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Abstract

We have investigated the thermodynamics of the square lattice planar rotator model. By calculating

a variety of thermodynamic quantities for the planar rotator model on a sequence of one-dimensional

geometries using transfer functions, we find evidence that the square lattice model exhibits an ordinary

thermodynamic phase transition, with power-law singularities in the thermodynamics described by the

usual set of critical exponents. This is in contrast to the widely-held view that the phase transition in

the model should be of the Kosterlitz-Thouless type.

We have contructed a Hubbard-type model of bilayer strontium ruthenate Sr3Ru2O7. We find that

the Hartree-Fock mean field solution of our model can be made to exhibit a metamagnetic jump that

matches that seen in Sr3Ru2O7, and this is clearly associated with a certain quasi one-dimensional

feature in the electronic structure. We therefore suggest that this is the origin of the metamagnetism in

Sr3Ru2O7. The metamagnetism in our modelling is associated with a phase-separated mixture of low-

and high-magnetisation solutions, which we suggest corresponds to the nematic phase in Sr3Ru2O7.
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Part I

Statistical Mechanics of the Square

Lattice Planar Rotator Model
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We have investigated the phase transition in the square lattice planar rotator model using transfer

operators. We consider the model on a one-dimensional geometry which will become the infinite square

lattice in the limit that a certain parameter tends to infinity; we calculate the thermodynamics for a

series of systems and perform a polynomial extrapolation to this limit. This technique is essentially

an application of exact diagonalisation. The same method has already been applied to a variety of

classical spin models, and these investigations are reported in the PhD theses of R. Mason and A. M.

Cave. The work in the present thesis is connected to A. M. Cave’s thesis, which studied the square

lattice clock model: one of the two phase transitions in this model is the same as the phase transition

in the planar rotator model, and therefore this thesis and A. M. Cave’s are to a great extent alternative

approaches to the same problem. We calculate a variety of thermodynamic quantities. Our results

are indicative that in the two-dimensional limit the thermodynamics of the planar rotator model will

become divergent, and that there is a regular phase transition with ordinary critical exponents. This

is contradictory to the strong expectation regarding the phase transition in this model that it should

be a Kosterlitz-Thouless transition.
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Chapter 1

Overview of Classical Statistical

Mechanics and the Planar Rotator

Model

This investigation is concerned with the phase transition in the square lattice planar rotator model. To

set this work in context, it is necessary first to introduce both classical phase transitions in general, and

what is known about the thermodynamics of this particular model. The square lattice planar rotator

model is an archetypal example of a system which undergoes a finite temperatue phase transition

despite it being forbidden to have long range order. The well-established picture of how such a system

can have a phase transition is the Kosterlitz-Thouless transition, which is mediated by vortices, and

is characterised by very particular critical behaviour which is very unlike other thermodynamic phase

transitions. This chapter is intended to provide an overview of these physical ideas. The techniques

of the transfer matrix and one-to-two dimensional crossover and the actual investigation of the planar

rotator model is dealt with in the next chapter.

We begin in section 1.1 with a brief overview of classical phase transitions. We establish the

standard picture of a regular phase transition and the associated ideas of an order parameter and

critical exponents. We also describe the concepts of universality and the renormalisation group. Section

1.2 then narrows the scope to discuss low-dimensional classical spin systems. We define the three

paradigms of disorder, long-range order and quasi-long-range order using the spin-spin correlation
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function. We then carefully provide the argument due to Landau which prevents long-range order

in one-dimensional discrete spin-systems, and the Mermin-Wagner theorem which forbids long-range

order in isotropic systems in one and two dimensions. We conclude this section with a proof of the

Mermin-Wagner theorem for the planar rotator model. Section 1.3 is devoted entirely to the planar

rotator model. In section 1.3.1 we describe the relationship of the planar rotator model to other

statistical mechanics models, and in section 1.3.2 we discuss its relationship to bosonic systems. We

provide the argument for the existence of a phase transition based on the long-range form of the spin-

spin correlation function in the high- and low-temperature limits in sections 1.3.3 and 1.3.4. In section

1.3.5 we describe the helical stiffness, which is a quantity which is somewhat like an order parameter

in the absence of long-range order. We conclude by giving a brief exposition of the Kosterlitz-Thouless

theory in section 1.3.6.

1.1 Statistical mechanics and phase transitions

Because our investigation of the square lattice planar rotator model is concerned entirely with the

phase transition in that model, it is essential to first introduce classical phase transitions. This section

is intended as a whistle-stop tour of the key concepts in classical phase transitions, at the level of an

introductory undergraduate course. In section 1.1.1 we introduce phase transitions as being associ-

ated with singularities in thermodynamic functions, we define the order parameter and the critical

exponents, and we introduce the idea of universality. We pose the problem of phase transitions, from

a theoretical physics perspective, as explaining universality and calculating the critical exponents for

specific systems. In section 1.1.2 we discuss mean field theories of phase transitions. We discuss how

mean field theory can provide a phase transition, but that it can only produce a very restricted set

of values for the critical exponents, and that its qualitative predictions are completely incorrect for

low-dimensional systems. In section 1.1.3 we discuss the renormalisation group, which provides a theo-

retical framework in which to explain universality and does allow the calculation of non-trivial critical

exponents.
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1.1.1 Continuous phase transitions: singularities in thermodynamic func-

tions

A phase transition is a change in the character of a system associated with a non-analyticity in the

thermodynamic functions of that system. Phase transitions are of course familiar to the layperson

in the form of the solid-to-liquid transition of, for example, ice. This is an example of a first order

phase transition, which is signalled by a discontinuity in the first derivative of the free energy with

respect to temperature. In a great many cases, phase transitions take place between phases which

are characterised as having distinct symmetries. In an example of the solid-to-liquid transition, one

can picture the solid phase as a crystal lattice, with a particular set of translational symmetries which

map the lattice points onto one another, while in the liquid phase any translation whatsoever is a

symmetry. The transition between these two phases occurs at a very particular temperature, the

critical temperature TC , and is undergone with the absorption or the release of a quantity of heat, the

latent heat, while the system remains at the temperature TC .

In a first order transition, both the distinct phases correspond to local minima in the free energy of

the system; the lower energy of these two minima at any given fixed temperature is the thermodynam-

ically preferred phase, and the transition is the changing of which of the two local minima is the lower,

the transition point itself being the point where the two minima have the same free energy. First order

phase transitions could be said to be “accidental”, in that they are the crossing of well-separated local

free energy minima. Furthermore, they do not always occur with a change of symmetry, a counterex-

ample being the transition between the liquid and gaseous states. There also occur more fundamental

phase transitions which involve only a single minimum in the free energy. These are second-order or

higher order phase transitions, for which discontinuities or singularities occur in the higher derivatives

of the free energy. These transitions are also labelled as continuous phase transitions, owing to the

characteristic that the critical temperature is passed through without the absorption or release of

heat(1). These transitions are always associated with changing of symmetry, and the question of how

and why a system abruptly and spontaneously undergoes a change in its symmetry has been one of

the most studied subjects in theoretical condensed matter physics.

One of the archetypal real-world examples of a continuous phase transition, and the one which drove

a great deal of important early theoretical work on the subject(2), is the so-called lambda-transition

between the normal and superfluid phases of liquid 4He(2; 3). Some measurements of the specific

heat of 4He close to the transition are shown in Figure 1.1; they show a sharp λ-shaped peak at the
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transition temperature (this being the origin of the term “lambda transition”).

Figure 1.1: Specific heat of 4He showing the Lambda transition.
(Image taken from http://hyperphysics.phy-astr.gsu.edu/hbase/lhel.html,
using data from reference (2).)

For most continuous phase transitions, there exists an order parameter, which is some thermody-

namic quantity which is zero in the high-temperature phase and finite in the low-temperature phase,

and which increases continuously from zero as the temperature is reduced from TC . In a ferromagnetic

system, the order parameter is the magnetisation ~M , which is the ensemble average of the variable

~S(~r) which describes the spin located at the position ~r,

~M = 〈~S(~r)〉. (1.1)

Close to the transition temperature, the asymptotic temperature dependence of the order parameter

is typically a power law,

M ∼ |T − TC |β , T → TC− (1.2)

where the exponent β is called a critical exponent. In a second order transition, the specific heat

exhibits a divergence, and this divergence is typically a power law,

C ∼ |T − TC |−α, T → TC , (1.3)
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and α is a second critical exponent.

There are two important critical exponents in the case that there exists a conjugate variable to the

order parameter, that is a “field” ~B which gives rise to a term − ~B · ~M in the free energy of the system.

In the example of a ferromagnet, ~B would be an externally applied magnetic field. The corresponding

susceptibility, which is defined as

χ = −∂M
∂B

∣∣∣∣
B→0

,

has the critical temperature dependence,

χ ∼ |T − TC |−γ , T → TC+. (1.4)

In addition, for finite but extremely small values of B applied precisely at the transition temperature

T = TC , the order parameter is typically proportional to a non-integer power of B, with an associated

critical exponent δ which is usually defined according to,

M ∼ B1/δ, T = TC , B → 0. (1.5)

The order parameter is closely related to the spatial correlation function, for which we use the

symbol K(~r). In the ferromagnet example, this is defined as

K(~r) = 〈~S(~0) · ~S(~r)〉. (1.6)

Typically one expects in the long range limit |~r| → ∞ the form

K(~r) ∼M2 +De−|~r|/ξ, (1.7)

where D is some constant and the important length-scale ξ is termed the correlation length. At the

transition temperature ξ diverges with an associated critical exponent ν

ξ ∼ |T − TC |−ν , T → TC . (1.8)

At exactly the transition point, where the correlation length is infinite and the order parameter is zero,
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the long range limit of the correlation function has a power law form

K(~r) ∼
(

1

|~r|

)d−2+η

, (1.9)

where d is the spatial dimensionality of the system and η is a further critical exponent. This functional

form, the power law, has the property that it is self-similar under changes of scale: if the underlying

measure of length is re-scaled by a factor b, then the new correlation function is proportional to the

original,

K(b~r) = b−(d−2+η)K(~r).

This property, that precisely at the transition point the system appears the same under changes of

scale, is an extremely important property of phase transitions, and we shall shortly come to discuss it

more.

This type of singular behaviour we have outlined, characterised by the critical exponents, is exhib-

ited in a wide variety of different systems which are governed by quite different microscopic physics.

Furthermore, such different physical systems are often found to have the same values for the critical

exponents. It is found that only two of the critical exponents are independent, the six exponents β, α,

γ, δ, ν, and η being related by the four so-called scaling laws(4):

α = 2− νd (1.10)

γ = νd− 2β (1.11)

βδ = β + γ (1.12)

γ = (2− η)ν (1.13)

These empirical observations, that the same critical behaviour is observed in quite different physical

systems and is controlled by only a very restricted number of critical exponents, is conceptually referred

to as universality, and systems which have the same values for the critical exponents are said to belong

to the same universality class. The challenge to theoretical condensed matter physics regarding phase

transitions is to provide a quantitative description from which the scaling laws can be derived and

actual values of the critical exponents calculated for specific systems(5).

The magnitude of this task stems from the immense mathematical difficulty in the direct calculation

of thermodynamic quantities and correlation functions for even the simplest model systems which are
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capable of exhibiting a phase transition. There are two main reasons for this, the first being that phase

transitions arise out of interactions between the miscroscopic degrees of freedom, and the inclusion

of interactions renders the calculations for any sizeable system non-trivial. In addition to this, the

thermodynamics of any finite interacting system are smooth and infinitely differentiable functions of

temperature, and the phase transition, that is the singular behaviour in the thermodynamics, occurs

only in the thermodynamic limit that the system-size is made infinitely large. Viewed in these terms, it

is not surprising that exact calculations of thermodynamic phase transitions represent such a hopelessly

difficult task in the vast majority of cases. There remains only a small number of exact solutions to

statistical mechanics models which exhibit phase transitions(6).

1.1.2 Mean field theory of phase transitions

Approximate desriptions of phase transitions may be obtained from mean field theories, in which one

replaces the real Hamiltonian with some effective Hamiltonian Hmf in which there are no interactions.

The interaction energies in the original Hamiltonian are approximated by a mean field which is coupled

to all of the miscroscopic variables in the system. In a Heisenberg ferromagnet, one would replace the

interaction term −J ~S1 · ~S2 in the original Hamiltonian by

− J ~S1 · ~S2 ⇒ −J ~M · ~S1 − J ~M · ~S2 + JM2 (1.14)

where the mean field ~M is the average of the spin variables, ~M = 〈~S〉, which is precisely the mag-

netisation. The term JM2 is included to compensate for the fact that in replacing the spin-variables

by the mean field one has effectively included the single interaction term twice. The thermodynamics

of the mean field Hamiltonian Hmf reduce to the partition function for a single particle, or in the

ferromagnetic example a single spin, which can be calculated exactly. One can calculate the ensemble

average 〈~S〉 for this partition function, which is of course the imposed mean field; this provides a

so-called self-consistent equation for the order parameter,

M = m(M), (1.15)

where m(h) is an analytic function which describes the average moment induced in a single spin by the

application of an appropriately scaled magnetic field h. Typically, as a consequence of the underlying

symmetry with respect to the direction of the applied field, the function m(h) will have a Taylor
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expansion of the form,

m(h) = A(T )h−B(T )h3 + ..., (1.16)

where A(T ) and B(T ) are positive and analytic functions of the temperature T , and therefore small-M

solutions of the self-consistent equation are given approximately by

M = A(T )M −B(T )M3. (1.17)

One always obtains the trivial solution M = 0 where the system is not magnetised, but in addition

one also has the second approximate solution,

M =

√
A(T )− 1

B(T )
(1.18)

provided that (A(T )− 1)/B(T ) > 0. As a function of temperature, the non-trivial solution to the self-

consistent equation has qualitatively the behaviour we have outlined above for the order parameter:

it varies continuously with temperature and goes to zero at a certain temperature TmfC , corresponding

to

(A(TmfC )− 1)/B(TmfC ) = 0,

and above this temperature the solution ceases to exist. In addition, it can be shown that as TmfC

is approached from below the form of the solution has the power law behaviour 1.2, and the critical

exponent is obtained for a wide variety of cases, referred to as the Ising class of mean field theories, to

be β = 1/2.

The specific heat can be calculated close to the transition within the mean field theory and is

found to be always finite, but to exhibit a discontinuous jump at the transition temperature TmfC . The

critical exponent α is therefore predicted to have the value zero. In addition, it is a trivial extension

to include a real external field in the mean field theory in order to calculate values of the exponents γ

and δ; one finds the values γ = 1 and δ = 3 for the Ising class of mean field theories.

Landau provided a formulation of mean field theory such that one does not even need to consider

the Hamiltonian of the system. Thus it can in principle be used to approximate the thermodynamics

of real systems for which the underlying Hamiltonian may not be known. However, of perhaps greater

importance, this approach contains the idea that the thermodynamics close to the transition does not

depend on the precise microscopic physics but only on quite general properties of the system, such
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as the dimensionality of the order parameter(4); as we shall shortly come to discuss, these concepts

would later be expanded upon to great effect in Renormalisation Group methods. Landau’s theory

begins with the assumption that close to some unknown transition temperature the free energy can be

written as a power series in the order parameter, which must be a small quantity close to the transition,

where the coefficients are functions of temperature which it is assumed can be Taylor expanded about

the transition temperature to at least first order in (T − TC). The self consistent equation 1.15 is

obtained by minimising the free energy with respect to the order parameter. The theory is found to

predict a phase transition, that is the order parameter is predicted to have a finite value, if there is a

temperature for which the leading order coefficient in the expansion of the free energy changes sign.

One can obtain the functional form of the order parameter, the specific heat and the susceptibility

close to the transition, and the values of the critical exponents β, α, γ and δ; the results are precisely

what is obtained applying mean field theory directly to a specific Hamiltonian, although the precise

values of thermodynamic properties must be expressed in terms of unknown parameters which are

related to the coefficients in the free energy expansion. It should also be noted that there is no way

within the theory to obtain any estimate of the transition temperature TC ; this remains the case in

Renormalisation Group theories.

An extension to Landau theory, called Ginzburg-Landau theory, includes a spatial-dependence of

the order parameter. This theory allows one to calculate correlation functions, from which one can

calculate the critical exponent ν, the value ν = 1 being obtained for the Ising class of mean field

theories. The form of the correlation function precisely at the transition can be calculated, and is

found always, whatever are the symmetries of the free energy and the form of the order parameter, to

have the form,

K(~r) ∼
(

1

|~r|

)d−2

, (1.19)

that is the exponent η is always predicted to have the value zero. This fact stems from the fact that

in Ginzburg-Landau theory one only deals with analytic functions which can be written as Taylor

series, and therefore the theory can only produce an integer exponent for the power law form of the

correlation function(5).

Ginzburg-Landau theory can also be applied to investigate the importance of fluctuations of the

order parameter about its predicted mean field value. It is found that there is a value of the spatial

dimensionality d = dC , below which the fluctuations are found to diverge at the transition, indicating

that mean field theory fails here. dC is called the upper critical dimension and is equal to four for the
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Ising class of mean field theories. For d ≥ dC , mean field theory correctly describes the character of

the phase transition and provides the correct values for the critical exponents. Of course the majority

of systems occurring in nature have d < 4, and so mean field theory typically does not provide the

correct critical behaviour in systems of interest(4).

It is important to note the shortcomings of mean field theory. It is not only in the values of the

critical exponents, but in the very existence of a phase transition at all, that mean field theory can

fail. As we shall discuss in detail in section 1.2, it is known that phase transitions do not occur at all

in d = 1, and it is known at the very least that the value of the order parameter is always strictly zero

for certain systems in d = 2. The planar rotator model is a case of the latter.

1.1.3 The Renormalisation Group

We now come to discuss the Renormalisation Group theories that represent the most advanced theoret-

ical understanding of phase transitions. The term Renormalisation Group describes a set of concepts

and calculational techniques that stem from two key features of phase transitions which we have already

mentioned: the property that systems at the critical point are self-similar, and the idea of universality.

As we have stated above, self-similarity is the property that at the transition point the system is

statistically the same under a change of length scale. If one pictures a system of spins on a lattice with

ferromagnetic interactions and focuses on some region of the lattice which is finite but still encompasses

a large number of lattice sites, a typical configuration of the system close to the critical point has some

pattern of domains in which the spins are locally aligned. Rescaling the system can be pictured as

expanding the picture to a larger region of the lattice, or “zooming out”; one finds on doing this some

pattern of larger domains. Self-similarity means that, if one considers many “typical” configurations

of the system, one cannot on average tell the difference between the original and zoomed out pictures:

the domain structures which occur, although they are different for each microstate of the system, are

statistically the same in the two pictures. This only strictly occurs at the transition point; close to the

transition, the system is approximately self-similar, but repeated iterations of the rescaling procedure

eventually produces pictures which are not similar to the originals. The critical point is said to be an

unstable fixed point of the system with respect to rescaling, as if the system is at precisely this point it

will remain critical but will otherwise move away from criticality. Through this crude, intuitive picture,

we have reached the crucial touchstone that critical points are unstable fixed points of rescaling, or

more generally of RG transformations. One has also stable fixed points, which correspond to the cases
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of either zero or infinite temperature(4).

In our schematic picture, it is intuitive to imagine that, if the length-scale is changed by a large

enough factor, or after many rescalings, one has lost track of the individual lattice sites, and in viewing

the rescaled system one can only see the average of the direction of the miscroscopic spins in some

region. One can describe the rescaled system mathematically by introducing a field ~S(~r), which is

well-defined for all values of ~r, which represents the average value of the spins in the microscopic

region located at ~r. This procedure is called coarse graining. Alternatively, the average of the original

spins can be represented with new lattice variables, which are defined on a new re-scaled lattice. This

procedure is called decimation, because typically this is done in practice by eliminating some proportion

of the original lattice sites such that the remaining sites form the same lattice rescaled, although the

fraction of sites eliminated is rarely 1/10!

The point is that the rescaled system can be described in terms of new degrees of freedom, the

original microscopic degrees of freedom having been got rid of. What this means in practice is that

one goes from the original Hamiltonian to some new Hamiltonian, and in principle this can be made

mathematically exact. Because in general the system which is constructed in this transformation is

not at the same temperature as the original system, one must work with the reduced Hamiltonian,

H({~S}) = βH({~S}), (1.20)

where {~S} denotes the set of all the spin variables in the system. The rescaling leads to a new set of

spin-variables {~S′} and a new reduced Hamiltonian H′({~S′}).

The simplest scenario is that H′ describes the same model as H, but at a different temperature;

one can proceed to find the fixed points of the RG transformation to deduce whether there occurs a

phase transition and the associated transition temperature. In principle, one can then linearise the

transformation about the non-trivial fixed point in order to deduce the critical exponents.

In practice, for almost all interesting cases, H′ does not describe the same model as H, but instead

the Hamiltonian actually becomes increasingly complicated with successive iterations of the transfor-

mation. For example, if the original model contains only interactions between nearest neighbours,

applying the RG transformation will typically generate longer-range interactions, and repeated it-

erations will produce still longer-range interactions. One considers a reduced Hamiltonian which is

essentially completely general, this being a sum of all possible interaction terms with a set of coeffi-

cients, or couplings, K1, K2,...(5). With the notation that the vector K stands for the set of couplings,
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from this viewpoint the RG transformation is an operator R̂ which acts on this object to produce a

new set of couplings,

K ′ = R̂ (K) . (1.21)

Let the set of couplings which correspond to a fixed point of the transformation be K∗, so that,

K∗ = R̂ (K∗) . (1.22)

If the reduced Hamiltonian is in the near vicinity of the fixed point, we can linearise the RG trans-

formation about this point. We write K = K∗ + δK where δK is in some sense small, and under the

action of R̂,

R̂ (K∗ + δK) ≈ R̂ (K∗) + τ δK = K∗ + τ δK, (1.23)

where τ is a matrix.

Now, the matrix τ has some set of eigenvectors φ
i

with corresponding eigenvalues λi, and δK can

be expanded in this basis,

δK =
∑

i

uiφi. (1.24)

Close to the fixed point the reduced Hamiltonian can be described in terms of the components ui. In

the vicinity of the fixed point, the effect of the RG transformation is to multiply each of the components

by the corresponding eigenvalue λi, and so for several iterations we obtain,

τm δK =
∑

i

ui(λi)
mφ

i
. (1.25)

The components which correspond to eigenvalues whose modulus is less than unity are therefore made

smaller by each application of the transformation, and therefore move towards the value zero which

corresponds to the fixed point. These components are said to be irrelevant variables. Conversely, the

components corresponding to eigenvalues whose modulus is greater than one move away from the fixed

point values with each application of the RG transformation and are said to be relevant(7).

Every initial reduced Hamiltonian which has all of the relevant variables equal to the critical value

zero will flow towards the fixed point under the action of the RG transformation. Now, the non-trivial

fixed point corresponds to the phase transition in the original model. Therefore this family of reduced

Hamiltonians, which have the relevant variables tuned to zero, are all themselves critical, that is they
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are tuned to a phase transition point, and this phase transition, which corresponds to the fixed point

in question, is the same in all of these systems. This is precisely the phenomenon of universality, and

the universality class is comprised of this family of reduced Hamiltonians in the vicinity of the fixed

point which flow towards the fixed point under the action of the RG transformation(5).

We introduced the RG transformation as being associated with a rescaling by a length-scale b.

Now, this length-scale is ultimately arbitrary, and we have the constraint that under two successive

rescalings, say by factors b1 and then b2, we ought to reach the same reduced Hamiltonian as a single

rescaling by the factor b1b2. This implies that the eigenvalues of the RG transformation for rescaling

by b have the form,

λ
(b)
i = (b)

yi , (1.26)

where the quantities yi are independent of the rescaling factor b. The exponents yi are closely associated

with the critical exponents which characterise the phase transition. We have indicated that there are

frequently only two independent critical exponents; this scenario corresponds to there being only two

relevant couplings in the vicinity of the fixed point. These are identified with the reduced temperature

t = T − TC , the distance from the phase transition, and an externally applied field h. Close to the

transition, the non-analytic part of any thermodynamic quantity can be written in terms of these two

variables, and the change in this quantity with rescaling is essentially controlled by t→ bytt, h→ byhh.

In particular, one has the so-called scaling hypothesis for the free energy close to the critical point(4),

F (t, h) = b−dF (bytt, byhh); (1.27)

as the name implies, this was originally a conjecture but within the framework of the RG transformation

is on quite solid footing. The scaling relations between the critical exponents can all be derived from the

expression 1.27(8; 9). Furthermore, these two exponents, and therefore the full set of critical exponents

for the associated universality class, can be obtained by finding the eigenvalues of the appropriate RG

transformation.

This does not solve the problem of how to characterise phase transitions in general: it is not the

case that there is a recipe for how to design the RG transformation and then find its eigenvalues to

deduce the critical exponents, and RG schemes have to be carefully worked out on a case by case basis.

Much of the time, one requires the scaling parameter b in the RG transformation to be a continuous

variable. It is therefore difficult to directly apply RG to models on lattices. Typically one invokes the
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fact that close to the transition long range behaviour is dominant to argue that appropriate continuum

models can be analysed to find the critical behaviour of the original lattice model.

1.2 Long range order in classical spin systems

The system we are investigating, the square lattice planar rotator model, is an archetypal example of

a system which undergoes a thermodynamic phase transition despite long range order being strictly

forbidden in this system at finite temperature. It is therefore necessary to discuss long range order,

and why it is forbidden in this model.

In this section we introduce the formal definitions of the terms long range order (LRO) and quasi

long range order (qLRO) which we will work with throughout this thesis. We then move on to discussing

the crucial role which the spatial dimensionality of the system plays regarding the existence of LRO at

finite temperatures. We first deal with the absence of LRO at finite temperature in one-dimensional

systems. We then discuss the Mermin-Wagner theorem which forbids LRO at finite temperatures for

one- and two-dimensional systems which possess a continuous symmetry. The square lattice planar

rotator model exhibits the consequences of this: LRO is forbidden in this system, and instead qLRO

occurs at low temperature, with a finite-temperature phase transition to a disordered state. We close

this section with a proof of the Mermin-Wagner theorem for the planar rotator model.

1.2.1 Definitions of long range order and quasi long range order

Consider first a model of classical spin variables on a lattice. We use the generic notation ~Sj to

represent these degrees of freedom, where the subscript j labels the lattice sites. For the present

general statements, the spin-variables are to be regarded as unit vectors, but we do not specify their

dimensionality. In addition, we consider the possibility that the spins are restricted to a discrete

number of states. The Ising model is a case of this, where the spins are restricted to two equivalent

directions. Furthermore, at this stage we consider the spins to inhabit any periodic lattice. It is

important to stress at this stage that the dimensionality of the spin-variables is entirely independent

from the dimensionality of the lattice.

For a finite lattice, with N lattice sites, there is some specified Hamiltonian which is a function of
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the spin-variables, H(~S1, ~S2, ..., ~SN ), and one has in principle to evaluate the partition function,

ZN =
N∏

j=1

∫
dΩje

−βH(~S1,~S2,...,~SN ) (1.28)

where the symbol dΩj indicates the summation over the spin-variable ~Sj .

At present, consider the spin-systems in question to be ferromagnetic, that is the lowest-energy

configurations have all of the spin-variables parallel, or at the least have the quantity ~Sj · ~Sj′ tend

towards a constant finite value when the lattice sites j and j′ are arbitrarily far apart. This quantity

provides the definition of long range order which we will work with throughout this thesis. One

considers the question of whether this quantity remains nonzero in the presence of thermal fluctuations.

More precisely, one considers the thermal average of this quantity, 〈~Sj · ~Sj′〉, which is also referred to

as the spatial correlation function, in the limit of long range as previously indicated and in the limit

that the system size tends to infinity,

lim
|~r|→∞

lim
N→∞

〈~Sj · ~Sj+~r〉,

where the label j + ~r is a rather poor but extremely convenient notation for the lattice site which is

displaced from the site j by the spatial vector ~r. There are three paradigms: the situation where this

quantity has a finite value we refer to, by definition, as long range order (LRO),

lim
|~r|→∞

lim
N→∞

〈~Sj · ~Sj+~r〉 ∼M2; (1.29)

the situation where the limit is equal to zero and the decay is exponential in the separation is said to

be disordered,

lim
|~r|→∞

lim
N→∞

〈~Sj · ~Sj+~r〉 ∼ e−|~r|/ξ, (1.30)

where the length-scale ξ which characterises the long range decay is called the correlation length; and

lastly the situation where the limit of zero is approached as a power law in the separation is referred

to as quasi long range order (qLRO),

lim
|~r|→∞

lim
N→∞

〈~Sj · ~Sj+~r〉 ∼ |~r|−η. (1.31)

The square lattice Ising model exhibits LRO at low temperatures and is disordered at high temper-
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ature, and there is a phase transition between these two regimes at a certain finite temperature, the

transition temperature TC . We take this as the basic picture of what might naively be expected for the

thermodynamics of classical spin-systems which have an energetic tendency towards ferromagnetism.

The quantity M in the expression defining the LRO correlations is the magnetisation of the system, the

average component of the spin-variables in the ordering direction, and this acts as the order parameter

for the transition: this quantity is zero in the disordered phase, and increases continuously from zero

as the temperature is reduced below TC .

1.2.2 Absence of long range order in one-dimensional systems

We now make two extremely important and well-known remarks concerning the impossibility of long

range order at finite temperature in systems on one- and two-dimensional lattices. These remarks

divide naturally between the cases for which the spin variables ~Sj are discrete or continuous degrees

of freedom respectively. The first of these is that long range order is not permitted at any finite

temperature in one dimension for models with discrete degrees of freedom. The justification for this

is a rather elementary argument given by Landau(1). Consider an Ising model on a spin chain of N

sites, with open boundary conditions, with nearest neighbour interactions only. The minimum energy

configuration of such a system is of course to have all of the spins parallel, while the next lowest-lying

configuration has two oppositely oriented domains of parallel spins separated by a single domain wall.

The imposition of a domain wall costs the system a finite energy, +2J if J is the Ising interaction

energy. However, the domain wall can be placed in any of (N − 1) locations to provide a state with

the same energy. The free energy of the one-domain wall state relative to the ferromagnetic state is

therefore

∆F = 2J − T ln (N − 1),

and in the thermodynamic limit N →∞ the free energy is therefore always made lower by the creation

of a domain wall at any finite temperature. The free energy associated with m domain walls is

∆F = 2mJ − T ln

(
(N − 1)!

m!(N − 1−m)!

)
.

Clearly the free energy is reduced by the creation of a multitude of domain walls. This indicates that

we may expect a proliferation of domain walls at any finite temperature, which destroys long range

order.

20



In one-dimensional systems, the energetic cost of a domain wall is finite and does not depend upon

the size of the system, but the entropy associated with a domain wall increases logarithmically with

the system size. This situation is special to one-dimensional systems. In higher dimensions, domain

walls are not confined to a single lattice-bond, but are extended objects with an energetic cost which

is proportional to their length. For the occurrence of domains which are large enough to destroy long

range order, making the arguments made above leads to a different conclusion: at sufficiently high

temperatures the domain wall is entropically desired, but at low temperatures the energetic cost of the

domain wall outweighs the entropic benefit(10). Indeed, discrete spin models exhibit long range order

in two and higher dimensions at sufficiently low temperatures.

1.2.3 The Mermin-Wagner theorem: absence of long range order in one-

and two-dimensional isotropic systems

The second remark is the famous Mermin-Wagner theorem, that long range order is not permitted at

any finite temperature in one or two dimensions for systems with continuous spins. This statement

applies to all one- and two-dimensional systems which have a continuous symmetry(11). Systems with

such a symmetry always have excitations of arbitrarily low energy which are known as Goldstone

modes(12). For a continuous spin model, these zero-energy excitations arise from the fact that the

spins can be distorted from their ground state configuration infinitesimally. In some sense LRO is

prevented in continuous spin systems in one and two dimensions because the excitations which tend

to disrupt the ground state configuration are arbitrarily low in energy and therefore will always exist

at any finite temperature. Continuous-spin systems are frequently referred to as spin-isotropic or, as

in this thesis, simply as isotropic.

We now provide a proof of the Mermin-Wagner theorem for the planar rotator model. We closely

follow the method of proof given by Mermin and Wagner in references (11) and (13). This method

makes use of an inequality which follows from considering the ensemble average of the product of

two quantities to be a scalar product. In particular, reference (13) gives a proof of the theorem for

the planar rotator model. This proof considers the planar rotator model with an applied magnetic

field, and shows that the magnetisation 〈cosφj〉 vanishes in one and two dimensions in the limit that

the magnetic field tends to zero. We follow this proof with the modification that we do not include

a magnetic field and we focus on the correlation function K(~r) = 〈cos (φj − φj+~r)〉 instead of the

magnetisation, the theorem being proved by showing that the correlation function must tend to zero
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in the long range limit |~r| → ∞. We present the proof in this way in order to be entirely consistent

with the definition of long range order in terms of the correlation function which we have outlined

above. Despite this difference, the working of the proof is almost identical to that provided in reference

(13).

We consider the planar rotator model

H = −J
∑

〈jj′〉
cos (φj − φj′)

where for the present the label j denotes the sites on a d-dimensional hypercubic lattice (this becomes

a linear chain for d = 1 and for d = 2 becomes the case of our real interest, the square lattice) and

the summation runs over all nearest neighbour pairs of lattice sites. We shall work with a finite lattice

of N sites but ultimately we will take the thermodynamic limit that N → ∞. We apply periodic

boundary conditions in all of the principle directions; the crucial point for the working of the proof

is that all of the lattice sites are completely equivalent to one another, and have the same number of

nearest neighbours, including those at the boundary of the system. The partition function is given by

the integration of the function e−βH over all of the spin variables

Z =


∏

j

∫ π

−π

dφj
2π


 e−βH , (1.32)

where β = 1/T is the inverse temperature expressed in appropriate units, and the ensemble average of

some function of the spin-angles Q({φ}) is given by

〈Q〉 =
1

Z


∏

j

∫ π

−π

dφj
2π


Qe−βH . (1.33)

Now, if Q and K are two functions of the spin-variables, then the ensemble average 〈Q∗K〉 satisfies

the conditions which define a scalar product between Q and K. From these conditions follows the

Cauchy-Schwartz inequality,

〈|Q|2〉〈|K|2〉 ≥ |〈Q∗K〉|2. (1.34)
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Let us define the functions,

Q = Q~k(~r) =
∑

j

e−i
~k·~Rj sin (φj − φj+~r) (1.35)

K = K~k =
∑

j

e−i
~k·~Rj ∂H

∂φj
. (1.36)

where ~k is one of the standard Bloch wavevectors. These functions may be considered as being ob-

tained by applying the standard Bloch transform to the functions sin (φj − φj+~r) and ∂H
∂φj

respectively.

Written explicitly, the quantity 〈Q∗K〉 is given by

〈Q−~k(~r)K~k〉 =
∑

j

∑

j′

e−i
~k·(~Rj−~Rj′) 1

Z


∏

j′′

∫ π

−π

dφj′′

2π


 sin (φj − φj+~r)

∂H

∂φj′
e−βH . (1.37)

This expression can be greatly simplified by first noting

∂H

∂φj′
e−βH = − 1

β

∂

∂φj′
e−βH ,

from which it follows that we may employ integration by parts to re-write the integral in this expression

as the ensemble average of a function which does not involve the Hamiltonian. The surface term which

occurs in the by parts integration is equal to zero, as all of the involved quantities are periodic functions

of the spin angles. One obtains from performing the integration by parts,

〈Q−~k(~r)K~k〉 =
∑

j

∑

j′

e−i
~k·(~Rj−~Rj′) 1

Z


∏

j′′

∫ π

−π

dφj′′

2π


 1

β

(
∂

∂φj′
sin (φj − φj+~r)

)
e−βH , (1.38)

and the integral in this expression can be recognised as an ensemble average. This provides,

〈Q−~k(~r)K~k〉 =
1

β

∑

j

∑

j′

ei
~k·(~Rj−~Rj′)〈 ∂

∂φj′
sin (φj − φj+~r)〉 (1.39)

=
1

β

∑

j

(
1− e−i~k·~r

)
〈cos (φj − φj+~r)〉 (1.40)

=
1

β
N
(

1− e−i~k·~r
)
K(~r), (1.41)

where we have included the assumption that the correlation function K(~r) = 〈cos (φj − φj+~r)〉 does

not depend upon the lattice index j. The same procedure can be used to evaluate 〈K∗K〉 to be equal
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to,

〈K−~kK~k〉 =
1

β

∑

j

∑

j′

ei
~k·(~Rj−~Rj′)〈 ∂2H

∂φj∂φj′
〉 (1.42)

=
1

β

∑

j

∑

~τ

(
1− e−i~k·~τ

)
〈J cos (φj − φj+~τ )〉, (1.43)

where the vector ~τ runs over all of the relative displacements of a particular lattice site to its nearest

neighbours. We recognise in this expression the correlation function for neighbouring lattice sites; of

course it can be assumed that this is the same for neighbouring lattice sites in any direction, so that

we may write,

〈K−~kK~k〉 =
1

β
NJK(x̂)

∑

~τ

(
1− e−i~k·~τ

)
, (1.44)

where the vector x̂ connects a lattice site to a nearest neighbour in one of the principal lattice directions.

Finally, 〈Q∗Q〉 is given by

〈Q−~k(~r)Q~k(~r)〉 =
∑

j

∑

j′

ei
~k·(~Rj−~Rj′)〈sin (φj − φj+~r) sin (φj′ − φj′+~r)〉, (1.45)

and we note that,

1

N 2

∑

~k

〈Q−~k(~r)Q~k(~r)〉 =
1

N
∑

j

〈sin2 (φj − φj+~r)〉 (1.46)

= 〈sin2 (φj − φj+~r)〉. (1.47)

Now, this correlation is certainly positive and less than or equal to one, owing to the range of the

function sin2 x. We therefore have the inequality,

1

N 2

∑

~k

〈Q−~k(~r)Q~k(~r)〉 ≤ 1, (1.48)

which combined with the inequality 1.34 implies that,

1

N 2

∑

~k

|〈Q−~k(~r)K~k〉|2
〈K−~kK~k〉

≤ 1. (1.49)
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Substituting the expressions we have obtained for 〈Q∗K〉 and 〈K∗K〉 into this inequality we obtain,

T

J

K(~r)2

K(x̂)

1

N
∑

~k

|1− e−i~k·~r|2
∑
~τ

(
1− e−i~k·~τ

) ≤ 1. (1.50)

In the thermodynamic limit the summation over Bloch wavevectors is represented by an integral,

2T

J

K(~r)2

K(x̂)

∫
dd~k

(2π)d
1− cos (~k · ~r)
∑
~τ

(
1− e−i~k·~τ

) ≤ 1, (1.51)

where the integration measure for the d-dimensional hypercubic lattice is

∫
dd~k

(2π)d
=

d∏

i=1

∫ π

−π

dki
2π

.

The inequality 1.51 is the crucial result of this analysis. One finds that, in one and two dimensions,

the integral in 1.51 diverges in the long range limit |~r| → ∞; therefore the only way the equality can

be satisfied in this limit for non-zero values of temperature is if the correlation function K(~r) decays

at long range so as to cancel out the divergence in the integral. This completes the proof of the

Mermin-Wagner theorem for the planar rotator model, in that it shows that, in the thermodynamic

limit, there is no LRO - the correlation function does not approach a constant non-zero value at long

range.

The integral in 1.51 is closely associated with the so-called lattice Green’s function(14; 15) and

occurs frequently in problems on lattices. For completeness, we make some brief remarks about the

behaviour of the integral in one and two dimensions. For the linear chain, the integral can be evaluated

exactly as, ∫ π

−π

dk

2π

(
1− cos kr

2− 2 cos k

)
=
r

2
, (1.52)

and this is clearly divergent in the limit r →∞. This shows that the correlation function must decay

at long range at least as quickly as r−1/2. In fact, the correlations decay exponentially with r at long

range in one-dimensional systems. This is seen in the following chapter where one-dimensional systems

are solved using transfer operators. In two dimensions, the integral takes the form,

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

(
1− cos~k · ~r

4− 2 cos kx − 2 cos ky

)
. (1.53)
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This integral is logarithmically divergent in the limit |~r| → ∞, and the precise asymptotic form is (for

a derivation see reference (16, pp. 148-151)),

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

(
1− cos~k · ~r

4− 2 cos kx − 2 cos ky

)
∼ 1

2π
ln |~r|. (1.54)

Consequently for the square lattice the correlation function must fall off at least as rapidly as (ln |~r|)−1/2.

As we discuss below, the correlations in fact fall off as a power law at low temperatures in the square

lattice model. In higher dimensions, the integral is finite, and consequently the inequality 1.51 may be

satisfied in the presence of LRO.

1.3 The Planar Rotator model

1.3.1 Introduction

The model which we aim to study in this thesis is the two-dimensional planar rotator model, which is

described by the Hamiltonian,

H = −J
∑

〈jj′〉
cos (φj − φj′) (1.55)

where the label j labels the sites on a square lattice and the summation is taken over all nearest

neighbour pairs of lattice sites. The degrees of freedom φj are classical variables lying in the range 0 ≤

φj < 2π. This model can be pictured as describing a system of planar spins, each spin being pictured

as an arrow which is confined to a plane and its direction being parameterised by the corresponding

angle φ.

The planar rotator model can be thought of as one of a number of models which we may write as

H = −J
∑

〈jj′〉

~Sj · ~Sj′ (1.56)

where the degrees of freedom ~Sj are classical spins of some dimensionality, a classical spin being simply

a vector of a fixed length which in this work shall always be taken to be unity. This is referred to

generically as the O(N) vector model, where N refers to the dimensionality of the spins. The cases

N = 1, N = 2 and N = 3 are the Ising model, the planar rotator model and the classical Heisenberg

model respectively. Apart from on linear spin-chains which are trivial, the only exact solutions of

the O(N) vector model are the Ising model on the square lattice(17), and the N = ∞ case, which is
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equivalent to the so-called spherical model, on any hypercubic lattice(6). In three and higher spatial

dimensions these models all have LRO at sufficiently low temperature, and disorder as the temperature

is raised in regular phase transitions. However, with the exception of the Ising model all versions of

this model are isotropic, and therefore on the square lattice the Mermin-Wagner theorem forbids LRO.

As we shall discuss, the planar rotator model undergoes a phase transition from qLRO to disorder, and

this is thought to be a very particular phase transition with unusual critical behaviour, the Kosterlitz-

Thouless transition. Conversely the spherical model on the square lattice is rigorously known to have

no phase transition(6), and RG calculations indicate this to be true of the classical Heisenberg model

also(18).

Close to its phase transition, the square lattice planar rotator model is thought to have the same

behaviour as a number of related models, including the model of a two-dimensional Coulomb gas and

the Villain model(14; 19). The basis for this is that near the transition the behaviour is governed

by long-range fluctuations, for which the same effective description can be employed for all of these

models. As we sketch out in section 1.3.6, the theory by Kosterlitz and Thouless considers a continuum

model which describes these long-range fluctuations and applies an RG scheme to show the existence

of a critical point and deduce its properties(20; 21).

The planar rotator model is also closely associated with the q-state clock model, which results from

constraining the continuous planar rotator spin-variables φj to have a set of evenly spaced directions

φj = 2πnj/q, nj = 0, 1, ..., q; for q > 4 this model undergoes two phase transitions, one of which has

the same characteristics as the planar rotator phase transition(14). The relationship between the two

models is highly significant, but we postpone a discussion of it until the next chapter, section 2.4.1.

There are a number of techniques that have been used to study the square lattice planar rotator

model itself, rather than related continuum models. The most widely used of these is Monte Carlo

simulation, which samples the equilibrium canonical distribution of a finite system. These studies

are consistent with the Kosterlitz-Thouless theory(22; 23; 24; 25), but some authors have in addition

found that results can be made to fit a regular phase transition(26). Another technique that has

been applied is the use of high temperature expansions, which is simply to calculate the expansions

of thermodynamic quantities in powers of the inverse temperature (see section 1.3.3 which contains

a description of such a calculation) and these calculations have shown evidence of a regular phase

transition(27). A final technique that has been employed is Fisher zeroes(28), which studies the zeroes

of the partition function considered as a function of a complex temperature; the zeroes are calculated
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for a series of finite systems and are seen to approach the real axis as the system-size is increased,

suggesting a real singularity in the thermodynamic limit associated with a phase transition. The

results of this work are also consistent with either the Kosterlitz-Thouless transition or a regular phase

transition.

The technique which we have used to study the model, one-to-two dimensional crossover, which we

describe in the next chapter, is a method that has until recently not been applied to the problem(29).

This method is to calculate the thermodynamics of a series of one-dimensional systems which tend

towards the finite square lattice in the limit that a certain finite-size parameter tends to infinity. This

is essentially an application of the method of exact diagonalisation in quantum mechanics(44). In

applying this method we find consistent evidence of a regular phase transition in the model.

In the remainder of this section we discuss a number of important topics related to the phase

transition in the planar rotator model. Because the square lattice planar rotator model was originally

studied in order to study the phase transition observed in two-dimensional Helium films, it would be

remiss not to give some discussion to the relationship of the planar rotator model to bosonic systems, to

which we devote section 1.3.2. Thereafter we focus entirely on the phase transition in the square lattice

planar rotator model. Sections 1.3.3 and 1.3.4 are intended to establish that a phase transition must

exist in the model by examining the spin-spin correlation function in the high and low temperature

limits respectively and finding very different behaviour. We then discuss the helical stiffness in section

1.3.5, which is the quantity which plays the role of an order parameter in this phase transition. We

conclude in section 1.3.6 with a sketch of the Kosterlitz-Thouless theory.

1.3.2 Relationship to bosonic systems

The planar rotator model was first considered as a crude model of superfluidity(30; 31). Superfluids

can be described in terms of a condensate wavefunction χ0(~r) which is a complex valued function. The

connection to the planar rotator degrees of freedom is made by identifying the spin angles φj with the

phase of the consensate wavefunction; if the modulus of the wavefunction is constant, or approximately

so, so that the phase is the only active degree of freedom, a Hamiltonian of the form 1.55 can be argued

for as describing a condensate.

We now briefly sketch out some general features of the theory of bosonic systems, following closely

the approach of Leggett(32). Our aim is merely to indicate what the central mathematical objects in

the theory are, and to connect these to the analogous objects in the planar rotator model. We first

28



define LRO and qLRO in bosonic systems in a manner which is analogous to the definitions we gave for

classical spin models, and make the connection with the phenomenon of Bose-Einstein condensation

(BEC). We then proceed to write down a well-known approximate Hamiltonian for a bosonic system,

and note that it can also be obtained as an approximation to the planar rotator Hamiltonian.

For a system of N particles, one must consider a many-body wavefunction Ψ(~r1, ~r2, ..., ~rN ) which

is a function of all of their positions ~r1, ~r2, ..., ~rN . The completely general formalism for such a system

follows from the density matrix, which has the following generic form,

ρ(~r1, ~r2, ..., ~rN ; ~r1
′ , ~r2

′ , ..., ~rN
′) =

∑

α

pαΨα(~r1, ~r2, ..., ~rN )Ψ∗α(~r1
′ , ~r2

′ , ..., ~rN
′),

where the wavefunctions Ψα(~r1, ~r2, ..., ~rN ) are some complete orthogonal set of many-body wavefunc-

tions, and the sum of the coefficients pα is unity. For systems composed exclusively of bosons, the

wavefunctions must be symmetric under the exchange of the positions of any two particles. The quan-

tity which is the analogue of the spin-spin correlation 〈~Sj · ~Sj′〉 is the so-called single-particle density

matrix, which is obtained as the partial trace of the density matrix over the positions of N − 1 of the

particles,

ρ(~r, ~r ′) =



N∏

j=2

∫
d~rj


 ρ(~r, ~r2, ..., ~rN ; ~r ′ , ~r2, ..., ~rN ).

We can define LRO, qLRO and disorder in Bose systems according to whether, in the thermodynamic

limit that the number of particles is large, the long-range limit of ρ(~r, ~r ′) is a constant, a power law

decay or an exponential decay respectively.

LRO in bosonic systems is associated with Bose-Einstein condensation, which in the simplest

possible terms is the occupation of some single-particle state, or some single-particle-like state, by

a macroscopic fraction of bosons in the system. The connection to the definition of LRO in terms

of correlations can be seen with the following. The single-particle density matrix has some set of

eigenvalues nγ , which can be interpreted as the occupation numbers of some set of single-particle

states. Bose-Einstein consensation corresponds to one of these eigenvalues being macroscopically large,

that is of order N , while all the other eigenvalues are O(1). Let χγ(~r) be the eigenfunction of the

single-particle density matrix belonging to the eigenvalue nγ ; then ρ(~r, ~r ′) can be written as

ρ(~r, ~r ′) =
∑

γ

nγχγ(~r)χ∗γ(~r ′). (1.57)
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If all of the eigenvalues are O(1), which corresponds to the bosonic system being disordered, or in

the normal liquid state, then the differing phases of the terms in the sum in equation 1.57 cancel one

another in the long-range limit, and the sum vanishes. If one of the eigenvalues, say that corresponding

to γ = 0, is macroscopic and the rest are O(1), the same argument implies that only the contribution

of the γ = 0 eigenvalue survives in the long-range limit,

ρ(~r, ~r ′) ∼ n0χ0(~r)χ∗0(~r ′). (1.58)

This can be seen by breaking the sum in 1.57 up into the contribution of the γ = 0 term and the sum

of all the O(1) terms, and observing that in the long-range limit the latter must vanish for the same

reason that the entire sum vanishes in the disordered case.

The function χ0(~r) can be regarded as an analogue of a single-particle wavefunction which describes

the condensate. Textbook treatments of Bose-Einstein condensates often begin with the Hartree

approximation, which proposes for the full many-body wavefunction the ansatz,

Ψ(~r1, ..., ~rN ) =
N∏

i=1

χ0(~ri). (1.59)

The function χ0(~r) is called the condensate wavefunction and in the Hartree approximation completely

describes the system. The connection to the planar rotator model is the analogy between the planar

spins in that model and the phase of the condensate wave function θ. In the case that the modulus

of the condensate wavefunction is constant, which corresponds to the physical density of the system

being constant, it can be shown that the energy of the bosonic system can be written as

E =
h̄2

2m
|χ0|2

∫
d~r
(
~∇θ(~r)

)2

. (1.60)

This expression corresponds precisely to what is obtained if one takes the continuum limit of the planar

rotator model Hamiltonian 1.55.

1.3.3 The high temperature limit

In this section we discuss the high temperature limit of the spin-spin correlation function in the planar

rotator model. We explain how the asymptotic form of the correlation function is calculated within

the framework of a high temperature expansion. The calculation shows that the correlation function
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has an exponential decay at high temperature and therefore that the model is disordered in this limit.

The high temperature limit corresponds to the limit where the variable β is small: the high tem-

perature expansion is simply the Taylor expansion of a function of β about the point β = 0. We first

consider the partition function, which of course is the summation over all spin-configurations of e−βH .

The starting point of the high temperature expansion is,

e−βH =
∞∑

n=0

1

n!
(−βH)

n
. (1.61)

The partition function is then obtained as a power series in β by simply integrating this expansion

term by term. The difficulty in this calculation is in controlling the large number of terms which arise

from raising the Hamiltonian to large integer powers. One can represent this graphically by associating

each term in H with an arrow pointing from some site on the lattice to one of its nearest neighbours.

To be explicit, we first write the Hamiltonian in the form,

− βH =
βJ

2

∑

〈jj′〉

(
ei(φj−φj′ ) + ei(φj′−φj)

)
. (1.62)

Now, the term ei(φj−φj′ ) can be represented graphically by an arrow drawn from the site j′ to the

site j. The Hamiltonian is the sum of all such arrows which can be drawn between nearest neighbour

lattice sites, going in both directions. The quantity (−βH)n is then the sum of all possible products

of n of these directed bonds. These products are represented by drawing the n arrows together on the

lattice. A typical term has the form
∏

l

eiνlφl

where l runs over some subset of the lattice sites, those which sit at either the head or tail of an arrow,

and the quantity νl gives the total number of arrows pointing towards the corresponding lattice site,

arrows pointing away from this site corresponding to a negative value so that νl can be a positive or

negative integer or may be zero. Integrating this quantity over all of the spin-angles one obtains,



N∏

j=1

∫ π

−π

dφj
2π


∏

l

eiνlφl =
∏

l

δνl,0. (1.63)

The meaning of this is that only those terms which have the net number of arrows into every lattice site

equal to zero survive the integration. Immediately we may recognise that this can only be accomplished
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if the total number of arrows that is drawn is even, so that the high temperature expansion of the

partition function contains only even powers of β. If C2m is the number of possible diagrams composed

of 2m arrows which satisfy the condition that the net number of arrows into every site is zero, we may

write,

Z =
∞∑

m=0

C2m
(2m)!

(
βJ

2

)2m

. (1.64)

The quantity which is of real interest is the correlation function, which is given by

〈ei(φj−φj+~r)〉 =
1

Z



N∏

j=1

∫ π

−π

dφj
2π


 ei(φj−φj+~r)e−βH . (1.65)

We can expand the factor e−βH in the integrand in powers of β; to obtain only the leading order

behaviour for the correlation function, it is sufficient to replace the factor 1/Z by the zeroth order

term in its series, 1/Z ≈ 1. We therefore obtain,

〈ei(φj−φj+~r)〉 ∼
∞∑

n=0

1

n!



N∏

j=1

∫ π

−π

dφj
2π


 ei(φj−φj+~r) (−βH)

n
, (1.66)

and the leading order expression for the correlation function is given by the first nonzero term in this

series. Now, the term ei(φj−φj+~r) corresponds in the diagrammatic language to some diagram in which

the sites j and j + ~r are connected by arrows, with one net flux into the site j and one net flux out

of the site j + ~r. The terms in ei(φj−φj+~r) (−βH)
n

which survive the integration require that there

is no net flux into or out of any site, and consequently these correspond to terms in (−βH)
n

which

have a net flux out of site j + ~r and into site j. The lowest order diagram which satisfies this has

directed arrows along some minimal path connecting the two sites; if the relative displacement of the

two lattice sites is ~r = nxx̂ + ny ŷ, then the shortest-length paths connecting them are comprised of

|nx| + |ny| bonds and the number of such paths is (|nx| + |ny|)!/(|nx|!|ny|!). The leading order term

in the high temperature expansion of the correlation function is therefore,

〈ei(φj−φj+~r)〉 ∼ 1

|nx|!|ny|!

(
βJ

2

)|nx|+|ny|
. (1.67)

The decay in the correlation function with distance is therefore at least as fast as an exponential decay

with the separation; this shows that the square lattice planar rotator model is disordered in the high

temperature limit.
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1.3.4 The low temperature limit

In this section we discuss the low temperature limit of the square lattice planar rotator model. We

obtain an effective model to describe the low temperature physics of the planar rotator model which

can be solved exactly; we provide an outline of the mathematics of this solution, quoting the relevant

results. This shows that the square lattice planar rotator model exhibits power law correlations at low

temperature. We also mention a stronger statement in the form of an exact bound on the correlation

function below some temperature due to Frohlich and Spencer. This statement of the low temperature

limit, in combination with the high temperature limit, shows that the model does undergo a phase

transition.

At low temperature the typical deviation in the directions of neighbouring spins may be expected

to be small; the cosine in the planar rotator Hamiltonian may therefore be expanded to the second

order in its argument to obtain the approximate form,

H ≈ −2NJ +
J

2

∑

〈jj′〉
(φj − φj′)2

. (1.68)

The first term in this expression is the lowest possible energy of the system, associated with a perfect

ferromagnetic configuration, and the second term describes the energy of small deviations from this

configuration. If one makes the further approximation that the variables φj be allowed to take any

real value, so that the quantity φj − φj′ is not strictly contrained to lie in the range 0 to 2π, then the

statistical physics of this effective model can be calculated exactly. In particular, the model is found to

have qLRO: the correlation function 〈cos (φj − φj+~r)〉 can be calculated and is found to exhibit power

law decay at long-range.

One can also take the continuum limit that the lattice variable φj becomes a field φ(~R) and consider

the model(12, p. 465),

∆H =
J

2

∫
d2 ~R

(
~∇φ
)2

, (1.69)

and it is found that solving this model produces the same result for the correlation function. We shall

discuss the solution of the lattice model 1.68: this is in large part a matter of taste, but in addition it

is found that proceeding in this way produces some of the same mathematics which we have already

seen in the proof of the Mermin-Wagner theorem in section 1.2.

