eTheses Repository

Investigating the molecular mechanisms of vomocytosis

Gilbert, Andrew Stephen (2017)
Ph.D. thesis, University of Birmingham.

Loading
Click on the icons below to preview their contents ...
Gilbert17PhD.pdf
PDF (5Mb)Accepted Version
Copy_of_Complete_Mass_Spec_Data_Set.xlsx
Microsoft Excel (2637Kb)Supplemental Material
Vomocytosis_Movie.avi
Video (AVI) (529Kb)Supplemental Material

Abstract

The opportunistic fungal pathogen Cryptococcus neoformans is the major etiological agent of the life threatening disease cryptococcosis, which is responsible for over half a million human deaths per annum. Professional phagocytes, such as alveolar macrophages, phagocytose inhaled spores and attempt to destroy the pathogen. However, this process is inefficient in immunocompromised hosts, such as those suffering from HIV/AIDS. In such hosts the macrophage is thought to behave like a “Trojan Horse”, acting as both a cryptococcal dissemination vector and as a protective niche against antifungal agents/cells present in the circulation.
Vomocytosis, first discovered in C. neoformans, is a non-lytic expulsive mechanism whereby C. neoformans or C. gattii exit the macrophage leaving both pathogen and the host macrophage with a morphologically normal phenotype. The clinical implications of vomocytosis are poorly understood however; data from this research suggests that the induction of a pro-inflammatory response increases vomocytosis rates, suggestive of a pathogen escape mechanism from a harsh antimicrobial environment i.e. the pro-inflammatory primed macrophage. Regulating the rates of vomocytosis in vivo may have dramatic consequences on pathogen dissemination and also patient prognosis. For instance, enhancing the rate of vomocytosis within circulation could allow other antifungal cells and compounds access to destroy the freshly released cryptococci, hence reducing pathogen burden and improving patient prognosis.

Type of Work:Ph.D. thesis.
Supervisor(s):May, Robin C.
School/Faculty:Colleges (2008 onwards) > College of Life & Environmental Sciences
Department:School of Biosciences, Institute of Microbiology and Infection
Subjects:QR Microbiology
Institution:University of Birmingham
ID Code:7718
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page