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ABSTRACT  

An Air Filled Emulsion (AFEs) is a dispersion of particles, of colloidal size, that are generally 

characterised from sub-micron to ten microns in diameter. They are produced by unfolding 

proteins so that the disulphide bonds in the protein react with superoxide radicals. The 

radicals are formed from injecting air into a sonochemical reactor where the cavitation 

bubbles produce enough energy to create these radical species, which in turn template the 

reaction to form ‘air cells’. These air cells are what form the non-aqueous phase in AFEs. 

AFEs can be used as formulation agents in whipped toppings to reduce the fat content in 

such foods. The aim of this project was to see if the production of AFEs could be scaled up 

from bench to pilot scale, potentially making the production more viable at an industrial level 

and therefore more likely that AFEs will be used in the near future as healthier alternatives 

to fats. The backbone of the project focused around whether that waste and excess 

precursors to AFE (protein solutions) could be recycled, therefore minimising wastage and 

maximising the output. Results showed that recycle methods produced up to 98.7 % AFE 

yield with two out of three top-up methods (STUM) producing >90 % AFE yield. Other 

methods which were non-top-up (NoTUM) did not produce a high yield, but showed that air 

cells are robust enough to withstand multiple passes of sonication waves and heating. These 

methods also yielded the first continuous method of AFE production. This was adapted to 

produce a novel way of isolating and concentrating AFE ready for formulation, which 

concentrated the AFE up to 6 times previously found using a cross flow filtration module. 

Work on the pilot scale produced the first AFE sample beyond the bench scale, and 

combined with the novel methods it provides a promising benchmark to take the production 

to larger scales in the future.  
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ABBREVIATIONS AND DEFINITIONS  

AFE                                            Air Filled Emulsion  

AFEs                                         Air Filled Emulsions (plural)  

EWP                                           Egg White Protein  

WPI                                            Whey Protein Isolate  

BSA                                            Bovine Serum Albumin  

EWP-AFE                                   Air Filled Emulsion produced from Egg White Protein  

BSA-AFE                                    Air Filled Emulsion produced form Bovine Serum Albumin  

HCl                                             Hydrochloric Acid  

Air Cell                                       Air particles encased by a protein shell  

Quality of AFE                            Quality relates to the amount of air cells present in solution  

STUM                                         Solution Top-Up Method  

NTUM                                         Non Top-Up Method  

NTUCeM                                     Non Top-Up Centrifugal Method  

NTUCoM                                     Non Top-Up Continuous Method  

WBH                                           Water Bath Heating  

HE                                               Heat Exchanger  

O/W                                             Oil in Water (Emulsion)  

W/O                                             Water in Oil (Emulsion)  

A/O/W                                          Air in oil in water (Emulsion- tri-phasic/double)  
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CFF                                             Cross-Flow Filtration  

**                                                  Experiments assisted by students Heloisa and Milton  
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CHAPTER 1- INTRODUCTION  

1.1. Context of the study  

Large amount of foods these days contain a significant portion of unhealthy fats. There is a 

constant demand and pressure from governments and the general public to reduce the fat 

content of many products to fit in with today’s healthy lifestyle and obesity crisis. One of the 

worst contenders for being unhealthy is foods of the sweet variety. New ways of combating 

obesity are being implemented but because people can still eat what they want, the 

fundamental solution will come from food industries to replace saturated fat with trans-fat or 

other alternatives. These alternatives however have to have the same textural feel as fats  

but also have to have a high stability [1-2].  

The project is with Rich Product, a large American food company who specialise in sweet 

food such as cakes. The product in question within this project is whipped toppings for 

cakes. This project does not deal with the formulation of the food product itself. But, it ran in 

conjunction with another project (EngD) in the school led by Alistair Green. 

The EngD project was undertaken by Alistair to replace fat content in whipped topping by 

replacing a portion of the fats with Air Filled Emulsions (AFEs). A lot of work has been 

previously undertaken on the production of AFES, characterising their stability and the ability 

to be used in foodstuffs, (Tchuenbou-Magaia et al, 2009-2011). However, for AFEs to be 

used in food, the production on a larger scale needs to maximised otherwise the concept of 

using AFE as a fat replacement would be economically unviable. This is where this project 

comes in. Where Ali undertook the formulation side of the product, this project was designed 

to optimise the small scale production and especially identify a method to re-use waste. This 

is the strongest factor to make the process economic because finding a way to use waste 

material means, less starting material and less waste which ultimately means more 

efficiency and profit. The project was not intended to just utilise the bench scale, upon fining 

a way to optimise on the small scale, the aim was to use the facilities at Campden BRI (Food 
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and Drink Innovation Centre) to scale up the process to the pilot scale. If this was to be 

successful, then it could pave a way for many more projects to look into optimising the 

industrial/factory scale.  

1.2. Aims of the Project  

The main aims of the project were to start research into recycling methods and adapt them 

to maximise the output of AFE whilst minimising waste which is to minimise the overheads 

for industry. The other main aim of the project was to see if production on the pilot scale was 

possible, and if the production process is feasible for industry to take the production beyond 

the bench scale.  

1.3. Thesis Structure  

This section (chapter 1) is concerned with giving an introduction to the project and the 

reasons for research into this area. Following on from this is Chapter 2, which is a literature 

review of the topics concerned with this project. The literature review centres around four 

main topics: Air Filled Emulsion (AFEs), Proteins, Sonochemistry and Experimental 

Parameters.  

Chapter 3 details what materials and equipment were used during the experiments. It also 

describes the experimental methods used in the project and includes schematic/flow 

diagrams for each experimental setup. 

Chapter 4 gives examples of studies which have been previously undertaken in this 

department that are related to this project and shows the initial testing results.  

Chapter 5 is the main chapter of the thesis and details the results of the Critchley-Green  

Recycling Methods including all the methods associated with re-concentrating the waste 

solution (STUM) and those that are not (NoTUM) and gives an explanation into the possible 

outcomes of the scalability based on the findings from the bench scale.  
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Chapter 6 is concerned with the final work on the bench scale. It describes the use of a 

cross-flow filtration module to extract and concentrate AFE samples.  

Chapter 7 is the section on the pilot scale work at Campden BRI. This chapter describes all 

of the work undertaken on the larger pilot scale.  

Chapter 8 is a conclusion/summary of the work produced in this project and any future work 

that can be undertaken in this field following this project.  

Following Chapter 8, there is a list of references which are in the format of the Royal Society 

of Chemistry (RSC) referencing system.  The Appendix at the end of report shows the raw 

data obtained for the Mastersizer, the data tables and the dry weight analysis raw data.  

1.4. Publications  

There are no current publications associated with the project as the aim is to patent after the 

project has finished.  
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 CHAPTER 2- LITERATURE REVIEW 

2.1. Air-Filled Emulsions (AFEs)  

A standard emulsion consists of either two or three phases and are termed bi-phasic and tri-

phasic, respectively. Standard emulsions are formed from two or more immiscible liquids 

with varying degrees of hydrophobicity. Standard emulsions generally contain an oil phase 

and a water phase. An Air-Filled Emulsion however is different to a normal emulsion. Rather 

than the standard oil-in-water (o/w) or water-in-oil (w/o), an Air-Filled Emulsion only contains 

a protein stabilised air phase and an aqueous (water) phase and contains no oil phase, so 

hence it has great potential for incorporation into low fat emulsions for the food industry [1-3].  

An Air Filled Emulsion (AFE) is a dispersion of particulates, of colloidal size, that are 

generally characterised from sub-micron to ten microns in diameter. They are produced 

under sonochemical irradiation using a cysteine rich protein solution which has been both pH 

and temperature adjusted. The reaction occurs due to cavitation’s which cause bubble 

collapse within the solution [4]. The cavitation’s are of high energy and are what form the 

template for the formation of ‘air cells’ within the AFE. Upon exposure to the sonochemical 

energy, the oxygen from the air supply form superoxide radical species and template within 

the cavitational voids produced by the sonicator. The di-sulphide bonds within the cysteine 

residues in the Egg White Protein (EWP) solution form a cross link with the radical species 

to form a ‘cage-like’ structure. This in turn forms the protein coat under self-assembly (non-

native conformation) and hence the closure of the molecules to form the air cells [1,5]. These 

air cells are what form the non-aqueous phase in AFEs.   

 

Air-Filled Emulsions were originally produced using cysteine rich hydrophobins. But due to 

the lack of availability and cost of the hydrophobins, the process was not viable from an 

industrial standpoint [1,6]. Hydrophobins are a group of small cysteine rich proteins consisting 

of around 100 amino acids. Hydrophobins work by lowering the surface tension, allowing 
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smaller droplets or ‘air cells’ to be produced within the desired range of 0.5 to 10 microns. As 

well as reducing the surface area, they also enhance stability in the form of quick self-

assembly around the radical oxygen species which minimises emulsion instabilities such as 

coalescence, flocculation, Ostwald ripening and creaming [7]. Hydrophobins are formed in 

solution from a monomeric form to form dimers and tetramers. These forms protect the 

hydrophobins from polar conditions so that large aggregates do not occur. As water is a 

weak electrolyte and can form H+ and OH- ions simultaneously, the hydrophobin is therefore 

protected from the electrolyte screening the electrostatic forces of repulsion between 

monomers and therefore no excessive aggregation occurs. Hydrophobins can self-assemble 

into films, and it is these protein films that can self-assemble around oxygen radicals, solidify 

and in turn produce the hydrohobic protein coat. The solidified protein coat is also found to 

have elastic properties in which it has a relaxation state that it will return to, after being 

subjected to stress and strain forces. It is believed that the elasticity of the protein coat is 

what gives the air cells their enhanced stability and robustness and allows them to be 

formulated efficiently; as they are able to withstand stresses and strains in various industrial 

environments.  

 Because the main application for Air-Filled Emulsions, be it from hydrophobins or  

otherwise, is for the replacement of fats in food products [3,8-11], then the emulsion needs to 

have both the same textural and rheological feel in the mouth that fat does [1]. Whilst the 

primary aim and the focus on this project is for low fat foods, Air-Filled Emulsions alongside 

other protein-based microbubble formulations are now widely becoming used in variety of 

applications such as biomedical research [12-14] and the treatment of decontaminant waste [15].  

From hydrophobins, cheaper alternatives have been explored which have similar mechanical 

and physical properties that interact with the superoxide radicals in the same way that 

hydrophobins do. These include proteins which are rich in cysteine residues such as Egg 

White Protein (EWP) and Bovine Serum Albumin (BSA) [6]. The research into these two 
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proteins by Tchenbou-Magaia et al [1] allowed for a new class of Air-Filled Emulsions to be 

produced from both EWP (EWP-AFE) and from BSA (BSA-AFE). EWP-AFEs have found to 

have good stability and turbidity, [6] and the proteins can self-assemble under sonochemical 

conditions just like hydrophobins. They have also been found to be texturally and 

rheologically comparable to hydrophobins, creating a class of AFEs that is cheap, accessible 

and works as well as any AFE currently produced today [1]. The egg white protein forms the 

outer shell whilst the oxygen radical occupies the core of the air cell. This is shown in Figure 

1. The production of EWP-AFEs depend on numerous factors which have to be optimised in 

order to yield a ‘good’ emulsion. These include keeping the solution within a desired pH 

range (3.8 ± 10), ionic strength, temperature of the solution (50 ± 5 °C) and the 

concentration of the stating protein solution (5 %w/v). Some of these factors, predominantly 

pH and temperature have a large influence of the production of AFEs. It has been found by 

Tchuenbou-Magaia et al that above pH 4, the process does not work properly and the yield 

is lower. This is due to the protein not being able to unfold (see section 2.2.2.1.). It has also 

been shown that at temperatures above 50 °C, especially for large periods of time is 

counterproductive to AFE formation as the proteins start to denature (see section 2.2.2.2.), 

and start to aggregate together rendering them unusable. Air cells that have been formed 

outside of the optimal conditions show a much greater instability than their counterparts 

produced at specific optimised conditions. However, with the conditions known, it is very 

easy to tune the conditions towards optimal production and those air cells are inherently 

stable and can survive thermal treatments greater than 120 °C [6]. This makes them robust 

enough to survive food processing plants and is useful because the presence of AFE can 

enhance the stability of whipped topping products compared to solely oil-based counterparts.   
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Figure 2-1. An air cell imaged using a Motic Imaging Camera showing the two main phases: - the self-assembled 

protein coat and the core consisting of oxygen species.  

Because they are comparable to hydrophobin based AFEs, they have been used as a fat 

replacement in tri-phasic emulsions consisting of an air in oil in water (A/O/W) emulsion. The 

air phase acts as a replacement for some of the oil present in the formulation. These A/O/W 

emulsions are being tested in the food industry for low-fat whipped toppings. The different 

structures of EWP-AFE and A/O/W are shown in Figure 2. In the same way that AFEs need 

certain concentrations and conditions to make the emulsion stable, A/O/W need certain 

concentrations to make the formulations stable. To obtain a stable formulation it has been 

found that a 28 % A/O/W emulsion composed of 10 % Air and 18 % oil is needed in these 

quantities. This allows for the tribological and rheological behaviour to behave in the mouth 

as if it were fat. Other quantities have been tested and worked, but it was found that 

additional stabilisers were needed in the form of xanthan gum and Whey Protein Isolate 

(WPI) to stabilise the formulations [1,2]. This is due to the air cells in the air phase causing 

increased coalescence compared to its O/W counterparts. The air cells cause a reduction in 

the friction co-efficient and enhance lubrication of the A/O/W emulsion. This allows the 

particles to move more freely and collide together, which in turn causes the electrostatic 

forces between the droplets to breakdown and merge into larger droplets and form a 

polydisperse emulsion. This can cause the rheological properties of the emulsion to change 

due to the increased size of the emulsion droplets. Lubricating properties of the air cells can 

also be attributed to a varying degree of other factors such as the protein shell absorbing 

|____ _______|   

          10 µm   
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onto surfaces and droplet spreading (causing hydrophilicity of the drops and reducing their 

contact angle at the three-phase interface of surface, air and fat) [1,2,16].  

  

Figure 2-2. “TYPICAL MICROGRAPHS OF AFEs (A) and (B) are confocal micrographs of the AFE stabilised with 

egg white proteins (AFE EWP) and an air based A/O/W emulsion respectively.” Taken by TchuenbouMagaia F. [1-

2]  

So in using AFEs as formulation agents in food, many factors need to be considered 

including relative concentrations, lubricating and rheological properties as well as limiting the 

amount of emulsion-based instabilities present in the formulation.  

2.2. Proteins  

2.2.1. Egg White Protein (EWP)  

An egg consists of three main regions: - The outer shell- which is a semi-porous calcium 

carbonate material that protects the internal components. The yolk- which roughly makes up 

a third of the egg and contains virtually all of the lipids in the egg, as well many different 

types of vitamins. And egg white- which is low in lipids but contains over half of the total 

proteins found in an egg. The proteins in egg white make up between 9 and 11 % by weight 

of the total composition of the egg white. The rest is made up of water and is an alkaline 

solution [17-18]. Egg White Protein (EWP) consists of a multitude of different proteins and has 

a high concentration of cysteine rich proteins with the highest concentration being ovalbumin 

making up 54 % of all the proteins in egg white. This is followed by ovotransferrin at 12 %, 

ovomucoid (11 %), ovomucin (3.5 %) and lysozyme (3.4 %). These are the top five highest 
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occurring proteins in EWP but it also consists of other proteins including ovoglobulin, 

ovoinhibitor, and ovoglycoprotein, all of which have a concentration of at least 1 %, plus 

many more with negligible concentrations [17].  

2.2.1.1 Ovalbumin  

As previously mentioned, it is the most abundant protein in egg white, so when reactions 

take place involving egg white, then the majority of reactions will take place with ovalbumin 

plus the other four highest concentrated proteins. Because of this, it is important to 

understand how the various proteins interact and how they differ as they can be involved in 

the reaction processes simultaneously. Ovalbumin is a member of the serpin family and has 

a very similar structure to Bovine Serum Albumin [19] (BSA). It has a molecular weight of 42.7 

kDa. A Dalton (Da) is equivalent to 1/12th of a carbon atom. Due to the size of the protein 

molecule it is easier to define the molecular weight in Da/kDa rather than gmol-1. The 

structure consists of a sequence of 385 amino acids which assemble together to form a 

monomeric phosphoglycoprotein. It is a cysteine rich protein with four sulphur bonding 

regions and a disulphide bridge. These sulphur binding points are only available upon 

unfolding of the protein, making them an ideal candidate for AFE formation via a superoxide 

template mechanism. The secondary structure is mainly composed of α-helix (41 %) and β-

pleated sheets (34 %) as well as β-turns and random coils [20]. It also has a well ordered 3-D 

heterogeneous structure with a reactive outcrop from the main body of the protein, which 

allows for a multitude of binding reactions including phosphorylation and glycosylation [21].  

In addition to ovalbumin, S-ovalbumin is also found naturally in egg white and is thought to 

contribute to the heterogeneous nature of the molecule. S-ovalbumin has a greater thermal 

stability and has a higher denaturing temperature by 8 °C (92.5 °C compared to 84.5 °C of 

ovalbumin) [18]. Other factors including its crystallinity, amount of sulphur residues, and 

molecular weight are the same as ovalbumin. The reason for the increase in thermal stability 

is due to the structure being more compact and therefore more tightly bound. This compact 
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structure also increases the hydrophobicity of the surface due to less surface area 

interactions with the more hydrophilic groups of the protein, promoting hydrophobicity [22]. 

There has been no mechanism confirmed for the interconversion of ovalbumin and S-

ovalbumin, however it is known that pH and the age of the protein have an effect on the 

ratios of ovalbumin and S-ovalbumin found in a sample. It has been found that for a fresh 

egg white sample, the amount of S-ovalbumin present is around 5 % compared with 81 % 

after 6 months stored under cool conditions [22-23].  