We now proceed to briefly sketching how the exact solution of this low temperature effective model
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is carried out. Using the symbol ∆H for the second term in equation 1.68, this can be written as,

∆H = −J
2

∑

j,j′

φj∆j,j′φj′ , (1.70)

where the operator ∆j,j′ is the lattice analogue of the Laplacian operator and is defined as(15),

∑

j′

∆j,j′φj′ =
∑

j′ n.n. to j

(φj − φj′). (1.71)

The corresponding partition function for this effective model is,

Z =


∏

j

∫ ∞

−∞
dφj


 e

βJ
2

∑
j,j′ φj∆j,j′φj′ . (1.72)

Because the exponent in this expression is quadratic in the variables φj , the integrals can be evaluated

exactly using the well-known techniques of Gaussian integration(12, p. 465). The partition function

can be evaluated explicitly to be written in terms of the determinant of the matrix ∆j,j′ . However,

one can proceed directly to the calculation of the two-point correlation 〈φjφj′〉, which is equal to the

inverse of the matrix which occurs in the exponent(15). This may be written as,

〈φjφj′〉 =
1

βJ
G
(
~Rj − ~Rj′

)
, (1.73)

where G(~r) is the square lattice Green’s function. For a very clear and thorough exposition of lattice

Green’s functions, see reference (33, pp. 136-138). G(~r) is the inverse of the lattice Laplacian ∆j,j′ ;

this is expressed explicitly in the equation,

∑

j′′

∆jj′′G
(
~Rj′′ − ~Rj′

)
= δj,j′ , (1.74)

which can be regarded as a definition of G(~r). Solving the equation 1.74 leads to the solution(33; 16),

G(~r) =

∫ π

−π

kx
2π

∫ π

−π

ky
2π

(
ei
~k·~r

4− 2 cos kx − 2 cos ky

)
. (1.75)

This integral is divergent for all values of the argument ~r. However, the quantity G(~0) − G(~r) is

convergent for finite |~r|, and is given by precisely the integral which we obtained in the inequality
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1.51. Moreover, it is found that this is the relevant object in the present calculation of the correlation

function for the effective low temperature model(14). To proceed in the calculation of the correlation

function 〈cos (φj − φj+~r)〉, we note that we may equally well consider 〈ei(φj−φj+~r)〉, and make use of a

further well-known property of Gaussian integration(12, p. 465),

〈ei(φj−φj+~r)〉 = e−〈(φj−φj+~r)2〉/2. (1.76)

We can evaluate the correlation 〈(φj − φj+~r)2〉 in terms of the lattice Green’s function,

〈(φj − φj+~r)2〉 =
2

βJ

(
G(~0)−G(~r)

)
. (1.77)

We substitute in the long-range asymptotic form which we have already quoted in section 1.2,

G(~0)−G(~r) ∼ 1

2π
ln |~r|. (1.78)

This at last provides the spin-spin correlation function as,

〈ei(φj−φj+~r)〉 ∼
(

1

|~r|

)1/2πβJ

. (1.79)

This low temperature effective model exhibits power law correlations at all temperatures, where

the exponent in the power law varies smoothly with temperature. Clearly, there is no phase transition

in this effective model. In making the approximations to the planar rotator model to obtain 1.72, one

has seemingly erased whatever behaviour in the original model is pertinent to the phase transition.

This effective quadratic model provides an approximation to the thermodynamics of the square

lattice planar rotator model at low temperature, where we expect that the error associated with this

approximation is smaller at lower temperatures. A stronger statement about the low temperature

physics of the planar rotator model has been provided by Frohlich and Spencer in the form of an exact

lower bound(34): there exists a finite temperature below which,

〈cos (φj − φj+~r)〉 ≥ A
(

1

1 + |~r|

)1/2πf(βJ)

, (1.80)

where the f(βJ) is some function which tends to infinity as βJ → ∞, that is as the temperature

approaches zero, and A is some constant. Therefore there is a finite temperature below which the
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correlation function does not decay exponentially. However by the arguments of the previous section

at sufficiently high temperatures the correlation function decays exponentially; this shows that there

is a phase transition in the planar rotator model.

1.3.5 The helical stiffness

We have now established precisely why the square lattice planar rotator model is a particularly inter-

esting model in statistical physics. The Mermin-Wagner theorem forbids the existence of LRO at any

finite temperature, and this would seem to rule out the standard picture of a magnetic phase transi-

tion exemplified by the square lattice Ising model. However, by tackling the low and high temperature

limits it has been shown that the model certainly does undergo a finite-temperature phase transition.

In the next section we discuss the Kosterlitz-Thouless transition, which is a mechanism by which a

two-dimensional isotropic system can undergo a phase transition. In this section we introduce the

helical stiffness, which is the quantity which plays the role of an order parameter for such a system.

We begin by describing what the helical stiffness Y is, its relationship to topological excitations of

the planar rotator model and its relationship to boundary conditions. We then consider the helical

stiffness of the square lattice planar rotator model in both the low and high temperature limits. The

low temperature limit is a finite value, Y = J . Conversely, it can be shown that the high temperature

expansion of Y is identically equal to zero in the thermodynamic limit; this means that Y = 0 in

the high temperature phase. These two limits therefore serve to show that Y functions as an order

parameter for the phase transition in the planar rotator model.

One modifies the square lattice planar rotator Hamiltonian to be

H = −J
∑

〈jj′〉
cos (φj − φj′)→ −J

∑

〈jj′〉
cos
(
φj − φj′ − ~χ ·

(
~Rj − ~Rj′

))
. (1.81)

This has the effect that the lowest energy configuration of the system is not to have all of the spins

aligned, but for the spins to spiral in the direction of ~χ:

φj = φ0 + ~χ · ~Rj . (1.82)

The helical stiffness is defined as the change in the free energy associated with an infinitesimal ~χ. We
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write the free energy as a Taylor series:

F (~χ) = F (~0) +
1

2

(
χx χy

)


Yxx Yxy

Yyx Yyy






χx

χy


+ ... (1.83)

where

Y =



Yxx Yxy

Yyx Yyy


 (1.84)

is the helical stiffness tensor. The square lattice planar rotator model has the x- and y-directions

completely equivalent, so that Yxx = Yyy and Yxy = Yyx.

As compared with the ferromagnetic groundstate of the original Hamiltonian, the spiral state is an

excitation in which every spin in the system is altered; this aspect of the excitation is described in it

being said to be a topological excitation. The helical stiffness is a measure of the energetic cost of such

excitations. Topological excitations are to be compared with Goldstone modes which are said to be

local excitations.

The helical stiffness is formally identically equal to zero unless appropriate boundary conditions

are applied. The spin-angles φj are measured with respect to some axis which we have the freedom to

choose, and moreover we have the freedom to choose this axis differently on different lattice sites. A

change from one set of such axes to another is described by the gauge transformation

φj → φj + γj . (1.85)

The transformed Hamiltonian must describe the same physical system; there are then sets of Hamil-

tonians which can be transformed into each other by such gauge transformations which describe the

same physical system. Therefore, if in equation 1.81 the affect of ~χ can be transformed away by making

a gauge transformation, then the modified Hamiltonian must describe the same physical system as the

original and therefore the free energy must be identical. Now, naively one might think that one can

make a gauge transformation with

γj = ~χ · ~Rj (1.86)

to transform the modified Hamiltonian 1.81 back to the original for any ~χ, and therefore that the helical

stiffness must always vanish. However, whether this is so depends upon the boundary conditions that

are imposed.
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This issue is clearly explained by considering the planar rotator model on a linear chain. Consider

first the case of open boundary conditions, which is a chain of M spins and M − 1 bonds between

neighbouring spins,

H = −J
M−1∑

j=1

cos (φj − φj+1), (1.87)

and consider the Hamiltonian with the imposed twist,

H(χ) = −J
M−1∑

j=1

cos (φj − φj+1 − χ); (1.88)

in this case the gauge transformation φj → φj −χj maps H(χ) onto H(0) and consequently these two

Hamiltonians describe the same physical system and have the same free energy. Now consider the case

of periodic boundary conditions, which can be pictured as a ring of M spins (see figure 1.2); in effect

one has added a bond between φ1 and φM ,

H = −J
M−1∑

j=1

cos (φj − φj+1)− J cos (φM − φ1), (1.89)

and including the phase shift χ on every bond produces the new Hamiltonian,

H(χ) = −J
M−1∑

j=1

cos (φj − φj+1 − χ)− J cos (φM − φ1 − χ). (1.90)

Now the same gauge transformation φj → φj − χj maps this Hamiltonian onto

− J
M−1∑

j=1

cos (φj − φj+1)− J cos (φM − φ1 −Mχ), (1.91)

and this is not equivalent to the original Hamiltonian except for a special discrete set of values of χ

for which Mχ is equal to an integer multiple of 2π. The effect of the gauge transformation has been

to shift each of the χ-phase shifts onto a single bond; in general, gauge transformations can be used

to distribute the total phase shift Mχ between the bonds in any whatever, but the total phase shift

remains fixed. In this instance then gauge transformations cannot be used to eliminate the phase shift

for arbitrary values of χ; consequently the phase shift does produce an energy cost and there is a

nonzero helical stiffness.
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Figure 1.2: Gauge transformation of planar rotator model on a periodic ring subjected to a phase-twist
χ.

The dependence on boundary conditions can be given a more physical interpretation. If there exists

a configuration of the spins for which the interaction energy of each bond is −J , then this is clearly a

groundstate, and the groundstate energy is the same as without the phase shift and therefore there is

no energy cost. A nonzero helical stiffness relates to the system being “frustrated” by an infinitesimal

~χ, in the sense that it cannot obtain the minimum energy of −J for every bond. This occurs if a

“constraint” is placed on the system in the form of a boundary condition, such as the periodicity

illustrated in figure 1.2 or a hard wall boundary condition in the form of the spin-angles at sites on

the bondary being fixed.

We now come to considering the low and high temperature limits of the helical stiffness for the

square lattice planar rotator model. We assume periodic boundary conditions in both of the principal

axis directions.

We obtain the low temperature limit by imposing a small phase-twist ~χ and finding the resulting

minimum energy configuration of the system. It is convenient for this particular calculation to adopt

the notation φm,n, where the indices m and n label the co-ordinates of the lattice sites in the x and y

directions respectively. The Hamiltonian with the imposed phase-twist is then,

H = −J
M−1∑

m=1

N−1∑

n=1

[cos (φm,n − φm+1,n − χx) + cos (φm,n − φm,n+1 − χy)]

− J
N∑

n=1

cos (φM,n − φ1,n − χx)− J
M∑

m=1

cos (φm,N − φm,1 − χy) (1.92)

where M and N are the system sizes in the x and y directions. We make the assumption that the
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minimum energy configuration is for the spins to spiral with a pitch ~q:

φm,n = θ −mqx − nqy. (1.93)

Substituting this into the Hamiltonian, the energy of the system is,

E = −J
{

(M − 1)(N − 1) [cos(qx − χx) + cos(qy − χy)]

+N cos((M − 1)qx + χx) +M cos((N − 1)qy + χy)

}
. (1.94)

Minimising this expression with respect to qx and qy leads to the equations,

(N − 1) sin(qx − χx) +N sin((M − 1)qx + χx) = 0, (1.95)

(M − 1) sin(qy − χy) +M sin((N − 1)qy + χy) = 0. (1.96)

Now, in the limit that M � 1 and N � 1, these equations have the approximate solutions,

qx =
π − 2χx
M

, (1.97)

qy =
π − 2χy
N

. (1.98)

Substituting these expressions into equation 1.94, one finds the energy per lattice site to be, to leading

order,

E

MN
∼ −J

[
cosχx + cosχy

]
, (1.99)

with O(1/M, 1/N) corrections. Finally expanding this quantity in χx and χy,

E

MN
∼ −2J +

J

2
(χ2
x + χ2

y). (1.100)

The leading order correction to the groundstate energy per site is therefore Jχ2/2; this implies that

the low temperature limit of the helical stiffness is Y = J .

To consider the high temperature limit, recall the arguments we presented in section 1.3.3: in the

high temperature expansion of the partition function, the O((βJ)2m) term is obtained as the number

of possible arrangements of 2m arrows between neighbouring sites on the lattice, such that the net

number of arrows pointing into or out of every site is zero. In the presence of ~χ, the same diagrams
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are included, but the contribution of each diagram is multiplied by the factor

ei(l
x
+−lx−)χx+i(ly+−l

y
−)χy , (1.101)

where lx± and ly± are that diagram’s number of directed arrows in the x- and y-directions respectively.

Now, it would appear that in order for the condition that there be no net flux into any lattice site,

this phase must perfectly cancel; the exceptions to this are diagrams which span the entire system,

so that a lattice site is “connected to itself”. Therefore in the high temperature expansion of the

partition function, no dependence on ~χ occurs at orders lower than O((βJ)Lx,y ) and consequently

the helical stiffness is not lower order than O((βJ)Lx,y−1); in the thermodynamic limit Lx → ∞,

Ly → ∞, therefore, the high temperature expansion of the helical stiffness is identically zero, for all

temperatures. This indicates that in the thermodynamic limit Y = 0 in the high temperature phase.

1.3.6 The Kosterlitz-Thouless transition

In considering the problem of how a two-dimensional isotropic system could undergo a phase transition,

Kosterlitz and Thouless conceived a particular type of transition, the Kosterlitz-Thouless transition,

which can occur in such systems. The Kosterlitz-Thouless transition is unique in that it is associated

with an essential singularity in the thermodynamic functions; it is therefore in effect an infinite order

phase transition. The critical form of the specific heat and the correlation function are essential

singularities rather than power law singularities; this critical behaviour is therefore not characterised

by the usual critical exponents α and ν. The strongest signature of the transition is found in the

helical stiffness, which is predicted to jump discontinuously from a finite value to zero at the transition

temperature.

We here provide an outline of the Kosterlitz-Thouless theory; our approach copies that found in

many textbooks on the subject, in particular the treatment in Chaikin and Lubensky(19). We have

not attempted to include the full details of the theory however, but more to mention the key physical

ideas and equations. The starting point for the theory is to modify the formal continuum limit of the

planar rotator model so that it can exhibit vorticity; this is done by the inclusion of a vortex field

ψ(~r), which is allowed to contain isolated singularities which correspond to individual vortices. In this

description the vortices act like point charges of integer charge, and there is an interaction between

vortices proportional to the logarithm of their separation. We begin by describing all of this in some
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detail. We then provide an outline of the calculation of the helical stiffness in this model, which shows

that the presence of vortices at finite temperature acts to reduce the helical stiffness. This provides

a basis for a renormalisation group treatment of the model. We provide the renormalisation group

differential equations, and then describe the associated critical properties which are deduced from

them.

According to standard approaches to phase transitions, it might be assumed that the behaviour of

the planar rotator model close to the phase transition must be governed by long-range fluctuations.

These long-wavelength fluctuations are described by the low temperature limit (see section 1.3.4), but

as we have discussed this effective model does not have a phase transition. Kosterlitz and Thouless

noted that this effective description did not have the capacity to describe vorticity. The spin angles

φj in the lattice planar rotator model are periodic variables, in that φj → φj + 2π describes the same

configuration of the system. A configuration can exhibit vorticity, in that if one considers the change

in the spin-angles around some closed path of the lattice, the result can be non-zero, and can equal

2π times any integer, which is the winding number or vorticity associated with the closed path.

In a continuum model described by some field φ(~r), where ~r is the position vector on a two

dimensional space, the analogous condition is expressed as

∮

C

d~r · ~∇φ = 2πq, (1.102)

where

~∇φ =
∂φ

∂x
x̂+

∂φ

∂y
ŷ, (1.103)

and q is the winding number associated with the closed curve C. Now, if ~v(~r) is a vector field on a

simply connected domain S enclosed by a curve C, then by Stokes’ theorem

∮

C

d~r · ~v(~r) =

∫ ∫

S

(
∂vy
∂x
− ∂vx

∂y

)
dxdy. (1.104)

Substituting ~v = ~∇φ into this equation shows that the line integral vanishes if it encloses a simply

connected domain. Non-zero vorticity requires that the area enclosed by C is not simply connected,

that is, that there are singularities in the function ~∇φ: these singularities are precisely the individual

vortices in the continuum description. Each vortex has an integer vorticity or charge qi, and the
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integral is determined by the total charge lying inside C:

∮

C

d~r · ~∇φ = 2π
∑

i∈C
qi. (1.105)

If we introduce a new field ψ(~r) defined by,

~∇φ =
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ, (1.106)

then the line integral can be expressed as,

∮

C

d~r · ~∇φ = −
∫ ∫

S

dxdy∇2ψ. (1.107)

This suggests that ∇2ψ is equal to the vorticity locally, which we express in the equation

∇2ψ = −2π
∑

i

qiδ(~r − ~ri), (1.108)

where ~ri are the positions of the vortices. This equation determines the field ψ(~r) to be

ψ(~r) = −
∑

i

qi ln |~r − ~ri|. (1.109)

This is exactly the same mathematics as the electrostatics of point charges of integer charge in two

dimensions, with ψ the analogue of the electric potential.

In order to obtain a continuum description of the planar rotator model with vorticity, we start with

the effective Hamiltonian,

HSW =
J

2

∫
dxdy

(
~∇φ
)2

,

which is obtained formally as the continuum limit of the lattice model, which is the same thing as the

low temperature limit (see section 1.3.4), and simply add in by hand a vorticity field of the type we

have described:

~∇φ→ ~∇φ+
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ. (1.110)
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With this modification it can be shown that the effective Hamiltonian becomes

H = +
J

2

∫
dxdy

[(
~∇φ
)2

+
(
~∇ψ
)2
]

(1.111)

= −J
2

∫
dxdy

[
φ∇2φ+ ψ∇2ψ

]
, (1.112)

where in going from the first to the second line we have performed an integration by parts and assumed

that the surface terms are zero. In particular, it can be shown that the surface term associated with

the vorticity field diverges logarithmically as,

∼ ln Ω

(∑

i

qi

)2

, (1.113)

where Ω is the system size; for configurations with zero total vorticity this vanishes, while for configu-

rations with finite total vorticity it diverges with the system size and this acts to completely suppress

the thermodynamic contributions of such configurations. The resulting Hamiltonian is a sum of HSW

which depends on the spin wave field φ, and a term HV which depends on the vortex degrees of free-

dom; because the two degrees of freedom are not coupled, the partition function is factorised according

to

Z = ZSWZV (1.114)

where the spin wave partition function can be represented as a functional integral over the field φ,

ZSW =

∫
Dφ e−βHSW ; (1.115)

we discuss the representation of ZV presently.

It is tempting to evaluate the vorticity term as

J

2

∫
ψ∇2ψdxdy = πJ

∑

i

∑

i′

qiqi′

∫
ln |~r − ~ri|δ(~r − ~ri′)dxdy (1.116)

→ πJ
∑

i

∑

i′

qiqi′ ln |~ri − ~ri′ | (1.117)

but the i = i′ terms in this expression are divergent. These infinities are related to the fact that we

have neglected to include a cutoff imposed by the underlying square lattice. The vortex term employed
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by Kosterlitz and Thouless is(20)

HV = −πJ
∑

i6=i′
qiqi′ ln

∣∣∣∣
~ri − ~ri′
a

∣∣∣∣− EC
∑

i

q2
i (1.118)

where a is the cutoff of the theory which for the time being can be regarded as essentially equal to the

lattice spacing, and the quantity EC is the so-called core energy associated with each vortex, which

plays the role of a chemical potential for the vortices. To some approximation, only configurations

which contain solely vortices of charge qi = ±1 are relevant. Moreover, because the total vorticity

must vanish, the vortex configurations can be parameterised by the number of dipole pairs of vortices,

N , and the positions of the vortices ~ri, i = 1, ..., 2N . The partition function for the vortices is then

ZV =
∞∑

N=0

1

(N !)2
y2N

(
2N∏

i=1

∫
d2ri

)
e
πβJ

∑
i6=j qiqj ln

∣∣∣~ri−~rja

∣∣∣
, (1.119)

where y = eβEC is called the fugacity.

The presence of vortices reduces the helical stiffness. It can be shown that, imposing the uniform

twist on the system

~∇φ+
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ → ~∇φ+

∂ψ

∂y
x̂− ∂ψ

∂x
ŷ + ~χ, (1.120)

the Hamiltonian becomes

H(~u) = H(~0) +
J

2
Ωu2 + J

∫
d2r ~χ ·

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

)
(1.121)

and therefore the partition function becomes

Z(~u) = e−
βJ
2 Ωu2ZSW (~0)

∫
Dψ exp

{
− βHV (~0)− βJ

∫
d2r ~χ ·

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

)}
. (1.122)

The trace over the vortex degrees of freedom in this expression can be regarded as the average of the

function

exp

{
− βJ

∫
d2r ~χ ·

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

)}

in the ~χ = ~0 vortex ensemble; because this ensemble is quadratic in ψ, this average can be expressed
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in the form,

〈
exp

{
− βJ

∫
d2r ~χ ·

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

)}〉
= exp

{
1

2
β2J2

〈(∫
d2r ~χ ·

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

))2〉}
.

(1.123)

The modified free energy is therefore

F (~u) = F (~0) +
J

2
χ2 − 1

2
βJ2

〈
1

Ω

(∫
d2r ~χ ·

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

))2〉
, (1.124)

and consequently the modified spin wave stiffness is

Y = J


1− βJ lim

χ→0

1

χ2

〈
1

Ω

(∫
d2r ~χ ·

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

))2〉
 . (1.125)

This is the very same quantity that occurs in the exponent in the long-range correlation function (see

equation 1.79); in the presence of vortices, one still obtains the power law form of the correlation

function, but with the modification that J is replaced by the helical stiffness,

〈cos (φj − φj+~r)〉 ∼
(

1

|~r|

)1/2πβY

. (1.126)

The phase transition corresponds to the decay of Y to zero at some finite temperature.

Now, to render the equation 1.125 in a useful form for examining the critical behaviour requires that

the integral be represented in terms of the positions of the vortices and the fugacity y; furthermore,

y is taken to be a small quantity, which corresponds to the average number of vortices being small,

and the integral is expanded to second order in y. Performing this analysis leads to the important

equation,

1

KR
=

1

K
+ 4π3y2

∫ ∞

a

dr

a

( r
a

)3−2πK

(1.127)

where K = βJ and KR = βY .

From this equation one can obtain a pair of renormalisation group (RG) differential equations which

can be used to obtain the properties of the critical point. The RG scheme is to rescale the system by a

factor eδl; if the lattice constant is rescaled by a→ aeδl, an identical equation for KR can be obtained
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in terms of rescaled parameters K ′ and y′:

1

KR
=

1

K ′
+ 4π3y′

2
∫ ∞

a

dr

a

( r
a

)3−2πK′

, (1.128)

where the rescaled parameters are given by

1

K ′
=

1

K
+ 4π3y2

∫ aeδl

a

dr

a

( r
a

)3−2πK

, (1.129)

y′ = e(2−πK)δly. (1.130)

By taking the limit δl→ 0 the following pair of renormalisation group (RG) differential equations are

obtained.

d

dl
K−1 = 4π3y2, (1.131)

dy

dl
= (2− πK)y. (1.132)

The analysis of these RG equations reveals the existence of a critical point at which K jumps dis-

continuously from the value 2/π to zero. This is unique behaviour which is not associated with regular

phase transitions. Above the transition where Y is zero the correlation function decays exponentially

at long range, and the critical form of the correlation length is also highly unique to this particular

critical point, and has the form of an essential singularity:

1

ξ
∼ e−a/

√
T−TKT , T → TKT+, (1.133)

where TKT is the transition temperature and a some constant. The critical point is also evident in an

essential singularity in the specific heat,

C ∼ e−2a/(T−TKT ), T → TKT+. (1.134)

That the singular behaviour in the usual thermodynamic quantities is an essential singularity means

that the transition can be considered to be an infinite-order phase transition. A curious feature of

such a transition is that there is no divergence in any temperature derivative of the free energy.

The RG scheme does not provide the transition temperature itself; this has been estimated cal-
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culating the helical stiffness for finite systems using Monte Carlo simulation, and applying a scaling

analysis that is based on the Kosterlitz-Thouless theory to be TKT = 0.89J(23). Although the author

does not understand this study very well, we regard this value of the transition temperature as a

prediction of the Kosterlitz-Thouless theory, and this will be relevant when we come to analyse our

own calculations.

The physical picture of the Kosterlitz-Thouless transition is the unbinding of vortex-antivortex

pairs; the qLRO corresponds to closely bound dipole pairs of vortices, and they unbind at the transition

where there is a proliferation of vorticity. The transition itself occurs without the release of entropy;

as the system disorders, there must occur the release of a large amount of entropy and therefore a

large peak in the specific heat in the vicinity of the phase transition, but this is nonuniversal and not

a part of the Kosterlitz-Thouless theory per se(19). This feature of the Kosterlitz-Thouless picture,

that there is a large finite peak in the specific heat that does not mark the phase transition itself, is

very relevant to the interpretation of our own calculations in the next chapter.
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Chapter 2

Transfer Operator Calculations

In this chapter we present investigations of the statistical mechanics of classical spin systems using

transfer operators. The primary focus is the planar rotator model on the square lattice, for which the

Hamiltonian is,

H = −J
∑

〈jj′〉
cos (φj − φj′),

where the index j labels sites on the square lattice and the summation is over all nearest-neighbour

pairs of lattice sites. We shall be particularly concerned with the style of phase transition which occurs

in this model. We shall also present some calculations concerning the square lattice Ising model,

H = −J
∑

〈jj′〉
σjσj′ ,

where σj ∈ {+1,−1} and the label j has the same meaning. It is natural to make use of the Ising

model as a point of comparison, as it provides one of the few examples of a classical spin system which

exhibits a phase transition for which the thermodynamics are known exactly.

The mathematics which underlies all of our calculations is that of the transfer operator. The

partition function of a translationally invariant system can be represented as the repeated application

of an operator, the so-called transfer operator. In this chapter, we will apply the transfer operator

to periodic systems, and infinite one-dimensional systems. This is the simplest application of transfer

operators, and one is likely to have encountered transfer operators being applied in this way to solve

the one-dimensional Ising model even at the undergraduate level. The key result is that the partition

function is given by the trace of the transfer operator raised to the power of the size of the system, and
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therefore that the thermodynamics are provided by finding the eigenvalues of the transfer operator.

Furthermore, in the case of the infinite one-dimensional system, the partition function is provided by

the largest of the eigenvalues alone.

We have investigated the square lattice models by solving the thermodynamics of one-dimensional

systems by finding the largest eigenvalue of the appropriate transfer operator, where the one-dimensional

system is designed with some scaling parameter N in place such that it becomes the square lattice

model in the limit that N →∞. There is some maximum value of N above which the relevant eigen-

vector is simply too large to be stored on the computer and the calculation cannot be performed; one

simply performs the calculation for all values of N which are available and attempts to extrapolate

to the two-dimensional limit. We will refer in general to this method of investigating two-dimensional

systems as a limit of some one-dimensional system as one-to-two dimensional crossover. This technique

is analogous to the technique of exact diagonalisation in quantum mechanics, where one investigates

the quantum mechanics of an infinite system by diagonalising a series of finite systems of increasing

size. The one-to-two dimensional crossover technique has been previously applied to a variety of clas-

sical spin systems, as reported in the theses of R. J. Mason(35), who considered the planar rotator

model, the continuous-spin Ising model and the Heisenberg model, and of A. M. Cave(29), who investi-

gated the clock models. The technique has also been applied to “hedgehog models” which result from

restricting the classical Heisenberg spin-variables to a discrete number of equivalent directions(36).

The clock models and the planar rotator model are closely related: as we shall discuss in section

2.4.1, one of the two phase transitions in the clock models is the same as the transition in the planar

rotator model. The work in this thesis is therefore closely associated with the work of A. M. Cave,

and is to a large extent complementary to it. With regard to the phase transition in the square lattice

planar rotator model, the two theses offer different but closely related alternative investigations of

this transition. Together the two investigations show consistent evidence of a regular phase transition

with ordinary critical exponents. These findings are contradictory to the picture that the model

should exhibit the Kosterlitz-Thoules transition, on which there is an extremely firm consensus in the

literature.

The organisation of the chapter is as follows. In section 2.1 the mathematical formalism of how

periodic lattice spin-systems are solved using transfer operators is provided for the two cases of the

periodic chain and the toroidal lattice. We show formally that the partition function is given by the

trace of the transfer operator raised to the power of the system size. In addition, we obtain generic
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forms for the transfer operator which provide the starting point when we come to solving particular

models. In section 2.2 we use the transfer operator for the toroidal lattice as a starting point to obtain

the exact solution of the Ising model on this lattice, which provides the solution of the infinite square

lattice Ising model as a special case. We calculate the specific heat using this solution applied to the

finite torus and to the infinite cylinder, the latter being the geometry which results from setting one of

the periodicities in the torus equal to infinity, and show how both sets of curves approach the specific

heat of the infinite square lattice Ising model as a finite system-size parameter is increased.

Having dealt with these preliminaries, we move on to the primary focus of this chapter, the study of

the phase transition in the square lattice planar rotator model using one-to-two dimensional crossover.

Section 2.3 introduces the formalism of the one-to-two dimensional crossover technique as it might be

applied to a generic system; this essentially applies the transfer operator solution of the periodic chain

to the case where the chain becomes infinitely large, but where there is implicitly a scaling parameter

N in the model by which the square lattice model corresponds to the limit N →∞. In order to show

how the theory functions in predicting the existence and characteristics of a phase transition, we then

apply it to the Ising model. We calculate the specific heat, the correlation length, and the magnetic

susceptibility, and show how these calculations can be used to estimate the critical exponents of the

transition.

The investigation of the planar rotator model is then presented in section 2.4. We introduce this in

section 2.4.1 by discussing the relationship between the planar rotator model and the clock model. We

compare calculations for the planar rotator model, and those made for clock models by A. M. Cave

previously, to show that both models have identical critical behaviour. This establishes the context of

the present investigation as being complementary to the clock model investigations of A. M. Cave: both

pieces of work attempt to characterise the planar rotator phase transition by two different methods, and

both the methods produce consistent results showing evidence of a regular phase transition. In section

2.4.2 we discuss the representation of the transfer operator for the calculations on the computer; we

describe the spin-angles using Fourier series in order to cast the transfer operator as an infinite matrix

in Fourier space whose elements are products of Bessel functions, and the properties of these functions

allow us to truncate the matrix to be finite while retaining accuracy in the calculation. In section 2.4.3

we formally show how a rotational symmetry in the planar rotator transfer operator can be extracted to

reduce the number of degrees of freedom in the problem by one, thereby allowing the calculation to be

performed for one larger value of the scaling parameter N . We then present in detail the calculations
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of the specific heat, correlation length and magnetic susceptibility in sections 2.4.4, 2.4.5 and 2.4.6

respectively. As we shall show, the correlation length is closely related to the eigenvalue spectrum of the

transfer operator, and in section 2.4.5 we shall also present a number of related calculations involving

various eigenvalues. The results of these calculations are qualitatively similar to those of the Ising

model, consistently showing evidence for a regular phase transition with critical exponents with values

close to those for the Ising phase transition. The evidence in the calculations that thermodynamic

quantites will become divergent in the two-dimensional limit N → ∞ is in contradiction with the

picture that the system should exhibit a Kosterlitz-Thouless transition. We then present calculations

of the helical stiffness in section 2.4.7. We find that, as expected, the helical stiffness appears to drop

rapidly to zero at a temperature close to the sharp behaviour seen in the specific heat, correlation

length and the magnetic susceptibility, but we are not able to establish for certain whether this drop

is continuous in the manner of an order parameter in a regular phase transition, or discontinuous as

it should be in a Kosterlitz-Thouless transition. We finally offer a discussion of our findings in section

2.4.8.

2.1 Formalism of transfer operators

2.1.1 The transfer operator for a periodic spin-chain

In this section we consider a periodic chain of M spin-variables ~Sj , where the index j labels the site

in the chain. At this stage, we do not specify the dimensionality of these spin degrees of freedom,

or whether they are discrete or continuous. However, it is always to be understood that there is an

equivalent degree of freedom, that is an equivalent spin-variable, on each site in the chain, and this

will also be the case for all kinds of lattices which we discuss in this chapter. We shall develop the

formalism for the following fairly general Hamiltonian of pairwise spin-interactions:

HM = −
M∑

j=1

[
N∑

n=1

JnVn(~Sj , ~Sj+n)

]
. (2.1)

The only restrictions which we place on the set of spin-interactions Vn are that they be pairwise and

that the interactions only extend up to a range N which is less than the period of the system M . The
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most physically common interaction is the scalar product interaction,

Vn(~Sj , ~Sj+n) = ~Sj · ~Sj+n. (2.2)

This will be the only interaction which will be considered after the general formalism of transfer

operators is introduced.

The partition function is given by

ZM =




M∏

j=1

∫
dΩj


 e−βHM , (2.3)

where
∫
dΩj represents the summation over all possible orientations of the spin ~Sj . It is to be under-

stood that this symbol indicates a sum, as opposed to an integral, in the case that the spin degrees of

freedom are discrete.

The central result of this section is that there exists an operator T̂ such that the partition function

can be represented as

ZM = tr(T̂M ), (2.4)

The calculation of the partition function is thereby reduced to the diagonalisation of the operator T̂ ,

which is known as the transfer function or transfer matrix. Since the trace of any operator is equal to

the sum of its eigenvalues, the partition function can be calculated explicitly as

ZM =
∑

α

(zα)
M

(2.5)

where zα are the eigenvalues of the transfer operator.

In the remainder of this section, we shall formally prove this result. We begin by essentially guessing

a form for the transfer operator. We then formally calculate the left hand side of equation 2.4 and

show it to be equal to the partition function. We make use of the Dirac notation for its efficiency

and also to highlight how the theory is analogous to quantum mechanics. The only non-trivial part of

this theory is that in demanding the transfer operator to be self-adjoint, one is forced to introduce an

unconventional analogue of the scalar product.

The transfer operator approach is based in the translational symmetry of the Hamiltonian: each

site in the chain is equivalent to any other. Consequently, the quantity e−βHM , which depends upon
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all the M spins in the chain, can be factorised into the product of M terms which each depend on only

a restricted subset of local spins and which have the same functional form:

e−βHM = eβK(~S1,~S2,...,~SN+1)eβK(~S2,~S3,...,~SN+2)...eβK(~SM ,~S1,...,~SN ), (2.6)

where K(~S1, ~S2, ..., ~SN+1) is chosen to satisfy the condition,

K(~S1, ~S2, ..., ~SN+1) +K(~S2, ~S3, ..., ~SN+2) + ...+K(~SM , ~S1, ..., ~SN ) = −HM . (2.7)

If we associate each of these M factors with one of the summations in equation 2.3, one can guess that

the partition function involves the repeated application of an operator T̂ defined by

(
T̂ f
)

(~S2, ~S3, ..., ~SN+1) =

∫
dΩ1e

βK(~S1,~S2,...,~SN ,~SN+1)f(~S1, ~S2, ..., ~SN ) (2.8)

where f is any function of N spins. The effect of the transfer function is to integrate out one of the

spins and “transfer” one site along the chain.

If the function K is chosen to have the symmetry

K(~S1, ~S2, ..., ~SN , ~SN+1) = K(~SN+1, ~SN , ..., ~S2, ~S1) (2.9)

this provides the following natural inner product

(f, g) =




N∏

j=1

∫
dΩj


 f(~SN , ~SN−1, ..., ~S1)g(~S1, ~S2, ..., ~SN ) (2.10)

with respect to which the transfer operator is self-adjoint, which precisely means that it satisfies

(T̂ f, g) = (f, T̂ g) (2.11)

for any two functions f(~S1, ~S2, ..., ~SN ) and g(~S1, ~S2, ..., ~SN ).

This is the analogue to the scalar product in quantum mechanics. In that theory, the scalar product

between two wavefunctions Φ({xi}) and Ψ({xi}) is

(Φ,Ψ) =

(∏

i

∫
dxi

)
Φ∗({xi})Ψ({xi}), (2.12)
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where {xi} might for example be the co-ordinates of a number of particles.

It is a straightforward matter to represent the theory of the transfer operator in the Dirac notation,

where we are guided by the analogue of the inner product 2.10. The function f(~S1, ..., ~SN ) describes

the components in a particular basis of an underlying vector |f〉. We express this formally as

|f〉 =




N∏

j=1

∫
dΩj


 f(~S1, ~S2, ..., ~SN )|~S1, ~S2, ..., ~SN 〉 (2.13)

where the vectors |~S1, ~S2, ..., ~SN 〉 are the basis vectors. One has also a dual vector-space, whose

members are written as bra vectors, and the vector corresponding to f(~S1, ..., ~SN ) in the dual space is

〈f | and is given by,

〈f | =




N∏

j=1

∫
dΩj


 f(~S1, ~S2, ..., ~SN )〈S1, ~S2, ..., ~SN | (2.14)

where the vectors 〈~S1, ~S2, ..., ~SN | are the basis vectors in the dual space. We construct the theory so

that the product 〈f |g〉 provides the scalar product 2.10, in analogy with quantum mechanics. This

implies that the products between the basis vectors are given by

〈~S′1, ..., ~S′N |~S1, ..., ~SN 〉 =
N∏

j=1

δ~Sj−~S′N+1−j
(2.15)

One can immediately proceed to write down a number of results in exactly the familiar form of quantum

mechanics: the completeness condition for the basis states,




N∏

j=1

∫
dΩj


 |~SN , ..., ~S1〉〈~S1, ..., ~SN | = Î , (2.16)

where Î is the identity operator; the explicit formula for the function f(~S1, ~S2, ..., ~SN ) in terms of the

vectors,

f(~S1, ..., ~SN ) = 〈~SN , ..., ~S1|f〉 = 〈f |~SN , ..., ~S1〉; (2.17)

and the trace of any operator Ô,

tr(Ô) =




N∏

j=1

∫
dΩj


 〈~SN , ..., ~S1|Ô|~S1, ..., ~SN 〉. (2.18)

With this formalism in place, it is a relatively simple matter to calculate the matrix elements of

55



T̂ , deduce from these the matrix elements of T̂M , and substitute these into equation 2.18 to calculate

the trace.

The application of the transfer operator T̂ can be expressed formally in terms of matrix elements

as

〈~SN , ..., ~S1|T̂ |f〉 =




N∏

j=1

∫
dΩ′j


 〈~SN , ..., ~S1|T̂ |~S′1, ..., ~S′N 〉〈~S′N , ..., ~S′1|f〉. (2.19)

where
∫
dΩ′j indicates the integration over the corresponding primed spin-variable, ~S′j . One can deduce

the matrix elements of T̂ by comparing this formal expression with equation 2.8, and the result is found

to contain a single eβK(...) factor together with N − 1 delta functions:

〈~SN , ..., ~S1|T̂ |~S′1, ..., ~S′N 〉 = eβK(~S′1,
~S1,~S2,...,~SN ) ×

N∏

j=2

δ~S′j ,~Sj−1
. (2.20)

It is helpful to relabel the spin-variables to make the expression for the matrix elements more closely

resemble equation 2.8:

〈~SN+1, ..., ~S2|T̂ |~S1, ~S
′
2, ..., ~S

′
N 〉 = eβK(~S1,~S2,...,~SN+1) ×

N∏

j=2

δ~S′j ,~Sj
. (2.21)

The matrix elements of T̂ 2, T̂ 3, ..., can be easily calculated directly; each successive multiplication

provides an extra eβK(...) factor and results in one fewer delta function, so that for m < N we obtain

〈~Sm+N , ..., ~Sm+1|T̂m|~S1, ..., ~Sm, ~S
′
m+1, ...,

~S′N 〉 = eβK(~S1,...,~SN+1)eβK(~S2,...,~SN+2)...eβK(~Sm,...,~Sm+N )

×
N∏

j=m+1

δ~S′j ,~Sj
. (2.22)

Thereafter, raising T̂ to higher powers, we obtain,

〈~S2N , ..., ~SN+1|T̂N |~S1, ..., ~SN 〉 = eβK(~S1,...,~SN+1)eβK(~S2,...,~SN+2)...eβK(~SN ,...,~S2N ), (2.23)

and for m > N

〈~Sm+N , ..., ~Sm+1|T̂m|~S1, ..., ~SN 〉 =




m∏

j=N+1

∫
dΩj


 eβK(~S1,...,~SN+1)eβK(~S2,...,~SN+2)

...eβK(~Sm,...,~Sm+N ). (2.24)
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The final expression provides a proof of the identity 2.4; calculating the trace of T̂M formally by

substituting the expression for the matrix elements into equation 2.18, the result is plainly the partition

function identically.

2.1.2 The transfer operator of a toroidal spin-system

In this section we shall consider the toroidal lattice illustrated in Figure 2.1. This is equivalent to

a finite square lattice with periodic boundary conditions in both of the principal directions. This

functions as a precursor to the following section, in which we present the exact solution to the Ising

model on this lattice. In the present section, we will derive a result for the partition function of a spin

system on the toroidal lattice that is analogous to the result 2.4 which was established for the linear

chain.

Figure 2.1: Illustration of the torus geometry.
(Taken from https://commons.wikimedia.org/wiki/File:Simple Torus.s).

Consider a toroidal lattice made up of M connected N -fold rings. Let the index i label the position

of a lattice site on one of the rings and let the index j label the rings; let ~Si,j be the spin on the ith

site on the jth ring. We consider the rather generic spin-Hamiltonian,

HN,M = −
N∑

i=1

M∑

j=1



R‖∑

r=1

R⊥∑

s=1

J‖r,sV
‖
r,s(~Si,j , ~Si+s,j+r) +

R⊥∑

s=1

J⊥s V
⊥
s (~Si,j , ~Si+s,j)


 . (2.25)

As in section 2.1.1 we make the restriction that the maximum range of the interactions be less than
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the size of the system, that is we require that,

R‖ < M, R⊥ < N. (2.26)

We have separated the Hamiltonian into two terms, the first of which contains all the interactions

between spins on different rings, and the second of which contains all the interactions between spins

on the same ring. This separation will be made use of when we come to discuss the Ising model.

The partition function is

ZN,M =




N∏

i=1

M∏

j=1

∫
dΩi,j


 e−βHN,M . (2.27)

The formalism is simplified if we use the symbol ~Sj to label the configurations of the set of spins

{~S1,j , ~S2,j , ..., ~SN,j} on the jth ring. With this notation, we can factorise e−βHN,M in a manner

analagous to equation 2.6, and which preserves the separation of the interactions between different

rings and the interactions on a single ring:

e−βHN,M = eβK⊥(~S1)e
βK‖(~S1, ~S2,..., ~SR‖+1)

eβK⊥(~S2)e
βK‖(~S2, ~S3,..., ~SR‖+2)

...eβK⊥(~SM )e
βK‖(~SM , ~S1,..., ~SR‖ )

(2.28)

where the function K‖( ~S1, ~S2, ..., ~SR‖+1) is chosen to satisfy

K‖( ~S1, ~S2, ..., ~SR‖+1) +K‖( ~S2, ~S3, ..., ~SR‖+2) + ...+K‖( ~SM , ~S1, ..., ~SR‖)

=
N∑

i=1

M∑

j=1



R‖∑

r=1

R⊥∑

s=1

J‖r,sV
‖
r,s(~Si,j , ~Si+s,j+r)


 , (2.29)

and K⊥( ~S1) is given by

K⊥( ~Sj) =
N∑

i=1

[
R⊥∑

s=1

J⊥s V
⊥
s (~Si,j , ~Si+s,j)

]
. (2.30)

It is clear that the results of the linear spin chain can be applied to this system, but where one now

has the variable ~Sj as the analogue of a single spin. The partition function is the trace of a transfer

function raised to the power M , the number of rings:

ZN,M = tr(T̂M ). (2.31)
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The transfer operator can be written so as to preserve the separation of the interactions between

different rings and the interactions on a single ring,

T̂ = T̂‖T̂⊥, (2.32)

where T̂‖ functions like the transfer operator of the linear chain and performs the “transfer” from one

ring to the next,

(
T̂‖f

)
( ~S2, ~S3, ..., ~SR‖+1) =

(
N∏

i=1

∫
dΩi,1

)
e
βK‖(~S1, ~S2,..., ~SR‖ , ~SR‖+1)

f( ~S1, ~S2, ..., ~SR‖), (2.33)

and T̂⊥ is simply defined so as to provide the factors arising from the single-ring interactions,

(
T̂⊥f

)
( ~S1, ~S2, ..., ~SR‖) = eβK⊥(~S1)f( ~S1, ~S2, ..., ~SR‖). (2.34)

2.2 Exact solution of the Ising model on the square lattice

In this section we apply the transfer operator technique to the Ising model on the torus. For this

particular model, the trace in equation 2.31 can be calculated analytically. This provides, in the

appropriate limit, the well-known exact solution of the Ising model on the infinite square lattice. The

reason for reproducing such a well-known exact solution in such detail is that it allows us to illustrate

the crossing over of the system from zero- and one-dimension to two dimensions, and the related

emerging of a singularity in the thermodynamics, while retaining total mathematical control. This

provides a foundation for the subsequent investigations in the planar rotator model which use these

ideas in the absence of an exact solution.

The transition temperature of the infinite square lattice model was first provided by Kramers and

Wannier using a duality argument(37). The calculation of the free energy was provided by Onsager in

a famous paper(17); this calculation was then simplified by Kaufman(38) and together Onsager and

Kauffman deduced the functional form of the spontaneous magnetisation close to the phase transition,

in work that was never published but which has since been re-evaluated(39). The first published

calculation of the free energy was by Yang(40). Since these early works, the solution of the square

lattice Ising model has been reproduced by a plethora of different methods; the literature on this

subject is vast and the author is much too ignorant of it. We single out the solution by Schultz,

59



Mattis and Lieb using a fermion representation(41); the solution we present in this section uses the

same approach and must be essentially the same as that of Schultz et al although we have not closely

followed their working. A detailed exposition of a solution along the same lines as Onsager’s original

solution is given in the book of exact solutions to statistical mechanics models by Baxter(6).

The Ising model considers spins, which we label with the symbol σ, which can be in one of two

states, “up” σ = 1 or “down” σ = −1, and a scalar product interaction between spins −Jσσ′. With

the restriction to nearest-neighbour interactions, the Hamiltonian in equation 2.25 takes the form

HN,M = −J‖
M∑

j=1

N∑

i=1

σi,jσi,j+1 − J⊥
M∑

j=1

N∑

i=1

σi,jσi+1,j (2.35)

and the partition function is

ZN,M =




N∏

i=1

M∏

j=1

∑

σi,j


 e−βHN,M . (2.36)

The exact solution begins with the results 2.31 and 2.32. We shall first write down the transfer

matrix in the most obvious representation. We shall then show how the problem may be represented in

terms of quantum spin-physics, and write the transfer operator in terms of Pauli spin operators. Having

represented the problem of diagonalising the transfer matrix as a problem in quantum spin-physics, we

next map this onto a fermion problem using the Jordan-Wigner transformation. The representation

that results from this transformation is equivalent to a non-interacting Fermi problem. One can then

extract the translational symmetry of sites around the same ring via a Bloch transformation, which

reduces the transfer matrix in size from 2N × 2N to 2× 2. At this point it is a simple matter to write

down the eigenvalues.

The transfer operator in equations 2.31 and 2.32 for the Ising model can be represented as:

〈{σ}|T̂‖|{σ′}〉 =
N∏

n=1

eβJ‖σnσ
′
n , (2.37)

〈{σ}|T̂⊥|{σ′}〉 =
N∏

n=1

eβJ⊥σnσn+1δ{σ},{σ′}, (2.38)

where {σ} is written in place of the symbol ~S used above and is the set of Ising spins on a single ring.

The state space of an Ising variable σ is the same as a quantum one half spin, in that there are two

possible states. The transfer operator can therefore be represented using the formalism of quantum

spin-physics. We map each of the N Ising variables, which label the basis states in equations 2.37 and
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2.38, to a quantum one-half spin. The relevant operators in quantum spin-1
2 physics are the Pauli spin

operators, which give the components of spin in each of the three Cartesian directions:

σ̂x =




0 1

1 0


 , σ̂y =




0 i

−i 0


 , σ̂z =




1 0

0 −1


 . (2.39)

There is a set of Pauli operators for each of the N spins, which we indicate by means of the notation

σ̂x,y,zn .

We must therefore write the operators T̂‖ and T̂⊥ in terms of the Pauli matrices. It is straightforward

to do this for T̂⊥: it is plain from equation 2.38 that the basis vectors are eigenvectors of T̂⊥, and

thus the desired representation is obtained simply by constructing the appropriate function of the σ̂zn

operators. It is clear that

N∏

n=1

eβJ⊥σ̂
z
nσ̂

z
n+1 |σ1, σ2, ..., σN 〉 =

N∏

n=1

eβJ⊥σnσn+1 |σ1, σ2, ..., σN 〉 (2.40)

and so we can identify

T̂⊥ = exp

(
βJ⊥

N∑

n=1

σ̂znσ̂
z
n+1

)
. (2.41)

The representation for T̂‖ is less obvious. Consider the factor eβJ‖σnσ
′
n in equation 2.37: this factor

can take one of only two values, according to whether the two Ising variables σn and σ′n are equal or

unequal. Thus for every matrix element connecting two states with the same spin on site n, this factor

contributes eβJ‖ , while for matrix elements connecting states with opposite spins on site n this factor

contributes e−βJ‖ . The action of T̂‖ on the spin σn therefore has two contributions, one where the spin

is left unchanged and one where the spin is flipped, with factors of eβJ‖ and e−βJ‖ respectively. The

action of flipping a spin is represented by σ̂xn, and so we may write

eβJ‖σnσ
′
n = 〈{σ}|

(
eβJ‖ + e−βJ‖ σ̂xn

)
|{σ′}〉. (2.42)

The operator T̂‖ is then given by a product of such terms for each of the spins on the ring:

T̂‖ =
N∏

n=1

(
eβJ‖ + e−βJ‖ σ̂xn

)
. (2.43)

This operator can be re-written in the form of a single exponential. For a general Pauli operator
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Σ̂ - that is any operator whose square is unity - we have the important identity,

eAΣ̂ = coshA+ Σ̂ sinhA, (2.44)

where is A is any real or complex number. This allows us to write

eβJ‖ + e−βJ‖ σ̂xn = eX+Y σ̂xn (2.45)

where the newly-introduced variables X and Y satisfy the equations,

tanhY = e−2βJ‖ , (2.46)

e2X = e2βJ‖ − e−2βJ‖ . (2.47)

The final representation of the transfer operator in terms of the Pauli matrices is therefore

T̂ = exp

(
N∑

m=1

(X + Y σ̂xm)

)
exp

(
βJ⊥

N∑

n=1

σ̂znσ̂
z
n+1

)
. (2.48)

Note that, at this stage, the two exponentials must be kept as separate factors, because their arguments

do not commute.

We are now in a position to make the second transformation of the transfer operator, the transfor-

mation to a representation in terms of fermions, or the so-called Jordan-Wigner transformation(41).

Like the transformation from the initial classical Ising variables to the quantum spin-1
2 representation,

the transformation to the fermion representation is suggested because in a fermion problem there are

two natural states: the vacuum state where there is no fermion, |0〉, and the state where there is

a fermion, f†|0〉. The essence of the Jordan-Wigner transformation is to associate these two states

with the two eigenstates of spin along some axis. We shall use a Jordan-Wigner transformation that

maps onto the eigenstates of spin along the x-axis. However, it is notationally convenient to label the

Jordan-Wigner spin axis as z. We therefore first relabel the spin directions in 2.48, which is the same

as changing the basis in the spin-1
2 representation. Under the cyclic relabelling x → z, y → x, z → y

the expression for the transfer matrix in equation 2.48 becomes

T̂ = exp

(
N∑

m=1

(X + Y σ̂zm)

)
exp

(
βJ⊥

N∑

n=1

σ̂ynσ̂
y
n+1

)
. (2.49)
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The Jordan-Wigner transformation prescribes

|↑〉 → |0〉, (2.50)

|↓〉 → f†|0〉, (2.51)

where |↑〉 and |↓〉 are the eigenstates of σ̂z. To complete the transformation, one needs to write the

original spin operators in terms of the fermion operator f† and its conjugate f . The z-component

of spin can easily be written down as the new representation is an eigenbasis of this operator by

construction. One finds for a single spin

σ̂z = 1− 2f†f, (2.52)

where we recognise the number operator f†f which acts to count the number of fermions. To represent

the transfer operator in terms of fermions, we invent fermi creation and annihilation operators for every

site, and simply write,

σ̂zn = 1− 2f†nfn. (2.53)

The Fermi operators obey the anticommutation relations,

{f†n, f†n′} = 0, {fn, fn′} = 0, {fn, f†n′} = δn,n′ . (2.54)

The basis vectors of the fermion representation are states of the form

f†2f
†
5f
†
6 ...|0〉,

where we take the vacuum to correspond to the state where all the spins are “up”, and we operate

with the appropriate creation operators to form the state which has the corresponding spins “down”.

Because the creation operators corresponding to different sites anticommute with each other, the order

in which the operators are written to form the basis vectors is important, and to properly define the

basis vectors a consistent ordering of the operators must be used. We choose to use the ordering that

the operators with a smaller site-index always appear to the left of operators with a larger site-index.

To complete the transformation, we must now write the operator σ̂ynσ̂
y
n+1 in terms of the fermion

operators. The action of σ̂y, as can be seen from 2.39, is to flip the spin from up to down with a factor
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i, or from down to up with a factor −i. Therefore the action of σ̂ynσ̂
y
n+1 is to flip both of the spins n

and n + 1, with a factor +1 or −1. In the fermion representation, the action of the operator on the

two relevant spins can be explicitly described as,

|↑↑〉 → −|↓↓〉 becomes |0〉 → −f†nf†n+1|0〉,

|↑↓〉 → |↓↑〉 becomes f†n+1|0〉 → f†n|0〉,

|↓↑〉 → |↑↓〉 becomes f†n|0〉 → f†n+1|0〉,

|↓↓〉 → −|↑↑〉 becomes f†nf
†
n+1|0〉 → −|0〉.

This would seem to imply the representation,

σ̂ynσ̂
y
n+1 = f†nfn+1 + f†n+1fn − f†nf†n+1 − fn+1fn, (2.55)

where the first two terms hop particles between neighbouring sites and the last two terms create

and annihilate pairs of particles on neighbouring sites. However, the term σ̂yN σ̂
y
1 presents additional

difficulties. The first and third terms in equation 2.55 give rise to states of the form f†N (...)|0〉 which

have the creation operator for the Nth site appearing in the wrong order for how we have defined

the basis states. To compare this state with the corresponding basis state, the operator f†N must be

commuted past the other creation operators present in order to be at the rightmost place, according

to our ordering convention. This gives rise to a minus sign if f†N must be commuted through an odd

number of creation operators; this occurs if the total number of fermions, including that on site N ,

is even. It follows, therefore, that the state f†N (...)|0〉 is equal to the corresponding basis state if the

total number of fermions in the state is odd, and is equal to minus the basis state if the number of

fermions is even. The action of the second and fourth terms in 2.55 also produce this same minus sign

for the case of an even number of particles. We therefore find that we must treat the case of an odd

particle number and the case of an even particle number differently, and in the latter case one of the

bonds on the ring is special. To be explicit, we find for an odd number of fermions,

N∑

n=1

σ̂ynσ̂
y
n+1 =

N∑

n=1

(
f†nfn+1 + f†n+1fn − f†nf†n+1 − fn+1fn

)
, (2.56)
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and for an even number of fermions,

N∑

n=1

σ̂ynσ̂
y
n+1 =

N−1∑

n=1

(
f†nfn+1 + f†n+1fn − f†nf†n+1 − fn+1fn

)

−
(
f†Nf1 + f†1fN − f†Nf†1 − f1fN

)
. (2.57)

Now, all of the terms in these operators clearly preserve the evenness or oddness of the number of

fermions. This is therefore true of the transfer matrix itself, and the states with even and odd numbers

of particles comprise independent subspaces. This means that the necessity of using a different form for

the transfer matrix for the even and odd cases is not especially problematic. We adopt the formalism

T̂ = T̂+P̂+ + T̂−P̂−, (2.58)

T̂M = T̂M+ P̂+ + T̂M− P̂−, (2.59)

where T̂+ and T̂− are the transfer operators for the even and odd subspaces resepectively, and P̂+ and

P̂− are projection operators for those two subspaces. We will come to explicitly writing down these

operators presently.

