which implies A(dom(g), b) 6= ∅. Similarly A[b, dom(f)] = ∅⇒

A[b, dom(g)] = ∅ and A(a, cod(f)) = ∅ ⇒ A(a, cod(h)) = ∅, so that h ◦ f ◦ g ∈ M . If

f ∈ L \Arr(A) then we can prove h ◦ f ◦ g ∈M similarly. Therefore (Obj(A), L,M) is a

game category.

For a category A, let Modules(A) denote the class of modules over A. As in chapter 3

we equip this space with a topology generated by the sets

Ux = {M ∈ Modules(A) : ∃y (M : y −7→ x)},

Vx = {M ∈ Modules(A) : ∃y (M : x −7→ y)}

and their complements. Let ClopMod(A) be the category of clopen subsets of Modules(A),

with functions as arrows.

In Chapter 3 we showed the map U : x 7→ Ux is an embedding from a pre-ordered

structure X to the space of clopen sets of weak orders on X. We can turn U into a
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functor as follows. Suppose f : a → b in A, and M is a module on A. We define the

module fM by

fM = N ∪ {f ◦m : m ∈M, cod(m) = a}, (4.2)

where N is the greatest module contained in M for which ¬(a −7→ b).

Proposition 4.3.6. If f : a → b in A and M is a module over A, then fM is also a

module over A.

Proof. Clearly no g ∈ fM has dom(g) = cod(g). Let N be as in (4.2). To see amphitran-

sitivity, suppose

u
g→ v

fm−7−→ b
h→ w,

where m ∈M , i.e.

u
g→ v

m−7−→ a
f→ b

h→ w.

Since ¬(M : a −7→ a), there cannot be an arrow a→ u, hence A[a, dom(hmfg)] = ∅, and

hmfg ∈ N . Therefore fM is closed under composition with strong arrows in A.

If f is an arrow a → b in A, define Uf to be the function M 7→ fM for modules M

over A. It is easily shown that U(g ◦ f) = Ug ◦ Uf for arrows f, g in A. Hence U is an

injective functor A→ ClopMod(A). In general U will not be faithful, however.

Theorem 4.3.7. If A is a category there is an injective functor from A→ ClopMod(A).

4.4 Products of game categories

4.4.1 Products in GC

Products of game categories deserve discussion, since different constructions are required

for different purposes. In some algebraic contexts, it is correct to assume that the obvious

categorical product of two game categories A and B will suffice. That is, to use the

usual category with pairs of arrows as morphisms, and taking pairs of module arrows as
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the product module arrows. However, as the next example demonstrates, this notion of

product does not always give the most appropriate first-player structure.

Example 4.4.1. In a monoidal categoryM the tensor product⊗ is taken to be a bifunctor

from M ×M to M , subject to certain constraints. This method does not achieve the

desired result when applied to game categories. Consider, for example, a space G of

partisan games containing 0 and 1 (cf. ONAG [13], Winning Ways [5]). If we view G as

a monoidal category equipped with a module for first-player strategies, then a bifunctor

F : G × G → G

will have F (0, 0) −7→ F (∗, ∗) (this follows from the fact that 0 −7→ ∗). Therefore F (x, y)

cannot represent x+ y.

We address this problem by introducing an alternative module structure on the product

category A×B.

Definition 4.4.2. Let A,B be game categories. The exclusive-or product, or xor-product

for short, is the category A xor B with objects and normal arrows as in A×B, but with

module arrows as follows.

• If f : x1 → y1 and g : x2 −7→ y2 then the pair (f, g) : (x1, x2) −7→ (y1, y2).

• If f : x1 −7→ y1 and g : x2 → y2 then the pair (f, g) : (x1, x2) −7→ (y1, y2).

The or-product or ∨-product, denoted A ∨ B, has objects and arrows as in A × B and

A xor B, but includes all module arrows from both A×B and A xor B.

In each product the composition of module arrows and standard arrows is defined

pointwise, in the obvious way (see Proposition 4.4.3 below).

Proposition 4.4.3. Each of the above notions of product forms a game category.

Proof. Assume A,B are game categories. We know that A × B is a category, and so

it remains to show that the additional module structure is compatible in each case. It
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should be clear that we never have x −7→ x. Suppose that

w
f−→ u

g−7−→ v
h−→ x (4.3)

in A × B, where each object and arrow is a pair consisting of something from A and

something from B (so, for instance, w = (wA, wB) and f = (fA, fB)). Then we have

wA
fA−→ uA

gA−7−→ vA
hA−→ xA;

wB
fB−→ uB

gB−7−→ vB
hB−→ xB.

Hence the only sensible definition for h◦g◦f is to take the pair (hA◦gA◦fA, hB ◦gB ◦fB).

Since this composition is associative in each component, it too is associative.

In the case of A xor B, if equation 4.3 holds then we have either

wA
fA−→ uA

hA−→ vA
hA−→ xA;

wB
fB−→ uB

hB−7−→ vB
hB−→ xB;

or the variant where hA is a module arrow and hB normal. In the former case, the obvious

definition takes hA ◦hA ◦fA as the (normal) arrow in A, and hB ◦hB ◦fB as the (module)

arrow in B. Analogously we define the composite for the case where hA is the module

arrow. Again, since this operation is component-wise associative, A xor B forms a game

category.

Finally, in the case of A∨B, we already have enough information to demonstrate that

the module is compatible, since the two cases inherited from A × B and A xor B are

disjoint.

These three constructions easily generalise to products of arbitrary classes A ⊆ GC.

In particular GC has full products.

It is important to note that the or- and exclusive-or-products are not products in the

category-theoretic sense: they do not in general even admit projections, as shown in the
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following example.

Example 4.4.4. Let A = {1A, a} and B = {1B, b} be two-element game categories, with

game category structure as depicted in figure 4.6. The true product A × B is then the

game category of four objects, with no non-identity arrows, while the or- and exclusive-

or-products are equal to the game category depicted in figure 4.7. Notice that there is no

possibility of projections from A xor B to A and B.

1AOO

��

1BOO
_
��

a b

Figure 4.6: Two-element game categories.

(1A, 1B)OO

��

99
3

yy

ee



%%

(1A, b)ee
�

%%

oo //(a, b)99
4

yy
(a, 1B)

Figure 4.7: The product A xor B.

4.4.2 Products in GCam

Definition 4.4.5. Let A be a class of game categories. We define a product
∏amA as

follows. Take

• Obj(
∏amA ) =

∏
A ;

• Arr(
∏amA ) =

∏
A∈A Arr(A);

• Mod(
∏amA ) =

∑
A∈A Mod(A),

where
∑

A∈A Mod(A) denotes the disjoint union of modules. The composition of normal

arrows is defined in the obvious way, with (g ◦ f)(A) = g(A) ◦ f(A). If g : s −7→ t in
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∏amA then g corresponds to a (unique) arrow gA : s(A) −7→ t(A) in some A, and we

define f ◦ g = f(A) ◦ gA, gA ◦ f = g ◦ f(A).

In practice we will avoid writing gA to distinguish the module arrow in A from that

in
∏amA .

Suppose P denotes the projection in GC from
∏amA to some A ∈ A . If g : a −7→ b

in A, then whenever x, y ∈ A with x(A) = a and y(A) = b, we have g : x −7→ y in
∏amA ;

therefore we can set
←−
Px,y(g) as the arrow g in

∏amA . It is easily checked that this makes

P into an amphimorphism.

Proposition 4.4.6. If A ⊆ GC then
∏amA is the product of A in GCam.

Proof. Assume FA : S → A for all A ∈ A , and let M : S →
∏amA be the mediating

arrow for the product in the underlying category GC; that is, for s ∈ S, Ms(A) = FAs,

and for f : s→ t in S, Mf(A) = FAf . We show M can be equipped with a map
←−
M such

that (M,
←−
M) is an amphifunctor which acts as a mediator in GCam.

If g : Ms1 −7→Ms2 in
∏amA then g is an arrow Ms1(A) −7→Ms2(A) in some (unique)

A ∈ A ; therefore g : FAs1 −7→ FAs2, and we can define
←−
Mg =

←−
FAg : s1 −7→ s2. To see this

makes M into an amphifunctor, suppose f : s0 → s1 and h : s2 → s3 in S. Then

←−
M(Mh ◦ g ◦Mf) =

←−
M(FAh ◦ g ◦ FAf)

=
←−
FA(FAh ◦ g ◦ FAf)

= h ◦
←−
FAg ◦ f

= h ◦
←−
Mg ◦ f,

and so M is an amphifunctor.

We now show that for each projection PA :
∏amA → A, we have PA ◦M = FA. This
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is already evident for the underlying functors. If g : FAs −7→ FAt in A then

←−−−−
PA ◦Mg =

←−
M(
←−
PAg)

=
←−
Mg

=
←−
FAg;

hence
←−−−−
PA ◦M =

←−
FA.

Finally if some amphifunctor N : S →
∏amA also satisfies this property then the

object and normal arrow assignment ofN must be equal to that ofM ; further, if g : Ns1 −7→

Ns2 in
∏amA , g : FAs1 −7→ FAs2 in some A; so

←−
Ng =

←−
N (
←−
PAg) =

←−
FAg =

←−
Mg, so that

N = M .

4.5 Enriched game categories and the value map

Briefly we concern ourselves with enriched game categories. Such discussion will be of

use here and in section 4.7. To clarify notation we recall the definition of an enriched

category.

Definition 4.5.1. Assume (M,⊗, eM) is a monoidal category. An M -enriched category,

or a category enriched over M , is a tuple

A = (Obj(A), A[−,−], id, ◦),

where

• Obj(A) is a class of objects;

• A[−,−] is a function Obj(A)×Obj(A)→M ;

• for all a ∈ A, ida is an M -morphism eM → A[a, a];
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• ◦ is a partial function on A× A× A such that for all a, b, c ∈ A,

◦a,b,c : A[b, c]⊗ A[a, b]→ A[a, c]

is a morphism in M ;

and furthermore the diagrams in figures 4.8 and 4.9 commute.

(A[c, d]⊗ A[b, c])⊗ A[a, b] αM
//

◦⊗1
��

A[c, d]⊗ (A[b, c]⊗ A[a, b])

1⊗◦
��

A[b, d]⊗ A[a, b]

◦ ++

A[c, d]⊗ A[a, c]

◦ss
A[a, d]

Figure 4.8: Associativity of composition.

eM ⊗ A[a, b]

λ

''
ida⊗1

��

A[a, b]⊗ eM
ρ

ww
1⊗ida

��

A[a, b]

A[a, a]⊗ A[a, b]

◦

77

A[a, b]⊗ A[a, a]

◦

gg

Figure 4.9: Left and right-identity rules of composition.

Extending this definition to game categories is fairly straightforward. Suppose we have

an additional function, A(−,−) : A × A → M , characterising the first-player strategies

in A. In order to simulate the axioms of definition 4.2.1 we require that the composition

map is also defined for all pairs of the form (A[b, c], A(a, b)), (A(b, c), A[a, b]), and that the

diagrams in figures 4.10, 4.11 and 4.12 commute.

To simulate the axiom ∀x (x 6−7→ y), we can require that for each x ∈ A, A(x, x) is

initial; in practice we will only be concerned with ‘set-like’ categories1, where an initial

1By ‘set-like’ category we mean any category which can be interpreted as a universe of sets, with
functions between sets as arrows. In particular this includes the category 2 = {0 → 1}, where 0 is an
emptyset and 1 a nonempty set.
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(A[c, d]⊗ A(b, c))⊗ A[a, b] α //

◦⊗1
��

A[c, d]⊗ (A(b, c)⊗ A[a, b])

1⊗◦
��

A(b, d)⊗ A[a, b]

◦ ++

A[c, d]⊗ A(a, c)

◦ss
A(a, d)

Figure 4.10: Central associativity for mixed composition.

(A[c, d]⊗ A[b, c])⊗ A(a, b) α //

◦⊗1
��

A[c, d]⊗ (A[b, c]⊗ A(a, b))

1⊗ida
��

A[b, d]⊗ A(a, b)

◦ ++

A[c, d]⊗ A(a, c)

◦ss
A(a, d)

Figure 4.11: Left associativity for mixed composition.

object will always be the empty set. If

A = (Obj(A), A[−,−], A(−,−), id, ◦)

satisfies these criteria then we call A an M-enriched game category or a game category

over M .

The value map

Of particular interest is enrichment over 2, the category with non-identity arrow 0 → 1.

If A is any game category then following Joyal [51] and Conway et al. [13, 5] we define

relations ≤,�| by x ≤ y if and only if A[x, y] 6= ∅ and x �| y if and only if A(x, y) 6= ∅.

We call the two-ordered structure obtained in this way the value space of A, and denote

it Values(A). If a ∈ A, then the element a/' is denoted val(a). Notice that this defines

an isomorphism between the category of 2-enriched game categories and the category

of two-ordered structures. In the discussion that follows we will identify a two-ordered
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(A(c, d)⊗ A[b, c])⊗ A[a, b] α //

◦⊗1
��

A(c, d)⊗ (A[b, c]⊗ A[a, b])

1⊗ida
��

A(b, d)⊗ A[a, b]

◦ ++

A(c, d)⊗ A[a, c]

◦ss
A(a, d)

Figure 4.12: Right associativity for mixed composition.

structure A with the equivalent 2-enriched game category.

In ONAG and Winning Ways the value of a game x is vaguely associated with the

equivalence class of x modulo the relation '—that is, val(x). Our value space generalises

this construction to general module categories. We can easily extend Values to a functor

from GC to the category Tos of two-ordered structures with promorphisms for arrows.1

Indeed, if F : A → B is a module functor between game categories, define Values(F ) to

have the same object map (that is, Values(F )(a) = Fa), and to send each arrow f to the

appropriate relation (strong arrows to ≤, and weak arrows to �|). Reversely, suppose B

is a 2-enriched game category and G : Values(A) → B is a functor of 2-enriched game

categories. Let emb be the embedding functor from the category of 2-enriched game

categories to GC. The functor G determines a unique functor F : A → emb(B) = B,

with the same object map, and which sends an arrow f to the appropriate relation.