Both ovalbumin and S-ovalbumin are able to unfold, denature and aggregate. Denaturation 

for ovalbumin can be calculated by equation (1) [24]:  

                              (1)  

Where N, U, D and A correspond to native, unfolded, denatured and aggregated 

conformations of the protein and k1, k2, and k-1 equate to the rate constants for the reactions. 

It is assumed that D can only form aggregates after the protein is denatured. U corresponds 

to the reversible unfolding of the protein and not irreversible unfolding [25-27]. Under 

denaturation, the thiol groups can become exposed due to the increase of hydrophobic 

interactions. The exposure of thiol groups exposes the sulphur atoms and can form 

disulphide bridges with other denatured proteins, which are of the same nature. In the same 

way that superoxide radicals can react with the disulphide bridges to form air cells (section 

2.2.1), to give an irreversible reaction, the same occurs and therefore an irreversible 

aggregation can occur, rendering the protein unusable [28]. Irreversible protein 

unfolding/denaturation involves two different steps. The first is the reversible unfolding of the 

original protein which is followed by altering of the unfolded protein into a denatured state via 

an irreversible process. If k2 is of a much greater value than k1 then the majority of the 

unfolded proteins will be converted into denatured protein. This results in a first order 
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reaction with the rate determining step (r.d.s) and the limitations being k1. This can be then 

shown in the form of equation (2) [29]:  

                      (2)  

2.2.1.2. Ovotransferrin    

Ovotransferrin makes up 12 % of the total protein contained in egg whites and is the second 

largest abundant protein. It is a type of monomeric glycoprotein with a molecular weight of 

77.7 kDa and consists of 686 amino acids. As the name suggests, it is a protein which has 

an affinity for iron binding [22,30]. Ovotransferrin is known to have antimicrobial properties and 

it is the binding efficiency to iron that is thought to produce this effect. Ovotransferrin folds 

into two lobes denoted as the C and N lobes, with an iron binding site located within each of 

the two regions associated with each lobe. Per protein molecule two Fe3+ ions can be 

accommodated into the binding sites as can two carbonate (CO3
2-) ions. The binding sites 

consist of histidine residues as well as tyrosine and aspartic acid molecules [31].  

Ovotransferrin contains fifteen disulphide bridges between the two lobes with six being found 

in the N-lobe and nine found in the C-lobe. Each lobe contains four domains which are 

composed of two α-domains and two β-domains. These are linked with strands that are β-

antiparallel strands and act as a hinge. The large amount of sulphur bridges makes it a good 

candidate for AFE formation as there is plenty of binding sites for the superoxide radical 

species, resulting in a high binding efficiency [32]. Ovotransferrin can isolate iron ions and is 

thought that this is what gives it its antimicrobial properties, as it can isolate the iron required 

for the growth of microorganisms and cause iron deprivation. It is believed that this iron 

binding and isolation is what gives egg white in general its antimicrobial properties, which is 

an important factor to consider when producing products for the food industry [33].  
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2.2.1.3. Ovomucoid  

Ovomucoid accounts for 11 % of the total amount of protein in egg white and is known to be 

one of the most highly glycosylated proteins in the composition of egg white [34]. The 

molecular weight of ovomucoid is 28 kDa and 25 % of the proteins are present as 

carbohydrates, which are bound to aspartic acid residues. The tertiary structure is composed 

of three regions which are linked by disulphide bridges, of which there are nine in total in one 

ovomucoid protein molecule [35]. Out of the three regions, two of them contain carbohydrate 

chains and one is absent of carbohydrates. The carbohydrates present in the chains are 

mannose, galactose and acetyl glucosamine. The secondary structure consists mainly of β-

pleated sheets at which 46 % of amino acids adopt this conformation. 26 % adopt a α-helix 

conformation and 18 % and 10 % of amino acids adopt random coils and β-turns, 

respectively. Due to the presence of the disulphide linkages, the structure of ovomucoid is 

very stable and can survive acidic conditions at temperatures up to 100 °C for an extended 

period of time [22]. One negative aspect for consideration in the food industry, is that it is 

known to be a trypsin inhibitor (protease enzyme in the digestive system). Under extreme 

conditions, the inhibitory properties can be lost due to reducing and alkylating of the 

disulphide linkages [18]. Ovomucoid also has the ability to control microorganisms, making it a 

useful molecule as an antimicrobial agent in food products [32].  

2.2.1.4. Ovomucin  

Ovomucin makes up roughly 3.5 % of all proteins in egg white, and is a viscous glycoprotein. 

Ovomucin consists of both soluble and insoluble regions. The soluble regions are much 

smaller in comparison to the insoluble regions where the soluble component has a molecular 

weight of 8300 Da compared to the molecular weight of the insoluble component which 

ranges between 220 and 270 kDa [36]. Because of this, ovomucin is insoluble in water unless 

it is subjected to high electrolyte concentrations or a high alkaline pH [18]. It is one of the 

largest protein molecules containing carbohydrate moieties and is the reason why egg 



23 | P a g e  

  

whites adopt a gel-like structure [37]. Ovomucin consists of two sub-regions- α and β. α-

ovomucin is homogenous and is composed of acidic amino acids such as aspartic and 

glutamic acid and contains a lower concentration of carbohydrates (15 %). β-ovomucin is 

different in nature in that it is heterogeneous and is mainly made up of serine and threonine 

residues, and it contains a much higher concentration of carbohydrates (50 %) [38]. There are 

multiple carbohydrates present including galactose, sialic acid and hexose, where 

carbohydrates make up a total of 33 % of the ovomucin composition [39]. Complexing of the α 

and β regions results in an insoluble protein and composes of both thick and thin egg white. 

The α:β ratio of the thick and thin egg whites varies drastically. The ratio for thin egg white 

(soluble) is 40:3 and is compared with 84:20 of thick (insoluble) egg white. Thinning of the 

egg white can occur, which is due to the separation of the α-ovomucin from the insoluble 

protein structure [18].  

2.2.1.5. Lysozyme  

Lysozyme was the first egg white protein to be sequenced and is one of the most studied to 

date and consists of around 3.4 % of the total proteins found in egg whites. There are many 

forms found but the lysozyme in the egg is more stable than its counterparts. Lysozyme is an 

enzyme that can break down the β-linkages in a bacterial cell wall [40]. Unlike some of the 

other proteins found in egg white, it is small in nature and consists only of a single 

polypeptide chain made up of 129 amino acids, with a molecular weight of only 14.3 kDa. 

The three-dimensional structure contains four disulphide bridges and has a similar structure 

to α-lactalbumin found in milk. It has been postulated that they both have been evolved from 

the same protein as they share 40 % of the same base sequence. An α-helix in the form of a 

helix-loop-helix moiety connects two different domains. One domain is predominantly 

composed of α-helices, whilst the other is mainly composed of anti-parallel β-sheets [41]. The 

presence of the disulphide linkages in a small protein gives lysozyme a great thermal 

stability and has a preference to binding with negatively charged/anionic proteins such as 

ovomucin [42]. However, if more than two of the sulphide linkages undergo reduction, then the 
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lysozyme protein results in a loss of bioactivity, but the functional properties of the protein 

are improved with regards to gel and foam formation. In addition to helping to form the gel 

like structure of egg white and foaming (when solubilised), it is thought that the protein also 

contributes to the thinning of the egg white due to electrostatic interactions with 

ovomucin[18,32].  

2.2.2. Protein Unfolding and Denaturation  

As mentioned in section 2.2.1.1., proteins can undergo conformational changes which 

enable their native state (N) to change into a reversible unfolded state (U), or an irreversible 

denatured state (D), which can turn into an aggregated state (A) [29]. Many factors within the 

protein environment can aid in protein unfolding and denaturation. These include, but are not 

limited to, temperature, pH, protein concentration and electrolyte concentration. Changing 

the protein conformations from their native form can result in a multitude of characteristic 

changes including the loss of biological activity, a decrease in solubility, an increase in the 

reactivity and an increase of hydrodynamic size. The driving force behind reversible protein 

unfolding is due to thermodynamic contribution, whereas the kinetic contributions are 

responsible for the irreversible denaturation of the protein structure [43].  

2.2.2.1. Protein Unfolding  

In addition to the physical factors affecting the unfolding and denaturation of the protein, 

thermodynamic and kinetic contributions play a major role in the conformational changes of 

the protein structure. The thermodynamics can be determined by a dynamic equilibrium. 

These two reactions occur from the native to the unfolded state (NU), and from the native 

to the denatured state (ND). The change between these two states can be determined by 

analysing both the hydrodynamic properties and spectroscopic properties of the protein. The 

results are determined by the fractional change between the states and generally give 

identical results. The dynamic equilibrium of the changes can be calculated by equation (3) 

[44].  
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(ΔNUG/RT) = (ΔNUH/RT) – (ΔNUS/R) = ln ([N]/[U])= ln K  (3)     
                         

Where K is equal to KF/KU and is the equilibrium constant. KU is synonymous of the rate 

constant for the unfolding (NU) reaction and KF is the rate constant for the re-folding 

(ND) denaturation assembly. The Gibbs Free Energy change (ΔG) of the system gives two 

different temperature values for when ΔG=0. This shows that [N]=[U] and these values are 

the denaturation temperatures. The ΔG values in this equation can be thought of as a 

function of the conformational stability of the protein, which is generally found to be small. 

Other variables depend on thermodynamic contributions, including temperature. The 

unfolding due to temperature involves both enthalpic (ΔH) and entropic (ΔS) terms. These 

are generally hard to deduce for calculation purposes. One way is by using equation (3) and 

plotting the R and ln K terms against 1/T in a Van’t Hoff plot. The ΔH can be extrapolated 

from the curve and the ΔS term can by determined by the intercept.  

  

Figure 2-3. “Transition of proteins from the native to the unfolded state or vice versa.” a= with respect to 

temperature change, b= with respect to concentration change, c= with respect to pH change. Taken from [44]. 

    

Figure 2-3 shows the transition states as a function of the variable and the fraction of protein 

unfolded. The graphs show that for temperature, proteins start to unfold around 25 °C and 

are completely unfolded around 55 °C. Beyond this is when reversible protein unfolding 
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starts to turn into irreversible denaturation. The ‘b’ graph shows the lysozyme protein (part of 

egg white) as a function of GuCl concentration. It shows that above 3 M, the proteins start to 

unfold and are fully unfolded at a concentration of 5 M. The pH curve shows that at acidic 

pH’s below 4.5, the proteins start to unfold are completely unfolded by pH 3. What the graph 

does show is that there is a very small range for each of the variables for the NU 

transition. This type of transition is a cooperative transition and involves the breaking of 

multiple bonds simultaneously. This means that the protein is found in either a fully native 

state or a fully unfolded state. Both of the variables for unfolding via temperature or pH 

dependence rely on different thermodynamic contributions. Because temperature 

dependence is governed by the Gibbs free energy of the system, a high temperature is 

required to provide a significant ΔH term, which is the driving factor behind temperature 

dependence unfolding. The unfolding of the protein structure due to pH is however due to 

ionisation of the side chains of the protein molecule. The transition pH range is much smaller 

compared to small and simple ions, meaning that there could be hidden histidine moieties. If 

the protein molecule unfolds then the histidine residues become ionised, this has been found 

to occur at pH 3.8. At pH’s below 4 it has been found to promote unfolding due the 

hydrophobic interactions and extra H+ neutralising the surface charges of the protein, making 

the molecule more stable as there is less charge separation and therefore less 

compensation mechanisms. This is not the case for proteins above pH 4 (when also subject 

to temperature dependant unfolding) as the carboxylic acid groups become deprotonated 

due to a lack of H+ ions in solution and therefore, there is competition to bind to water, which 

causes more protein aggregation [6,43].   

Many of the conformational changes associated with the unfolding of proteins are due to 

thermodynamic effects, which correspond to the breaking of multiple bonds and 

intermolecular forces within the protein structure. Four of the interactions exhibit a negative 

free energy stabilisation contribution and therefore promote the native conformation. These 

are hydrogen bonds, hydrophobic interactions, van der Waals attraction and salt bridges. 

Other forces exhibit a positive free energy stabilisation contribution and promote the 
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unfolded conformation. These are conformational entropy, hydration of polar side groups 

and peptide linkages, electrostatic repulsion of charged groups on the surface of the protein 

and the stretching and bending of the covalent bonds holding the protein structure together.  

There are compensation mechanisms that proteins adopt that promote and enhance the 

conformational stability. These mechanisms include the formation of sulphide bridges 

between cysteine residues, pairing the domains of the protein together and the general 

bridging of ligands. The mechanisms and stabilisation contributions are not without 

complications. Because proteins are composed of domains, each domain can unfold 

independently causing partial unfolding. There is also the possibility of the protein adopting 

an intermediate structure between the native and the unfolded states, which leads to a very 

unstable structure. After a protein has unfolded, re-folding can become incomplete without 

the help of a secondary ‘helper’ protein. Once the unfolding conditions are removed, the 

protein can refold into a ‘near-native’ state, if not aided. This could cause minor changes in 

the conformation but could have a much larger impact on the activity of the protein, 

rendering it unusable due to loss of function [43].  

2.2.2.2. Protein Denaturing  

As mentioned in section 2.2.2.1, proteins can unfold in a multitude of ways, under a number 

of varying conditions. This process produces a reversible unfolding of the protein molecule. If 

the conditions causing the unfolding are removed, irreversible denaturing can occur if the 

protein if does not refold itself into its native form, and can exhibit a permanent 

conformational change. The transition of re-folding back to the native state may not occur 

due to a number of reasons. The process involved with protein denaturation is largely kinetic 

in nature, compared to reversible unfolding which involves thermodynamic contributions. 

Aggregation of the unfolded proteins is the main reason behind the prevention of refolding, 

and occurs due to the exposure of the hydrophobic residues leading to a decrease in the 

solubility of the protein. This causes the re-folding process to be slow, but in addition to this, 

cross-linking of side groups and reshuffling of sulphur bridges occur much quicker, causing 



28 | P a g e  

  

bonded aggregates before the protein can refold itself. The inability to refold itself can also 

be contributed to other chemical reactions; the change from trans- to cis- isomers in the 

peptide bonds. The ratio of trans and cis bonds are the same in the unfolded state but trans 

is more prominent in the native state due to increased stability from less steric strain around 

the double bonds. Cooling of the unfolded proteins can lock the cis conformations, rendering 

the protein unable to return to its original native state due to a change in the conformational 

ratio in the peptide bonds. At high temperatures, the asparagine residues within the protein 

can undergo a de-amidation reaction forming aspartic acid. It can also occur with the 

reaction of glutamine to glutamic acid. This reaction is faster under a low pH and results in a 

non-native conformational refolding. In addition to these reactions, the lack of ‘helper’ 

proteins (as mentioned in 2.2.2.1.) known as chaperonins, can also cause the failure of 

refolding back to the native conformation [45].  

As well as various reactions taking place within the protein structure, the denaturation of 

proteins is also environment dependant. Various conditions can promote the denaturation of 

proteins, as can the presence of certain reagents. Extreme temperatures, whether it be high 

or low can break down the weak hydrophobic bond within the protein molecules. At high 

temperatures, the main driving force is the entropy of conformational change and irreversible 

changes can occur. This is less likely at lower temperature where kinetic effects are the main 

driving force. Extremes of pH, on either side of the isoelectric pH of proteins can induce 

instability in the molecule. This stems from the inability of the protein to form salt bridges and 

the electrostatic repulsion of like charges. At a low pH, the effects can be reversible, 

however at high pH’s, the sulphur bridges break down and can cause irreversible denaturing 

of the protein. A combination of the extremes of both pH and temperature can be used to 

induce conformational changes where each denaturing agent enhances the other, causing 

the sum effect to be greater than the individual parts. Solvent quality and specific reagents 

can play a big part in the destabilisation of the native form. If a reaction mixture contains 

reactants deigned to reduce a sulphur bridge (even at low concentrations), then the protein 

would not return to its native conformation due to the protein now containing –SH groups 
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instead of –S–S- bonds. This is the most common type of destabilising reagent. When 

various solutes are added to a solvent in high concentrations, it can have a direct effect on 

the solvent quality which relates to both the solubility and conformation of the protein 

molecules. Because proteins are complex molecules containing both polar and apolar 

regions, it is not as straightforward with regards to causing unfolding or retaining the native 

state, as different regions could work in opposite ways to each other. High pressure can 

have an effect on the conformations and unfold proteins, and in some cases denature them. 

This is an important factor as high pressure heat processing is common for the food industry 

to eradicate microbial growth. The pressure required depends on other factors such as 

temperature but occurs over a short pressure range. High pressures greater than 1000 bar 

are required to unfold proteins. Mid-range pressures have been known to stabilise the native 

conformation due to formation of intermolecular forces as a result of the molecule being 

forced together under pressure. These forces include electrostatic interaction, van der Waals 

and hydrogen bonds which have a negative ΔG promoting native conformation stability. At 

high pressures, it is the breaking of the hydrophobic bonds which causes destabilisation. 

Under high pressures, ovalbumin can be destabilised to instantly produce aggregation. 

Because proteins are surface active, they can adsorb to a multitude of interfaces with great 

efficiency, which can cause irreversible self-assembly. This is true for the formation of AFE, 

as the protein self-assembles itself around the air-water interface of the radical species, 

changing its conformation to form air cells. The only conditions where this isn’t the case, is 

when a stable globular protein comes into contact with a solid interface which carries the 

same charge and is hydrophilic in nature [45].  