Although the even and odd subspaces are treated separately, in fact one can write T̂+ and T̂− in

essentially the same form. We firstly proceed to make a transformation to the expression 2.57 to make

each of the bonds equivalent. This is accomplished by means of the gauge transformation,

f†n → ei
π
N nf†n, (2.60)

which substituted into equation 2.57 gives the result,

N∑

n=1

σ̂ynσ̂
y
n+1 =

N∑

n=1

(
e−i

π
N f†nfn+1 + ei

π
N f†n+1fn − ei(2n+1) πN f†nf

†
n+1 − e−i(2n+1) πN fnfn+1

)
. (2.61)

One can think of the effect of the gauge transformation as sharing the phase π on the N -1 bond - the

minus sign in the corresponding term in equation 2.57 - evenly among all the bonds on the ring. This

is pictured in Figure 2.2. The effect of a general gauge transformation is to distribute the overall phase

π amongst the N bonds in any whatever; this was discussed in section 1.3.5.
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Figure 2.2: Illustration of the gauge transformation 2.60.

Now, in quantum mechanics, it is a well-known technique to extract the translational symmetry in

single-particle operators such as 2.56 and 2.61 using the Bloch transformation to new operators f†k ,

f†n =
1√
N

∑

k

e−inkf†k , (2.62)

where the so-called Bloch wavenumbers k are chosen so that the corresponding phase factors are the

Nth roots of unity,
(
eik
)N

= 1. (2.63)

Applying this transformation to equation 2.56 for the odd subspace provides,

N∑

n=1

σ̂ynσ̂
y
n+1 =

∑

k

[
2 cos kf†kfk − eikf

†
kf
†
−k − e−ikf−kfk

]
, (2.64)

while Bloch transforming the gauge-transformed even subspace, equation 2.61, provides,

N∑

n=1

σ̂ynσ̂
y
n+1 =

∑

k

[
2 cos

(
k − π

N

)
f†kfk − ei(k−

π
N )f†kf

†
−k+ 2π

N

− e−i(k− π
N )f−k+ 2π

N
fk

]
. (2.65)

Now, on close inspection, equation 2.65 has exactly the same form as equation 2.64 with the single

alteration that the Bloch wavenumbers are shifted by an amount π/N . We can therefore use the same

formula to describe both the even and the odd subspaces, but where for the odd subspace we must

use the set of Bloch wavenumbers k− corresponding to the roots of unity,

(
eik−

)N
= 1, (2.66)
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and where for the even subspace we must use Bloch wavenumbers shifted by π/N , k+, which correspond

to a set of phase-factors which are the Nth roots of minus one,

(
eik+

)N
= −1. (2.67)

The phase-factors for the even and odd subspaces are pictured in Figure 2.3.

=

<

Odd number of particles: Nth roots of 1

=

<

Even number of particles: Nth roots of −1

Figure 2.3: Argand diagrams showing the phase-factors for the odd and even subspaces.

With this notation, we can describe the transfer operator for both the even and odd subspaces with

a single formula, which we choose to write as,

T̂± = exp


∑

k±

[
X + Y (1− f†k±fk± − f

†
−k±f−k±)

]



× exp


∑

k±

[
βJ⊥ cos k±(f†k±fk± + f†−k±f−k± − 1) + iβJ⊥ sin k±(f†k±f

†
−k± − f−k±fk±)

]

.

(2.68)

This expression follows from simply substituting equation 2.64 in for the exponent of T̂⊥ in equation

2.49, with the modification that we have included a new term −βJ⊥ cos k± in this exponent; this is

permitted because the sum of this quantity over the appropriate set of Bloch wavenumbers vanishes

identically,
∑

k±

cos k± = 0. (2.69)
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The other exponent in this expression contains only the number operator and therefore has the same

form under any transformation which preserves the number of fermions.

The term f†kf
†
−k in the exponent of T̂⊥ indicates that the fermionic operator associated with the

eigenbasis of this exponent is a linear combination of f†k and f−k. This is the Bogoliubov-Valatin

transformation(42; 43). It is tempting to proceed to diagonalise the exponent of T̂⊥ using this well-

known idea; however, this would not prove useful, as the eigenbasis of the exponent of T̂⊥ is certainly

not an eigenbasis of the exponent of T̂‖ in general, owing to the fact that the Bogliubov-Valatin

transformation does not preserve the number of particles. One must first express the transfer operator

2.68 as a single exponential, and one can then apply the Bogoliubov-Valatin transformation to the

fermionic form of the exponent.

Writing the transfer operator as a single exponential appears rather difficult in the fermionic repre-

senation. However, as we shall show presently, the fermionic representation has a simple form in terms

of new Pauli operators, and we can exploit the properties of Pauli operators to write the operator as

a single exponential. Proceeding in this way, one finds the exponent to be a sum of independent Pauli

operators. Since each of these Pauli operators has the eigenvalues +1 and −1, one can immediately

deduce the eigenvalues of the transfer operator itself. We shall therefore find that there is no need to

use the Bogoliubov-Valatin transformation!

With the exception of the possible values k = 0 and k = π, for every value of k which occurs in the

sum over the Bloch wavenumbers its negative −k also occurs. The states corresponding to k and −k

form a closed subspace. Bringing together the k and −k terms in the sums in equation 2.68 reveals

that the relevant part of the transfer matrix for the subspace corresponding to k and −k, with the

exception of the cases k = 0 and k = π, can be written as,

exp
(

2X + 2Y (1− f†kfk − f
†
−kf−k)

)

× exp
(

2βJ⊥ cos k(f†kfk + f†−kf−k − 1) + 2iβJ⊥ sin k(f†kf
†
−k − f−kfk)

)
. (2.70)

There are only two operators which occur in this expression, which are

1− f†kfk − f
†
−kf−k, i(f†kf

†
−k − f−kfk).
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Now, in the basis {|0〉, f†k |0〉, f
†
−k|0〉, f

†
kf
†
−k|0〉} these operators have the representations,

(1− f†kfk − f
†
−kf−k)→




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1



, (2.71)

i(f†kf
†
−k − f−kfk)→




0 0 0 i

0 0 0 0

0 0 0 0

−i 0 0 0



. (2.72)

We see that the states f†k |0〉 and f†−k|0〉 constitute a null subspace of these operators, and we recognise

the representations in the {|0〉, f†kf
†
−k|0〉} subspace as the Pauli matrices for the z- and y-components

of spin. To make this explicit we introduce the notation,

1− f†kfk − f
†
−kf−k = Σ̂zk, i(f†kf

†
−k − f−kfk) = Σ̂yk, (2.73)

in terms of which the operator 2.70 can be written as,

e2X+2Y Σ̂zke2βJ⊥(sin kΣ̂yk−cos kΣ̂zk). (2.74)

We can use the properties of the Pauli operators to write this operator as a single exponential, which

achieves the purpose of effectively diagonalising the operator in the {|0〉, f†kf
†
−k|0〉} subspace, thereby

providing the two nontrivial eigenvalues. The Pauli operators have the property that any linear

combination of Pauli matrices can be written as some Pauli matrix Σ̂ multiplied by a coefficient:

Aσ̂x +Bσ̂y + Cσ̂z =
√
A2 +B2 + C2Σ̂. (2.75)

Substituting the expression sin kΣ̂yk − cos kΣ̂zk into equation 2.75, one finds the coefficient on the right

hand side of the equation to be unity. The operator sin kΣ̂yk − cos kΣ̂zk is therefore a Pauli matrix. We

can therefore use the identity 2.44 to write the operator 2.74 as

e2X
(

cosh 2Y − sinh 2Y Σ̂zk

) [
cosh 2βJ⊥ + sinh 2βJ⊥

(
sin kΣ̂yk − cos kΣ̂zk

)]
. (2.76)
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Multiplying out this expression, one obtains,

e2X

{
cosh 2Y cosh 2βJ⊥ − sinh 2Y sinh 2βJ⊥ cos k

+ [cosh 2Y sinh 2βJ⊥ cos k − sinh 2Y cosh 2βJ⊥] Σ̂zk

+ cosh 2Y sinh 2βJ⊥ sin kΣ̂yk − i sinh 2Y cosh 2βJ⊥ sin kΣ̂xk

}
, (2.77)

where we have used a further property of the Pauli matrices,

σ̂zσ̂y = −iσ̂x (2.78)

and introduced the third Pauli operator Σ̂xk corresponding to Σ̂zk and Σ̂yk. The sum of the last three

terms in the braces {...} are, by the identity 2.75, proportional to some other Pauli operator, which

we denote ˆ̃Σk. The quantity in the braces {...} therefore has the same form as the right hand side

of equation 2.44, and we may use that equation to write this quantity as a single exponential. We

therefore arrive at the expression

e2X+2µk
ˆ̃Σk , (2.79)

where the quantity µk satisfies,

cosh 2µk = cosh 2Y cosh 2βJ⊥ − sinh 2Y sinh 2βJ⊥ cos k. (2.80)

Expressing cosh 2Y and sinh 2Y as functions of βJ‖ and introducing the parameters,

W‖ =
sinh 2βJ‖

cosh 2βJ‖ cosh 2βJ⊥
, W⊥ =

sinh 2βJ⊥
cosh 2βJ‖ cosh 2βJ⊥

, (2.81)

equation 2.80 can be rewritten as,

cosh 2µk =
1

W‖
− W⊥
W‖

cos k. (2.82)

We have arrived at the expression 2.79 as a representation of the operator 2.70 in the {|0〉, f†kf
†
−k|0〉}

subspace, but it is also a representation in the the full four-state space, where the states f†k |0〉 and

f†−k|0〉 are trivial eigenvectors of the operator ˆ̃Σk with eigenvalue 0. We can therefore deduce the

two eigenvalues e2X+2µk and e2X−2µk associated with the {|0〉, f†kf
†
−k|0〉} subspace and the two trivial
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eigenvalues whose value is e2X accociated with the null subspace. The operator ˆ̃Σk describes two

fermionic modes, with associated creation operators f̃†k and f̃†−k, which can in principle be constructed

in terms of the original fermion operators by means of the Bogoliubov-Valatin transformation. Each

of these fermionic modes can be described with its own spin-operator, and this leads us to write,

2 ˆ̃Σk = ˆ̃σk + ˆ̃σ−k. (2.83)

We can now decompose the transfer matrix further to obtain the part relevant to a single k-value to

be,

T̂k = eX+µk ˆ̃σk =
√

2 cosh 2βJ‖ cosh 2βJ⊥
√
W‖e

µk ˆ̃σk , (2.84)

where we have eliminated the variable X using equation 2.47.

We have described the parts of the transfer operator relevant to all the Bloch wavenumbers, with

the exception of the special values k = 0 and k = π. Let k∗ be either of these special k-values. The

key property that is unique to these k-values is that

f†k∗ = f†−k∗ . (2.85)

This implies, following from equation 2.68, that the relevant part of the transfer operator for the

wavenumber k∗ is

T̂k∗ = exp
(
X + Y (1− 2f†k∗fk∗)

)
exp

(
βJ⊥ cos k∗(2f

†
k∗
fk∗ − 1)

)
. (2.86)

The only operator which appears in this expression is 1−2f†k∗fk∗ , which we identify as a Pauli operator

in the {|0〉, f†k∗ |0〉} subspace. To be consistent with the formalism for the other k-values, we write

ˆ̃σk∗ = 1− 2f†k∗fk∗ , (2.87)

and we obtain

T̂k∗ = eX+µk∗
ˆ̃σk∗ , (2.88)

where

µk∗ = Y − βJ⊥ cos k∗. (2.89)
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The full transfer matrix in either the even or odd subspaces is the product of the operators T̂k over

the appropriate set of Bloch wavenumbers:

T̂± =
∏

k±

T̂k± =
∏

k±

eX+µk±
ˆ̃σk . (2.90)

This expression is what we have been working towards throughout this section. This representation of

the transfer operator allows us to calculate the partition function according to equation 2.31. It is not

necessary to explicitly construct all of the operators ˆ̃σk, but rather it is enough that we can identify

the operators as Pauli spin operators, and therefore deduce that they each have the two eigenvalues

+1 and −1. The trace of any operator expressed as a function of the operators ˆ̃σk can therefore be

calculated by summing over these eigenvalues. In addition the fact that the equation 2.90 is factorised

according to the Bloch wavenumbers means that in performing the trace of T̂± - or
(
T̂±
)M

- the sum

over each of the spin operators can be performed independently. This reduces the trace in equation

2.31 from a hopeless calculation to a trivial one.

In fact, we require one additional result before we can proceed to calculate the partition function,

which is the representation of the projection operators P̂+ and P̂−. Now, the evenness or oddness of

any given state is reflected in whether the number of the spins which are “down” is even or odd. The

crucial point is that this is preserved in the eigenbasis of the new spins ˆ̃σk± . The projection operators

can therefore be represented as:

P̂+ =
1

2


1 +

∏

k+

ˆ̃σk+


 , P̂− =

1

2


1−

∏

k−

ˆ̃σk−


 . (2.91)

Substituting equations 2.91 and 2.59 into equation 2.31, the explicit formula for the partition

function can be written,

ZN,M =
1

2
tr


∏

k+

T̂Mk+ +
∏

k+

ˆ̃σk+ T̂
M
k+ +

∏

k−

T̂Mk− −
∏

k−

ˆ̃σk− T̂
M
k−


 . (2.92)

The trace of each of the four terms in this expression can be performed independently, and as we have

indicated above, each of these four traces is trivial because the sum over the eigenvalues of each of the
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ˆ̃σk± spins can be performed independently. The only objects which appear in the calculation are

∑

ˆ̃σk±

eMµk±
ˆ̃σk± = eMµk± + e−Mµk± , (2.93)

and
∑

ˆ̃σk±

ˆ̃σk±e
Mµk±

ˆ̃σk± = eMµk± − e−Mµk± . (2.94)

We can therefore write the partition function as

ZN,M =
1

2

(√
2 cosh 2βJ⊥ cosh 2βJ‖

√
W‖
)NM {∏

k+

(eMµk+ + e−Mµk+ ) +
∏

k+

(eMµk+ − e−Mµk+ )

+
∏

k−

(eMµk− + e−Mµk− )−
∏

k−

(eMµk− − e−Mµk− )

}
(2.95)

We can eliminate the variables µk± to obtain a formula in terms of just the parameters W‖ and

W⊥. The equation 2.80 leaves the sign of the parameters µk± undefined. However, if we consider

the product of any function of µk over either set of wavenumbers, to every factor corresponding to a

particular wavenumber k, with the exception of the special cases k = 0 and k = π, there exists also

a factor corresponding to its negative −k, and both these factors are identical owing to both k and

−k corresponding to the same value of µk. This means that only the signs of the variables associated

with the special wavenumbers, µ0 and µπ, are relevant. Substituting in the special wavenumbers into

equation 2.89 one obtains,

µπ = Y + βJ⊥, (2.96)

µ0 = Y − βJ⊥. (2.97)

Now Y is a positive, monotonic function of β, which tends to the value zero in the limit that β tends

to infinity, and which diverges in the limit that β tends to zero. It follows that µπ is always positive,

but that µ0 is positive for small values of β, negative for large values of β, and vanishes at a single

value of β which depends upon the ratio of the couplings J⊥/J‖. The value k = 0 is never to be found

in the set k+ but always occurs in the set k−. Since the third term in the braces {...} in equation 2.95

is a product of even functions of µk− , the only term for which the sign of µ0 is relevant is the fourth

73



term. We choose to parameterise this sign by introducing the symbol,

Θ ≡ −sgn(µ0). (2.98)

With the introduction of this new symbol to take account of the sign of µ0, we can proceed as if all of

the quantities µk± were defined to be positive. To this end, we write, using equation 2.89,

√
2W‖ coshµk =

√
W‖(cosh 2µk + 1) =

√
1 +W‖ −W⊥ cos k, (2.99)

√
2W‖ sinhµk =

√
W‖(cosh 2µk − 1) =

√
1−W‖ −W⊥ cos k, (2.100)

from which we deduce,

√
2W‖e

µk =
√

1 +W‖ −W⊥ cos k +
√

1−W‖ −W⊥ cos k, (2.101)

√
2W‖e

−µk =
√

1 +W‖ −W⊥ cos k −
√

1−W‖ −W⊥ cos k. (2.102)

Taking into account the sign of µ0, this provides the formula,

ZN,M =
1

2

(√
cosh 2βJ‖ cosh 2βJ⊥

)NM

×
{∏

k+

[(√
1 +W‖ −W⊥ cos k+ +

√
1−W‖ −W⊥ cos k+

)M

+
(√

1 +W‖ −W⊥ cos k+ −
√

1−W‖ −W⊥ cos k+

)M ]

+
∏

k+

[(√
1 +W‖ −W⊥ cos k+ +

√
1−W‖ −W⊥ cos k+

)M

−
(√

1 +W‖ −W⊥ cos k+ −
√

1−W‖ −W⊥ cos k+

)M ]

+
∏

k−

[(√
1 +W‖ −W⊥ cos k− +

√
1−W‖ −W⊥ cos k−

)M

+
(√

1 +W‖ −W⊥ cos k− −
√

1−W‖ −W⊥ cos k−
)M ]

+ Θ
∏

k−

[(√
1 +W‖ −W⊥ cos k− +

√
1−W‖ −W⊥ cos k−

)M

−
(√

1 +W‖ −W⊥ cos k− −
√

1−W‖ −W⊥ cos k−
)M ]}

. (2.103)
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The two different lattice directions appear symmetrically in the Hamiltonian. We might therefore

expect to find a formula for the partition function in which the directions appear symmetrically. We

can obtain such a formula by making use of a property of the wavenumbers. We have the following

two identities,

∏

k+

√
ξ2 + η2 − 2ξη cos k+ = ξN + ηN , (2.104)

∏

k−

√
ξ2 + η2 − 2ξη cos k− =

∣∣ξN − ηN
∣∣. (2.105)

for any two real numbers ξ and η. Each of the four terms in equation 2.103 contains the sum or

difference of two quantities raised to the power M . One can use these identities to transform each of

these terms into a product of a single square root over the set of Bloch wave numbers corresponding to

the Mth roots of either one or minus one. We can therefore simplify 2.103 at the cost of introducing

a second product over a second set of Bloch wavenumbers. We denote the second set of wavenumbers

q+ and q−:
(
eiq+

)M
= −1,

(
eiq−

)M
= 1. (2.106)

Re-writing each of the four terms in equation 2.103 using this idea, we obtain the comparitively simple

formula,

ZN,M =
1

2

(√
cosh 2βJ‖ cosh 2βJ⊥

)NM

×
{∏

k+

∏

q+

√
1−W‖ cos q+ −W⊥ cos k+ +

∏

k+

∏

q−

√
1−W‖ cos q− −W⊥ cos k+

+
∏

k−

∏

q+

√
1−W‖ cos q+ −W⊥ cos k− + Θ

∏

k−

∏

q−

√
1−W‖ cos q− −W⊥ cos k−

}
.

(2.107)

The wavenumbers q± are what results from a Bloch transformation in the lateral direction. This

formula is, therefore, entirely symmetric in the two axis directions.

The parameterisation in terms of W‖ and W⊥ is rather convenient. Both of these parameters are

zero in both the low-temperature and high-temperature limits, but are otherwise positive definite and
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do not exceed the value unity. Crucially, it can be shown that

W‖ +W⊥ ≤ 1, (2.108)

where the equality occurs for a single value of β, which we label βc, and furthermore this value satisfies

sinh 2βcJ‖ sinh 2βcJ⊥ = 1. (2.109)

In addition, with reference to equation 2.97 it can be shown that this value βc is precisely the point at

which the quantity µ0 is equal to zero, and therefore the point at which there is a change in the sign

of the final terms in the expressions for the partition function in equations 2.103 and 2.107.

This special value βc precisely provides the critical temperature of the phase transition which occurs

for the case of the infinite square lattice. Equation 2.109 is a famous equation, which was obtained as

a definition of the transition temperature by means of a duality argument by Kramers and Wannier,

before the partition function of the model had yet been calculated(37). It is rather pleasant that this

value has a great significance for the solution of the finite system also.

We can take limits of our formula of the partition function, which is for a finite and therefore a

zero-dimensional system, to obtain the partition function for a one-dimensional system - the geometry

of an infinite cylinder - or a two-dimensional system - the infinite square lattice. Mathematically,

the two-dimensional limit is that the system-size in both of the principal lattice directions is made

to tend to infinity, while the one-dimensional limit is that one of the system-sizes is made to tend to

infinity while the other is kept finite. We shall consider the one-dimensional limit first, and then take

the appropriate limit of the one-dimensional partition function to obtain the result for the infinite

square lattice. In doing this, we shall reproduce the well-known result for the two-dimensional Ising

model. That we obtain the correct formula for the two-dimensional case indicates that considering the

two-dimensional limit in this way, that is, by letting the system sizes in the two directions diverge “one

at a time”, is a safe way of obtaining that limit. Although this is not in conflict with one’s intuition,

it is crucial to the entire study of the planar rotator model which is to follow later in this chapter.

In attempting to study the planar rotator model, we shall consider calculations for a one-dimensional

system, for which the system size in one direction is infinite, and we shall attempt to study the two-

dimensional model by appealing to exactly this limit, that the system size in the other direction also

be allowed to tend to infinity.
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We can obtain the one-dimensional limit by considering equation 2.103 in the limit that M is

allowed to tend to infinity while N is kept fixed. With our convention that all of the variables µk be

taken to be positive, in the limit that M is very large it is certainly the case that

eMµk � e−Mµk .

The corresponding terms can therefore be omitted from equation 2.103 to obtain,

ZN,M =
(√

cosh 2βJ‖ cosh 2βJ⊥
)NM

×
{∏

k+

(√
1 +W‖ −W⊥ cos k+ +

√
1−W‖ −W⊥ cos k+

)M

+
1 + Θ

2

∏

k−

(√
1 +W‖ −W⊥ cos k− +

√
1−W‖ −W⊥ cos k−

)M }
. (2.110)

Numerically, it appears to be the case that the product over the even wavenumbers k+ in the expression

2.110 is always larger than the product over the odd wavenumbers k−,

∏

k+

(√
1 +W‖ −W⊥ cos k+ +

√
1−W‖ −W⊥ cos k+

)

>
∏

k−

(√
1 +W‖ −W⊥ cos k− +

√
1−W‖ −W⊥ cos k−

)
, (2.111)

and therefore that expression 2.110 can be further simplified by neglecting the the product over the

odd wavenumbers because we are in the limit M →∞. This is discussed in the appendix A, wherein

we provide numerical calculations of the inequality, and a mathematical proof of the inequality for

the case J‖ = J⊥. At present we assume the truth of the inequality and make use of it to obtain the

following formula for the free energy per lattice site F ,

−βF =
lnZN,M
NM

=
1

N

∑

k+

ln
(√

1 +W‖ −W⊥ cos k+ +
√

1−W‖ −W⊥ cos k+

)

+
1

2
ln
(
cosh 2βJ‖ cosh 2βJ⊥

)
. (2.112)

If we now consider this expression in the limit that N tends to infinity, the normalised sum over the
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wavenumbers k+ can be replaced by an integral over a continuous variable:

−βF =

∫ π

−π

dk

2π
ln
(√

1 +W‖ −W⊥ cos k +
√

1−W‖ −W⊥ cos k
)

+
1

2
ln
(
cosh 2βJ‖ cosh 2βJ⊥

)
.

(2.113)

This expression provides the logarithm of the partition function, per lattice site, of the Ising model on

the infinite square lattice. We can make a transformation to obtain an expression which is symmetric

in the two lattice directions. In seeking such a representation, it is helpful to reintroduce the variable

µk. The argument of the logarithm in the integrand in the expression 2.113 is equal to
√

2W‖µk, so

that the expression 2.113 can be written as,

− βF =

∫ π

−π

dk

2π
µk +

1

2
ln 2W‖ +

1

2
ln
(
cosh 2βJ‖ cosh 2βJ⊥

)
. (2.114)

Following Onsager(17), we can now make use of the remarkable identity,

∫ π

−π

dq

2π
ln (coshu− cos q) = u− ln 2, (2.115)

together with the expression for cosh 2µk in equation 2.82 to represent µk as an integral:

µk =
1

2
(2µk) =

1

2

∫ π

−π

dq

2π
ln (cosh 2µk − cos q) +

1

2
ln 2

=
1

2

∫ π

−π

dq

2π
ln
(
1−W‖ cos q −W⊥ cos k

)
+

1

2
ln 2− 1

2
lnW‖. (2.116)

Substituting this expression for µk into the expression 2.114, we obtain the well-known formula,

− βF =
1

2

∫ π

−π

dk

2π

∫ π

−π

dq

2π
ln
(
1−W‖ cos q −W⊥ cos k

)
+

1

2
ln
(
cosh 2βJ‖ cosh 2βJ⊥

)
+ ln 2. (2.117)

Upon examination of the integral in this expression, it is clear that the integrand is divergent at the

lower limit k = 0, q = 0 at the critical temperature where the parameters W‖ and W⊥ satisfy

W‖ +W⊥ = 1. (2.118)

The integral itself is perfectly convergent at this temperature and the free energy is a smooth function

of temperature, but the divergence in the integrand gives rise to singularities in the thermodynamic
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quantities at the level of the second derivative of the free energy.
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Figure 2.4: The specific heat of the Ising model on the M = N toroidal lattice, for the case J‖ = J⊥,
for M = N = 2-30. Also shown is the specific heat for the infinite square lattice (blue dashed line).
The critical temperature of the phase transition in the square lattice model is indicated by the vertical
red dotted line. Temperature is in units of J⊥ = J‖.
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Figure 2.5: The specific heat of the Ising model on the infinite cylindrical lattice of circumference N ,
for the case J‖ = J⊥, for N = 2-30. Also shown is the specific heat for the infinite square lattice (blue
dashed line). The critical temperature of the phase transition in the square lattice model is indicated
by the vertical red dotted line. Temperature is in units of J⊥ = J‖.

We shall not pursue the exact solution of the Ising model any further in this thesis. We have shown

how to exactly represent the free energy for the Ising model on the finite toroidal lattice, and how to

obtain from this both the one-dimensional and two-dimensional limits. We now briefly exhibit some

calculations making use of this exact solution. Some examples of the specific heat of the finite systems

and the one-dimensional systems are shown in figures 2.4 and 2.5 respectively, together with the specific

heat for the infinite square lattice. The curves in these figures have been obtained by calculating the

logarithm of the partition function exactly, using the formula 2.103 for the finite system, the formula

2.112 for the one-dimensional system and the formula 2.117 for the infinite square lattice, and then

numerically differentiating these data using difference formulae to obtain the specific heat. The use of

difference formulae to obtain the derivatives of quantities is discussed more explicitly in section 2.3.

We have only included the results for the case of J⊥ = J‖, because when we come to investigate

the planar rotator model in the sections to follow we shall only consider the model where all the

interactions have the same strength. The finite-size results in figure 2.4 are all for the case where the

two periodicities of the torus are equal, M = N , and the two-dimensional system is approached by
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making both the parameters larger at the same rate.

The two-dimensional specific heat exhibits a logarithmic divergence at the transition temperature(17).

For the case J⊥ = J‖ = J , the transition temperature is 2J/ ln |1 +
√

2|(37) and this is indicated in

figures 2.4 and 2.5. Although we cannot calculate the specific heat at this point, the data in the

vicinity are certainly indicative of a divergence. Both the finite system and one-dimensional specific

heat curves exhibit peaks which grow in size and become sharper as the system-size is increased. It is

quite convincing from figure 2.4 that as the system-size is made larger and larger, the finite-size specific

heat curve will come to overlap with the two-dimensional curve, and the peak will ultimately become

a divergence in the limit that the system-size becomes infinite. Similarly it is quite convincing from

figure 2.5 that the one-dimensional specific heat curve will come to overlap with the two-dimensional

curve as the remaining finite size-parameter is made to tend to infinity.

Figures 2.4 and 2.5 illustrate the relationship between the zero-dimensional and one-dimensional

systems and the two-dimensional system, and illustrates graphically how the two-dimensional thermo-

dynamics emerge in the limit that a finite-size parameter tends to infinity. Furthermore, it shows quite

convincingly, and indeed we have shown above mathematically, that these two limiting procedures

both provide the same two-dimensional behaviour. This is pertinent to the investigation of the planar

rotator model which follows in the remainder of this chapter, where we shall target the square lattice

as the limit of a one-dimensional system where a scaling parameter tends to infinity.

2.3 One-to-two dimensional crossover

In the previous section, we calculated the specific heat of the Ising model on a finite N by N lattice us-

ing the exact expression for the partition function, and illustrated the approach to the two-dimensional

limit as N is made to increase. This idea can be utilised to investigate the thermodynamics of two-

dimensional and higher dimensional models for which no exact solution has been provided, by exam-

ining the trends in the thermodynamics of a finite system as the system size is made to increase. This

is an extremely established concept in statistical mechanics under the name finite-size scaling, and is

most commonly applied in conjunction with Monte Carlo calculations as the tool to obtain the ther-

modynamics of the finite systems(22; 23; 24; 25; 26). We shall use the term zero-to-two dimensional

crossover, provided the target is a two-dimensional system; in our example, the finite N by N lattice

is a zero-dimensional system, and becomes a two-dimensional system in the limit that the finite-size

scaling parameter N tends to infinity.
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One can equally well consider one-to-two dimensional crossover, where one deals with a system

which is infinite in one direction and finite in another, and examines the trends in the thermodynamics

as the length of the system in the finite direction is increased. In the previous section we also illustrated

this idea using the exact solution of the Ising model, where we calculated the specific heat of the

model on an infinite cylinder of circumference N , and illustrated the effect of increasing N . The utility

of one-to-two dimensional crossover is that the thermodynamics of the one-dimensional systems are

provided in a particularly straightforward way in terms of transfer operators. As we shall presently

show, for an infinite one-dimensional system the partition function is given by the largest eigenvalue

of the transfer operator, and consequently can be computed to a considerably higher accuracy than is

typically possible using Monte Carlo methods.

This technique is rarely used in statistical mechanics, but is widely-used in quantum mechanics, in

which context it is called exact diagonalisation(44). This refers to the study of an infinite quantum

system by diagonalising the Hamiltonian for a finite system and examining how the result changes as

the system-size is made to increase(45; 46). In the context of one-to-two dimensional crossover, the

transfer matrix is the analogue of the Hamiltonian in exact diagonalisation, and the partition function,

which is obtained as the largest eigenvalue of the transfer matrix, is the analogue of the ground state

energy, which is the smallest eigenvalue of the Hamiltonian.

We therefore desire a one-dimensional geometry, which is infinite in one principle direction and

finite in another, such that if we increase the system size in the finite direction the geometry becomes,

in the limit, the square lattice. The most obvious geometry to use is a strip which is infinitely long but

which has a finite height. If we use a periodic boundary condition in the finite direction, this geometry

is an infinite cylinder. This geometry is that of the torus discussed in section 2.1.2, but where one of

the periodicities M has been set equal to infinity. The scaling variable N is here the circumference of

the cylinder.

An alternative geometry which one can use is a helix, as depicted in figure 2.6. Here the finite

size scaling parameter N is the circumference of the helix. This geometry has a great computational

advantage over the cylinder, in that the application of the transfer matrix involves a significantly

smaller number of operations. The model of nearest neighbour interactions on the helix is completely

equivalent to the model of equal nearest and Nth-nearest neighbour interactions on a linear chain.

Therefore the transfer matrix is that described in section 2.1.1, and the application of the transfer

matrix involves the summation over one spin-variable in the chain. In contrast, the transfer matrix
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for the cylinder is that discussed in section 2.1.2 and involves the summation over N spin variables.

An equivalent statement is that the transfer operator for the helix is a sparse matrix in comparison to

that for the cylinder.

j j+N

j+1

j+N-1

j+2

Figure 2.6: Illustration of the J1-JN model as a helix.

We now proceed to developing some of the formalism of the one-to-two dimensional crossover

theory. This is simply the transfer operator formalism applied to find the thermodynamics of a one-

dimensional system, where the crossover to a two-dimensional system is controlled by some scaling

parameter N , the two-dimensional system corresponding to the limit N → ∞. We shall go back

to the transfer operator theory discussed in sections 2.1.1 and 2.1.2 and consider the case of a one-

dimensional system, that is, the limit in which the system size M diverges. In this limit, the partition

function is described completely by the largest eigenvalue of the transfer matrix. This is a great

simplification of the mathematics, and as a result of this we can obtain extremely simple formulae

for thermodynamic quantities up to the first derivative of the partition function, and for certain

thermodynamic averages. The formalism has many analogies to quantum mechanics. For example, the

role of the largest eigenvalue of the partition function in completely describing the thermodynamics

of the one-dimensional system is analogous to the role of the quantum ground state in completely

describing the zero-temperature physics of a quantum system.

We shall develop the formalism of one-to-two dimensional crossover for a generic spin-system, where

it is understood that there is some scaling variable N as a parameter in the theory. When we apply

this theory to the planar rotator model in the next section, we shall always use the helix geometry,

and so we shall make use of the formalism developed in section 2.1.1 for the linear chain. For this

reason, we shall here use the formalism for the linear chain, and work with the formalism of section

2.1.1 in the limit that the length of the spin-chain M tends to infinity.

83



We have shown that the partition function for a spin-chain of length M is equal to the sum of

the eigenvalues of the transfer matrix raised to the Mth power, equation 2.5. Let z0 be the largest of

the eigenvalues of T̂ , and let us assume that this eigenvalue is nondegenerate. Now in the limit that

M � 1, the sum in equation 2.5 is dominated by the term (z0)
M

, where the corrections from the other

terms are exponentially small with increasing M :

ZM ∼ (z0)
M
. (2.119)

It is natural to eliminate the system-size M , which we wish to set equal to infinity, by working with the

logarithm of the partition function per lattice-site, lnZM/M . From the expression 2.119 we deduce

the equation

1

M
lnZM = ln z0. (2.120)

The eigenvalue z0 can be regarded as the partition function per spin. This eigenvalue controls the

thermodynamics of the one-dimensional system. The calculation of the partition function is reduced

in this limit from the full diagonalisation of T̂ to calculating just the largest eigenvalue. The Helmholtz

free energy per lattice site is given by,

F = − 1

β
ln z0. (2.121)

In this work, we have calculated the largest eigenvalue on the computer using the power method,

which is simply to repeatedly apply the matrix in question to an arbitrary vector until the result

converges to the eigenvector belonging to the largest eigenvalue. The mathematics which underpins

this method is as follows. Any arbitrary vector |f〉 can be written as a linear combination of the

eigenvectors |fα〉 of the transfer operator,

|f〉 =
∑

α

aα|fα〉, (2.122)

and therefore the repeated application of T̂ is given by,

(
T̂
)L
|f〉 =

∑

α

aα (zα)
L |fα〉. (2.123)

In the limit that L� 1, the term in the largest eigenvalue is exponentially larger than the other terms
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in this series, and we may write,
(
T̂
)L
|f〉 ∼ a0 (z0)

L |f0〉, (2.124)

where |f0〉 is the eigenvector belonging to z0. This occurs provided that the initial state |f〉 has a finite

overlap with the eigenvector belonging to the largest eigenvalue, which amounts to the statement that

the coefficient a0 is non-zero. The procedure which we employ is to repeatedly apply the transfer

operator to some initial state. The resulting vector is normalised at each iteration, which provides a

number which converges to the largest eigenvalue of the transfer matrix with successive iterations. In

this way the largest eigenvalue of the transfer matrix can be obtained to machine accuracy.

The calculation is computationally expensive in two ways, firstly in the number of operations

required to multiply the vector by the transfer matrix, and secondly in the size of the vector, which

must be stored in the computer’s memory. Both of these expenses are worsened with the increase

of the scaling parameter N , and as a result there is some value of this parameter above which the

calculation cannot be performed. For the J1-JN models, the vector is represented on the computer as

pN numbers, where p is the number of allowed spin states. For models with continous spins, such as

the planar rotator model, the vector is infinitely large, and therefore some scheme must be employed

to discretise the spin variables in order to apply the technique to such models. This is discussed at

great length in the context of the planar rotator model in section 2.4.

Thermodynamic quantities which involve up to the first derivative of the partition function can be

expressed in simple formulae involving the eigenvalue z0 and the corresponding eigenvector |f0〉. These

formulae follow from the fact that the derivatives of the eigenvalue z0 can be calculated by means of

perturbation theory. If λ is some parameter in the transfer matrix T̂ , then for an infinitesimal change

in this parameter we can write,

T̂ (λ+ dλ) = T̂ (λ) + dλ
d

dλ
T̂ (λ). (2.125)

If the second term in this equation is regarded as a pertubation of the transfer operator, perturbation

theory provides the corresponding leading order change in the eigenvalue of T̂ to be

z0(λ+ dλ) = z0(λ) + dλ
〈f0(λ)| ddλ T̂ (λ)|f0(λ)〉
〈f0(λ)|f0(λ)〉 , (2.126)

where |f0(λ)〉 is the “unperturbed” eigenvector belonging to z0(λ). The derivative of z0 can therefore
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be deduced to be

dz0

dλ
=
z0(λ+ dλ)− z0(λ)

dλ
=
〈f0(λ)| ddλ T̂ (λ)|f0(λ)〉
〈f0(λ)|f0(λ)〉 . (2.127)

Among the thermodynamic quantities which we can write down using this formula are the internal

energy,

E = − 1

z0

∂z0

∂β
= − 1

z0

〈f0| ∂∂β T̂ |f0〉
〈f0|f0〉

, (2.128)

and the magnetisation,

M = −∂F
∂B

=
1

βz0

〈f0| ∂∂B T̂ |f0〉
〈f0|f0〉

. (2.129)

In order to obtain such quantities to machine accuracy, in our calculations of z0 we ensure that both

the eigenvalue and the eigenvector have converged to machine accuracy; this in general requires a

larger number of iterations than the calculation of the eigenvalue alone.

In principle, higher order derivatives may be calculated by applying perturbation theory to higher

orders. The formulae for the higher derivatives involve the rest of the eigenvalue spectrum of T̂ . For

example, under the stronger assumption that none of the eigenvalues of T̂ are degenerate, for the

second derivative one obtains,

d2z0

dλ2
=
〈f0(λ)| d2dλ2 T̂ (λ)|f0(λ)〉
〈f0(λ)|f0(λ)〉 + 2

∑

α6=0

(
〈f0(λ)| ddλ T̂ (λ)|fα(λ)〉

)2

(z0(λ)− zα(λ)) 〈f0(λ)|f0(λ)〉〈fα(λ)|fα(λ)〉 . (2.130)

This formula can in principle be used to calculate such quantities as the specific heat,

C =
∂E

∂T
= β2

[
1

z0

∂2z0

∂β2
−
(

1

z0

∂z0

∂β

)2
]
, (2.131)

and the magnetic susceptibility,

χ =
∂M

∂B
= − 1

β

[
1

z0

∂2z0

∂B2
−
(

1

z0

∂z0

∂B

)2
]
. (2.132)

Although the formula 2.130 is of some mathematical interest, the application of it in practice

requires one to have calculated the entire eigenvalue spectrum of the transfer operator, and this is a

task of much greater computational expense than the calculation of the largest eigenvalue. It is more

practical to calculate the higher derivatives of the partition function from the computed values of the

first derivative with the use of difference formulae. To obtain the second and higher derivatives of z0
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with respect to λ, we calculate the first derivative to machine accuracy at the five evenly spaced points

lying symmetrically around the relevant value of the parameter, and we write,




dz0

dλ
(λ− 2∆λ)− dz0

dλ
(λ)

dz0

dλ
(λ−∆λ)− dz0

dλ
(λ)

dz0

dλ
(λ+ ∆λ)− dz0

dλ
(λ)

dz0

dλ
(λ+ 2∆λ)− dz0

dλ
(λ)




=




−2∆λ 2(∆λ)2 −4

3
(∆λ)3 2

3
(∆λ)4

−∆λ
1

2
(∆λ)2 −1

6
(∆λ)3 1

24
(∆λ)4

∆λ
1

2
(∆λ)2 1

6
(∆λ)3 1

24
(∆λ)4

2∆λ 2(∆λ)2 4

3
(∆λ)3 2

3
(∆λ)4







d2z0

dλ2
(λ)

d3z0

dλ3
(λ)

d4z0

dλ4
(λ)

d5z0

dλ5
(λ)




+O
(
(∆λ)5

)
,

which follows simply from the Taylor expansion of dz0
dλ about the value λ. These relations can be

inverted to provide approximate formulae for the derivatives of z0 up to the fifth order,

d2z0

dλ2
(λ) ≈ 1

∆λ

[
1

12

dz0

dλ
(λ− 2∆λ)− 2

3

dz0

dλ
(λ−∆λ) +

2

3

dz0

dλ
(λ+ ∆λ)− 1

12

dz0

dλ
(λ+ 2∆λ)

]
, (2.133)

d3z0

dλ3
(λ) ≈ 1

(∆λ)2

[
− 1

12

dz0

dλ
(λ− 2∆λ) +

4

3

dz0

dλ
(λ−∆λ) +

4

3

dz0

dλ
(λ+ ∆λ)− 1

12

dz0

dλ
(λ+ 2∆λ)− 5

2

dz0

dλ
(λ)

]
,

d4z0

dλ4
(λ) ≈ 1

(∆λ)3

[
−1

2

dz0

dλ
(λ− 2∆λ) +

1

3

dz0

dλ
(λ−∆λ)− 1

3

dz0

dλ
(λ+ ∆λ) +

1

2

dz0

dλ
(λ+ 2∆λ)

]
,

d5z0

dλ5
(λ) ≈ 1

(∆λ)4

[
dz0

dλ
(λ− 2∆λ)− 4

dz0

dλ
(λ−∆λ)− 4

dz0

dλ
(λ+ ∆λ) +

dz0

dλ
(λ+ 2∆λ) + 6

dz0

dλ
(λ)

]
.

We have assumed that the largest eigenvalue z0 is nondegenerate. This is found to always be the

case for the finite N system, and degeneracy of the largest eigenvalue is only seen to occur in the

two dimensional limit N →∞. This is well-known in the context of exact-diagonalisation, where the

groundstate of the finite system is always non-degenerate, and degeneracy is seen to emerge as the size

of the system is increased. Exact diagonalisation studies frequently consider precisely the question of

whether in the infinite system the groundstate is degenerate, and this is done by assessing the rate at

which the separation of the groundstate energy to the first excitation energy decreases as the system

is made larger(45; 46). In the context of one-to-two dimensional crossover, the degeneracy of certain

eigenvalues of the transfer matrix with the largest eigenvalue occur at a critical point The calculation

of other eigenvalues of the transfer matrix in addition to z0 is therefore, just as in exact diagonalisation,

an important facet of the technique.

Let z1 be the next-largest eigenvalue after z0 and let |f1〉 be the corresponding eigenstate. In

principle, this state can be obtained using the power method in exactly the manner described in the
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calculation for |f0〉, provided that one chooses an initial state |f〉 which has no overlap with |f0〉 but

a finite overlap with |f1〉. In this case we would have after many iterations,

(
T̂
)L
|f〉 ∼ a1 (z1)

L |f1〉, (2.134)

in place of the expression 2.124. The initial state can be first orthogonalised with respect to |f0〉 by

the procedure

|f〉 → |f〉 − 〈f0|f〉
〈f0|f0〉

|f0〉. (2.135)

In practice, even if the intitial state is orthogonal to |f0〉, any numerical error which occurs in the

calculation of each application of the transfer matrix will build up over a large number of iterations

to generate a |f0〉-component in the state, and one must continually orthogonalise the state with

respect to |f0〉 in order for it to converge to |f1〉. This method can be generalised to calculate any

number of eigenstates, in the order of decreasing modulus of the corresponding eigenvalues, by simply

orthogonalising with respect to the previously calculated eigenstates. For example, the eigenstate

belonging to the third-largest eigenvalue is obtained by continually applying the procedure

|f〉 → |f〉 − 〈f0|f〉
〈f0|f0〉

|f0〉 −
〈f1|f〉
〈f1|f1〉

|f1〉. (2.136)

A striking analogy between the one-to-two dimensional crossover theory and quantum mechanics

emerges relating to the calculation of thermodynamic averages of quantities which are functions of

contiguous sets of spins. Consider a function of N neighbouring spins in the chain, Q(~S1, ~S2, ..., ~SN ).

The thermodynamic average of this quantity is, from first principles,

〈Q(~S1, ~S2, ..., ~SN )〉 =
1

ZM




M∏

j=1

∫
dΩj



(
Q(~S1, ~S2, ..., ~SN )e−βHM

)
. (2.137)

Now, in section 2.1.1, in our consideration of the partition function as a summation over all the M

spin-variables in the chain, we have seen that (M − N) of these summations provide the diagonal

elements of T̂M , and the remaining N summations provide the trace of this operator. In the present

calculation, we can identify the N spins which are the arguments of Q(~S1, ~S2, ..., ~SN ) with the trace,
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and consequently we may write,

〈Q(~S1, ~S2, ..., ~SN )〉 =
1

ZM
tr
(
Q̂T̂M

)
, (2.138)

where the operator Q̂ is constructed to provide the factors Q(~S1, ~S2, ..., ~SN ):

〈~SN , ..., ~S1|Q̂|~S′1, ..., ~S′N 〉 = Q(~S1, ~S2, ..., ~SN )
M∏

j=1

δ~Sj ,~S′j
. (2.139)

Expanding the trace using the eigenbasis of the transfer matrix provides

〈Q(~S1, ~S2, ..., ~SN )〉 =
1

ZM
∑

α

〈fα|Q̂T̂M |fα〉
〈fα|fα〉

=
1

ZM
∑

α

(zα)
M 〈fα|Q̂|fα〉
〈fα|fα〉

. (2.140)

In the limit M →∞ only the term involving the largest eigenvalue is relevant, and substituting in the

expression for the partition function in this limit, we obtain,

〈Q(~S1, ~S2, ..., ~SN )〉 =
〈f0|Q̂|f0〉
〈f0|f0〉

. (2.141)

Using the expression for the inner product 2.10, this is given explicitly by

〈Q(~S1, ..., ~SN )〉 =
1

〈f0|f0〉




N∏

j=1

∫
dΩj


 f0(~SN , ..., ~S1)Q(~S1, ..., ~SN )f0(~S1, ..., ~SN ). (2.142)

It is clear from this expression that the quantity

1

〈f0|f0〉
f0(~SN , ..., ~S1)f0(~S1, ..., ~SN )

is the probability distribution for the configuration of the N contiguous spins. These results are

perfectly analogous to quantum mechanics, where the expectation value of some observable Ô is given

by,

〈Ô〉 =
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 ,
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and the quantum mechanical wavefunction provides the analogous probability density as,

Ψ∗({xi})Ψ({xi})
〈Ψ|Ψ〉 .

The formula for the ensemble average of a function of N contiguous spins has a very simple form

because we can identify the N spin-variables which form the argument of the function with the trace.

For completeness, we now deal with the more complicated case of functions of a larger number of

contiguous spins. The ensemble average of a function of (N + l) contiguous spins, Q(~S1, ..., ~SN+l), is

of course,

〈Q(~S1, ~S2, ..., ~SN+l)〉 =
1

ZM




M∏

j=1

∫
dΩj



(
Q(~S1, ~S2, ..., ~SN+l)e

−βHM
)
. (2.143)

In comparison to the case of the function of N contiguous spins, in this case there are an “extra” l

spin variables whose summation cannot be included in the trace and which are not equivalent to the

repeated application of T̂ , owing to the presence of the function Q; the summation over these l spins

cannot be simplified, and we must simply define a new operator so as to account for these summations.

We introduce the new transfer operator V̂ and write,

〈Q(~S1, ..., ~SN+l)〉 =
1

ZM
tr
(
V̂ lT̂M−l

)
, (2.144)

where V̂ is defined to simply include the summation over l spin-variables including the function Q in

the summand via,

(
(V̂ )lf

)
(~S1+l, ..., ~SN+l) =



l∏

j=1

∫
dΩj


Q(~S1, ..., ~SN+l)e

βK(~S1,...,~SN+1)+...+βK(~Sl,...,~SN+l)f(~S1, ..., ~SN ). (2.145)

Proceeding in the same manner as in the former case, the trace in equation 2.144 can be represented

in the eigenbasis of T̂ as,

〈Q(~S1, ..., ~SN+l)〉 =
1

ZM
∑

α

(zα)
M−l 〈fα|(V̂ )l|fα〉

〈fα|fα〉
, (2.146)

and for any finite l, the term in the largest eigenvalue dominates in the limit that M → ∞ and we
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obtain in this limit,

〈Q(~S1, ..., ~SN+l)〉 =
1

(z0)l
〈f0|(V̂ )l|f0〉
〈f0|f0〉

. (2.147)

A particularly important example is the spin-spin correlation function, 〈~S1 · ~S1+r〉. For the short-range

spin correlations, with r < N , we have,

〈~S1 · ~S1+r〉 =
1

〈f0|f0〉




N∏

j=1

∫
dΩj



(
~S1 · ~S1+r

)
f0(~SN , ..., ~S1)f0(~S1, ..., ~SN ), (2.148)

while for r ≥ N we have the representation,

〈~S1 · ~S1+r〉 =

(
1

z0

)r+1−N 〈f0|(V̂ )r+1−N |f0〉
〈f0|f0〉

, (2.149)

where the new transfer operator ˆ̃T is defined by

(
(V̂ )r+1−Nf

)
(~S1+r−N , ..., ~Sr) (2.150)

=



N+1−r∏

j=1

∫
dΩj



(
~S1 · ~S1+r

)
eβK(~S1,...,~SN+1)+...+βK(~Sr+1−N ,...,~Sr+1)f(~S1, ..., ~SN ).

Any of the quantities discussed, which may be calculated to a high accuracy for the finite N system

by the formalism outlined above, can be extrapolated to the two-dimensional limit N → ∞. This is

the only part of the application of the one-to-two dimensional crossover theory that is not on a sound

mathematical footing. One fits a function of 1/N to the finite N data and reads off the value of the

fitted function at the point 1/N = 0. In this thesis, the only function which we have fitted to the data

is the Lagrange interpolating polynomial, this being the unique lowest-order polynomial which passes

through the data points(47). This extrapolation is often seen to fail, in that it predicts behaviour

which is certainly not that of the two-dimensional system.

We close this section by applying the one-to-two dimensional crossover to the Ising model, in order

to show how the theory predicts the existence of a phase transition. We exhibit calculations of the

specific heat, the correlation length and the magnetic susceptibility.

The specific heat of the J1-JN Ising model is shown in figure 2.7, and the transition temperature

of the square lattice Ising model is indicated. There is a pronounced peak, which increases as N is

increased and which appears to be precisely at the transition temperature. In the square lattice Ising

model, the specific heat exhibits a logarithmic divergence at the transition temperature. It seems that
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in the limit N → ∞ the peak in the one-to-two dimensional crossover calculation continues to grow

and ultimately becomes this very divergence.
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Figure 2.7: Specific heat of the J1-JN Ising model for N = 2-24. Also shown is the specific heat of the
square lattice Ising model (dotted blue line). The red dotted line marks the transition temperature of
the square lattice Ising model.

The derivatives of the specific heat with respect to the temperature are shown in figures 2.8 to

2.10. In the square lattice model, the specific heat is logarithmically divergent at the transition

temperature, and each successive temperature derivative of the specific heat must exhibit a stronger

divergence at this temperature. For finite N , each successive derivative of the specific heat takes larger

absolute values in the vicinity of the transition temperature; the size of the peaks and troughs in these

derivatives increases with N , and the increase with N is greater in the higher derivatives. It is quite

convincing that each of these quantities is becoming divergent in the limit N → ∞, and it appears

that higher and higher derivatives are becoming divergent faster as N is increased, in agreement with

the known behaviour of the square lattice model.
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Figure 2.8: First derivative of the specific heat with respect to T for the Ising model for N = 2-24.
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Figure 2.9: Second derivative of the specific heat with respect to T for the Ising model for N = 2-24.
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Figure 2.10: Third derivative of the specific heat with respect to T for the Ising model for N = 2-24.

The correlation length ξ and magnetic susceptibility χ provide a means to estimate the correspond-

ing critical exponents. In the square lattice Ising model, just above the transition temperature these

quantities have the form,

ξ ∼ (T − TC)−ν ,

χ ∼ (T − TC)−γ ,

where the critical exponents have the values ν = 1 and γ = 7/4(6).
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Figure 2.11: The inverse correlation length of the J1-JN Ising model, for N = 2-22. The vertical
dotted line marks the transition temperature of the square lattice Ising model.

The calculations of 1/ξ are shown in Figure 2.11. In the square lattice model, the correlation length

diverges at the transition temperature, and is equal to infinity in the long-range ordered phase below

the transition. The one-to-two dimensional crossover calculations certainly predict that the correlation

length should be infinite for the limit N =∞ for all temperatures below, with the possible exception

of the very near-vicinity of, the transition temperature. The value of the correlation length in the

region below the phase transition is increasing with N , and for the biggest calculation, N = 22, the

correlation length is calculated to be greater than 105 for all temperatures 0 < T < 2 and greater than

1016 for 0 < T < 1.

In addition, 1/ξ shows a linear form in the vicinity of the transition temperature, in accord with

the critical exponent having the value ν = 1. The functional form of the correlation length can be

investigated further by calculating the derivatives with respect to temperature of 1/ξ. The first and

second derivatives are shown in figures 2.12 and 2.13 respectively. The first temperature derivative

of the known critical temperature-dependence of 1/ξ is a step function, where the step occurs at the

transition temperature, and the second derivative is a Dirac delta-function centred at the transition

temperature. The prediction for the N →∞ limit of the one-to-two dimensional crossover calculations
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is certainly an abrupt step-like change in the first derivative, and a very large peak or a divergence in

the second derivative, the position of the peak in the second derivative lying very close to the transition

temperature. As it happens, the second derivative of 1/ξ with respect to the logarithm of temperature,

shown in figure 2.14, reveals the emerging divergence at the transition temperature most clearly, the

peak in this quantity being even closer to the transition temperature.
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Figure 2.12: Derivative of the reciprocal correlation length with respect to temperature for N = 2-22.
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Figure 2.13: Second derivative of the reciprocal correlation length with respect to temperature for
N = 2-22. The vertical dotted line marks the transition temperature of the square lattice Ising model.
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Figure 2.14: Second derivative of the reciprocal correlation length with respect to lnT for N = 2-22.
The vertical dotted line marks the transition temperature of the square lattice Ising model.

The situation is much the same for the magnetic susceptibility. The square lattice model has χ

also equal to infinity below the phase transition. The calculations of 1/χ are shown in figure 2.15, and

again suggest that the susceptibility should be infinite in the low-temperature region in the N → ∞

limit, the value for the largest calculation, N = 18, being larger than 104 for temperatures below

T = 1.5. The first temperature derivative of the known two-dimensional critical form of 1/χ is a

power law with the exponent 3/4, and the second temperature derivative is a power law with exponent

−1/4, and the latter function diverges at the transition temperature. The calculations of the first

and second temperature derivatives of 1/χ are shown in figures 2.16 and 2.17 respectively. While

there is apparently little to be deduced from the calculation of the first derivative, a very clear peak

appears in the second derivative, in accord with the expectation that this quantity should diverge in

the N →∞ limit, although the position of this peak is still substantially displaced from the transition

temperature in the biggest calculation. In this instance the third derivative of 1/χ with respect to the

logarithm of temperature shows a peak in very close proximity to the transition temperature, and it

is extremely convincing the in the N → ∞ limit the peak will lie precisely on top of the transition

temperature. Concerning the critical exponent γ, the hard prediction of the one-to-two dimensional
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crossover calculations, based on the number of temperature-derivatives of 1/χ which must be taken

before a peak emerges, is that the exponent lies in the range 1 ≤ γ < 2.
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Figure 2.15: Reciprocal of the magnetic susceptibility of the Ising model for N = 2-12. The vertical
dotted line marks the transition temperature of the square lattice Ising model.
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Figure 2.16: First derivative of the reciprocal magnetic susceptibility with respect to temperature for
N = 2-12. The vertical dotted line marks the transition temperature of the square lattice Ising model.
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Figure 2.17: Second derivative of the reciprocal magnetic susceptibility with respect to temperature
for N = 2-12. The vertical dotted line marks the transition temperature of the square lattice Ising
model.
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Figure 2.18: Third derivative of the reciprocal magnetic susceptibility with respect to lnT for N = 2-
12. The vertical dotted line marks the transition temperature for the square lattice Ising model.

