eTheses Repository

Remote sensing of road surface conditions

Abbas, Mohammad (2017)
Ph.D. thesis, University of Birmingham.

Loading
This item has no file(s) to display.

Abstract

The remote real time identification of road surfaces is an increasingly important task in the automotive world. The development of automotive active safety system requires a remote sensing technology that alerts drivers to potential hazards such as slippery surfaces caused by water, mud, ice, snow etc. This will improve the safety of driving and reduce the road accidents all over the world. This thesis is dedicated to the experimental study of the feasibility of an affordable short-range ultrasonic and radar system for road surface recognition ahead of a vehicle. It introduces a developed novel system which can recognize the surfaces for all terrains (both on-road and off-road) based on the analysis of backscattered signals. Fundamental theoretical analysis, extensive modelling and practical experiments demonstrated that the use of pattern recognition techniques allows for reliable discrimination of the surfaces of interest. The overall classification system is described, including features extraction and their number reduction, as well as optimization of the algorithms. The performance of 4 classification algorithms was assessed and evaluated to confirm the effectiveness of the system. Several aspects like the complexity of the classification algorithms and the priori knowledge of the environment were investigated to explore the potential of this research and the possibility of introducing the surface classification system into the automotive market in the nearest future.

Type of Work:Ph.D. thesis.
Supervisor(s):Gardner, Peter and Gashinova, Marina
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Electronic, Electrical and Systems Engineering
Additional Information:

Embargo until: 31/07/2019

Subjects:TK Electrical engineering. Electronics Nuclear engineering
Institution:University of Birmingham
ID Code:7379
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page