2.3. Sonochemistry  

2.3.1. Cavitations  

Acoustic cavitation bubbles are produced in solutions under sonochemical conditions. 

Ultrasound is transmitted in waves by compressing and stretching the space of which the 

waves pass through. The waves cause oscillations through the medium and when a 
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negative pressure is large enough, the distance between the molecules exceeds the 

molecular distance which is required to keep the liquid medium intact and causes the liquid 

to break down and create voids. It is these voids that are known as the cavitation bubbles 

[46,48]. There are two different behaviours exhibited from the compression and stretching of 

the liquid. One is a low intensity bubble called a stable cavitation and the other is of a much 

greater intensity, and is known as a transient cavitation. Transient cavitations are the most 

common and can double in radius after a few acoustic cycles and then collapse on 

themselves, releasing a high amount of energy [49]. This is shown diagrammatically in Figure 

2-4.  

.   

Figure 2-4. “Creation of stable cavitation bubbles and creation and collapse of transient and stable cavitation 

bubbles. (a) Displacement (x) graph; (b) transient cavitation; (c) stable cavitation; (d) pressure (P) graph” [49].  

The energy released from a collapsed bubble can be phenomenal for a transient cavitation. 

Temperatures can reach up to several thousand °C and pressures greater than 1000 

atmospheres can be created in the instant the bubble collapses. Each cavitation bubble can 

be categorised as an individual reactor and can form reactive radical species causing the 

medium the bubble is suspended in to become highly reactive. Solid particles under these 
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conditions are disassembled from each other and give an increased surface to liquid 

medium contact area ratio [50-52].   

2.3.2. Ultrasonic Cavitation Parameters  

Frequency can have an impact on the amount of cavitation bubbles a sonication device 

produces. Low frequencies (kHz) provide a higher concentration of cavitation bubbles 

compared to high frequencies (MHz). Increasing the frequency requires an increase in the 

intensity of the sound waves to ensure that the forces acting upon the liquid are in correct 

proportions to create collapse and voids within the liquid medium. Cavitations are less likely 

to occur at higher frequencies because the compression and stretching forces caused by the 

sound waves become so short that the liquid molecules cannot be separated, so no 

collapsing of the solution occurs and therefore no voids are created [49].  

Intensity of the sonochemical device can have an impact on the liquid medium as it is 

proportional to the amplitude produced by the sonochemical source. The amplitude equates 

to the amount of energy input into the system and a minimum intensity is required to reach 

the cavitation threshold. Higher amplitudes are not always required for efficient cavitation 

production, as at higher levels of sonication amplitude, the sonic transducer can undergo 

rapid deterioration. This can result in a solution being agitated as opposed to producing the 

desired cavitation, due to insufficient compression and stretching of the medium. With 

regards to high viscosity samples, high amplitudes and intensities are required (regardless of 

transducer degradation) to produce sufficient vibrations to penetrate the viscosity of the 

sample [49].  

For most experiments, water is the preferred solvent of choice due to its low viscosity and 

surface tension. However, in some cases apolar liquids such as organics solvents can be 

used providing that the surface tension and viscosity are low, as these are the main limiting 

factors for solvents. High surface tensions and viscosities increase the cohesive forces, 
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causing the intermolecular distance between molecules to be shorter, decreasing the 

likelihood of cavitations [47].  

Temperature can work in two different ways when applied to ultrasonic waves. High 

temperature can interfere with the intermolecular forces such as van der Waals forces, 

hydrogen bonds and dipolar interactions between the medium and the solute. Interference 

occurs within the active sites of the liquid medium and faster diffusion rates can occur at 

higher temperatures. Lower temperatures produce a greater amount of cavitation bubbles 

within a liquid medium under constant sonication. Higher temperatures produce more energy 

into the surrounding medium causing the vapour pressure to rise. This increase in vapour 

pressure gives a higher affinity for liquid diffusion into the cavitation bubbles, meaning that 

the collapse is less violent in nature, producing less energy upon collapse [48].  

External pressure can have an effect on cavitation production within a medium. If the 

pressure is increased, the molecules will be forced closer together, meaning that a higher 

energy input from the ultrasonic source will be required to produce cavitation’s. There is an 

optimum external pressure where the intermolecular distances produce a high amount of 

cavitation’s, but most experiments are performed at atmospheric pressure [47].  

Ultrasonic energy can be introduced into a sample via both directly and indirectly. Direct 

application is applied through an ultrasonic probe. These are submerged directly into the 

sample and are in direct contact with the solution. The advantages of using direct sonication 

is that there is no barrier other than the solution itself for the ultrasonic waves, but metal 

detachment from the probe itself into the sample has been recorded, which is a potential 

disadvantage of the direct approach. However, this can be overcome with the use of glass 

probes [51,53]. Indirect approaches generally involve the use of an ultrasonic bath, where the 

sound waves have to travel through the liquid in the bath followed by travelling through the 

sample container itself to reach the desired sample. Indirect approaches are of less intensity 

and power compared to direct approaches, so are limited in their use to produce sufficient 
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caviatation’s. Many indirect experiments effects are based off heating the liquid within the 

bath, and not the ultrasonic waves itself, causing heating of the sample and not  

acoustic cavitations [53-54].  

2.3.3. Ultrasonic Probes  

An ultrasonic probe is submerged directly into the sample and can provide a much higher 

intensity (up to 100 times greater) compared to indirect approaches. The probes are 

generally made of a titanium alloy, making them resistant to thermal degradation and 

corrosion. The disadvantage of an ultrasonic probe is that metal ions such as aluminium or 

chromium can contaminate the solution. Other sonication probes have been developed, 

including silica glass probes, spiral probes (made of titanium, vanadium or aluminium) and 

multiple probes, all of which come with their own advantages and disadvantages [51,55].  

  

Figure 2-5 An ultrasonic probe. (a) is the generator, (b) the ultrasonic converter, (c) the standard and booster 

horns, and (d) is the probe [49].  

Figure 2-5 shows the different components of an ultrasonic probe, which contains four main 

parts- the generator, ultrasonic convertor, standard and booster horns and the probe itself. 

The generator is responsible for converting voltage from a mains source into electrical 

energy with high frequencies (generally around 20 kHz). The ultrasonic converter converts 

the high frequency electrical energy into ultrasonic vibrations with a defined frequency. Both 

sets of horns are used to increase the ultrasonic amplitude. The probe, which is also 



34 | P a g e  

  

considered to be a detachable horn, is used to transmit the ultrasonic waves into the sample. 

Probe sizes are designed to fit specific volumes with tips that complement the probe size. 

The probe is the important part of the sonication device as it allows the boosted vibrations to 

travel through a greater length, magnifying the wave signal and allowing for direct 

submersion into the sample.   

The higher the amplitude applied by the probe, the more intense the sonication energy 

becomes, and therefore the greater the number of cavitation’s produced. In addition to this, 

the shape of the probe itself affects the magnification of the ultrasonic waves produced. 

Each shape has a defined use and the different shapes are shown in Figure 2-6. The 

stepped probe gives the highest amplitude magnification and the exponential shape is useful 

for microvolumes as it has a small diameter at the tip [49].  

  

Figure 2-6. “Probe shapes: (a) uniform cylinder; (b) exponential taper; (c) linear taper or cone; (d) stepped” [49]. 

Once the ultrasonic waves are emitted from the probe tip, they spread throughout the sample 

and rapidly decrease away from the source, in both radial and axial directions. Areas where 

the cavitation’s will not reach the sample in the container are known as dead zones. To reduce 

the dead zone area, the distance between the probe and the container wall should be kept to 

a minimum. However, the distance should not be so close that the probe and container are 

touching as this could cause the probe to break. Minimisation of the dead zones within the 

sample is crucial to ensuring maximum interaction between sample and cavitation’s. So the 

choice of container that the sample is in can be important in obtaining good sample- 

cavitation interactions [49,56].  
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2.4. Experimental Parameters  

2.4.1. Centrifugation 

Centrifugation is the process of separating a heterogeneous mixture of two immiscible 

phases by applying force to a sample. The rotor rotates around a central axis, where the 

denser phase(s) settle out away from the axis, at the bottom of the centrifuge tubes is 

generally a solid component (known as a pellet), or in cases where it is liquid mixture, the 

denser liquid. The less dense liquid that the pellet has been removed from is known as the 

supernatant settles closer to the axis, and can be decanted so that none of the sediment is 

present in the liquid. Many variables contribute to the centrifugal process and these include 

the rotor speed measure in revolutions per minute (RPM), brake setting, temperature setting 

and an over-temperature. The temperature setting is the desired temperature setting for the 

process and the over-temperature is the limit where the centrifuge’s safety setting will turn 

the centrifuge off, if the temperature inside the centrifuge goes above this value. The force 

acting upon the centrifuges is measured in g-force (g) and needs to be evenly balanced on 

opposite sides of rotor as to not cause an imbalance in the  

centrifuge [57].  

2.4.2. Mixing Methods    

Mixing relies on turbulent mixing of two or more phases to achieve complete mixing to a 

single solubilised phase. This is achieved by providing a turbulent flow rate within a given 

volume, where small volumes provide the best conditions for turbulent flow. At the highest 

efficiencies, the flow can intersperse two phases down to μm distances. The main factor to 

achieve complete solubilisation relies within the diffusion of molecules to produce a 

homogenous mixture down to the molecular scale. Diffusion time relies upon distance2, 

which is the distance at which the molecules have to diffuse [58].  

For food grade applications, the reactants are best mixed in either a magnetic stirrer (hot) 

plate or a large food grade mixer dependant on the scale of production. A Teflon coated 
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magnetic stirrer hot plate works by implementing a rotating magnetic field with a solution that 

contains a magnetic stirrer bar. It is the rotating stirrer bar that mixes the solution and rotates 

in line with the magnetic field. The stirring produced is fast and forms a whirlpool in the 

solution under high speeds promoting efficient mixing. This stems from a high flow speed 

with a relatively low volume, providing high turbulence. The maximum capacity to achieve 

mixing is low (≤ 4 litres), so can only be used for bench scale experiments [59]. The second 

type of mixing is in a large food grade mixer. These mixers have a much higher volume 

capacity and are operated by a motorised stirrer. These mixers do not produce a high 

turbulence, due to both the high volume and slow mixing speed. This can lead to 

complications with regards to mixing efficiency and complete dispersion to a single phase. 

Due the scale of production, rotational magnets would not penetrate the solution far enough 

to completely mix the solution, so a less turbulent mixer would have to be used, but the 

mixing time would have to be adjusted accordingly due to slower diffusion rates of phases 

[60].  

2.4.3. Concentration Gradients  

Concentration gradients are the difference in concentration between two different areas. 

Concentration gradients are a product of the diffusion of molecules and act generally in one 

of two ways. The most common is passive diffusion, which is the movement from a high 

concentration to a low concentration following a concentration gradient until the diffusion 

equilibrium has been reached, and the concentration gradient is removed. The second way 

is active diffusion, from a low concentration to a high concentration against a concentration 

gradient. Because active diffusion goes against the gradient, an energy input is required to 

make a solution more concentrated. Diffusion of molecules in a solution (such as EWP 

solution), is important for the mixing process, as effective diffusion down a concentration 

gradient results in effective mixing [61].  
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2.4.4. Flow rates and Residence Time  

2.4.4.1. Flow Rates  

Flow rates can be divided into two main types: these are fluid volumetric flow rate and mass 

flow rate. The fluid volumetric flow rate is concerned with solutions and the SI unit of 

measurement is m3s-1. Mass flow rate is concerned with the amount of mass movement that 

flows past a given point and is measured in kgs-1. Because the project is concerned with 

solution movement per time where the total mass of solution components is known, mass 

flow is not appropriate.   

Fluid volumetric flow rates are defined by the amount of solution passing past a defined point 

at a given time. The flow rate (defined as Q) can be expressed as a product of the flow 

velocity (V) and the cross-sectional area (A). These can be expressed and calculated in 

equation 4 [62].  

Q= VA                                                         (4)  

Many factors can affect the flow the rate. The main parameters which affect the flow rate are 

the liquids viscosity, the liquids density and the friction of the liquid in contact with the tubing. 

In addition to these parameters, liquids can have different flow types. The three main types 

are uniform laminar flow, non-uniform laminar flow, and turbulent flow. These are depicted 

graphically in Figure 2-7. Air flow is regulated in a rotameter and is measured by the volume 

of air the flows through a device per unit time and is generally measured by Ls-1 [63].  



38 | P a g e  

  

  

Figure 2-7. The most common types of flow experience in flow rate measurements. Laminar flow (uniform and 

non-uniform) and turbulent flow [63].  

2.4.4.2. Residence Time  

Residence time (T) is amount of time that a particle or molecule spends in a given system 

and is representative of how long it takes for the concentration to change. The general 

equation for residence time is equal to the system capacity to hold a substance (V) over the 

flow rate of the substance through the given system (q) and is shown in equation 6 [64].  

T= V/q                                                        (6)  

Residence time is measured as a particle enters a given system and stops being measured 

when it leaves the same system. The residence time varies with the flow rate (or flow rates if 

more than one is present) and the size of the vessel. If the flow rates are increased, the 

residence time decreases, due to less time spent in the vessel. Alternatively, if the size of 

the vessel is increased, the residence time increases, due to the substance taking longer to 

pass through an increased area (assuming constant flow rate) [64].   

2.4.5. Recycle Methods    

Recycle methods are a useful tool within chemical process. The can be used to split product 

mixtures, purify products, remove impurities and increase the overall yield of the reaction 

and therefore minimise the waste produced. A recycle method in general includes the 

siphoning of material, which is then recombined with the starting material to recycle itself. It 
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is generally composed of multiple streams- the inlet stream which feeds the solution into a 

reaction vessel, the outlet stream which transports the product of the system and a recycle 

stream. The recycle stream feeds the unreacted reactants back to a recombination point, 

which combines the recycled material with new material to pass through the reaction 

process again. Before the recycle stream is siphoned, the product/recycle mixture passes 

through a splitting point, which allows the recycle stream to be siphoned off. The 

recombination point can provide irregular compositions as a combination of both streams 

can yield different ratios at different times [65-67]. Figures 2-8 and 2-9 show a flow chart of two 

general recycle setups, showing general siphoning of material and the use of a splitter to 

provide a recycle stream. The process is viable for when low yields are produced in a 

reaction, and rather than wasting the excess reagents they are fed back through the recycle 

stream and re-processed multiple times until the waste is minimised and the yield is 

optimised [68].  

  

Figure 2-8.  General reaction flow chart for a recycle process [68].  

  

Figure 2-9. Reaction flowchart for a recycle process, using a separator to siphon off the recycle stream [68].  

The basic process can encounter problems with regards to composition, especially with 

unwanted material in the recycle stream, that could cause build-ups and render the recycle 

stream unusable. The composition of the recycle stream can be tuned by a second 
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separator which purges the unwanted material out of the recycle stream. This would give a 

multi stream setup of a purge stream, product stream, process stream and a recycle stream. 

This is show in Figure 2-10. The opposite process to a recycle is a bypass stream. Instead of 

feeding the unreacted material back into the starting stream, a bypass stream feeds the 

starting material in the opposite direction, bypassing the reaction into the product mixture. 

This is generally used to obtain a precise control of the output stream. This is shown in 

Figure 2-11 [68-69].  

 

 
 

Figure 2-10. Reaction flowchart for a recycle process with the addition of a purge stream [69].  

  

Figure 2-11. Reaction flowchart for a bypass process [69].  
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 CHAPTER 3- MATERIALS AND METHODS 

 3.1. Introduction 

This chapter is all about the methodology of the project. Firstly, it details the materials and 

the equipment used throughout the project. It then details all the methods used and finally 

the chapter presents some schematics of the experimental setup.   

3.2. Materials and equipment used  

3.2.1. Materials  

The materials used for the project were used to form the initial starting product. The product 

formation was produced by the equipment. The materials used were Egg White Protein  

(EWP) (bulk powder- Sigma Aldrich), distilled water and 2 M HCl (Sigma Aldrich). Virkon was 

also used as a disinfectant and Decon (5 %) was the surfactant of choice for cleaning the 

Mastersizer2000.  

3.2.2. Equipment  

To obtain the desired concentration of protein solution, a Mettler PM30-K balance was used 

to weigh out both the EWP and the distilled water. The mixing of the solution was done using 

a Bell Stir Multi Stir 4 stirrer plate. To pH balance the solution, a Mettler Toledo FE20/FEP20 

probe was used. The centrifuge use throughout the project was a Beckmann Coulter JS-21 

with a JA-10 rotor. In the AFE production a Watson Marlow (32 rpm max) peristaltic pump 

was used to pump the solution. Hagen Maxima and Capex air pumps were used to pump air 

through a Platon air rotameter into the Sonics Vibracell Model CV334 ultrasonic probe  

(13 mm tip) with a VCX750 base unit (Power- 750 W, Frequency- 20 kHz, Volts- 230 VAC).  

To heat the solution a Tempette MWB-12L water bath (with pump) was used, as was a heat 

exchanger (unknown make). To analyse the AFEs, a Mastersizer2000 was used for particle 

size distribution and an Olympus BX50 microscope with a Motic imaging camera or a Leica 
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Qwin black and white imaging camera was used for imaging the AFE samples (dependant 

on which camera was setup in the lab at the time of analysis). For the dry weight analysis, 

the samples were weighed on a Mettler PC 4400 balance. A Pall Separations Microza USP-

143 module was used for the cross-flow filtration steps. The secondary pump for the Cross 

Flow filtration steps used was a Masterflex Model 7518-00.  

  

Figure 3-1. Picture of the Sonication probe and flow through cell (left image) and the base unit for the sonication 

probe (right image).  

