eTheses Repository

Alternative chemical methods for the catalytic processes within hydrogen fuelled proton exchange membrane fuel cells

Courtney, James Matthew (2017)
Ph.D. thesis, University of Birmingham.

PDF (13Mb)Accepted Version


This thesis explores three routes to alleviating the economic barriers to proton exchange membrane fuel cells through reducing, recycling and removing platinum group metals (PGMs).

The reduction of PGM content is explored using electrochemistry to assess the novel materials produced when combining fullerene based compounds with electron beam lithography. This technique yields the potential to precisely control the distance between platinum (or other metal) atoms embedded within carbon materials. It is shown that the material alters the onset potential of proton reduction compared to glassy carbon and the methodology for study is developed.

The recycling of PGMs is demonstrated by testing the electrochemical behaviour and particle structure of deposited palladium within biomass produced through biohydrometallurgy. Electron microscopy and electrochemistry is used to investigate the biohydrometallurgy process and how the substrate, leachate and reducing agent effect both the particles produced and the electrochemistry observed. Concluding that the un-processed materials may function as future electrocatalysts without further processing steps.
The removal of PGM content is investigated, through the electrochemical characterisation of the adsorbed layers and solutions of phosphomolybdic acid, singularly substituted vanadophosphomolybdic acid and doubly substituted vanadophosphomolybdic acid. Describing the complicated multi-electron, multi-step redox chemistry of the potential mediator species, with specific focus on electrode material and the effect of pH.

Type of Work:Ph.D. thesis.
Supervisor(s):Rees, Neil and Du, Shangfeng
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemical Engineering
Subjects:QD Chemistry
TP Chemical technology
Institution:University of Birmingham
ID Code:7552
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page