2.4 One-to-two dimensional crossover of the planar rotator

model

2.4.1 Introductory remarks

In this section we shall apply the one-to-two dimensional crossover to the planar rotator model. The

scheme which we shall use is the J1-JN spiral geometry, and therefore we consider the Hamiltonian,

HN = −J
∑

j

[cos(φj − φj+1) + cos(φj − φj+N )] (2.151)

where the index j labels the sites on an infinite spin-chain. The spiral circumference N is the finite-size

scaling parameter, and we shall be concerned with how the results of our calculations change as N is

increased, ultimately appealing to the limit that N tends to infinity. The question which we aim to

address is the style of phase transition which occurs in the square lattice planar rotator model.

The technique, as discussed in the previous section, is to construct the transfer operator and then
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to find the largest eigenvalue on a computer. The planar rotator model has continuous degrees of

freedom, and in order to represent the transfer operator on a computer, some discretisation procedure

must be employed. One scheme is simply to discretise the spin-angles φj , that is to only allow them to

take an integer number q of discrete evenly spaced values in the range 0 to 2π. The model which results

from performing this discretisation is known as the q-state clock model, owing to a resemblence of the

equally-spaced spin-directions to a clock face. A thorough investigation of the one-to-two dimensional

crossover of the clock model has been carried out previously and is reported in the thesis of A. M.

Cave(29).

The clock model is not isotropic, and as a result long-range order must occur on the square lattice

at low temperature. This discretisation therefore drastically changes the low temperature physics of

the model. The q = 2, q = 3 and q = 4 clock models are equivalent to the Ising model, the three-state

Potts model(48) and two independent Ising models respectively, and all these models undergo a single

second order phase transition from a long-range ordered phase to a disordered phase, and the transition

temperatures are known exactly(49). For q > 4, the clock model undergoes two phase transitions(14):

a low temperature transition from a long-range ordered state into a power-law correlated phase, and a

high temperature transition from the power-law correlated phase into a disordered phase. The latter

transition corresponds to the phase transition in the planar rotator model.

The clock model can be thought of as an approximation to the planar rotator model, with erroneous

low temperature behaviour resulting from this approximation, or thought of as an interesting model in

its own right. It is also equivalent to the planar rotator model with an additional strong crystal field

interaction, which forces the isotropic planar spins to point in the evenly spaced discrete directions.

From this viewpoint, the long-range order transition is associated with the crystal field interaction,

while the upper transition is associated with the underlying planar spins, and the investigations into

the clock model have indicated that these should be thought of as quite independent(29).

In this thesis we shall present the results of using a different discretisation scheme based on pa-

rameterising the continuous spin-angles in terms of Fourier series. The Fourier indices provide math-

ematically natural discrete degrees of freedom to describe the transfer matrix, but in doing this one

obtains a matrix which is infinitely large. We truncate the Fourier series to simply ignore the high

Fourier components. This results in a finite matrix whose eigenvalue is equal to that of the transfer

matrix to machine accuracy for a sufficient truncation. In this scheme, the error is introduced into

the calculation not with the discretisation, which is the exact representation of periodic functions as
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Fourier series, but with the truncation of the Fourier series. As we shall come to discuss, the number

of Fourier components which it is necessary to include in the calculation in order to achieve machine

accuracy is larger at lower temperatures. The low temperature corruption present in the clock model

is therefore still present in the truncated Fourier series scheme, but it surfaces in a different way.

In the thesis of A. M. Cave, the clock models were discussed in large part as interesting models in

their own right, rather than only approximations to the planar rotator model. This thesis is concerned

with the planar rotator model exclusively. The calculations have been performed with the philosophy

that the number of Fourier components should be actively adjusted as a function of the temperature

in order to ensure that the thermodynamics of the pure planar rotator model are calculated to a high

accuracy. The low temperature error resulting from the truncation will be present in some calculations,

but this will always be regarded as an irritation. By contrast, the low temperature “error” in the clock

models is of great physical interest, in that it describes a second phase transition associated with a

crystal field interaction.
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Figure 2.19: The specific heat of the J1-J5 planar rotator model (solid black line), and the J1-J5 q-state
clock model for q = 5 (red line), q = 6 (blue line) and q = 7 (green line). The clock model calculations
were provided by A. M. Cave.

Figure 2.19 shows transfer function calculations of the specific heat of the J1-J5 q-state clock model

for q = 5, q = 6 and q = 7 which were completed by A. M. Cave, together with a calculation of the
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specific heat of the J1-J5 planar rotator model completed as part of the present investigation. We shall

come to discuss the calculations of the specific heat for the planar rotator model in much more detail in

section 2.4.4, but at this stage simply offer this calculation in order to compare it with the clock model

calculations. The clock model calculations clearly provide a good approximation to the planar rotator

specific heat at sufficiently high temperatures, and the second peak which occurs at low temperature

is a sympton caused by the discretisation of the spin-angles, and is taken by A. M. Cave to mark the

long-range-order transition which occurs in the square lattice clock models. Increasing the number of

discrete spin-directions q provides a better approximation to the planar rotator model, evidenced in

the calculations by a closer match between the specific heat curves down to lower temperatures, and

the shift of the low temperature peak towards the origin.

In addition, the calculations allow us to make a much stronger statement regarding the relationship

between the two models. Figure 2.20 shows the ratio of each of the three clock model specific heat

curves to the planar rotator curve. Strikingly, while the low temperature peak is clearly visible in the

ratio of the specific heats, the high temperature peak is entirely absent. This shows quite convincingly

that the peak in the planar rotator specific heat and the upper peak in the clock model specific heats

are identical. A. M. Cave has interpreted the two peaks in the clock model specific heats as being

associated with the two phase transitions which occur in the square lattice clock model, and has

provided evidence that these are both regular phase transitions, and either the specific heat itself or

some higher temperature derivative of the specific heat will exhibit a divergence at these points in the

two-dimensional limit. Figure 2.20 shows quite convincingly that any of the behaviour associated with

the upper peak in the clock model should be identical in the planar rotator model. One can therefore

target the peak in the specific heat of the planar rotator model by examining a clock model calculation.
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Figure 2.20: The data of figure 2.19, but plotted as the ratio of the specific heat of the J1-J5 q-state
clock model to that of the J1-J5 planar rotator for q = 5 (red line), q = 6 (blue line) and q = 7 (green
line). The clock model calculations were provided by A. M. Cave.

The desire to calculate the thermodynamics of the pure planar rotator model to a high accuracy

limits the scope of the calculations in the present investigation to smaller values of N than in A. M.

Cave’s work. Concerning the style of phase transition which occurs in the planar rotator model, the

clock model calculations therefore constitute the best evidence on this matter which can be provided

using the one-to-two dimensional crossover technique. However, in order to establish the relationship

between the two models it has been necessary to calculate the thermodynamics of the pure planar

rotator model to a high accuracy, and this has led to the investigations reported in the present thesis.

It is also arguably worthwhile to be able to present the evidence for the nature of the phase transition

in the planar rotator model which is apparent in the bare thermodynamics of this model, without the

need to consider the smooth additions to the thermodynamics which occur in clock model calculations.

Both the clock model investigations and the present planar rotator investigations provide consistent

evidence that the phase transition in the square lattice planar rotator model is a regular phase transition

with ordinary critical exponents. This is a very different picture to the widely-held view that the model

should exhibit a Kosterlitz-Thouless transition which does not show up in the thermodynamics. The

evidence in the pure planar rotator calculations is cleaner and therefore easier to interpret, but is
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limited to smaller values of the scaling parameter N . The evidence provided in the clock model

calculations is less clean because of the smooth additions to the planar rotator thermodynamics, but

it is stronger evidence because one has access to larger values of N .

We begin, in section 2.4.2, by describing how the transfer operator for the planar rotator model

is represented in terms of Fourier series; one finds that in this representation the transfer operator is

cast as a matrix whose elements are products of Bessel functions. We devote some space to discussing

the properties of these functions, in order to justify the truncation of the Fourier indices which we

make for the purposes of computation. In section 2.4.3 we then describe a symmetry of the planar

rotator model, namely with respect to the angle with respect to which the spin-angles are measured.

We extract this symmetry in order to divide the N -dimensional space of the transfer operator into a

discrete, independent set of (N − 1)-dimensional subspaces which are labelled by a single index m. In

terms of the computational expense of the one-to-dimensional crossover, this reduction in the size of

the transfer operator increases by one the largest value of N for which we may perform the calculations.

In the subsequent sections we shall discuss a number of specific calculations of different quantities.

The first set of quantities are the specific heat and higher temperature derivatives of the entropy, and

these are dealt with in section 2.4.4. These calculations are both the most straightforward application

of the one-to-two dimensional crossover technique and those whose results are easiest to understand.

Ultimately one finds smooth curves for these quantities which show increasingly violent behaviour as

N is increased, suggestive that a divergence will occur in one of the derivatives in the limit N →∞.

We shall then discuss the correlation length, the magnetic susceptibility and the helical stiffness

in sections 2.4.5, 2.4.6 and 2.4.7 respectively. Each of these calculations requires some additional

mathematical formalism, and the calculations of the magnetic susceptibility and the helical stiffness

require one to modify the Hamiltonian. We shall present detailed discussions of each of the quantities

in turn, in which we shall introduce whatever additional mathematics is pertinent to that particular

calculation. In particular, the correlation length is closely associated with the eigenvalue spectrum

of the transfer operator, and in section 2.4.5 we will also discuss a number of calculations of other

eigenvalues in addition to the largest eigenvalue. The correlation length and magnetic susceptibility

calculations allow some estimation of the relevant critical exponents for those quantities, and probably

constitute the most striking indication of a regular phase transition in the square lattice model.
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2.4.2 Fourier space representation

The equation 2.8, which defines the transfer operator, for the planar rotator model takes the form,

(
T̂ f
)

(φ1, φ2, ..., φN ) =

∫ π

−π

dφ1

2π
eβK(φ0,φ1,...,φN )f(φ0, φ1, ..., φN−1). (2.152)

Throughout this section, we shall assume that the transfer operator has been chosen to be self-adjoint,

in the sense described in section 2.1.1, that is that the exponent K(φ0, φ1, ...) is symmetric under the

operation of reversing the order of its arguments,

K(φ0, φ1, ..., φN ) = K(φN , φN−1, ..., φ0). (2.153)

As indicated above, we adopt the mathematically natural discretisation scheme of Fourier series;

we write for a general state,

f(φ1, ..., φN ) =
∞∑

m1=−∞

∞∑

m2=−∞
...

∞∑

mN=−∞
fm1,m2,...,mN e

i(m1φ1+m2φ2+...+mNφN ). (2.154)

This is equivalent to representing the underlying vector |f〉 using the basis states |m1, ...,mN 〉, where

〈φN , ..., φ1|m1, ...,mN 〉 = ei(m1φ1+m2φ2+...+mNφN ), (2.155)

and these states have the orthogonality property,

〈m1, ...,mN |m′1, ...,m′N 〉 =
N∏

j=1

δmj+m′N+1−j
. (2.156)

The Fourier coefficients of the function f(φ1, ..., φN ) are the components of |f〉 in this basis, and are

given explicitly by

fm1,m2,...,mN = 〈−mN ,−mN−1, ...,−m1|f〉. (2.157)

To find the Fourier-space form of the transfer operator, we must write down the Fourier coeffi-

cients of the function eβK(φ0,φ1,...,φN ) in equation 2.152. Whatever choice is made for the function

K(φ0, φ1, ..., φN ), it is always a sum of cosine angles of the spin functions. We must therefore consider
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the expansion,

ex cos θ =
∞∑

s=−∞
Is(x)eisθ, (2.158)

where Is(x) is the modified Bessel function of the first kind of order s. The Fourier components of eβK ,

and therefore the matrix elements of the transfer operator in the Fourier basis, are given by products

of these functions.

Given the utmost importance of the functions Is(x) in the calculations, we now briefly discuss their

properties. Equation 2.158 can be regarded as a definition of these functions, and from this definition

one can immediately deduce the integral representation,

Is(x) =

∫ π

−π

dθ

2π
eisθex cos θ. (2.159)

By replacing the factor ex cos θ in the integrand by its power series in the variable x, and integrating

out the variable θ term by term, one obtains the following series representation for Is(x),

Is(x) =

∞∑

n=0

1

(|s|+ n)!n!

(x
2

)2n+|s|
. (2.160)

The series in equation 2.160 converges extremely rapidly, and can consequently be used to calculate

the functions Is(x) to a high accuracy for all values of x. It is this series representation which we have

used to calculate the functions using the computer.

In the limit that x is small, the functions are given by the first term of the power series 2.160,

providing the small-x limit of

Is(x) ∼ 1

|s|!
(x

2

)|s|
. (2.161)

The zeroth order function I0(x) takes the value one at x = 0, and all the higher order functions take

the value zero at x = 0. This limit of small x corresponds to the limit where the temperature is large.

The large-x limit, which corresponds to the case of low temperature, may be obtained from the

integral representation in equation 2.159. In this limit the integrand in equation 2.159 is extremely

large in the vicinity of θ = 0, and this region dominates the integral. One can therefore replace the

integral in this limit by

Is(x) ∼ 1

2π

∫ ∞

−∞
eisθe

x
(

1− θ22
)
, (2.162)
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and evaluating the Gaussian integral provides the large x limit to be

Is(x) ∼ ex−s
2/2x

√
2πx

. (2.163)

All of the functions ultimately increase without bound as x is increased.

All of the coefficients in the power series 2.160 are positive, and consequently in the domain 0 ≤ x <

∞, these functions are monotonically increasing functions of x. The functions also have the property

that, excluding the points x = 0 and x = ∞, the higher-order functions are always smaller for the

same value of x:

Is(x) < Is′(x) if |s| > |s′|. (2.164)

In addition, for any finite value of x, the sufficiently high-order functions become exponentially small.

The ratio of the second to the first term in the power series 2.160 is equal to 1
|s|+1

(
x
2

)2
. If this number

is taken to be small, then to a good approximation Is(x) is given by only the first term in the series.

This is the case if x is taken to be small, and this is of course precisely the small-x limit in 2.161. This

is also the case if the order |s| is very large. Precisely, if |s| �
(
x
2

)2
then we may approximate Is(x)

by the first term. In addition, if |s| � 1 we may employ the Stirling limit,

|s|! ∼
√

2π|s|
( |s|
e

)|s|
,

to replace the factorial in the first term, so that for sufficiently high orders we find the asymptotic

form,

Is(x) ∼ 1√
2π|s|

(
ex

2|s|

)|s|
. (2.165)

The implication of the exponential decay of the larger-order functions, described by the relation

2.165, is that, at any finite temperature, the transfer matrix can always be truncated to be finite,

and the error resulting from the truncation can be made arbitrarily small by enlarging the truncated

matrix. The size of the matrix that is required to provide the largest eigenvalue to a given accuracy is

larger at lower temperatures, and this corresponds to a computationally more expensive calculation.

The low temperature limit therefore presents an inherent difficulty in these calculations.

We truncate the transfer matrix by truncating the Fourier indices, m1,m2, ...,mN , which we let

take integer values in the range,

−M ≤ mi ≤ +M
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for some positive integer M , which we regard as an active parameter that describes the truncation.

The number of degrees of freedom, per spin-variable, is therefore given by p = 2M+1. The eigenvector

is represented by pN numbers, and this effectively changes as a function of temperature.

2.4.3 Rotational symmetry

In the absence of an additional term such as a magnetic field, the Hamiltonian 2.151 depends only on

the differences in the spin-angles for different sites, and is therefore symmetric with respect to a global

rotation of the axis with respect to which the spins are measured. This symmetry is also present in the

transfer operator, and can be extracted to effectively reduce the number of degrees of freedom in the

eigenvalue problem from N to N −1. In quantum mechanical problems, a symmetry can be associated

with some operator which commutes with the Hamiltonian, and consequently the eigenstates of the

Hamiltonian can be chosen to be eigenstates of this operator also, which has the effect of splitting the

problem into a number of independent subspaces. In the context of one-to-two dimensional crossover,

a symmetry corresponds to an operator which commutes with the transfer operator T̂ . The rotational

symmetry of the spin-variables is described by the operator R̂α, which we define to rotate each of the

spin-variables through an angle α,

(R̂αf)(φ1, φ2, ..., φN ) = f(φ1 + α, φ2 + α, ..., φN + α). (2.166)

This operator has the matrix elements,

〈φN , ..., φ1|R̂α|φ′1, ..., φ′N 〉 =
N∏

j=1

2πδ(φj − φ′j − α), (2.167)

and it is straightforward to formally prove that R̂α commutes with the transfer operator T̂ .

Any exponential function of the spin-angles is an eigenfunction of the operator R̂α. The Fourier

states |m1, ...,mN 〉 are a complete basis of such states, with corresponding eigenvalues given by

ei(m1+m2+...+mN )α. The Fourier states with distinct values for this eigenvalue therefore comprise

independent subspaces. Each subspace is spanned by all the Fourier modes where the sum of the

Fourier indices has a certain value,

m1 +m2 + ...+mN = m, (2.168)
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and the integer values of the variable m label the subspaces. This equation effectively acts as a

constraint on the N Fourier indices, so that the number of degrees of freedom required to describe one

of the subspaces is reduced to N − 1. We may define a projection operator P̂m which acts to project

a state onto the m-subspace,

P̂m =
∑

m1+m2+...+mN
= m

|m1,m2, ...,mN 〉〈−mN ,−mN−1, ...,−m1|, (2.169)

and in general any state can be split up into its components in the different subspaces,

|f〉 =
∞∑

m=−∞
|f (m)〉, (2.170)

where

|f (m)〉 = P̂m|f〉. (2.171)

We shall consistently use the notation that a superscript in brackets indicates that a state lies entirely

within the corresponding subspace.

We shall take advantage of this symmetry to reduce the size of the transfer matrix. There remains

a large amount of choice in how we choose to parameterise the states in the m-subspace. The fact

that the interactions in the Hamiltonian depend only on the differences in spin-angles suggests that

the floating variables

ψj = φj − φj+1, for j = 1, 2, ..., (N − 1) (2.172)

are a natural parameterisation, and we may regard the function K(φ1, ...) as a function of these

variables:

K(φ1, ..., φN )→ K(φ1 − φ2, ..., φN−1 − φN ).

The Fourier state can be written as

ei(m1φ1+...+mNφN ) = eimφ1ei(n1(φ1−φ2)+n2(φ2−φ3)+...+nN−1(φN−1−φN )), (2.173)
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where the newly introduced indices are implicitly given by the equations,

m1 = m+ n1, (2.174)

m2 = n2 − n1,

m3 = n3 − n2,

...

mN−1 = nN−1 − nN−2,

mN = −nN−1.

Within the m-subspace, these equations effectively relate the Fourier components of the function of

N variables f (m)(φ1, ..., φN ) to the Fourier components of a function of the N − 1 floating variables,

F (m)(ψ1, ..., ψN−1), where

f (m)(φ1, ..., φN ) = eimφ1F (m)(φ1 − φ2, φ2 − φ3, ..., φN−1 − φN ). (2.175)

We shall throughout indicate the functions of the floating variables with the capital of the symbol

used for the corresponding function of the original spin-angles. Expressed in this way, one is effectively

making a change of variables from the N original spin-angles φj to a parameterisation in terms of the

N − 1 floating variables plus one of the original angles, in this case φ1, which provides the axis with

respect to which the other degrees of freedom are measured. For a function which may span the entire

N -dimensional space, one has in general,

f(φ1, ..., φN ) =
∞∑

m=−∞
eimφ1F (m)(φ1 − φ2, ..., φN−1 − φN ), (2.176)

and the functions of the floating variables are the resulting coefficients of writing the full function f

as a Fourier series in φ1.

We may completely describe a state in them-subspace entirely using the function F (m)(ψ1, ..., ψN−1).

To connect this description with the underlying vector-formalism, we introduce the states |m;ψ1, ..., ψN−1〉,

where

〈φN , ..., φ1|m;ψ1, ..., ψN−1〉 = eimφ1

N−1∏

j=1

2πδ(ψj − φj + φj+1). (2.177)
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From this definition, it follows that these states obey the orthogonality condition,

〈m′;ψ′1, ..., ψ′N−1|m;ψ1, ..., ψN−1〉 = eim(ψ1+ψ2+...+ψN−1)δm+m′

N−1∏

j=1

2πδ(ψj + ψ′N−j), (2.178)

and the completeness condition for these states takes the form,

∞∑

m=−∞

N−1∏

j=1

∫ π

−π

dψj
2π

e−im(ψ1+ψ2+...+ψN−1)|m;ψ1, ..., ψN−1〉〈−m;−ψN−1, ...,−ψ1| = Î . (2.179)

This basis relates to the description in terms of the floating angles according to,

F (m)(ψ1, ..., ψN−1) = e−im(ψ1+ψ2+...+ψN−1)〈−m;−ψN−1, ...,−ψ1|f〉. (2.180)

The matrix elements of the transfer operator in this basis are given by,

〈−m;−ψN , ...,−ψ2|T̂ |m′;ψ′1, ..., ψ′N−1〉 = eβK(ψ′1,ψ2,...,ψN )eim(ψ′1+ψ2+...+ψN−1+ψN )δm,m′
N−1∏

j=2

2πδ(ψj−ψ′j).

(2.181)

There is no nonzero matrix element connecting distinct m-subspaces, as we expect. The transformation

of the function F (m)(ψ1, ...) by the transfer operator is described by,

e−im(ψ2+...+ψN )〈−m;−ψN , ...,−ψ2|T̂ |f〉 =

∫ π

−π

dψ1

2π
eimψ1eβK(ψ1,ψ2,...,ψN )F (m)(ψ1, ..., ψN−1). (2.182)

This provides an integral representation for the transfer operator in the m-subspace. This expression

is extremely similar to the representation of the full transfer operator in the original spin-variables,

equation 2.152, but with the addition of the Fourier factor eimψ1 . We introduce the notation that T̂m

denotes the part of the transfer operator which acts on this subspace,

T̂m = P̂mT̂ P̂m. (2.183)

In practice, equation 2.182 is the starting point for our calculations, with the exception of the cal-

culations of the magnetic susceptibility for which the rotational symmetry must be broken and one

cannot employ the floating basis. One can apply the power method on each of the operators T̂m to

obtain its own eigenvalues and eigenvectors. It is found that the largest eigenvalue of the full transfer

operator, the partition function, is always found in the m = 0 subspace. Consequently, the one-to-two
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dimensional crossover theory for most quantities, apart from those relating to the response to a mag-

netic field and certain correlation functions, can be carried out by simply working with T̂0 in place of

the full transfer operator T̂ . For the most part we have proceeded in this way. The calculations of

the correlation functions require the inclusion of eigenvalues of other subspaces in addition to m = 0,

and the calculations of quantities related to the magnetic susceptibility cannot be performed using the

floating basis.

For representing the transfer operator on the computer, we work in Fourier space and parameterise

the eigenfunction F (m) with the Fourier indices n1, ..., nN−1 in equation 2.173, and write,

F (m)(ψ1, ..., ψN−1) =
∞∑

n1=−∞
...

∞∑

nN−1=−∞
F (m)
n1,n2,...,nN−1

ei(n1ψ1+n2ψ2+...+nN−1ψN−1). (2.184)

We use a variety of representations for the transfer function which follow from different choices of the

function K(ψ1, ψ2, ..., ψN ). The simplest choice for which the transfer function is self-adjoint for any

N is

K(ψ1, ψ2, ..., ψN ) =
1

2
cosψ1 + cos (ψ1 + ψ2 + ...+ ψN−1 + ψN ) +

1

2
cosψN (2.185)

for which the explicit eigenvalue equation which we solve is,

∞∑

r=−∞

∞∑

s=−∞
Is+r+m

(
βJ
2

)
Is(βJ)Is+nN−1

(
βJ
2

)
F

(m)
r,n1−s,...,nN−2−s = z(m)

α F (m)
n1,n2,...,nN−1

. (2.186)

The transfer matrix is truncated to be finite by truncating the Fourier indices in exactly the manner

previously explained. The size of the eigenvector is then (2M + 1)N−1 where M is the highest Fourier

mode included.

As an extremely important aside, we note that in taking the approach of representing the transfer

matrix with the floating basis, and regarding the function F (m) as the object of primary importance,

the inner product is in fact nontrivial expressed in this representation; one has the addition of a Fourier

factor in the integral representation of the inner product,

〈g(m′)|f (m)〉 = δm+m′

N−1∏

j=1

∫ π

−π

dψj
2π

G(−m)(−ψN−1,−ψN−2, ...,−ψ1)F (m)(ψ1, ψ2, ..., ψN−1)

× eim(ψ1+ψ2+...+ψN−1). (2.187)

Finally, we note that there is a second, independent symmetry of the transfer operator, which
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corresponds to changing the sign of all of the floating variables:

F (m)(ψ1, ψ2, ..., ψN−1)→ F (m)(−ψ1,−ψ2, ...,−ψN−1).

In terms of the spin-state described by the floating variables, this operation is a reversal of the chirality

of the spins: the first spin φ1 is not changed, but the spiralling of the following spins up to φN is

inverted. All of the eigenfunctions of the reduced transfer operator T̂m are either chiral-symmetric,

F (m)(ψ1, ψ2, ..., ψN−1) = F (m)(−ψ1,−ψ2, ...,−ψN−1),

or chiral-antisymmetric,

F (m)(ψ1, ψ2, ..., ψN−1) = −F (m)(−ψ1,−ψ2, ...,−ψN−1).

It is found that the eigenfunction belonging to the largest eigenvector in each of the m-subspaces is

always symmetric.

2.4.4 Thermal derivatives of the entropy

We now come to the first set of calculations which we have to discuss. These quantities are the

derivatives of the entropy S of the system with respect to the logarithm of temperature,

(
T
∂

∂T

)n
S,

the first of these derivatives being the specific heat C. To obtain these quantities, we have calculated

the largest eigenvalue and corresponding eigenvector of the operator T̂0 using the power method,

and from these determined the internal energy according to the formula 2.128. The specific heat and

higher temperature derivatives of the entropy up to the third order have been calculated by numerically

differentiating the internal energy using the difference formulae 2.133.

The calculations of the specific heat of the J1-JN planar rotator model are depicted in figure 2.21.

The specific heat exhibits a clear peak, which becomes more pronounced as the scaling parameter N

is increased. This is quantitatively very much like the specific heat of the J1-JN Ising model shown

in figure 2.7. By comparison with the Ising case, this data alone would appear to be suggestive of a

116



second order phase transition in the two-dimensional limit, where the position of the peak marks the

transition temperature.
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Figure 2.21: The specific heat of the J1-JN planar rotator model for N = 2-7 (solid lines), with a
polynomial extrapolation to the case of N = ∞ (blue dotted line). The vertical dotted line indicates
the estimated Kosterlitz-Thouless transition temperature, T = 0.89.

If a second order phase transition did occur in the square lattice planar rotator model, the peak

in the specific heat would be expected to grow as N is increased and ultimately become a divergence

in the limit N → ∞. In the Kosterlitz-Thouless transition the specific heat exhibits a large finite

peak at some temperature higher than the transition temperature(19). Since we have only calculated

the specific heat for finite values of the scaling parameter N , we cannot definitively conclude that the

peak in the specific heat does not converge to be finite in the two-dimensional limit. However, the

calculations for the J1-JN planar rotator model indicate that such a convergence does not occur up to

the value N = 7. In addition, the calculations presented in the thesis of A. M. Cave with clock models

show that this peak does not converge up to the value N = 12(29).

A better indication of whether the specific heat is converging to have a finite peak can be obtained

from the higher derivatives of the entropy with respect to the logarithm of temperature. The second,

third and fourth derivatives are depicted in figures 2.22, 2.23 and 2.24. In the vicinity of the peak in

the specific heat, the derivatives of the specific heat take large values, are seen to increase as the scaling
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parameter N is increased, and the rate of this increase is greater in the higher derivatives. It is clear

from these calculations that none of these derivatives are converging up to the value N = 7. In addition,

A. M. Cave has shown that the same quantities are not converging up to the value N = 12(29). Given

that each successive derivative appears to be diverging at a faster rate, this is suggestive that one

of the derivatives, or a higher derivative which we have not calculated, will be divergent in the two-

dimensional limit. The calculations therefore suggest that, even if the specific heat does converge to

exhibit a finite peak, one of the higher derivatives of the entropy is still likely to exhibit a divergence,

corresponding to a higher order regular phase transition. It is important to note that a divergence in

any derivative of the entropy is in complete contradiction with the picture of the Kosterlitz-Thouless

transition, which predicts that there should be no divergences in any thermodynamic quantity.

We conclude our discussion of these quantities by briefly touching upon the value of the critical

temperature of the phase transition. In the interpretation that the peak in the specific heat becomes

a divergence in the two-dimensional limit, then the position of the divergence in this limit marks the

transition temperature, and the position of the peak in the specific heat in our calculations must

converge to sit at the transition temperature as the peak diverges. The estimated transition tempera-

ture of the Kosterlitz-Thouless transition, TKT = 0.89J , is marked in figure 2.21, and is always fairly

well-separated from the position of the peak. This is consistent with the picture that the specific heat

converges to a finite peak where the peak is at a higher temperature than the Kosterlitz-Thouless

transition, but conversely, assuming a second order phase transition, the calculations strongly suggest

that the transition temperature does not agree with the estimated value of TKT .
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Figure 2.22: First derivative of specific heat with respect to lnT for N = 2-7.
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Figure 2.23: Second derivative of specific heat with respect to lnT for N = 2-7.
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Figure 2.24: Third derivative of specific heat with respect to lnT for N = 2-7.

2.4.5 Correlation lengths and eigenvalues

We now come to the second set of quantities to be discussed, which relates to the correlation length ξ,

which is defined as the length characterising the long-range decay of the spin-spin correlation function.

For the square lattice planar rotator model, in the disordered phase we would write

〈cos (φj − φj′)〉 ∼ e−rjj′/ξ,

where rjj′ is the distance between the lattice sites j and j′, and where this expression is understood

to apply in the case that this distance is very large. We consider the correlation 〈eiq(φ1−φ1+r)〉 as a

function of r, where q is an integer. This essentially corresponds to the correlation above in the case

q = 1. Each of these correlation functions decays exponentially at long range, and therefore has an

associated correlation length, which we denote ξq. This quantity is given by the simple formula,

1

ξq
= ln |z0| − ln |z(q)

0 |, (2.188)
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where z0 is the largest eigenvalue of the transfer operator, which as detailed above is essentially the

partition function, and z
(q)
0 is the largest eigenvalue in the m = q subspace. The correlation length

is therefore directly related to the separation of these eigenvalues. As discussed in section 2.188, the

eigenvalues are not degenerate for finite N , but their separation decreases as N is increased. We expect

to see degeneracy occur in the two-dimensional limit N → ∞, corresponding to the phase transition

in the square lattice model.

Concerning this limit, there is a subtlety in relating the correlation length which we calculate to

the relevant one for the square lattice model. For the finite N system, in calculating the correlation

〈eiq(φ1−φ1+r)〉 and taking the range r to be very large, we are considering the correlation between

lattice sites which are separated a large distance along the axial direction of the helix depicted in

figure 2.6. In the limit N →∞, this must correspond to the correlation between lattice sites separated

along one of the principal axes of the square lattice, the separation being the number of intermittent

lattice sites along that direction. In our correlation functions for the finite system the distance between

nearest neighbour lattice sites in this direction is measured as N , and consequently the range r is N

times larger than the physical distance between the two lattice points. One must therefore divide the

correlation length of the finite-N system by N to obtain the quantity which corresponds to the square

lattice correlation length.

We now present a formal derivation of equation 2.188. We shall throughout take the eigenvectors of

the transfer operator to be normalised, 〈f (m)
α |f (m)

α 〉 = 1. From equation 2.149, this can be represented

as

〈eiq(φ1−φ1+r)〉 =

(
1

z0

)r+1−N
〈f (0)

0 |(V̂q)r+1−N |f (0)
0 〉, (2.189)

where |f (0)
0 〉 is the eigenvector belonging to the largest eigenvector in the m = 0 subspace, which is

the largest of all the eigenvalues of the transfer operator z0, and where the modified transfer operator

V̂q is defined by

(
(V̂q)

r+1−Nf
)

(φr+2−N , ..., φr+1)

=
r+1−N∏

j=1

∫ π

−π

dφj
2π

eiq(φ1−φ1+r)
r+1−N∏

l=1

eβK(φl−φl+1,...,φl+N−1−φl+N )f(φ1, ..., φN ). (2.190)

From this definition it follows that the matrix elements of this operator in the basis of the spin-variables
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are

〈φr+1, ..., φr+2−N |(V̂q)r+1−N |φ1, ..., φN 〉

=
r+1−N∏

j=1

∫ π

−π

dφj
2π

eiq(φ1−φ1+r)
r+1−N∏

j=N+1

∫ π

−π

dφj
2π

r+1−N∏

l=1

eβK(φl−φl+1,...,φl+N−1−φl+N ).

(2.191)

This is the same expression as for the matrix elements of (T̂ )r+1−N , with the modification of the extra

factor of eiq(φ1−φ1+r). The effect of this factor in the matrix element is to move from the m-subspace

to the (m+ q)-subspace. This is most cleanly demonstrated in formal terms by considering the matrix

elements in the Fourier basis:

〈−mN , ...,−m1|(V̂q)r+1−N |m′1, ...,m′N 〉

=

N∏

j=1

∫ π

−π

dφj
2π

r+1∏

j′=r+2−N

∫ π

−π

dφj′

2π
〈φr+1, ..., φr+2−N |(V̂q)r+1−N |φ1, ..., φN 〉

× 〈−mN , ...,−m1|φr+2−N , ..., φr+1〉〈φ1, ..., φN |m′1, ...,m′N 〉

=
N∏

j=1

∫ π

−π

dφj
2π

r+1∏

j′=r+2−N

∫ π

−π

dφj′

2π
〈φr+1, ..., φr+2−N |(V̂q)r+1−N |φ1, ..., φN 〉

× e−i(m1φr+2−N+...+mNφr+1)ei(m
′
1φ1+...+m′NφN ). (2.192)

The factor eiq(φ1−φ1+r) in the matrix element of (V̂q)
r+1−N may be absorbed into the other Fourier

factors to obtain,

〈−mN , ...,−m1|(V̂q)r+1−N |m′1, ...,m′N 〉

=
N∏

j=1

∫ π

−π

dφj
2π

r+1∏

j′=r+2−N

∫ π

−π

dφ′j
2π
〈φr+1, ..., φr+2−N |(T̂ )r+1−N |φ1, ..., φN 〉

× e−i(m1φr+2−N+...+(mN+q)φr+1)ei((m
′
1+q)φ1+...+m′NφN )

=
N∏

j=1

∫ π

−π

dφj
2π

r+1∏

j′=r+2−N

∫ π

−π

dφ′j
2π
〈φr+1, ..., φr+2−N |(T̂ )r+1−N |φ1, ..., φN 〉

× 〈−(mN + q),−mN−1, ...,−m1|φr+2−N , ..., φr+1〉

× 〈φ1, ..., φN |(m′1 + q),m′2, ...,m
′
N 〉

.= 〈−(mN + q),−mN−1, ...,−m1|(T̂ )r+1−N |(m′1 + q),m′2, ...,m
′
N 〉. (2.193)
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Now, this matrix element is only finite between states in the same subspace, for which the index must

be (m+ q) if m is equal to the sum of the indices m1, ...,mN . In this case the matrix element can be

expanded in terms of the eigenvalues of the transfer operator in this subspace, |f (m+q)
α 〉, to obtain,

〈−(mN + q),−mN−1, ...,−m1|(T̂ )r+1−N |(m′1 + q),m′2, ...,m
′
N 〉

=
∑

α

∑

α′

〈−(mN + q), ...,−m1|f (q)
α 〉〈f (m+q)

α |(T̂ )r+1−N |f (m+q)
α′ 〉〈f (q)

α′ |(m′1 + q), ...,m′N 〉

× δm1+...+mN=m′1+...+m′N=m

=
∑

α

(
z(m+q)
α

)r+1−N
〈−(mN + q), ...,−m1|f (m+q)

α 〉〈f (m+q)
α |(m′1 + q), ...,m′N 〉

× δm1+...+mN=m′1+...+m′N=m. (2.194)

Therefore expanding the quantity 〈f (0)
0 |(V̂q)r+1−N |f (0)

0 〉 in the Fourier basis provides,

〈f (0)
0 |(V̂q)r+1−N |f (0)

0 〉 =
∑

m1+...+mN
= 0

∑

m′1+...+m′N
= 0

〈f (0)
0 |m1, ...,mN 〉〈−m′N , ...,−m′1|f (0)

0 〉

× 〈−(mN + q),−mN−1, ...,−m1|(T̂ )r+1−N |(m′1 + q),m′2, ...,m
′
N 〉

=
∑

α

(
z(q)
α

)r+1−N ∑

m1+...+mN
= 0

〈f (0)
0 |m1, ...,mN 〉〈−(mN + q), ...,−m1|f (q)

α 〉

×
∑

m′1+...+m′N
= 0

〈−m′N , ...,−m′1|f (0)
0 〉〈f (q)

α |(m′1 + q), ...,m′N 〉. (2.195)

If we now consider the long-range limit r → ∞, we may simplify this expression using the same

argument as we have employed previously, that the sum over the eigenstates is exponentially dominated

by the largest eigenvalue, which we indicate with the label α having the value zero. We therefore find

in this limit,

〈eiq(φ1−φ1+r)〉 ∼
(
z

(q)
0

z0

)r+1−N ∑

m1+...+mN
= 0

〈f (0)
0 |m1, ...,mN 〉〈−(mN + q), ...,−m1|f (q)

0 〉

×
∑

m′1+...+m′N
= 0

〈−m′N , ...,−m′1|f (0)
0 〉〈f

(q)
0 |(m′1 + q), ...,m′N 〉. (2.196)

This expression is made up of an exponential decay with an associated decay length given by equation

2.188, together with multiplicative factors which do not depend upon the range.
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In the finite N system, the eigenvalues z0 and z
(q)
0 are always non-degenerate, but they may

become degenerate in the two-dimensional limit N → ∞. As indicated in section 2.3, this emerging

degeneracy is associated with a critical point in the square lattice model. It is known that below the

phase transition in the square lattice planar rotator model the long-range correlations have a power

law form, corresponding to an infinite correlation length. In terms of the eigenvalues, this indicates

that the eigenvalues z0 and z
(q)
0 become degenerate at the phase transition and remain degenerate at

all temperatures below the phase transition.

The reciprocal of the correlation lengths have been calculated using the formula 2.188, the eigen-

vector z
(q)
0 being obtained by applying the power method to T̂q. The calculations of the reciprocal of

the regular correlation length (the case q = 1) are shown in figure 2.25, together with a polynomial

extrapolation to the case of N = ∞. The extrapolated correlation length exhibits the features that

we would expect for the two-dimensional system, where the correlation length is infinite below the

phase transition. The extrapolation predicts the value zero for the reciprocal correlation length to

several decimal places for the reciprocal of the correlation length for a large low temperature region,

apparently down to zero-temperature. It is rather striking that the extrapolation so strongly predicts

the value zero at temperatures where the values of 1/ξ for the finite systems are relatively large and

have clearly not converged to any limit. This agreement with the behaviour which is known for the

two-dimensional system provides strong evidence that the limit N →∞ does indeed provide the square

lattice model.
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Figure 2.25: The inverse correlation length of the J1-JN planar rotator model for N = 2-7 (solid lines),
with a polynomial extrapolation to the case of N = ∞(blue dotted line). The N = 7 calculation has
not been completed at low temperature; the extrapolation is obtained from just the N = 2 to N = 6
curves. The upturn in the extrapolation close to the origin can be attributed to the reduced accuracy
of the calculations close to T = 0. The vertical dotted line indicates the estimated Kosterlitz-Thouless
transition temperature, T = 0.89.

The predicted critical temperature of the Kosterlitz-Thouless transition is also indicated in figure

2.25. In the Kosterlitz-Thouless picture, the reciprocal of the correlation length would be expected to

vanish at this temperature. A stronger prediction than the place at which the quantity should vanish

is the form of the function close to this point, which is predicted to be,

1

ξ
∼ e−a/

√
T−TKT ,

which is smooth and infinitely differentiable. The extrapolated correlation length is in good agreement

with the Kosterlitz-Thouless picture. However, the polynomial extrapolation of a series of smooth

functions will always itself be a smooth function, and for this reason this quantity cannot by itself

be used to exclude the possibility of the non-analytic power law behaviour which would accompany a

regular phase transition,

1

ξ
∼ (T − TC)

ν
.
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We have investigated the functional form of the correlation length by calculating the thermal

derivatives of 1/ξ. These derivatives have been calculated numerically from the values of the correlation

length, which have been calculated to machine accuracy, in exactly the same way that the derivatives

of the entropy are obtained by numerically differentiating the internal energy as previously discussed.

The first derivative of 1/ξ is shown in figure 2.26 and the second derivative is shown in figure 2.27.

If one has the power law behaviour, each successive derivative of 1/ξ in the vicinity of the transition

will also have a power law behaviour, where the exponent is reduced by one. After a certain number

of differentiations, the resulting quantity will be divergent at the transition temperature, when the

exponent becomes negative. If one finds that one of the derivatives of 1/ξ appears to be divergent, this

indicates that the critical behaviour of the correlation length is a power law. In addition the number of

derivatives required to produce this divergence provides a range, from this number to the next smallest

integer, within which the critical exponent ν must lie.

The first derivative of the inverse correlation length shows an abrupt, step-like feature in the vicinity

of the transition temperature. The features are qualitatively similar to the calculation for the Ising

model discussed in the previous section (figure 2.12), for which in the two-dimensional limit the form

is known to be a theta-function in the vicinity of the phase transition. The second derivative exhibits a

sharp peak, which grows as the scaling parameter N is increased. It certainly appears that this quantity

is diverging. Again, the features are qualitatively similar to the Ising model calculation (figure 2.13),

which is known to be a delta-function singularity in the two-dimensional limit. A divergence in this

quantity for the planar rotator model, or any higher temperature derivative of 1/ξ, is in complete

contradiction with the Kosterlitz-Thouless picture. These calculations indicate that the temperature

dependence of the correlation length is of the power-law type close to the transition, with a critical

exponent ν which lies somewhere between the values 1 and 2.

If the second derivative of 1/ξ is indeed divergent in the two-dimensional limit, the position of the

divergence marks the critical temperature of the phase transition. The estimated Kosterlitz-Thouless

transition temperature is indicated in figure 2.27. The peak in the second derivative of 1/ξ appears

to be converging to a position which is well-separated from the estimated value of TKT , suggesting a

different critical temperature. The position of the peak for N = 7 is in close proximity to the position

of the peak in the specific heat (figure 2.21). The calculations of the specific heat and the correlation

length are both suggestive of a regular phase transition, and suggest a consistent approximate value

for the transition temperature, which is not the same as the estimated critical temperature of the
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Kosterlitz-Thouless transition temperature.
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Figure 2.26: First derivative of the reciprocal correlation length with respect to T for N = 2-7.
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Figure 2.27: Second derivative of the reciprocal correlation length with respect to T for N = 2-7.
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We have also calculated the correlation lengths associated with the correlation functions for q = 2

and q = 3 in equation 2.188. These calculations are exhibited in figures 2.28 and 2.29, together with

polynomial extrapolations to the case N =∞. The temperature dependence is qualitatively similar to

that of the regular correlation length, but the scale is altered as the correlation functions with higher

q decay more rapidly. In terms of the eigenvalues, this corresponds to the largest eigenvalue |z(q)
0 |

in each subspace decreasing with increasing q. In the square lattice model, the reciprocal of each of

the correlation lengths must be equal to zero in the power-law correlated phase. For both the q = 2

and q = 3 cases the polynomial extrapolation predicts this behvaviour. It appears that all of the

eigenvalues z
(q)
0 become degenerate below the phase transition in the two-dimensional limit N →∞.
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Figure 2.28: Reciprocal correlation length corresponding to q = 2 for N = 2-6 (solid lines) together
with an extrapolation to N =∞. The upturn in the extrapolation close to the origin can be attributed
to the reduced accuracy of the calculations close to T = 0.
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Figure 2.29: Reciprocal correlation length corresponding to q = 3 for N = 2-6 (solid lines) together
with an extrapolation to N =∞. The upturn in the extrapolation close to the origin can be attributed
to the reduced accuracy of the calculations close to T = 0.

In the scaling hypothesis, it is assumed that close to the phase transition there is only a single

length scale, the correlation length ξ(4). We therefore expect that in the square lattice model all of the

correlation lengths ξq have the same critical behaviour. The derivatives of 1/ξ2 and 1/ξ3 with respect

to temperature are exhibited in figures 2.30 to 2.33. The temperature dependence is qualitatively

similar to that found in the derivatives of the ordinary correlaton length; although any emergence of

a sharp step in the first derivative is certainly far less apparent, particularly in the q = 3 case, the

second derivative shows a pronouced peak in both the q = 2 and q = 3 cases. The data is indicative

that the correlation lengths for higher q have a power law form close to the phase transition; the q = 2

and q = 3 cases appear to have critical exponents which are either the same as or close to the value of

the exponent for the ordinary correlation length indicated by the calculations in figures 2.25 to 2.27,

in agreement with the scaling hypothesis.
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Figure 2.30: First derivative of the q = 2 reciprocal correlation length with respect to T for N = 2-6.
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Figure 2.31: First derivative of the q = 3 reciprocal correlation length with respect to T for N = 2-6.
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Figure 2.32: Second derivative of the q = 2 reciprocal correlation length with respect to T for N = 2-6.
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Figure 2.33: Second derivative of the q = 3 reciprocal correlation length with respect to T for N = 2-6.

Of course, one can associate an analogue of the correlation lengths ξq with any eigenvalue of the
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transfer operator. We have calculated this quantity for the two next largest-modulus eigenvalues in

the m = 0 subspace; these calculations are exhibited in figure 2.34. Of these two eigenvalues, one is

symmetric and the other antisymmetric with respect to reversing the chirality of the spins, and in the

finite N system these eigenvalues cross each other at an N -dependent temperature.

We have calculated polynomial extrapolations to the case N =∞ of the correlation length for the

chiral-symmetric and chiral-antisymmetric eigenvalues independently; the results of the extrapolations

are shown in 2.35. The extrapolations suggest that both of these correlation lengths are zero in the

low temperature region below the phase transition, and therefore that the eigenvalues |z(0)
1 | and |z(0)

2 |

become degenerate with z0 in this phase.
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Figure 2.34: The correlation length corresponding to the second and third largest-modulus eigenvalues
in the m = 0 subspace, for N = 2-6. Of these two eigenvalues, one is chiral-symmetric (solid lines)
and the other is chiral-antisymmetric (dotted lines).
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Figure 2.35: The polynomial extrapolations of the correlation length corresponding to the chiral-
symmetric eigenvalue (solid line) and the chiral-antisymmetric eigenvalue (dotted line) obtained from
the N = 2 to n = 5 calculations.

2.4.6 Magnetic susceptibility

We now come to the calculations of the magnetic susceptibility, χ. To obtain this quantity we must

consider the situation where a magnetic field is applied to the system. We therefore consider the

Hamiltonian,

H = −J
∑

j

[cos (φj − φj+1) + cos (φj − φj+N )]−B
∑

j

cosφj . (2.197)

The addition of the magnetic field term to the Hamiltonian breaks the rotation symmetry of the model,

and consequently we can no longer extract this symmetry and represent the transfer operator in the

floating basis. This has the effect that the transfer matrix is significantly larger for the calculations of

the magnetisation than in other calculations. Because the use of the floating basis effectively reduces

the number of spin-parameters by one, the size of the matrix in the calculation for the finite-field

system of size N is essentially the same as that for the zero-field system of size N + 1. This alone

effectively restricts us to performing calculations to systems which are one smaller than for the previ-

ously discussed calculations, which in practice means that we have only performed calculations of the

magnetic susceptibility up to the value N = 6. In addition, it is found that the power method requires
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a large number of iterations to converge for the small values of the magnetic field which are necessary

in order to calculate the susceptibility accurately; this is an indpendent source of computational ex-

pense in comparison to the previous calculations, which has in practice limited us to calculations of

the magnetic susceptibility for up to N = 5, and even these calculations have not been completed at

low temperatures.

We use the power method to obtain the largest eigenvalue and corresponding eigenvector for par-

ticular values of the temperature and magnetic field, and these provide the magnetisation to machine

accuracy via the formula,

M =
1

βz0

〈f0| ∂∂B T̂ |f0〉
〈f0|f0〉

. (2.198)

The magnetic susceptibility is calculated as the derivative of the magnetisation with respect to the

applied field,

χ =
∂M

∂B
,

evaluated at zero-field. We calculate this derivative using similar difference formulae to those which

we have used to calculate the derivatives of the entropy or the derivatives of the inverse correlation

length. We calculate the magnetisation at the three values of the applied field B = h, B = 2h and

B = 3h, where h is a small number. The taylor expansion of the magnetisation about B = 0 provides,




M(h)

M(2h)

M(3h)




=




h
1

2
h2 1

6
h3

2h 2h2 4

3
h3

3h
9

2
h2 9

2
h3







χ

∂χ

∂B

∂2χ

∂B2




+O(h4),

from which we can deduce the approximate formula for the susceptibility,

χ ≈ 1

h

(
3M(h)− 3

2
M(2h) +

1

3
M(3h)

)
. (2.199)

The calculation of the reciprocal of the magnetic susceptibility is shown in figure 2.36, together

with the polynomial extrapolation to the limit of N =∞.
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Figure 2.36: The inverse magnetic susceptibility of the J1-JN planar rotator model for N = 2-5 (solid
lines), with a polynomial extrapolation to the case of N = ∞(blue dotted line). The vertical dotted
line indicates the estimated Kosterlitz-Thouless transition temperature, T = 0.89.

Much like with the correlation length, we can attempt to answer the question of whether the

magnetic susceptibility in the square lattice model exhibits the critical behaviour associated with a

regular phase transition,

1

χ
∼ (T − TC)

γ
,

by calculating its temperature derivatives. The first and second derivatives of 1/χ with respect to

temperature are shown in figures 2.37 and 2.38. The data are qualitatively similar to the first and

second temperature derivatives of 1/ξ (figures 2.26 and 2.27). The first derivative of 1/χ shows a steep

rise close to the transition temperature, and the second derivative exhibits a peak which grows as N

is increased. As in the case of the correlation length, this is evidence for the susceptibility having

the power law form close to the transition, with the critical exponent lying somewhere in the range

1 ≤ γ < 2. Again, the peak appears to be well-separated from the estimated value of the Kosterlitz-

Thouless transition temperature TKT , but is in close proximity to the peak in the second derivative

of 1/ξ, and both of these quantities, together with the derivatives of the entropy, suggest a consistent

picture of a regular phase transition.
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Figure 2.37: First derivative of the reciprocal magnetic susceptibility with respect to T for N = 2-5.
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Figure 2.38: Second derivative of the reciprocal magnetic susceptibility with respect to T for N = 2-5.
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2.4.7 Helical stiffness

We now come to the calculations of the helical stiffness. This quantity is the free energy cost incurred

by imposing an infinitesimal twisting of the spin-variables in the model. For the helical geometry which

we work with, we may impose a phase-twist in both the nearest-neighbour and Nth-nearest-neighbour

bonds, and we must consider the Hamiltonian,

H = −J
∑

j

[cos (φj − φj+1 − χ1) + cos (φj − φj+N − χN )] . (2.200)

The helical stiffness tensor is

Y =




∂2F

∂χ2
1

∂2F

∂χ1∂χN

∂2F

∂χ1∂χN

∂2F

∂χ2
N



, (2.201)

where all of the derivatives are evaluated for χ1 = 0 = χN .

There is a gauge symmetry in the J1-JN planar rotator model which reduces the helical stiffness

tensor to a single scalar. By making the gauge transformation φj → φj−jχ1 in the Hamiltonian 2.200,

one arrives at the Hamiltonian,

H = −J
∑

j

[cos (φj − φj+1) + cos (φj − φj+N +Nχ1 − χN )] . (2.202)

From this form, one can immediately observe that the case Nχ1 = χN provides the original Hamil-

tonian without any phase-twisting; this combination of phase-twisting is a gauge symmetry of the

Hamiltonian and the corresponding helical stiffness is equal to zero in this instance. Moreover, it is

clear that

∂2F

∂χ2
N

=
1

N2

∂2F

∂χ2
1

, (2.203)

∂2F

∂χ1∂χN
= − 1

N

∂2F

∂χ2
1

, (2.204)

and therefore the helical stiffness tensor is effectively reduced to Y = ∂2F
∂χ2

1
:

Y =




1 − 1

N

− 1

N

1

N2


Y. (2.205)
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The eigenvalues of the helical stiffness are Y‖ = 0, which corresponds to the gauge symmetry for

Nχ1 = χN , and the non-trivial Y⊥ = (1 + 1
N2 )Y . In the two-dimensional limit N →∞, Y⊥ = Y , the

meaning of which is that the eigenvalue of the helical stiffness corresponds to imposing a phase-twist

along one of the principal directions of the square lattice.

The calculations of the helical stiffness eigenvalue Y⊥ are shown in figure 2.39. At zero temperature,

the spin-configuration of lowest energy is to have the spins spiral, where the pitch of the spiral, or the

angle between neighbouring spins, is given by,

q =
χ

N2 + 1
. (2.206)

This corresponds to the eigenvalue Y⊥ taking the value one. It can be seen that the transfer matrix

calculations of Y⊥ are all aiming at the value one at low temperature. The curves are not continued

to the point T = 0 because the calculations cannot be performed using the transfer matrix method at

low temperature.

The helical stiffness has a steep drop in the vicinity of the phase transition, and this feature

becomes more abrupt as N is increased. In the picture of the Kosterlitz-Thouless transition, the

helical stiffness is predicted to discontinuously drop from the finite value 2JTKT /π, where TKT is

the Kosterlitz-Thouless transition temperature, to zero at the phase transition. In a regular phase

transition, a quantity which is identified as an order parameter continuously goes to zero at the critical

temperature with a power law temperature dependence.

The derivative of the helical stiffness eigenvalue Y⊥ with respect to temperature is shown in figure

2.40. If the helical stiffness jumps discontinuously to zero, then the derivative of the helical stiffness

with respect to temperature must exhibit a delta-function divergence at the point of the jump. For

finite N , the derivative shows a sharp trough in the vicinity of the phase transition which becomes more

pronounced with increasing N . The position of the trough in the derivative is always at a substantially

higher temperature than the estimated TKT , and for the values of N for which the calculation has

been performed the peak moves to still higher temperatures as N is increased. In the picture of the

Kosterlitz-Thouless transition, the position of the peak is expected to converge to sit on top of the

estimated value of TKT .

The posititon of the peak in ∂Y⊥
∂T for the largest value of N for which the calculation has been

performed is similar to the positions of the peaks in the second derivative of 1/ξ and the second

derivative of 1/χ; if one were to interpret the calculations as indicating a regular phase transition,
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these quantities are broadly consistent in indicating the corresponding critical temperature.
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Figure 2.39: The helical stiffness of the J1-JN planar rotator model for N = 2-6 (solid lines), with a
polynomial extrapolation to the case of N = ∞ (blue dotted line). The vertical dotted line indicates
the estimated Kosterlitz-Thouless transition temperature, T = 0.89.
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Figure 2.40: The temperature derivative of the helical stiffness of the J1-JN planar rotator model for
N = 2-6 (solid lines), with a polynomial extrapolation to the case of N = ∞(blue dotted line). The
vertical dotted line indicates the estimated Kosterlitz-Thouless transition temperature, T = 0.89.

2.4.8 Summary and Discussion

We have investigated the square lattice planar rotator model using the one-to-two dimensional crossover

technique. We have calculated the specific heat and the correlation length of the J1-JN planar rotator

model up to N = 7, the helical stiffness for up to N = 6 and the magnetic susceptibility for up to

N = 5. Although we have only calculated the thermodynamics for finite systems, the trends in the

data as the scaling parameter is increased consistently indicate that a regular phase transition will

occur in the square lattice model.

The features in the specific heat close to the transition become sharper with increasing N , and this

is seen much more dramatically in the derivatives of the specific heat with respect to temperature;

the data certainly indicate that some temperature derivative of the specific heat will become divergent

in the limit N → ∞. The strongest evidence for a regular phase transition with ordinary critical

exponents is found in the calculations of the correlation length and the magnetic susceptibility. The

first few derivatives of these quantities with respect to temperature very much appear to be tending

towards the form that would be associated with power law critical behaviour. From this viewpoint,
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the lowest order derivative of 1/ξ or 1/χ at which a strong peak is observed in the data provides a

bound on the associated critical exponents, and these are found to be 1 ≤ ν < 2 and 1 ≤ γ < 2. The

calculations of the specific heat, the correlation length and the magnetic susceptibility all suggest a

consistent picture of a regular phase transition with a transition temperature slightly higher than J .