3.3. Experimental Methods  

3.3.1. Air Filled Emulsion Production  

A solution of 5 %w/v of Egg White Protein (EWP) was made up using EWP (75 g) and distilled 

water (1500 g, 83.3 mol). The solution was mixed using a magnetic stirrer plate until all the 

protein had dissolved (~2 hours). This concentration is based off the research by Tchuenbou-

Magaia et al. [2], where 5 %w/v is found to produce the highest yield. Upon completion of the 

mixing, the solution was reduced to pH 3.8 using HCl (2M-Sigma Aldrich). The resulting pH 

balanced solution was then centrifuged (4 °C, 1 hour, 10000 rpm, 17000 G, brake 6,  

Beckmann JS-21 Centrifuge, JA-10 rotor) to remove any insoluble proteins left in the solution. 

The centrifuged solutions were then mixed back together in a large flask and heated to 50 °C 
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in a water bath. The warm solution was then passed through a high-intensity ultrasonic probe 

joined to a flow-through cell containing an air inlet, solution inlet and product outlet, for an hour 

to produce an Air Filled Emulsion (AFE) solution. The EWP protein was passed through using 

a peristaltic pump at 7 ml/min compared to the air which was passed at approximately 14 

ml/min. The air at 14 ml/min was fed into the bottom of the flow through cell and another air 

flow was fed into the top of the sonicator to keep it cool. The flow rate for just needs to be a 

constant air flow (no flow rate calculations needed). This gave a resonance time of roughly 3 

minutes. The AFE came out as foam and then settled into solution form.  

The residual solutions (EWP and AFE) were allowed to cool in the cold room before 

analysis.  

3.3.2. Air Filled Emulsion Analysis  

3.3.2.1 Microscope Imaging Analysis  

The first analysis was by microscope imaging to identify the particle sizes and to see how 

many air cells had been produced, as well as seeing if there were any extra protein 

aggregates in the surrounding matrix. The images also show emulsion instabilities such as 

flocculation. A microscope was used on the dark field setting and images were taken via a 

Motic Imaging camera or a Leica Qwin black and white Camera (dependent upon which was 

set up at the current time in the department). The slides were prepared by taking 1 drop of 

AFE and placing on a microscope slide and covering with a cover slip. Unless stated 

otherwise, the images were taken at 40X zoom.  

3.3.2.2. Particle Size Analysis  

The second analysis conducted was by a Static Light Scattering analyser (Mastersizer) and 

the software program used was Mastersizer 2000. The stirrer speed was set to 1505 rpm. 

The apparatus was cleaned before use using 5 % surfactant (Decon) and distilled water. The 

background particle intensity and blue light intensity was scanned.  

Droplets of AFE were pipetted until >1.0 % laser obscurity was achieved (the acceptable  
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range is 1-10 but the closer to 1 %, the better). The Mastersizer was then run multiple times 

to giver an average value. To gain a consistent value, this process was repeated for each 

sample and then analysed. The Mastersizer was washed with distilled water between each 

analysis.  

3.3.3. Experimental Variable Parameters  

Reheating- During the initial testing, a test was done to see if the effect of reheating affected 

the quality of AFE. The procedure was carried out as stated in 1), but the EWP solution was 

cooled down for 24 hours. Following this, the solution was removed from the fridge and 

heated back up to 50 °C, and then sonicated again. This procedure was repeated until no 

solution remained and the samples were analysed, as stated in 2).  

Varying Amplitudes- For the initial testing and later experiments, the parameters of the 

sonication step were changed to allow sonication at varying amplitudes. At the sonication 

step, the amplitude was chosen to be 30, 60 or 100 %. Each solution was sonicated at a 

single amplitude only. When different amplitudes were needed, a different solution was 

used.  

Heating- Two different types of heat source were used to perform the various methods. 

These were a water bath and a heat exchanger. The temperature was set to heat the 

solution to 50 °C. The temperature was set to 50 °C as according to Tchuenbou-Magaia et 

al, asit is the optimum temperature [2,6]. Reverting to section 2.2.2.1., for thermodynamic 

temperature dependence unfolding of the protein, a high temperature is needed due to the 

dependence of ΔG and ΔH. Figure 2-3 in this section shows that at 50 °C, that the protein is 

in an unfolded state [43,44].  

pH- A solution of pH of 3.8 was found to be the optimum pH by Techuenbou-Magaia et al [2,6].  

In section 2.2.2.1., pH unfolding of the protein is caused by ionisation of the side groups. 

Proteins have the potential to have hidden histidine residues, which ionise and unfold the 

protein at pH 3.8 [43]. However, due to the products needing to satisfy food grade 
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requirements, the solution cannot adopt a pH lower than this as it would be a) too acidic for 

formulations, rendering the product useless and b) too low to pass regulation for human 

consumption.  

3.3.4. Critchley-Green Recycling Methods  

3.3.4.1. Testing the Amount of Protein Left in Solution  

This stage provided the necessary calculations for the recycle steps. To perform the 

recycles, the amount of protein left in the solution needed to be calculated by dry weight 

analysis. This led to calculating how much protein was needed to be added to the solution to 

recycle. To calculate this, the product solution was centrifuged (4 °C, 30 minutes, 10000 

rpm, 17000 G brake 6, Beckmann JA-10 Centrifuge, JA-21 rotor). The solution was then 

filtered through a standard Buchner funnel and filter paper to collect the supernatant. A 

watch glass was weighed using an analytical balance. 10ml of the supernatant solution was 

then added to the watch glass and the weight was recorded again. The watch glass 

containing the solution was placed in a 50 °C oven until constant mass was achieved. The 

dried watch glass was then weighed again. The calculations were performed to determine 

the amount of protein required for the recycle step (equations shown in results and 

discussion).  

3.3.4.2. Solution Top-Up Method (STUM)  

The first method which has been termed the ‘Solution Top-Up Method’ involved three 

different methods where the heating source was the changing variable- water bath heating, 

heat exchanger heating with a cold solution and heat exchanger heating with the solution at 

ambient temperature. This method involved topping up the EWP back to 5 %w/v after it had 

undergone sonication by the method shown in 3.3.1. The Air-Filled Emulsion sample 

produced was centrifuge to remove the Air-Filled Emulsion and leave the residual protein. 

Green et al are working on a filtration method for this step, but the centrifuge acts as a crude 

method. Once the amount of protein was tested as stated in 3.3.4.1. The solution was 
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topped back up with EWP so that the solution, no matter how much of it was left, was back 

to 5 % w/v. The solution was then pH balanced back to 3.8 and centrifuged again to remove 

insoluble proteins. Both the pH balancing and centrifuge are the same as performed in 3.3.1. 

The new EWP solution underwent sonication again at 100 % amplitude, the same as in 

3.3.1. This was repeated until the there was no solution left or the post-sonication 

concentration reached a plateau so that the concentration after the sonication was still 5 % 

w/v meaning that no more EWP could be added into the system. The various AFE samples 

from each recycle were analysed as stated in 3.3.2. and compared against each other for 

trends.   

3.3.4.3 Non Top-Up Methods (NoTUM)  

3.3.4.3.1 Non Top-Up Centrifugal Method (NoTUCeM)  

The principles of this method follow very closely to that of STUM outlined in 3.3.4.2, with the 

only difference being that in between the various recycle stages, the solution is not topped 

back up to 5 % and the depleted solution was sonicated multiple times. The solution was 

centrifuged after each sonication to remove the AFE so that it was protein solution and not a 

mixture of AFE and EWP.  

  

3.3.4.3.2 Non Top-Up Continuous Method (NoTUCoM)  

Similar to the Non Top-Up Centrifugal Method described in 3.3.4.3.1, this method focused on 

not topping up the solution after sonication. There are two variations to this method, one 

which is continuous and one which is discontinuous. Unlike the Non Top-Up Centrifugal 

Method, this method involved no centrifuge step, with a mixture of AFE and EWP being the 

recycle mixture. The process was performed as standard to the method outlined in 3.3.1. 

The change comes after the first sonication stage where upon the system was allowed to 

reset and be cleaned and then the mixture was then placed back into the starting vessel and 

underwent the sonication stage again. The solution was sonicated four times (determined by 

other results on average amount of recycles per experiment) without any other steps being 
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involved in the process. After four cycles of sonication, the solution was then analysed as 

per the method stated in 3.3.4.1.  

This led onto an adaptation of the method named the Non Top-Up Continuous Method v2 

(the name represents this method as opposed to its predecessor, as this is the continuous 

part). This version, rather than collecting and placing back in the starting vessel, enabled a 

feedback loop between the output tube and the starting vessel (Figure 3.4). This allows the 

continuous circulation of products/starting reactants. The experiment proceeds as above, but 

instead of stopping and restarting the system and transferring the solution between vessels, 

it is a one pot reaction, so no resetting is needed until the end of the process. The 

reacting/product solution was sonicated for a total of four hours (one sonication step in a 

discontinuous recycle method lasts on average for 60 ± 5 minutes) and equates to four 

cycles through the sonicator so is coherent with the original Non Top-Up Continuous 

Method. After four hours, the process is stopped and the solution is centrifuged and 

analysed as per the method stated in 3.3.4.1.  

3.3.4.3.3. Cross Flow Filtration Method (CFF)  

There were two experiments associated with using the cross-flow filtration module. The first 

was done as a two stage process- Formation of the AFE, followed by the Cross Flow 

Filtration. A solution was prepared as stated in section 3.3.1. Following this the AFE solution 

was centrifuged (4 °C, 30 minutes, 1000 rpm, 200 G, brake 6, Beckmann JA-10 Centrifuge, 

JA-21 rotor) to remove the larger aggregates in solution. The cross flow filtration was set up 

as shown in Figure 3-5. The post-centrifuged AFE was then pumped through a peristaltic 

pump into the bottom of the cross flow filtration module. The filtered AFE solution exited at 

the top of the module and flowed back into the starting vessel. A secondary outlet was set up 

and was attached to a vacuum. This collected the EWP supernatant solution allowing the 

AFE solution circulating to become more concentrated with every pass. The process 

stopped when no supernatant was being released and the AFE had concentrated up so 

much that it was too viscous to pump. This was then analysed as stated in section 3.3.2.  



48 | P a g e  

  

The second experiment was an extension on the first method. The method for the way the 

module worked is the same. However, rather than being two separate processes; this 

experiment was a one stage process. This was performed for a single pass. The AFE 

formed in the sonicator was transferred to an intermediate collection vessel. From this vessel 

the AFE was pumped via a secondary peristaltic pump into the cross-flow filtration module 

where upon the EWP supernatant was removed into the product collection vessel and the 

concentrated AFE was transferred back into the intermediate collection vessel. From here 

the AFE was passed through the module until the process stopped because the AFE was 

too viscous. The setup in shown in the schematic in Figure 3-6 in section 3.4.  

3.4. Experimental Flow Schematics  

  

 

Figure 3-2. Experimental schematic for the AFE production using a water bath as the heat source.  
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Figure 3-3. Experimental schematic for the AFE production using a heat exchanger as the heat source.  
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Figure 3-4. Experimental Schematic for the AFE production using the Non Top-Up Continuous Method (v2) 

outlined in 3.3.4.3.2.   
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Figure 3-5. Experimental Schematic for the Cross-Flow Filtration step outlined in section 3.3.4.3.3.  

  

 

Figure 3-6. Schematic to show the 1 stage process for the Cross-Flow Filtration method outlined in section 

3.3.4.3.3.  
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3.5 Control Experiments  

The aim of the control experiments was to provide a standard result that future experiments 

could be tested against. Two areas were already conducted by Green et al and Dos Santos 

et al on mixing time and residence time, respectively. The optimum mixing time was found to 

be 2 hours for complete mixing and the optimal residence time was found to be 3 minutes 

[70,71]. Dry weight Analysis, Centrifugation, and Amplitude Vs Energy were conducted in this 

project.  

3.5.1 Dry Weight Analysis  

A control experiment was performed for dry weight analysis because it was the method of 

choice for testing how much protein had been used up during experiments. Because this is 

an important factor in the recycle process, the results needed to be accurate. To do this, the 

time at which constant mass was achieved needed to be calculated so that every sample 

dried to constant mass. This was achieved by weighing out 10 ml of protein solution onto 

watch glasses and heating them in the oven at 50 °C for an extended period of time. The 

watch glasses were weighed at various intervals to see when constant mass was achieved. 

The intervals chosen were 0,1,2,3,4,6,8,10,12,24,48 and 72 hours. Such a wide time frame 

would allow for a more accurate comparison as to when constant mass was achieved and 

the short time intervals at the beginning of the control allows for a differences to be shown 

more clearly as this is when most of liquid would be lost.   
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Figure 3-6. Graphs to show the drying time during the control experiment. A is the full time recorded and B shows 

the first 12 hours.  

Table 3-1 (Appendix) and Figure 3-6 show that the EWP solutions achieve constant mass at 

10 hours and is coherent throughout all the tested experiments. Graph B shows the first 12 

hours and gives a clearer picture as to when the samples achieve constant mass. Graph A 

shows all the data found, but due to the time differences used, it is skewed to the left; hence 

B is a much clearer representation. Because of these findings, any sample that underwent a 

dry weight analysis was left for a minimum of 10 hours, until constant mass was achieved.  

  

A   

B   
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3.5.2 Centrifuge  

This control experiment was performed to determine the mixing time for the centrifuge 

process. The centrifuge step is an important process and is used quite frequently to either 

remove insoluble protein molecules, or to remove air cells from an AFE sample so that dry 

weight analysis can be performed on the supernatant. The aim was to find the time in which 

all particles that require removal, are removed, without falling back into the solution upon 

agitation in the transferring process from the centrifuge to other vessels. The solutions were 

made up to the standard 5 % concentration, then they were centrifuged and analysed at 

different times- these were 0,20,40 and 60 minutes. Because the best way to tell if all 

unwanted particulates were removed is by observation analysis with the naked eye, there 

are no quantitative results for this experiment. The results are therefore shown as images 

and differences can be seen between the different centrifuge times.  
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Figure 3-7. A series of images showing the progression of the centrifuge step. A= 0 minutes, B= 20 minutes, 

C=40 minutes, C1=40 minutes after slight agitation to the vessel, D=60 minutes, D1= 60 minutes after vigorous 

agitation to the vessel.  

From the images in Figure 3-7, it is clear from the opaqueness of the solution that there were 

insoluble proteins in the solution, which are the protein particulates to be removed (A). After 

20 minutes of continuous centrifugation (B), the supernatant starts to become clearer and 

insoluble protein residue starts to collect on the side of the centrifuge vessel. Upon first 

inspection of the vessel after 40 minutes (C), it appears that the supernatant is clear and free 

of insoluble protein particulates. This is true, however under the slightest amount of agitation  

(e.g. the movement of the vessel from the centrifuge to another vessel), small amounts of 

protein detach themselves from the surface of the vessel and back into the supernatant (C1). 

  

  

  

  

 

  

A   

B   

C   

C1   

D   

D1   



55 | P a g e  

  

After 60 minutes (D), the solution looks exactly the same as (C), however, if the vessel is 

exposed to vigorous agitation/mechanical energy, the insoluble protein particles stay 

attached to the side of the vessel. So even though after 40 minutes, all the protein has been 

removed from the solution, any centrifuge steps that are performed throughout the 

experiments will be centrifuged for 60 minutes so that none of the insoluble proteins return to 

the supernatant, and the solution is fully solubilised.  

Table 3-2. The amount of sediment left after the centrifugation of EWP.  

Tube            Tube      Tube +  Tube +  Sediment EWP  

          Weight    Solution     Sediment        weight  lost  

                     (g)          (g)          (g)               (g)  (%)  

1 86.08  347.71       94.18     8.10      0.108  

2 81.66  342.43       87.44     5.78      0.077  

3 86.14  344.43       88.64     2.50      0.033  

4 83.64  345.16       88.07     4.43      0.059  

5 86.86  342.20       89.17     2.31      0.031  

6 83.84  342.54       89.26     5.42      0.072  

Total                                                                               0.381  

  

In addition to determining when the solution has fully centrifuged, a numerical analysis of the 

amount of sediment left was performed. The data is show in Table 3-2. The process involved 

taking the weight of the centrifuge tubes, the weight when containing solution, and the 

weight of the (wet) sediment left over after the supernatant had been removed. The 

sediment weight was calculated by taking the tube + sediment weight and subtracting the 

tube weight. The sediment weight was then divided by 75 as this was the mass of the protein 

added to the solution to give a percentage loss. The overall amount lost was 0.38 % 

meaning that when a sonication occurs, the concentration of the protein solution will be 4.62 

as opposed to 5 %.  

3.5.3. Amplitude vs Energy  

The aim of testing the amplitude against the energy output was to see from an industrial 

point of view, which solutions (EWP or AFE) cost the most energy, as some of the recycle 

methods incorporate both EWP and AFE sonication steps. The base unit for the sonication 
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probe records the amount of energy in Joules in a certain time period. Each amplitude was 

tested as an experimental run through for 5 minutes at a time with the system being stopped 

and restarted in between each amplitude change. The output reading was then converted 

into more useful units of energy.  

  

Figure 3-8. A graph showing the Energy Usage (kJhr -1) at varying amplitudes for water, EWP and AFE.  