Since 2-enriched game categories are essentially two-ordered structures, this proves the

following.

Proposition 4.5.2. The value map Values : GC → Tos is a functor, and is left-adjoint

to the ‘embedding’ functor Tos→ GC.

Although not particularly inspiring this result does help to explain why so much of

the theory of Conway games can be deduced by considering only games’ values. Later

on we will see that the adjunction is preserved when we add extra structure, such as a

monoidal product.

1This construction will not work in general when we use amphimorphisms as arrows, since we cannot
always guarantee a compatible method for assigning module arrows in a game category.
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Remark 4.5.3. For games x in any game category A, let val(x) denote the quotient x/'

in Values(A) (the value of x). Then the map val : A → Values(A) is easily shown to be

a promorphism. We cannot make this map into an amphimorphism, however, since in

general there will be no canonical choice of first-player strategies in A.

Remark 4.5.4. Two-ordered structures are essentially the spaces of values of games, and

two-ordered groups the automorphism groups of these values.

4.6 Monoidal game categories

Now we look at game categories with additional monoidal structure. Recall that Joyal [51]

showed the collection of wellfounded partisan games from ONAG and Winning Ways forms

a compact closed monoidal category; we extend this to include first-player strategies. Our

choice of functor (amphi- or module) greatly affects the behaviour of any monoidal prod-

uct, and in particular amphifunctors introduce a new level of complexity. For simplicity

we will concern ourselves only with module functors. We can view these functors, and

the transformations between them, as the 1-cells and 2-cells respectively in the category

GC.

Definition 4.6.1. Assume M is a game category, and ⊗ : M xor M → M is a module

functor. Suppose that

αx,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z),

λx : eM ⊗ x→ x,

ρx : x⊗ eM → x

are isomorphisms, natural in x, y, z (that is, natural transformations of module functors

which are also isomorphisms), such that the underlying category structure of

(M,⊗, eM , α, λ, ρ)
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is a monoidal category (cf. Mac Lane [65, p.162]). Then (M, . . .) is a monoidal game

category.

We have already discussed the justification for requiring that ⊗ be a functor with

domain M xor M : this ensures that whenever f : x0 → y0 and g : x1 −7→ y1, both f ⊗

g : x0 ⊗ x1 −7→ y0 ⊗ y1 and g ⊗ f : x1 ⊗ x0 −7→ y1 ⊗ y0. This is true of, for example, the

disjunctive sum under the normal play condition.

Definition 4.6.2. AssumeM , N are monoidal game categories. A monoidal game functor

F : M → N is a tuple (F0, µ
F , ιF ) such that

• F0 : M → N is a game functor;

• (F0, µ
F , ιF ) is a strong monoidal functor in the sense of Mac Lane [65, p.255], ig-

noring the module structure.

If F,G : M → N are monoidal game functors then a monoidal (module) transforma-

tion τ : F → G is simply a monoidal transformation (see Mac Lane [65, p.256]) of the

underlying functors which also makes the diagram in figure 4.13 commute for all x, y ∈M .

Fx⊗ Fy
τx⊗τy

��

µFx,y // F (x⊗ y)

τx⊗y

��
Gx⊗Gy

µGx,y

// G(x⊗ y)

Figure 4.13: Monoidal natural transformations of game functors.

By MGC we denote the collection of monoidal game categories with monoidal module

functors as arrows. This can be seen as a 2-category, where the module 2-cells of MGC are

precisely the module 2-cells of GC. With these transformations of functors, the following

is easily shown.

Proposition 4.6.3. If A is a game category then End(A) = GC[A,A] is a (strict)

monoidal game category.
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4.6.1 Monoidal game categories and the value map

Recall that the value map Values : GC→ Tos is a functor and part of an adjunction. It

is natural to consider the restriction of this map to MGC, Values�MGC. If M ∈MGC,

however, Values(M) does not necessarily have compatible monoidal structure. Notice that

Values is the composite of two functors: firstly, the map ptos : GC → PreTos, which

takes a game category to the corresponding 2-enriched game category, or equivalently to

a pre-two-ordered space; and secondly the map Q' : PreTos → Tos, which factors by

the relation '. The first map does have suitable structure for a tensor product, since

the object class remains the same (hence the product is unchanged by Tos, except for

a simplification of the arrow structure). The quotient map Q', however, does fail to

preserve the monoidal structure, since there may exist x, y, z with z ' x ⊗ y but such

that z is not the tensor product of any two elements of M .

This can be avoided by requiring that M is rigid. Recall that a pair of dual objects

in a monoidal category (M,⊗, e) is a pair (x, y) with morphisms

η : 1→ y ⊗ x,

ε : x⊗ y → 1,

such that

λx ◦ (ε⊗ idx) ◦ α−1x,y,x ◦ (idx⊗η)⊗ ρ−1x = idx;

ρy ◦ (idy⊗ε) ◦ αy,x,y ◦ (η ⊗ idy) ◦ λ−1y = idy .

Definition 4.6.4. Let M be a monoidal game category. We call M a rigid game category

if for each x ∈M there is y ∈M such that (x, y) is a dual pair.

It is easily seen that in the value space of a rigid monoidal category, the product is

compatible with the relations ≤ and �|.

Proposition 4.6.5. If M is a rigid game category then the product ⊗ on Values(M) is
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well-defined, and makes (Values(M),≤,�|) into a two-ordered group. Moreover, val : M →

Values(M) is a monoidal game functor.

Example 4.6.6. Let G denote a class of partisan games (cf. ONAG [13], Winning

Ways [5]) containing 0 = { | }, and suppose G is closed under addition and negation.

Then G is a (strict) rigid game category, where (x,−x) is a dual pair for each x. The

strategies η and ε in this case are different realisations of the copycat strategy 1x : x→ x,

as arrows 0→ −x+ x and x− x→ 0.

4.7 Architectures

In any theory of games a notion of membership can help to connect the notions of strategy,

option, position and game. In particular viewing each game as a two-sided container,

whose elements are respective players’ options, allows us to view these as equivalent

notions. We formulate the following definition based primarily on discussion by Joyal [51],

and Cockett et al. [12].

Definition 4.7.1. Assume (V,⊗, eV , . . .) is a monoidal category with full products and

coproducts. Let A be a game category enriched over V with binary relations ∈L and ∈R.

We say A is instructive if for all x, y ∈ A there are S-arrows

σ0(x, y) : A[x, y] −→
∏
u∈Lx

A(u, y) ×
∏
v∈Ry

A(x, v), (4.4)

σ1(x, y) : A(x, y) −→
∑
u∈Rx

A[u, y] ]
∑
v∈Ly

A[x, v], (4.5)

natural in x, y.
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Dually we call (A,∈L,∈R) constructive if for all x, y ∈ A there are Set-arrows

τ0(x, y) : A[x, y]←−
∏
u∈Lx

A(u, y) ×
∏
v∈Ry

A(x, v), (4.6)

τ1(x, y) : A(x, y)←−
∑
u∈Rx

A[u, y] ]
∑
v∈Ly

A[x, v], (4.7)

natural in x, y.

If A is both instructive and constructive, and further if τ(x, y), σ(x, y) form a pair

of mutual inverses for each x, y, then we call A (or more properly, (A,∈L,∈R, τ0, . . .)) an

architecture over S or an S-architecture.

The instructive property ensures that, given a second player strategy f ∈ A[x, y], we

may find first-player strategies regardless of Right’s move. Dually, given a first-player

strategy g ∈ A(x, y) we may find a second-player strategy in at least one Left option. The

constructive property allows us to build new strategies in more complex games, given an

appropriate collection of strategies for their options. Notice that an architecture does not

require monoidal structure; indeed, there may be a method for combining games which is

not monoidal, or we may not have any such structure.

Architectures are closely related to the combinatorial game categories of Cockett et

al. [12]: each represents an attempt to capture the common addition of set structure to

collections of games. Most obviously, architectures lack a diproduct operation, allowing

them to model a greater variety of important combinatorial game classes.

Example 4.7.2. Consider the set {P,N, L,R} (analogous to the set {0, ∗, 1,−1} of Con-

way games, in that order), with arrows x → y when x ≤ y (in Conway’s sense) and

x −7→ y when x �| y, discussed by Cockett et al. [12, Example 5.5, p.18]. As a result of

the diproduct, projection and injection rules, there are additional arrows which do not

appear in the typical structure {0, ∗,−1, 1}: for instance the diproduct {P |L} is equal to

L, and so by injection L −7→ L. Thus the insistence of closure under diproducts introduces

unwanted arrows. This structure is better represented as an architecture.
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Example 4.7.3. In many versions of Hackenbush there is certainly no obvious definition

of diproduct. In, for example, restrained Hackenbush [13, p.86] it is impossible to define

a diproduct since no such game is confused with 0. If this collection were a combinatorial

game category then a game of the form {0 | 0}, which is confused with 0, would exist.

This leads to the following question.

Question 5. Which versions of Hackenbush have a compatible diproduct?

Our condition ∀a a 6−7→ a is a further difference between architectures and combinatorial

game categories, and imposes a weak form of regularity on the games in an architecture.

It is easy to see the following.

Proposition 4.7.4. If A is a game category which is instructive or constructive, then A

contains no self-membered games, i.e. for all a ∈ A, a 6∈L
R a.

In particular, architectures cannot have self-membered elements. We will see in Chap-

ter 5 that the converse is also true: any collection of amphisets without self-members ad-

mits the structure of an architecture. Hence there still exist plenty of illfounded architec-

tures, however including many nontrivial examples with elements satisfying a ∈L b ∈R a.

This answers a question of Cox and Kaye [17], on how much regularity (‘wellfoundedness’)

is required to allow the familiar relations of ONAG and Winning Ways.

For our final example, we will consider the related problem of adding set structure

to a two-ordered structure. In particular this will give us a large class of architecture

examples.

Definition 4.7.5. Let (X,≤,�|) be a two-ordered structure satisfying

∀u
(
(u �| x→ u �| y) ∧ (y �| y → x �| u)

)
→ x ≤ y (4.8)

for all x, y ∈ X. Then we call X a pinched two-ordered structure.
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Given such a structure X, we can define membership relations ∈L, ∈R on X by

∈L = �| and ∈R = |�. (4.9)

Let Pinch be the category of pinched two-ordered structures.

Definition 4.7.6. The functor Gmm: Pinch→ Arch (for Greatest Membership Method)

takes a pinched two-ordered structure (X,≤,�|) to the architecture having the same two-

order, and membership given in (4.9).

Proposition 4.7.7. The map Gmm defines a functor Pinch→ Arch, and is left-adjoint

to the forgetful functor Arch→ Pinch.

Proof. Because X satisfies (4.8), it is easily shown that the two memberships make X

into an architecture.

We remark further that every 2-architecture arises from a pinched two-ordered struc-

ture in this way, since if

∀u
(
(u �| x→ u �| y) ∧ (y �| y → x �| u)

)
,

then in particular allxL �| y and x �| all yR, so x ≤ y.

4.7.1 Architectures and the value map

Briefly we consider architectures and the value map of section 4.5. If A is an architecture

then the most reasonable definition of membership within the value space Values(A) is

val(u) ∈P val(x)⇔ ∃u′ ' u ∃x′ ' x (u ∈P x).

This definition is in part a mathematical convenience; however it is in keeping with the

view of games as Dedekind cuts.
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Proposition 4.7.8. If (A, . . .) is an architecture then Values(A), with the usual relations

and above-defined memberships, is an architecture over 2.

Let Arch denote the collection of architectures. A functor from the U -architecture

A to the V -architecture B is best defined to be an enriched functor of the underlying

categories which also preserves both the module structure (making it a game functor)

and the membership relations. From the game-theoretic perspective this is sensible: such

a map preserves playability. These functors make the collection Arch into a category. It

is easily seen that the assignment of values on an architecture is such a functor. That

is, for A ∈ Arch, val : A → Values(A) is an architecture functor. As above, we can also

show that the map Values, which takes a game category to its value space, is part of an

adjunction.

4.8 Gamuts

In this section we show that the wellfounded games of ONAG and Winning Ways are

examples of the structures discussed above. Notice in particular that this applies, not

just to the “pure” partisan games (that is, two-sided containers which behave like sets;

see chapter 2), but also to the distinct games, such as Hackenbush, Domineering, Go.

Definition 4.8.1. Suppose G is a monoidal game category enriched over the monoidal

category V . If ∈L,∈R are binary relations on G, and V has natural isomorphisms τ0, τ1

which also make (G,∈L,∈R, . . .) an architecture, then G is called a gamut.

We define gamut functors similarly, as maps with monoidal and set-theoretic structure.

Definition 4.8.2. Suppose G,H are gamuts, and that F : G→ H is an architecture func-

tor. If there exist natural transformations ιF and µF such that (F, µF , ιF ) is a monoidal

game functor, then F is a gamut functor .

By Gamuts we denote the category of gamuts and their functors.
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4.8.1 Examples of gamuts

We now argue, with informal proofs, that the wellfounded games of ONAG [13] and

Winning Ways [5] exhibit the properties discussed above. This discussion includes spe-

cific classes of games (for instance Hackenbush, Domineering and Go), as well as the

“pure” partisan games (that is, two-sided containers which behave like sets; see chap-

ter 2). Moreover the results which follow are independent of any representation. For

example, Hackenbush games can be realised as (for instance) trees, tuples of positions or

intuitively as diagrams on the plane; each representation is valid. For clarity we make the

following definitions.

Definition 4.8.3. Let A be an architecture. For x, y ∈ A we write x ∈L
R y if and only if

x ∈L y or x ∈R y. We call A wellfounded if the relation ∈L
R is wellfounded, i.e.