The Kosterlitz-Thouless transition is predicted to occur at the lower temperature 0.89J .

The helical stiffness is predicted to exhibit a discontinuous jump from the value 2JTKT /π to zero

at the Kosterlitz-Thouless transition. Our calculations show that the helical stiffness does exhibit an

abrupt drop in this vicinity, but we are not able to ascertain whether this is a discontinuity or the

smooth change associated with a regular order parameter. The derivative of the helical stiffness with

respect to temperature appears to show that the decrease in the helical stiffness coincides with the

sharp features in the thermodynamics and not the Kosterlitz-Thouless transition temperature.

We have performed polynomial extrapolations of the data to attempt to estimate the two-dimensional

solution. At temperatures removed from the phase transition, this produces the behaviour we expect

of the square lattice model; this is most evident in the low-temperature extrapolation of the correla-

tion length. In the vicinity of the transition however the extrapolation fails and this failure is most

emphatic in the case of the specific heat, which shows features that are surely unphysical.

This work is complementary to the investigations of the clock models reported in A. M. Cave’s

thesis(29). The results of his calculations are entirely consistent with the present planar rotator

calculations regarding the nature of the planar rotator phase transition; furthermore his work actually

constitutes stronger evidence for the same conclusion, as the calculations have been performed for

larger systems, up to N = 11.

The only aspect of the one-to-two dimensional crossover technique that is not under control is the

extrapolation to the two-dimensional limit. It is possible that there is some large value of N which we

cannot reach with the computing power currently available to us at which the trends in the quantities

we have calculated change and the thermodynamics do not diverge in the two-dimensional limit. In this

scenario, if we could perform the calculation at this value of N we would see the Kosterlitz-Thouless

transition emerge in the calculations. This of course raises the question of how big this value of N

would have to be, and at present we have no ideas regarding how to guess this.

We are of course aware of the degree of consensus that the square lattice planar rotator model

exhibits a Kosterlitz-Thouless transition and the fact that our calculations show evidence of a quite

different picture puts us in a rather difficult position. To exacerbate this, the literature which deals
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with the lattice model itself, rather than related continuum models, is actually rather limited and in

many cases these works are consistent with either a Kosterlitz-Thouless transition or a regular phase

transition(28; 26).

Even if the implications of our work were to be taken at face value, we do not regard this as con-

tradictory to Kosterlitz-Thouless per se. The implication would be that the thermodynamic functions

in the square lattice model simply have an ordinary singularity, with an associated set of ordinary

critical exponents, and that this supercedes the Kosterlitz-Thouless mechanism which would control

the physics in the absence of this singularity, as it does in the Gaussian model which is obtained as

the continuum limit. One could say that Kosterlitz-Thouless is simply not relevant to this particular

model.

The implication of our interpretation that a regular phase transition occurs in the model is that

ordinary power law singularities can occur in systems in which long range order is forbidden by the

Mermin-Wagner theorem. We briefly mention some physical ideas by M. W. Long concerning this.

He suggests that the question that should be asked of a spin system is whether the number of spins

parallel to a given spin j on average,
∑

j′

〈~Sj · ~Sj′〉,

is divergent. This may be approximated by

∑

j′

〈~Sj · ~Sj′〉 ∼
∫ R

r0

rK(r)dr

where K(r) is the asymptotic form of the spin-spin correlation function at long range and R is the

system size, and this is understood to be in the limit R → ∞. r0 is some nonzero length that is

included to prevent the integral diverging at the lower limit. For exponential correlations K(r) = e−r/ξ

the integral is always finite, for any finite nonzero correlation length ξ. Conversely, for power law

correlations K(r) = r−η the integral diverges in the limit R → ∞ for η ≤ 2. M. W. Long suggests

therefore, that there is in fact a spontaneously broken symmetry in the power-law phase of the planar

rotator model, and there are a divergent number of spins pointing in the symmetry-broken direction

on average. The physical suggestion then is that there can be spontaneously broken symmetry, and

corresponding to this an ordinary phase transition, associated with the behaviour of a divergent number

of spins across the entire system, even in the absence of a finite magnetisation.
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Appendix A

Supplementary remarks on the

Ising model exact solution

In this appendix we provide some discussion of the inequality 2.111,

∏

k+

(√
1 +W‖ −W⊥ cos k+ +

√
1−W‖ −W⊥ cos k+

)

>
∏

k−

(√
1 +W‖ −W⊥ cos k− +

√
1−W‖ −W⊥ cos k−

)
.

We believe this equality to always hold, although we are only aware of how to prove this mathematically

for the special case J‖ = J⊥ = J . Here we present numerical calculations of the ratio of the two terms

in the inequality, and we give the mathematical proof of the inequality for J‖ = J⊥ = J .

Figure A.1 shows some examples of the ratio of the two terms in the inequality evaluated on the

computer. In these calculations, one never finds the product over k− to be larger than the product

over k+, but frequently the two quantities are found to be equal to machine accuracy. We conjecture

that in such cases the separation of the two quantities is extremely small but still finite, and that the

inequality always holds.
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Figure A.1: The ratio of the right hand side of the inequality 2.111 to the left hand side, as a function
of temperature (in units of J‖) for N = 20, for the cases J⊥/J‖ = 1 (red line), J⊥/J‖ = 2 (blue line)
and J⊥/J‖ = 1/2 (green line).

We have constructed a proof of the inequality 2.111 in the particular case that J‖ = J⊥ = J . In

this instance, we consider the quantity,

R (W ) =

∏
k−

(√
1 +W −W cos k− +

√
1−W −W cos k−

)
∏
k+

(√
1 +W −W cos k+ +

√
1−W −W cos k+

) , (A.1)

where

W =
sinh 2βJ

cosh2 2βJ
,

and we seek to prove that this quantity is less than unity for finite temperatures, which corresponds

to the parameter W lying in the range 0 < W ≤ 1/2. The lower limit W = 0 corresponds either to

the case of zero or infinite temperature, and the upper limit W = 1/2 corresponds to the transition

temperature. We shall show that the derivative of R with respect to W is always less than zero; in

conjunction with the clear result that R is equal to one for W = 0, this completes the proof.
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It is most convenient to describe the derivative of R with respect to W in terms of the logarithm

of R: one finds the rather simple formula,

∂

∂W
lnR =

1

2W
(Γ+ − Γ−) , (A.2)

where

Γ± =
∑

k±

1√
1 +W −W cos k±

√
1−W −W cos k±

. (A.3)

We shall represent the various factors in the summands as expansions in the variable eik± , so that the

sums over the sets of wavenumbers can then be evaluated using the property,

∑

k±

eimk± = N
∞∑

r=−∞
(∓1)

r
δm+rN . (A.4)

Now, the two factors in the denominator of the summand in the expression A.3 can be written as,

1 +W −W cos k =
W

2ξ
(1− ξeik)(1− ξe−ik),

1−W −W cos k =
W

2η
(1− ηeik)(1− ηe−ik),

(A.5)

where the variables ξ and η satisfy the quadratic equations,

ξ2 − 2

(
1

W
+ 1

)
ξ + 1 = 0,

η2 − 2

(
1

W
− 1

)
η + 1 = 0.

(A.6)

For 0 < W ≤ 1/2, both of these equations always have a solution which lies between zero and unity,

except for the upper limit at which the latter quadratic has the repeated root of unity. For all points

other than at the phase transition, therefore, we may safely assume that the variables ξ and η have

values which are between zero and unity, and consequently we are permitted to expand the factors in

the denominator as infinite power series, employing the result,

1√
1− t =

∞∑

m=0

(2m)!

(2mm!)
2 t
m for |t| < 1. (A.7)

However, it is found that the mathematics is greatly simplified by instead first removing the square
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root entirely by making use of the identity,

∫ π

−π

dφ

2π

(
1

1− t cos2 φ

)
=

1√
1− t . (A.8)

If one now expands the integrand in this expression in powers of t, one obtains the result,

1√
1− t =

∫ π

−π

dφ

2π

∞∑

m=0

(
t cos2 φ

)m
. (A.9)

Writing the factors in the summand in equation A.3 in this way, one can perform the summation over

the set of wavenumbers, and one can then proceed to re-sum the resulting expression. The utility of

making use of the expansion A.9 is that all of the terms that shall occur are geometric series, allowing

the resummation to be performed trivially. Applying the factorisations A.5 and the expansion A.9,

one obtains the expansion of the denominator to be,

1√
(1 +W −W cos k±)(1−W −W cos k±)

=
2

W

√
ξη

∫ π

−π

dφ

2π

∫ π

−π

dθ
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(A.10)

It is useful to introduce the new summation indices l = m+m′ and l′ = n+ n′ in place of the indices

m′ and n′. Performing the summation over the wavenumbers using the result A.4, one then obtains

the result,
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(A.11)
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Using the delta function in this expression to eliminate the summation over l′ provides,
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which we may re-write in the form,
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It is now trivial to evaluate each of the geometric sums in this expression to provide,
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The integrals over φ and φ′ can be performed using the identity A.8 to obtain the form,
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where

F±(z) =
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Finally, we obtain,

∂
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lnR =

N

W 2
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where

F (z) = F+(z)− F−(z) = − 1√
(1− ηz)(1− ξz)

4zN

1− z2N
. (A.18)

The integrand in the double integral in equation A.17 is always equal to the derivative of the functon

147



F (z) evaluated for some value of z in the range 0 < z < max(ξ, η), and is therefore always less than

or equal to zero because F (z) is a monotonic decreasing function in the range 0 < z < 1. Therefore

the integral itself is always less than zero, and consequently the derivative of the quantity R is always

less than zero. This completes the proof of the inequality 2.111 for the particular case of J⊥ = J‖.
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Part II

Metamagnetism in Bilayer

Strontium Ruthenate Sr3Ru2O7
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We have investigated the metallic compound Sr3Ru2O7 using mean field theory. This compound

is a paramagnetic metal on the edge of a ferromagnetic instability, and the system can be driven

to itinerant ferromagnetism with the application of a magnetic field. This transition takes the form

of metamagnetism, an abrupt jump in the curve of magnetisation versus field. The ferromagnetic

instability is an example of a quantum critical point, and Sr3Ru2O7 has received a great deal of

interest because it provides an experimental realisation of quantum criticality. In particular, it is

one of the archetypal exhibitions of the formation of a novel electronic phase in the vicinity of a

quantum critical point. In the region of the metamagnetic transition, there occurs an electron nematic

phase characterised by large anisotropy in the electronic transport, and this is accompanied by an

incommensurate spin density wave ordering.

We have constructed a Hubbard-type model for the Ru conduction electrons, and we have shown

that a Hartree-Fock mean field theory solution of this model produces a metamagnetic transition

which agrees quantitatively with what is observed in the real material. The electronic structure of

the material consists of both two-dimensional and one-dimensional Fermi surfaces. Our work points

to the conclusion that the metamagnetic transition is associated with the disappearance of one of the

one-dimensional Fermi surfaces. This is in contrast to some existing literature which puts forth the

view that the transition is associated with the logarithmic singularity in the density of states in the

two-dimensional band-structure. In the near-vicinity of the transition, the mean field theory predicts

that the system will phase-separate into low-magnetisation regions, where all of the Fermi surfaces are

present, and high-magnetisation regions where one of the one-dimensional Fermi surfaces has vanished.

We suggest that this phase separation corresponds to the nematic phase.
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Chapter 3

Background

This part of the thesis concerns work on modelling the metamagnetism that occurs in the metallic

perovskite ruthenate Sr3Ru2O7. This compound is a member of the Ruddlesden-Popper series of

layered perovskites Srn+1RunO3n+1; the crystal structure of this series consists of stackings of n RuO2

planes interspersed with planes of SrO; this structure is repeated in the c-axis direction with the

neighbouring n-fold stackings separated by two SrO layers. The members of this series to have been

successfully synthesised are the single-layer n = 1, the bilayer n = 2, the triple-layer n = 3 and the ideal

perovskite SrRuO3 which corresponds to n = ∞. The single-layer compound is a metal and exhibits

p-wave superconductivity below about 1K(50; 51), while the the n = 3 and n =∞ compounds are also

metallic and exhibit itinerant ferromagnetism(52; 53; 54; 55). The bilayer compound is a metal sitting

on the edge of a ferromagnetic instability, and a transition in to the ferromagnetic state can be induced

with the application of a magnetic field. This takes the form of a metamagnetic transition, wherein

the magnetisation exibits an abrupt jump at some critical applied field(56; 57). The metamagnetism

in Sr3Ru2O7 has been the subject of much interest because it occurs in the vicinity of a quantum

critical point: the metamagnetic transition is first order, and the critical point which terminates

the line of metamagnetic transitions in phase space occurs at a temperature close to zero, and is

therefore a quantum critical point(58; 59; 60; 61). This material also exemplifies the phenomenon of

the appearance of a novel electronic phase in the vicinity of a quantum critical point. In the region of

the metamagnetism, there occurs a so-called electronic nematic phase characterised by large anisotropy

in the transport properties in the basal plane, together with the existence of an incommensurate spin

density wave ordering(62; 63).
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The actual modelling will be described in the next chapter. This chapter provides the necessary

background for this work, of which there are three kinds of material: key aspects of Sr3Ru2O7, such

as its crystal structure, which are a pre-requisite to the modelling; the particular experimental results

which we aim to model, namely the metamagnetic jump exhibited in the plot of magnetisation versus

applied magnetic field; and an overview of a whole set of experimental results which have attracted

attention towards Sr3Ru2O7 as an interesting system, which provide the motivation for our work. The

latter includes signatures of quantum criticality in form of deviations in the temperature dependence

of bulk quantities from the Fermi liquid form, and the signatures of the electronic nematic phase, the

most notable of which are dramatic step-like changes in the in-plane resistivity, and large anisotropy

in this quantity when the magnetic field has an in-plane component.

The order of topics to be dealt with is as follows. In section 3.1 we describe the crystal structure of

Sr3Ru2O7. Section 3.2 covers the Fermi surface and the density of states. The Sr3Ru2O7 Fermi sur-

face is quasi two-dimensional, but in addition the electronic structure has features which are strongly

one-dimensional. This is discussed by means of exhibiting angle-resolved photoemission spectroscopy,

quantum oscillations experiments, scanning tunnelling microscopy and density functional theory cal-

culations. The electronic structure of the single-layer compound Sr2RuO4 is also discussed, as this

provides a way of introducing features in the more complicated electronic structure of Sr3Ru2O7 very

clearly. Sections 3.1 and 3.2 both contain essential pre-requisites for our modelling of Sr3Ru2O7 in the

next chapter.

In section 3.3 we deal with the experiments relating to metamagnetism and quantum criticality.

We begin by exhibiting the magnetisation itself, which shows metamagnetism, which is an abrupt

jump in the magnetisation with field. This plot, of magnetisation versus applied field, is the primary

behaviour that we seek to emulate with our model in the next chapter. Conversely, the remainder

of this section is not directly related to the modelling, as the experiments dealt with concern effects

which we simply do not include in our model, such as the effect of finite temperature. We discuss how

the metamagnetism is related to a quantum critical point, and place Sr3Ru2O7 in the context of a

phase diagram which applies to a variety of systems which exhibit itinerant magnetism. We discuss

the effects of applying pressure to the system and of changing the orientation of the applied magnetic

field, both of which act as tuning parameters which can be used to drive the system towards quantum

criticality. We conclude this section with a series of experiments which show evidence of quantum

criticality in the vicinity of the metamagnetism, which amounts to the apparent divergence of some
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bulk quantity, or a deviation from normal metallic behaviour. We discuss the electrical resistivity, the

nuclear spin relaxation time as measured by nuclear magnetic resonance, the coefficient of thermal

expansion, the specific heat, effective masses measured in quantum oscillations experiments and the

Gruneisen parameter.

In section 3.4 we deal with experiments relating to the nematic phase which occurs in proximity to

the underlying QCP in sufficiently clean Sr3Ru2O7 samples. We first deal with the signatures of the

nematic phase for magnetic fields applied in the c-axis direction, these being the occurrence of two first

order phase transitions, which mark the boundaries of the nematic phase, and the in-plane electrical

resistivity which shows step-like jumps ∼ 50% of its value on entering and leaving the nematic phase.

We then move on to experiments which apply a field at a small angle to the c-axis so as to produce

a small field component along one of the in-plane principal crystal axes. This produces dramatic

anisotropy between the two in-plane directions, which is exhibited in the electrical resistivity and

the thermal expansion. Our modelling will not directly address any of these experiments. However,

the result of our modelling will imply the existence of a phase-separated state in the vicinity of the

metamagnetism, which we postulate to correspond to the nematic phase.

Section 3.5 concerns the incommensurate spin density wave that is observed in the vicinity of the

metamagnetism. We exhibit neutron scattering data which reveals the presence of the spin density

wave and discuss the effect of the direction of the applied magnetic field. For the fields parallel to

the c-axis, spin density waves are found propagating along both of the in-plane principal axes, but

introducing a small field component along one of the in-plane axes eliminates the propagation in the

perpendicular in-plane direction. Again, these experiments do not directly relate to our modelling.

Finally, in section 3.6 we discuss the results of an experiment which dopes the material with

electrons by substituting a small number of Sr atoms with La atoms. The principal experimental

measurements are the specific heat, which is found to be highly sensitive to the doping, and the

electrical resistivity. The effect of doping the system with electrons is something which we have direct

access to in our modelling, and we shall devote some space to discussing this in the next chapter.

3.1 Crystal Structure

The crystal structure of Sr3Ru2O7 is shown in figure 3.1. This compound is one of the Ruddlesden-

Popper series of layered perovskites Srn+1RunO3n+1. The Ruddlesden-Popper series is a series of

crystal structures found for materials with chemical formulae An+1BnO3n+1, where B is very often
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a transition metal. The leading order crystal structure is composed of stackings of BO2 planes and

AO planes which are both structured on underlying square lattices of the same lattice constant. The

BO2 plane has B atoms at the lattice points of the underlying square lattice and O atoms sat halfway

between each nearest neighbour pair of B atoms; the AO plane has O atoms at the lattice points of

the underlying square lattice and A atoms at the lattice points of the dual square lattice, which are in

the centre of the squares formed by four closest lattice points. The Ruddlesden-Popper structure has

n BO2 planes stacked on top of each other interspersed with AO planes, with the O atoms in the AO

planes lying on top of the B atoms in the adjacent plane, so that there is an O atom lying half-way

between all nearest neighbour pairs of B atoms. The n-fold stackings of BO2 planes are bookended

by spacer layers of two AO planes which are out of phase with each other, that is the A atoms in

the top plane sit on top of the O atoms in the bottom plane, following which there is another n-fold

stacking of phase shifted BO2 planes and the structure is repeated in the c-direction. As emphasised

in figure 3.1, the B atoms sit in an octahedron of neighbouring O atoms. The n = ∞ member of the

Ruddlesden-Popper series has the simplified chemical formula ABO3 and consists of in-phase stacked

BO2 planes with interspersed AO planes repeated up the z-axis; this is known as the ideal perosvskite

crystal structure. Sr3Ru2O7 is the n = 2 member of the Ruddlesden-Popper series, and so has bilayers

of RuO2 repeated in the c-axis direction.
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Figure 3.1: Crystal structure of Sr3Ru2O7

In real materials, structural distortions of this simple crystal structure arise in the form of rotations

and deformations of the O octahedra. In Sr3Ru2O7, the octahedra are rotated about the c-axis through

an angle of approximately 6.8 degrees, with the sense of rotation of each octahedra being opposite to

that of all its neighbouring octahedra(64). The structure of the RuO2 planes resulting from this

distortion is shown in figure 3.2.

Figure 3.2: Illustration of the 6.8 degrees rotation of the O octahedra in one of the RuO2 planes.
(Taken from reference (65)).

161



3.2 Fermi Surface and Density of States

The neighbouring n-fold stackings of RuO2 layers in the crystal structure Srn+1RunO3n+1 are largely

isolated from each other due to the intermediate SrO spacer layer and because the positioning of the

neighbouring stackings is out of phase. The electronic structure of the low-n members of the series

is therefore strongly two-dimensional. We regard the Sr3Ru2O7 Fermi surface as a two-dimensional

object throughout this thesis.

In addition, the electronic structure also has strongly one-dimensional characteristics due to weak

hybridisation of the relevant Ru orbital states in certain crystallographic directions. We discuss this

in more detail in the context of building a model for Sr3Ru2O7 in the next chapter in section 4.3,

but for the present we wish to focus on the experiments and so merely state the important points.

The relevant electron states are the t2g cubic harmonic wavefunctions, dxy, dyz and dzx, which are

three mutually perpendicular orientations of the same orbital aligned with the three crystallographic

directions. The symmetry of the wavefunctions is such that hybridisation between neighbouring Ru

sites in one of the three crystallographic directions is strongly suppressed; the dxy electrons are mobile

in the x and y directions but not in the z direction, and so on. The dyz and dxz electrons are only

mobile in one of the in-plane directions and therefore are essentially one-dimensional.

We introduce the Sr3Ru2O7 Fermi surface by way of the Fermi surface for the single-layer compound

Sr2RuO4(66). Observe figure 3.3 which shows a measurement of the Sr2RuO4 Fermi surface obtained

using Angle Resolved Photoemission Spectroscopy (ARPES). To leading order, the image shows lines

of Fermi surface intersecting the kx and ky axes at (±k∗, 0) and (0,±k∗), which are the dyz and dzx

Fermi surfaces, and a quasi-circular Fermi surface associated with the dxy orbital; there is a qualitative

correction to this simple picture in the form of band reconstruction where these Fermi surfaces cross,

close to the four corners in figure 3.3. To get from this picture to the Sr3Ru2O7 Fermi surface there

are primarily two modifications. Firstly the mobility of the dyz and dzx electrons between the upper

and lower RuO2 layers results in each of their Fermi surfaces being split - this is often referred to as

bilayer splitting(66) - so that there are twice as many horizontal and vertical Fermi surface sheets.

Secondly, the twisting of the O-octahedra discussed above has the effect of doubling the size of the

unit cell in the RuO2 plane, and corresponding to this there is a backfolding of the Fermi surface, in

the form of a reflection in the diagonal lines connecting the points (±π, 0), (0,±π). This provides a

decent description of the Sr3Ru2O7 Fermi surface; an ARPES measurement of the Fermi surface is

shown in figure 3.4.
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The experimental Fermi surface is one of the most relevant ingredients for our modelling of

Sr3Ru2O7, and in the next chapter much attention is given to how to make the Fermi surface in

our model agree qualitatively with the experiments. We will not include the effect of the twisting of

the octahedra and the associated Fermi surface reconstruction, but apart from this facet our model

does provide a Fermi surface much like the real material.

Figure 3.3: ARPES image of the single layer compound Sr2RuO4 Fermi surface. (Taken from reference
(67)).

Figure 3.4: Angle-resolved photon emission spectrography image of the Fermi surface of Sr3Ru2O7.
(Taken from reference (65)).

A great deal of information regarding the Fermi surface is obtained in quantum oscillation experi-

ments. There have been a number of quantum oscillations studies of Sr3Ru2O7(68; 66); there are five

distinct Fermi surface sheets observed in Sr3Ru2O7 associated with the Ru t2g orbitals(66), but the

effect of backfolding due to the lattice distortion and the reconnections that occur at the crossing points

of distinct Fermi surfaces has the effect of making it difficult to associate the sheets seen in quantum

oscillation experiments with the individual bands which we deal with at the level of our modelling.

These issues are far less severe if one examines the single layer compound Sr2RuO4. Here quantum

oscillations finds just three distinct Fermi surface sheets, two of which are essentially mixtures of the

dyz and dzx orbitals, and the third of which is attributed almost entirely to the dxy orbitals(69). The
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most significant observation from the point of view of our modelling is that the effective mass deduced

for the dxy-associated Fermi surface sheet is approximately double the size of that for the dyz/dzx

bands (see figure 3.5). It is a straightforward matter to incorporate the dxy particles having a larger

effective mass than the the dyz and dzx particles into our modelling, and section 4.6.4 in the next

chapter is devoted to investigating this.

Figure 3.5: Left: The effective masses associated with each of the three distinct Fermi surface sheets
in the single layer compound Sr2RuO4 as functions of an applied magnetic field.
Right: Illustration of the Sr2RuO4 Fermi surface with key to the labelling of the three sheets.
(Both figures taken from reference (69)).

The densities of states of one- and two-dimensional systems exhibit singularities, which are known

as van Hove singularities. There are therefore associated with the quasi-one- and quasi-two-dimensional

character of the dyz/dzx and dxy bands respectively sharp peaks in the Sr3Ru2O7 density of states. In

particular, measurements of the density of states by both scanning tunnelling microscopy (STM)(70)

(shown in figure 3.6) and ARPES(65) show the presence of peaks within a few meV of the chemical

potential. The presence of a van Hove singularity in proximity to the chemical potential is a well-known

scenario in which a metallic system can be driven to an itinerant ferromagnetic state, this mechanism

famously being known as Stoner ferromagnetism. The implication is that Sr3Ru2O7 is close to such a

magnetic instability, and this provides a possible explanation for the exhibition of metamagnetism by

this material, which we describe below.
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Figure 3.6: Scanning Tunnelling Microscopy differential conductance as a function of bias voltage; this
quantity is proportional to the electronic density of states where the bias voltage in V corresponds
to the distance from the Fermi level in eV . The figure clearly shows peaks at −3meV and +4meV .
(Both figures taken from reference (70)).

Another important component of the literature regarding the Fermi surface of Sr3Ru2O7 is density

functional theory (DFT). The calculations that are the easiest to interpret are the calculations of

the density of states. These calculations support the picture of quasi-one- and quasi-two-dimensional

electronic structure arising from the dyz/dzx and the dxy orbitals respectively. As in the case of

the experimental Fermi surface, this is seen much more easily in the single layer compound Sr2RuO4.

Figure 3.7 shows the density of states associated with individual Ru orbitals for Sr2RuO4. The dyz/dzx

density of states has the qualitative from associated with a one-dimensional linear chain with nearest

neighbour hybridisation. The dxy density of states has the qualitative form expected from a tight-

binding model on a square lattice (see appendix B).
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Figure 3.7: Density functional theory calculations of the density of states for the single layer compound
Sr2RuO4. (Taken from reference (71)).

A DFT calculation of the individual orbital components of the Sr3Ru2O7 density of states is

shown in figure 3.8. The hybridisation of dyz/dzx orbitals between the upper and lower part of the

bilayer renders their density of states more complicated, but the dxy density of states is qualitatively

the same as seen in the single layer compound as we would expect. The feature of this calculation

that is particularly relevant to our modelling is that the van Hove singularity in the dxy density

of states is found in close proximity to the chemical potential. This is line with the ARPES and

STM experiments which show van Hove singularities close to the chemical potential in Sr3Ru2O7.

Because this is consistently observed in DFT works(72; 73), it has been suggested by a number of

authors that the metamagnetism in Sr3Ru2O7 is controlled by the dxy band in a picture of Stoner

ferromagnetism(74; 75; 65). We suggest a picture of a Stoner ferromagnetic instability that is rather

controlled by the dyz/dzx bands. This issue of which of these bands is dominant in the metamagnetism

is one of the major issues which we attempt to address in our modelling in the next chapter.
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Figure 3.8: Density of states for different bands in Sr3Ru2O7 calculated using density functional theory.
The important features for our modelling in the next chapter are the densities of states of associated
with the individual dxy, dyz and dzx in the middle and bottom sections of the figure. The middle and
bottom sections show two different DFT calculations. (Taken from reference (73)).

3.3 Metamagnetism and Quantum Criticality

Measurements of the magnetisation of Sr3Ru2O7 versus applied magnetic field are shown in figure 3.9.

At low temperatures, the magnetisation induced by an externally applied magnetic field exhibits an

abrupt increase at a field of approximately 8 Tesla if the field is applied in the c-axis direction and

approximately 5 Tesla if the field is applied in the in-plane direction. This phenomenon is the main

target of our modelling in the next chapter. Our model can exhibit a metamagnetic jump, where the

increase in the magnetisation matches the experiments quite well, although we shall not be able to

predict the magnetic field at which the metamagnetic jump occurs, or the dependence on the direction

of the applied field.
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Figure 3.9: Measurements of the magnetisation of Sr3Ru2O7 as a function of applied magnetic field
showing the metamagnetism. Main figure: field applied in the in-plane direction. Inset: field applied
in the c-axis direction. The metamagnetism is exhibited in both cases but occurs at a smaller field for
the in-plane field than for the c-axis field. (Taken from reference (56)).

Sr3Ru2O7 is positioned in the Ruddlesden-Popper series Srn+1RunO3n+1 between the single layer

compound, which is nonmagnetic, and the ideal perovskite SrRuO3 which is an itinerant ferromagnet.

It therefore seems reasonable that one should think of the metamagnetism as being the manifestation

of Sr3Ru2O7 being “almost ferromagnetic”: the system is on the edge of the ferromagnetic instability,

and can be pushed ferromagnetic with the application of a magnetic field. The triple layer compound

Sr4Ru3O10 also exhibits metamagnetic transitions in response magnetic fields applied in the in-plane

direction, and these occur at lower fields than for the bilayer compound, suggesting a consistent picture

of the whole series with the triple-layer compound lying in even closer proximity to the ferromagnetic

instability. With regard to this last point, it should be noted that the magnetic characteristics of the

triple-layer compound are significantly more complicated than the bilayer system: there is an ordered

ferromagnetic moment in the c-axis direction at zero-field, and the metamagnetic transitions only occur

for in-plane fields(76).
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Figure 3.10: The phase diagram generic to a number of systems which exhibit itinerant ferromagnetism
in the space of temperature (T ), magnetic field (h) and pressure (p). For smaller values of the pressure
p, there is a second order phase transition between paramagnetic (PM) and itinerant ferromagnetic
(FM) states. Increasing p reduces the transition temperature. The line of second order phase transi-
tions bifurcates at the tricritical point (TCP) into two lines of first order transitions. A line of first
order transitions must always end at a critical point; for the case depicted both critical points lie at
zero temperature and are therefore quantum critical points (QCP). (Taken from reference (77)).

Sr3Ru2O7 is viewed in the context of the phase diagram shown in Figure 3.10. A large number

of materials which exhibit itinerant ferromagnetism are thought to have phase diagrams of this form.

ZrZn2, for example, undergoes a second order phase transition, at a transition temperature 28.5 Kelvin,

from a paramagnetic phase to an itinerant ferromagnetic phase(78): this paradigm corresponds to the

left hand side of the phase diagram. By applying pressure to the system, the transition temperature is

reduced, and there is a corresponding line of second order phase transitions in the h = 0 plane on the

phase diagram. At a pressure of 16.5kbar, below the line of second order phase transitions the magnetic

moment is found to disappear discontinuously(79). The line of second order transitions splits, at what

is called the tricritical point, into two lines of critical points which move away from the h = 0 plane.

There are associated surfaces of first order transitions, which are accompanied by metamagnetic jumps

in the magnetisation. The surfaces, often described as “wings”, are the surfaces which join the lines of

second order transitions to the T = 0 plane perpendicular to that plane(77). Any crossing of one of the

wings in the T -p-h space corresponds to a first order transition and a metamagnetic jump(80). It is

to be expected that the system in question has an inversion symmetry along some axis, and therefore
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that provided the magnetic field is applied along this axis, the two wings in the phase diagram are

reflections of each other in the h = 0 plane. At a given fixed pressure, cutting through one of the wings

produces a line of first order transitions in the T -h space which end in a critical point, and this critical

point is pushed to lower temperatures with increasing pressure. In principal the critical point can be

pushed to zero temperature; the behaviour in its vicinity is then governed by quantum fluctuations

rather than thermal fluctuations and it is said to be a quantum critical point (QCP).

The behaviour of Sr3Ru2O7 can be viewed as an example of this same phase diagram, where at

ambient pressure, the system is positioned past the tricritical point and in the vicinity of the QCP. The

situation is slightly different for the cases where the magnetic field is in the c-axis direction or in the

ab-plane. The situation for fields in the c-axis is that is there is a line of first order transitions in the T -

h space which ends at a critical point which lies below 0.05 Kelvin(81), and at a field of approximately

7.9 Tesla. The situation for fields in the ab-plane has the critical endpoint at approximately 1.25

Kelvin(81) and 6.5 Tesla. The angle of the field direction with respect to the c-axis can therefore be

thought of as acting as a tuning parameter, in an analogous fashion to the pressure in figure 3.10. The

tuning of the end-point by the angle of the field, determined from measurements of the ac magnetic

susceptibilty(81), is shown in figure 3.11.

Figure 3.11: The surface of first order transitions exhibited by a sample of Sr3Ru2O7 in the phase
space of temperature, magnetic field modulus, and the angle of the field direction to the c-axis. The
positions of the phase transitions were determined by measurements of the ac magnetic susceptibility.
(Taken from reference (81)).

The picture of Sr3Ru2O7 in terms of the phase diagram in figure 3.10 is largely borne out by

170



experiments on the result of applying pressure to the system. In the situation of the magnetic field

applied in the ab-plane, measurements of the ac magnetic susceptibility(80) indicate that the endpoint

at 1.25 Kelvin can be tuned to close to zero temperature with the application of hydrostatic pressure.

This is illustrated in figure 3.12. This is also consistent with measurements of the resistivity(59) and

the dc magnetic susceptibility(82) for fields in the ab-plane. It should be noted that the application of

uniaxial pressure in the c-axis direction can actually drive the system ferromagnetic at zero field(83),

which is clearly some other effect which is not to be explained by the picture of figure 3.10.

Figure 3.12: The pushing of the end-point to zero-temperature by application of pressure, determined
from measurements of the ac magnetic susceptibility. (Taken from reference (80)).

Quantum phase transitions are fundamentally different from classical phase transitions, arising from

the fundamental differences between quantum and classical fluctuations. Field theoretic treatments of

quantum criticality, analogous to the well established field theories of classical criticality, predict that,

even at finite temperature, close to the quantum critical point quantum fluctuations can influence

the physics, and cause the behaviour of the system to deviate from ordinary metallic physics(84; 85).

Therefore quantum criticality is closely associated with exotic electronic behaviour. In addition to this

deviation from Fermi liquid behaviour as the QCP is approached, in real systems the QCP is often

masked on the phase diagram by a small region of some distinct phase, such as superconductivity(86).

In Sr3Ru2O7 a nematic electronic phase occurs, and this is discussed in the following section.

We now turn our attention to various experiments which show direct evidence that Sr3Ru2O7 lies
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in proximity to a QCP for fields in the c-axis direction. We begin with the electrical resistivity. In

an ordinary metal, at low temperature the temperature-dependence of the resistivity is given by the

law ρ = ρres +AT 2 where ρres and A do not depend on temperature; quantum criticality is often seen

in the temperature dependence being a power law which deviates from the quadratic. Figure 3.13,

taken from a study by Grigera et al(58), shows the results of fitting measurements of the resistivity to

the function ρ = ρres +ATα, where the ρres is determined as the zero-temperature resistance for each

applied field, A is calculated as the low-temperature limit of (ρ− ρres)/T
2 for each applied field, and

the exponent α is allowed to vary with both temperature and field. The colour plot of the exponent is

an example of one of the archetypal plots which shows signatures of quantum criticality: the exponent

is seen to deviate from the value 2 in the vicinity of the metamagnetism. The parameters ρres and A

are shown in the right hand side of the figure. Both exhibit a strong rise and possibly a divergence as

the metamagnetic field is approached; Grigera et al make the comment that this is very good evidence

for quantum criticality(58).

Figure 3.13: Results of fitting measurements of the electrical resisitvity to the function ρ = ρres +ATα.
Left: Colour plot of the exponent α, which is allowed to vary with both temperature and field.
Right: Plot of the temperature-independent parameters ρres and A as a function of field.
(Taken from reference (58)).

We next mention a Nuclear Magnetic Resonance (NMR) study of Sr3Ru2O7 by Kitagawa et al(87).

In a Fermi liquid, the NMR relaxation rate is proportional to temperature, and the coefficient of

proportionality is closely related to the parameter A, the coefficient of T 2 in the low temperature

expansion of the specific heat. Figure 3.14 overlays measurements of the relaxation rate divided

by temperature as a function of magnetic field for a number of isotherms, together with the very

same measurements of A as in figure 3.13; in the low and high-field regions the relaxation rate over
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temperature is independent of temperature as expected of a Fermi liquid, but in the metamagnetic

region the Fermi liquid behaviour breaks down.

Figure 3.14: The NMR relaxation rate divided by temperature plotted as a function of magnetic field
for three different temperatures, together with the parameter A plotted in figure 3.13. (Taken from
reference (87)).

Another quantity sensitive to the QCP is the thermal expansion. Figure 3.15 shows the linear

coefficient of thermal expansion in the c axis direction, which is the quantity(88)

d

dT

(
∆Lc
Lc

)
,

where Lc is the length of a single crystal of Sr3Ru2O7 in the c-axis direction and ∆Lc the change in

this length, and the figure plots this quantity divided by the temperature versus magnetic field. This

quantity is expected to change sign near a QCP; this is observed, with the expansion coefficient over

temperature displaying peaks which become more pronounced as the temperature is reduced. The

functional form of this quantity as a function of field matches the field theory prediction for a QCP,

apart from in the close proximity to the QCP itself where the nematic phase occurs.
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Figure 3.15: The coefficient of linear thermal expansion, symbol αc, divided by temperature as a
function of field for T = 0.2K (open circles) and T = 1.2K (filled squares). The green open circles

indicate T = 0.2K measurements for which ∂2αc
∂T 2 6= 0, which indicates non-Fermi liquid behaviour. The

red curve is a fit to the field theory prediction of the field-dependence of αc/T . (Taken from reference
(88)).

Signatures of quantum criticality can be seen in the specific heat. For a Fermi liquid, at low

temperatures the specific heat is proportional to temperature, and the coefficient of proportionality,

which is often given the symbol γ, is linear in the effective mass of the system. A large value of γ is

indicative that the system has strong correlations, and γ is predicted to diverge at a quantum critical

point. This parameter is found experimentally as where the curve of the specific heat divided by

temperature versus temperature intercepts the vertical axis. An example of this plot is shown in the

left hand side of figure 3.16, both in the zero-field case and for fields close to the metamagnetism. At

zero field, the γ value is approximately 100 in units of mJK−2 per mole of Ru. This value is slightly

more than twice as large as the values seen in Sr2RuO4 and SrRuO3(89), which is symptomatic of

the bilayer compound lying in proximity to quantum criticality, and places Sr3Ru2O7 as a moderate

strongly correlated system. By comparison, the strongly correlated heavy fermion materials are usually

categorised as such if their gamma value is greater than 400(90). The γ value is measured to roughly

double in the vicinity of the metamagnetism. The right hand panel of figure 3.16 plots the specific heat

divided by temperature versus magnetic field for a set of fixed temperatures. Sharp behaviour occurs

as the metamagnetic region is approached, and this becomes more pronounced as the temperature is

reduced. The data for 0.2 Kelvin are certainly broadly suggestive that the γ value diverges.
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Figure 3.16: The γ-factor of specific heat divided by temperature as an indicator of quantum criticality.
Left: C/T versus T for different fields. (Taken from reference (56)).
Right: C/T versus magnetic field for different isotherms. The solid blue curve is a fit to the field
theory prediction of the asymptotic form of C/T . (Taken from reference (61)).

The effective mass can also be targeted with quantum oscillations experiments, and one sees essen-

tially the same thing as indicated by the specific heat. Figure 3.17 shows the effective mass associated

with two particular Sr3Ru2O7 Fermi surface sheets obtained from de Haas-van Alphen oscillations.

These quantities appear to diverge in the vicinity of the metamagnetism. This is broadly consistent

with the picture indicated by the specific heat measurements; the effective masses diverge, and this is

a signature of the underlying quantum critical point.

Figure 3.17: The effective masses associated with two particular Fourier components of de Haas-van
Alphen oscillations as a function of a magnetic field applied in the c-axis direction. The two components
are indicated by filled and unfilled circles respectively. The divergence of the effective masses in the
vicinity of the metamagnetic transition is an indicator of the underlying quantum critical point. (Taken
from reference (91)).
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Finally, we mention measurements of the Gruneisen parameter Γ, which is given by(92),

Γ = − 1

C

dM

dT
,

where the quantities on the right hand side are to be evaluated with the magnetic field held constant.

This quantity is predicted to change sign and to diverge close to a QCP(61). Measurements of the

Gruneisen parameter are shown in Figure 3.18; the lefthand panel shows an isotherm of Γ as a function

of magnetic field which is strongly peaked at the metamagnetic jump. The right hand panel shows a

colour plot of Γ as a function of temperature and field, which shows that Γ changes sign crossing over

the metamagnetic region.

Figure 3.18: Left: Main figure: Gruneisen parameter as function of magnetic field for T = 0.2K. Inset:
Reciprocal of the Gruneisen parammeter; the red curve shows a linear fit.
Right Colour plot of the Gruneisen parameter in the phase space of temperature and field. Solid green
symbols indicate features in the Gruneisen parameter and empty green symbols indicate features in
curves of specific heat versus field. (Taken from reference (61)).

3.4 Electron Nematic Phase

For the case of a magnetic field in the c-axis direction, in the vicinity of the metamagnetism there

occurs a variety of exotic behaviour quite unique to this material. This includes sharp changes in

the electron transport as a function of the applied field, large anisotropy in the electron transport for

applied fields with an in-plane component, and the occurrence of spin-density waves. This is usually

interpreted in terms of the formation of some distinct electronic phase which occurs in close proximity

to the QCP in sufficiently clean samples of Sr3Ru2O7 and masks the close approach of the QCP: this is
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a familiar scenario in systems which have a QCP(86). Because this novel phase is chiefly characterised

by strong anisotropy, this phase has been called a nematic phase in analogy to the behaviour of certain

liquid crystals(93).

Our modelling, which is discussed in the next chapter, is not sophisticated enough to reproduce

any of the experimental results which empirically define the nematic phase. However, it does make

a prediction regarding the fundamental nature of this phase. Our model predicts that the system

will exhibit a metamagnetic jump and that in the vicinity of the metamagnetic jump, the system will

adopt a phase separated mixture of low- and high-magnetisation phases. We therefore postulate that

this mixed phase corresponds to the nematic phase observed in Sr3Ru2O7. This is discussed at great

length in the next chapter.

The occurrence of the nematic phase in Sr3Ru2O7 is manifested in the splitting of the first order

transition associated with that QCP into two first order phase transitions, which mark the boundaries

of the nematic phase. This is illustrated in figure 3.19 which shows the components of magnetic field

in the c-axis and in-plane directions at which first order phase transitions occur, for two samples of

Sr3Ru2O7 with differing levels of disorder. The dirtier sample always undergoes a single first order

transition, but the cleaner sample shows a single transition for the field in the ab-plane, which splits

into two closely positioned transitions as the field is tilted towards the c-axis. Figure 3.20 shows the

corresponding picture of the transitions in the phase space of temperature, field, and the angle of

the field to the c-axis; this is to be compared with figure 3.11 and is a version of that figure for a

cleaner sample of Sr3Ru2O7 which shows two phase transitions and the nematic phase. Figure 3.20

reveals a quite complicated picture: whereas in the case of only a single transition the angle of the field

essentially acts as a tuning parameter which monotonically pushes the endpoint to zero temperature,

the appearance of the second transition in the cleaner system marks a change in the trajectory of the

endpoint, and the angle appears to push the endpoints corresponding to both transitions to higher

temperatures.
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Figure 3.19: The positions of first order phase transitions plotted against the components of the applied
magnetic field in the c-axis direction and in the ab-plane, for two different Sr3Ru2O7 samples, at a
fixed temperature of 0.1 Kelvin. The two samples are labelled by their resistivities, which are given
in the top right of the figure; the high-resistivity (and therefore high-disorder) sample always exhibits
a single transition, but for the low-resistivity (and therefore low-disorder) sample there is a single
transition for the field in the ab-plane which splits into two closely positioned positions as the field is
tilted towards the c-axis direction. (Taken from reference (93)).

Figure 3.20: Two surfaces of first order transitions observed in a sample of Sr3Ru2O7 from ac magnetic
susceptibility measurements. Compare with figure 3.11 and see its caption; the present figure applies
to a Sr3Ru2O7 sample with less disorder than the sample in figure 3.11. (Taken from reference (94)).

The dramatic increase in the resistivity in the vicinity of the metamagnetism is exhibited in figure

3.21. The resistivity approximately doubles from a flat value in a step-like change at approximately 7.9

Tesla, and drops to a different flat value in a second step at approximately 8.1 Tesla. The flat resistivity

in the high-magnetisation state is larger than that in the low-magnetisation state. In addition, a curious
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feature of this figure is that the resistivity actually slightly descreases before the first step-like jump.

Figure 3.22 overlays another example of this same plot with plots of the real and imaginary parts

of the AC susceptibility. The susceptibility shows sharp peaks which match up extremely well with

the features in the resistivity. The two peaks in the imaginary part of the susceptibility, which occur

in concord with the two step-like changes in the resistivity, are interpreted as indicating two first

order phase transitions. The additional peak which is exhibited in the real part of the susceptibility

occurs with the small decrease in resistivity to the left of the metamagnetism and is interpreted as a

crossover(60).

Figure 3.21: Measurements of the in-plane resistivity as a function of a magnetic field applied in the
c-axis direction for temperatures ranging from 1.3K to 0.1K in steps of 0.1K. (Taken from reference
(95)).
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Figure 3.22: The real and imaginary parts of the AC magnetic susceptibility, χ′ and χ′′ respectively, as
a function of a static applied field in the c axis direction, for fields in the vicinity of the metamagnetism,
overlayed with the resistivity ρ which is to be compared with figure 3.21. These measurements were
made at a fixed temperature of 0.02K. The peaks in the imaginary part χ′′, which coincide with the
step-like changes in the resistivity, indicate first order phase transitions. The real part χ′ also shows
coincident peaks, with an additional peak which coincides with the slight low-field descrease in the
resistivity. (Taken from reference (60)).

The experiment which reveals the anisotropy if the magnetic field has an in-plane component is

illustrated in figure 3.23. The direction of the magnetic field is tilted a small angle away from the c axis

direction to generate a small in-plane component, and the resistivity is separately measured for two

perpendicular in-plane directions, one of which coincides with the in-plane field. If the field coincides

with the c-axis, then the two in-plane directions are equivalent, and both resistivities show the step-like

changes depicted in figure 3.21. Upon tilting the field, the feature is shifted towards lower fields for the

resistivity parallel to the field, which is consistent with the finding that the metamagnetism occurs at

a lower field for in-plane fields (see figure 3.9). The anisotropy is the fact that the abrupt changes are

almost entirely absent in the resistivity perpendicular to the field, which instead shows a much smaller

abrupt shift between the flat low- and high-field values.
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Figure 3.23: Measurements of resistivity showing the anistropy in the vicinity of the metamagnetism.
Left: illustration of the experiment; a magnetic field is applied which as a small angle to the c-
axis to generate a small in-plane component, and the resistivity is separately measured for two in-
plane directions, the field direction and its perpendicular. Top Right: the resistivities in the two
perpendicular in-plane directions as functions of field when the field is parallel to the c-axis; in this
case the two in-plane directions are equivalent and both resistivities show the same step-like features.
Bottom Right: the resistivities parallel and perpendicular to the in-plane field as functions of modulus
of the total applied field when it is made to make an angle of 13 degrees with the c-axis; the step-like
features remain in the resistivity parallel to the field but are absent in the resistivity perpendicular to
the field. (Taken from reference (63)).

The anisotropy in the resistivity is accompanied by lattice distortions which break the symmetry

between the two in-plane principal axes. This is revealed in anisotropy in the in-plane thermal ex-

pansion, which is shown as a function of temperature in figure 3.24. With the magnetic field parallel

to the c-axis, the relative length change caused by an incremental change in temperature is the same

in both the in-plane directions. Giving the field a small component in one of the in-plane directions,
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anisotropy occurs at low temperatures, apparently coinciding precisely with where the anisotropy in

the resistivity occurs (lefthand panel of figure 3.24). The relative length change in the field direction

is smaller than that in the perpendicular direction, and is actually negative close to zero temperature.

Increasing the angle between the magnetic field and the c axis to ∼ 10 degrees, one finds that the

relative length changes in the two in-plane directions are of similar magnitude but opposite sign (right

hand panel of figure 3.24).

Figure 3.24: Anisotropy of the thermal expansion. Both plots show both the relative length change in
the in-plane direction ∆L

L on the left axis and the corresponding thermal expansion coefficient d
dT

(
∆L
L

)

and the right axis.
Left: Relative length changes and thermal expansion coefficients in both principal in-plane directions
for a small tilt of the magnetic field in one of the principal directions.
Right: Relative length changes and thermal expansion coefficients in both principal in-plane directions
for a larger tilt of the magnetic field in one of the principal directions.
(Both plots are taken from reference (96)).

Figure 3.25 shows how the emergence of the nematic phase masks the approach of the underlying

quantum critical point. Compare with figure 3.16 in the previous section, which shows the apparent

divergence of the specific heat gamma factor for fields in the metamagnetic region. Figure 3.25 shows

measurements at lower temperature which reveal that this divergence is cut off, at approximately 1.2
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Kelvin. This corresponds to entering the nematic phase, in which the specific heat has a an asymptotic

form proportional to T 2.

Figure 3.25: The cutoff of the diverging specific heat γ factor by the emergence of the nematic phase.
Compare with figure 3.16 which shows data recorded at higher temperatures. The black curve shows
C/T at a fixed field of 7.9 Tesla, which exhibits a jump upon entering the nematic phase; this corre-
sponds to the ceiling of the region indicated in figures 3.26 and 3.27. The blue curve is an extrapolation
to of the data recorded above the ceiling of the nematic phase which is consistent with the measure-
ments exhibited in figure 3.16, showing the divergence of the γ factor associated with the underlying
QCP. The red curve is a linear fit to the low temperature data, showing the specific heat is proportional
to T 2 in the nematic phase. (Taken from reference (97)).

Figure 3.26 shows the quantity ∂
∂B

(
S
T

)
in the temperature-field phase space, which shows up the

phase boundaries as sharp features in this quantity; figure 3.27 shows the same phase boundaries

determined from features in the electrical resistivity, the ac magnetic susceptibility and the thermal

expansion measured in a number of works(95). All these experiments consistently indicate that the

left- and righthand boundaries of the nematic phase, beneath the red arrows in figure 3.27, are marked

by first order phase transitions, but that the upper boundary of the phase is marked by a second order

transition. Figure 3.28 shows how the nematic phase moves on this plot as the field is tilted a small

angle away from the c-axis.
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Figure 3.26: Colour plot of the derivative with respect to field of the entropy divided by temperature,
as a function of temperature and field. Features in this quantity mark out a distinct equilibrium phase,
outlined in the figure, which corresponds to the nematic phase. (Taken from reference (97)).

Figure 3.27: A compilation of the positions, in the phase space of temperature and field, of sharp
features observed in the resistivity and the AC susceptibility. This is to be interpreted as tracing out
the boundaries of the nematic phase. Below the positions marked by the red arrows, the two boundaries
indicate first order phase transitions, while above these points the features indicate crossovers. (Taken
from reference (95)).
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Figure 3.28: The position of the electron nematic phase in the phase space of temperature and magnetic
field strength for different angles of the magnetic field; tilting the magnetic field away from the c-axis
pushes the nematic phase towards smaller fields. (Taken from reference (96)).

The landscape of the specific heat and entropy in the vicinity of the nematic phase has been

thoroughly investigated by Rost et al(97), and their data is exhibited in figure 3.29. These clearly

show the specific heat and the entropy to be peaked in the nematic phase, showing a symmetrical shape

in field. On the basis of this survey of the entropy landscape, the authors report that the nematic

phase is indeed a distinct thermodynamic phase of Sr3Ru2O7, bordered by first and second order phase

transitions as described above, rather than a metastable state of some kind. This is further indicated

by the lack of observed hysteretic behaviour in the nematic phase(98). Furthermore, the phase diagram

is not seen to show any dependence relating to the crystal size and shape(99).
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Figure 3.29: Measurements showing the entropy landscape in the region of the nematic phase.
Panel A: Entropy divided by temperature as a function of temperature and field.
Panel B: The entropy divided by temperature and specific heat divided by temperature versus field,
overlayed with a fit of the form A/|B −Bc|.
Panel C: Contours of constant entropy plotted against temperature and field.
(Taken from reference (97)).

Suggestions regarding the nature of the nematic phase rely on one of two underlying ideas, that

it is related to the formation of domains of low- and high-magnetisation phase associated with Stoner

ferromagnetism(75; 96), or that it is associated with an intrinsic anisotropy in the Fermi surface

itself(100; 101; 102). Our modelling in the next chapter is of the former type. Our work differs from

previous domain-based explanations which have associated the Stoner magnetic instability with the

dxy orbital in that we advocate a magnetic instability associated with the dyz and dzx orbitals. The

more sophisticated modelling in references (101) and (102) associate the metamagnetism with the dyz

and dzx orbitals; it is possible that our work is consistent with the findings of those works, and that

the main contribution of our work is a simple picture of the nematic phase which is obfuscated in the

more sophisticated approaches.

The formation of domains in the system is quite an attractive explanation for the nematic phase:

the abrupt increase in the resistivity is interpreted as due to scattering from domain walls, and the

anisotropy in the resistivity for small in-plane fields is then associated with the domains running
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perpendicular to the field direction, so that only the in-plane current in the field direction is required

to cross domain walls. Moreover, the formation of domains is implied by low-level attempts to model the

metamagnetism with Stoner ferromagnetism. Our modelling in the next chapter is based on precisely

this idea. It must be pointed out that the observed lack of hysteresetic behaviour or dependence on

sample size do not support the existence of domains. We simply suggest that these contradictions can

be resolved if the domains in question are on extremely short length scales.

3.5 Incommensurate Spin Density Wave

In the vicinity of the metamagnetism, Sr3Ru2O7 shows incommensurate spin density waves (SDWs)

along the two orthogonal principal axes in the ab-plane. Figure 3.30 shows elastic neutron scattering

measurements which show the SDW wave as a peak in the scattering intensity(63). For magnetic fields

applied parallel to the c-axis, peaks are observed at the scattering vectors (±0.233, 0, 0), (0,±0.233, 0),

(±0.218, 0, 0) and (0,±0.218, 0) at low temperature in the vicinity of the metamagnetism. The region

in which the 0.233 wavevector is oberved appears to roughly coincide with the nematic phase; the

0.218 wavevector occurs at in slightly higher region of applied field, although there is some region of

overlap where both wavelengths are observed (see righthand panel of figure 3.30). The 0.218 wavevector

appears to coincide with a linear feature in the resistivity which borders the second abrupt jump in the

resistivity (see figure 3.30 and the inset showing the resistivity). These two coincident phenomena, the

0.218 wavelength SDW and this feature in the resistivity, characterise a distinct region of the phase

diagram; the situation is illustrated in figure 3.31.

If the applied magnetic field is given a small component along one of the in-plane principal direc-

tions, the SDW in the perpendicular in-plane direction is suppressed(63). This implies that the SDW

is intimately connected with the dramatic features in the resistivity discussed above in connection with

the nematic phase.
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Figure 3.30: Neutron scattering measurements of the SDW.
Left: Scan of intensity observed for scattering vectors (h, 0, 0).
Right: SDW intensities measured at the centre of the observed scattering peaks plotted against both
magnetic field and temperature.
(Taken from reference (63)).

Figure 3.31: Depiction of the regions of SDW phases on the temperature-field phase space. (Taken
from reference (63)).
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3.6 Effect of electron doping

We finally mention a study by by Farrell et al(103) on the effect of electron-doping Sr3Ru2O7. These

authors investigated the effect of substituting a small fraction of the Sr atoms with La atoms; they

parameterise the system with a variable y according to Sr3−yLayRu2O7. Sr has two valence electrons

and La has three valence electrons, so the effect of this substitution is to dope the system with an

additional y electrons per formula unit. Figure 3.32 shows the specific heat divided by temperature for

differenct doping levels (compare with figure 3.16). Electron-doping the system reduces the γ value

significantly, implying that the system is becoming less strongly-correlated.