Tables 3-3, 3-4, 3-5 (appendix) and Figure 3-8 show that for water, EWP and AFE that 

when the amplitude is increased, the energy use from the sonication probe increases (which 

is, what is to be expected) and shows a linear relationship. Water used up the largest 

energy followed by AFE then EWP. The reason for this is because pure water doesn’t react; 

it will enter and leave the flow-through cell quickly, causing the sonication probe to not be 

covered by as much liquid, causing an increase in energy.  AFE cost more energy to react 

as the air cells are much larger and unreactive compared to proteins, meaning that more 

energy will be absorbed by the air cells but will still remain intact. The Tables show that the 

exact same amount of energy is used for EWP solution sonicated at 100 % and an AFE 

solution sonicated at 90 % amplitude. An important discovery was that at amplitudes below 
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40%, AFE was not produced visibly in the bulk. Air cells are formed at this amplitude but not 

in significant quantities that it is visible with the naked eye.  
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CHAPTER 4- PREVIOUS AND INITIAL STUDIES 

(BATCH MODE WITH NO RECYCLES)  

This Chapter is associated with looking at batch mode production of AFE without performing 

any recycles, opposed to Chapter 5 which looks at batch process with recycles.  

4.1. Previous Studies  

Studies into some of the parameters and variables, associated with the methods in this 

project were studied prior to the start of the project. The method for using a 5 % EWP 

solution, as well the experimental setup was deduced by Tchuenbou-Magaia et al (2011)[2]. 

The ideal flow rates for both the air and liquid were deduced alongside the ideal residence 

time for AFE production by Dos Santos et al (2014) [71]. Green et al (2014) [70] tested the 

premise of recycling methods to see if it could theoretically be possible to produce a higher 

yield by reducing waste and maximising the output, which led to the formation of the project.  

4.2. Parallel Studies  

The research undertaken in this project ran in parallel with an EngD project [70]. Where this 

project focused on the scale up and process optimisation of AFE production, Green’s EngD 

project focused more on the formulation approaches of AFE into low fat foods. Both 

projects were run in conjunction with Rich Products and ultimately focused on the same 

goal of incorporating AFE into an industrial setting. Some of the AFEs produced in this 

project were used in the formulation approaches. Both projects run parallel to each other 

because both projects are vital for the success of using AFE in low-fat food applications for 

industry.  
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4.3. Initial Project Studies  

4.3.1 Introduction  

The aim of undertaking some initial tests was to: a) get used to, and understand the 

experimental processes, b) test which basic parameters affect the production and c) give an 

indication of what areas should be studied in more detail throughout the project. The initial 

testing investigated the effects of reheating, amplitude and initial insights into whether 

recycling would be a plausible option.   

4.3.2. Reheating  

The aim of this test was to see if heating, followed by cooling, followed by a re-heat has an 

effect on the amount of air cells and protein aggregates produced. Half of the sample was 

produced into AFE but the whole solution was heated up. The other half of the solution was 

cooled in the fridge. Once the solution was cooled, it was then reheated and sonicated to 

see what effect multiple heating had on the sample.  

 

  

Figure 4-1. – Microscope images of the initial AFE samples produced during initial testing stage. Top Left and 

Top Right= Before Reheating, Bottom Left and Bottom Right= After Reheating.  
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Figure 4-2. Particle size distribution analysis of the initial AFE sample produced during initial testing. Top 

Distribution= Before Reheating, Bottom Distribution= After Reheating.  

Figures 4-1 and 4-2 physically shows the sample, and the particles size distribution, 

respectively. The original sample contained a small amount of protein aggregates due to 

being heated within a water bath for a long period of time but contained a large volume of air 

cells. This is evident from both of the Mastersizer distributions, where there is a large peak 

around one micron and a small peak around 100 microns; and from the images, where there 

are air cells present in the solution but some background protein is apparent in the solution. 

The distribution curve for the reheated solution varies dramatically from that of the first 

solution. The air cell concentration is down due to the peak around one micron being 

reduced, and at the same time, the peak around 100 microns is significantly increased 

showing the presence of protein aggregates. This is further reinforced by the microscope 

images which reveal the larger protein bodies in the sample. The heating unfolded the 

proteins ready for reaction; but due to the absence of air, once cooled the proteins start to 

reform, the likelihood of oligomerisation of multiple proteins increases, hence why there is a 

larger amount of aggregates in the reheated solution. On top of this, because the solution is 

reheated, it is exposed to multiple sets of excessive heating, meaning that irreversible 

denaturation is more likely to occur compared to reversible unfolding.  



61 | P a g e  

  

 

4.3.3 Testing Various Amplitudes  

 

4.3.3.1 Qualitative Data  

The reason for testing the sonication amplitude was to determine whether the amplitude of 

the sonication probe had an effect on the quality and amount of air filled emulsion produced 

(and the amount of protein in the surrounding medium), as it would form the basis for a 

major parameter to be tested on the solution recycles. A control experiment in section 3.5.3. 

looking at amplitude vs energy showed that when the amplitude is increased, the energy 

input is increased. The aim was to see if this directly correlates with not only energy input but 

also AFE production.  

The amplitude testing was performed by making up a solution and splitting it into separate 

containers at the sonication stage, which were then run at varying sonication amplitudes. 

The solutions were heated in a water bath.  

  

Figure 4-3. Microscope images of the AFE produced during the initial testing stage after undergoing varying 

amplitudes. Left=100% Amplitude, Middle= 60% Amplitude, Right= 30% Amplitude. Taken with a Leica Qwin 

black and white imaging camera.  
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Figure 4-4. Particle size distribution analysis of the AFE produced during the initial testing stage at varying 

amplitudes. Top Distribution= 100% Amplitude, Second Distribution= 60% Amplitude, Third Distribution= 30% 

Amplitude, Bottom Distribution= Comparison of Distribution Curves.  

Figures 4-3 and 4-4 show the images and particle size distribution for the samples at varying 

amplitudes. What is immediately apparent, is that the energy input correlates directly to the 

AFE production. As mentioned, when the amplitude in increased, the energy input into the 

system is greater, causing a larger concentration of superoxide radicals to be produced 

within the EWP solution. This allows more protein to be bound to the radicals resulting in a 

higher yield of AFE and a lower concentration of protein aggregates. The 100 % amplitude 

sample is not the best ‘quality obtained’. However, this isn’t an issue as it to be used as a 

comparison against each other, and the change from starting amplitude. All samples 

originate from the same stock solution so if one sample isn’t as monodisperse as it could be, 

then it will be relative throughout all the samples. Looking at the samples, 100 % amplitude 

produces the best quality solution with highest yield of air cells and the lowest amount of 
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protein aggregates. This is apparent from both the images and the Mastersizer data. At 60 

%, the concentration of air cells is reduced compared to the 100 % sample, and there is also 

a larger presence of protein aggregation. This is due to the decreased concentration of 

reactive radical species in solution causing more unfolded proteins to denature and 

aggregate. At 30 % amplitude it is very apparent that there is not very much AFE production 

occurring due to a low concentration of reactive species. During the control experiment in 

section 3.5.3., it was found that AFE in the bulk (able to see with the naked eye) did not 

occur until 40 % amplitude. So the production of air cells was not apparent until a 

microscope image was taken. The Mastersizer data shows a large presence of protein 

aggregates, showing that a large amount of protein has unfolded and because there is no 

species to react with under a large amount of heating, they have formed irreversibly 

aggregated. This is not as clear with the images; however, the light had to be reduced to 

actually see the presence of air cells and therefore the ability to see the protein aggregates 

was lost, but the Mastersizer provides conclusive evidence of this. At 100 microns, there is 

evidence of protein aggregation, so to have a large peak around over 1000 microns shows 

very aggregated protein networks at low amplitudes, showing that low amplitudes are 

counterproductive to producing a useable emulsion for formulation approaches.  

The main finding is that when the amplitude is increased, it increases the energy input into 

the system. This causes a higher concentration of reactive superoxide radical species from 

the air input, which provides a higher binding surface for the protein. This gives a higher 

concentration of air cells and a lower concentration of protein aggregates.  

4.3.3.2 Quantitative Data- Showing the Possibilities of Recycling  

Based on the data found from taking the various amplitudes, a calculation to see the effect 

that the amplitude had on the protein used and the amount of protein needed to recycle was 

used.  
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This was to give an indication of what it is going on the system and to provide a basic grounding 

as to whether the recycle may be possible. The raw results are presented in Table 4-1 

(Appendix).  

     

  

Figure 4-5. The protein used in the initial testing at varying amplitudes  

  
Figure 4-6. The amount of protein required to perform a recycle for the AFE produced during the initial testing.  

Table 4-1 (Appendix) and Figures 4-5 and 4-6 show the protein usage at varying amplitudes 

and the amount of protein to be added to re-concentrate the waste solution back to 5 %.  As 

expected, the protein usage increases with increased amplitude due to increased reactive 

sites. This also shows a proportional relationship to the amount of protein to be added to re-
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concentrate the solution i.e. the higher the amplitude, the higher the protein to be added per 

recycle due to the solution having an increased depletion on protein. This shows that the 

recycling process is feasible and is able to be controlled via re-concentration and various 

analyses. It also shows that the process should produce a high yield of AFE when recycled, 

especially when used at high amplitudes.  

4.4.4 Conclusion  

These experiments were done under batch mode with no association to recycles. The aim 

was to determine how much protein would be required to recycle at varying amplitudes as 

well as giving an indication to the sample quality that could be produced at various 

amplitudes. The study gave an indication of what to expect when performing a recycle in 

terms of protein usage and the amount of protein required to re-concentrate. The 

experiments found that by increasing the amplitude, the amount of protein used in the 

reaction increases, allowing for more protein to be added for re-concentration. It also 

showed that when the amplitude is increased, in addition to the actual amount of protein 

usage increasing; the amount of air cells in the sample increases and the amount of protein 

aggregation decreases, due to a higher amount of superoxide reactive sites.   

The initial tests have concluded however, that the reheating process is counterproductive to 

air cell formation. The constant heating followed by a cool down period with no reactive 

species to bind to, caused a large amount of the unfolded proteins to irreversibly denature 

and oligomerise with each other. This results in a lower air cell production and a higher 

protein aggregation, rendering the sample useless for formulation approaches. This also 

shows that excessive and constant heating could have a problematic impact on AFE 

production. This could be the case for the recycle process where proteins are not used up in 

a pass and are therefore exposed to multiple steps of constant heating and rapid cooling.  
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CHAPTER 5- THE CRITCHLEY-GREEN RECYCLE  

METHODS (BATCH AND CONTINUOUS  

PROCESSES WITH RECYCLES)  

5.1 Introduction  

This chapter is concerned with the analysis of the Critchley-Green Solution Top-Up Method 

as detailed in 3.3.4.2. This work follows on, but differs, from the work in Chapter 4, which 

looked at batch mode without recycles. Instead this chapter looks at batch (and continuous) 

processes where recycles are performed. This section provides an insight into the recycling 

methods with respect to how they work, whilst providing a quantitative and qualitative 

analysis into the various recycles and to what extent they can be utilised on the small (bench 

scale). Coupling the analysis together, the section concludes with the likelihood of the 

scalability from the bench scale to the pilot scale.   

5.2 The Solution Top-Up Method (STUM) - Water Bath Heating (WBH)  

5.2.1 Quantitative analysis  

The calculations on the data analysed in this section were calculated using the following 

formula:  
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Masses:  

Glass lens: g  

Lens + 10 ml solution: g Dry 

Mass (after heating):  g 

Calculation:  

Mass of water= mass of solution - mass left  

Mass of water= start weight - current mass  

Mass left= mass of protein  

Mass left= mass of solution – mass of water (-mass of lens)  

Concentration= mass of protein / mass of water  

Mass of protein required = mass of water x 0.05  

Protein needed to be added (x) = mass of protein required – mass of protein (per 10ml)  

Therefore, for 100ml of solution, x g X10 of protein is need to recycle  

% Protein Used= Protein needed to recycle per 100ml/5 + x, where x= ratio per 100ml of protein added 

per each recycle.  

  

The recycles were all performed with a pH of 3.8 ± 0.1, which is the pH range that proteins 

start to unfold but it is still in an acceptable range that it can be formulated into food 

products. After performing the amplitude control experiments, it was decided that the 

experiments would be performed at 100 % amplitude to maximise the output, in an 

environment where power usage was not a contributing factor.  The flow rates for the air and 

liquid produced a residence time of 3 min. This is the ideal residence time as documented by 

Santos et al [71].   
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Figure 5-1. The total protein used for the STUM with water bath heating (WBH).  

  

Figure 5-2. The protein used per each recycle for the STUM with water bath heating (WBH). 

Tables 5-1, 5-2 (Appendix) and Figures 5-1 and 5-2 show the protein usage as a function of 

each individual recycle as well as the total amount used. The yield on protein usage is high 

and all the experiments performed showed a yield of >95 %. This is an exceptionally high 

yield compared to previous studies which have achieved yields of up to 50 %. What is clear 

from the data is that even though the amount produced on the initial sonication varies by 

18.4 %, by one recycle; all three values are within 0.8 % of each other. This shows that the 

recycle mechanism is effective for optimisation. Because the recycle is based off re-

concentration of the parent solution, it allows for variance in the amount of protein to add as 

well as how much solution will be left after each pass, meaning that the discrepancies from 
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the initial pass will even out as there will be more EWP solution to sonicate on the next pass. 

The protein used is also a function of not only the original protein, but also the protein added 

and used after each pass and is representative of the percentage used up and not the 

amount in grams. This means that if more protein is used up and more protein is needed to 

re-concentrate the solution, then the x term in the equation will be larger and will even out 

the percentages. The x term is important because without it, the usage would be measured 

against the initial mass and not take into account any extra protein added into the system, so 

percentages of 100 % would be possible without the x term, leading to serious anomalies in 

the data sets. The grams used up and added may be larger for some passes but the 

percentages could be similar. This is more efficient as on the larger scale the amounts used 

will vary drastically, so just having a usage in grams would become irrelevant as it would not 

be scalable. It should also be noted that protein usage does not necessarily mean a 1:1 ratio 

with air cell production as aggregation and denaturation of the proteins can occur. Particle 

size data from the Mastersizer provides more information on how much air cell formation and 

how much aggregation has occurred as they both appear in very different ranges where the 

air cells have a defined size range of submicron to 10 microns (ideally submicron- 1 micron 

for functional food applications). Microscope images also give an indication, although no 

actual values on the amount of air cells formed but physically shows if both air cell formation 

and aggregation have occurred in the samples.  

  

Figure 5-3. A graphical representation of the amount of protein added per each recycle for the STUM with WBH.  
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Table 5-3 (Appendix) and Figure 5-3 show the amount of protein added per recycle. As 

shown, there is an outlier on recycle number one. This is due to the reasons mentioned in 

the previous paragraph, where so much material was used up during the first pass, the 

amount of EWP solution was lower, and as protein added is a product per 100 ml of solution, 

the amount added is less. But as previously stated, the values correct themselves and by the 

end of the experiment, the amount added over the whole experiment was very similar with a 

maximum difference of 1.8 g, which is negligible when there has been over 100 g in total 

added and equates to an error of 1.4-1.5 % in terms of solid protein, and an error of 0.11 % 

in terms of the mass of the whole solution. Other than the one outlier, the various 

experiments fit a trend very well. The general trend is that the protein added decreases as 

the amount of recycles increases, which is to be expected. The value at recycle three is zero 

as this is when the experiment was stopped and the yield had achieved high amounts. The 

extra yield that could be produced is not efficient in terms of time and energy consumption to 

be a viable procedure, especially when the aim is to take the process to a larger scale. This 

allows the data to be usable for larger scale operations without unnecessary recycles which 

won’t add much input compared to the cost to industry. Theoretical values were recorded for 

if the procedure was to continue, but as no more protein was added in the actual experiment, 

the value of zero is a more accurate representation of the experiment itself as opposed to 

theoretical values. 

 



71 | P a g e  

  

  

Figure 5-4. A graphical representation of concentrations of the waste protein solution after each pass and the 

intermediate concentrations after re-concentrating the protein solution, for the STUM with WBH.  

Table 5-4 (Appendix) and Figure 5-4 shows the concentrations of the various waste protein 

solution throughout the experiments. The results are sporadic, but this is to be expected due 

to the difference in protein usage mentioned previously. A small difference in the protein 

usage can have a much larger impact on the concentration of the solution. The sporadic 

values do not have too much of an impact as the recycle is performed based of the amount 

to add which relates directly to the concentration; which previously mentioned before 

balances itself out over the course of multiple recycles. This is another reason why the 

recycle method is effective as it allows more controlled flexibility compared to performing a 

single pass. The intermediate concentrations were included at the ½ recycle points on the 

graph and although there is not technically ½ of a recycle it shows that the solution is re-

concentrated between recycles. The main point to take away from Table 5-4 and Figure 5-4 

is the observation of the concentration decrease and re-concentration and that a general rule 

of thumb, the more recycles performed, the closer to 5 % the new solution will be. This is 

due to the later stages not producing as much protein usage therefore the concentrations 

are expected to be higher.   
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Figure 5-5. A series of Mastersizer distribution graphs showing the particle size during the STUM heat exchanger 

(ambient) method. A= After initial sonication, B= After first recycle, C= After second recycle, D= After third recycle. 

Protein usage is not the full story with regards to AFE yields. Figure 5-5 shows the particle 

size analysis data obtained for the experiments. As shown, with regards to this method, the 

ratio of protein usage to air cell production is not 1:1. The peaks between 100-1000 microns 

are evident of protein aggregation, as that is a large particle size for a single protein molecule. 

The desired range for air cell formation is submicron to microns and it is apparent that both air 

cell and protein aggregate have formed throughout the series of experiments. The initial 

sample shows the best ‘quality’ of AFE out of the whole experiment, which is to be expected 

as the protein is all fresh. Quality is referred to the amount of air cells present in the solution 

and can be determined via the Mastersizer distribution and by looking at the samples under a 

microscope, but is subjective. For the initial sample the ratio of air cell to protein aggregation 

is roughly 3:1. This decreases to roughly 3:2 for the first recycle and 1:1 for the second recycle 



73 | P a g e  

  

and third recycles. This means for the protein usage value obtained, that 75 % of the value for 

the initial sample composed of air cells, 60 % for the values of the second recycles and 50 % 

of the obtained protein usage for recycles two and three. For example, taking experiment one 

which had protein usages of 50.5 %, 17. 6 %,13.7 %,13.4 %, the actual yield (as a rough 

guide) based of the rough ratio’s obtained from the Mastersizer data is 38 %, 10.6 %, 6.9 % 

and 6.7 %, respectively. This gives an estimated yield of 62.2 % AFE from 95 % protein usage. 

