eTheses Repository

Application of Calcium Phosphate based gels for encapsulation of therapeutic molecules

Jiang, Peih-Jeng (2010)
Ph.D. thesis, University of Birmingham.

Loading
PDF (3504Kb)

Abstract

There is increasing clinical need for bone substitutes because of the limited supply of autogenous tissue, and the significance of inherited or other bone diseases. The ultimate aim of this study was to form calcium phosphate (CaP) based matrices as bone grafts for medical applications. Amongst CaP based materials, CaP gels made by the sol-gel process have attracted much interest since they can be processed at room temperature allowing the incorporation of environmentally sensitive molecules such as growth factors. CaP gels can be engineered by changing process conditions. There is little previous work however on the effect of drying regimes on the CaP materials formed using the sol-gel process. The objectives of this research were to investigate the influence of drying conditions on the physicochemical properties of CaP gels and the effect of the resultant structures of CaP gels on the function of the incorporated therapeutic molecules. In addition, surface modification of the CaP gels was investigated as a means to enhance biological interaction and also a potential way of creating primary bonds between apatite crystals enabling mechanical reinforcement of the material, which is currently too weak to bear load. This work has confirmed that different drying regimes have a significant influence on the formation of the gel pore structure, with the storage of gel in humid conditions, enabling reprecipitation of an apatitic phase. This variation in pore structure has a significant influence on the catalytic of encapsulated enzymes. In addition, the pH fluctuation of CaP based matrices during processing determines the activity of biomolecules after incorporation. It has also been shown that it is possible to form thiol functional groups on the surface of CaP gels, which could be used in future for mechanical reinforcement or for the attachment of biological moieties.

Type of Work:Ph.D. thesis.
Supervisor(s):Grover, Liam
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:Department of Chemical Engineering
Subjects:TP Chemical technology
Institution:University of Birmingham
ID Code:927
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page