This particular experiment is something that we have direct access to in our modelling: we are

quite able to perform calculations varying the number of electrons in the system as an independent

parameter. A section is devoted to this in the next chapter.

Figure 3.33 shows the in-plane resistivity for different doping levels (compare with figure 3.21).

The disorder that is introduced into the system in substituting a small number of Sr atoms with La

atoms greatly increases the resistivity, and the effect of this additional resistivity is to largely obscure

the distinctive features of the resistivity associated with the nematic phase. However, Farrell et al

argue that the position of the metmagnetic jump can still be identified in the data in figure 3.33 as

the kink of inflexion in the curve of resistivity versus field(103), and with this interpretation the data

show that the effect of the electron-doping is clearly to push the metamagnetism to higher fields.

Figure 3.32: The specific heat divided by temperature of Sr3−yLayRu2O7 versus temperature for y = 0
(red), y = 0.02 (blue), y = 0.04 (green) and y = 0.06 (black). (Taken from reference (103)).
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Figure 3.33: The in-plane resistivity of Sr3−yLayRu2O7 versus magnetic field, for field parallel to the
c-axis, for y = 0 (red), y = 0.02 (blue), y = 0.04 (green) and y = 0.06 (black). (Taken from reference
(103)).
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Chapter 4

Modelling and Mean Field Theory

In this chapter we model the metamagnetism in Sr3Ru2O7. We build a 3-band Hubbard type model

for the Ru t2g orbitals dxy, dyz and dzx, which for notational convenience we shall from now on label

Z, X and Y respectively; our model consists of a hybridisation term with no matrix elements between

different orbital species, and an onsite interaction term. A Hartree-Fock mean field solution to the

model displays a metamagnetic jump which can be made to agree with the experimental magnetisation

curves. The metamagnetism is associated with the X and Y bands, both of whose band structure is

one-dimensional at the level of our modelling, and consists of two non-degenerate bands. The meta-

magnetic jump is associated with the top-lying X/Y band being pushed past the chemical potential,

and corresponding to this the disappearance of one of the Fermi surfaces. In the metamagnetic region

itself, that is the region of steep rise of magnetisation with field, the mean field solution is a phase

separated mixture of a low-magnetisation phase, in which all the X/Y Fermi surfaces are present, and

a high-magnetisation phase where one of the X/Y Fermi surfaces has vanished. We postulate this

mixed phase to correspond to the nematic phase in Sr3Ru2O7.

The connection between the metamagnetism and singularities in the density of states has previously

been considered, from a modelling perspective, by a number of authors. A picture essentially the same

as ours has been proposed(75; 96), including the prediction of phase separation, but with a transition

mediated by the Z bands, which are two-dimensional at the level of our modelling. In this scenario

the metamagnetic jump is associated with the van Hove singularity in the Z band density of states

being pushed past the chemical potential. We can obtain Z-mediated metamagnetism in our own

modelling, but its sensitive dependence on the parameters in the model, particularly the size of the
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second-neighbour hybridisation, suggests that this is unlikely to be the metamagnetism that occurs in

Sr3Ru2O7.

There have also been studies that present a picture of X/Y mediated metamagnetism, but these

have dealt with more sophisticated models which include the spin-orbit interaction, and have in addi-

tion modelled the nematic phase itself as being associated with an anisotropic Fermi surface(101; 102).

Our work uses a much simpler model and does not model any of the experimental features of the

nematic phase itself. However, our own approach provides the picture of the nematic phase as a phase-

separated picture of the low- and high-magnetisation phases; we presume that essentially the same

phase occurs in the more sophisticated modelling, but these more sophisticated approaches, although

they are more powerful, have the effect of obfuscating this simple picture.

The chapter is essentially divided into two halves: sections 4.1 to 4.3 deal with building the model

and introduce some important physical ideas, such as the Stoner criterion for the susceptibility of

metals to ferromagnetism which is covered in section 4.2; sections 4.4 to 4.6 present analysis of the

behaviour of the model.

In the first part of the chapter, the aim is to build our model for Sr3Ru2O7 from the ground up.

In this mindset, section 4.1 acts as an introduction to how one models electrons in crystalline solids in

general, and is very much textbook material. This section introduces the two key concepts of Wannier

orbitals, which are mutually orthogonal single-particle states localised at sites of the crystalline lattice,

and the second quantised representation, which is the use of the Fermi operators c†γσ to represent the

electron states. At the end of section 4.1 we will have essentially derived the Hubbard model, which

is the famous elementary model of interacting electrons in crystalline solids.

In section 4.2 we discuss Stoner ferromagnetism as applied to the Hubbard model, and we derive the

Stoner criterion. In essence, Stoner ferromagnetism is the idea that, in the mean field approximation,

a large repulsion between particles can drive a metallic system ferromagnetic, but this is strongly

dependent on the properties of the single-particle density of states at the Fermi surface. Systems

are strongly susceptible to ferromagnetism if the Fermi level is in close proximity to large peaks or

singularities in the density of states. This is precisely the case in Sr3Ru2O7, where the density of states

contains a number of singularities. In addition to introducing the key physical idea that also applies to

our model of Sr3Ru2O7, the derivation of the Stoner criterion also serves to introduce the tool which

we shall use to tackle that model, namely Hartree-Fock mean field theory.

We build our model of Sr3Ru2O7 in section 4.3. We begin with discussions which apply to modelling
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transition metal oxides in general, the crystal field interaction and Hund’s rules. We thereby arrive

at the picture that to leading order the energetically relevant Ru degrees of freedom are the three

approximately degenerate t2g states, each of which wavefunctions are mutually orthogonal orientations

of the same shape associated with the three principal crystal axes. The model which we are building

will then consist of three bands, or six when a magnetic field is included.

Our model consists of a hybridisation term and an onsite interaction term. The essential physics is

contained in just two energy scales, t which is associated with hybridisation, and U which is associated

with the interaction. The situation of a metal on the verge of a ferromagnetic instability in a mean field

picture is that t is the largest energy scale, but not greatly so, that is zt is slightly larger than U , where

z is the co-ordination number. We begin with the hybridisation term, and we show how effective Ru-Ru

hopping arises perturbatively from miscroscopic calculations in which the intervening O is occupied

in a virtual state. We then discuss the on-site interaction term. We calculate the complete on-site

Coulomb interaction between electrons in the t2g states, which can be parameterised with two energy

scales U and J . This then provides the model which we shall study in the remainder of the chapter.

We give some discussion to rather important effects which we do not include in the model, which we

regard as vital to an attempt to model the details of the nematic phase in Sr3Ru2O7, the long-range

Coulomb interaction and the spin-orbit interaction. We finally conclude section 4.3 with some remarks

concerning how the mean field solution of our model actually relates to the microscopic physics of the

real material; our viewpoint is that, since Sr3Ru2O7 is an itinerant ferromagnet, and this is precisely

the kind of state that mean field theory predicts, it is valid to model the material in this way, despite

the limitations of mean field theory.

In the latter half of the chapter, we exhibit calculations using the model which we have built.

In section 4.4, we consider only the pure tight binding model which does not include the interaction

term. The tight binding Fermi surface can be made to qualitatively agree with the experimental Fermi

surface. In addition, the tight binding theory provides much of the framework for later calculations.

Applying a magnetic field raises the energy of the spin-↓ particles and lowers the energy of the spin-↑

particles, and at some field the top-lying spin-↓ X/Y band is pushed past the chemical potential. The

transition from the full 6-band state to the state where the top-lying spin-↓ X/Y band is missing

occurs with a kink in the curve of magnetisation versus field, but when interactions are included this

kink can be made to be a steep jump: metamagnetism.

We then finally come to dealing with our full model including onsite interactions. We solve the
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model approximately using Hartree Fock mean field theory. In section 4.5 we provide the formalism of

the theory and describe how the mean field calculations are actually performed. The calculations are

then exhibited in section 4.6. These calculations show that, if large enough interactions are included,

the magnetisation exhibits a metamagnetic jump between the 6-band state and the 5-band state where

the top-lying spin-↓ X/Y band is absent, and the size of this jump can be made to agree quantitatively

with the experiments. In the region of the jump, the lowest energy mean field solution is a phase

separated mixture of 6-band and 5-band solutions, which we postulate to correspond to the nematic

phase in Sr3Ru2O7.

In the remainder of section 4.6 we provide more mean field calculations in which we make various

alterations to the model. A large number of these calculations are related to the possibility of the Z

bands playing a role in the Sr3Ru2O7 metamagnetism. We alter the model in the following ways that

might be expected to result in the Z bands playing a role: we tune the value of the second neighbour

hopping in order to place the Z band van Hove singularity close to the Fermi surface at zero field; we

increase the Z density of states while leaving the X/Y density of states unaltered; we include a crystal

field splitting which reduces the energy of the Z bands relative to the X/Y bands. The former two

alterations can force Z metamagnetism to occur, but in the case of changing the second neighbour

hopping fine tuning of this parameter is required and the size of the magnetisation jump is smaller

than the one in Sr3Ru2O7, and in the case of reducing the Z bandwidth the size of the magnetisation

jump is much larger than the one in Sr3Ru2O7. Imposing the crystal field splitting does not promote

Z metamagnetism and the X/Y bands remain dominant. The final calculations deal with the effect of

doping the system by a small amount. Electron-doping reduces, and hole doping increases, the field at

which the X/Y metamagnetism occurs; puzzlingly the relevant experiments reveal the opposite trend.

4.1 Fundamentals

In this section we introduce some of the underlying concepts of modelling condensed matter systems.

We firstly introduce the framework of modelling electrons moving in a crystal lattice. We show how

one can build a picture of the electron as sitting on one of the lattice sites; one can construct a localised

wavefunction centred on one of the lattice sites, such that this state is orthogonal to the wavefunction

centred on any other lattice site. We describe separately the second quantised representation of many-

body systems. This description naturally incorporates both the requirement that systems of identical

fermions exhibit antisymmetry under the exchange of two particles, and the possibility of fluctuations
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in the number of particles.

4.1.1 Single-particle states on a lattice: Wannier orbitals

In this section we introduce how one describes the wavefunction of a single particle in a crystalline

solid. The physical picture is that of a metal, in which the electron moves about a lattice of positive

ions. We consider a single electron which is moving in a periodic potential which is formed by the

underlying positive ions. Let the potential due to a single ion be placed at the origin of the co-ordinate

system be −V (|~r|). For the hydrogen atom, one would take this to be the bare Coulomb interaction,

V (|~r|) =
e2

|~r| ,

while for larger atoms one typically regards the nucleus and the core electrons as a point charge

which provides a field for the valence electrons, and so one still considers the Coulomb potential. The

Hamiltonian of an electron in this field is

p̂2

2m
− V (|~r|). (4.1)

Let ψ(~r) be the groundstate wavefunction of this system, and let E0 be the groundstate energy:

[
p̂2

2m
− V (|~r|)

]
ψ(~r) = E0ψ(~r). (4.2)

We now consider a regular N -site lattice, with periodic boundary conditions, of these ions, for which

the single-electron Hamiltonian is

H =
p̂2

2m
−
∑

j

V (|~r − ~Rj |), (4.3)

where the index j labels the lattice sites and ~Rj is the position of the site j. Now, if ions are infinitely

far apart, the electron is simply bound around one of the sites in the state ψ; there are therefore N

degenerate states which have the particle localised around each of the sites,

ψj(~r) = ψ(~r − ~Rj). (4.4)
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As the ions are made to approach each other, the degeneracy is lifted and forN � 1 the non-degenerate

eigenstates states can be regarded as a continuous band of states. The width of the band increases

as the ions are brought closer together, this being effectively the energy that is gained in having the

particle move around the lattice. The states on each of the individual atoms are said to hybridise with

one another to produce the delocalised states.

A difficulty in describing this problem is that the states ψj on different lattice sites are not orthog-

onal to one another, but have a finite overlap which is a function of the separation of the sites,

〈ψj |ψj′〉 = O(|~Rj − ~Rj′ |). (4.5)

However, one can always construct a wavefunction such that states on different sites are orthogonal.

The states that result from this construction are called Wannier orbitals, and we shall now indicate

how they should be constructed out of the states ψj . One introduces the states,

|ψ~k〉 =
1√
N
∑

j

ei
~k·~Rj |ψj〉, (4.6)

where the so-called Bloch wavevector ~k takes N values which are the dual set to the vectors ~Rj .

The expression 4.6 is the Bloch transform of the state |ψj〉. It is easily verified that these states are

orthogonal, and we have,

〈ψ~k|ψ~k′〉 = δ~k,~k′O~k, (4.7)

where

O~k =
∑

j

ei
~k·~RjO(|~Rj |) =

∑

j

ei
~k·~Rj

∫
ψ∗(~r)ψ(~r − ~Rj)d

3r. (4.8)

Now we define

|ψW~k 〉 =
1√O~k
|ψ~k〉 (4.9)

to obtain an orthonormal basis. The Wannier states |ψWj 〉 are then obtained by performing the inverse

Bloch transform to return to a real-space description,

|ψWj 〉 =
1√
N
∑

~k

e−i
~k·~Rj 1√O~k

|ψ~k〉. (4.10)

It is easily verified directly that the Wannier states are orthonormal. They are given in terms of the
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original states |ψj〉 by

|ψWj 〉 =
∑

j′

u(~Rj − ~Rj′)|ψj′〉, (4.11)

where

u(~Rj − ~Rj′) =
1

N
∑

~k

e−i
~k·(~Rj−~Rj′ ) 1√O~k

. (4.12)

The wavefunction of the Wannier state, centered on the origin, is given by

ψW (~r) =
∑

j

u(~Rj)ψ(~r − ~Rj). (4.13)

The amplitude u(~Rj) is largest for the onsite orbital ψ(~r), and decreases with range. The Wannier or-

bital is approximately the original onsite wavefunction, with corrections from the offsite wavefunctions

which become increasingly small at long range.

The eigenstates of the system are precisely the states |ψW~k 〉 which are obtained as the Bloch trans-

form of the Wannier states. The Bloch tranform in general provides the eigenstates for periodic

Hamiltonians at the single particle level. The Bloch states are the eigenstates of precisely the transla-

tions under which the Hamiltonian is symmetric. The formalism which underpins this is that, for an

operator Ŝ which commutes with the Hamiltonian,

[Ŝ,H] = 0, (4.14)

there can be no nonzero matrix elements of H between eigenstates of Ŝ belonging to different eigenval-

ues, and therefore the eigenstates of Ŝ break up the full Hilbert space of H into a set of disconnected

subspaces which can be separately diagonalised. The Bloch transform, in the context we have described,

breaks the problem into N disconnected subspaces which are labelled by the Bloch wavevectors ~k. In

general the dimension of the ~k subspace is precisely the number of degrees of freedom per lattice site

of the Hamiltonian. In the above we have chosen to include only a single degree of freedom per lattice

site, the orbital ψj .

4.1.2 Second quantised description of many-body systems

A system of many particles can be described by a wavefunction which depends upon the co-ordinates

of each of the particles, Ψ(~r1, ~r2, ...). In general this wavefunction can be written in terms of single
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particle states. Let ψγ(~r) be some complete linearly independent set of single particle states. The

general N-particle wavefunction can then be written as

Ψ(~r1, ~r2, ..., ~rN ) =
∑

γ1,γ2,...,γN

aγ1,γ2,...,γNψγ1(~r1)× ψγ2(~r2)× ...× ψγN (~rN ). (4.15)

The indistinguishability of identical particles places some restrictions on the coefficients aγ1,γ2,...,γN in

this expansion. For describing a system of fermions, the wavefunction must be antisymmetric with

respect to the exchange of any pair of particles. For two particles, this leads to the general form,

Ψ(~r1, ~r2) =
∑

γ1 6=γ2
bγ1,γ2 [ψγ1(~r1)ψγ2(~r2)− ψγ1(~r2)ψγ2(~r1)] . (4.16)

The general antisymmetric form becomes increasingly complicated for larger and larger numbers of

particles. Note that the property of antisymmetry under the exchange of any pair of particles forbids

wavefunctions which have more than one particle in the same single-particle state, which is the principle

of Pauli exclusion.

The complicated structure which is demanded by the antisymmetry makes the wavefunction a

rather unwieldy description of a many-particle state. In addition, the many-body wavefunction is not

well-constructed for systems for which the number of particles is not fixed. In regard to both of these

concerns, a more convenient description of many-body systems is the second-quantised form. One

introduces the vaccuum state |0〉 which corresponds to there being no particles in the system. One

associates with each of the single-particle states ψγ a so-called creation operator c†γ , the operation

of which is defined to provide a particle in the state ψγ . So, the state c†γ |0〉 corresponds to the

single-particle state ψγ(~r). A many body state is created by acting multiple creation operators on

the vaccuum. The antisymmetry with respect to the exchange of any pair of particles is incorporated

into the definition of the creation operators, in the additional enforced condition that any two creation

operators anticommute with each other,

{c†γ , c†γ′} = 0. (4.17)

The states c†γ1c
†
γ2 ...c

†
γN |0〉 form a basis set, with the proviso that, as a consequence of the anticom-

mutability, a consistent ordering of the creation operators must be used in the basis states, for example

the order that operators with a smaller index always appear to the left of operators with a larger index
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γ1 < γ2 < ... < γN . Note that putting γ′ = γ in expression 4.17 implies

(
c†γ
)2

= 0, (4.18)

which expresses Pauli exclusion because acting c†γ on any state which already has a particle in the

state ψγ gives zero. The Hermitian conjugate operators cγ are called annihilation operators because

they have the effect of removing a particle in the state ψγ . The annihilation operators produce zero

acting on the vaccuum,

cγ |0〉 = 0. (4.19)

The final part of the description is the anticommutation relation between the annihilation operators

and the creation operators, the anticommutator being given by the overlap of the corresponding single

particle states |ψγ〉,

{cγ , c†γ′} = 〈ψγ |ψγ′〉. (4.20)

If the single particle states are orthogonal, then the creation and annihilation operators for different

states anticommute; as an aside, note that it follows from this that cγ acting on any state which does

not have a particle in the state ψγ , and not only the vaccuum, gives zero. Throughout this chapter,

it will be assumed that one is working with the Wannier states which are orthonormal, so that this

condition is simplified to,

{cγ , c†γ′} = δγ,γ′ . (4.21)

We are now in a position to write down a many-particle Hamiltonian in the second quantised form.

We begin with the non-interacting Hamiltonian; consider the periodic lattice of ions described in the

previous section, but where we now allow more than one particle in the system:

H =
N∑

i=1

p̂2
i

2m
−

N∑

i=1

∑

j

V (~ri − ~Rj). (4.22)

Let the c†j be the creation operator for a Wannier state ψ(~r) on the site j. In this representation the

non-interacting Hamiltonian is written as

H = −
∑

j,j′

tj,j′c
†
jcj′ , (4.23)
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where

− tj,j′ =

∫
d3rψ∗j (~r)


 p̂

2

2m
−
∑

j

V (~r − ~Rj)


ψj′(~r). (4.24)

The terms in the Hamiltonian with j 6= j′ are often referred to as “hopping” terms, in that they move

the particle from the site j′ to the site j. This Hamiltonian is diagonalised by the Bloch transform,

c†~k =
1√
N
∑

j

ei
~k·~Rjc†j , (4.25)

and the band structure is given by

ε~k = −
∑

j

t0,je
i~k·~Rj . (4.26)

The lowest energy state with N particles in the system is to occupy the N ~k-states with the lowest

energy; one therefore has in the thermodynamic limit a continuous region of ~k-space which is occupied,

up to some level ε~k = εF which is called the Fermi surface. If the number of particles is not fixed, one

introduces the chemical potential µ and one instead minimises H − µN at constant µ; this produces

a Fermi surface εF = µ.

This touches on an important point regarding the calculations to follow in this chapter, which is

that in most instances we wish to perform calculations at constant particle number N , but we instead

have access to calculations at constant chemical potential µ. This leads to a scheme where one uses

the chemical potential as the independent variable and calculates the particle number as a function of

µ, and then one adjusts the input µ to obtain the desired value of N .

Of course, all of the interesting physics in condensed matter systems arises out of the interactions

between electrons. The many-particle Hamiltonian with the same pairwise interaction between all

pairs of particles,

H =
N∑

i=1

p̂2
i

2m
−

N∑

i=1

∑

j

V (~ri − ~Rj) +
N∑

i=i′+1

N∑

i′=1

U(~ri − ~ri′), (4.27)

in the second quantised form gives again the hopping terms with additional two-particle terms which

describe the interactions,

H = −
∑

j,j′

tj,j′c
†
jcj′ +

∑

j1,j2,j′1,j
′
2

Uj1,j2;j′1j
′
2
c†j1c

†
j2
cj′2cj′1 . (4.28)
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The interaction parameters are given by,

Uj1,j2;j′1,j
′
2

=

∫
d3r

∫
d3r′ψ∗j1(~r)ψ∗j2(~r′)U(~r − ~r′)ψj′2(~r′)ψj′1(~r). (4.29)

The electron spin degree of freedom can be included by using the creation operators,

c†j → c†jσ

where σ labels the two spin-states. Neither the hybridisation nor the Coulomb interaction (which

we are treating as a classical field) can act to change the electron spin, and so the Hamiltonian 4.28

including spin becomes,

H = −
∑

j,j′

∑

σ

tj,j′c
†
jσcj′σ +

∑

j1,j2,j′1,j
′
2

∑

σ1,σ2

Uj1,j2;j′1j
′
2
c†j1σ1

c†j2σ2
cj′2σ2

cj′1σ1
, (4.30)

where tj,j′ and Uj1,j2;j′1,j
′
2

are as previously defined.

The largest conributions are those which involve orbitals on neighbouring sites; a first approxima-

tion is therefore to include only the onsite parameters, in which case one obtains,

H = −t
∑

〈jj′〉σ
c†jσcj′σ + U

∑

j

c†j↑cj↑c
†
j↓cj↓, (4.31)

which is the Hubbard model. We have written the interaction term explicitly in terms of the operators

c†jσcjσ which correspond to the number of spin-σ particles on site j; this makes clear the physical

meaning of this term, which is to impose an energy penalty +U if there are two particles on the site

j.

4.2 Mean field theory of the Hubbard model: Stoner ferro-

magnetism

The purpose of this section is to show how the itinerant ferromagnetic state, which is the style of state

we intend to model in Sr3Ru2O7, arises in the mean field solution of an interacting model. To this

end, we consider the simplest interacting model, the Hubbard model. We apply Hartree-Fock mean

field theory to the Hubbard model, and investigate the susceptibility to magnetism by attempting to
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minimise the mean field energy written as a power series in the magnetisation. The coefficients of

the series are functions of the single-particle density of states and its derivatives; consideration of the

properties of these coefficients for which a finite magnetisation minimises the energy provide criteria

in terms of the density of states for when the system is predicted to be ferromagnetic, and whether

the transition to ferromagnetism is first or second order.

This mean field picture of itinerant ferromagnetism arising from the repulsive interaction between

particles is referred to as Stoner ferromagnetism(104). It is important to discuss this because in

our modelling of Sr3Ru2O7 we shall obtain metamagnetism arising from this very same physics, and

therefore the content of this section effectively underpins our work on Sr3Ru2O7. In addition to the

physical arguments, we also make use of this section to describe the Hartree-Fock mean field method,

which is the method we shall apply to our Hubbard-type model for Sr3Ru2O7.

The Hubbard model is given by,

H = −t
∑

〈jj′〉σ
c†jσcj′σ + U

∑

j

c†j↑cj↑c
†
j↓cj↓. (4.32)

In the non-interacting case U = 0, the Hamiltonian is diagonalised by the Bloch transform

c†~kσ =
1√
N
∑

j

e−i
~k·~Rjc†jσ, (4.33)

providing the single-particle spectrum

ε~k = −tzγ~k, (4.34)

where z is the number of nearest neighbour sites on the lattice and γ~k is the structure factor,

γ~k =
1

z

∑

~τ

ei
~k·~τ , (4.35)

where τ is the displacement vector from a lattice site to one of its nearest neighbours. The density of

states per spin-species is given by

ρ(ε) =
1

N
∑

~k

δ(ε− ε~k), (4.36)
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providing the number of particles as

n =

∫
dερ(ε)f(ε− µ) =

1

N
∑

~k

f(ε~k − µ) (4.37)

where f(x) is the Fermi function,

f(x) =
1

ex/T + 1
, (4.38)

where T is the temperature. The groundstate has the particles occupying the lowest-energy states

possible, so that all of the single-particle states for which ε~k < µ are occupied and all of the higher-

lying states are empty. The occupancy in reciprocal space is described by the Fermi surface,

ε~k = µ. (4.39)

We apply the well-known Hartree-Fock mean field theory, which is a prescription for obtaining

the variationally optimised non-interacting state for approximating the ground state of a many-body

system. Explicitly, one calculates the so-called mean field energy Emf = 〈H〉, which for a non-

interacting state can be expressed entirely in terms of single-particle correlations (this is essentially the

content of Wick’s theorem(105)). From this, the Hartree-Fock mean field Hamiltonian is constructed

in terms of a set of single particle operators η̂α and the corresponding correlations ηα = 〈η̂α〉 according

to(106),

Hmf =
∑

α

∂Emf

∂ηα
η̂α −

∑

α

∂Emf

∂ηα
ηα + Emf . (4.40)

The groundstate of this single-particle Hamiltonian provides precisely the variationally optimised non-

interacting approximation to the real groundstate(106). The physical picture is that the interactions

are being approximated by coupling the particles to the mean fields ∂Emf/∂ηα, which describe the

effect of the interactions on average.

For a non-interacting state, we have,

〈c†j↑cj↑c
†
j↓cj↓〉 = 〈c†j↑cj↑〉〈c

†
j↓cj↓〉 − 〈c

†
j↑cj↓〉〈c

†
j↓cj↑〉+ 〈c†j↑c

†
j↓〉〈cj↓cj↑〉. (4.41)

We make the assumption that there are no pairing correlations, 〈c†j↑c
†
j↓〉 = 0 = 〈cj↓cj↑〉, and so the

last term in this expression vanishes. Furthermore, we can express this expectation value in terms of
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the average number of particles on the site,

nj = 〈c†j↑cj↑ + c†j↓cj↓〉, (4.42)

and the onsite magnetisation ~Mj , whose components are simply related to the single-particle correla-

tions by,

Mx
j = 〈c†↑c↓ + c†↓c↑〉, (4.43)

My
j = i〈c†↓c↑ − c

†
↑c↓〉, (4.44)

Mz
j = 〈c†↑c↑ − c

†
↓c↓〉. (4.45)

We find,

〈c†j↑cj↑c
†
j↓cj↓〉 = 〈c†j↑cj↑〉〈c

†
j↓cj↓〉 − 〈c

†
j↑cj↓〉〈c

†
j↓cj↑〉

=
1

4

(
(nj)

2 − ~Mj · ~Mj

)
, (4.46)

According to the Hartree-Fock prescription, the interaction term is replaced in the mean field Hamil-

tonian with,

U
∑

j

c†j↑cj↑c
†
j↓cj↓ → U

∑

j

[
〈c†j↓cj↓〉c

†
j↑cj↑ + 〈c†j↑cj↑〉c

†
j↓cj↓ − 〈c

†
j↓cj↑〉c

†
j↑cj↓ − 〈c

†
j↑cj↓〉c

†
j↓cj↑

]
(4.47)

− U
∑

j

[
〈c†j↓cj↓〉〈c

†
j↑cj↑〉 − 〈c

†
j↓cj↑〉〈c

†
j↑cj↓〉

]
.

We assume that the noninteracting state has the same translational symmetry as the original Hamil-

tonian, and therefore that the correlations are the same for every lattice site,

nj = n, (4.48)

~Mj = ~M, (4.49)
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and therefore the interaction term becomes,

U
∑

j

c†j↑cj↑c
†
j↓cj↓ →

U

2

∑

j

[
(n−Mz)c

†
j↑cj↑ + (n+Mz)c

†
j↓cj↓ (4.50)

+ (Mx − iMy)c†j↑cj↓ + (Mx + iMy)c†j↓cj↑
]

− U

4
N
(
n2 − ~M · ~M

)
.

The full mean field Hamiltonian is therefore,

Hmf =
∑

~k

(
c†~k↑ c†~k↓

)


−tzγ~k + U

2 (n−Mz)
U
2 (Mx − iMy)

U
2 (Mx + iMy) −tzγ~k + U

2 (n+Mz)






c~k↑

c~k↓


 (4.51)

− U

4
N
(
n2 − ~M · ~M

)
,

where we have utilised the Bloch transform.

The spectrum is given by the eigenvalues of the 2 by 2 matrix in equation 4.51, which are given by

εmf~k
= −tzγ~k +

Un

2
± U

2
| ~M |. (4.52)

The magnetisation ~M provides an effective magnetic field which couples to the spin of the particles;

the two single-particle eigenstates are precisely the two spin-species resolved in the direction of the

magnetisation. We can, without loss of generality, take the symmetry-broken direction to be the z-

axis; there are then only two independent non-zero onsite correlations, n↑ = 〈c†j↑cj↑〉 and n↓ = 〈c†j↓cj↓〉,

which provide the number of particles and magnetisation per site as

n = n↑ + n↓, (4.53)

M = n↑ − n↓. (4.54)

The dispersion is given by

εmf~kσ
= −tzγ~k +

U

2
(n− σM)

= −tzγ~k + Unσ̄. (4.55)
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and the mean field can be written in the form,

Hmf − µN =
∑

~kσ

(
−tzγ~k + Unσ̄ − µ

)
c†~kσc~kσ −NUn↑n↓ (4.56)

One can consider a mean field density of states for each spin-species,

ρmfσ (ε) =
1

N
∑

~k

δ(ε− εmf~kσ ). (4.57)

This provides the following self-consistent equations for the two occupation numbers,

nσ =

∫
dερmfσ (ε)f(ε− µ) =

1

N
∑

~k

f(εmf~kσ
− µ). (4.58)

Because one has a term in nσ̄ in the mean field spectrum εmf~kσ
, the equations for n↑ and n↓ are

coupled. However, in the case that the total particle number n is constant, the constraint

n↑ + n↓ = n (4.59)

reduces the theory to a single self-consistent equation. Even in the case that the particle number is

not fixed, the self-consistent equations can still be rendered independent from each other by redefining

the chemical potential. The mean field dispersion can be written as

εmf~kσ
= −tzγ~k + Un− Unσ. (4.60)

Now, the term Un can be absorbed into the chemical potential. We define an internal chemical

potential µ̃ by

µ̃ = µ− Un, (4.61)

so that we can write the mean field Hamiltonian in the form

Hmf − µN =
∑

~kσ

(
−tzγ~k − Unσ − µ̃

)
c†~kσc~kσ −NUn↑n↓ (4.62)
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and we redefine the mean field dispersion to be

εmf~kσ
= −tzγ~k − Unσ. (4.63)

One can simply consider this newly defined dispersion whose occupancy is controlled by µ̃:

〈c†~kσc~kσ〉 = f(εmf~kσ
− µ̃) (4.64)

With these definitions, the self-consistent equations become

nσ =
1

N
∑

~k

f(εmf~kσ
− µ̃). (4.65)

We will use this idea in the mean field calculations which are to follow in this thesis. In practice,

we shall make use of it even in the cases where we are working at fixed particle number, since this is

found to lead to more straightforward computation in models which involve particles of more than one

orbital species.

The energy of the system per site is given by,

E =
〈Hmf 〉
N =

1

N
∑

~kσ

εmf~kσ
f(εmf~kσ

− µ̃)− U

4
(n2 −M2) (4.66)

=
∑

σ

∫
ερmfσ (ε)f(ε− µ̃)dε− U

4
(n2 −M2). (4.67)

Now, with the current definition of εmf~kσ
, the mean-field density of states is related to the non-interacting

density of states ρ(ε) of the pure tight binding model by

ρmf~kσ
(ε) = ρ(ε+ Unσ). (4.68)

In the low-temperature limit, we have f(ε− µ̃)→ Θ(µ̃− ε), and consequently,

E =
∑

σ

∫ µ̃

−∞
ερ
(
ε+ U

2 (n+ σM)
)
dε− U

4
(n2 −M2). (4.69)

We regard M as a small quantity and write the energy as an expansion in M . The coefficients of

the expansion are written in terms of the density of states and its derivatives evaluated at the Fermi

207



surface.

Let µ̃0 be the value of µ̃ where the magnetisation is zero, and write,

µ̃ = µ̃0 + δµ̃. (4.70)

Now, expanding the expression for the energy about the point µ̃ = µ̃0, M = 0 we have,

E = 2

∫ µ̃0

∞
ερ(ε+ Un

2 )dε+ 2
∞∑

l=1

1

(2l)!

[
µ̃0ρ

(2l−1)(µ̃0 + Un
2 )− ρ(2l−2)(µ̃0 + Un

2 )
](UM

2

)2l

+ 2
∞∑

l=0

∞∑

k=1

1

k!(2l)!

[
µ̃0ρ

(2l+k−1)(µ̃0 + Un
2 ) + (k − 1)ρ(2l+k−2)(µ̃0 + Un

2 )
](UM

2

)2l

(δµ̃)
k

(4.71)

− U

4
(n2 −M2)

The dependence of the chemical potential on the magnetisation can be deduced from the constraint

on the number of particles. Written in terms of the density of states, the sum of the spin-↑ and spin-↓

particle numbers is

n =

∫ µ̃

∞

[
ρ(ε+ Un

2 + UM
2 ) + ρ(ε+ Un

2 − UM
2 )
]
dε. (4.72)

By repeatedly differentiating this equation with respect to M at constant n, we obtain a set of equations

which relate the derivatives of the chemical potential µ̃ to the density of states and its derivatives.

This provides the expansion of δµ̃ in M to be

δµ̃ = − 1

2!

ρ′

ρ

(
UM

2

)2

− 1

4!

[
ρ′′′

ρ
+ 3

(
ρ′

ρ

)2

− 6
ρ′ρ′′

ρ2

](
UM

2

)4

− 1

6!

[
ρv

ρ
+ 45

(
ρ′

ρ

)5

+ 60

(
ρ′

ρ

)2
ρ′′

ρ
+ 90

ρ′

ρ

(
ρ′′

ρ

)2

−150

(
ρ′

ρ

)3
ρ′′′

ρ
− 15

ρ′′ρ′′′ + ρ′ρ′v

ρ2

](
UM

2

)6

+ ... (4.73)

where all terms in the density of states and its derivatives are evaluated with the argument µ̃0 + Un
2 .
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This provides the expansion of the energy in M at constant n, up to the sixth order, to be,

E = 2

∫ µ̃

−∞
(ε− µ̃)ρ(ε+ Un

2 )dε− Un2

4
+
U

4
[1− Uρ]M2 +

1

12

(
U

2

)4

ρ

[
3

(
ρ′

ρ

)2

− ρ′′

ρ

]
M4

+
1

360

(
U

2

)6
1

ρ

[
15

(
ρ′

ρ

)4

+ 15
ρ′ρ′′

ρ2
− 45

(
ρ′

ρ

)2
ρ′′

ρ
− ρ′v

ρ

]
M6 + ..., (4.74)

Note that it comes as no surpise that this expansion includes only even powers of M , as this reflects

the symmetry of the underlying Hamiltonian with respect to the direction of magnetisation.

The magnetisation is predicted to be such as to minimise the energy. Now, the absence of a linear

term in the expansion indicates that the state with no magnetisation, M = 0, always corresponds to

a stationary point of E. In the simplest scenario, if the coefficient of the quadratic term is negative,

this indicates that the stationary point at M = 0 is unstable and the system should go magnetic, the

magnetic state corresponding to a minimum in the energy at finite M . The coefficient of the quadratic

term is negative if

Uρ(µ̃0 + Un
2 ) > 1, (4.75)

which is known as the Stoner criterion. If one envisages varying the Coulomb energy U from zero,

the mean field theory predicts that the system will go ferromagnetic at the point Uρ = 1, and that

this will be a second order phase transition. Alternatively, if the coefficient of the quadratic term is

positive, but the coefficient of the quartic term is negative, for which the criterion is(104),

ρ′′

ρ
> 3

(
ρ′

ρ

)2

, (4.76)

there must be two local minima in the free energy, one located at M = 0 and one at a finite M .

This corresponds to the transition to ferromagnetism being first order: for Uρ < 1 there is a unique

free energy minimum at M = 0; for Uρ > 1 the M = 0 point remains a minimum but there occurs

a second minimum which provides a lower energy. In summary, the Stoner criterion 4.75 indicates

whether ferromagnetism is predicted in the system, and the condition 4.76 indicates whether this

transition is first or second order.

Let the density of states have a singularity at ε = ε0 such that in the vicinity of the singularity it

has the form,

ρ(ε) ∼ λ

(ε− ε0)
K
.
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Substituting this expression into 4.76 provides,

ρ′′(ε)
ρ(ε)

− 3

(
ρ′(ε)
ρ(ε)

)2

=
K(1− 2K)

(ε− ε0)
2 (4.77)

and the inequality 4.76 is satisfied provided 0 < K < 1/2. The upper and lower limits of this range

correspond to the square-root and logarithmic van Hove singularities that are found in one-dimensional

and two-dimensional band structures respectively. This indicates that first order ferromagnetic tran-

sitions can be expected to occur in systems with either one- or two-dimensional electronic structure if

the chemical potential lies in the vicinity of an associated van Hove singularity.

Because the electronic structure of Sr3Ru2O7 contains both quasi-one-dimensional and quasi-two-

dimensional features, the Stoner argument provides a picture to apply to the Sr3Ru2O7 metamag-

netism. It has been suggested that the metamagnetism is associated with a logarithmic van Hove

singularity(96); in this work we argue that it is associated with a different feature in the electronic

structure, a square-root singularity arising from a quasi-one-dimensional band.

4.3 Building a model of the Ruthenate system

In this section we shall describe in detail how one builds a second quantised model for the Ruthenate

system. We first deal with two topics that are germane to the modelling of the transition metal oxide

materials in general, the topics of the crystal field interaction and Hund’s rules. The crystal field

interaction is the external potential in which the Ru ion sits in the material; the effect of the crystal

field interaction is to lift the five-fold degeneracy of the Ru 4d-shell into a high energy doublet and a low

energy triplet; the energy of this splitting is such that only the three low-energy states are relevant.

Hund’s rules are concerned with how the electron-electron interaction affects the collective onsite

magnetic moment of the Ru valence electrons. The key piece of physics is the exchange interaction,

which provides an effective ferromagnetic interaction between electrons on the same site. This acts as a

more aggressive promotion of an initinerant ferromagnetic state in concert with the Stoner magnetism

we have discussed above.

We then move on to building a model for the Ru electrons. Our model consists of a hybridisation

term and an onsite interaction term. Because Sr3Ru2O7 is a paramagnetic metal, the hybridisation

is the dominant term, although the proximity of a ferromagnetic instability is modelled by the energy

scale for the interactions being comparable to the hybridisation. We begin with the hopping terms.
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Hybridisation between pairs of Ru sites occurs, where the underlying process sees the Ru electron hop

onto the neighbouring O, briefly occupying the onsite p orbital and then hopping onwards onto the next

Ru. We show from first principles how the effective hopping arises from perturbation theory, although

the precise hybrisation terms we include are arrived at by attempting to match the experimental Fermi

surface and density functional theory calculations discussed in the previous chapter. The interaction

term which we use is the general onsite Coulomb interaction for the t2g orbitals, which we derive. This

interaction term is parameterised by the two parameters U , which corresponds to the Coulomb energy

in the Hubbard model, and J which is closely associated with the first Hund rule.

This reaches the level to which we are going to model Sr3Ru2O7. In the remainder of this section,

we shall describe caveats to this level of description in the form of other effects which have not so far

been included. There are two effects which would have to be included in order to model the behaviour

of the nematic phase in Sr3Ru2O7. The first of these is the long-range Coulomb interaction, which will

control the arrangement of the charged domains in the phase-separated solution which is predicted by

our mean field theory. The second is the spin-orbit interaction, which is the lowest-level microscopic

interaction which provides a dependence on the direction of the magnetic field and we regard this as

being primarily responsible for the dependence on the field direction in Sr3Ru2O7.

Finally, we frame the modelling of the material from the viewpoint of strongly-correlated physics;

from this viewpoint, the hybridisation energies and onsite Coulomb repulsions are merely effective

parameters which describe the collective behaviour of the system, which is governed by the correlated

physics of all the electrons in the system, and the effective parameters are not directly related to any

single-particle or two-particle energy scales that exist in the material.

4.3.1 Crystal Field splitting

The chemistry of the transition metal oxide compounds is dominated by the large electronegativity

of Oxygen. The neutral O atom has two holes in the 2p shell, and in molecules the O atoms almost

always acquire extra electrons to form the ion O2− with the 2p shell full. In transition metal oxides,

therefore, the O sites are centres of negative charge. The Coulomb interaction due to these charge

centres on the transition metal valence electrons is called a crystal field, and has the effect of altering

the atomic states of the valence electrons from those of a transition metal ion in free space.

Now, for the ion in free space the relevant wavefunctions are the spherical harmonics Y lm(θ, φ),

which are labelled by the orbital angular momentum quantum number l which is an integer, and the
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quantum number m which takes the integer values from −l to +l and provides the component of

orbital angular momentum along the z-axis of the co-ordinate system. In transition metals the valence

electrons are in the d-shell which has l = 2; disregarding normalisation, we have

Y 2
2 = sin2 θe2iφ

Y 2
1 = sin θ cos θeiφ

Y 2
0 = 3 cos2 θ − 1 (4.78)

Y 2
−1 = sin θ cos θe−iφ

Y 2
−2 = sin2 θe−2iφ

The crystal field potential is usually cubic symmetric to a good approximation, that is, it is mapped

onto itself by the transformations of the cubic symmetry group. The effect of the crystal field is to

split the degeneracy of the d-shell according to the subspaces which are closed under this same set of

operations. There are two closed subspaces, the three states,

dxy =
xy

r2
= sin2 θ sinφ cosφ ∝ i(Y 2

2 − Y 2
−2)

dyz =
yz

r2
= sin θ cos θ sinφ ∝ −i(Y 2

1 + Y 2
−1) (4.79)

dzx =
zx

r2
= sin θ cos θ cosφ ∝ −(Y 2

1 − Y 2
−1)

which is called the t2g subspace, and the two states

d3z2−1 ∝ Y 2
0 (4.80)

dx2−y2 ∝ Y 2
2 + Y 2

−2

which is called the eg subspace. In the ideal Ruddlesden-Popper structure for Srn+1RunO3n+1, and for

a large number of transition metal oxides, the transition metal ion sits in an octahedral cage of O ions.

For this crystal field, the eg states have a higher energy than the t2g states: the d-shell is split into a

low energy triplet and a high energy doublet. In characterising the electronic states of transition metal

oxide compounds, one pictures filling up the crystal field-split d-shell with the number of particles that

are indicated by the valency of the transition metal ion: in the case of Sr3Ru2O7 the valency is Ru4+,

corresponding to four electrons in the 4d shell. The nature of the groundstate configuration of the
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t2g orbitals:

dyz dzx dxy

Figure 4.1: Cartoon of the t2g orbitals. The three orbitals are three mutually perpendicular orientations
of the same shape.

crystal field-split d-shell requires the consideration of Hund’s rules which are discussed below, but it is

found that to a good approximation in Sr3Ru2O7 the eg states can be ignored so that the t2g orbitals

are the only relevant degrees of freedom.

The t2g orbitals are depicted in Figure 4.1. These orbitals are three mutually perpendicular rota-

tions of the same shape, the orientations characterised by the three mutually perpendicular axes along

which the wavefunction vanishes coinciding with the directions of the nearest neighbour O sites. Two

of these directions are equivalent, and it shall be shown below that hybridisation occurs in these two

directions, while no hybridisation occurs in the third direction. Because the Ru valence electrons are

to a good approximation only mobile on the two-dimensional geometry of the bilayer, this results in

strongly one-dimensional characteristics in the electronic structure.

Note that all the t2g and eg states have zero orbital angular momentum: the angular momentum

is said to be quenched by the crystal field. With regard to our modelling, we therefore regard the

magnetisation as being entirely due to electron spin and not orbital angular momentum, and we shall

calculate the magnetisation as the difference in the number of spin-↑ and spin-↓ holes per Ru site.

However, an orbital angular momentum can be generated in the the t2g subspace through the states

dyz + idzx and dyz − idzx which are eigenstates of orbital angular momentum; as we discuss in section

4.3.6 this is the state that is relevant in the spin-orbit interaction, which we do not incorporate into

our modelling but which we do regard as highly relevant to the nematic phase in Sr3Ru2O7.

4.3.2 Hund’s rules

Hund’s rules concern the effects of spin- and orbital-angular momentum on the electronic state of ions.

The first Hund’s rule is the largest effect and concerns the exchange interaction. This interaction

arises out of the fundamental property that the fermion many-body state be antisymmetric with

respect to the exchange of two indistinguishable particles. The effect can be explained at the level of

two particles. The full wavefunction of two indistinguishable spin-1
2 fermions constists of both their
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spatial wavefunction and their spin wavefunction; a basis for the spin wavefunction is given by the

antisymmetric singlet,

|σ1σ2〉 =
1√
2

(| ↑↓〉 − | ↓↑〉)

which corresponds to the spins of the particles being antiparallel, and the symmetric triplet

|σ1σ2〉 = | ↑↑〉

|σ1σ2〉 =
1√
2

(| ↑↓〉+ | ↓↑〉)

|σ1σ2〉 = | ↓↓〉

which constitutes a spin-1 state, with the spins of the particles being parallel. The requirement that

the full wavefunction be antisymmetric with respect to the exchange of the particles means that if

the spin wavefunction is symmetric then the spatial wavefunction must be antisymmetric and vice

versa. It is found that the Coulomb interaction between the two electrons leads to an antisymmetric

spatial wavefunction, and therefore the parallel spin state, being energetically preferred. This can

be intuitively guessed by examining the Coulomb energy for a two-particle state with the spatial

wavefunction Ψ(~r1, ~r2), which is given by

∫
dr1

∫
dr2|Ψ(~r1, ~r2)|2U(~r1 − ~r2)

where U(~r1−~r2) is the electron-electron interaction, which is the Coulomb interaction. The interaction

is largest when the electrons are in close proximity to one another, and this conincides with a node

in the antisymmetric wavefunction, since an antisymmetric function must vanish at ~r1 = ~r2. This

integral is therefore smaller for the antisymmetric spatial wavefunction.

A similar effect which takes place on a smaller energy scale concerns the orbital angular momentum.

States which find the particles with a large z-component of orbital angular momentum, and with the

orbital angular momentum of multiple particles parallel, are energetically preferred due to the electron-

electron interaction. This can also be understood on an intuitive level by a picture of the electrons as

particles in classical orbits; in configurations which have the particles orbiting in the same sense and

with large angular momentum, the particles spend less time in close proximity to one another and so

the interaction energy is reduced on average. This is encompassed in Hund’s second rule, which states

that the valence electron states are occupied so as to maximise the total orbital angular momentum in
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the z-direction, except where this is in conflict with Hund’s first rule. In transition metal oxides, the

second Hund’s rule is rendered moot by the crystal field interaction, which enforces that the valence

electron states have zero net angular momentum. On a yet smaller energy scale is the spin-orbit

coupling effect, which is often dealt with in the form of a third Hund’s rule, but we will discuss spin

orbit coupling separately below.

In dictating the electronic state of the transition metal ion, the first Hund rule is in direct conflict

with the crystal field interaction. For up to three d-electrons, the t2g states are occupied and the

electrons have their spins parallel in accord with the Hund rule. When occupying with the fourth

electron the Hund rule suggests that the eg level is occupied and the spin be parallel to the first three

electrons, but this configuration must pay the crystal field splitting as a penalty. If the crystal field

splitting is larger than the energy to be gained from the Hund coupling, then the fourth electron goes

into the t2g band, with its spin antiparallel to the other electrons. It is found that for ions of transition

metals which lie before Cobalt in the periodic table, the Hund coupling is the larger energy scale, while

for elements past Cobalt the crystal field energy is dominant. Ru is a case of the latter, and so to

leading order only the t2g states are regarded as relevant.

4.3.3 Effective hybridisation mediated by O sites

We here consider the single particle Hamiltonian for the Ruthenate system. We will argue for a tight

binding model involving only the Ru electron states, which includes nearest neighbour and second

nearest neighbour hopping between Ru sites. We describe how this arises as an effective model starting

from a model which includes the O electron states. We then determine the precise hybridisation terms

which we include in our model, and the size of the energy-scales, by comparison with the experimental

Fermi surfaces and the density functional theory calculations discussed in the previous chapter.

In our remarks on crystal field effects, we have indicated that the chemistry of the system forces

the picture that only the Sr2+ and O2− ions occur in the material. These ions correspond to entirely

closed orbital shells. This leaves the Ru-4d shell partially occupied, with four 4d electrons per site

on average, which occupy only the t2g states. This is illustrated in figure 4.2. The natural choice

of a vaccuum state is that which finds the t2g states empty. However, we choose to use as degrees

of freedom holes instead of particles. Because the t2g level can accomodate up to six electrons, the

average of four electrons per site is equivalent to two holes per site. With this picture, we take the

filled t2g band as the vaccuum, and we shall fill up the t2g levels with holes to achieve two per site on
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average.

t2g

eg

Figure 4.2: Cartoon showing the onsite occupancy of the crystal-field-split Ru 4d-shell. Four electrons
are found in the t2g level. In our modelling we regard the filled t2g level as the vaccuum state; the
onsite configuration therefore has two holes in the t2g. The eg level is not included in our modelling.

In building a noninteracting Hamiltonian of the generic form 4.23 to describe the hybridisation,

one must include the relevant orbitals for the both the Ru and the O sites. The relevant Ru orbitals

are the three t2g states, the Z, X and Y . The relevant O orbitals are the three states in the 2p

shell, which we label px, py and pz. These are clearly the relevant states, because moving a hole from

a Ru atom onto a neighbouring O ion is equivalent to removing an electron from the O, and this

electron must come from the 2p shell which is filled for the ion O2−. In principle one can proceed

to calculate all of the matrix elements between these orbitals on different sites. We do not perform

any such calculations; we are simply working towards a form for an effective model for the Ru degrees

of freedom, and the parameters in this model will then be deduced from comparison with density

functional theory calculations and experiments.

Recall that there is a O site intermediate between each nearest pair of Ru sites. We immediately

neglect all matrix elements between states on sites farther separated than the next-nearest neighbours.

Of the offsite matrix elements, this leaves the matrix elements between the Ru states and the O states

on neighbouring sites, and the matrix elements between states on nearest pairs of O atoms. Now,

consideration of the symmetry of these orbitals under the inversion of one of the coordinate axes shows

that the majority of these matrix elements are identically zero. The nonzero Ru-O hybridisations are

indicated in figure 4.3. The Ru states only hybridise with the neighbours in two of the three Cartesian

directions, and only with one of the 2p orbitals; all of these matrix elements have the same value which

we label u. There are several nonzero matrix elements between nearest pairs of O sites and these are

indicated in figure 4.4.

The large electronegativity of Oxygen, which demands the closed shell O2− ion, corresponds to a

large onsite energy ∆ for a hole occupying the 2p states. We can regard the off-site matrix elements
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as perturbations to the case where ∆ is the only energy scale. If we measure the energy relative to the

onsite Ru energy, we can regard the Hamiltonian in the form

H = H0 + δH (4.81)

where

H0 = ∆
∑

iασ

p†iασpiασ, (4.82)

where the i labels the O sites in the lattice, α labels the three 2p species and p†iασ is the creation

operator for a spin-σ hole in the corresponding state, and δH contains all of the hybridisation matrix

elements indicated in figures 4.3 and 4.4. The unperturbed system H = H0 has the onsite Ru t2g

orbitals as a triply degenerate groundstate.

The standard theory of degenerate perturbation theory prescribes that the effect of including δH

is given order by order by an effective Hamiltonian of the form,

PδHP + PδH
1− P
H0

δHP + ... (4.83)

where P is the projection operator which projects onto the t2g states. We have not determined the

third order term, but we expect it to involve the operator,

PδH
1− P
H0

δH
1− P
H0

δHP.

The first order term in the expression 4.83 vanishes. The second order term gives an effective hybridi-

sation between nearest pairs of Ru sites. Because each of the t2g states have nonzero matrix elements

with neighbouring O sites in only two directions, the effective Ru-Ru hybridisation is also in only two

directions. The effective Hamiltonian at second order is given by,

H
(2)
eff = −u

2

∆

∑

〈jj′〉x,y

(
Z†jσZjσ + Z†jσZj′σ

)
− u2

∆

∑

〈jj′〉y,z

(
Y †jσYjσ + Y †jσYj′σ

)

− u2

∆

∑

〈jj′〉z,x

(
X†jσXjσ +X†jσXj′σ

)
(4.84)

where j labels the Ru sites, and the notation 〈jj′〉... indicates nearest neighbour pairs of Ru sites in the

indicated directions. There occur both onsite terms and hopping terms; these correspond to processes
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where the hole hops from a Ru site onto a neighbouring O site, and then hops either back to the

original Ru site or on to the neighbouring Ru site.

Ru− dxy O− py

O− px

x

y

u

u

Figure 4.3: Nonzero matrix elements between the Ru dxy orbital and the 2p orbitals on neighbouring
O sites in the x- and y-directions. There is no hybridisation with any of the 2p states on neighbouring
O sites in the z-direction. The matrix elements between the dyz and dzx states and the 2p states on
neighbours in the x-, y- and z-directions are obtained from these by cyclic permutation.

Ru

O− py

O− px

x

y

v

Ru

O− px

O− py

x

y

v′

Ru

O− px

O− px

x

y

v′′

Ru

O− py

O− py

x

y

v′′

Ru

O− pz

O− pz

x

y

v′′′

Figure 4.4: The nonzero matrix elements between 2p states on neighbouring pairs of O atoms in the
x-y plane. The position of the nearest Ru ion is indicated. The matrix elements between neighbouring
O atoms in the y-z and z-x planes are obtained from these by cyclic permutation.

Carrying the perturbation theory to third order, the matrix elements between O states become

relevant, and there occur both corrections to the onsite energies and nearest neighbour hopping,

with an energy scale u2v/∆2, but also more complicated physics. Most importantly there occurs a
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hybridisation between second nearest neighbour Ru sites via the matrix element v with energy scale

u2v/∆2. Secondly, there occurs at this order terms such as Z†jσYjσ and Z†jσYj′σ which move the hole

between the t2g states either onsite or on nearest neighbour or next nearest neighbour Ru sites, via

the matrix element v′′′ with energy scale u2v′′′/∆2.

Now, certainly both the non-interacting model, and the mean field theory which we shall deal

with when interactions are included, are much easier to solve when the terms which hybridise the

different t2g states are absent, as the occupation numbers for the different t2g orbitals can be calculated

independently for a given chemical potential. One might hope to circumvent the complications that

arrive in the the third order effective model H
(3)
eff by working only with the second order corrections

H
(2)
eff . However, when we come to explicitly describe the implications of a tight binding description

for the bilayer ruthenate system, attempting to obtain a Fermi surface that agrees with experiment

forces us to include a sizeable second-nearest neighbour Ru-Ru hopping, which we have argued is an

effect that only occurs as a third order perturbation. In this light it seems appropriate to work with

the full third order effective hopping Hamiltonian H
(2)
eff + H

(3)
eff . However, we will only include the

second-nearest-neighbour hopping which preserves the orbital species. There is some justification in

this: the terms which change the orbital species almost certainly occur on a somewhat smaller energy

scale, based on the intuition that |v| > |v′′′|.

We have attempted to justify the hybridisation term which we shall use in our model using micro-

scopic calculations. In practice, however, rather than having been devised from first principles, the

hybridisation term in our model was arrived at purely by attempting to reproduce the experimental

Fermi surface and the DFT calculations of the density of states disussed in the previous chapter in

section 3.2. The strong one-dimensional and two-dimensional character of the X/Y and Z bands

respectively is evident in the experimental Fermi surface, and particularly in the DFT calculations of

the density of states of the single layer compound Sr2RuO4. The inclusion of the second neighbour

hopping is required to obtain a Z Fermi surface which matches that seen in Sr3Ru2O7; we use the

value t2 = 0.4t as this is approximately the smallest value of t2 which provides the correct topology

of the Z Fermi surface for which the occupancies of the three t2g bands are equal. The energy scale t

is set by comparing with the DFT calculations. Observe the DFT calculation of the X/Y density of

states in figure 3.8, which has bandwidth of approximately 2eV; in the tight-binding description the

bandwidth is given by 6t (see appendix B and in particular the calculations of the X/Y density of

states in figure B.4), from which we deduce the value t ≈ 0.35eV.
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4.3.4 Onsite Coulomb interaction in the t2g subspace

Here we consider the Coulomb interaction between particles (or holes) lying in t2g orbitals on the same

Ru site. The onsite interaction is given by,

∑

σ1σ2

∑

β1,β2,β′1,β
′
2

Uβ1,β2;β′1β
′
2
c†β1σ1

c†β2σ2
cβ′2σ2

cβ′1σ1
(4.85)

where the labels β1, β2, β3 and β4 run over the three t2g orbitals X, Y and Z. By considering the

symmetry properties of the t2g wavefunctions it can be shown that all of the matrix elements in this

expression can be written in terms of just two energy scales. The onsite matrix elements are given by,

Uβ1,β2;β′1,β
′
2

=

∫
d~r

∫
d~r ′ ψ∗β1

(~r)ψ∗β2
(~r ′)U(|~r − ~r ′ |)ψβ′2(~r ′)ψβ′1(~r).

