eTheses Repository

Integrative assessment of systematic gene expression variation in response to osmotic shock and environmental toxicants

Hampton, Thomas Heyward (2017)
Ph.D. thesis, University of Birmingham.

Loading
PDF (3826Kb)Accepted Version

Abstract

This thesis applies integrative and systemic approaches to gene expression experiments measuring responses to environmental stress. Methods were developed to identify systematic differences in response strength, functional pathway activation, and gene regulatory network structure. Results in three wild killifish populations revealed high population variability at the level of individual genes, consistent with the killifish’s genetic diversity and ability to adapt rapidly to anthropogenic pollution. Despite gene level diversity, modular network structures, patterns of pathway activation, and patterns of gene expression canalization were conserved in the three populations, demonstrating that gene regulatory networks are preserved by selective processes and may constrain killifish adaptation. The presence of arsenic during killifish acclimation to osmotic shock systematically reduced the magnitude of gene expression responses, and reduced coordination between genes that respond to osmotic shock. Results in the water flea suggested that cadmium tolerance is associated with systematically larger gene expression responses to cadmium stress, and greater network coordination among genes that respond to cadmium. In summary, environmentally responsive gene regulatory networks 1) shape the efficacy of biotic and abiotic stress responses, 2) are targeted by toxic effects, and 3) are shaped by selective forces.

Type of Work:Ph.D. thesis.
Supervisor(s):Colbourne, John and Shaw, Joseph
School/Faculty:Colleges (2008 onwards) > College of Life & Environmental Sciences
Department:School of Biosciences
Subjects:GE Environmental Sciences
QH301 Biology
QH426 Genetics
Institution:University of Birmingham
ID Code:7850
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page