∀x
(
∃y(y ∈L

R x)→ ∃y ∈L

R x ∀z ∈L

R x(z 6∈L

R y)
)
.

Our claim can now be stated more concisely, as follows.

Theorem 4.8.4. Each wellfounded structure H of games considered in ONAG and Win-

ning Ways is a gamut, where the disjunctive sum + and negation − determined the rigid

monoidal structure.

Before we discuss the proof of this theorem it will be helpful to introduce some new

notation and terminology. If x ∈P y where P ∈ {L,R}, we will refer to x as a P-option of

y, and as in the literature, we will use (for example) xL to stand for an arbitrary element

u ∈L x. As in chapter 2 we denote by xP an arbitrary P-option of x.

Suppose A is any instructive game category, in which f : x→ y. Then for any xL and

any yR there exist strategies induced by f . Explicitly, since f ∈ A[x, y] and

A[x, y] ∼=
∏
xL

A(xL, y)×
∏
yR

A(x, yR),

we can pick particular first-player strategies f ↓ xL : xL −7→ y and f ↓ yR : x −7→ yR for all
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xL and yR. In cases where ambiguity is likely (for instance, if some u ∈ A satisfies u ∈L x

and u ∈R y), we write, for example, f ↓(u ∈L x) or f ↓(u ∈R y) to distinguish the separate

meanings.

In the case of first-player strategies, we can also define an induced strategy. If f : x −7→

y, then since A is an architecture f corresponds to a second player strategy, either xR → y

or x→ yL. Again we will write f ↓xR or f ↓yL respectively, and in cases where ambiguity

is possible we instead write f ↓(u ∈R x) or f ↓(u ∈L x); notice, however, that in this case

f ↓ is only a partial function, applying to a single argument.

In some cases—depending upon the particular definition of “strategy” in A—f will

be a function, and we will have f(xP) = f ↓ xP. However it is useful to fix additional

notation for the next position advocated by f , in order to distinguish this position from

the induced strategy. If f is a first-player strategy in x, say, then f [x] will be the next

position advocated by a first-player strategy f . Hence f ↓f [x] determines the remaining

play dictated by f .

When A is an architecture, we can define a new strategy f : x→ y by first describing

the strategies f ↓xL and f ↓yR. Similarly we can describe g : x −7→ y by defining any g↓xR

or g↓yL.

Henceforth, we fix a class H of games, and assume

• ∈L
R is wellfounded on H;

• H is closed under disjunctive sums and negation (however they may be defined);

• H contains a zero game.

The following is obvious. Indeed, if we work within a monoidal category (Set,×) of

sets then the instructive and constructive rules of definition 4.7.1 dictate an appropriate

definition of strategies, which makes the isomorphisms τ0, τ1 identities.

Proposition 4.8.5. With the (usually obvious) definition of strategy, H is an architec-

ture.
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We can also show that the existence of a disjunctive sum leads to a monoidal product,

as indicated by Joyal [51]. We assume the existence of a map +: H × H → H (where

here H×H denotes a product of underlying categories) satisfying

∀x, y, z
∧
P

(
z ∈P x+ y ↔ ∃w ∈P x (z = w + y) ∨ ∃w ∈P y (z = x+ w)

)
.

That is, x+ y has the form {xP + y, x+ yP}P, although x+ y may not be the unique such

game: in many cases the relations ∈L,∈R may not satisfy an appropriate extensionality

axiom1. We also assume that a negation functor − : Hop → H, satisfying

∀x ∀y

(∧
P

(y ∈P −x↔ ∃z ∈¬P x (y = −z)

)
,

exists; that is, −x has the form {−y : y ∈R x | − y : y ∈L x}.

Proposition 4.8.6. Under these assumptions, H is a rigid game category.

Sketch proof. We merely provide appropriate definitions and some guidance here, as these

ideas have long been understood. If f : w → x and g : y → z in A, we recursively define

the sum by taking

(f + g)↓(wL + y) = (f ↓wL) + g;

(f + g)↓(w + yL) = f + (g↓yL);

(f + g)↓(xR + z) = (f ↓xR) + g;

(f + g)↓(x+ zR) = f + (g↓zR).

If f : w → x and g : y −7→ z, either some g↓yR exists, and so we define (f +g)↓(w+yR) to

be f + (g↓yR); or some g↓zL exists, and we define (f + g)↓zL to be f + (g↓zL). Notice

1The obvious axiom here is

∀x ∀y

((∧
P

∀z (z ∈P x↔ z ∈P y)

)
→ x = y

)
;

see chapter 2.
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that since A is an architecture, the strategy g corresponds to exactly one such possibility,

so the sum strategy is well defined (and requires no element of choice). The treatment

for g + f is analogous.

In this way we define all sums f + g of strategies f, g. It is now easily proved by

induction (which is possible since ∈L
R is wellfounded) that the function +, along with this

arrow assignment, defines a functor of monoidal game categories.

From Propositions 4.8.5 and 4.8.6 we deduce the following.

Theorem 4.8.7. The structure H is a gamut.

We can also demonstrate that every wellfounded gamut maps onto a gamut of pure

games via a gamut functor, which is part of an adjunction. Such a statement deserves

caution, however. We have avoided making reference to “the collection of partisan games”,

often denoted Pg, of ONAG [13, ch.7] and Winning Ways [5]. Rather, we consider any

class of games which contains non-impartial games to be such a collection. Moreover, we

take the view that any model of amphi-ZF (cf. chapter 2), or possibly of a weaker theory,

is a viable candidate for Pg. While the distinction is unnecessary for the study of finite

games, different models will produce important variations on the theory of infinite games.

In the case of wellfounded gamuts (which also contain an empty object), we can state the

following.

Proposition 4.8.8. For each wellfounded gamut H there is a wellfounded gamut of pure

games, H, and a full gamut functor F : H → H.

In stating this result we have ignored particular foundational issues: in particular

the proof of proposition 4.8.8 involves an assumption that we can factor H to obtain an

extensional (but categorically equivalent) category H (such a quotient would likely be

formed using Scott’s trick). Depending on our definition of category we might also prove

that H is equivalent to some model H of amphi-ZF, using a Mostowski collapse.
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Proposition 4.8.9. Ignoring foundational issues and assuming global choice, we can

prove the existence of an equivalence F : H → H, where H is a gamut of pure two-sided

containers (i.e. a model of amphi-ZF).

We remark that such assumptions are consistent with those made earlier, while dis-

cussing the value map.
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CHAPTER 5

2-ARCHITECTURES

In this chapter we focus on (2-)architectures. First we address the problem of adding

game-theoretic structure to an appropriate collection of amphisets. In particular we are

able to give a necessary and sufficient condition for such a collection to admit the structure

of an architecture. This answers a curiosity of Cox and Kaye [17, s.6] regarding the level

of wellfoundedness required to admit Conway game-like structure.1 We conclude that,

where we are only concerned with two-orders compatible with the set structure (i.e. 2-

architectures; significantly this does not include discussion of monoidal products), then

such structure exists precisely when there are no self-membered objects.

We then turn our attention to the more difficult problem of extending an existing

architecture by adding new games constructed from subsets of the original structure.

Finally we consider two possible applications of architectures: first, as a means to

generalise the notion of cuts in nonstandard arithmetic; and secondly, as abstract models

of concurrent or otherwise partially time-independent processes (such as asynchronous

requests and callbacks in general).

2-architectures as two-ordered structures

As with regular game categories, problems concerning architectures are greatly simplified

when the category is enriched over the two-point category 2, where we model the existence

1Notice that, by the nature of the value map, this answers the seemingly more general question of
existence of architectures enriched over categories other than 2.
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or nonexistence of arrows1using a pair of binary relations. Notice that a 2-architecture is

essentially a two-ordered structure

(A,≤,�|,∈L,∈R, . . .),

where (≤,�|) is a two-order on A and ∈L,∈R are binary relations indicating membership,

such that for all x, y ∈ A,

• x ≤ y ↔ allxL �| y ∧ x �| all yR;

• x �| y ↔ somexR ≤ y ∨ x ≤ some yL.

When dealing with 2-architectures we will always refer to this simpler definition, rather

than using the category-theoretic version required for more complex enrichments; this

convention will simplify arguments and remove redundant notation.

Until now our discussion of architectures has been largely restricted to familiar classes

of partisan games, as defined in ONAG and Winning Ways. The only other examples

we have seen are either trivial, or obtained by the greatest membership method applied

to a two-ordered structure. Now we turn our attention to the subject of constructing

and extending them from other objects. This will provide a useful framework for later

applications.

5.1 Building 2-architectures from amphisets

Just as Conway et al. constructed two-orders on wellfounded classes of partisan games

we can construct them on collections of amphisets. In general we will not be assuming

wellfoundedness, though; therefore there may be multiple two-orders on the same class of

amphisets.

Let AmphiSet denote the category of L2-structures (recall L2 is the language with

1More correctly, the values of the operators A[−,−] and A(−,−) in the category 2.
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nonlogical symbols ∈L,∈R) satisfying:

∀a¬(a ∈L

R a).

We will often refer to such a structure simply by the domain A. For A ∈ AmphiSet,

we discuss possible two-orders T = (≤,�|) which are compatible with the membership

relations; that is, such that A equipped with ≤ and �| is a 2-architecture. Such a two-

order T will be called an architecture two-order, or ATO for short. In particular we define

a method for obtaining the least ATO, Tm(A), on A. Further, we show that every ATO

on A is contained within the dual of Tm(A) (which may or may not be a two-order,

depending on the set structure of A). Henceforth we fix an arbitrary object (A,∈L,∈R)

in AmphiSet.

For a pair T = (≤,�|) of relations on A, define the pair

T+ = (≤+,�|+)

of relations on A by setting

x ≤+ y ↔ allxL �| y ∧ x �| all yR;

x �|+ y ↔ somexR ≤ y ∨ x ≤ some yL.

Lemma 5.1.1. Suppose T0 is a pair of relations on A. Define Tn+1 = T+
n for all n < ω.

For R ∈ {⊆,⊇}, we have the following.

• If ≤n R ≤n+1 then �|n+1 R �|n+2;

• if �|n R �|n+1 then ≤n+1 R ≤n+2.

If A satisfies sufficient comprehension, then the above implications reverse.

Proof. Suppose ≤n ⊆ ≤n+1. If x �|n+1 y then somexR ≤n y or x ≤n some yL, so

somexR ≤n+1 y or x ≤n+1 some yL, hence x �|n+2 y. The other implications are similarly
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dealt with. If ≤n 6⊆ ≤n+1, take x, y such that x ≤n y but x 6≤n+1 y. Provided A satisfies

some basic comprehension scheme, we have { |x} �|n+1 y but {|x} 6�|n+2 y (for example).

The remaining cases are similar.

For pairs S = (≤S,�|S) and T = (≤T ,�|T ) of relations on A we write S ≤ T if

≤S ⊆ ≤T and �|S ⊆ �|T . Notice that the collection of such pairs is a complete lattice,

with the obvious definitions of ∨, ∧,
∨

and
∧

, containing the complete bounded lattices

of Chapter 3 (see in particular Proposition 3.2.5).

The arguments from the proof of the above Lemma can be used to prove the following.

Lemma 5.1.2. If T, S are pairs of relations, then

T ≤ S ⇒ T+ ≤ S+.

Definition 5.1.3. The pairs Tm
α = (≤m

α ,�|m
α ) are defined as follows. First, we let

≤m
0 = {(x, x) : x ∈ A};

�|m
0 = {(xL, x) : x ∈ A} ∪ {(x, xR) : x ∈ A}.

For each ordinal α, Tm
α+1 = (Tm

α )+. Finally, for limit ordinals λ, we define

Tm
λ =

∨
α<λ

Tm
α .

Notice that for each x, x ≤m
1 x, as allxL �|m

0 x and x �|m
0 all yR. Therefore ≤m

0 ⊆ ≤m
1 .

Further, as every x satisfies x ≤m
0 x, �|m

0 ⊆ �|m
1 . Hence, by Lemmas 5.1.1 and 5.1.2, we

have that Tm
α ≤ Tm

β whenever α ≤ β.

In the definition of (Tm
α )α we began with the following bare minimum rules.

∀x (x ≤ x); (5.1)

∀x (allxL �| x �| allxR). (5.2)
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However the dual1 rules

∀x (x 6�| x); (5.3)

∀x (allxL 6≥ x 6≥ allxR) (5.4)

must also hold in a 2-architecture.

Lemma 5.1.4. For each ordinal α, Tm
α satisfies rules (5.1)-(5.4).

Proof. That (5.1) and (5.2) hold is an immediate consequence of the facts that they are

true for the case α = 0 and that (Tm
α )α is nondecreasing. To see that (5.3) and (5.4) also

hold, suppose otherwise, and let α be the least ordinal such that

(A, Tm
α ) 6� (5.3) ∧ (5.4).

Since Tm
λ is defined by taking unions at limits λ, and as (5.3) and (5.4) are clearly satisfied

by Tm
0

2, α is a successor; say α = β + 1. If for some x, x �|m
α x, then Tm

β clearly does

not satisfy (5.4), contradicting leastness of α. Therefore some x has somexL ≥ x or

x ≥ somexR; and Tm
β violates (5.3), again contradicting the leastness of α. The claim

follows.

Although in general Tm
α will not be transitive, it will be for special ordinals α. For

pairs T = (≤T ,�|T ), S = (≤S,�|S), we define the composition TS by

x ≤TS z ↔ ∃y (x ≤T y ≤S z);

x �|TS z ↔ ∃y (x ≤T y �|S z ∨ x �|T y ≤S z).

Note that by transitivity and reflexivity, we will always have TT = T for a two-order T .

