eTheses Repository

Silver, magnesium and zinc substituted hydroxyapatite for orthopaedic applications

Askari Louyeh, Maryam (2017)
Ph.D. thesis, University of Birmingham.

PDF (9Mb)Accepted Version


Synthetic hydroxyapatite (HA) has been widely used for biomedical applications, in particular as a bone substitute and coating for implants, due to its similarity to the inorganic component of human bone. The aim of this study was to incorporate three divalent cations (silver, zinc and magnesium) into the hydroxyapatite structure via a wet chemical precipitation method to enhance its antibacterial properties, to avoid the need for the use of antibiotics. Material characterisation techniques such as XRD and Raman Spectroscopy confirmed that these ions were substituted within the crystal structure of HA, though did not follow the expected reaction stoichiometry and substitution ratios. HA material properties, such as crystal size, crystallinity and solubility were shown to change after ion substitution. Metal-substituted HA showed varying strengths of antibacterial properties against two bacterial strains of \(E\).\(coli\) and \(S\).\(epidermidis\), which was attributed to different type of ions and substitution ratios and also different release profiles from the solid phase to the culture medium. The results from cell biological studies confirmed that the rate of osteoblast cell proliferation and cell differentiation were improved after cells being incubated with disks of substituted HA.

Type of Work:Ph.D. thesis.
Supervisor(s):Sabokbar, Afsie and Grover, Liam
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Metallurgy and Materials
Subjects:TN Mining engineering. Metallurgy
Institution:University of Birmingham
ID Code:7570
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page