Advanced power converters for railway traction systems

Krastev, Ivan (2019). Advanced power converters for railway traction systems. University of Birmingham. Ph.D.

[img]
Preview
Krastev2019PhD.pdf
Text - Accepted Version
Available under License All rights reserved.

Download (9MB) | Preview

Abstract

This thesis presents a new traction drive suitable for fuel-cell powered light rail vehicles based on a multilevel cascade converter with full-bridge cells. The converter provides dc-ac power conversion in a single stage, while compensating for the variation of fuel cell terminal voltage with load power. The proposed converter can replace the conventional combination of dc-dc converter, as it benefits from having a multilevel ac voltage waveform and much smaller power inductors, compared to conventional solutions.

The converter numerical and analytical models are derived showing that the converter can be modelled as a cascaded boost converter and 3-phase inverter. The design methodology for the energy storage capacitors and power inductors is presented, showing that inductance is reduced at a quadratic rate with the addition of more sub-modules, while total converter capacitance remains constant. A simulation of a full-scale traction drive in a fuel cell tram demonstrates that the proposed converter is a viable solution for light rail applications.

The concept of a boost modular cascaded converter is fully validated through a bespoke laboratory prototype driving a small induction machine. The experimental inverter achieves operation from standstill, with full motor torque, to field weakening with constant power, boosting a 50V dc supply to 200V peak line-to-line voltage.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Tricoli, PietroUNSPECIFIEDUNSPECIFIED
Hillmansen, StuartUNSPECIFIEDUNSPECIFIED
Licence: All rights reserved
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Electronic, Electrical and Systems Engineering
Funders: Engineering and Physical Sciences Research Council
Subjects: T Technology > TF Railroad engineering and operation
URI: http://etheses.bham.ac.uk/id/eprint/12209

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year