1See Chapter 3.
2Recall that each (A,∈L,∈R) in AmphiSet satisfies ∀x (x /∈L

R x).
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Lemma 5.1.5. For all ordinals α, β, we have

Tm
α T

m
β ≤ Tm

α+β+1,

where + is the disjunctive sum.1 In particular, if λ is closed under +, then Tm
λ is a

two-order.

Proof. We prove by induction that for all α, β, we have

x ≤m
α y ≤m

β z → x ≤m
α+β+1 z;

x ≤m
α y �|m

β z → x �|m
α+β+1 z;

x �|m
α y ≤m

β z → x �|m
α+β+1 z.

Notice that, since ≤0 is equality, the cases where α = 0 ∨ β = 0 are trivial. Therefore we

assume α, β > 0.

If x ≤m
α y ≤m

β z then for some γ < α and δ < β, allxL �|m
γ y ≤m

β z (so allxL �|m
γ+β+1 z)

and x ≤m
α y �|m

δ all zR (so x �|m
α+δ+1 all zR). Therefore, allxL �|m

ε+1 z and x �|m
ε+1 all zR,

where ε = max(γ+β, α+δ). By definition of disjunctive sum, ε < α+β, hence x ≤m
α+β+1 z.

If x �|m
α y ≤m

β z, then either xR ≤m
γ y ≤m

β z for some β < α, xR ∈R x—hence

xR ≤α+β+1 z, and so x �|m
α+β+1 z—or x ≤m

γ yL for some γ < β and yL ∈L y. In the latter

case, yL �|m
δ z for some δ < β, whence x �|m

γ+δ+1 z; as γ+ δ+ 1 < α+ β+ 1, x �|m
α+β+1 z.

The case x ≤m
α y �|m

β z is similarly dealt with.

If λ is closed under disjunctive sum, then since Tm
λ is defined by taking the unions of

previous relations, it follows easily that Tm
λ is transitive.

Corollary 5.1.6. If κ is a cardinal, then Tm
κ is a two-order.

1Since the ordinals in the sense of ONAG [13] are all right-empty, it is easy to transfer this definition
to a universe of pure sets, if one wishes: define

α+ β = {γ + β : γ < α} ∪ {α+ γ : γ < β}.
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Proof. Given bijections f : α→ |α| and g : β → |β|, define a function

h :
(
(α + 1)× (β + 1)

)
\ {(α, β)} → α + β

by

h(γ, δ) = γ + δ.

Clearly h is a surjection onto the left- (and only) members of α+ β. Therefore, it is also

a surjection onto the members of α + β when seen as a set. Hence

|α + β| ≤ |(α + 1)× (β + 1)|

= |α + 1| · |β + 1|.

In particular, if α, β < κ, then α + β < κ. Therefore Tm
κ is a two-order.

Consequently (A, Tm
κ ) is a two-ordered structure for each cardinal κ. Notice also that

if x 6�|m
κ y then x 6�|m

α y for all α < κ, and so all xR 6≤m
α y and x 6≤m

α all yL, for all α < κ.

Therefore allxR 6≤m
κ y and x 6≤m

κ all yL, so that x 6�|m
κ+1 y. That is, �|m

κ = �|m
κ+1 (in fact

this will hold at all limit ordinals).

However, Tm
κ is not always an ATO: it is possible that for some x, y ∈ A, x 6≤m

κ y but

x ≤m
κ+1 y. Indeed, suppose that for each α < κ, we have

uα 6�|m
α y ∧ uα �|m

α+1 y.

Then x = {uα : α < κ | } is such that x 6≤m
α y for all α < κ and hence x 6≤m

κ y, yet

x ≤m
κ+1 y.

Lemma 5.1.7. Suppose κ ≥ ℵ0 is a regular cardinal such that κ > |x| for all x ∈ A.

Then the sequence (Tm
α )α terminates by κ, i.e. Tm

α = Tm
κ for all α > κ.
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Proof. By the above discussion, we need only show that for each x, y ∈ A,

x ≤m
κ+1 y → x ≤m

κ y

(here κ + 1 denotes the first ordinal after κ). Suppose, then, that x ≤m
κ+1 y but x 6≤m

κ y.

Each xL �|m
κ y and x �|m

κ all yR. So, as κ is a limit ordinal, for each xL and each yR there

is an ordinal α(xL) or β(yR) strictly less than κ such that

xL �|m
α(xL) y;

x �|m
β(yR) y

R

respectively. But then, since x 6≤m
κ y,

κ =
⋃
xL

α(xL) ∪
⋃
yR

β(yR),

contradicting the regularity of κ.

Definition 5.1.8. The least order on A, denoted by Tm or Tm(A), is given by Tm = Tm
κ

for any regular κ greater than the cardinality of the elements of A.

Corollary 5.1.9. The pair Tm is an ATO on A.

Finally we are left to prove the leastness of Tm.

Lemma 5.1.10. If T is an ATO on A, then Tm ≤ T .

Proof. Clearly Tm
0 ≤ T , and if S ≤ T for some pair S of relations, then S+ ≤ T+ by

Lemma 5.1.1. Therefore if Tm
α ≤ T , Tm

α+1 ≤ T+ = T ; hence the claim follows by an easy

induction.

We summarise these results in the following.

Theorem 5.1.11. Let A be a collection of amphisets, none of which are self-members.

Then there is an ATO Tm on A which is contained in every other ATO on A.
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Corollary 5.1.12. Let A be a collection of amphisets. Then A admits an architecture if

and only if A has no self-members.

5.1.1 The least order method as a functor

We can define a functor Lom (for Least Order Method) from the category AmphiSet to

Arch, the category of architectures, which appends to a space A of amphisets the least

ATO on A. This gives a left-inverse for the functor

Gmm: Pinch→ Arch

(see Proposition 4.7.7), where Pinch is the category of ‘pinched’ two-ordered structures,

i.e. two-ordered structures (X,≤,�|) satisfying

∀u
(
(u �| x→ u �| y) ∧ (y �| y → x �| u)

)
→ x ≤ y

for all x, y.

Let U1 : Arch → AmphiSet and U2 : Arch → AmphiSet be forgetful functors,

dropping the two-order and membership relations respectively.

Proposition 5.1.13. Let (A,≤A,�|A) ∈ Pinch, and let B be the category of amphisets

U1 ◦ Gmm(A) with membership relations ∈L = �|A and ∈R = |�A. Then the minimal

ATO Tm(B) is equal to (≤A,�|A). Hence U2 ◦ Lom is a left-inverse for U1 ◦Gmm:

U2 ◦ Lom ◦U1 ◦Gmm = 1Pinch.

Proof. By minimality of Tm(B), Tm(B) ≤ TA = (≤A,�|A). If x �|A y then B � x ∈L

y ∨ y ∈R x, so x �|m y. If x ≤A y then since B is an architecture, allxL �|A y and

x �|A all yR, hence allx �|m y ∧ x �|m all yR, giving x ≤m y. Therefore TA = Tm(B).
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5.1.2 The dual of Tm

Recall the notion of duality from Chapter 3: for a pair T = (≤,�|), the dual T ∗ is given

by

T ∗ = (≤∗,�|∗) = ( 6|�, 6≥).

In general, T ∗ may not be a two-order, but under the same ordering as above, TM = (Tm)∗

is an upper bound on all the ATOs on a collection A of amphisets (this follows easily from

the fact that T ≥ Tm for each ATO T on A).

Question 6. Under what conditions is TM an ATO on A?

Notice that when A is wellfounded, A is determined, or equivalently Tm = TM. There-

fore

A � wf ⇒
∀T (A, T ) � Det

Tm = TM
⇒ A admits exactly one ATO.

We can show that first implication A � wf ⇒ Tm = TM does not reverse.

Example 5.1.14. Let A = {x, y}, where x ∈L y ∈R x. Then x ≤ y ∧ x �| y, hence A is

determined, while clearly being illfounded.

However, it is not clear whether the last implication reverses.

Question 7. If Tm(A) is the unique two-order on A, is Tm(A) = TM(A)?

These considerations affect the regularity and wellfoundedness of collections of games,

and are naturally important from a game-theoretic perspective, since they affect how

available moves relate to available strategies. Therefore, it is also useful to consider how

these relate to traditional set-theoretic regularity principles.

Question 8. Which, if any, set-theoretic properties are the following regularity principles

equivalent to?

• Tm = TM, i.e. ∀T (A, T ) � Det;

• A admits exactly one ATO.
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5.2 Extending existing architectures

A natural construction is to extend an existing architecture A by adding amphi-subsets

of A; that is, by adding objects x where x is both a left- and right-subset of A. However

this is not a trivial operation, if one wishes to obtain another architecture. Even if we

drop all restrictions other than the constructive and instructive axioms, we must be very

careful to avoid circular definitions.

Example 5.2.1. Let A = {a, b} where a = {b | b} and b = {a | a}. We must have a ≤ a,

b ≤ b and a pp b for A to be an architecture. Furthermore, we can prove that a 6≤ b 6≤ a.

We cannot immediately determine an architecture by simply adding amphi-subsets of A,

however. For instance, we cannot determine whether {a | } ≤ b. We cannot exclude such

examples by adding algebraic restrictions, either: we can make A into a two-ordered group

by specifying either element as the identity and the other as an involution.

Suppose A is an architecture; we will try to mimic the least-order method on a collec-

tion of sets constructed above A as follows. Let V0(A) = A and for nonzero ordinals α,

we take Vα(A) to be the set of amphisets x such that

∧
P

∀u ∈P x ∃β < α (u ∈ Vβ(A)).

That is, at each successor ordinal α + 1 we add the amphisets whose elements are in

Vα(A), and for limits we take the union.

We can attempt to generalise the least-order construction to this context.

Definition 5.2.2. Let A be an architecture, and Vγ(A) some class of amphisets built on

top of A as outlined above. We define Tm
α (Vγ(A)) = Tm

α as follows. Define T0 = (≤m
0 ,�|m

0 )

by

≤m
0 = ≤A ∪=;

�|m
0 = �|A ∪ ∈L ∪ ∈R

−1;
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and take

Tm
α+1 = (Tm

α )+;

Tm
λ =

∨
α<λ

Tm
α (for limits λ).

Except when ambiguity is possible, we denote Tm
α by Tα below.

Lemma 5.2.3. If α ≤ β, then Tα(Vγ(A)) ≤ Tβ(Vγ(A)).

Proof. Since we take unions at limits, it will suffice to show that Tα ≤ Tα+1 for all α.

Denote the two-order in A simply by TA = (≤,�|).

If x ≤m
0 y then either x ≤ y in A (so allxL �| y and x �| all yR, and therefore x ≤m

1 y)

or x = y (so x ≤m
1 y by monotonicity). If x �|m

0 y then x �| y in A (so somexR ≤ y or

x ≤ some yL), x ∈L y, or y ∈R x. In either case, x �|m
1 y. The result now follows from

Lemma 5.1.2 and an easy induction argument.

Lemma 5.2.4. Assume A has maximal membership, i.e. A = Gmm(A). Then Tm(V (A))

is a two-order.

Proof. That the rules (5.1)-(5.4) hold is proved using exactly the arguments of Lemma 5.1.4.

It remains, therefore, to prove transitivity. We prove this by induction on the sum of el-

ements’ ranks. First we must eliminate some laborious base cases. Throughout we will

implicitly use the above fact, that (Tα)α is nondecreasing.

Assume x ≤0 y ≤0 z. If x, y, z ∈ A then trivially x ≤0 z. If one or more of x, y, z are

not in A, then at least two of x, y, z are equal, and trivially x ≤0 z.

Suppose now that x ≤0 y �|0 z. If y ∈ A, then x ≤A y and so either z ∈ A ∧ x �|A z

or z /∈ A ∧ x ≤A y ∈L z; in either case, x �|1 z. If instead y /∈ A, then x = y so trivially

x �|0 z. Similarly if x �|0 y ≤0 z, then x �|1 z.

Assume x ≤0 y ≤0 z. If y /∈ G, then x = y, and easily x �|0 z. Assume, then, that

y ∈ G. We trivially have all xL �|0 y ≤0 z, whence all xL �|1 z by the above argument.

Further, x ≤0 y �|0 all zR. As x ≤0 y ∈ G, x ∈ G also. If z ∈ G, trivially we have x �|0 z.

If instead z /∈ G, then x ≤A y ∈L z, and so x �|1 z.
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Next we suppose x ≤0 y �|1 z. If yR ≤0 z, then x �|0 y
R ≤0 z, so x �|1 z. If y ≤0 z

L,

then x ≤0 y ≤0 z
L, so x ≤0 z

L, whence x �|1 z
L. The proof that x �|1 y ≤0 z implies

x �|2 z is similar.

The most difficult case is where x �|0 y ≤1 z (or the analogous case x ≤1 y �|0 z);

here we make use of the maximal membership in A. Assume x �|0 y ≤1 z. If x, y ∈ A

then x ∈L y by maximal membership, whence x �|0 z by definition of ≤1. Otherwise,

either x ∈L y or y ∈R x. In the former case, x �|0 z; in the latter, x �|2 z.

This concludes the discussion of base cases. The argument for the inductive step is

exactly as in Lemma 5.1.5. Hence Tm(V (A)) is a two-order, which clearly coincides with

the original two-order when restricted to A.

In general, the minimal ATO on Vα(Gmm(A)) will be —somewhat surprisingly—too

small. We can, however, prove that it is contained in any ATO extending that of A to

Vα(A).

Proposition 5.2.5. Suppose A is an architecture, and B = Gmm(A). If S is any two-

order on V (A) which contains the two-order on A, then S also contains Tm(B).

Proof. Let Tm
α = (≤m

α ,�|m
α ) denote the α-th element of the least two-order sequence

constructed in V (B). If x ≤m
0 y, then either x ≤B y∨x = y, so x ≤A y∨x = y. Therefore

x ≤S y. If x �|m
0 y, then x �|B y ∨ x ∈L y ∨ y ∈R x, whence x �|A y ∨ x ∈L y ∨ y ∈R x; so

x �|S y.