Each of the the t2g wavefunctions is symmetric with respect to the inversion of one of the three

co-ordinate axes and antisymmetric with respect to the inversion of the other two. Consider the

implications of the following changes of integration variables:

x→ −x, x′ → −x′;

y → −y, y′ → −y′;

z → −z, z′ → −z′.

Because the two-body interaction potential U(|~r − ~r ′ |) is symmetric under each of these transforma-

tions, one finds that the integral must vanish except in the case that there are an even number of

factors of each of the t2g orbitals in the integrand. The integral is only nonzero for the following cases:

1) β1 = β2 = β′1 = β′2;

2) β1 = β2 6= β′1 = β′2;

3) β1 = β′1 6= β2 = β′2;

4) β1 = β′2 6= β2 = β′1.

Now, because the t2g orbitals are perpendicular orientations of the same orbital shape, it is clear that

all of the matrix elements for any one of these cases are the same. We can therefore write the onsite
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Coulomb interaction as

U1

∑

β

c†β↑c
†
β↓cβ↓cβ↑ + U2

∑

β 6=β′
c†β↑c

†
β↓cβ′↓cβ′↑

+ U3
1

2

∑

σσ′

∑

β 6=β′
c†βσc

†
β′σ′cβ′σ′cβσ + U4

1

2

∑

σσ′

∑

β 6=β′
c†βσc

†
β′σ′cβσ′cβ′σ (4.86)

where U1, U2, U3 and U4 are the matrix elements for the cases 1 to 4 respectively. We can simplify

this expression further by using the symmetry properties of the t2g wavefunctions to obtain relations

between these four matrix elements. Now, we can write the t2g wavefunctions as

ψZ(~r) = u(r)
xy

r2
, (4.87)

with the ψY and ψX wavefunctions defined implicitly by cyclic permutation; the factor xy/r2 contains

solely the angular dependence of the wavefunction, and u(r) is the radial dependence which is the

same for all the 4d orbitals. The integrals for the first matrix element for the first case is

U1 =

∫
d~r

∫
d~r ′ |u(r)u(r′)|2 (xyx′y′)2

(rr′)4 U(|~r − ~r ′ |), (4.88)

and for the second case the integral is

U2 =

∫
d~r

∫
d~r ′ |u(r)u(r′)|2xy

2zx′y′2z′

(rr′)4 U(|~r − ~r ′ |). (4.89)

The third case has the integral,

U3 =

∫
d~r

∫
d~r ′ |u(r)u(r′)|2 (xyy′z′)2

(rr′)4 U(|~r − ~r ′ |), (4.90)

and we can relate U3 to U1 and U2 by means of a coordinate transformation. Make the change of

variables in the integral U3 of a rotation through some angle θ about the y- and y′-axes:




x

y

z



→




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ







x

y

z



,




x′

y′

z′



→




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ







x′

y′

z′



.
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With this change of variables the integrand in the integral U3 becomes,

|u(r)u(r′)|2
(rr′)4 U(|~r − ~r ′ |)

{
sin2 θ cos2 θ

[
(xyx′y′)2 + (zyz′y′)2

]

+ cos4 θ(xyy′z′)2 + sin4 θ(zyx′y′)2 − 4 sin2 θ cos2 θxy2zx′y′
2
z′

+ 2 sin θ cos θy2y′
2
[
cos2 θ(xzz′

2 − x2x′z′) + sin2 θ(xzx′
2 − z2x′z′)

]}
. (4.91)

When this expression is integrated over ~r and ~r ′, the result can be written in terms of U1, U2 and U3

as,

U3 = 2 sin2 θ cos2 θU1 + (cos4 θ + sin4 θ)U3 − 4 sin2 θ cos2 θU2, (4.92)

which for arbitrary values of θ implies the relation,

U1 − 2U2 − U3 = 0. (4.93)

Finally, we note that the integral for U4 is identical to U2 owing to the fact that the t2g wavefunctions

are all purely real,

U4 = U2. (4.94)

Now let us examine the expression 4.86. Consider the third term, which may be written in the

form,

U3

2

∑

β 6=β′

(
c†β↑cβ↑ + c†β↓cβ↓

)(
c†β′↑cβ′↑ + c†β′↓cβ′↓

)
. (4.95)

The effect of this term is to impose an energy penalty +U3 for each pair of particles on the site

in different orbitals; the similarity in the effect of this term in comparison with the Hubbard onsite

interaction motivates the use of the notation U3 = U . Next, consider the fourth term in 4.86, which

can be written as,

U4

2

∑

β 6=β′

(
c†β↑cβ′↑c

†
β′↓cβ↓ + c†β′↑cβ↑c

†
β↓cβ′↓ − c

†
β↑cβ↑c

†
β′↓cβ′↓ − c

†
β′↑cβ′↑c

†
β↓cβ↓

)
. (4.96)

The last two terms in this expression give an energy gain of −U4 for pairs of particles in different

states which have their spins parallel. This is precisely the physics of Hund’s rules discussed above.

We therefore refer to the matrix element U4 as the Hund coupling and use the symbol U4 = J . The
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full onsite Coulomb interaction written in terms of the two energy scales U and J is,

U

2

∑

β 6=β′

∑

σσ′

c†βσcβσc
†
β′σ′cβ′σ′ +

J

2

∑

β 6=β′

∑

σσ′

c†βσc
†
β′σ′cβσ′cβ′σ

+ (U + 2J)
∑

β

c†β↑cβ↑c
†
β↓cβ↓ + J

∑

β 6=β′
c†β↑c

†
β↓cβ′↓cβ′↑. (4.97)

4.3.5 Long-range Coulomb interaction

We have now established the model which we shall study for Sr3Ru2O7. In this and the following two

sections we discuss some additional effects which are not incorporated in this model.

The most significant of these is the long-range Coulomb interaction. We have excluded all inter-

actions apart from the largest terms, which are those between particles on the same Ru site. The

interaction terms between particles on nearby sites represent a significant correction to the purely

onsite terms(107). As shown in section 4.1.2, one can write down the Coulomb interaction between

particles in a condensed matter system in second-quantised form in a fully general way as a sum of

two-particle operators. The largest contributions of this sum are from those terms involving operators

on the same lattice site as one would expect; the off-site terms represent smaller and smaller corrections

which decay as the inverse of the separation. However, the sum of all of the offsite terms represents

a large correction to the energy, and its omission cannot be justified on the basis that it is a small

correction to the on-site interaction. It is in this sense that the Coulomb interaction is said to be

long-range.

The physical consequence of the long-range Coulomb interaction is an enormous energetic cost to

having mesoscopic regions of the system which are charged, which enforces that the system is charge

neutal over microscopic or mesoscopic length-scales. At the level of two particles, if the system is

charge-neutral over the scale of the separation of two particles, the Coulomb interaction is screened by

the presence of intervening electrons to effectively have a much smaller value. In this scenario one can

therefore treat the Coulomb interaction as being effectively short-range, although the restriction to a

purely onsite interaction still represents a substantial additional approximation to this(107).

As we discuss in section 4.6.2, however, the long-range Coulomb interaction is extremely relevant to

the state which is predicted by our mean field calculations to occur coincident with the metamagnetism,

which is a phase-separated mixture of two charged phases. This style of state must occur as domains of

the two phases, and the length-scale for the domains is set by the long-range Coulomb interaction. In
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our model which contains only onsite interactions, there is nothing to set this length-scale and nothing

to provide any information on the domain structure.

4.3.6 Spin-Orbit interaction

The spin-orbit interaction is the lowest level microscopic interaction which provides the model with

knowledge of the direction of the applied magnetic field. Consequently, we suggest that it is essentially

responsible for the anisotropic behaviour associated with the nematic phase in Sr3Ru2O7; this has been

suggested by others, and more sophisticated models which include the spin-orbit interaction obtain

solutions which exhibit a nematic phase(101; 102). It is therefore one of the most important effects

which we do not incorporate into the modelling.

The spin-orbit interaction arises at the single-particle level from including the effects of special

relativity perturbatively. The spin and orbital angular momentum of a particle are coupled, and the

interaction can be written as,

K~L · ~S = K
[

1

2
(L+S− + L−S+) + LzSz

]
.

Because the orbital angular momentum is quenched in the t2g states, one might naively expect the spin-

orbit interaction to be irrelevent for these degrees of freedom; however, referring back to equation 4.79

it will be observed that the linear combinations (dyz + idzx) and (dyz − idzx) are spherical harmonics

and therefore have nonzero orbital angular momentum. Written in the t2g subspace the spin-orbit

interaction takes the form(108),

K~L · ~S =
K
2

[
Z†↑(X↓ − iY↓)− Z

†
↓(X↑ + iY↑) + (X†↓ + iY †↓ )Z↑ − (X†↑ − iY

†
↑ )Z↓

+ iX†↑Y↑ − iY
†
↑X↑ − iX

†
↓Y↓ + iY †↓X↓

]
. (4.98)

The size of the energy scale K in the single-layer compound Sr2RuO4 has been estimated as ap-

proximately 0.16 eV(109), and the same value can be taken for the bilayer compound because the

spin-orbit interaction is an onsite, single-particle effect. This is smaller, albeit not greatly so, than

the effect of the second-neighbour hopping, which is to be measured as zt2 ≈ .8eV where z = 4 is the

number of nearest-neighbour Ru sites. However, we shall attempt to fit the experimental magnetisa-

tion curves using values of the Hund coupling J that are smaller than K, and from this perspective
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the spin-orbit interaction is certainly a relevant energy scale and should be included. Our reasons for

not incorporating the spin-orbit interaction are to a great extent to make our calculations easier: the

spin-orbit interaction introduces terms which couple the t2g orbital species and this greatly increases

the complexity of solving the mean field theory. (See section 4.3.3 where we discuss not including

hybridisation terms which couple orbital degrees of freedom.)

Because it contains matrix elements between different t2g species, the spin-orbit interaction will

result in reconstructions where the Fermi surfaces of distinct bands cross in tight binding pictures. The

resulting Fermi surfaces will more closely resemble the experimental Fermi surface. However, similar

effects should in principle also arise purely from the hybridisation energies as we have discussed. We do

not anticipate that including the spin-orbit interaction will qualitatively alter the magnetisation curves

which we obtain in the mean field solution, although we anticipate a quantitative change between fields

in the c-axis and in-plane fields.

4.3.7 The theory as an effective description of correlated physics

The model of Sr3Ru2O7, which involves a large degree of simplification as we have discussed above, is

still far too difficult to solve exactly. We treat the model using mean field theory and in this section

we say something about the inherent limitations of this technique, and how the mean field theory

solution corresponds to the true physical situation in the material. Mean field theory approximates

the behaviour of an interacting system with a non-interacting state; by its very nature this does not

capture the physics of systems in which the correlations between particles play an important role.

In particular, mean field theory vastly over-estimates the tendency of systems to magnetic order.

This is seen in the case of the Hubbard model: as we dealt with in section 4.2, mean field theory

predicts itinerant ferromagnetism in the Hubbard model by the Stoner argument, but it is known that

the Hubbard model is not ferromagnetic in regions of its phase diagram where the Stoner criterion is

met(110). Mean field theory overestimates the susceptibilty of systems to magnetic order. Something

must therefore be said regarding the itinerant ferromagnetism in the Ruthenate model.

The metamagnetism in Sr3Ru2O7 is associated with an instability to itinerant ferromagnetism. In

modelling the metamagnetism, we therefore seek an itinerant ferromagnetic solution. This is a style

of state which mean field theory can provide and it is possible to tune a mean field theory to match

the experiments relatively well. We operate with a mean field theory in which we target itinerant

ferromagnetism exclusively, and do not investigate other styles of state which could also be sought
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using Hartree-Fock mean field theory, such as antiferromagnetism or superconductivity.

Now, the state of the real material is that of a Fermi liquid, which refers to the idea that the

interactions between electrons in the real material act to produce an effective non-interacting state

of quasi-particles, where the corresponding energy scales have been renormalised(106, pp. 126-132).

The energy scales which are ingredients of the mean field theory, t, t2, U and J , are reflective of

these renormalised energy scales, and not the bare parameters that would be calculated in microscopic

calculations. Associated with this is the issue of the sizes and the roles of the interaction energies U

and J . The Hund coupling J provides an intrinsic onsite ferromagnetic interaction, and therefore acts

to promote ferromagnetism more aggressively than U ; we therefore suggest that J is largely responsible

for the magnetism which we presume to exist in the groundstate of our model and in the real material.

However, including a sizeable value of U with J = 0 is sufficient to produce in the mean field solution,

a metamagnetic jump only slightly smaller than what is seen in the experiments; the addition of a

moderate value of J then results in a metamagnetic jump which matches the experiments quite well.

It is possible that the mean field theory provides the correct answer for the wrong reasons here, in

that the parameter U provides a susceptibility to ferromagnetism in the mean field solution which it

does not in the exact solution, whereas in the exact solution ferromagnetism is due primarily to J .

Finally, a crucial feature of the magnetisation curves which is not well-predicted by the mean field

theory is the magnetic field at which the metamagnetic jump takes occurs: the mean field theory

predicts magnetic fields which are an order of magnitude larger than what is seen in experiments. This

huge discrepancy is a symptom of the energy scales in the mean field theory being reflective of the

renormalised energies in the Fermi liquid state, rather than the bare microscopic energies. We include

the magnetic field in our model by adding the term,

−B
∑

jβσ

σc†jβσcjβσ.

In the mean field solution, this term is left unaltered, and the parameter B occurs in the solution as a

bare parameter; we presume that in the exact solution of the model one would find rather an effective

renormalised field. Therefore, in describing the state of the system using mean field theory, the value

of the parameter B ought to be reflective of the renormalised Fermi liquid field, and not the bare value

of the magnetic field that would be applied in an experiment. We make no statement regarding how

to relate the renormalised field to the physical applied field, either in our own model or in the real
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material: this simply lies beyond the scope of our calculations.

4.4 Tight binding theory

In this section we deal with a non-interacting model of the Ru 4d t2g electrons on a bilayer. We include

a hybridisation −t between nearest neighbour Ru sites, and a hybridisation +t2 between second nearest

neighbour sites. The choice of definitions to imply that the first and second neighbour hybridisations

have opposing signs, and indeed the very inclusion of a second neighbour hybridisation, anticipates

the comparison of the tight binding Fermi surface with that of Sr3Ru2O7 which we make near the end

of this section; this comparison shows that a second-neighbour hybridisation differing in sign to the

nearest-neighbour hybridisation and with magnitude approximately t2 = 0.4t is required to match the

experimental Fermi surface.

We do not include any hybridisation between different t2g orbitals and the band structures of

the three orbital species are therefore independent. In addition, as we have discussed in the previous

section, each of the three orbitals hybridises in only two of the three crystal-axis directions. The X and

Y holes are mobile in the y and x directions respectively, and in the z direction so that they can move

between the upper and lower part of the bilayer; the sub-geometry on which they are mobile is therefore

a ladder, where the two rungs of the ladder correspond to the two bilayers. The Z holes are mobile in

both the x and y directions, but cannot move between the bilayers and the corresponding subgeometry

is therefore that of a square lattice. Full calculations of the bandstructures are provided in appendix

B, where the X/Y orbitals and the Z orbitals are dealt with separately as the t-t2 tight-binding model

applied to the geometries of a ladder and a square lattice respectively.

We calculate the magnetisation of the system as a function of an applied magnetic field. The

magnetisation increases essentially linearly with field, but at a certain field the slope abruptly changes.

This point marks where the top-lying spin-↓ X/Y band is pushed past the chemical potential and is

emptied of holes, and the corresponding Fermi surface vanishes. When interactions are included into

the model, this will come to cause a jump in the magnetisation - metamagnetism - qualitatively and

quantitatively similar to that seen in Sr3Ru2O7.

The full tight binding model for all three t2g orbital species is, with the inclusion of an externally
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applied magnetic field B, in the basis of Bloch states,

H =
∑

~kασ

(
X†~k,α,σ Y †~k,α,σ Z†~k,α,σ

)



εX~kα −Bσ 0 0

0 εY~kα −Bσ 0

0 0 εZ~kα −Bσ







X~k,α,σ

Y~k,α,σ

Z~k,α,σ



. (4.99)

The Bloch wavevector ~k is the dual variable to the x- and y- coordinates of the sites. The index α is

the dual of the z-coordinate, which takes just two values and the Bloch states are symmetric (α = +1)

or antisymmetric (α = −1) combinations of states on the upper and lower parts of the bilayer. As

a result of the property that each of the orbital species only hybridise along two of the three lattice

directions, εX~kα is independent of kx,

εX~kα = εXkyα = −2(t− αt2) cos ky − αt, (4.100)

εY~kα is independent of ky,

εY~kα = εXkxα = −2(t− αt2) cos kx − αt, (4.101)

and εZ~kα is independent of α,

εZ~kα = εZ~k = −2t cos kx − 2t cos ky + 4t2 cos kx cos ky. (4.102)

These spectra are derived in appendix B.

The total number of holes per site is

n =
1

2LxLy

∑

jασ

[
〈X†jασXjασ〉+ 〈Y †jασYjασ〉+ 〈Z†jασZjασ〉

]
, (4.103)

where Lx and Ly are the size of the system in the x and y directions respectively. The number of

Z-orbital holes is independent of the index α, and we write,

〈Z†jασZjασ〉 = nZσ. (4.104)

The X- and Y -orbitals have the same occupancy:

〈X†jασXjασ〉 = 〈Y †jασYjασ〉 = nXασ, (4.105)

228



and the total number of X/Y -orbital spin-σ holes per site of is given by

nXσ =
1

2
(nX,+,σ + nX,−,σ). (4.106)

The total number of holes per site can therefore be written as,

n = 2nX↑ + 2nX↓ + nZ↑ + nZ↓. (4.107)

The bands are populated up to a chemical potential µ which is chosen to provide the correct number

of holes per site, that is to satisfy the constraint

n = 2. (4.108)

We shall refer to the constraint as the external equation.

The major difficulty in these tight binding calculations is that one has access to calculations at

constant chemical potential, when what is desired is calculations for a constant number of holes. The

theory provides the occupation numbers of the individual bands as functions of the chemical potential

(see appendix B), from which the total number of holes per site is determined by equation 4.107; one

has to then choose the chemical potential to achieve the physical number of holes, that is to satisfy

equation 4.108. One must implement some iterative procedure on the computer to search for the

correct chemical potential. The same issue must be dealt with in the mean field theory which we

discuss later in the chapter, and in practice the tight binding calculations which we shall exhibit in

this section were performed by applying the same computational procedures as were used for the mean

field calculations, the procedures being provided in the appendix C.
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Figure 4.5: Fermi surface for the tight-binding model for the case of nearest neighbour hopping only
(t2 = 0) Left: hole picture; Right: electron picture. Comparing the right hand picture with ARPES
determinations of the Sr3Ru2O7 Fermi surface, the square lattice Fermi surface in the tight binding
model is holelike while that of the material is electronlike.
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Figure 4.6: Fermi surface for the tight-binding model including a nearest neighbour hopping t and a
second-nearest-neighbour hopping t2 = 0.4t. Left: hole picture; Right: electron picture. Comparing
the right hand picture with ARPES determinations of the Sr3Ru2O7 Fermi surface, the square lattice
Fermi surfaces are both electronlike.

The zero-field (B = 0) Fermi surface for the tight-binding model is depicted in figures 4.5 and 4.6,

for the cases of t2 = 0 and t2 = 0.4t respectively. Each of the one-dimensional X/Y bands provides two
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lines of Fermi surface at the points in reciprocal space where the band crosses the chemical potential.

There are therefore four lines in both the kx- and ky-directions. The Z band provides a curved Fermi

surface.

The right-hand images in figures 4.5 and 4.6 are to be compared with the picture of the Sr3Ru2O7

Fermi surface deduced from ARPES experiments in Figure 3.4. The aspect of these pictures to compare

is the square lattice Fermi surface, which is centred on the (π, π) point in right hand member of figure

4.5, but is centred on the (0, 0) point in the right hand member of 4.6 and in the ARPES data in figure

3.4. This discrepancy between the t2 = 0 theory and the experiment is precisely what motivates the

inclusion of a sizeable second-neighbour hopping into the model.

The topology of the square lattice Fermi surface is associated with whether the Z-van Hove singu-

larity lies above or below the chemical potential, and the position of the singularity in a tight binding

description has a sensitive dependence on the size of the second neighbour hopping energy. In order to

obtain the same topology as the experimental Fermi surface, a large enough second neighbour hopping

must be included to push the van Hove singularity past the chemical potential at zero field; the value

t2 = 0.4t is, approximately speaking, the minimum value which accomplishes this while keeping the

occupancy of the Z-bands at the approximate experimental value of 1/3, which corresponds to the 2

holes per site being equally distributed amongst the three t2g orbitals(66) (see appendix B, figure B.8).

The magnetisation of the system as a function of the applied magnetic field B is depicted in figure

4.7. We have calculated both a 6-band solution, which includes all the occupation numbers we have

discussed, and a 5-band solution, in which the occupancy of the X−↓ band, which is the highest-lying of

the X-bands, is set explicitly to zero, nX,−,↓ = 0. The physical meaning of the plot of magnetisation is

that, as the field B is increased, the spin-↓ bands are pushed up in energy until the X−↓ band is pushed

past the chemical potential and is emptied of holes. This point is seen on the figure of magnetisation

where the 6-band solution smoothly merges with the 5-band solution and ceases to exist. For fields

below this point, the 5-band solution corresponds to a metastable state where all the holes have been

removed from the X−↓ band and put into the other bands.

The metastability of the 5-band solution at low fields is seen in the accompanying figure which

shows the energy of the 6- and 5-band solutions as a function of B. The total energy of the system is
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given by,

E = 2EX + EZ −BM

=
∑

σ

[
− 2(t− t2)

sin(πnX,+,σ)

π
− 2(t+ t2)

sin(πnX,−,σ)

π
− tnX,+,σ + tnX,−,σ

− 4tQ1(µ+Bσ) + 4t2Q2(µ+Bσ)
]
−BM, (4.109)

where the functions Q1(ε) and Q2(ε) are as given in appendix B. The figure clearly shows the energy

of the 6-band solution to be lower than that of the 5-band solution for the same field in the low-field

region.
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Figure 4.7: Magnetisation and Energy of the tight-binding model as a function of the applied magnetic
field B. The 6-band solution includes all of the bands, and the 5-band solution excludes the X−↓-band.

4.5 Model with onsite Coulomb interactions: Mean field the-

ory

We now come to consider the model which adds the onsite interaction derived in section 4.3.4 to the

tight-binding model of the previous section. We solve this model approximately using Hartree Fock

mean field theory. In this section we deal with the formalism of the theory. The calculations themselves

are exhibited and discussed in section 4.6.

We approximate the interacting Hamiltonian by a mean field Hamiltonian which is obtained by
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the Hartree-Fock prescription which was introduced in section 4.2, where the mean fields which we

include in the theory are the occupation numbers of each of the bands in the system. The values of

the occupation numbers are determined as the solutions of a set of self-consistent equations, which we

term the internal equations, which are transcendental and are solved on the computer. The solving of

the internal equations is made considerably easier by the introduction of two new parameters µ̃ and B̃,

which are related to the chemical potential µ and the magnetic field B respectively, and treating these

as independent variables. The values of µ̃ and B̃ must then be tuned to satisfy two external equations

to provide the correct total number of holes in the system and the correct magnetic field B which is the

physical independent variable. The computational procedures for solving both the internal equations

and the external equations are dealt with in appendix C.

Referring to section 4.3.4, the on-site Coulomb interaction for the t2g orbitals is given by

V̂ =
U

2

∑

β 6=β′

∑

σσ′

c†βσcβσc
†
β′σ′cβ′σ′ +

J

2

∑

β 6=β′

∑

σσ′

c†βσc
†
β′σ′cβσ′cβ′σ

+ (U + 2J)
∑

β

c†β↑cβ↑c
†
β↓cβ↓ + J

∑

β 6=β′
c†β↑c

†
β↓cβ′↓cβ′↑. (4.110)

We impose

〈c†βσcβ′σ′〉 = δββ′δσσ′nβσ, 〈c†βσc
†
β′σ′〉 = 0 (4.111)

and consequently the mean field expectation value of the on-site Coulomb interaction term is given by

EC = 〈V̂〉 =
U

2

∑

σσ′

∑

β 6=β′
nβσnβ′σ′ −

J

2

∑

σ

∑

β 6=β′
nβσnβ′σ + (U + 2J)

∑

β

nβ↑nβ↓ (4.112)

=
1

2
(U − J)

[
n2 −

(∑

βσ

nβσ

)2]
+ Jn↑n↓ + 2J

∑

β

nβ↑nβ↓,

where n is the total number of holes per site,

n =
∑

βσ

nβσ, (4.113)

and nσ is the total number of spin-σ holes per site,

nσ =
∑

β

nβσ. (4.114)
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Taking the derivative with respect to the fields nβσ yields

∂EC
∂nβσ

= U(n− nβσ)− J(nσ − nβσ) + 2Jnβσ̄. (4.115)

We can represent the number of spin-σ in terms of the magnetisation M :

M = n↑ − n↓ =⇒ nσ =
n+ σM

2
. (4.116)

This provides

∂EC
∂nβσ

= (U − J

2
)n− J

2
Mσ − (U − J)nβσ + 2Jnβσ̄. (4.117)

The interaction V̂ is replaced in the Hartree-Fock mean field theory with the term,

∑

jβσ

[
∂EC
∂nβσ

c†jβσcjβσ −
∂EC
∂nβσ

nβσ + EC

]
=
∑

jβσ

[
(U − J

2
)n− J

2
Mσ − (U − J)nβσ + 2Jnβσ̄

]
c†jβσcjβσ (4.118)

−N
{

1

2
(U − J)

[
n2 −

(∑

βσ

nβσ

)2]
+ Jn↑n↓ + 2J

∑

β

nβ↑nβ↓

}
.
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The full mean field Hamiltonian is therefore,

HMF − µN =
∑

~kασ

{
(εXkyα −Bσ − µ)X†~kασX~kασ + (εXkxα −Bσ − µ)Y †~kασY~kασ

+ (εZ~k −Bσ − µ)Z†~kασZ~kασ

}

+
∑

jασ

{(
(U − J

2
)n− J

2
Mσ

)(
X†jασXjασ + Y †jασYjασ + Z†jασZjασ

)

+
(
− (U − J)nXσ + 2JnXσ̄

)(
X†jασXjασ + Y †jασYjασ

)

+
(
− (U − J)nZσ + 2JnZσ̄

)
Z†jασZjασ

}

−N
{

1

2
(U − J)

[
n2 −

(∑

βσ

nβσ

)2]
+ Jn↑n↓ + 2J

∑

β

nβ↑nβ↓

}

=
∑

~kασ

{(
εXkyα − B̃σ − µ̃− (U − J)nXσ + 2JnXσ̄

)
X†~kασX~kασ

+
(
εXkxα − B̃σ − µ̃− (U − J)nXσ + 2JnXσ̄

)
Y †~kασY~kασ

+
(
εZ~k − B̃σ − µ̃− (U − J)nZσ + 2JnZσ̄

)
Z†~kασZ~kασ

}

−N
{

1

2
(U − J)

[
n2 −

(∑

βσ

nβσ

)2]
+ Jn↑n↓ + 2J

∑

β

nβ↑nβ↓

}
. (4.119)

where as in section 4.2 we have introduced an internal chemical potential,

µ̃ = µ−
(
U − J

2

)
n, (4.120)

and in addition we have have introduced the parameter,

B̃ = B +
J

2
M, (4.121)

which we call the internal magnetic field. It is quite useful to work with these two parameters because

for given values of µ̃ and B̃ the occupancy of each of the orbital species can be determined independently

of each other as the solutions of pairs of coupled equations, the internal equations, which we describe

explicitly in appendix C. The value of µ̃ is set by the constraint that the number holes per site be

fixed, and the value of B̃ is set for a given value of the real magnetic field B by the equation 4.121.

In calculating the magnetisation of the system as a function of B, the methodology is therefore to
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find the correct values µ̃ and B̃ for each value of B, that is to solve,

n = 2, (4.122)

B = B̃ − J

2
M, (4.123)

which we refer to as external equations. We find the values of µ̃ and B̃ which satisfy the external

equations using a Newton-Raphson procedure which is described in appendix C; each iteration of this

procedure requires the evaluation of the total number of holes n and the magnetisation M which

requires calculating the band occupation numbers by solving the internal equations.

Our computational procedures to solve the external equations and the internal equations converge

to provide a highly accurate solution to the mean field theory provided that these procedures are seeded

with initial estimates that are sufficiently close to the solution. The exception to this is in scenarios

where there are multiple closely positioned solutions to the internal equations, for which the procedures

for the internal equations can fail. If one is attempting to find the solution in close proximity to where

the solution is already known, ie for a small change in the magnetic field, one can use the values of

µ̃, B̃ and the occupation numbers of that known solution as the inital values for the Newton-Raphson

procedures. This methodology has been applied throughout the mean field calculations: we trace out

the solutions by incrementally increasing the value of B.

In the situations involving multiple closely positioned roots in which the procedures to solve the

internal equations fail, we consequently have not been able to calculate the mean field solutions. In

the plots of the solutions as functions of B which we exhibit in the section 4.6, there are small gaps in

some of the curves, which correspond to regions in which it is difficult or impossible for our numerical

procedures to find the solution. In the majority of these cases, the continuity of the solutions strongly

implies that solutions do indeed exist in these regions, and therefore the gaps in our curves are entirely

a computational issue and have no physical significance. In section 4.6.3 we shall discuss cases in which

our procedures fail to provide solutions where we cannot rule out that the solution does not exist.

4.6 Mean Field Theory Calculations

In this section we exhibit mean field solutions of the model with onsite interactions. The main physical

phenomenon which is reproduced in the mean field theory is the metamagnetic jump seen in the

magnetisation curve. We shall mostly examine the mean field solutions in the form of plots of their
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corresponding magnetisation curves. We shall often obtain multiple mean field solutions at the same

field; in most scenarios the system adopts whichever solution has the lowest energy, which is given by

E =
∑

σ

[
− 2(t− t2)

sin(πnX,+,σ)

π
− 2(t+ t2)

sin(πnX,−,σ)

π
− tnX,+,σ + tnX,−,σ

− 4tQ1(µ̃+ B̃σ + (U − J)nZσ − 2JnZσ̄) + 4t2Q2(µ̃+ B̃σ + (U − J)nZσ − 2JnZσ̄)
]

+
1

2
(U − J)

[
n2 −

∑

βσ

(nβσ)2
]

+
J

4
(n2 −M2) + 2J

∑

β

nβ↑nβ↓ −BM. (4.124)

An important exception occurs in the vicinity of the metamagnetism, where the lowest energy solution

is a mixed phase which is a phase separated mixture of two different mean field solutions. The prediction

of the existence of a phase separation in the vicinity of the metamagnetism is the primary physical

prediction of this work, and we suggest that the phase separated state corresponds to the nematic

phase in Sr3Ru2O7.

Section 4.6.1 contains calculations which exhibit the effects of the two parameters of the onsite

Coulomb interaction U and J . If the interactions are small, the magnetisation is qualitatively the

same as for the pure tight binding model: at a certain field the system crosses over from the 6-band

state to the 5-band state with a kink in the magnetisation. If large enough interactions are included, the

kink is replaced with a steep rise in the magnetisation, which is precisely metamagnetism. Coincident

with this steep rise in the magnetisation the groundstate is a phase separated mixture of 6- and 5-

band solutions. Section 4.6.2 is devoted to a discussion of this mixed phase; we describe how the

mixed solution is calculated, exhibit some calculations which evince the properties of the mixed phase,

and give some discussion of the physical implications for the real material. In particular, the two

subphases are not charge-neutral; the implication is that there must be domains of the two subphases

on a microscopic or mesoscopic scale, and that the size of the domains is largely controlled by the

long-range Coulomb interaction which is entirely absent from our modelling.

We then move on to a set of mean field calculations which make alterations to the model, with

the aim of investigating the possible relevance of the Z-bands to the experimental metamagnetism.

Each of these alterations is related to increasing the Z-band density of states at the Fermi level, and

therefore promote Z-mediated Stoner ferromagnetism. In section 4.6.3 we investigate the effect of

altering the second neighbour hopping energy. Changing the second neighbour hopping moves the

van Hove singularity in the Z band structure. There is a range of second neighbour hopping energies

for which an additional metamagnetic jump occurs, at a field which depends sensitively on the seond
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neighbour hopping. The jump is between states which differ in the topology of one of the Z-band

Fermi surfaces, and the metamagnetic region is associated with a phase separated mixture of the two

phases that is completely analogous to the X/Y metamagnetism. Section 4.6.4 investigates the effect

of reducing the Z-band hopping energies while keeping the X/Y hopping energies fixed, which has the

effect of increasing the Z-band density of states. We find that this can promote a large-moment state

in which the spin-↓ Z fermi surface has vanished. The associated magnetic moment is significantly

larger than what is observed in Sr3Ru2O7. Then in section 4.6.5 we investigate the effects of a crystal

field splitting of the t2g shell, such that the energy of the Z bands is lowered relative to that of the X/Y

bands by an amount ∆, which is another way of moving the van Hove singularity close to the Fermi

surface at zero field. We find that in this scenario the Z-bands do not become relevant. We argue that

all of these findings suggest that it is unlikely that the metamagnetism in Sr3Ru2O7 is controlled by

the Z bands: whether Z metamagnetism occurs at all, and whether its effect is too small or much too

large, is dependent on careful tuning of these parameters. By contrast, the X/Y metamagnetism is

comparatively robust: it is always seen provided the interactions are sufficiently large, and the size of

the associated magnetisation jump can quite easily be made to match the experiments.

Finally in section 4.6.6 we exhibit mean field calculations for the system when it is subject to a

small amount of doping. We find that doping alters the field at which the X/Y metamagnetism occurs,

with hole doping pushing the field to higher values and electron doping pushing the field to smaller

values. This is the opposite trend to what is suggested by the electron-doping experiments.

4.6.1 Effect of varying U and J

In this section we exhibit mean field calculations for the model with onsite interactions, and examine

the effect of varying the parameters U and J . For sufficiently large interactions, the crossing over from

the 6-band solution to the 5-band solution as a function of magnetic field occurs with a metamagnetic

jump. There occurs a small range of values of the applied field in which the energetically preferred mean

field solution is a phase separated mixture of 6- and 5-band solutions, which produces an associated

steep increase in the magnetisation with field. Of the two interaction parameters U and J , a large

U alone is sufficient to produce all of the key features of the solution, but to obtain a metamagnetic

jump which is the same size as experiments J must be included.

We begin with calculations which set J = 0. Calculations of the magnetisation as a function of

field are shown for U = 1, U = 2 and U = 3 respectively. The case U = 1 is qualitatively the same as
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the pure tight binding model: the top-lying X/Y band is pushed past the chemical potential by the

application of a sufficient magnetic field, and this occurs at the crossing of the 6- and 5-band solutions.

Like the case of the pure tight binding model, this simply produces a kink in the magnetisation, not

the jump in the magnetisation that constitutes metamagnetism.
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Figure 4.8: Mean field solutions, U = t, t2 = 0

The mean field calculations exhibit metamagnetism if strong enough interactions are included. All

of the important features to be discussed in this section are already exhibited in the calculation for

U = 2 (figure 4.9), but they are more visible in the U = 3 calculation in figure 4.10. The magnetisation

jump itself corresponds to a new type of solution which is shown as a green curve in these figures.

This solution is a phase separated mixture of 6- and 5-band solutions. It is found that such a mixed

phase has a lower energy than either a wholly 6- or 5-band solution in the field-region for which it

is plotted. As a function of the increasing magnetic field, the fractional makeup of the mixed phase

smoothly changes to connect up with the purely 6- and 5-band solutions. In the region of the mixed

phase, the magnetisation shows a steep increase with field: this is precisely the behaviour associated

with metamagnetism. Increasing the Coulomb interaction U increases the size of the magnetisation

jump, and pushes the jump towards smaller values of the applied field.

Another feature to emerge with sufficient interactions is the appearance of a second 6-band solution.

Comparing with the original 6-band solution, which occurs in the tight binding model and has zero

magnetisation at zero field, the new solution is characterised by having a larger magnetisation at the
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same field. The magnetisation of this solution is actually decreasing with increasing field to smoothly

connect up with the other 6-band solution, at which point both solutions cease to exist. The new

6-band solution is always higher energy than the original 6-band solution, and has no relevance to the

groundstate of the system.

Figures 4.10 and 4.11 show the calculations for t2 = 0 and t2 = 0.4t respectively. Although the

t2 = 0.4t calculation shows a larger magnetisation, the two pictures are qualitatively similar.
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Figure 4.9: Mean field solutions, u = 2t, t2 = 0
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Figure 4.10: Mean field solutions, U = 3t, t2 = 0t
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Figure 4.11: Mean field solutions, U = 3t, t2 = 0.4t

Increasing U even further drives the system ferromagnetic at zero field. In terms of the plots of

magnetisation versus field for the mean field solutions, increasing U pushes the termination point of

the 6-band solution to smaller fields, until the solutions cease to exist entirely. This is illustrated in

figures 4.12 and 4.13. Figure 4.12 has the metamagnetism pushed to smaller fields and and figure 4.13

is certainly ferromagnetic at zero field. In the latter instance we have not calculated a phase separated

solution, but the 5-band solution being lower energy than the 6-band solution at zero-field indicates

the zero-field solution must be either the 5-band solution or a mixture.

The driving of the system ferromagnetic with increasing U can also be viewed in terms of the

magnetic susceptibility associated with the paramagnetic solution, which is exhibited as a function of

U in figure 4.14. This quantity is calculated by calculating the magnetisation of the 6-band solution at

a small field value B = 0.0001, and then obtaining the susceptibility as the magnetisation divided by

the field M/B. The susceptibility appears to diverge at some value of U slightly greater than U = 3,

corresponding to the ferromagnetic instability. The energies of the 6-band and 5-band solutions at

zero field are plotted as a function of U in figure 4.15, showing the crossing of the two energies

with increasing U . We expect that there is a range of values of U , for which the energies of the

two solutions are especially close, for which the groundstate will be a phase separated mixture of

the nonmagnetic 6-band solution and the ferromagnetic 5-band solution, and increasing U smoothly

changes the fractional makeup between the purely 6-band and purely 5-band solutions in an analogous
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fashion to mixed solutions in the magnetisation curves.
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Figure 4.12: Mean field solutions, U = 3.1t, t2 = 0.4t
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Figure 4.13: Mean field solutions, U = 3.2t, t2 = 0.4t
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Figure 4.14: Magnetic susceptibility associated with the paramagnetic 6-band solution as a function
of U .
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Figure 4.15: Energy of the 6-band and 5-band solutions at zero field as a function of U .

We now come to the effect of including the Hund coupling J . The effect of including a small value

of J on the magnetisation curves is illustrated in figures 4.16 and 4.17, which provide the mean field

solutions for U = 3t, t2 = 0.4t with J having the values 0.05t and 0.1t respectively. The effect of

increasing J is similar to the effect of increasing U : the “loop” of 6-band solutions is pushed to smaller

fields and the size of the metamagnetic jump is increased.

243



The magnetic susceptibility as a function of J is indicated in figure 4.18. The susceptibility is

found to diverge, indicating that the Hund coupling is driving the system ferromagnetic at zero field.

Note that only a moderate J is required to drive the system ferromagnetic. The energy of the 6-band

and 5-band solutions at zero field is shown are shown as functions of J in figure 4.19, illustrating that

the 5-band solution becomes becomes energetically preferred at modest values of J . Again, we expect

there to be a range of values of J for which the groundstate is a phase-separated mixture of the 6-band

solution and the 5-band solution, in which the fractional makeup of the mixture is smoothly changed

from the purely 6-band state to the purely 5-band state by increasing J .
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Figure 4.16: Mean field solutions, U = 3t, J = 0.05t, t2 = 0.4t.
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In attempting to tune the parameters to obtain a magnetisation curve that best matches that

observed in Sr3Ru2O7, we have obtained the values U = 3t, J = 0.13t provided t2 = 0.4t, which is

implied by the experimental Fermi surface. The mean field magnetisation curve for these values of the

parameters is shown in figure 4.20.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

M

a

g

n

e

t

i

s

a

t

i

o

n

B

U = 2.9, J = 0.13, t2 = 0.4

6 Band solution

5 Band solution

Mixed solution

1.142

1.144

1.146

1.148

1.15

1.152

1.154

1.156

0 0.005 0.01 0.015 0.02

E

n

e

r

g

y

B

U = 2.9, J = 0.13, t2 = 0.4

6 Band solution

5 Band solution

Mixed solution

Figure 4.20: Mean field solutions, U = 2.9t, J = 0.13t, t2 = 0.4t.

These calculations constitute the primary results of our work, and it is worth re-iterating them: for
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sufficiently large interactions, the mean field calculations exhibit metamagnetism, and this is controlled

by the X/Y bands, the low- and high-magnetisation states corresponding to the presence or absence

of the X−,↓ Fermi surface; the metamagnetic region corresponds to a phase separated mixture of low-

and high-magnetisation states.

By tuning the parameters of the Coulomb interaction the jump in the magnetisation can be made

to match the value of ≈ 0.4µB/Ru observed in experiments. By contrast, the prediction for the meta-

magnetic field in this theory is wildly inaccurate. The metamagnetic field in figure 4.20 corresponds

to an energy of 0.01t, which is 0.004eV using the value t = 0.35eV implied by Density Functional

Theory calculations(73), and this corresponds to a magnetic field of approximately 60 Tesla, which is

almost ten times the experimental value. This is one of the inadequacies of mean field theory we have

discussed in section 4.3.7.

There are substantial disagreements between our theory and experiments concerning the Z bands,

and these are closely associated with each other and also with the choice of the second neighbour

hopping. Sr3Ru3O7 has the 2 holes per Ru site approximately equally distributed between the X, Y

and Z orbital species at zero field, but our zero field calculation has a considerable excess of Z holes

and detriment of X/Y holes:

nXσ = 0.26, nZσ = 0.48.

The larger occupancy of the Z bands means that the van Hove singularity in the square lattice density

of states is pushed far below the chemical potential, while experimentally the singularity is observed

to be in close proximity to the chemical potential. The connection with the second neighbour hopping

is that the experimental Fermi surface is holelike and therefore t2 must be large enough to push the

van Hove singularity past the chemical potential. Our value of t2 = 0.4t is strongly mandated by the

experiments, because it is almost the minimum value required to have both a holelike Fermi surface

and the experimental occupation numbers.

Because of the importance of the proximity of van Hove singularities to the chemical potential

with regard to Stoner magnetism, these discrepancies relate closely to the question of whether the

metamagnetism in Sr3Ru2O7 is associated with the X/Y bands, as we propose, or the Z bands as has

been suggested by some other authors(75). The calculations in sections 4.6.3, 4.6.4 and 4.6.5 seek to

address this, by considering a number of modifications to the model aimed at promoting Z induced

magnetism.

A further major discrepancy in our mean field solution arises when we calculate the density of
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states at the Fermi level as a function of the applied field, which we exhibit in figure 4.21. This

quantity should be proportional to the specific heat γ, which we exhibited in the previous chapter,

in the right panel of figure 3.16 and panel B of figure 3.29. The experimental γ value has a strongly

symmetric peak centred on the metamagnetic region. The mean field density of states by contrast

is highly asymmetric. This is inevitable in the picture we are proposing of the vanishing of one of

the one-dimensional Fermi surfaces. However, the experiments much more closely resemble the form

that would be obtained from a metamagnetic jump associated with the Z bands, and this is a further

reason for the further investigations in the following sections.
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Figure 4.21: Density of states at the Fermi level for the mean field solutions of figure 4.20 as a function
of the applied field.

4.6.2 The nature of the mixed phase

One of the main implications of our work is that the mixed phase which occurs with the metamagnetism

in the mean field solution corresponds to the nematic phase in Sr3Ru2O7. In this section we discuss the

phase separated mixed phase in some detail. We begin by explaining how the mixed solutions plotted

in the previous section have been calculated. We then give some discussion of the physical properties

of the mixed phase, emphasising the implication that the system will exhibit microscopic or mesoscopic

domains of the two subphases. The two subphases are both charged, so that the domain-sizes must

be governed by long-range Coulomb forces which we have not included in our modelling. We have not

undertaken any modelling of the experimental features which characterise the mixed phase, but we

248



give some discussion of how one might seek to explain some of these features within the picture of the

nematic phase which we are suggesting.

The starting point for our calculation of the mixed phase is that the chemical potential µ should

be constant throughout the system, and to seek a 6-band and a 5-band solution at the same given

value of µ. The calculation of these two solutions is performed as laid out in appendix C, but where

the internal parameters µ̃ and B̃ must now be chosen to provide not the correct particle number, but

instead the correct chemical potential µ. The external equations are therefore,

µ̃+

(
U − J

2

)
n = µ, (4.125)

B̃ − J

2
M = B. (4.126)

Let the total number of holes per Ru site in the 6- and 5-band solutions for chemical potential µ and

magnetic field B be n6 and n5 respectively. If the fraction of the system in the 5-band phase is λ, then

the total number of holes per site in the system is given by (1 − λ)n6 + λn5, and there is a unique

mixing fraction which provides the correct occupancy of two holes per site. The energy of the mixed

phase is given by

Emix = (1− λ)E6 + λE5 (4.127)

where E6 and E5 are the energy of the 6- and 5-band solutions respectively.

The mixing energy is plotted in figure 4.22 for parameters for which the groundstate is the mixed

phase shown in figure 4.20. There is a clear chemical potential µ and corresponding mixing fraction

λ for which the energy is minimum, and this minimum moves to larger values of µ and λ as the field

is increased. To calculate the mixed solution, the chemical potential which minimises the energy must

be found. In principle, this requires a further iterative procedure in addition to those for solving the

internal and external equations described in appendix C, so that the full calculation would involve

three nested iterative processes. In practice, we start with an approximation of where the minimum

of Emix(µ) should lie, we calculate the energy for just three values of µ in the near-vicinity, Emix(µ),

Emix(µ+ δµ) and Emix(µ+ 2δµ), and we calculate the minimum of the parabola which passes through

the three calculated points,

µmin =
1

2

(2µ+ 3δµ)Emix(µ)− (4µ+ 4δµ)Emix(µ+ δµ) + (2µ+ δµ)Emix(µ+ 2δµ)

Emix(µ)− 2Emix(µ+ δµ) + Emix(µ+ 2δµ)
. (4.128)
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This provides a good approximation to the correct chemical potential provided that one starts in the

near-vicinity of the correct value, but this can always be ensured by appealing to the continuity of the

mean field solutions and performing the calculations where the parameters are only deviated a small

amount from a previously known solution.
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Figure 4.22: Energy of phase mixture as function of the chemical potential and mixing fraction.

Figures 4.23 and 4.24 provide some details of the mixed phase from figure 4.20 as functions of the

field. Figure 4.24 makes very clear a very important point, which is that in the mixed phase the two

subphases have unequal numbers of particles and are not charge-neutral: the 6-band phase has an

excess of holes and is therefore positively charged, and the 5-band phase has a detriment of holes and

is therefore negatively charged.
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Figure 4.24: Number of holes per Ru site for the 6- and 5-band phases in the groundstate mixed phase
plotted in figure 4.20 as functions of field.

The implication of the mixed solution is that some fraction of the material will be in the 6-band

subphase and the remaining fraction in the 5-band subphase. Because the subphases are charged, the

spatial arrangement of domains of the two subphases will be dominantly controlled in the real material

by the long-range Coulomb interaction, which we have not included in our modelling. The Coulomb
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interaction will enforce domains on a microscopic or mesoscopic scale.

We suggest that the mixed phase which occurs in our mean field solution corresponds to the nematic

phase in Sr3Ru2O7. However, we have not attempted any modelling at a sufficiently sophisticated level

to reproduce any of the experimental features which are associated with the nematic phase, which we

discussed in the previous chapter, section 3.4.

One definitive experimental feature is the step-like changes in the in-plane electrical resistivity

close to the metamagnetism. It has been proposed that the increase in the resistivity is due to the

scattering of conduction electrons off of domain walls in the system(75; 96). Therefore, in the picture

of the nematic phase we are proposing, we tentatively suggest that this is the case, where the domains

are associated with the two subphases in the mixed phase. This suggests that the step-like changes in

the resistivity are associated with the appearance and disappearance of domain walls on entering and

leaving the mixed phase.

As we mentioned in the previous chapter, section 3.4, the nematic phase in Sr3Ru2O7 does not

exhibit two features which would usually be indicative of the existence of domains: hysteresis and

dependence on sample shape. We tentatively suggest that this discrepancy might be resolved if the

length scale of the domains is extremely short. Given that in our mixed phase this length scale will

be controlled by the long-range Coulomb interaction and that this is a large energy scale we indeed

expect this length scale to be short. However, we have not made any attempts to quantify this.

A second major feature is the anisotropy that occurs when the magnetic field is tilted a small

angle away from the c-axis, where the sharp plateau in the resistivity is absent in the resistivity

perpendicular to the field. In our model, there is no dependence on the direction of the magnetic field.

The lowest-level miscroscopic interaction that would give rise to a dependence on the field direction

is the spin-orbit interaction, and we postulate that the spin-orbit interaction is the primary cause of

the dependence seen in Sr3Ru2O7. With regards to the actual features seen in the resistivity, if the

resistivity plateau is to be attributed to the scattering of electrons off of domain walls, then the absence

of this feature in the resistivity perpendicular to the in-plane field implies domain walls that are in

the perpendicular direction. The domain pattern then would be stripes of the two subphases parallel

to the perpendicular in-plane direction. When there is a nonzero in-plane field, one presumes that the

spin-orbit interaction leads to a splitting of the degeneracy of the X and Y bands, but the connection

between this and the orientation of domains of high- and low-magnetisation subphases is unclear.

These remarks constitute the starting-point for how one would attempt to seek an explanation for
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the features in the in-plane resistivity seen in Sr3Ru2O7 within the picture of the nematic phase which

we are suggesting. We again stress that we have made no attempts to actually model these features.

There is another route by which an anisotropy between the two in-plane directions might be sought

using the same level of modelling as we have undertaken. This is to seek a mean field solution of

our model in which the occupancies of the X and Y bands differ. One can imagine a scenario in

which the Fermi surface associated with one of the in-plane directions vanishes but the other remains:

such a mean field solution would imply a differing electrical conductivity between the two in-plane

directions directly without the need to invoke the role of domain walls, although it is not clear how

the actual features in the resistivity might be reproduced. Regrettably, these styles of mean field

solution have not been investigated in this thesis. Some early calculations by M. W. Long indicated

that these anisotropic solutions were unlikely to ever have a lower energy than the solutions which

preserve the symmetry of the in-plane directions. The solutions which preserve the symmetry have

been prioritised, both for this reason and because they are easier calculations and therefore provide a

more natural starting point for investigations. A thorough investigation of the anisotropic mean field

solutions is an obvious extension to this work which time has not permitted.

Our modelling is entirely at zero-temperature, and so we are not able to model the thermodynamic

properties relating to the appearance of the nematic phase in Sr3Ru2O7 in any detail. We suggest

that the transition of the system into and out of the mixed phase will show up at low-temperature as

two first order transitions at the appearance and disappearance of the mixed phase, in accord with

the two first order transitions seen in Sr3Ru2O7. The mixed phase is found as the lowest energy mean

field solution and is the true groundstate rather than a metastable state. This is consistent with the

nematic phase in Sr3Ru2O7 being an equilibrium phase.

4.6.3 Effect of varying t2

In this section we show mean field calculations exhibiting the effect of varying the second neighbour

hopping t2. The most important effect of changing this parameter is that it moves the position of

the van Hove singularity in the Z band structure. We have already argued that a sizeable t2 must be

included in order that the zero-field Fermi surface matches the experimental Sr3Ru2O7 Fermi surface;

changing from t2 = 0 to t2 = 0.4t moves the singularity, in the hole picture, from well above the

chemical potential to well below the chemical potential, and therefore alters the topology of the Z

Fermi surface. In this section we show the effect of gradually tuning t2 between these two values.
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In particular, if the van Hove singularity is positioned in close proximity to the chemical potential,

this can lead to more metamagnetic transitions, in addition to the transition associated with the X/Y

bands. The field at which this second metamagnetic jump occurs has extremely sensitive dependence on

t2, and by varying t2 jumps can be made to occur below, above or on top of the X/Y metamagnetism.

Because t2 must be finely tuned in order for the Z metamagnetism to be observed, we argue that this is

unlikely to be the case in the real material, and that this is additional evidence that the metamagnetism

in Sr3Ru2O7 is the X/Y metamagnetism already described.

Figure 4.25 shows the susceptibility associated with the zero-field mean field theory as a function

of t2, calculated as M/B for the small field B = 0.0001t. The divergence around the value t2 = 0.225t

corresponds to the system being driven ferromagnetic in this region by the Z band van Hove singularity

being positioned extremely close to the chemical potential, so that the Stoner criterion is fulfilled. For

values of t2 below the peak, the zero field Fermi surface has the form of figure 4.5, and for values

above the peak the zero field Fermi surface has the form of figure 4.6 which is the topology seen in the

experimental Sr3Ru2O7 Fermi surface.

Figure 4.26, which plots the energies of paramagnetic and ferromagnetic 6-band solutions at zero

field as a function of t2 in the vicinity of the FM instability, shows explicitly that ferromagnetism

is energetically preferred at zero field close to where the susceptibility diverges. The paramagnetic

solutions are the same as the ones calculated in figure 4.25 except the field is set to zero, so that

they have both the Z Fermi surfaces the same topology, and the ferromagnetic solution has the Z↑

Fermi surface electronlike and the Z↓ Fermi surface holelike. Sufficiently close to the FM instability

the ferromagnetic solution is energetically preferred, and on even closer approach to the instability

the paramagnetic solutions apparently cease to exist. We expect the true groundstate to be a phase

separated mixture of paramagnetic and feromagnetic solutions for some values of t2 in this region.
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Figure 4.25: Magnetic susceptibility as a function of t2.
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Figure 4.26: Energy of paramagnetic and ferromagnetic 6-band solutions at B = 0 as a function of t2
in the vicinity of the FM instability.