The reason for this discrepancy between the theoretical and actual yield obtained for this 

method is due to the heating element of the method. Because the solution is heated for long 

periods of time in a water bath, the proteins are more susceptible to irreversible aggregation.  

This is what has occurred on the right hand side (100-1000 microns) of the distribution in the 

Mastersizer data and is the reason as to why there is more than a difference of 30% 

between the theoretical and estimated actual yields.  

5.2.2 Qualitative Analysis  

 

The quantitative analysis is the non-numerical data and physically looks at the structure 

under microscope with a Leica QWin black and white imaging camera. The aim of using an 

imaging microscope was to give an indication of how many air cells and protein aggregates 

are present in the sample, and to determine the ‘quality’ of the sample independent of  

numerical yield values.   
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Figure 5-6. A series of images showing the Air cells in the AFE samples produced during the STUM with WBH.  

Top Left= Initial sample, Top Right= First Recycle, Bottom Left= Second Recycle, Bottom Right= Third Recycle.  

Taken with a Leica QWin black and white imaging camera.  

The images in Figure 5-6 show the samples at 40X zoom. The glowing circles present in the 

images are representative of air cells and the cloudy/grey circles are indicative of protein 

aggregates, as are the amorphous molecules. From the images it is clear that the initial 

sample has a high concentration of air cells but also contains protein aggregates. This 

reinforces the reasoning as to why a there is a discrepancy between protein usage and AFE 

production and can be seen physically as opposed to numerically. The first recycle contains 

a smaller amount of air cells and once again contains protein aggregates. As the process 

moves towards completion, in the second and third recycles, the air cell concentration is less 

and the protein aggregation is more apparent. This is expected because there will be old 

protein in the solution that will have been heated multiple times and be more unstable and 

more susceptible to aggregation. The protein aggregates produced in the first two passes 

will still be present (due to the process being an irreversible conformation change), with the 

addition of any extra formed in recycles two and three, meaning that as the experiment 
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proceeds, the concentration of aggregates will increase. This is comparative to the numerical 

data and shows that what is produced numerically can be seen physically, reinforcing the 

reasons as to why this method produces a discrepancy in the results.  

5.3. The Solution Top-Up Method (STUM) With a Heat Exchanger (HE)   

5.3.1. Introduction  

The aim of using the heat exchanger was to see if heating the solution en-route to the 

sonicator is more effective than the protein solution being sat in the water bath for an 

extended period of time. The flow rates were kept the same as when performing the 

experiments using a water bath. The Top-Up Methods with the heat exchanger has two 

different variations which were to do with the starting temperature of the protein solution. 

These were cold (~4 °C) and Ambient (room temperature). The aim of running these two 

different parameters was to see if the heat exchanger heated up the solution enough, so that 

it could be started from cold rather than room temperature, because this minimises time for 

the solution to warm up. On a small scale, this does not take long, but thinking in terms of 

scalability, a much larger solution would take a lot longer time meaning that from a business 

point of view, more money would be required to perform the experiments due to extra 

heating costs. If there is any way, however small, to drive down the costs of production, it will 

increase the feasibility of the scale up process.  
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5.3.2. Ambient Starting Temperature  

5.3.2.1 Quantitative Analysis  

 

  

Figure5-7. The total amount of protein used (A) and the protein used per recycle (B) from ambient start.  

Tables 5-5 and 5-6 (Appendix) and Figure 5-7 show the protein usage as a function of both 

total usage and the usage per recycle. Just like the results obtained in the previous method 

using the water bath as a heat source, all the experiments yielded >95% protein usage, with 

the highest yield obtained being 98.7 %. Again, the usage can vary drastically from one 

recycle to another but as stated before, the recycles balance themselves out with there 

being a difference of 2.9 % maximum value between the experiments after the fourth pass. 

This is more sporadic than with the water bath method, but the usage is slightly greater. And 

as previously stated, it is the AFE production from the protein usage that is key, not the 

protein usage in general. Because the solution is heated up during flow, it is not subjected to 
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high temperatures for a large period of time. This way of heating allows for the proteins to 

unfold and react without being exposed to too much heat and denaturing. In the water bath 

they could be subjected to 50 °C for up to an hour per single pass. Using the heat 

exchanger, this is cut down to under a minute, which is a significant difference.     

   

  

Figure 5-8. A graphical representation of concentrations of the waste protein solution after each pass and the 

intermediate concentrations after re-concentrating the protein solution, from ambient start.  

Table 5-7 (Appendix) and Figure 5-8 show the concentrations of the waste solutions 

produced after each pass. The concentrations are sporadic again, but act as a function of 

the protein usage and relate to the values of the other contributing factors. This is a standard 

fit for the concentration graphs and follows a similar trend to that found for the previous 

method. If the concentration of a single experiment is compared against its own protein 

usage for the recycles and then compared against the other experiments, the concentrations 

correspond and fit well against each other, so the concentrations are proportional to the 

protein usage.  
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Figure 5-9. A graphical representation of the amount of protein added per each recycle from ambient start.  

Table 5-8 (Appendix) and Figure 5-9 show the amount of protein added over the course of 

each experiment for this method. There are no outliers in the data, and the trend line for all 

the experiments fit a well-defined linear line. The maximum difference between the highest 

amount added and the lowest amount added is higher than the water bath method and 

equates to 7.8 g. This gives an error of 6.0-6.4 % of solid protein mass and an error of 0.48 

% for the total mass of the EWP solution. Again for an accurate representation, the curve 

finishes with a point at zero to show that no protein was added after this point and that the 

experiment had reached its conclusion.  
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Figure 5-10. A series of Mastersizer distribution graphs showing the particle size during the STUM heat 

exchanger (ambient) method. A= After initial sonication, B= After first recycle, C= After second recycle, D= After 

third recycle, E= Comparison of all the recycles.  

Figure 5-10 shows the Mastersizer data for this method which differs vastly compared to that 

of the water bath method. Where the water bath method was very polydisperse and 

contained both air cells and aggregates in varying ratios; this method produced no AFE 

particles over the size of 10 microns. This is the expected range for air cell formation and 

occurred for all recycles. This means that the protein usage is directly proportional in this 

case to the air cell production, and where there has been > 95% protein usage, there is also 

>95 % AFE yield. This is compared with the water bath method where it also achieved over 

>95 % protein usage, but only obtained ~62 % air cell production. This is a difference of over 

30 %, showing a significant difference in both the quality of the solution produced and the 
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efficiency of the method. Because the solution in this method is heated up during flow, it is 

not subjected to high temperatures for a large period of time. This way of heating allows for 

the proteins to unfold and react without being exposed to excessive heat which causes 

denaturing and aggregation. In the water bath they could be subjected to 50 °C for up to an 

hour per single pass, using the heat exchanger, this is cut down to under a minute, which 

makes a significant amount of difference. This is true for the old proteins which may have 

undergone up to four passes, and will have not denatured due to the limited contact time 

with the heat source, as opposed to the potential of being heated for up to four hours in the 

previous water bath method. This shows that the excessive heating of the water bath was 

detrimental to the AFE production as the potential was there to produce a yield of at least 95 

%. This is a much greater yield than anything obtained before the recycling mechanisms and 

paves a way to achieve a high yield output of AFE (not just protein usage) whilst minimising 

the overheads. The only disadvantage is the time it takes for the experiment to be finished. 

 5.3.2.2 Qualitative Analysis  

   
Figure 5-11. Concentration of the Air cells in the AFE samples produced during the STUM with HE at ambient 

start. Top Left= Initial sample, Top Right= First Recycle, Bottom Left= Second Recycle, Bottom Right= Third 

Recycle. Taken with a Leica Qwin black and white imaging camera.  
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The images taken under the microscope show a very similar story to the data obtained in the 

quantitative analysis. The initial sample has a high concentration of air cells with no apparent 

protein aggregates. Similarly, the first recycle shows no indication of protein aggregation 

although the air cells are in a lower concentration to the amount found in the initial sample. 

The second recycle shows a low air cell concentration and some protein aggregation. This 

could be localised aggregation as it never appeared in the Mastersizer distribution curves. In 

a large volume, some small local aggregation is going to have a negligible effect on the 

yield. The third recycle has the lowest concentration of air cells but no evidence of protein 

aggregation (the grey haziness was caused by cloudiness in the lens and not the sample 

itself), reinforcing the fact the protein aggregates observed in the image for the second 

recycle are most likely to be localised as they are not present in the final sample. So taking 

into account that the physical observation follows the numerical analysis, it has shown that 

the heat exchanger method from ambient temperature has been a very successful method 

and produce high yields, whilst limiting the protein aggregation. It is also a serious 

improvement on previous methods, whether they be recycling methods or otherwise.  
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5.3.3. Cold Starting Temperature  

5.3.3.1. Quantitative Analysis 

 

  

Figure 5-12. The total amount of protein used (A) and the protein used per recycle (B) from cold start.  

Tables 5-9 and 5-10 (Appendix) and Figure 5-12 show the total protein usage and the 

protein usage per recycle for the STUM using a heat exchanger, this time from a cold 

starting temperature. The yields for this experiment are slightly lower than the ambient 

method but all the experiments achieved >90 % with the highest being 92.7 %. There are 

however two important factors to note with these results. The first is that there is one less 

recycle than its ambient counterpart. It is unknown as to why this occurred. It may be that 

because it started from cold so the molecules gained a larger amount of energy promoting 

unfolding and therefore yield. This is the only method to start form a cold temperature so 

there is no comparison from this temperature. Another recycle could possibly be utilised, 
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bringing the amount of recycles on par with the ambient method. However, when it has 

already achieved over 90% usage, the amount of extra time and energy would not be a 

viable endeavour especially when taking into account the extra costs that would be 

associated in an industry setting. Another important factor about this method is that the 

variance of protein usage on each recycle is much less than the other methods, where the 

usage could vary significantly, but balanced itself out. These results are all very similar in 

nature where the maximum difference for a single pass is 6.4 %, compared with the water 

bath method which could have a variance of 16 %, and the ambient method which varied by 

up to 18 % on some passes.        

  

Figure 5-13. A graphical representation of concentrations of the waste protein solution after each pass and the 

intermediate concentrations after re-concentrating the protein solution, from cold start.  

Table 5-11 (Appendix) and Figure 5-13 show the varying concentrations of the waste protein 

solution for the experiments performed. The same pattern is observed to that of previous 

methods. With the exception of one method which appears to have operated at higher 

concentrations, the general fit of the trend is much tighter than that seen by the other 

methods. Evidently the only main difference is there is less data points than the previous 

methods due to there being one less recycle performed.  
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Figure 5-14. A graphical representation of the amount of protein added per each recycle from cold start.  

Table 5-12 (Appendix) and Figure 5-14 show the amount of protein added for each recycle. 

The zero term this time is in the number two position as opposed to the three position as 

previously shown in other methods, which is due to the experiment only undergoing two 

recycles and not three. The first thing that is apparent with this data is that it is much closer 

together than any of the other experiments performed. This is not due to there being one 

less recycle as all the data is much closer together for both passes, in places where large 

variances have been found to occur in previous methods. The maximum difference between 

the highest amount added and the lowest amount added is 0.5 g. This equates to an error of 

0.41 % of dry protein and equates to 0.03 % of the total mass of the solution, showing a very 

close set of data, especially when compared to 6-6.4 % calculated for the ambient 

experiment and 1.4-1.5 % for the water bath method.  
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Figure 5-15. A series of Mastersizer distribution graphs showing the particle size during the STUM heat 

exchanger (ambient) method. A= After initial sonication, B= After first recycle, C= After second recycle, D= 

Comparison of all the recycles.  

The particle size analysis data shown in Figure 5-15 shows a very similar trend to the 

ambient temperature data in Figure 5-10. All of the recycles show particles below the 10-

micron region and none towards the higher end of the spectrum. This again postulates that 

the protein usage equates proportionally to the amount of air cells produced, so therefore the 

protein usage is equal the AFE yield. This means that using a heat exchanger from either 

ambient or cold starting temperature yields >90% AFE production. This is important because 

it shows that the heat exchanger exerts enough heat energy to heat up the solution 

efficiently without overheating and causing aggregation, independent of the starting 
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temperature. This could allow for solution to not be pre-heated, which would save time and 

money, but also preserve the native protein structure.   

5.3.1.2. Qualitative Analysis  

 

Figure 5-16. A series of images showing the air cells in the AFE samples produced during the STUM with HE at 

cold start. Left= Initial sample, Middle= First Recycle, Right = Second Recycle, Taken with a Motic Imaging 

Camera.   

The images in Figure 5-16 were obtained via a Motic imaging camera and show a good 

correlation to the numerical data obtained. The initial sample and first recycle show a high 

concentration of air cells, which is to be expected giving the yields calculated. They also 

show negligible protein aggregates further reinforcing the numerical results, with regards to a 

proportional relationship between protein usage and AFE yield. The second recycle shows 

the presence of air cells in a lower concentration to the other two samples, which is to be 

expected given that the yield for this recycle was lower than its predecessors. There is also 

an absence of protein aggregation, showing that the sample produced is of a ‘good quality’.  

  

5.3.4. Summary of STUM Methods    

The water bath method was a good starting point and showed good promise with protein 

usage being greater than 95 %. However, this was not the full story, as around 30 % of that 

was not turned into air cells, but instead formed aggregates due to excessive heating of the 

solution mixture. The heat exchanger methods show good promise, especially as this is the 

first time a heat exchanger has been used to pre-heat the protein solution prior to 

sonochemical irradiation. Both methods showed greater than 90 % protein usage which 

equated to a 1:1 ratio of air cell production with negligible protein aggregates. The ambient 
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method provided a yield of over 95 % with the highest achieved being 98.7 %, but performed 

one extra recycle compared to starting from a cold temperature. Despite one less recycle, 

yields of over 90 % were achieved from starting from cold, and the data in general gave a 

much tighter fit with less variation from the average. What these methods have shown is that 

the heat exchanger is a much more reliable heat source and is much more efficient in 

produce good yields. This leads the way for other methods to be heated by a heat 

exchanger as opposed to the water bath, resulting in the chance to obtain better quality 

samples in future methods. It also showed that the heat exchanger provides sufficient heat 

despite the short contact time, giving flexibility over solution starting temperatures to prevent 

protein destabilisation prior to reaching the reaction vessel.  

5.4. Non Top-Up Recycle Methods (NoTUM)  

The aim of the NoTUM was to determine the protein usage of the whole solution, without 

increasing the concentration back to 5 %w/v or centrifuging out the AFE. This also allows for 

a secondary aim, to see that if the air cells that have already been formed are stable to 

multiple exposures of sonication energy. There were two methods used in this category. The 

first method was used to sonicate the solution in stages. When the sonication had run to 

completion, the system was reset and the AFE was sonicated again. This was repeated 

multiple times. This experiment was performed by two students under my supervision. The 

Method was then adapted and subsequently called the NoTUCoM v2. This method produced 

a constant feedstock so that the system was never turned off and continually ran. After all 

the protein solution had been initially sonicated, without resetting the system, the solution 

was fed back into the starting vessel and then the output pipe (containing the product) was 

then fed back into the starting vessel. This produced a feedback loop, upon which the 

product was automatically collected back in to the starting vessel, producing a completely 

continuous process. It is very raw in design, but the aim was to see a feedback system could 

be used on the small scale and in turn give an idea to if it would be a more efficient route for 

recycling on the larger scale. As the recycle process takes a long time, a quicker way to 
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recycle on the larger scale would make the process as a whole more feasible. So taking that 

into account was the reason for trying this set of experiments.  

5.4.1. Non Top-Up Centrifugal Method (NoTUCeM)  

5.4.1.1. Introduction  

The aim of this method was to see how much of the original protein could be used without 

the need to top-up. This could be beneficial as it would eliminate a lot of steps in the recycle 

process. The Air-Filled Emulsions were removed by centrifuge as per the ‘Solution Top-Up 

Method’ but the leftover solution was then re-sonicated without additional protein being 

added.  

5.4.1.1. Quantitative Analysis  

Table 5-13 and graph A on Figure 5-17 show the protein used for the NoTUCeM. The protein 

usage is less than the STUM methods, which is to be expected as it is old protein that is 

constantly being recycled, and is therefore of a lower concentration compared to the STUM 

counterparts. With there being less protein in the solution, the probability that the same 

amount of protein will come into contact with superoxide radicals is lower compared to a 

solution that has been re-concentrated. Therefore, there is a larger variation of protein usage 

with a maximum difference of 12.1 %. The protein usage is not as an important factor for this 

method as the aim wasn’t to achieve a high yield, but to see how many passes a solution 

can go whilst being depleted and not re-concentrated. It was to be used as a stepping stone 

to outline the variables for the Non Top-Up Continuous Method (NoTUCoM), which shows 

more promise in term of time scales. The centrifuge was used to remove the AFE, so that 

the variables could be defined mainly in terms of timescales before attempting a continuous 

method with no removal of AFE during the experiment. Although the end results vary slightly, 

the trends are very tight to each other and follow the same pattern, showing reproducibility.  
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Figure 5-17. The used protein (A) and solution concentration (B) during the NoTUCeM.  