Now suppose Tm
β ≤ S for all β < α, and that x ≤m

α y. If u ∈L
A x then u ∈L

B x, so

u �|m
β y for some β < α. Therefore u �|S y. Similarly if v ∈R

A y, then x �|S v, and so

x ≤S y.

If instead x �|m
α y, then some u ∈R

B x satisfies u ≤m
β x, or some v ∈L

A y satisfies

x ≤m
β v, for some β < α. In the first case, since u ∈R

B x, x �|A u ≤m
β y, so by induction

and the fact that S contains the two-order on A, x �|S u ≤S y, whence x �|S y. The case

where some v ∈L
A y satisfies x ≤m

β v is dealt with similarly.

The above construction will not generalise easily to arbitrary architectures. That is,
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given an architecture A, it is not always possible to apply the modified least order method

to obtain a two-order in V (A) which coincides with the original ATO on A. The only

problem is in proving the base cases for transitivity; even the inductive argument for

transitivity can be adapted, provided we can show that Tm
0 and Tm

1 compose to form a

subset of some following Tm
α .

5.3 Cuts in Peano arithmetic as surreal numbers over

a model

Proposition 5.3.1. Let (R,≤) be an ordered ring, and set T = (≤R, <R). Then (R, T )

is a two-ordered ring.

Proof. Clearly the two orders are compatible with addition and multiplication in R, and

transitive. Further we cannot have x ≤R y and y <R x.

Proposition 5.3.2. Let R be an ordered ring. Define T on R as above, and define

memberships ∈L,∈R by

x ∈L y ↔ 0 ≤ x < y;

x ∈R y ↔ x < y ≤ 0.

Then (R, T,∈L,∈R) is a gamut.

We denote this construction by Gam(R).

Suppose R is an ordered ring, and define left- and right-membership as above. Let

V (R) denote Vλ(R) for some sufficiently large limit λ. In such a case we can show that

the least order method produces an ATO on V (R) = Vλ.

Lemma 5.3.3. Suppose R is as above. Then the least order method makes V (R) into

an architecture.
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Proof. Recall that the least order method always produces a pair T = (≤,�|) of relations

which satisfy each axiom of an ATO except those for transitivity. Recall also that the

construction will result in a nondecreasing sequence Tα of order pairs. Therefore it suffices

to show the following, for all ordinals α, β and all x, y, z ∈ V (R);

x ≤α y ≤β z → x ≤α+β+2 z;

(x ≤α y �|β z ∨ x �|α y ≤β z)→ x �|α+β+2 z.

As before, the inductive step is relatively straightforward. For the base cases, we make

nontrivial use of the fact that R is linear.

As discussed above, the case x ≤0 y ≤0 z is trivial: either x = y or x ≤R y, and in

the latter case we must also have y ≤R z. If x ≤0 y �|0 z, then x = y (again, trivial),

or x ≤R y. If x ≤R y, we have y ∈L z (so x �|1 z), z ∈R y (so x �|R z), or y �|R z (so

x �|0 z). Therefore x �|1 z. Similarly, �|0≤0⊆�|1.

If x ≤1 y ≤0 z, then allxL �|0 y ≤0 z (so allxL �|1 z). If z is right-empty then

trivially x �|1 all zR, so assume otherwise. Then either y = z (trivial) or y ≤R z. In the

latter case, y, z ∈ R and by the definition of membership we have 0 ≥ zR > z ≥ y, hence

every zR is also a right-member of y, and so all zR |�0 x. Therefore x ≤2 z. Similarly, if

x ≤0 y ≤1 z, we have x ≤2 z.

If x ≤1 y �|0 z, either z ∈R y (so x �|0 z), y ∈L z (so x �|2 z), or y �|R z. In this last

case, either some yR ≤R z (so x �|0 y
R ≤R z, whence x �|1 z), or y ≤R some zL. Thus

x ≤2 z
L, and so x �|3 z in either case.

The case x ≤0 y �|1 z is trivial if x = y; otherwise, x ≤R y, so either y �|R z (so

x �|R z) or y ∈L z (so x �|1 z).

Finally, the cases x �|0 y ≤1 z and x �|1 y ≤0 z are similar to cases given above. This

concludes the discussion of base cases. By the same techniques as above, the least order

method makes V (R) into an architecture.

Corollary 5.3.4. Suppose R is as above. Then R, equipped with the least two-order, is
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a gamut.

Our aim is to generalise the notion of a cut in models of Peano arithmetic1, in the hope

that certain constructions may be dealt with more easily and uniformly. We argue that

this generalised notion allows a preferable theory of addition and multiplication of cuts,

as well as allowing one to measure notions such as the size of an external set (studied,

for example, by Kaye and Reading [52]) more effectively. This has its own cost, namely

that we sacrifice the obvious linear ordering apparent in the traditional study of cuts in

arithmetic. This, however, seems a necessity given the nature of problems relating even

to such fundamental operations as addition and multiplication. Moreover, architectures

give us a natural and convenient setting in which to consider this expanded, nonlinear

collection of objects, since they allow greater depth of comparison in structures which are

pre- or partially, but not linearly, ordered.

Using architectures to achieve this goal turns out to be quite heavy handed (see Propo-

sition 5.3.12 and Figure 5.1). However we are merely constructing a sensible notion of

‘surreal number’ on top of the original model M ; hence rifts are a natural object to study.

That their structure is so easily characterised is a pleasant coincidence, and suggests they

may be worth further study.

Definition 5.3.5. Let R be an ordered ring. A rift in R is an amphiset A in V (R) such

that

• each side of A is nonempty and contains only elements of R;

• allAL < allAR;

• ∀u ∈L A (u+ 1 ∈L A) ∧ ∀v ∈R A (v − 1 ∈R A).

Notice that a rift is essentially defined by a cut and a ‘reverse cut’: it is the (potentially

empty) space between an initial segment and an end segment. Accordingly, every cut

corresponds to a rift.

1Throughout, a cut in a model M will be an initial segment of M which is closed under the successor
operation n 7→ n+ 1.
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Definition 5.3.6. Let I be a proper cut. Then

Ded(I) = {i ∈ I | i′ : i′ /∈ I}.

Clearly, Ded(I) is a rift.

There are natural notions of addition and multiplication for rifts. Notice that here we

are no longer adhering to the disjunctive sum, hence breaking both the ring and gamut

structure; this is necessary if we are to make sense of cuts, since (for example) we cannot

add a cut I with an element m of M sensibly without losing additive inverses (since, for

instance, I + (m+ 1) = I +m).

Definition 5.3.7. Suppose A,B are rifts, and r ∈ R. We define

• r + A = A+ r = {AP + r}P;

• rA = Ar = {APr}P;

• A+B = {AP +BP}P;

• AB = {APBP}P.

The following is easily proved.

Proposition 5.3.8. The above operations commute, distribute, and are associative: let

r, s ∈ R and suppose A,B,C are rifts in R. Then

• A+B = B + A and AB = BA;

• (r + s)A = (rA) + (sA) and r(A+B) = (rA) + (rB);

• (A+B) +C = A+ (B +C), r+ (A+B) = (r+A) +B, (r+ s) +A = r+ (s+A)

and (AB)C = A(BC), r(AB) = (rA)B, (rs)A = r(sA).

For now, we will restrict attention to positive rifts, i.e. rifts in the structure

M = {r ∈ R : r ≥ 0}.
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With the definition of membership above, M is itself an architecture (in particular, M is

∈L
R-transitive). Therefore the architecture on R allows us to compare positive rifts with

the two-order relations. Importantly, the following results demonstrate that the (linearly

ordered) set of cuts in M embeds onto the set of rifts in M .

Proposition 5.3.9. Let x ∈M , and assume A is a rift in M . Then

x < A⇔ x ≤ A

⇔ x �| A

and similarly with the relations reversed. In particular, if I is a cut then

x < I ⇔ x ≤ Ded(I)

⇔ x �| Ded(I)

⇔ x < Ded(I),

and similarly with the relations reversed.

Proof. If x = 0, the above statements are trivially true; therefore we may assume x is

positive. Suppose x �| A. Then, since x is right-empty, we must have that x ≤ someAL.

Therefore, x < allAR and allxL �| A, whence x ≤ A.

Now, x ≤ A if and only if allxL �| A and x �| allAR, or equivalently x− 1 �| A and

x < allAR. Since x− 1 is right-empty, this implies that x− 1 ≤ someAL; further, as the

left side of A is closed under successor, this implies x ≤ someAL, hence x �| A. If x < A,

then x ≤ A; reversely, if x ≤ A, then x �| A so x < A.

Now suppose A = Ded(I). Then x < I implies x ∈L A, hence x �| A. If x �| A, then

x ≤ someAL, whence x ∈L A.
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Lemma 5.3.10. Let I, J be cuts in M . Then

Ded(I) ≤ Ded(J)⇔ I ≤ J ;

Ded(I) �| Ded(J)⇔ I < J.

(And consequently, Ded(I) < Ded(J)⇔ I < J .)

Proof. Suppose I ≤ J . Then every i ∈ I satisfies i �| Ded(J) and every j > J satisfies

Ded(I) �| j, by Proposition 5.3.9; whence Ded(I) ≤ Ded(J). If Ded(I) ≤ Ded(J) then

whenever i ∈ I, i < J ; hence I ⊆ J , i.e. I ≤ J .

If Ded(I) �| Ded(J) then some i′ > I satisfies Ded(i) ≤ J , or some j < J satisfies

Ded(I) < j; in each case I < J . If I < J , there is j ∈ J such that I < j¡ hence Ded(I) ≤ j

and Ded(I) �| Ded(J).

The next result is an immediate consequence of the previous propositions.

Corollary 5.3.11. The map Ded defines an order embedding

M ∪ {I ⊆M : I is a cut} →M ∪ {A : A is a rift}.

Therefore we may consider rifts a generalisation of cuts.

The set of rifts over M is certainly not linearly ordered (see Figure 5.1). However, we

can show that the set M ∪ {A : A is a rift} is partially ordered.

Proposition 5.3.12. Let A, B be rifts over M . Then A ≤ B if and only if

A ⊆L B and B ⊆R A.

Consequently, A ' B if and only if A = B.

Proof. One direction is always true in an architecture: if A ⊆L B and B ⊆R A, then

allAL �| B and A �| allBR, so A ≤ B. If we have A ≤ B, then by the architecture
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(A < B) � � A _? � � B _?

(A ≤ B) � � A _?

� � B _?

(A⊥B) � � A _?

� � B _?

Figure 5.1: Possible comparisons of rifts.

axioms, allAL �| B and A �| allBR; but then, by Proposition 5.3.9, allAL < B and

A < allBR, so that A ⊆L B ⊆R A.

We can now identify the kinds of comparison available for rifts. There are exactly

three cases, which are as in Figure 5.1.

One of the core problems which motivates our introduction of rifts is the addition of

cuts. If I, J are cuts then a sensible definition of I + J is

I + J = {i+ j : i ∈ I and j ∈ J},

which is also a cut in M . However, there are examples where the operation

I ⊕ J = {i′ + j′ : i′ > I and j′ > J}

is more appropriate. Mixing these definitions together, we also conceive of various other

definitions, such as

(I, J) 7→ inf
j′>J

sup
i<I

i+ j′;

(I, J) 7→ sup
i<I

inf
j′>J

i+ j′;

and so on. Each of these cuts is always at least I + J , and no greater than I ⊕ J .

Furthermore, there are always examples where I + J < I ⊕ J ; therefore none of these
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definitions will be universally satisfactory. Multiplication suffers the same fate: defining

I · J = {ij : i ∈ I and j ∈ J};

I � J = {i′j′ : i′ > I and j′ > J},

we can guarantee only that I ·J ≤ I�J , and that the other two definitions lie somewhere

in between.

The following tells us that Ded(I) + Ded(J) will also lie somewhere in between.

Proposition 5.3.13. Let I, J be cuts in M . Then

Ded(I + J) ≤ Ded(I) + Ded(J) ≤ Ded(I ⊕ J).

In particular, when I + J = I ⊕ J , we have Ded(I + J) = Ded(I) + Ded(J).

Proof. We prove the left inequality; the other is easily proved in the same way. Each left-

element of Ded(I + J) is also a left-element of Ded(I) + Ded(J); therefore in particular,

all Ded(I + J)L �| Ded(I) + Ded(J). If x ∈R Ded(I) + Ded(J), then x = i′ + j′ for some

i′ > I and j′ > J ; therefore, x > I + J , i.e. x ∈R Ded(I + J). As V (R) is an architecture,

the left hand equality follows.

Similarly we have the following.

Proposition 5.3.14. Let I, J be cuts in M . Then

Ded(I · J) ≤ Ded(I) ·Ded(J) ≤ Ded(I � J).

In particular, when I · J = I � J , we have Ded(I · J) = Ded(I) ·Ded(J).

Since we are arguing that rifts make a useful addition to the arithmetic of cuts, it is

natural to ask the following questions.
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Question 9. Is there a converse to either of the statements

I + J = I ⊕ J ⇒ Ded(I + J) = Ded(I) + Ded(J);

I · J = I � J ⇒ Ded(I · J) = Ded(I) ·Ded(J)?

Question 10. Does every rift arise as a sum Ded(I)+Ded(J) or a product Ded(I)·Ded(J),

where I, J are cuts?

We can give a full answer to the first question.

Proposition 5.3.15. Let I, J be cuts in M . Then

• Ded(I) + Ded(J) is equal to Ded(K) for some cut K if and only if I + J = I ⊕ J ;

• Ded(I) ·Ded(J) is equal to Ded(K) for some cut K if and only if I · J = I � J .