The changes to the Fermi surface with the application of a magnetic field are indicated, for t2

below the FM instability and t2 above the FM instability, in figures 4.27 and 4.28 respectively. In

both figures, the lefthand member shows the zero-field Fermi surface and the righthand member shows

the high-field Fermi surface, where both the X/Y metamagnetic jump and the Z metamagnetic jump

have already occurred. The change associated with the X/Y -metamagnetism is that the lines of
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Fermi surface associated with the top-lying spin-↓ X/Y bands have vanished, corresponding to the

bands in question having been pushed past the chemical potential. The change associated with the Z

metamagnetism is that one of the Z Fermi surfaces has changed from being holelike to electronlike or

vice versa corresponding to the van Hove singularity in the corresponding band having been moved

past the chemical potential.
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Figure 4.27: Fermi surfaces for U = 3, t2 = 0.14. Left: B = 0; Right: B = 0.08
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Figure 4.28: Fermi surfaces for U = 3, t2 = 0.24. Left: B = 0; Right: B = 0.08
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Figures 4.29 to 4.32 show the magnetisation curves for the mean field solutions for values of t2

which move incrementally past the FM instability. The t2 = 0.14t and t2 = 0.21t cases, figures 4.29

and 4.30, have t2 below the FM instability, and so involve the Fermi surface forms indicated in figure

4.27. t2 = 0.14t has the square lattice far enough below the chemical potential at zero field that

the Z metamagnetism occurs at a substantially higher applied field than the X/Y metamagnetism.

t2 = 0.21t has the van Hove singularity close to the chemical potential at zero field, such that the

Z metamagnetism occurs at a substantialy smaller field than than the X/Y metamagnetism. The

t2 = 0.232t and t2 = 0.24t cases, figures 4.31 and 4.32, have t2 above the FM instability, and so the

picture of both metamagnetic jumps in terms of the Fermi surface is that of figure 4.28. t2 = 0.232t has

the square lattice van Hove singularity slightly above the chemical potential at zero field so that the

Z metamagnetism occurs below the X/Y metamagnetism; t2 = 0.24t has the van Hove singularity far

enough above the chemical potential at zero field that the Z metamagnetism occurs at substantially

higher field than the X/Y metamagnetism.
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Figure 4.29: Mean field solutions for U = 3t, t2 = 0.14t, J = 0.
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Figure 4.30: Mean field solutions for U = 3t, t2 = 0.21t, J = 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

M

a

g

n

e

t

i

s

a

t

i

o

n

B

U = 3, t2 = 0.232

6 Band solution

5 Band solution

Mixed solution

1.17

1.175

1.18

1.185

1.19

1.195

1.2

1.205

1.21

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E

n

e

r

g

y

B

U = 3, t2 = 0.232

6 Band solution

5 Band solution

Mixed solution

Figure 4.31: Mean field solutions for U = 3t, t2 = 0.232t, J = 0.
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Figure 4.32: Mean field solutions for U = 3t, t2 = 0.24t, J = 0.

Note that the magnetisation for the t2 = 0.232t case exhibits three metamagnetic jumps. Increasing

the magnetic field from zero, there is first a Z band mediated jump in which the Fermi surface associated

with the spin-↓ Z holes becomes electronlike. At a higher field, the X/Y metamagnetism occurs, and

the system transitions into a state where the top-lying spin-↓ X/Y -Fermi surface vanishes, but where

both Z Fermi surfaces are again holelike. Increasing the field still further, the Z metamagnetism occurs

“again”, with the third jump in the magnetisation.

In the vicinity of the Z transition, there occur three mean field solutions at the same field, in the

form of an “S” shaped feature in the magnetisation curve (see figures 4.29 to 4.32); the same analytic

structure was obtained in relation to the Z band metamagnetism in calculations by Binz et al(75). The

lower and upper solutions have the Fermi surface form of the low- and high-field regions respectively.

The middle solution moves smoothly between the two forms and joins up with the upper and lower

solutions; this is a high energy metastable solution which we do not think is physically relevant to the

groundstate of the system. This solution is analogous to the upper branch 6-band solution discussed

in section 4.6.1.

For the cases t2 = 0.21t and t2 = 0.232t, the low-field Z transition occurs with the adoption of a

phase-separated mixture of the upper and lower solutions, in a similar manner to the phase separation

associated with the X/Y metamagnetism. These mixed solutions are shown on figures 4.30 and 4.31.

We have not been able to find such mixed solutions in proximity to the Z transitions that occur
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at higher fields than the X/Y transition. The analytic structures of the mean field solutions in the

vicinity of the Z transition whether this be below or above the X/Y transition are perfect analogues,

which suggests that the high-field Z transition should be associated with a phase separation analogous

to the low-field case. A mixed solution requires that there exist solutions of both types at the same

chemical potential. We have attempted to find a range of chemical potentials for which both solutions

exist by incrementally altering the chemical potentials of both solutions from the n = 2 solutions,

but we do not find any chemical potential for which both solutions appear to exist. In the vicinity

of where the solutions could co-exist at the same chemical potential, we find that the self-consistent

equations for the Z band have two very closely positioned solutions. In this scenario our Newton-

Raphson procedures can fail, as we have already discussed. We therefore believe that a mixed phase

does exist in these regions, and that our computational procedures are not sophisticated enough to

find the corresponding solutions to the self-consistent equations. However we cannot rule out that the

possibility that the mixed solution does not exist, which would imply that these Z transitions occur

with a discontinuous jump between the lower and upper solutions when their energies cross.

4.6.4 Effect of changing the Z band hopping energy

We now come to the effect of altering the Z band hopping energies. Changing the hopping energy

by multiplying by the factor r < 1 increases the Z density of states by a factor 1/r and this acts

as an aggressive promoter of Z-associated Stoner ferromagnetism. We have performed calculations

where we reduce the Z hopping energies but keep the X/Y hopping energies fixed. We are motivated

to investigate this effect in an effort to force the Z-mediated metamagnetism for the physical value

of the second neighbour hopping, t2 = 0.4t. In addition, it is an attempt to address the issue in

our calculations in section 4.6.1 that there is an excess of Z holes, and a detriment of X/Y holes, in

comparison with experiments.

The alteration we make to the model is to multiply the Z band hopping by a factor r which is

less than one, while leaving the X/Y hopping energies unchanged, so that tZ/tX/Y = r. This is

easily incorporated into the mean field calculations with the modification that the effective chemical

potentials for the Z bands defined in equation C.20 are rescaled as µeff
Zσ → µeff

Zσ/r, and that the Z band
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energy and density of states are rescaled as,

EZ(µeff
Zσ)→ rEZ(µeff

Zσ/r) (4.129)

ρZ(µeff
Zσ)→ 1

r
ρZ(µeff

Zσ/r). (4.130)

We include a second neighbour hopping of the same relative size of 0.4 for both the Z and X/Y bands.

The energy of various mean field solutions at zero field is shown as a function of the reduction in

the Z band hopping energies in figure 4.33. These include the two states which are relevant to the

X/Y metamagnetism shown in section 4.6.1, the 6-band solution (which has no magnetic moment

at zero field), and the 5-band solution in which the X−,↓ is absent. We also include a number of

large-moment solutions which we have not hitherto considered, the solution which has the Z↓ band

completely absent, the solution which has both the X−,↓ and the Z↓ bands absent, and the solution

which has both the X−,↓ and the X+,↓ bands absent. In addition, there is a 6-band solution with Z-

induced ferromagnetism; this state is analogous to the high magnetisation state in the Z metamagnetic

transitions in section 4.6.3.

Figure 4.33 shows that reducing the Z band hopping energy drives the system into the highly

magnetised state where the Z↓ Fermi surface has vanished. Note that the 6-band Z-mediated ferro-

magnetism never comes into play: the topology of the Z↓ Fermi surface does not change as the system

is driven ferromagnetic, but vanishes. It is striking that the system is pushed into a state with such a

large magnetic moment for a modest change in the hopping energies.
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Figure 4.33: Mean field solutions at zero field as a function of changing the Z band hopping energy.

We have also calculated the high moment solutions as a function of field for tZ/tX/Y = 1 in one

of the scenarios of X/Y metamagnetism we have already exhibited in section 4.6.1, in order to assess

the energetics of these solutions and in particular any possibility of the high-moment Z-ferromagnetic

state being relevant for the cases discussed in section 4.6.1. Magnetisation curves and energies of all of

the high moment solutions are shown in figure 4.34, together with the same curves displayed in figure

4.11, section 4.6.1. The energetics show that the Z-driven highly magnetised state (where the Z↓ Fermi

surface has disappeared) is completely irrelevant. If the field is pushed past the X/Y metamagnetic

jump, the system chooses to evacuate the next X/Y band before the Z band.
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Figure 4.34: The mean field solutions shown in figure 4.11 (here labelled as 6-band solution and 5-band
solution) together with the highly-magnetised states in which more components of the Fermi surface
have vanished.

4.6.5 Effect of crystal field splitting of the t2g shell

Here we exhibit calculations where we impose a crystal field splitting which lowers the energy of the Z

bands relative to the X/Y bands by an amount ∆. This is another alteration to the model intended

to promote Z-induced metamagnetism, and to bring the distribution of particles between the orbital

species more in line with experiment. In shifting the Z bands down, their occupancy is expected to

increase, and in addition, the Z band van Hove singularity is moved closer to the zero field chemical

potential which we anticipate to promote Z band Stoner ferromagnetism.

The modification we make to the model is the addition of the term,

−∆
∑

jσ

Z†jσZjσ, (4.131)

and the change in the calculations to incorporate this is to shift the Z band effective chemical potentials

defined in equation C.20, µeff
Zσ → µeff

Zσ −∆, and to add onto the mean field energy the term −∆(nZ↑+

nZ↓).

The energy of the various zero field mean field solutions are plotted versus ∆ in figure 4.35; these

include the large-moment solutions from section 4.6.4. The system is driven ferromagnetic by the

band-shift, but it is the X/Y -mediated ferromagnetism. The system is first driven into the same
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magnetic instability associated with the X/Y metamagnetism, and adopts the 5-band state where the

X−,↓ Fermi surface is absent, and subsequently into a second X/Y associated magnetic instability

where the X+,↓ Fermi surface vanishes. These are the same magnetic instabilities that occur with

field in figure 4.34. The Z-mediated large moment ferromagnetic state where the Z↓ Fermi surface has

vanished is not energetically relevant.
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Figure 4.35: Mean field solutions at zero field as a function of crystal field splitting ∆.

Some insight is gained from plotting the effective chemical potential µeff
Z↓ and the occupation number

for the Z↓ for these mean field solutions. See figure 4.36. Firstly, the system is pushed into the X/Y

magnetic instability before the Z instability is reached; this is seen in the fact that at the value

∆ ∼ 0.075t of the first X/Y instability µeff
Z↓ is far removed from the position of the square lattice

singularity −4t2. One telltale sign of the square lattice singularity in the mean field calculations is

in the appearance of the second 6-band solution with Z-induced ferromagnetism, where the Z↓ Fermi

surface is holelike; this solution only appears at ∆ ∼ 0.25t which is considerably higher than the X/Y

instability at ∆ ∼ 0.075t. Secondly, in the X/Y mediated jumps which evacuate the X−,↓-band and

then the X+,↓-band, the occupancy of the Z↓ band is increased and the singularity is shifted further

from the chemical potential. This is another example of what is seen in the calculations which vary

t2 in section 4.6.3, that the Z bands effectively act as a reservoir of holes for the X/Y transitions,

filling up as required when the X/Y bands are evacuated. The system pays energy in increasing the

Z↓ occupancy because there is a considerably greater energy to be gained in the X/Y jumps.
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Figure 4.36: Z↓ effective chemical potential and occupancy as function of ∆.
Left: Effective chemical potential µeff

Z↓. The two horizontal black dashed lines mark the position of the
van Hove singularity µ = −4t2 and the bottom of the square lattice band µ = −4t+ 4t2 for t2 = 0.4t.
Right: The occupation number of the Z↓-band. The horizontal black dashed line marks the occupancy
corresponding to the van Hove singularity.

4.6.6 Effect of electron doping

In this section we exhibit some calculations which model the experiment discussed in section 3.6 on

the electron-doping of Sr3Ru2O7. Those authors considered the compound Sr3−yLayRu2O7 for small

values of y, one effect of which is to electron-dope Sr3Ru2O7 in the amount of y/2 electrons per Ru

site. It is extremely straightforward to incorporate doping into the mean field theory, as this simply

changes the number of particles from the 2 holes per site of the reference compound,

2→ 2− y

2
, (4.132)

and so the only modification to the mean field theory is that the external equations become,

n = 2− y

2
, (4.133)

B = B̃ − J

2
M. (4.134)

Positive values of y correspond to electron doping, but we are equally able to explore the effect of hole

doping by making y take negative values.
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In figure 4.37 we exhibit the magnetic susceptibility as a function of y for both hole doping and

electron doping. The susceptibility is made larger with electron doping, and diverges at a modest value

of y, while it is descreased for hole doping. This is entirely what would be naively expected: adding

electrons to the system decreases the number of holes, and therefore in the hole picture the chemical

potential is lowered, towards the bottom of the top-lying X/Y -band. Electron doping therefore pushes

the system towards the X/Y magnetic instability. This is seen in figure 4.38 which plots the energies of

the zero-field 6-band and 5-band solutions as a function of y: for sufficent electron doping y ≈ +0.1 the

energies cross and the 5-band solution becomes the lowest energy, indicating that the system adopts

the 5-band solution, or a mixed state of 6- and 5-band solutions, and is therefore ferromagnetic, at

zero field.
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Figure 4.37: Magnetic susceptibility associated with the paramagnetic 6-band solution as a function
of doping.
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Figure 4.38: Energy 6- and 5-band solutions as a function of doping.

Figures 4.39 and 4.40 show examples of magnetisation curves for electron-doped and hole-doped

cases respectively. These figures are for the same parameters U = 2.9t, J = 0.13t, t2 = 0.4t as in

the calculations in figure 4.20, and should be compared with that figure. The electron-doped case,

corresponding to the system being driven towards ferromagnetism, has the metamagnetic transition

pushed to lower fields. Conversely, the hole-doped case has the metamagnetic transition pushed to

larger fields.
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Figure 4.39: Mean field solutions for small electron doping, y = 0.06.
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Figure 4.40: Mean field solutions for small hole doping, y = −0.06.

All of the mean field calculations are entirely consistent with one’s expectations regarding the

effects of doping. However, they are the complete converse of what is seen in the experiment on

Sr3−yLayRu2O7(103). (see section 3.6) where electron-doping is found to push the system away from

the magnetic instability.

Clearly the substitution of La for Sr has some other effect on the system that acts to make it less

susceptible to ferromagnetism. One might argue that large effects are to be expected, as if one compares

members of the strontium ruthenate series Srn+1RunO3n+1 with the corresponding members of the

calcium ruthenate series Can+1RunO3n+1, for which the valency of the Ru ion is the same, one sees

quite different groundstates, that is a sensitive dependence of the physical properties on the differing

sizes of the Sr and Ca ions(111). For example, in stark contrast to Sr3Ru2O7, the groundstate of

Ca3Ru2O7 is insulating, and exhibits bilayer ferromagnetic order, with antiferromagnetic coupling

between bilayers(112). The possible effects of substituting another atom for Sr in Sr3Ru2O7, besides

moving the chemical potential, are the altering of the crystal structure in the form of twisting and tilting

of the RuO6 octahedra, and the splitting of the t2g orbitals related to a Jahn-Teller distortion of the

RuO6 octahedra(111). The twisting and tilting of the octahedra affects the hybridisation energies, and

therefore the density of states, because it effects the overlap between wavefunctions on neighbouring Ru

sites. Naively one would expect the hopping energy to be lowered and the density of states increased,

and this clearly does not explain the experiments. Jahn-Teller distortion affects the occupancy of the
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t2g orbitals and in many oxide compounds is associated with transitions from metallic to insulating

states(113); one might naively expect the change in the t2g occupancies might result in the system

being moved away from Stoner ferromagnetism. Although it must be noted that the experimenters

suggest that La produces a milder lattice distortion than substituting Ca for Sr, we suggest that the

effects we have desribed must be in some way responsible for the experimental findings.

4.7 Summary and Discussion

We have built a 3-band Hubbard-type model for the correlated paramagnetic metal Sr3Ru2O7, and

calculated Hartee-Fock mean field theory solutions. The mean field solution exhibits metamagnetism,

an abrupt increase in the curve of magnetisation versus field, and the size of the magnetic jump

can be made to match that seen in Sr3Ru2O7. The metamagnetic jump is associated with a van

Hove singularity in the X/Y bands which are one-dimensional at the level of our modelling; the high

magnetisation state corresponds to one of the X/Y bands having been pushed past the chemical

potential by the magnetic field, with the disappearance of the corresponding Fermi surface. In the

region where the magnetisation rises steeply with field the mean field solution is a phase separated

mixture of a state in which all of the X/Y Fermi surfaces are present and a state in which one of the

X/Y Fermi surfaces has vanished. The implication of our calculations is that the metamagnetism in

Sr3Ru2O7 is associated with the X/Y bands and close to the metamagnetic transitions the material

will undergo a phase separation in the manner of our mean field solution. We postulate that this phase

separated solution is precisely the electronic nematic phase which occurs in Sr3Ru2O7 close to the

metamagnetism. This simple interpretation of the nematic phase is the main contribution of our work

over previous works on X/Y mediated metamagnetism using more sophisticated models(101; 102).

We have not attempted modelling at an advanced enough level to reproduce any of the features

which characterise the nematic phase in Sr3Ru2O7. We postulate the dependence on the direction

of the applied magnetic field to be in the main due to the spin-orbit interaction, which we have not

included in our modelling. With regard to the anisotropy of the nematic phase, it should be stressed

that throughout all of the calculations in this thesis the two principal in-plane directions have been

kept completely equivalent. Therefore, any potential explanation of the anisotropy of the nematic

phase within the picture we are proposing would have to be sought as being due to the orientation

of the low- and high-magnetisation domains while the system is phase-separated. Any modelling of

this would require the inclusion of the long-range Coulomb interaction, which has also been entirely
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neglected in this work. Another route to anisotropy within the framework of our mean field approach

is to seek a mean field solution with an anisotropy between the two in-plane directions in the form of

imposing different occupancies of the X and Y bands. Although early calculations by M. W. Long

indicated that such solutions were unlikely to be the groundstate, it is the author’s view that this

is deserving of a more thorough investigation and that this should be the immediate target for any

continuation of this work.

The picture of the nematic phase as a phase-separated mixture of low- and high-magnetisation

phases which we are offering in this thesis is to be contrasted with previous suggestions of essentially

the same picture, but with a ferromagnetic instability which is associated with the two-dimensional

features, rather than the one-dimensional features, of the electronic structure(75). At the level of our

modelling, this would imply that the metamagnetism is associated with the van Hove singularity in the

Z band being pushed past the chemical potential. This is an attractive picture because experiments

show that in Sr3Ru2O7 the relevant van Hove singularity is in the near-vicinity of the chemical potential

at zero field(70; 65). We have investigated the possibility of a Z band instability by making a number

of alterations to the model, and we have made two alterations which result in the mean field solution

exhibiting Z-mediated metamagnetism. The first of these is to alter the size of the second neighbour

hopping t2. There is a range of values of t2 for which Z associated magnetisation jumps occur, at

fields which depend sensitively on t2. In these solutions one sees precisely the styles of state that have

been proposed to be relevant in Sr3Ru2O7(75), with low- and high-magnetisation phases differing in

the Z Fermi surface topology. However, these changes to the Z Fermi surface are undone by the X/Y

metamagnetism, which also occurs in these solutions at a field which is comparatively robust as t2

is varied. The Z bands act largely as a particle reservoir, whose occupancy is dictated by the X/Y

magnetic instability which is the dominant effect in the mean field solution.

The second alteration to the model we have made which gives rise to Z-mediated metamagnetism is

to reduce the Z band hopping energies while keeping the X/Y hopping energies fixed. This promotes

the Z-associated magnetic instability so aggressively that a high-magnetisation state emerges in which

the Z Fermi surface for one of the spin components has vanished. The corresponding magnetic jump

is considerably larger than what is seen experimentally.

The position of the van Hove singularity in the Z density of states depends sensitively on the

value that is chosen for t2. The situation implied by quantum oscillations, photoemission and density

functional theory calculations - that the holes are distributed approximately equally between the X,
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Y and Z orbitals and that the Z Fermi surface is electronlike with the Z van Hove singularity situated

within a few meV of the chemical potential - strongly implies the value t2 = 0.4t. However, one

finds that the mean field solution for t2 = 0.4t opts to have a larger occupancy of Z holes, with

the Z van Hove singularity shifted to be far removed from the chemical potential. In an attempt to

alleviate this large discrepancy between our mean field solution and the situation in Sr3Ru2O7, we have

investigated the effect of shifting the energy of the Z bands relative to the X/Y bands by an amount

∆. This is found to make the mean field solution more susceptible to the X/Y metamagnetism, and

ferromagnetism occurs at zero-field before the experimental electronic structure is arrived at.

All of these issues relating to the Z bands are closely interrelated. We do not rule out that some

combination of the parameters we have investigated will more closely match the experiments at zero-

field, and will exhibit a Z-mediated metamagnetic jump that matches that seen in Sr3Ru2O7. However,

we hope to have convinced the reader that this would require the model to be quite finely tuned, and

the Z magnetic instability can also not come into play at all, have an effect which is subservient to the

X/Y metamagnetism or result in a state where one of the Z Fermi surfaces has vanished for which

the magnetisation is much larger than what is seen in Sr3Ru2O7. By contrast, magnetisation curves

which match the experiments are much more easily obtained with X/Y metamagnetism.

The picture of metamagnetic transition we have given in this thesis, that of arising through a mean

field description with the occurrence of a phase-separated mixture, is actually quite general, and could

arise in mean field treatments on a great variety of Hubbard-type models. One requires large peaks or

divergences in the density of states in proximity to the chemical potential. In the case of Z-mediated

metamagnetism in our own mean field solution, this requires parameters in the model to be carefully

tuned. In contrast, the van Hove singularity associated with one of the X/Y bands is naturally placed

close to the chemical potential as a result of the bilayer splitting. This is why the X/Y metamagnetism

is comparatively robust in the mean field solution.

Finally we have investigated the effect of doping the material. In the mean field solution the

effect of removing holes is to push the system towards the X/Y magnetic instability and push the

X/Y metamagnetism towards smaller fields, but the experiments on substituting Sr with La show

the opposite trend(103). We have speculated that, in addition to moving the chemical potential, the

atomic substitution could result in either the twisting and tilting of the RuO6 octahedra, or a Jahn-

Teller distortion, either of which could have a large affect on the electronic structure, and that this

might provide an explanation for the experiments.
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Appendix B

Tight binding calculations

We here provide in full detail the calculations relating to the bandstructure of the X/Y and Z orbitals.

This is simply to solve a tight-binding model on a ladder geometry for the X/Y orbitals, and on a

square lattice for the Z orbitals. We include a hybridisation between nearest neighbour lattice sites,

with a matrix element −t, and a hybrisation between next nearest neighbour lattice sites, with a matrix

element +t2.

B.1 X/Y orbital band-structure
• ◦ • ◦ • ◦ • ◦ •
◦ ◦ ◦ ◦ ◦
• ◦ • ◦ • ◦ • ◦ •

Figure B.1: Illustration of the ladder geometry for the X/Y holes. The filled circles correspond to
Ru sites and the open circles to O sites.

Consider a ladder geometry as pictured in figure B.1. This geometry is effectively a linear chain with

two atoms per unit cell, corresponding to the lower and upper rung of the ladder; let j label the sites on

the linear chain, and let the total length of the chain be Lx. We assume periodic boundary conditions.

Let X†j,U,σ and X†j,L,σ be creation operators for holes on the upper and lower rungs respectively at

position j.

We immediately make the Bloch transform, In terms of the Bloch states,

X†k,U,σ =
1√
Lx

∑

j

eijkX†j,U,σ and X†k,L,σ =
1√
Lx

∑

j

eijkX†j,L,σ,
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the tight-binding model with first and second-nearest neighbour hopping is

HX =
∑

kσ

(
X†k,U,σ X†k,L,σ

)


−2t cos k −t+ 2t2 cos k

−t+ 2t2 cos k −2t cos k






Xk,U,σ

Xk,L,σ


 . (B.1)

This Hamiltonian is diagonalised by the states

X†j,±,σ =
1√
2

(X†k,U,σ ±X
†
k,L,σ). (B.2)

We introduce the label α = ±1 for the eigenstates, which we indicate by X†j,α,σ; the corresponding

band-structure is given by,

εXkα = −2(t− αt2) cos k − αt. (B.3)

The band-structure is depicted in Figure B.2. There are two bands which have the cosine form expected

of a linear chain, the low-lying symmetric band labelled by α = +1, and the high-lying antisymmetric

band labelled by α = −1.
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Figure B.2: Band structure of the t,t2 model on the ladder.

The occupation of the bands as a function of the chemical potential and the energy are provided by

the correlations 〈X†j,α,σXj′,α′,σ〉. These are easily calculated by writing the in terms of the correlations
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in the eigenstates which are diagonal

〈X†j,α,σXj′,α′,σ〉 =
1

LX

∑

k

ei(j−j
′)kδα,α′〈X†k,α,σXk,α,σ〉. (B.4)

The occupancy of the eigenstates is given by the Fermi function and at zero temperature they are all

fully occupied below the chemical potential and equal to zero above the chemical potential, providing

the real space correlations as

〈X†j,α,σXj′,α′,σ〉 = δα,α′

∫ Kασ

−Kασ

dk

2π
eimk (B.5)

where the wavenumber Kασ provides the Fermi surface,

− 2(t− αt2) cosKασ − αt = µ (B.6)

This immediately provides the occupation number of the two bands as

nXασ = 〈X†j,α,σXj,α,σ〉 =
Kασ

π
(B.7)

and the off-site correlations as

〈X†j,α,σXj+m,α,σ〉 =
sin (πnXασm)

mπ
. (B.8)
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Figure B.3: The total number of holes per site of the band-structure indicated in figure B.2 as a
function of the chemical potential.

The total spin-σ occupation per site nXσ = 1
2 (nX,+,σ + nX,−,σ) as a function of the chemical

potential is depicted in Figure B.3. There are three distinct regions. For −3t+2t2 ≤ µ < −t−2t2, the

chemical potential is below the bottom of the antisymmetric band, so that only the symmetric band

is active. The occupation numbers are then given by

2(t− t2) cos (πnX,+,σ) + t+ µ = 0 ,

nX,−,σ = 0 ,
(B.9)

and as a result

nXσ =
1

2π
arccos

( −t− µ
2(t− t2)

)
. (B.10)

In the region −t− 2t2 ≤ µ ≤ t− 2t2 both the symmetric and antisymmetric bands are active, and we

have

2(t− t2) cos (πnX,+,σ) + t+ µ = 0 ,

2(t+ t2) cos (πnX,−,σ)− t+ µ = 0 ,
(B.11)

and the total number of holes is given by,

nXσ =
1

2π
arccos

( −t− µ
2(t− t2)

)
+

1

2π
arccos

(
t− µ

2(t+ t2)

)
. (B.12)

Finally, in the region t−2t2 < µ ≤ 3t+2t2, the symmetric band is fully occupied, only the antisymmetric
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band is active and we have

nX,+,σ = 1 ,

2(t+ t2) cos (πnX,−,σ)− t+ µ = 0 .
(B.13)

It follows that the occupation is given by

nXσ =
1

2
+

1

2π
arccos

(
t− µ

2(t+ t2)

)
. (B.14)
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Figure B.4: X-band density of states ρX(ε).

The density of states is depicted in B.4. This is simply the sum of contributions from the symmetric

and antisymmetric bands:

ρX(ε) =
1

2Lx

∑

k

[δ(ε+ 2(t− t2) cos k + t) + δ(ε+ 2(t+ t2) cos k − t)]

→ 1

2

∫ π

−π

dk

2π
[δ(ε+ 2(t− t2) cos k + t) + δ(ε+ 2(t+ t2) cos k − t)]

=
(t− t2)

π

∫ 2(t−t2)

−2(t−t2)

dx√
(2(t− t2))2 − x2

δ(ε+ x+ t)

+
(t+ t2)

π

∫ 2(t+t2)

−2(t+t2)

dx√
(2(t− t2))2 − x2

δ(ε+ x− t)

=
(t− t2)

π
√

(2(t− t2))2 − (ε+ t)2
Θ (−2(t− t2)− t < ε < 2(t− t2)− t)

+
(t+ t2)

π
√

(2(t+ t2))2 − (ε− t)2
Θ (−2(t+ t2) + t < ε < 2(t+ t2) + t) . (B.15)

276



And so, in the three distinct regions discussed in relation to the occupation, the density of states takes

the form

ρX(ε) =





(t−t2)

π
√

(2(t−t2))2−(ε+t)2
, −3t+ 2t2 ≤ µ < −t− 2t2

(t−t2)

π
√

(2(t−t2))2−(ε+t)2
+ (t+t2)

π
√

(2(t+t2))2−(ε−t)2
, −t− 2t2 ≤ µ ≤ t− 2t2

(t+t2)

π
√

((t+t2))2−(ε−t)2
, t− 2t2 < µ ≤ 3t+ 2t2 .

(B.16)
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Figure B.5: X-band energy EX as a function of chemical potential

Finally, we depict the energy of the tight-binding model in B.5. It is straightforward to represent

the energy in terms of the occupancies as

EX =
〈HX〉
2Lx

=
1

2Lx

∑

jασ

〈−(t− αt2)(X†jασXj+1ασ +X†jασXj−1ασ)− αtX†jασXjασ〉

=
1

2

∑

ασ

[
−2(t− αt2)

sin(πnXασ)

π
− αtnXασ

]
(B.17)
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B.2 Z orbital band-structure

• ◦ • ◦ • ◦ •
◦ ◦ ◦ ◦
• ◦ • ◦ • ◦ •
◦ ◦ ◦ ◦
• ◦ • ◦ • ◦ •
◦ ◦ ◦ ◦
• ◦ • ◦ • ◦ •

Figure B.6: Illustration of the square lattice geometry for the Z holes. The filled circles correspond to
Ru sites and the open circles to O sites.

The tight-binding Hamiltonian on the square lattice is given by

HZ =
∑

~kσ

(−2t cos kx − 2t cos ky + 4t2 cos kx cos ky)Z†~kσZ~kσ, (B.18)

where the operators Z†~kσ correspond to the usual Bloch states,

Z†~kσ =
1√
LxLy

∑

j

ei
~k·~RjZ†jσ,

where the index j labels the sites on the square lattice, and Lx and Ly are the dimensions of the

system. We have assumed periodic boundary conditions in both of the principal directions of the

square lattice. The band-structure,

εZ~k = 2t cos kx − 2t cos ky + 4t2 cos kx cos ky, (B.19)

is depicted in figure B.7.
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Figure B.7: Band structure of the t,t2 model on the square lattice.

The density of states is given by

ρZ(ε) =
∑

~k

δ(ε− εZ~k ) =

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

δ(ε+ 2t cos kx + 2t cos ky − 4t2 cos kx cos ky)

=
1

π2

∫ 1

−1

dx√
1− x2

∫ 1

−1

dy√
1− y2

δ(ε+ 2tx+ 2ty − 4t2xy), (B.20)

and the single-particle correlations are given by

〈Z†jσZj+m1x̂+m2ŷσ〉 =
1

LxLy

∑

k

ei(m1kx+m2ky)〈Z†kσZkσ〉

=

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

ei(m1kx+m2ky)Θ(−2t cos kx − 2t cos ky + 4t2 cos kx cos ky − µ)

=
1

π2

∫ 1

−1

dx√
1− x2

∫ 1

−1

dy√
1− y2

xm1ym2Θ(−2t(x+ y) + 4t2xy − µ), (B.21)

where the theta function ensures that the integration is only taken over the states below the chemical

potential.

The single-particle correlations and the density of states can be represented in the form of elliptic

integrals. Practically speaking, each of these quantities can be represented as a single definite integral

which can easily be calculated using a computer. Such a representation is obtained by performing

one of the two integrals in the expressions B.20 and B.21 analytically. In the following, we will derive

representations for the particle number nZσ = 〈Z†jσZjσ〉, the density of states ρZ(ε) and the energy
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EZ , which is composed of nearest- and next-nearest-neighbour correlations. We discuss the occupation

number in the most detail, and thereafter apply the same parameterisation to the other quantities.
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Figure B.8: Occupation of the t,t2 model on the square lattice as a function of chemical potential.
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The occupation number nZσ = 〈Z†jσZjσ〉 is shown as a function of the chemical potential in B.8. If

we examine the argument of the theta function in the expression for the correlation, we are required

to integrate over the region where

y >
−µ− 2tx

2t− 4t2x

The region of integration corresponding to the occupied states is pictured in B.9 for the three cases

which must be distinguished, −4t+ 4t2 ≤ µ < −4t2, µ = −4t2 and −4t2 < µ ≤ 4t+ 4t2. For the case
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−4t+ 4t2 ≤ µ < −4t2 the integral is

nZσ =
1

π2

∫ 1

−µ−2t
2t−4t2

dx√
1− x2

∫ 1

−µ−2tx
2t−4t2x

dy√
1− y2

(B.22)

The integration over y can be performed exactly to give,

nZσ =
1

π2

∫ 1

−µ−2t
2t−4t2

dx√
1− x2

cos−1

(−µ− 2tx

2t− 4t2x

)
. (B.23)

The case µ > −4t2 is most conveniently represented in terms of the integral over the unoccupied states.

The fully occupied band of course has nz = 1 and so we may write,

nZσ = 1− 1

π2

∫ 2t−µ
2t+4t2

−1

dx√
1− x2

∫ −µ−2tx
2t−4t2x

−1

dy√
1− y2

(B.24)

The integral in this expression can be carefully rewritten to obtain a form very similar to that of the

first case

1

π2

∫ 2t−µ
2t+4t2

−1

dx√
1− x2

∫ −µ−2tx
2t−4t2x

−1

dy√
1− y2

=
1

π2

∫ 2t−µ
2t+4t2

−1

dx√
1− x2

∫ 1

µ+2tx
2t−4t2x

dy√
1− y2

=
1

π2

∫ 2t−µ
2t+4t2

−1

dx√
1− x2

cos−1

(
µ+ 2tx

2t− 4t2x

)

nZσ = 1− 1

π2

∫ 1

−2t+µ
2t+4t2

dx√
1− x2

cos−1

(
µ− 2tx

2t+ 4t2x

)
(B.25)

In both cases, we must calculate the integral

J (µ) =
1

π2

∫ 1

−2t+τµ
2t+4τt2

dx√
1− x2

cos−1

(−2tx+ τµ

2t+ 4τt2x

)
(B.26)

where we define

τ(µ) =





1, −4t2 < µ ≤ 4t+ 4t2

−1, 4t+ 4t2 ≤ µ < −4t2

. (B.27)

The occupation number is

nZσ =





1− J (µ), −4t2 < µ ≤ 4t+ 4t2

J (µ), 4t+ 4t2 ≤ µ < −4t2

(B.28)
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We obtain a cleaner representation for J (µ) by making the change of variable x = cos θ:

J (µ) =
1

π2

∫ q

0

dθ cos−1

(
2t+ (2t+ 4τt2) cos q − 2t cos θ

2t+ 4τt2 cos θ

)

where,

cos q =
−2t+ τµ

2t+ 4τt2
. (B.29)

For performing the numerical calculations, it is not desirable for the limits of integration be dependant

on the parameters µ and t2. We choose to remove this dependence by making the recaling θ = qφ

which provides

J (µ) =
q

π2

∫ 1

0

dφ cos−1

(
2t+ (2t+ 4τt2) cos q − 2t cos qφ

2t+ 4τt2 cos qφ

)

Finally, it is found that the error in a finite element numerical integration is considerably reduced by

making the change of variable φ = 1− u2:

J (µ) =
2q

π2

∫ 1

0

u cos−1

(
1 + (1 + 2τ t2t ) cos q − cos

(
q(1− u2)

)

1 + 2τ t2t cos (q(1− u2))

)
du (B.30)

The occupation number nZσ shows a kink at the special point −4t2 which shows up as a divergence

in the density of states, depicted in figure B.10. Such logarithmic divergences are a generic feature in

two-dimensional band-structures.
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Figure B.10: Density of states ρz(ε) of the t,t2 model on the square lattice.
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The density of states is shown in Figure B.10. This is of course given by

ρZ(ε) =
∑

~k

δ(ε− ε~k) =

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

δ(ε+ 2t cos kx + 2t cos ky − 4t2 cos kx cos ky)

=
1

π2

∫ 1

−1

dx√
1− x2

∫ 1

−1

dy√
1− y2

δ(ε+ 2tx+ 2ty − 4t2xy)

=
1

π2

∫ 1

−1

dx√
1− x2

1

(2t− 4t2x)

∫ 1

−1

dy√
1− y2

δ

(
y +

ε+ 2tx

2t− 4t2x

)

=
1

2π2t

∫ 1

−1

dx√
1− x2

1

(1− 2 t2t x)

1√
1−

(
−2tx−ε
2t−4t2x

)2
Θ

(
−1 <

−2tx− ε
2t− 4t2x

< 1

)

(B.31)

ρZ(ε) =
1

2π2t

∫ 1

−2t−ε
2t−4t2

dx√
1− x2

1

(1− 2 t2t x)

√
1−

(
−2tx−ε
2t−4t2x

)2
for− 4t+ 4t2 ≤ ε < −4t2

ρZ(ε) =
1

2π2t

∫ 2t−ε
2t+4t2

−1

dx√
1− x2

1

(1− 2 t2t x)

√
1−

(
−2tx−ε
2t−4t2x

)2
for− 4t2 < ε ≤ 4t+ 4t2

Applying the same parameterisation as for the occupation number, we obtain

ρZ(ε) =
1

2π2t

∫ q

0

dθ√(
1 + 2τ t2t cos θ

)2 −
(
1 + (1 + 2τ t2t ) cos q − cos θ

)2

=
q

π2t

∫ 1

0

udu√(
1 + 2τ t2t cos (q(1− u2))

)2 −
(
1 + (1 + 2τ t2t ) cos q − cos (q(1− u2))

)2

(B.32)

where the latter form is more computationally effective, and where

cos q =
−2t+ τε

2t+ 4τt2
, τ =





1, −4t2 < ε ≤ 4t+ 4t2

−1, 4t+ 4t2 ≤ ε < −4t2.

(B.33)
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Figure B.11: Energy of the t,t2 model on the square lattice as a function of chemical potential.

The energy is shown in Figure B.11. The energy is given in terms of single-particle correlations by

EZ =
〈Hz〉
LxLy

=
1

LxLy
〈−t

∑

〈jj′〉1σ
Z†jσZj′σ + t2

∑

〈jj′〉2σ
Z†jσZj′σ〉

= −4t
(
〈Z†j↑Zj+ŷ↑〉+ 〈Z†j↓Zj+ŷ↓〉

)
+ 4t2

(
〈Z†j↑Zj+x̂+ŷ↑〉+ 〈Z†j↓Zj+x̂+ŷ↓〉

)
(B.34)

The two correlations which we require, for the case µ < −4t2 can be written as

〈Z†jσZj+ŷσ〉 =
1

π2

∫ 1

−2t−µ
2t−4t2

dx√
1− x2

∫ 1

−2tx−µ
2t−4t2x

ydy√
1− y2

=
1

π2

∫ 1

−2t−µ
2t−4t2

dx√
1− x2

√
1−

(−2tx− µ
2t− 4t2x

)2

(B.35)

〈Z†jσZj+x̂+ŷσ〉 =
1

π2

∫ 1

−2t−µ
2t−4t2

xdx√
1− x2

∫ 1

−2tx−µ
2t−4t2x

ydy√
1− y2

=
1

π2

∫ 1

−2t−µ
2t−4t2

xdx√
1− x2

√
1−

(−2tx− µ
2t− 4t2x

)2

(B.36)

For the case µ > −4t2 we again represent the integral over the occupied states as the fully occupied
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band minus the unoccupied states:

〈Z†jσZj+ŷσ〉 = 0− 1

π2

∫ 2t−µ
2t+4t2

−1

dx√
1− x2

∫ −2tx−µ
2t−4t2x

−1

ydy√
1− y2

=
1

π2

∫ 2t−µ
2t+4t2

−1

dx√
1− x2

√
1−

(−2tx− µ
2t− 4t2x

)2

=
1

π2

∫ 1

−2t+µ
2t+4t2

dx√
1− x2

√
1−

(
2tx− µ

2t+ 4t2x

)2

(B.37)

〈Z†jσZj+x̂+ŷσ〉 = 0− 1

π2

∫ 2t−µ
2t+4t2

−1

xdx√
1− x2

∫ −2tx−µ
2t−4t2x

−1

ydy√
1− y2

=
1

π2

∫ 2t−µ
2t+4t2

−1

xdx√
1− x2

√
1−

(−2tx− µ
2t− 4t2x

)2

= − 1

π2

∫ 1

−2t+µ
2t+4t2

xdx√
1− x2

√
1−

(
2tx− µ

2t+ 4t2x

)2

(B.38)

We process these integrals in exactly the manner as in the calculation of nZσ, with the convention

τ =





+1, −4t2 < µ ≤ 4t+ 4t2

−1, 4t+ 4t2 ≤ µ < −4t2

, (B.39)

to obtain the representations

〈Z†jσZj+ŷσ〉 = Q1(µ), 〈Z†jσZj+x̂+ŷσ〉 = Q2(µ), (B.40)

where

Q1(µ) =
2q

π2

∫ 1

0

u

√√√√1−
(

1 + (1 + 2τ t2t ) cos q − cos (q(1− u2))

1 + 2τ t2t cos (q(1− u2))

)2

du, (B.41)

Q2(µ) = −τ 2q

π2

∫ 1

0

u cos
(
q(1− u2)

)
√√√√1−

(
1 + (1 + 2τ t2t ) cos q − cos (q(1− u2))

1 + 2τ t2t cos (q(1− u2))

)2

du. (B.42)
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Appendix C

Procedures for the mean field

theory calculations

In this appendix we describe the computational procedures which we use to calculate the mean field

solutions. For given values of the internal parameters µ̃ and B̃, the six band occupation numbers

nX↑, nX↓, nZ↑ and nZ↑ are obtained as the solutions of a set of internal equations; these occupation

numbers determine the total number of holes and the magnetisation as

n = nX↑ + nX↓ + nZ↑ + nZ↓, (C.1)

M = nX↑ + nZ↑ − nX↓ − nZ↓. (C.2)

The values of µ̃ and B̃ must then be tuned to provide the correct number of holes and external magnetic

field, that is to satisfy the external equations,

n = 2, (C.3)

B = B̃ − J

2
M. (C.4)

The solutions of both the internal equations and the external equations are solved using Newton-

Raphson procedures. A full calculation therefore involves two nested Newton-Raphson procedures,

with each iteration of the procedure for the external equations requiring the solving of the internal

equations.
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C.1 Internal equations

The use of the parameters B̃ and µ̃ as independent variables allows the mean field theory to be

parameterised in such a way that the self-consistent equations for the band occupation numbers contain

no terms which couple the occupation numbers of distinct orbital species. One has to deal with pairs

of coupled equations for the spin-↑ and spin-↓ holes of each orbital species. Because we treat the X

and Y orbitals as equivalent, these are governed by the same set of occupation numbers; there are

therefore just two pairs of coupled equations, one pair for the X/Y occupation numbers nX↑ and nX↓,

and one pair for the Z occupation numbers nZ↑ and nZ↓.

C.1.1 X/Y occupation numbers

In the 6-band case, the four occupation numbers nXασ are deteremined by the four self-consistent

equations,

2(t− αt2) cos (πnX,+,σ) + αt+ µ̃+ B̃σ + (U − J)nXσ − 2JnXσ̄ = 0. (C.5)

One can eliminate the occupancies of the individual bands to obtain an equation purely in nX↑ and

nX↓. We first represent the equations in terms of nXσ = 1
2 (nX,+,σ + nX,−,σ) and the difference in the

individual band occupancies, wXσ = 1
2 (nX,+,σ − nX,−,σ). Taking the sum of the two spin-σ cases of

C.5 gives

2t cos (πnXσ) cos (πwXσ) + 2t2 sin (πnXσ) sin (πwXσ) + µ̃+ B̃σ + (U − J)nXσ − 2JnXσ̄ = 0 (C.6)

and taking the difference of these two equations gives,

− 2t sin (πnXσ) sin (πwXσ)− 2t2 cos (πnXσ) cos (πwXσ) + t = 0. (C.7)

Taking appropriate linear combinations of equations C.6 and C.7 to eliminate each of the quantities

cos(πnXσ) cos(πwXσ) and sin(πnXσ) sin(πwXσ) we obtain,

2t
(
1− ( t22 )2

)
cos (πnXσ) cos (πwXσ) = −t2 −

(
µ̃+ B̃σ + (U − J)nXσ − 2JnXσ̄

)
, (C.8)

−2t
(
1− ( t22 )2

)
sin (πnXσ) sin (πwXσ) = −t− t2

t

(
µ̃+ B̃σ + (U − J)nXσ − 2JnXσ̄

)
. (C.9)
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We now square both sides of each of these equations, and eliminate the variable sin2(πwXσ) = 1 −

cos2(πwXσ) to finally obtain

(
t2 + µ̃+ B̃ + (U − J)nXσ − 2JnXσ̄

)2

t2 cos2(πnXσ)
+

(
t+ t2

t

(
µ̃+ B̃ + (U − J)nXσ − 2JnXσ̄

))2

t2 sin2(πnXσ)

−4
(
1− ( t2t )2

)2
= 0 (C.10)

In the 6-band solution, nX↑ and nX↓ therefore satisfy the two coupled equations,

(
t2 + µ̃+ B̃ + (U − J)nX↑ − 2JnX↓

)2

t2 cos2(πnX↑)
+

(
t+ t2

t

(
µ̃+ B̃ + (U − J)nX↑ − 2JnX↓

))2

t2 sin2(πnX↑)

− 4
(
1− ( t2t )2

)2
= 0 (C.11)

(
t2 + µ̃− B̃ + (U − J)nX↓ − 2JnX↑

)2

t2 cos2(πnX↓)
+

(
t+ t2

t

(
µ̃− B̃ + (U − J)nX↓ − 2JnX↑

))2

t2 sin2(πnX↓)

−4
(
1− ( t2t )2

)2
= 0 (C.12)

In the 5-band solution, we exclude the occupation number nX,−,↓ from consideration. The total number

of spin-↓ holes per site is then nX↓ =
nX,−,↓

2 . The equation C.11 still holds and the second equation is

provided by C.5:

(
t2 + µ̃+ B̃ + (U − J)nX↑ − 2JnX↓

)2

t2 cos2(πnX↑)
+

(
t+ t2

t

(
µ̃+ B̃ + (U − J)nX↑ − 2JnX↓

))2

t2 sin2(πnX↑)

−4
(
1− ( t2t )2

)2
= 0 (C.13)

2(t− t2) cos (2πnX↓) + t+ µ̃− B̃ + (U − J)nX↓ − 2JnX↑ = 0 (C.14)

We solve the two coupled equations using a Newton-Raphson procedure. Let

fX↑(nX↑, nX↓) =

(
t2 + µ̃+ B̃ + (U − J)nX↑ − 2JnX↓

)2

t2 cos2(πnX↑)

+

(
t+ t2

t

(
µ̃+ B̃ + (U − J)nX↑ − 2JnX↓

))2

t2 sin2(πnX↑)
− 4

(
1− ( t2t )2

)2
(C.15)
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and let

fX↓(nX↑, nX↓) =

(
t2 + µ̃− B̃ + (U − J)nX↓ − 2JnX↑

)2

t2 cos2(πnX↓)

+

(
t+ t2

t

(
µ̃− B̃ + (U − J)nX↓ − 2JnX↑

))2

t2 sin2(πnX↓)
− 4

(
1− ( t2t )2

)2
(C.16)

in the 6-band case and

fX↓(nX↑, nX↓) = 2(t− t2) cos (2πnX↓) + t+ µ̃− B̃ + (U − J)nX↓ − 2JnX↑ (C.17)

in the 5-band case. We can converge to the solution fX↑ = 0 = fX↓ by repeated application of the

mapping,

nX↑ → nX↑ −
fX↑

∂fX↓
∂nX↓

− ∂fX↑
∂nX↓

fX↓
∂fX↑
∂nX↑

∂fX↓
∂nX↓

− ∂fX↑
∂nX↓

∂fX↓
∂nX↑

, (C.18)

nX↓ → nX↓ −
∂fX↑
∂nX↑

fX↓ − fX↑ ∂fX↓∂nX↑
∂fX↑
∂nX↑

∂fX↓
∂nX↓

− ∂fX↑
∂nX↓

∂fX↓
∂nX↑

. (C.19)

C.1.2 Z occupation numbers

To obtain the self-consistent equations for the occupation numbers nZσ we apply the formula B.28

substituting the two effective chemical potentials,

µeff
Z↑ = µ̃+ B̃ + (U − J)nZ↑ − 2JnZ↓,

µeff
Z↓ = µ̃− B̃ + (U − J)nZ↓ − 2JnZ↑, (C.20)

so that the two self-consistent equations are,

nZ↑ =





1− J (µeff
Z↑), −4t2 < µeff

Z↑ ≤ 4t+ 4t2

J (µeff
Z↑), 4t+ 4t2 ≤ µeff

Z↑ < −4t2

(C.21)

nZ↓ =





1− J (µeff
Z↓), −4t2 < µeff

Z↓ ≤ 4t+ 4t2

J (µeff
Z↓), 4t+ 4t2 ≤ µeff

Z↓ < −4t2

(C.22)
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where

J (µeff
Zσ) =

2q

π2

∫ 1

0

u cos−1

(
1 + (1 + 2τ t2t ) cos q − cos

(
q(1− u2)

)

1 + 2τ t2t cos (q(1− u2))

)
du, (C.23)

cos (q(µeff
Zσ)) =

−2t+ τµeff
Zσ

2t+ 4τt2
, (C.24)

τ(µeff
Zσ) =





1, −4t2 < µeff
Zσ ≤ 4t+ 4t2

−1, 4t+ 4t2 ≤ µeff
Zσ < −4t2

. (C.25)

These equations are solved using the same Newton-Raphson procedure as for the X/Y occupation

numbers. We define

fZσ(nZ↑, nZ↓) =





1− J (µeff
Zσ)− nZσ, −4t2 < µeff

Zσ ≤ 4t+ 4t2

J (µeff
Zσ)− nZσ, 4t+ 4t2 ≤ µeff

Zσ < −4t2

(C.26)

and we repeately apply the mapping,

nZ↑ → nZ↑ −
fZ↑

∂fZ↓
∂nZ↓

− ∂fZ↑
∂nZ↓

fZ↓
∂fZ↑
∂nZ↑

∂fZ↓
∂nZ↓

− ∂fZ↑
∂nZ↓

∂fZ↓
∂nZ↑

, (C.27)

nZ↓ → nZ↓ −
∂fZ↑
∂nZ↑

fZ↓ − fZ↑ ∂fZ↓∂nZ↑
∂fZ↑
∂nZ↑

∂fZ↓
∂nZ↓

− ∂fZ↑
∂nZ↓

∂fZ↓
∂nZ↑

. (C.28)

The derivatives are simply represented in terms of the square lattice density of states:

∂fZσ
∂nZσ

= (U − J)ρZ(µeff
Zσ)− 1,

∂fZσ
∂nZσ̄

= −2JρZ(µeff
Zσ). (C.29)

Both the functions fZσ and their derivatives are calculated to a high accuracy by evaluating the

appropriate integral numerically using finite element methods.

C.2 External equations

Let F (µ̃, B̃) = n(µ̃, B̃)−2 and G(µ̃, B̃) = B− B̃+ J
2M(µ̃, B̃), so that the external equations are F = 0

and G = 0. If µ̃∗ and B̃∗ are the values which satisfy these equations, then for values µ̃ and B̃ close
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to these values we can write

F (µ̃, B̃) ≈ (µ̃− µ̃∗)∂F
∂µ̃

+ (B̃ − B̃∗)∂F
∂B̃

(C.30)

G(µ̃, B̃) ≈ (µ̃− µ̃∗)∂G
∂µ̃

+ (B̃ − B̃∗)∂G
∂B̃

(C.31)

and these equations can be inverted to provide,

µ̃∗ ≈ µ̃−
F ∂G
∂B̃
− ∂F

∂B̃
G

∂F
∂µ̃

∂G
∂B̃
− ∂F

∂B̃
∂G
∂µ̃

(C.32)

B̃∗ ≈ B̃ −
∂F
∂µ̃G− F ∂G

∂µ̃

∂F
∂µ̃

∂G
∂B̃
− ∂F

∂B̃
∂G
∂µ̃

. (C.33)

We therefore can obtain successively better approximations to µ̃∗ and B̃∗ by the repeated application

of the mapping,

µ̃→ µ̃−
F ∂G
∂B̃
− ∂F

∂B̃
G

∂F
∂µ̃

∂G
∂B̃
− ∂F

∂B̃
∂G
∂µ̃

(C.34)

B̃ → B̃ −
∂F
∂µ̃G− F ∂G

∂µ̃

∂F
∂µ̃

∂G
∂B̃
− ∂F

∂B̃
∂G
∂µ̃

. (C.35)

At each iteration the left hand sides are calculated by solving the internal equations. The derivatives

are approximated by first calculating F and G for the three sets of parameters, (µ̃, B̃), (µ̃ + δµ̃, B̃)

and (µ̃, B̃ + δB̃) for fixed values of δµ̃ and δB̃ which can be regarded as tunable parameters of the

algorithm, and then computing

∂F

∂µ̃
≈ F (µ̃+ δµ̃, B̃)− F (µ̃, B̃)

δµ̃
(C.36)

and the analogous expressions.
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grüneisen ratio at the field-induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 102,

066401 (2009).

[93] A. Mackenzie, J. Bruin, R. Borzi, A. Rost, and S. Grigera, Quantum criticality and the formation

of a putative electronic liquid crystal in Sr3Ru2O7, Physica C: Superconductivity 481, 207 (2012).

[94] A. G. Green et al., Phase bifurcation and quantum fluctuations in Sr3Ru2O7, Phys. Rev. Lett.

95, 086402 (2005).

[95] S. A. Grigera et al., Disorder-sensitive phase formation linked to metamagnetic quantum critical-

ity, Science 306, 1154 (2004).

294



[96] C. Stingl, R. S. Perry, Y. Maeno, and P. Gegenwart, Symmetry-breaking lattice distortion in

Sr3Ru2O7, Phys. Rev. Lett. 107, 026404 (2011).

[97] A. W. Rost, R. S. Perry, J.-F. Mercure, A. P. Mackenzie, and S. A. Grigera, Entropy landscape

of phase formation associated with quantum criticality in Sr3Ru2O7, Science 325, 1360 (2009).

[98] F. Weickert, P. Gegenwart, R. Perry, and Y. Maeno, Alternating-field magnetoresistance mea-

surements on Sr3Ru2O7, Physica C: Superconductivity and its Applications 460-462, 520 (2007),

Proceedings of the 8th International Conference on Materials and Mechanisms of Superconduc-

tivity and High Temperature Superconductors.

[99] R. A. Borzi et al., Formation of a nematic fluid at high fields in sr3ru2o7, Science 315, 214 (2007),

http://science.sciencemag.org/content/315/5809/214.full.pdf.

[100] H.-Y. Kee and Y. B. Kim, Itinerant metamagnetism induced by electronic nematic order, Phys.

Rev. B 71, 184402 (2005).

[101] W.-C. Lee and C. Wu, Theory of unconventional metamagnetic electron states in orbital band

systems, Phys. Rev. B 80, 104438 (2009).

[102] S. Raghu et al., Microscopic theory of the nematic phase in Sr3Ru2O7, Phys. Rev. B 79, 214402

(2009).

[103] J. Farrell et al., Effect of electron doping the metamagnet Sr3−yLayRu2O7, Phys. Rev. B 78,

180409 (2008).

[104] E. P. Wohlfarth and P. Rhodes, Collective electron metamagnetism, Philosophical Magazine 7,

1817 (1962).

[105] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in

Statistical Physics (Dover, New York, 1963).

[106] P. W. Anderson, Concepts in Solids (Addison-Wesley, Redwood City, California, 1963).

[107] J. Hubbard, Electron correlations in narrow energy bands, Proc. R. Soc. London A 276, 238

(1963).

[108] C. Martins, M. Aichhorn, and S. Biermann, Coulomb correlations in 4d and 5d oxides from

first principles - or how spin–orbit materials choose their effective orbital degeneracies, Journal of

Physics: Condensed Matter 29, 263001 (2017).

[109] S. J. Moon and T. W. Noh, Spectroscopic studies of strong spin-orbit coupling in 4d- and 5d-

transition metal oxides, in Frontiers of 4d- and 5d- Transition Metal Oxides, edited by G. Cao

and D. L., chap. 2, pp. 7–42, World Scientific, Singapore, 2013.

[110] W. von der Linden and D. M. Edwards, Ferromagnetism in the hubbard model, Journal of

Physics: Condensed Matter 3, 4917 (1991).

[111] G. Cao, L. E. DeLong, and P. Schlottmann, The contradictory physical properties and extreme

anisotropy of Ca3Ru2O7, in Frontiers of 4d- and 5d- Transition Metal Oxides, edited by G. Cao

and D. L., chap. 2, pp. 179–214, World Scientific, Singapore, 2013.

295



[112] G.-Q. Liu, Mott transition and magnetic anisotropy in Ca3Ru2O7, Phys. Rev. B 84, 235137

(2011).

[113] J. B. Goodenough, Jahn - Teller phenomena in solids, Annual Review of Materials Science 28,

1 (1998).

296