Table 5-14 and Figure B from Figure 5-17 show the concentration of the waste protein 

solution. Unlike the STUM methods, the concentration is a continuous decrease and it is 

expected that the more passes the solution undergoes, the lower the solution concentration 

will become, as there is no replenishment of concentration. Each experiment follows a 

similar trend even though the values vary. The variation is due to the protein usage and 

there is no cause for concern as there is a constant depletion of material.  
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Figure 5-18. A series of Mastersizer distribution graphs showing the particle size during the NoTUCeM.  A= First 

Sonication, B= Second Sonication, C= Third Sonication, D= Fourth Sonication.  

The data shown in in Figure 5-18 shows the particle size of the samples obtained from the 

NoTUCeM. The data shows that the samples contain air cells with no protein aggregates (or 

at least negligible) and shows a similar trend to the top-up methods (with a heat exchanger). 

This means that the protein usage equates proportionally to the amount of AFE produced; 

therefore, the method has produced up to 78.5 % AFE yield without the addition of extra 

protein, which again is significantly more than any other yield produced prior to these set of 

methods. The difference between this and the top up methods is the amount of protein used 

by weight, therefore the amount of AFE by will vary drastically compared to the top-up 

methods. For example, taking the ambient method of 98.7 % where 129.60 g was added 

compared to this method of 78.5 % where 75 g was added. This equates to a 127.9 g protein 

usage compared to 58.9 g from the non-top-up method. This is a difference of 69 g 

compared to 20 % which is substantial, but as mentioned before, the equation balances out 
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the percentage of the topped up method. The values are not as important for this method as 

the main purpose was to determine the time to allow the continuous method to run for whilst 

still producing a good protein usage. This method has determined the continuous method 

(NoTUCoM) parameters to run for an equivalent of four recycle passes which equates to 240 

± 20 minutes.  

5.4.1.2. Qualitative Analysis  

  

   

 
Figure 5-19. A series of images showing the air cells in the AFE samples produced during the NoTUCeM. Top 

Left= First Sonication, Top Right= Second Sonication, Bottom Left= Third Sonication, Bottom Right= Fourth 

Sonication.  

The images in Figure 5-19 show the presence of air cells, but just like the Mastersizer data 

showed, an absence of aggregated proteins is present in the solution (the cloudiness is 

attributed to the focus on the lens of the microscope). What the images show, is that there is 

a good concentration of air cells throughout but not as many produced later on, due to the 

depleted solution containing a lower amount of proteins compared to the average 5 %, 

reacting with the superoxide radicals. This is expected to happen because in the top-up 
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methods, there is less solution but the concentration is still 5 %, resulting in a decent yield, 

whereas this method has both a depleted solution and depleted concentration.  

5.4.2. Non Top-Up Continuous Method (NoTUCoM)  

5.4.2.1 Introduction  

The aim of this NoTUM was to determine the protein usage of the whole solution without 

increasing the concentration back to 5 %w/v, or centrifuging out the AFE. A secondary aim 

of this method was to see that if the air cells within the Air-Filled Emulsion were robust 

enough to withstand exposure to ultrasonic cavitations, multiple times (meaning that a 

continuous flow would not be a problem as the sample itself would not be damaged by the 

process). There were two methods used in this category. The first method was used to 

sonicate the solution in stages. When the sonication had run to completion, the system was 

reset and the AFE was sonicated again, this was repeated multiple times. The method was 

then adapted and subsequently called the NoTUCoM v2. This method produced a constant 

feedstock so that the system was never turned off and continually ran. It is very raw in 

design, but the aim was to see a feedback system could be used on the small scale, and in 

turn give an idea to if it would be a more efficient route for recycling on the larger scale. A 

continuous flow through would be much more beneficial for the larger scale as it would 

remove a lot of steps and could be set to run for a designated period of time, without 

interruption, allowing for timescales to be drastically cut down on the large scale.  

5.4.2.1 Quantitative Analysis  

Tables 5-15 and 5-16 (Appendix) show the protein usage and concentration for the original 

NoTUCoM and the adapted NoTUCoM v2, respectively.  The protein usage for both 

methods is very similar, but slightly higher for the adapted method. The protein usage was 

considerably lower than the NoTUCeM and STUM. The reasoning behind this difference is 

due the recirculation of a mixture of AFE and protein solution, as opposed to pure protein 

solution.  
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Because the reaction mixture does not have the AFE removed before undertaking another 

pass, the ratio of EWP to AFE compared to EWP to water (in pure protein solution), reduces 

the concentration of EWP in the solution. This means that where there is EWP solution 

(even a depleted one), the only molecules interacting in the reaction vessel is protein. This is 

not the case when the AFE product is circulated as there is a mixture of air cells and 

proteins. This means that some of the superoxide radical sites could be blocked by the air 

cells particles, causing the protein to travel through the flow through cell without reacting. 

This is more likely to be the case with a high amount of air cells as their size is larger than 

that of a protein molecule, so will occupy up a larger volume in the flow-through cell. This 

means that after the initial sonication, the bulk of the air cells could inhibit the production of 

more air cells in subsequent passes, with little or no radical sites for the unreacted proteins 

to bind to. In addition to this, with comparison to the top up methods (STUM), there is no 

extra protein inputted into the reaction so is more likely to produce a lower yield in the 

reaction, due to continuous circulation of both depleted and older proteins.  
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Figure 5-20. A series of Mastersizer distribution graphs showing the particle size during the NoTUCoM v2 A= 

After 1 hour, B= After 2 hours, C= After 3 hours, D= After 4 hours, E= Comparison of the distributions.  

The particle size analysis shows the distributions after 1, 2, 3 and 4 hours of continuous 

circulation. The distributions do not show much variation from the sample taken after 1 hour 

(equates to 1 full pass), and is obvious from the comparison curves in distribution E. This 

shows that the air cells could be inhibiting extra protein usage by blocking the reactive radical 

templates, causing stagnation in both protein usage and air cell production. If this was not the 

case, it would be expected that there would be a greater shift of volume between the 

distributions when the run time is four times greater than the initial distribution. The aim of the 

method was not to produce the highest yield, as this would be unlikely given the change in 
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solution mixture ratios, and the lack of additional protein. Instead it was intended to perform 

the first complete continuous recycle for AFE production, which was achieved multiple times. 

The method also gives a significantly reduced timeframe in terms of the whole process (not 

just sonication stages), as it removes multiple steps that the STUM must undertake. This gives 

the method potential for scale up because if it can be optimised, the reduced timeframe would 

allow the production of AFE quicker and cheaper- both of which are major factors to consider 

when judging the feasibility of a process for industry. Even though the process does not 

produce much extra yield on the extra passes, it does give very valuable information with 

regards to air cell longevity. The combination of heat and ultrasonic energy is more than 

enough to change the conformation and structure of proteins. However, this is not the case for 

air cells. What this method shows is that air cells are robust enough to withstand both long 

periods of heat energy without breaking down, or undergoing emulsion instabilities. It also 

shows that they are robust and stable enough to withstand multiple exposures to ultrasonic 

radiation and acoustic cavitation energy without the structure breaking down or degrading. 

This stems from the air cells having a good balance of rigidity and flexibility which can dissipate 

the energy it is exposed to. This is very useful for a formulation perspective as it shows that 

the air cells are stable enough to withstand heat treatments and multiple industrial scale food 

processes, allowing them be formulated into whipped toppings without extra steps needed to 

be taken to preserve stability. It also shows that once in a formulated product, they will be 

stable enough to withstand the physiological changes associated with the formulation, e.g. 

rheology; and even enhance stability dependent upon the stability of the original product that 

the air cells are formulated into e.g. air cells enhance the stability of the emulsion in whipped 

toppings.  
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5.4.2.2 Qualitative Analysis  

  

 

  

Figure 5-21. A series of images showing the air cells in the AFE samples produced during the NoTUCoM v2. Top 

Left= After 1 hour Top Right= After 2 hours, Bottom Left= After 3 hours, Bottom Right= After 4 hours. Taken with 

a Leica Qwin black and white imaging camera.  

The images in Figure 5-21, show the AFE samples. The images here reinforce the fact that 

the consistency and concentration of air cells in the sample, does not change after the first 

pass. What the images do show is that there is a large concentration of air cells, sufficient 

enough to block the binding sites for the unreacted protein, therefore causing the volume of 

air cells to plateau after the first pass. What the images do show is that the structure of the 

air cells was undeterred after passing through the reaction vessel four times. The structures 

appear to be unchanged and do not show any sign of deformation or destabilisation of the 

outer shell. This physically shows their robustness and increased stability compared to their 

predecessors, which gives further evidence towards their use in formulations where their 

stability will enhance the end product. The images also show no evidence of flocculation, 

which is caused by the breakdown of long range repulsion forces, which in turn causes a net 
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attraction between particles. It was thought that there would be enough energy to destabilise 

the intermolecular interactions between particles to cause this aggregation. This however, 

does not appear to be the case, in part due to their durability and individual stability, but part 

because they are still solubilised in water. As water is a stable polar molecule, unaffected by 

the acoustic cavitations, it still causes interactions via hydrogen bonding, preventing the long 

range repulsion forces from breaking down, preventing flocculation. If the water were to be 

removed under these reaction conditions, then a water flux effect would occur and lateral 

capillary forces could cause aggregation between air cells.  

5.4.3 Conclusion of NoTUM’s  

The NoTUM’s have provided a different outlook on the production of AFE compared to the 

other methods previously undertaken. Instead of a focus on AFE yield via maximising the 

yield and minimising waste, they have shown that a depleted solution can still produce AFE 

in the form of the NoTUCeM, as well as showing that a fully continuous process can be 

performed in the NoTUCoM. The NoTUCoM also showed that the air cells are very durable, 

stable and can withstand multiple exposures to ultrasonic radiation energy and heat energy, 

without degradation or destabilisation of either the protein coat or the air filled core. The 

NoTUCoM has shown for the first time that a completely continuous process is possible, and 

could now act as a predecessor for more adapted and optimised methods, and could 

eventually be used on the larger scale due to having a considerably reduced time frame 

compared to the STUM. This could make the method more attractive from an industry point 

of view due to timescales and cost being major parameters when determining method 

feasibility, both of which are reduced by this method.  
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5.5 Energy output of NoTUM against STUM  

  

Figure 5-21. The Energy usage of water, EWP and AFE in kWh with respect to the amplitude.  

From an industrial point of view, energy consumption is a major element compared 

laboratory scale research. The data in Figure 5-21, was plotted using the data from Tables 

3-4 and 3-5 (Appendix) but re-plotted in kWh, the standard unit of energy measured by major 

energy companies [72]. According to the Energy Saving Trust, the average cost per 1 kWh is 

14.05 pence [73]. If a STUM experiment on the bench scale involving 4 X 1 hr is performed at 

100% amplitude. Then the total kWh would be 0.344 kWh compared to a NoTUM (under 

same time frame and amplitude) of 0.384 kWh. This equates to an increase of 11%, which is 

not a massive difference in terms of value for a single experiment of the laboratory scale. 

However, on an industrial scale where there is continuous running of larger equipment with 

much larger volumes, it would make a much larger difference to the total energy usage and 

therefore cost. It would have to be evaluated as to whether the reduced timeframe would 

compensate for the extra cost in energy, by saving of energy in other areas of the process. 

  



99 | P a g e  

  

5.6. Critchley-Green Recycling Method Conclusions  

The Critchley-Green Recycling Methods provided methods based on both batch and 

continuous recycle processes as opposed to a single pass (Chapter 4). The methods have 

given valuable insights into the possibilities of recycling AFE solutions to maximise the 

output and minimise the waste. The water bath method was a good starting point for method 

development and showed a good usage of protein, but would be unusable in formulations 

due to the large amount of protein aggregated produced by excessive heating. A quick and 

effective way to heat the solution, with minimal exposure time, was found by using a heat 

exchanger. The heat exchanger methods showed a high protein usage which corresponded 

to an equally high output of AFE, with negligible protein aggregation. All methods produced 

over 90 % AFE yield with the highest output being 98.7 %. In terms of maximising yield and 

reducing the waste, these methods have proved to be the most effective. The Non Top-Up 

Methods did not produce as high of a yield but gave insights into other areas where yield 

was counteracted by efficiency in timeframes. The NoTUCeM was an intermittent method to 

work out the parameters for the continuous method. However, it did show that a depleted 

solution can still produce a good output, and was key to the success of the continuous 

method. The NoTUCoM was the lowest AFE producer. However, it provided a novel process 

for AFE production with respect to it being the first production method to be completely 

continuous. The method also showed that the air cells are very robust and can withstand 

multiple exposures to both heat and ultrasonic energy, without degradation or particle 

breakdown. This is useful from an industrial point of view as it has shown that AFE would be 

able to withstand formulation and heat treatment processes’, making it useful in food 

applications, of which it has been engineered for.  

The methods as a whole effectively addressed the challenges associated with the small 

scale, and more. They have also given a set of wide-ranging experiments that can be 

progressed and optimised for testing on larger scale systems.  
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CHAPTER 6- CROSS-FLOW FILTRATION (CFF) OF 

AFEs  

6.1. Introduction  

This method was a new concept to the production of AFE and aimed to not only provide an 

efficient method of filtration; but also to concentrate up the AFE solution, removing both 

water and soluble proteins and leaving just the air cells, which are ready to use in 

formulations. It was used as a NoTUM in the sense of that there would be no re-

concentration by extra EWP solution. Instead, the solution would concentrate itself, releasing 

waste solution (that could undergo a recycling process), allowing the AFE to be extracted 

easily. Two methods were investigated. This include a two stage process, where upon a 

solution of AFE was made up after one sonication pass. It was then separately passed 

through the CFF module to release the EWP supernatant and collect the AFE, both for 

analysis. The second method was a one stage process and essentially combined both 

processes into one continuous method. There were two pumps set up bridged by an 

intermediate collection vessel, in which both fresh AFE produced from the sonicator and 

concentrated AFE were deposited into (see Figure 3-6). As this is a novel way of extracting 

and concentrating AFEs, these methods were tried to see if a) it was possible to extract in 

this manner and b) how effective it is. The one stage process could be a very useful concept 

for larger scale and industrial processes as it would both: minimise the time scale (reducing 

cost) and provide a concentrated form of AFE which is ready to use in formulations; 

minimising both the timescale and the need for extra complicated steps before formulation. 

The cross-flow filtration module used in shown in Figure 6-1.  
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Figure 6-1. An image of the cross-flow filtration module used during the experiments.  

  

6.2. Two Stage Process  

Table 6-1. Protein usage during the CFF two stage method and the resulting concentrations of both the 

concentrated AFE solution and the EWP supernatant solution.  

                             Protein used (%)      Concentration (%w/v) 

EWP supernatant  16.5  3.9  

AFE after CFF  14.0  14.0  

  

Table 6-1 shows the difference between the two solutions produced in the CFF experiment. 

There is not a high amount of protein usage, however at this stage it is not an issue as the 

premise of the experiments was to see if it was possible to use the CFF module to 

concentrate the AFE solution effectively, ready for formulation, and to not obtain the highest 

yield as this could be optimised by the research group if the process worked. The process 

worked with respect to concentrating the AFE solution up to 14 % from only using  

16.5 % protein usage. This shows that the AFE can be concentrated within itself and leaves 

plenty of scope for improving upon the yields. The solution has been roughly concentrated up 
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by three times from the original starting concentration and nearly four times on the resulting 

EWP solution concentration. In terms of AFE isolation and extraction, it is a novel method 

which will significantly reduce time and effort by producing AFE samples ready for formulation 

engineering. This is true for both small and larger industrial scales where timescales and the 

ability to not over complicate processes are key factors. The timescale for this was quicker 

than splitting up the process (including filtration and extraction). However, a small pump was 

used (100 mlhr-1) so the CFF step still took a long time to reduce the solution to concentrate. 

In other experiments a larger pump would be key to reducing timescales even further. 

A previous experiment of this kind was performed by Green et al (unpublished data) where 

upon the solution was concentrated to roughly six times the EWP solution.   

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 6-2. Particle size analysis of the two stage CFF experiment at varying stages. A= Before centrifuging and 

CFF, B= After centrifuge but before CFF, C= After CFF, D= Comparison between the various stages.  
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Figure 6-2 shows the particle size analysis for the one stage process and the varying stages. 

The analysis shows what is expected. After the CFF process has been performed, there is a 

reduction in particle size and a skew towards the left hand side of the graph. This is due to 

the larger aggregates being removed during the decanting process in the centrifuge. Also 

some of the larger air cells were removed from the sample as they got stuck in the tubes of 

the CFF module. This explains why the volume on the graph is lower after the CFF process, 

compared to the value from before the CFF but after the centrifuging process. This also 

means that the value of 14 % concentration should actually be higher as there were plenty of 

air cells still in the module which were too large to be removed. This may have caused a 

discrepancy in the values obtained, meaning the process might be more efficient than it 

looked at first glance. This is an issue that will have to be addressed when the process is 

optimised in the future, and with it should produce a very efficient method of producing 

concentrated AFE. This factor will also be the reason as to why not only the total volume on 

the curve is down, but the peak above 1 micron is less than the other distributions. On the 

other hand, even though there is a loss in volume, it does provide advantages with respect 

to increasing the monodispersity if the sample. Small air cells are required for formulation 

into whipped toppings and the more monodisperse a sample is that is being formulated, the 

less the adverse effects will be with regards to localised larger particles interacting differently 

in the formulation. So the loss of air cells has both its advantages and disadvantages 

depending on which way it is being looked at- whether it is a pure process and optimisation 

point of view, or whether it is being looked at from a formulation point of view for future 

applications. 
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Figure 6-3. Microscope images taken with a Leica QWin imaging camera of the various stages of the 2 stage CFF 

experiment. Left Image= Before centrifuging and CFF, Middle Image= After centrifuge but before CFF, Right 

Image= After CFF.  