Proof. We have seen above that if I + J = I ⊕ J then Ded(I) + Ded(J) = Ded(I + J). If

Ded(I) + Ded(J) = Ded(K), then for all x ∈M ,

x ∈ I + J ⇔ x ∈L Ded(I) + Ded(J)

⇔ x ∈L Ded(K)

⇔ x /∈R Ded(K)

⇔ x /∈R Ded(I) + Ded(J)

⇔ x ∈ I ⊕ J.

The proof of the second point is similar, although one has to be careful since in general

not every element of Ded(I) ·Ded(J) or I · J is a product.

Corollary 5.3.16. Let I, J be cuts. Then

I + J = I ⊕ J ⇔ Ded(I) + Ded(J) = Ded(I + J)

⇔ Ded(I) + Ded(J) = Ded(I ⊕ J)

⇔ Ded(I) + Ded(J) = Ded(K) for some cut K
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and

I · J = I � J ⇔ Ded(I) ·Ded(J) = Ded(I · J)

⇔ Ded(I) ·Ded(J) = Ded(I � J)

⇔ Ded(I) ·Ded(J) = Ded(K) for some cut K.

We can also give a partial answer to the second question: if we restrict ourselves to the

study of positive cuts and rifts as above, then there exist rifts which are not expressible

as a sum of cuts (i.e. a sum Ded(I) + Ded(J) where I, J are cuts) or a product of cuts.

Example 5.3.17. Let A = {n : n ∈ N | i′ : i′ > I}, where I is a cut strictly larger than

N. If Ded(J) + Ded(K) ' A, then in particular, J + K = N, implying that J = K = N.

But then J ⊕K = N as well. The rift A cannot be expressed as a product of cuts for the

same reasons.

The above example does not, however, tell us that we cannot express each rift as a

sum or product of a positive cut with a negative cut. In particular Example 5.3.17 makes

implicit but essential use of the fact that N is the smallest cut in a model of arithmetic.

5.3.1 Rifts as a measure of size

Kaye and Reading [52] have defined the size of an external set by setting

card(X) = sup{card(A) : A ⊆ X is M − finite};

card(X) = inf{card(A) : A ⊇ X is M − finite}.

Then X is said to be M-countable when the two values coincide, in which case we take

this value to be the size of X.

There are examples of sets X for which card(X) < card(X); in fact, Kaye has proved

the following.
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Proposition 5.3.18. Let I < J be cuts in the countable model M . Then there is a set

X such that card(I) = I and card(J) = J .

Suppose we define the size of a set X by

size(X) = {m ∈ card(X) |m > card(X)};

then the following is immediate.

Corollary 5.3.19. If M is countable, then every rift is the size of a set.

5.4 Architectures as a threading model

Consider a set of interdependent objects, where each object exists over a given range

(perhaps of time, or space), but can only do so following the objects it depends on. An

instructive example is of threads in multithreaded software: a thread exists in time (and,

perhaps, significantly in memory), but may depend on other objects to complete before

it begins processing any information. Even in single-threaded software, we may not know

the exact time at which, for instance, a callback may be executed. In either case there is

often a fuzzy notion of execution time: we cannot say precisely when a process is executed,

but we can specify a window of time in which it will. Posets with weak orders may be

very useful for modelling this.

In transition theory, the transitions in a computation are often modelled using ill-

founded sets, via a Mostowski collapse: if p is a transition, let f : p 7→ {f(q) : p → q},

where p→ q denotes the fact that a transition from p to q is possible. This model is very

effective when processes operate with single threads, though may fail to fully capture the

interdependencies of multiple threads which can operate concurrently.

Example 5.4.1. Let w, x, y, z be threads and suppose Figure 5.2 describes their imme-

diate dependencies, where a −7→ b when b must wait for a to terminate before executing.

When studying the execution of the program, we are interested not only in when a thread
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Figure 5.2: A race condition

t might run, but also in the state of other threads at times when t might execute. Race

conditions are common examples of a situation where we need such information. In Fig-

ure 5.2, supposing the behaviour of z is dependent on the order in which x and y complete,

we will have a race condition, and must find some way of asserting that x, y complete in

the correct order. That is, we must augment the arrow system to ensure, say, x −7→ y.

Let A be a set of such interdependent objects. Suppose that, for some subset B of A,

the object x ∈ A will start precisely when every b ∈ B has terminated. For each b ∈ B,

write b ∈L x, and x ∈R b. Repeating this for every x ∈ A, we obtain two membership

relations, ∈L and ∈R. The left-members of any x are the necessary conditions for x, and

the right-elements those objects which will wait for x.

If for some—perhaps less direct—reason y must wait for x to complete before running,

write x �| y. Write x ≤ y when x may exist at least as late as y, or equivalently when y

cannot start any earlier than x.

We might decide that x ∈L y only when y directly depends on x, and further that this

kind of dependency is obvious and easily—automatically—checkable. If we are considering

a potential race condition, then we are likely to be interested in the relation ≤ on A.

We can easily prove several properties about the pair of relations, T = (≤,�|). First,

note that for each x, x ≤ x. Provided we do not have a immediate self-dependency (which

in many cases we will not, and furthermore, this assertion should be easily checked since

membership describes a simple and obvious relationship), then no x will have x ∈L x,

x ∈R x, or x �| x. If x ≤ y ≤ z, then z cannot start earlier than y, which cannot start

earlier than x; hence x ≤ z. Similarly, if we have x �| y ≤ z or x ≤ y �| z, then x �| z.
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Therefore T is a two-order, as defined in Chapter 3.

Furthermore, if xR is a right-element of x, and xR ≤ y, then x �| y; similarly if yL ∈L y

and x ≤ yL, then x �| y. Inversely, if x �| y, then y must wait for some object which

cannot start before x has started, or some object which depends on x cannot start later

than y. In symbols,

x �| y ⇔ ∃xR (xR ≤ y) ∨ ∃yL (x ≤ yL). (5.5)

Dually we can describe ≤ in terms of �| and membership. If x ≤ y, then for every

object xL upon which x depends, xL �| y (otherwise it is possible that x would wait for

some xL, while y was in execution/existence); and for every object yR which depends

directly on y, we have that yR also depends (indirectly) on x, i.e. x �| yR. Inversely, if

every xL �| y and every yR depends on x, then certainly y cannot start before x. Thus,

x ≤ y ⇔ ∀xL (xL �| y) ∧ ∀yR (x �| yR).

The relationships 5.5 and 5.4 prove that (A, T,∈L,∈R) is an architecture, as defined

above.

Theorem 5.1.11 demonstrates that any collection of such processes and dependencies

admits the structure of an architecture, and moreover that this is the minimum time

restriction based on the constraints ∈L and ∈R.
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CHAPTER 6

TOPOLOGICAL SET THEORY AND
NONSTANDARD ARITHMETIC

In this chapter our we first mimic the constructions of Forti et al. in topological set

theory, but in a nonstandard set-theoretic context. Specifically our constructions take

place in a set theory as interpreted by a nonstandard model of arithmetic. A cut in this

model will replace the large cardinal (sometimes ℵ0) often used in topological set theory

to guarantee the existence of models, and as such we will be concerned with properties of

cuts—and their analogues in standard set theory—throughout.

Once this task has been completed, we begin to uncover which properties are necessary

for the above construction. In particular this leads to some interesting results in the

reverse mathematics of sequence properties such as convergence (and hence completeness).

We show that completeness is certainly much weaker than the assumption of strength in

a cut, and give some estimates regarding its precise strength.

6.1 Preliminaries

For the remainder of the chapter we fix a nonstandard model M of Peano arithmetic, and

assume that some interpretation fst of finite set theory has been specified.1By (V ,∈) we

refer to the model (M,∈fst).
1For example the Ackermann interpretation ack, which stipulates that x ∈ack y if and only if the xth

digit in the binary representation of y is set to 1.
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6.1.1 Properties of cuts

The following definitions can be found in Kirby’s thesis [55].

Definition 6.1.1. A cut in M is an initial segment closed under the successor operation.

Definition 6.1.2. A subset A of M is said to be coded in M if there exists an element

a ∈M such that m ∈ A⇔M � m ∈fst a for all m ∈M .

If I is a cut, B is coded inM and A = B∩I, then we occasionally abuse the terminology

and say A is coded also.

Below we list three possible cut properties. We will be particularly interested in the

strength of properties in our model relative to these. All of these definitions (or slight

variations thereof) may be found in Kirby’s thesis [55], along with the equivalent properties

given.

Definition 6.1.3. The cut I ⊆e M is said to be semiregular in M if, whenever f is a

function coded in M and a < I, f“I ∩ I is not cofinal in I.

A cut I is semiregular if and only if it satisfies I Σ0
1, or equivalently I, with its coded

subsets, forms a model of the second-order theory RCA0. In particular semiregular cuts

are closed under exponentiation and are also equal to their own cofinality.

Definition 6.1.4. A cut J is cofinal in a cut I (written J cf I) if and only if there is a

function f coded in M such that dom(f) ⊇ J and f“J ∩ I is cofinal in I.

The cut J codes a cut I (written J cd I) if and only if there is a nondecreasing function

f coded in M such that dom(f) ⊇ J and sup(f“J) = I.

The cofinality of I is the cut

cf(I) =
⋂
{J : J cf I}

=
⋂
{J : J cd I}.

Experience with such notions in standard set theory would suggest that J cf I ⇔ J cd

I, however this is not the case. Certainly J cd I ⇒ J cf I, but the reverse is not true.
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Moreover, it is generally not true that cf(I) is cofinal in I. These are our first examples

where analogous properties in standard and nonstandard set theory fail to yield the same

results.

As a semiregular cut is equal to its own cofinality (and clearly cuts are our analogues

of limit ordinals), they correspond to particular regular limit ordinals (and hence to

regular cardinals). As semiregular cuts are also closed under exponentiation, they may

be regarded as analogous to strongly inaccessible cardinals.

A cut is I also semiregular if and only if I is inductive in I.

Definition 6.1.5. The cut J is inductive in I if and only if, whenever f is a function

coded in M with dom(f) ⊇ J such that f(0) ∈ I and

∀j ∈ J (f(j) ∈ I → f(j + 1) ∈ I),

we have f“J ⊆ I.

We in fact have that

cf(I) =
⋃
{J : J is inductive in I},

and that cf(I) is always inductive in I.

Definition 6.1.6. The cut I is regular if, whenever e < I and (Ai)i<e is a coded sequence

of sets in M such that
⋃
i<eAi ⊇ I, there is some i < e such that Ai ∩ I is cofinal in I.

Regularity is another familiar principle from standard set theory. Given the axiom of

choice, the principle above—that is, that some limit cannot be constructed as a strictly

smaller union of strictly smaller entities—is equivalent to the property of being a regular

cardinal. While regularity implies semiregularity, the reverse is not true. This is a second

example of analogues in nonstandard set theory failing to correspond exactly to behaviour

in a standard universe.
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Definition 6.1.7. We call I strong if, whenever f is a function coded in M , there exists

c ∈M such that

f(i) < c⇔ f(i) < I

for all i ∈ I.

Strong cuts correspond to measurable cardinals, but also to strongly inaccessible,

weakly compact cardinals. The latter follows from the fact that the strong cuts are

precisely those which are semiregular and satisfy a suitable tree property (see Kirby [55,

ch.7]). The analogy with measurable cardinals is also suggested there, though we will not

be concerned with these properties.

6.2 The construction

We first consider the problem of replicating the results of Forti et al. in a nonstandard

context. Throughout this section we will be assuming our cut is strong in M .

In order to define the relations ∼i, we first define the + operator for equivalence

relations considered by Malitz [67] and Aczel [1], among others. If ∼ is an equivalence

relation on sets, then ∼+ is the equivalence relation defined by

x ∼+ y ↔ ∀u ∈ x ∃v ∈ y (u ∼ v) ∧ ∀v ∈ y ∃u ∈ x (u ∼ v).

Definition 6.2.1 (Malitz). The sequence (∼i)i∈M is defined by setting ∼0= M ×M , and

∼i+1 = ∼i.

At limit ordinals λ, Malitz defines ∼λ =
⋂
α<λ∼α. We take the same definition at

cuts; notice, however, that this definition is not internal.

Definition 6.2.2. For a cut I, ∼I =
⋂
i∈I ∼i.
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6.2.1 Sequences

Definition 6.2.3. An I-sequence is a sequence (xi)i∈I , coded in M .

All sequences we consider will be I-sequences. We will require analogues of convergence

and the Cauchy property, as well as stronger notions.

Definition 6.2.4. Let (xi) be an I-sequence. We say (xi) converges to y ∈M if

∀i ∈ I ∃j ∈ I ∀k ∈ I (k ≥ j → xk ∼i y).

We say (xi) converges strongly1to y if

∀i ∈ I (xi ∼i y).

Definition 6.2.5. Let (xi) be an I-sequence. We say (xi) is (I-) Cauchy if

∀i ∈ I ∃j ∈ I ∀k,m ∈ I (m, k ≥ j → xm ∼i xk).

We say (xi) is strongly Cauchy if

∀i ∈ I ∀j ∈ I (j ≥ i→ xi ∼i xj).

We will call V

• I-complete if every I-Cauchy sequence is convergent;

• I-crowded if every I-sequence has an I-Cauchy subsequence;

• I-compact if it is both complete and crowded.

Lemma 6.2.6. A strongly Cauchy I-sequence always converges strongly.

1This notion was used by Malitz in his thesis [67], as was the corresponding notion for the Cauchy
property of sequences below. We remark that it has no immediate relation to the cut property ‘strength’.
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Proof. Suppose ∀i ∈ I ∀j ∈ I (j ≥ i → xi ∼i xj). Recall that (xi) is the truncation

of a coded sequence (xi)i<k, where k > I. By overspill, there is some m > I such that

whenever i ≤ j ≤ m, we have xi ∼i xj. In particular, xi ∼i xm for all i ∈ I. Therefore

xm is a strong limit.

In order to obtain a model of a positive set theory, we require an I-compact model.

The property of I-compactness readily splits into those of completeness and crowdedness.

Lemma 6.2.7. If I is strong, every I-Cauchy sequence has a strongly I-Cauchy I-

subsequence, and hence V is I-complete.

Proof. First define a function F as follows. For i, j ∈ I let F (i, j) be the least k ∈ M

such that xk 6∼i xj, or F (i, j) = len(x) > I if there is no such k.

By strength of I there is c > I such that for all i, j ∈ I

F (i, j) ∈ I if and only if F (i, j) < c.

Now we can define the subsequence. Define f(0) < f(1) < · · · < f(i) < · · · by

f(0) = 0 (so that xf(0) ∼0 xi for all i) and given f(0) < f(1) < · · · < f(i) all defined,

define f(i + 1) to be the least j > f(i) such that F (i + 1, j) ≥ c, if there is such j,

f(i+ 1) = len(x) otherwise.

If i ∈ I, f(i) ∈ I and (xi) is I-Cauchy there is j ∈ I such that xj ∼i+1 xk for all

j ≤ k ∈ I and clearly we may take j > f(i). Thus by overspill, for this j, F (i+ 1, j) ≥ c.

Therefore the least such j is indeed an element of I. The definition just given is first

order. So it defines an M -finite function f which is increasing with the property that if

i ∈ I and f(i) ∈ I then f(i + 1) ∈ I. Also, by strength, there is d such that f(i) ∈ I iff

f(i) < d for all i ∈ I. So if for some i ∈ I we have f(i) > I then there is a greatest i ∈ I

with f(i) < d i.e. f(i) ∈ I. This contradicts what has just been said, so f restricted to I

is a coded function I → I.

The subsequence (xf(i))i∈I is evidently a strongly I-Cauchy subsequence of (xi), as

required.
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The following is a well understood combinatorial result, which shows that a tree prop-

erty implies the crowdedness of a metric space. Briefly, it involves constructing a tree

of the appropriate size for which any I-branch must be a Cauchy sequence. Our proof

follows closely that given by Forti and Honsell [37].

Lemma 6.2.8. If I has the tree property and is closed under exponentiation then V is

I-crowded.

Proof. Build a tree as follows. Let T0 = {(0, x0)}. Assume Ti has been defined. Then

(j, xj) ∈ Ti+1 if xj is not included in any previous layer Tk, and j is the least m such that

xmx̃j (that is, xj is the first unused representative of its equivalence class).

If (j, xj) ∈ Tm for some m < i+ 1 and (k, xk) ∈ Ti+1, put (j, xj) <T (k, xk) if and only

if j < k and xj ∼m xk. That is, at each stage i + 1 we divide the i-equivalence classes

up into their constituent i+ 1-equivalence classes, with representatives of least index for

each class. Then the directed edges of the tree reflect inclusion of the represented classes.

Clearly T is a tree. Since (xi) is an I-sequence it has length M > I, and so card(T ) =

M > I. Further, each layer Ti has width at most exp(i), which is in I. Therefore by the

tree property T has a branch of length greater than I. Clearly this branch represents a

convergent I-sequence.

Corollary 6.2.9. If I is strong then V/∼I is I-compact.

6.3 Positive set theory in V

Here we will prove that a quotient of V satisfies the positive set theory GPK. As mentioned

by Forti and Hinnion [30], GPK follows from the following axioms.

Definition 6.3.1 (Forti, Hinnion [30]). The theory BP is axiomatised by the existence

of the following sets.

BP.1 The identity set I = {(x, y) : x = y};
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BP.2 The membership set E = {(x, y) : x ∈ y};

BP.3 For all a, Q(a) = {(x, y) : ∀z ∈ x ((x, y), z) ∈ a};

BP.4 For all a, the inverse a−1 = {(x, y) : (y, x) ∈ a};

BP.5 For all x, y, the doubleton {x, y};

BP.6 For all a, b, the pullback {((x, y), z) : (x, z) ∈ a ∧ (y, z) ∈ b};

BP.7 For all a, b, the image of b under a, i.e. {z : ∃y ∈ b (y, z) ∈ a}.

As explained by Forti and Hinnion [30], these axioms allow one to construct various

familiar objects: a universal set, projections for sets of pairs, domains, ranges, unions,

intersections, cartesian products, power sets, and so on. Further, we have the following

theorem.

Theorem 6.3.2 (Forti & Hinnion [30]). Let M = (A,E) � BP. Then M � Comp(GPF).

We will use this theorem to prove that a quotient of our model satisfies Comp(GPK).

Definition 6.3.3. The new membership E on V is defined by

x E y ⇔ ∃x′ ∼I x ∃y′ ∼I y x′ ∈ y′

⇔ x ∈ y,

where y denotes the closure of y.

This induces another membership on the quotient space V/∼I , which we also denote

by E:

x/∼I E y/∼I ⇔ x E y.

Theorem 6.3.4. The structure (V/∼I , E) is a model of GPK.

Proof. Fix some set V which contains a representative for each I-equivalence class. This

is possible by a theorem of Malitz [66], who showed in his thesis that for every ordinal α
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the collection Mα of canonical α-representatives is a set. In our case, we may take Mk

for some k > I; thenMk contains a representative for each I-equivalence class, plus some

other sets.

It is easily seen that in U the axioms BP.1-2 and BP.4-6 are satisfied. For instance,

the identity set I is given by

{(x, x) : x ∈ V }/∼I

The axiom BP.3 is more difficult, and so we prove it here. Fix a set s ∈ V ; we find a

set c whose equivalence class corresponds to Q(s) from axiom BP.3. For each i, let

bi = {u = (x, y) : ∀z ∈ x ((u, z) ∈i s)}.

We prove that (bi) converges to some set c, and that U � c = Q(s).

Notice first that b0 ⊆ b1 ⊆ . . .. Let (bmi
) be a strongly convergent subsequence by

compactness of V , with limit c. If u ∈ c, then u ∈i bmi
for all i, hence u ∈I bmi

for all

i, as (bmi
) is a nonincreasing sequence. Further, by monotonicity the original sequence b

converges to c.

Since bi → c, we have

∀u = (x, y) ∈ c ∀z ∈I x ((u, z) ∈I s).

Assume u ∈ c. Then ∀i ∃j ∀k > j (u ∈i bk). Therefore, for any i there is j ≥ i such that

u ∈i bj. Therefore u is a pair, say (x, y), and u ∈i bk so u ∼i v for some v = (xv, yv) with

∀z ∈ xv ((v, z) ∈i s).

If zi ∈I xu, then as u ∼i v, xi ∼i−1 xv, so zu ∼i−2 zv for some zv ∈ xv As zv ∈ xv,

(v, zv) ∈i s. Therefore (u, zu) = {{u}, {u, zu}} ∼i (v, zv) ∈i s, so (u, zu) ∈i s. This holds

for all i, so that (u, zu) ∈I s.

Conversely, suppose u = (x, y) is such that ∀z ∈I x ((u, z) ∈I s). If z ∈ x, (u, z) ∈I s.
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Therefore u ∈ bi for all i; hence u ∈I c.

6.4 Reverse results

Given that strength is sufficient for our model V to satisfy the desired topological and

logical properties, we now consider the question of necessity. In terms of topological prop-

erties, this problem again splits conveniently into those of crowdedness and completeness.

6.4.1 Crowdedness

It is relatively simple to show that crowdedness is equivalent to strength. This is unsur-

prising, as the former can be formulated as a purely combinatorial property, equivalent

to closure under exponentiation and the tree property, by a well-understood tree argu-

ment. In order to obtain strength, then, we must first prove semiregularity follows from

crowdedness; it is easier here to prove that regularity holds.

Lemma 6.4.1. If V is I-crowded, then I is regular.

Proof. Suppose I ⊆
⋃
i≤eAi, where the Ai form a coded family of disjoint subsets of M .

By overspill there is some k such that i ∈
⋃
i≤eAi for all i ≤ k. Define a sequence x by

taking xi to be the unique j ≤ e such that i ∈ Aj. As V/I is crowded there is a Cauchy

subsequence xmi
. In particular, as the sequence x is bounded by e ∈ I, for e ≤ i, j ∈ I

we must have xmi
= xmj

= y, say. Therefore Ay ∩ I is cofinal in I.

Theorem 6.4.2. The space V is I-crowded if and only if I is strong.

Proof. If I is strong, then I satisfies the tree property and is closed under exponentiation.

Therefore V is crowded, by Lemma 6.2.8. To see the other direction, assume V is I-

crowded. Since I is closed under exponentiation by Lemma 6.4.1, I is strong if and only

if I satisfies the tree property.
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Suppose, for a contradiction, that I does not satisfy the tree property. Take an M -tree

T such that ∀i ∈ I |Ti| ∈ I, but for which there is no M -coded branch B of T satisfying

∀i ∈ I ∃b ∈ B ∩ I rankT (b) = i.

Define a function f by f(0) = 1 and taking f(i+ 1) = max{|Ti+1|, f(i) + 1}. By semireg-

ularity, f(i) ∈ I for all i ∈ I.

Define a sequence x as follows. Let x0 = 0. Assuming that (xk : k < n) are defined,

corresponding to the layers T0, T1, . . . , Ti of T , take xn, . . . , xn+|Ti+1| to be representatives

for the ∼f(i+1)-equivalence classes of V . Since I is regular, these representatives can be

chosen in such a way that they are distinct and in I1.

Now suppose (xmi
)i∈I is a Cauchy subsequence of (xi). Let b0 = xm0 . Suppose bi = xmk

has already been defined. Let X be the set of <T -least y such that bi <T y. Let bi+1 be

the <-least element y of X such that y <T xmk+1
. This guarantees that y ∈ I2, but also

that the next element of our sequence, bi+2, will also be definable in this way. Clearly

B = {bi : i < I} is a branch of T having an element of rank i for all i ∈ I. This contradicts

the choice of T .

Corollary 6.4.3. The space V/∼I is compact if and only if I is strong.

This is not what one might expect given the analogous result in standard set theory.

For example, Forti and Honsell [37] use κ-completeness and κ-boundedness3 to prove

κ-compactness. Notice that κ-boundedness (analogous to the usual property of total

boundedness) is true in any cut closed under exponentiation. However this does not

enable us to prove crowdedness as usual, since we require subsequences to be coded in M .

1This also depends on our interpretation of finite set theory in M , however any sensible
interpretation—such as Ackermann’s—will suffice.

2Recall that Kirby’s definition of an M -tree includes the requirement a <T b→ a < b.
3The space is said to be κ-bounded if and only if, for every α < κ, the number of α-equivalence classes

is strictly less than κ.
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6.4.2 Completeness

The problem of completeness is far less straightforward. Lemma 6.2.7 does not reverse,

as the following example demonstrates.

Example 6.4.4. We give an example of a cut I in a model M such that I is not strong,

yet for which V/I is complete. In particular every Cauchy sequence has a subsequence

which is eventually strongly Cauchy, but I fails even to be semiregular.

Let M be ω1-saturated. Let N < a ∈M , and take I to be the cut

{m ∈M : for some n ∈ N, m < a+ n}.

First we remark that I is not even semiregular: for some b > N, define f : [0, b]→ M by

f(n) = a+ n. Then f ′′[0, a] ∩ I is cofinal in I.

Let (xi)i be an I-Cauchy sequence. Take na ∈ [a, I) such that na ≤ k < I implies

xna ∼a xk. By an external induction define, for i ∈ N, na+i+1 to be the least j > na+i

such that whenever j ≤ k ∈ I, we have xj ∼i+1 xk. Since na+i ∈ I and (xk)k is I-Cauchy,

na+i+1 is also in I. This defines a sequence (na+i)i∈N such that each na+i is in I. Find

(na+i)i<K extending (na+i)i by saturation, and set

mi =

 i if i ≤ a;

ni otherwise.

Then mi ∈ I for all i ∈ I, and xmi
∼i xk whenever i ≥ a; that is, (xmi

)i is eventually

strongly Cauchy. This implies there is a limit, as in Lemma 6.2.6.

Although the cut I in Example 6.4.4 is very weak in the sense that it is not semiregular,

the completeness of V/I is heavily influenced by another strong cut. Specifically, the

following lemma shows that cf(I) = N is strong in this case.

Lemma 6.4.5. Let M be ℵ1-saturated. Then N is strong in M .
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Proof. Let f : [0, b]→M be any coded function with b > N. Let

p(x) = {f(i) < x : i, f(i) < N} ∪ {x < f(i) : i < N < f(i)}.

Then card(p) = ℵ0 and clearly p is finitely satisfiable. Therefore f(i) < x ⇔ f(i) < N,

for all i ∈ N.

In the standard realm, we have the following (see Forti and Honsell [37, Rem. 2.6,

2.7; Thm 2.7]).

Theorem 6.4.6. Suppose U is a model of ZFA and α is an ordinal. Then the quotient

U/α is α-complete if and only if either

• α is a limit ordinal with cofinality ω, or

• α = κ for some weakly compact, strongly inaccessible κ.

An analogue of this result in the nonstandard realm would certainly accommodate

Example 6.4.4, since there N is strong by Lemma 6.4.5, and clearly N is cofinal in I

(hence N codes I, which may be a more suitable analogue).

In order to better gauge the strength of I-completeness, we will have to introduce

witnessing properties.

6.4.3 Witnessing principles

Definition 6.4.7. Suppose φ(x, y, z) is a formula (possibly with parameters from M),

and

∀x ∈ I ∃y ∈ I ∀z ∈ I φ(x, y, z).

A witness for φ is a function f such that

∀x ∈ I ∀z ∈ I φ(x, f(x), z).
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Witnesses can affect many notions involving sequences which are of particular interest

to us.

Example 6.4.8. • Let (xi)i be a Cauchy I-sequence, and φ(i, n, z) the formula

∀m, k (z = 〈m, k〉 ∧m > k > n→ xm ∼i xk).

Then ∀i ∈ I ∃n ∈ I ∀z ∈ I φ(i, n, z).

• Let (xi)i be a convergent I-sequence, and φ(i, n, k) the formula

k ≥ n→ xk ∼i y,

where y is a limit of (xi)i. Then

∀i ∈ I ∃n ∈ I ∀k ∈ I φ(i, n, k).

In each case a witness for the property φ is a function which allows us to discuss a

non-definable notion (for example, ∃n ∈ I (xn ∼i y)) with a definable one (eg. xf(i) ∼i y).

In general witnesses at least reduce the non-definable complexity of a formula by allowing

us to replace an external quantifier with an internal one.

Definition 6.4.9. Let Σ be a collection of formulas. The Witness Principle WP(Σ)

posits that whenever

∀i ∈ I ∃n ∈ I ∀z ∈ I φ(i, n, z)

for some φ ∈ Σ, there is a witness f for φ.

Definition 6.4.10. Assume I is a cut closed under addition and multiplication. CDF is

the assertion that whenever (Ai,n)i,n∈I is a coded double family of sets such that

1. Ai,n is monotonic nondecreasing in i;

2. Ai,n is monotonic nonincreasing in n;
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3. ∀x ∈ Ai,n (x ≥ n) for all n; and

4. ∀i ∈ I ∃n ∈ I Ai,n ∩ I = ∅

there is a function f such that for all i ∈ I, Ai,f(i) ∩ I = ∅.

We can state an equivalent condition in terms of functions; this allows us to also drop

the condition that Ai,n ≥ n.

Lemma 6.4.11. The following are equivalent when I is closed under addition and mul-

tiplication.

1. CDF

2. whenever f(i, n) is a coded function which is nonincreasing in i, nondecreasing in n,

and satisfies ∀i, n ∈ I f(i, n) ≥ n and ∀i ∈ I ∃n ∈ I (f(i, n) > I), there is a coded

function g : I → I such that

∀i ∈ I (f(i, g(i)) > I).

3. whenever f(i, n) is a coded function which is nonincreasing in i, nondecreasing in

n, and satisfies ∀i ∈ I ∃n ∈ I (f(i, n) > I), there is a coded function g : I → I such

that

∀i ∈ I (f(i, g(i)) > I).

4. whenever Ai,n is a coded double family of sets satisfying all but the third hypothesis

in the definition of CDF, there is a coded function f : I → I such that Ai,f(i)∩I = ∅

for all i ∈ I.

Proof. To see that (1) and (2) are equivalent, first assume CDF and let Ai,n = [f(i, n), N ]

where N is some number greater than I. Then Ai,n satisfies the hypotheses of CDF, so
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there is a function g satisfying ∀i ∈ I (Ai,n ∩ I = ∅). But then f(i, n) > I by choice

of Ai,n. The reverse is proved similarly, by taking f(i, n) = min(Ai,n ∪ {N}) for some

N > I. This argument will also prove the equivalence of items (3) and (4). Since (4)

clearly implies (1), we are left to prove that (2) implies (3).

Given f satisfying the hypotheses of (3), define g by

g(i, n) = f(i, n) + n.

Clearly g is monotonic nonincreasing in i and increasing in n. Further, g(i, n) ≥ n and

given any i, if f(i, n) > I then g(i, n) > I. Find a function h : I → I such that

g(i, h(i)) > I

for all i ∈ I. Then f(i, h(i)) = g(i, h(i))−h(i) is in I precisely when g(i, h(i)) ∈ I. Hence

h is a suitable function for f as well.

This result shows that, in the hypotheses of CDF, we may also assume the sets Ai,n to

be upwards-closed; in particular, only the minima of these sets are of interest. Considering

sets which are not upwards closed introduces various unnecessary complications, and so

we prefer to work with the equivalent function properties where possible.

Remark 6.4.12. Although our arguments are formulated in terms of cuts in a model of

arithmetic, they hold in a model of second-order arithmetic with only minor adjustments.

For instance, where we define a set A to be the interval [f(i, n), N ] where N > I, we

could just as easily consider the set of elements in our model of second-order arithmetic

which are at least f(i, n) to obtain the result. In the reverse argument, where we consider

functions f defined as the minimum of a set A, and otherwise defined as some N > I, we

may alternatively consider partial functions, which are undefined when the appropriate

set A is empty in the model, or simply upwards-closed sets.

Our reference to some N > I is in fact just a means of discussing these notions in the
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context of a cut in a model of first-order arithmetic.

Theorem 6.4.13. Let Σ be the class of formulas φ(i, n, z) (possibly with parameters

from M) such that

φ(i, n, z)→ φ(i, n+ 1, z)

φ(i+ 1, n, z)→ φ(i, n, z)

for all i, n ∈M . Then I � CDF if and only if I �WP(Σ).

Proof. Suppose I �WP(Σ). Given (Ai,n) satisfying the hypotheses of CDF, let φ(i, n, z)

be the property z /∈ Ai,n. Then clearly φ ∈ Σ, hence there is a witness f such that

∀i ∈ I ∀z ∈ I φ(i, f(i), z);

that is, Ai,f(i) ∩ I = ∅.

Conversely, suppose φ(i, n, z) ∈ Σ, and let Ai,n = {z : ¬φ(i, n, z)}. Then Ai,n satisfies

the CDF hypotheses and so there is a witness f for the emptiness of Ai,n—that is, f is a

witness for φ in I.

Corollary 6.4.14. If I � CDF then

• every convergent I-sequence has a witness;

• every Cauchy I-sequence has a witness;

• every Cauchy I-sequence has a strongly Cauchy (hence convergent) subsequence.

Proof. By Example 6.4.8 and theorem 6.4.13, if I � CDF then both convergence and

the Cauchy property are always witnessed. If (xi)i<I is a Cauchy I-sequence, first find a

witness f , i.e.

∀i ∈ I ∀k,m ∈ I (m ≥ k ≥ f(i)→ xm ∼i xk).
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Define g by

g(i) = max
j≤i

f(j) + i.

For any i ∈ I, maxj≤i f(j) ∈ I, hence—as I is closed under addition—g(i) ∈ I for all

i ∈ I. Further, g is strictly increasing, hence (xg(i)) is a subsequence. Fix i. Then

g(i) ≥ f(i), so for all k ∈ I with k ≥ g(i), xk ∼i xg(i). Since g is increasing, in particular

for j ≥ i we have xg(j) ∼i xg(i). Hence (xg(i))i is a strongly Cauchy I-subsequence.

Corollary 6.4.15. If I � CDF then V/I is I-complete.

This is all well and good, but we haven’t yet learnt anything about the strength of

completeness with respect to principles such as strength, regularity and semiregularity.

6.5 The relative strength of CDF

Recall Example 6.4.4, where we exhibited a cut I = a+N which failed to be semiregular,

yet for which V was I-complete. This was because I was coded by the strong cut N.

Proposition 6.5.1. Suppose J cd I. Then I � CDF⇔ J � CDF.

Proof. Suppose there is a function f : J → I coded in M which is nondecreasing. Assume

dom(f) = [0, a], and define g by

g(i) = max{j ≤ a : f(j) ≤ i}.

Notice that g(f(j)) ≥ j for all j ∈ J and f(g(j)) ≤ i for all i ∈ I. This in fact proves

I cd J ; the remainder of this proof shows how to use the two codings to transfer CDF

from one cut to the other.

Assume I � CDF and that h : J → J is a coded function such that h(j,m) is nonin-

creasing in j and nondecreasing in n. Assume also that for all j ∈ J there exists m ∈ J
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such that h(j,m) > J . Since g is nondecreasing, the function

(i, n) 7→ h(g(i), g(n))

(for i, n ∈ I) is also nonincreasing in the first argument and nondecreasing in the second.

Further, if i ∈ I then g(i) ∈ J hence there is m ∈ J such that h(g(i),m) > J . Hence, as

g ◦ f(m) ≥ m, h(g(i), gf(m)) > J . That is,

∀i ∈ I ∃n ∈ I
(
h(g(i), g(n)) > J

)
.

Let

k(i, n) = f ◦ h(g(i), g(n)).

Then ∀i ∈ I ∃n ∈ I (k(i, n) > I). Using CDF in I, there is a function l such that

k(i, l(i)) > I for all i ∈ I. But then

f(h(g(i), g ◦ l(i))) > I,

so h(g(i), g ◦ l(i)) > J . Fix j ∈ J . Then j ≤ g ◦ f(j), so h(j,m) ≥ h(g ◦ f(j),m) for all

m ∈ J . In particular,

h(j, g ◦ l ◦ f(j)) ≥ h(g ◦ f(j), g ◦ l ◦ f(j)) > J.

Hence g ◦ l ◦ f is a witness for h exceeding J ; therefore J � CDF.

The previous proposition will allow us to demonstrate that CDF is much weaker than

strength.

Proposition 6.5.2. If I is strong, then I � CDF.

Proof. Suppose f(i, n) is a coded function satisfying the hypotheses of CDF, and that I
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is strong. Take c such that

f(i, n) < c⇔ f(i, n) < I

for all i, n ∈ I. Define

g(i) = min{n : f(i, n) ≥ c}

= min{n : f(i, n) > I}.

Then f(i, g(i)) > I for all i ∈ I, and since f satisfies the hypotheses of CDF, g“I ⊆ I.

The previous two results immediately give the following.

Corollary 6.5.3. If I is coded by a strong cut, then I � CDF.

This result greatly generalises the observations of Example 6.4.4, and also demon-

strates the weakness of CDF (and hence that of completeness in V/∼I) relative to strength.

Further, we suspect that CDF has exactly the same strength as CDF, although this may

require extra assumptions on I.

Conjecture 6.5.4. Possibly under some weak additional assumptions (perhaps that I is

closed under exponentiation), I � CDF if and only V is I-complete.

Currently it is unknown whether the standard cut N satisfies CDF in general. This is of

significance because in the standard realm, completeness is equivalent to either countable

cofinality, or weak compactness and strong inaccessibility—hence we might expect that

V/∼I is complete precisely when I is coded by N or I is strong. However, we expect the

following to be true instead.

Conjecture 6.5.5. The standard cut N is not always a model of CDF.

In fact we suspect the much stronger statement:

Conjecture 6.5.6. If I � CDF + SReg then I is strong in M .
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Figure 6.1: Putting these principles in their place.

Notice that Conjecture 6.5.5 would follow from Conjecture 6.5.6, since N is always

regular but there exist M in which N is not strong.

If Conjecture 6.5.5 were to fail, then we suspect that, at least, one of the following

weaker statements would hold. Notice that the conjunction of these statements is precisely

Conjecture 6.5.6.

Conjecture 6.5.7.

• If I � CDF + SReg then I is regular.

• If I � CDF + Reg then I is strong.

Our study of CDF may be useful in the reverse mathematics of analysis; in particular

in the study of sequence properties such as completeness. Notice that all our arguments

in this section would apply in second-order structures, since we assumed our cuts were

closed under addition and multiplication. It is a simple task to translate the concepts to

this context, and each result holds with only minor translations. See Figure 6.1 to see

how the implications between the various principles we have introduced.
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CHAPTER 7

CONCLUSIONS

7.1 In game theory

In Chapter 2 we introduced the two-sided theory Amphi-ZF. Despite a high level similarity

with ZF, it has provided a useful set-theoretic foundation for our arguments, aiding all

following game-theoretic discussion. In particular it has been useful for discussing issues

of regularity; it is likely that Rieger–Bernays permutations will be of further use in this

area, perhaps answering some questions of Chapter 5. One such application may be

in determining the relative strength of the regularity axioms concerning minimal ATOs

posed in Chapter 5.

Another potential application is determining whether an AZF-like theory with a free

construction axiom (restricted, of course, to an appropriate class of functions) exists

which will also admit the structure of a definable architecture. Equivalently, such a

model would have no loops x ∈P x, but would allow other kinds of set-formation. It

may be possible to apply Rieger–Bernays permutations here (loops can easily be removed

using this technique; preserving some form of restricted antifoundation is more difficult).

In chapter 3 we discussed the addition of a second, weaker order to posets as a gener-

alisation of combinatorial games. The theory presented there should convince that such

structures are worthy of study, although it is incomplete without some consideration of

cases (in particular loopy games) where the relation �| is not antireflexive, and perhaps
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weakening other axioms, such as transitivity. Certainly this would be less interesting

order-theoretically, but would be more accommodating to game theory. In particular we

might hope such weakening would allow us to draw meaningful conclusions involving the

greatest fixpoint order pairs of Honsell and Lenisa [47, 46].

A study of amphimorphisms in these general constructions may also be of interest,

since they have a natural game-theoretic motivation—arguably more so than promor-

phisms. The case for amphifunctors certainly needs to be explored in more depth. How-

ever the theory will never be complete with only amphimorphisms, since for example the

value map fails to reflect the weak order.

7.2 In nonstandard topological set theory

In Chapter 6 we demonstrated that Malitz’ own construction works in a nonstandard

set theory, when ordinals and cardinals are replaced by distinguished cuts. Although

it was previously known that ACA0 implies the consistency of GPK, it was interesting

to see the original construction—rather than those directly involving an antifoundation

axiom—producing a compact model.

The more interesting part of that chapter was concerned with reversing these results,

however. In particular the witnessing principles should be investigated further, both in

nonstandard and standard contexts. Particularly interesting is the fact that we were

often able to replace strength—equivalent to ACA0—with a much weaker scheme, but

one which is independent of the usual reverse-mathematical hierarchy

Π1
1 − CA0 ⇒ ATR0 ⇒ ACA0 ⇒WKL0 ⇒ RCA0

when we refuse to assume semiregularity (analogous to RCA0) as a base theory. The exact

strength of completeness needs to be determined, and we strongly suspect it is equivalent

to CDF and the witnessing property.
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