Figure 6-3 physically shows how the CFF makes the solution change over the various 

processes and how it looks when concentrated. The image on the left shows the sample 

initially produced from the sonication stage. This contains a mix of small and large air cells. 

There is no apparent protein aggregation, but in case there is any that has not been noticed, 

the sample was centrifuged and as shown in the middle image, where the larger aggregates 

and air cells particles have been removed to leave the small air cells to concentrate up. The 

concentrated solution is shown in the right hand image. Compared to the first two images, 

what can be shown is that the samples contain a significantly increased amount of air cells 

per same area, and the air cells are all small and monodisperse compared to the other 

samples. This monodispersity is a combination of both the decanting process and the larger 

air cells getting trapped within the CFF module. It is apparent that from both a physical and 

numerical point of view that the two stage method worked and produced monodisperse 

concentrated AFE, which has opened up a novel AFE production process, compared to what 

has been attempted previously.  

6.3. One Stage Process    

The aim of the one stage process was to take the two stages and amalgamate them into one 

working continuous method. To achieve this, the outlet pipe from the sonicator was directly 

fed into an ‘intermediate’ collection vessel. From this collection vessel, a secondary pump 

was used to pump the solution into the CFF module. However, this time a larger pump was 

used compared to the one used in the previous (two stage) experiment, pumping up to 600 
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mlhr-1. This faster flow rate negated the need for a vacuum as a sufficient back pressure was 

provided through the module to force a continuous flow of EWP solution into the EWP 

collection vessel. After passing through the CFF module, the concentrated solution was fed 

back into the intermediate collection vessel with new AFE from the sonicator and 

recirculated until concentrated. The EWP solution was siphoned off into a separate collection 

vessel in the same way as the 2 stage method. A schematic of the setup is shown in Figure 

3-6. Images of the actual setup in the laboratory are shown in Figure 6-4.  

  

Figure 6-4 Images of the cross flow filtration one stage process. Top Image= Before the experiment started, 

Bottom Image= During the experiment.  
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Table 6-2. Protein usage during the CFF one stage method and the resulting concentrations of both the 

concentrated AFE solution and the EWP supernatant solution.  

Protein Used (%)  Concentration (%w/v)  

AFE 1                            6.54            6.54  

AFE 2                            6.46            6.46  

EWP 1                           59.6            1.16  

EWP2                            66.2            1.07  

  

The data in Table 6-2 shows a high protein usage, but the concentration is low compared to 

that found in the two stage process. The reason behind this is due to systematic problems 

encountered during the course of the experiment. Although the larger pump provided a much 

quicker time for the solution to pass through the module, it caused the larger particles to get 

trapped in the module much quicker. This blockage produced a build-up in pressure which 

caused the outlet pipe to detach from the module, causing a large amount of the AFE 

solution to be lost. After this problem, approximately 10 % of the original solution was left 

causing a huge error in the numerical values compared to the two stage method. Because 

this occurred, two samples were taken for dry weight analysis to check for discrepancies. It 

was found that the protein usage was roughly three times that of the two stage process. This 

indicates that the potential concentration using this correlation could be roughly 42 % (three 

times the concentration in the stage process). Another way of working out the potential could 

be by taking the concentration found at 6 % and multiplying by ten (as there was roughly 10 

% of solution left after the AFE leakage) meaning that there could be a potential 

concentration of 40-60 % if experimented without any problems. The solution looked more 

concentrated in the bulk than the AFE produced in the two stage process, so there is a 

greater likelihood that when performed without problems, it will produce a highly 

concentrated sample, more than was produced in the two stage process. But as with the two 

stage process, it shows that the CFF process worked and this time with a continuous 

process from the starting solution through to a concentrated AFE solution, this time in a 

much reduced time frame.  
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Figure 6-5. Particle size analysis of the 1 stage CFF experiment at varying stages. A= Before CFF (taken before it 

had time to pass through the module) B= After being concentrated through the CFF module, C= Comparison of 

the two samples.  

The Mastersizer data in Figure 6-5 shows the particle size for the samples produced just 

after the sonication step (before it travelled through the CFF module), and after the solution 

had passed through the CFF module. Because there is no decanting step, unlike in the 2 two 

stage method, the larger particles and any protein aggregates will get trapped within the 

tubes of the CFF module. This is what can be seen on the Mastersizer graphs as the volume 

drops. There is no apparent protein aggregation in the sample, even without the decanting 

step, just small and larger air cells. 

 

A 
  

C 
  

B 
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Figure 6-6. Microscope images taken with a Leica QWin imaging camera of the one stage CFF experiment. Top  

Left and Top Right Images= Before AFE had passed through the CFF module, Bottom Left and Bottom Right 

Images= After AFE had been concentrated through the CFF module.  

The images in Figure 6-6 show a large increase in concentration even though the numerical 

values are not high. Comparing the concentration of these to the two stage method shows 

that if most of the solution was not lost during the experiment, then this solution would be of 

a much higher concentration than was recorded. The concentration of small air cells in the 

same area is much higher than the sample initially produced from the sonication alone and 

much higher from the two stage samples. There is a presence of larger air cells which would 

explain a larger peak in the Mastersizer spectrum. But barring a few larger air cells, the 

emulsions are once again monodisperse, showing that the larger particles got trapped within 

the modules. What the data does show is that both a two stage and a one stage process 

work efficiently and concentrate the solution highly compared to a normal pass. This is a big 

step toward AFE scale up as it provides a much quicker time frame in terms of AFE 

production and extraction, for formulation approaches. The process and ideas could be 

scaled up to a larger scale and provide a more efficient method. The cross-flow module 
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would need to be of a much larger scale but the premise would be kept the same and would 

be likely to be efficient on a larger scale due to the increased flow rate and capacity of the 

pumps on the pilot scale. This would provide more backpressure and a quicker 

concentration of the air cells through the module.  

6.4. CFF Conclusion  

The aim of these experiments was to provide a novel method of AFE concentration without 

adding protein, and not to focus on the protein usage. This method worked and was able to 

produce concentrated solutions of at least three times previously found. The CFF worked for 

both a one stage and two stage process, showing reliability and consistency in the method 

for future work. It was not without its own problems, where over-pressuring at high flow rates 

and larger timescales at slower flow rates, proved to be some of the more limiting factors. 

Some changes to the setup were changed to enhance efficiency. If these parameters can be 

optimised easily, it could produce a new and efficient way for the production of formulation-

ready AFE. This could be a very useful method for larger scale applications as it would 

significantly reduce the timeframes compared to current methods, and could fit in with the 

timeframes associated with industry; and with reduced timeframe comes reduced energy 

usage. The initial studies into this method are promising and could pioneer a new way of 

AFE production in the future, especially once the process is optimised and a recycle can be 

performed, for both the bench and larger scale setups.   
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CHAPTER 7- PILOT SCALE WORK (CAMPDEN BRI)  

7.1. Introduction  

The aim of the work at Campden BRI was to take the production of AFE from the bench 

scale, to the pilot scale, and determine the scalability of the product for future 

developments/projects. The work at Campden BRI was the first major attempt to produce 

AFE on a larger scale, so for this reason, the main aim was to collect products using 

different experimental parameters rather than using recycling methods. The work was aimed 

to be a benchmark to produce AFE and upon successful completion, to then (at a later date) 

incorporate the recycling methods on the pilot scale to maximise the output with minimal 

waste.  

7.2. Methods  

7.2.1. Equipment and Materials  

7.2.1.1 Materials  

The materials used during the Design of Experiments (D.O.E) and other experiments at 

Campden BRI were Egg White Protein, 2 M Hydrochloric acid and distilled water. D1 was 

used as the disinfectant of choice. D10 was used to clean small equipment and the reaction 

system was cleaned with Sodium Hydroxide and Peroxyacetic Acid. The makes are 

unknown as they were purchased in-house by Campden BRI. 

7.2.1.2 Equipment  

The protein solution was mixed in a pilot scale food mixer (Winkworth 200 L). A HTST/UHT 

pasteuriser [FT74XTS, Armfield] contained a pump and a steam based heat exchanger, all 

contained in one machine. The sonication vessel consisted of a jacketed flow through cell 

(heated up by a separate heat exchanger), a generator, transducer and a sonication probe 

(IUP1000, Hielscher, 1 kW). Air flow was regulated by a Platon rotameter and the centrifuge 
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used for absorbance analysis was an Avanti J-E (Beckmann Coulter, 250 ml). Other 

equipment included Toledo pH probes, various Mettler weighing balances, piping and a 

hand-held temperature probe. 

7.2.2. Method for AFE Production  

The method for AFE production is the same basic methodology as outlined in section 3.3.1. 

However, there were some differences between the bench scale and the pilot scale 

experiment. In some of the experiments there was an addition of ingredients (sugar and/or 

salt), these were added during the mixing step (Winkworth 200L). Also there was no 

centrifuge step before the solution was passed through the sonicator (IUP1000, Hielscher, 1 

kW, 26 mm tip), as there was no centrifuge large enough to accommodate the pilot scale 

volumes.  

The method is show more clearly in the flow chart in Figure 7-1.  

A centrifuge (4 °C, 30 minutes, 10000 rpm, brake 6, Avanti J-E, Beckmann Coulter, 250 ml) 

was used before measuring the absorbance (450 nm) to achieve a yield, as dry weight 

analysis would not be accurate to the large quantities of solution. For absorbance analysis, 

the solution was centrifuged and the AFE particulates were discarded leaving the 

supernatant solution. The supernatant solution (700 μL) was diluted into distilled water (10 

ml). The solution was then poured in to a translucent cuvette and analysed in the  
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Figure 6-2 . Flow Chart produced by Jermann et al for the experimental procedure at Campden BRI. Left hand 

column= method for making EWP solution Right hand column= Method for Ultrasonic processing [80] 

spectrophotometer at 40 nm. A blank solution consisting of 5 % EWP solution was also 

centrifuged under the same conditions and diluted with water in the same ratio. The blank 

was scanned first followed by the other sample.  

7.2.3. Design of Experiments  

The design of experiments was designed to utilise various parameters that can affect the 

production of the air filled emulsion. The parameter changes and experimental order were 

determined by the statistician a Campden BRI, where the three parameters tested were 

 
Weigh water and egg 

 

white protein   

    

Switch air supply on  

  

  

 

 

 

        

Add water and egg 

white protein into  

vessel   

 Water  pumped 

through the system   

at lowest required 

flow rate   

        

Stir for 2 hours   
  

(some hand stirring 

to dissolve bits)    

Heat exchangers 

switched on and left 

to equilibrate to 

temperature   

        

Add HCL (2M) to 

make pH up to 3.8   

Once temperature is 
stable, replace   

water with the egg 

white solution   

        

(Optional) Add 

previously weighed 

sugar and salt   

Switch ultrasound on 

   

Keep refrigerated 

overnight   

   

   

Collect samples   
    



113 | P a g e  

  

amplitude (5 intervals- 20, 26, 60, 94, 100 %), residence time (changes in flow rates) and 

addition of ingredients (5 intervals of sugar-0, 1.125, 7.5, 13.87, 15 % and salt- 0, 0.0037,  

0.025, 0.04625, 0.05 %), which were determined by the statistician at Campden BRI. The 

design of experiments is show in Table 7-1.  

Table 7-1 Design of experiments undertook at Campden BRI.  

Run  
Day  am/pm  Sugar (g) Salt (g) Temp (°C) 

Amplitude 
(%) 

Residence Time 
(min) 

        

1 1 am  0 0 55 20 1 

2 1 am  0 0 45 100 1 

3 1 am  0 0 45 20 1 

4 1 am  0 0 45 20 6.5 

5 1 am  0 0 55 100 1 

6 1 am  0 0 55 20 6.5 

7 1 am  0 0 45 100 6.5 

8 1 am  0 0 55 100 6.5 

9 1 pm  15 0.05 45 100 1 

10 1 pm  15 0.05 55 20 6.5 

11 1 pm  15 0.05 55 20 1 

12 1 pm  15 0.05 55 100 1 

13 1 pm  15 0.05 45 100 6.5 

14 1 pm  15 0.05 45 20 6.5 

15 1 pm  15 0.05 55 100 6.5 

16 1 pm  15 0.05 45 20 1 

17 2 am  1.125 0.025 50 60 3.75 

18 2 am  1.125 0.025 50 60 3.75 

19 2 am  1.125 0.025 50 60 3.75 

20 2 am  7.5 0.025 45.75 60 3.75 

21 2 pm  7.5 0.025 50 60 3.75 

22 2 pm  7.5 0.025 54.25 60 3.75 

23 2 pm  7.5 0.025 50 60 3.75 

24 2 pm  7.5 0.025 50 26 3.75 

25 2 pm  7.5 0.025 50 94 3.75 

26 2 pm  7.5 0.025 50 60 6.0875 

27 2 pm  7.5 0.025 50 60 3.75 

28 2 pm  7.5 0.025 50 60 1.4125 

29 3 am  7.5 0.025 50 26 3.75 

30 3 am  7.5 0.025 50 94 3.75 

31 3 am  7.5 0.025 45.75 60 3.75 

32 3 am  7.5 0.025 50 60 3.75 

33 3 am  7.5 0.025 50 60 3.75 

34 3 am  7.5 0.025 50 60 1.4125 
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35 3 am  7.5 0.025 50 60 6.0875 

36 3 am  7.5 0.025 50 60 3.75 

37 3 pm  7.5 0.025 54.25 60 3.75 

38 3 pm  13.87 0.025 50 60 3.75 

39 3 pm  13.87 0.025 50 60 3.75 

        

40 4 am  0 0.05 55 100 6.5 

41 4 am  0 0.05 45 100 6.5 

42 4 am  0 0.05 55 20 6.5 

43 4 am  0 0.05 55 100 1 

44 4 am  0 0.05 45 100 1 

45 4 am  0 0.05 45 20 6.5 

46 4 am  0 0.05 55 20 1 

47 4 am  0 0.05 45 20 1 

48 4 pm  15 0 55 100 6.5 

49 4 pm  15 0 55 20 6.5 

50 4 pm  15 0 45 100 6.5 

51 4 pm  15 0 45 100 1 

52 4 pm  15 0 45 20 1 

53 4 pm  15 0 45 20 6.5 

54 4 pm  15 0 55 20 1 

55 4 pm  15 0 55 100 1 

56 5 am  7.5 0.0037 50 60 3.75 

57 5 am  7.5 0.0037 50 60 3.75 

58 5 am  7.5 0.0037 50 60 3.75 

59 5 am  7.5 0.025 45.75 60 3.75 

60 5 pm  7.5 0.025 50 60 3.75 

61 5 pm  7.5 0.025 54.25 60 3.75 

62 5 pm  7.5 0.025 50 60 3.75 

63 5 pm  7.5 0.025 50 26 3.75 

64 5 pm  7.5 0.025 50 94 3.75 

65 5 pm  7.5 0.025 50 60 3.75 

66 5 pm  7.5 0.025 50 60 3.75 

67 5 pm  7.5 0.025 50 60 3.75 

68 6 am  7.5 0.025 45.75 60 3.75 

69 6 am  7.5 0.025 50 94 3.75 

70 6 am  7.5 0.025 50 60 3.75 

71 6 am  7.5 0.025 54.25 60 3.75 

72 6 am  7.5 0.025 50 60 6.0875 

73 6 am  7.5 0.025 50 60 3.75 

74 6 am  7.5 0.025 50 60 1.4125 

75 6 am  7.5 0.025 50 26 3.75 

76 6 pm  7.5 0.025 50 60 3.75 

77 6 pm  7.5 0.04625 50 60 3.75 
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As well as the actual experimental parameters, the composition of the starting EWP 

solutions was calculated by Jermann et al prior to performing the D.O.E. The figures for the 

starting material compositions are show in Table 7-2.  

Table 7-2. A series of tables to the show the ingredient ratio of all the stating protein solutions.  

Day 1 (am)    Day 1 (pm)    

Ingredients 
Percentage 

(%)  
Actual weight 

(kg)  
Ingredients  Percentage (%)  

Actual weight 
(Kg)  

Water  93.3 54.805 Water  78.25 45.77625 

EWP  5 2.925 EWP  5 2.925 

HCl(2M)  1.7 1.73 HCl(2M)  1.7 1.2 

Sugar  0 0 Sugar  15 8.775 

Salt  0 0 Salt  0.05 0.02925 

Total  100% 58.5 Total  100% 58.5 

Day 2 (am)    
Day 2  

  
(pm)/3(am)  

Ingredients 
Percentage 

(%)  
Actual weight 

(kg)  
Ingredients  Percentage (%)  

Actual weight 
(kg)  

Water  92.15 35.9385 Water  85.775 206.288875 

EWP  5 1.95 EWP  5 12.025 

HCl(2M)  1.7 0.663 HCl(2M)  1.7 3.74 

Sugar  1.125 0.43875 Sugar  7.5 18.0375 

Salt  0.025 0.00975 Salt  0.025 0.060125 

Total  
100% 39 Total  100% 240.5 

Day 3 (pm)  

Ingredients 
Percentage 

(%)  
Actual weight 

(kg)  
    

Water  79.405 30.96795     

EWP  5 1.95     

HCl(2M)  1.7 0.6635     

Sugar  13.87 5.4093     

Salt  0.025 0.00975     

Total  100% 39     

 

In Table 7-1, it shows that the D.O.E was scheduled for 6 days’ work. However, in Table 7-2 

it shows only three days’ worth of solution. This is due to the problems associated in 7.3.1.  
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7.3. Problems and Solutions  

7.3.1 Problems  

There were many problems associated with the visit to perform the D.O.E. at Campden BRI.  

The week was scheduled to perform the first four days’ worth of experiments, however, only 

three days’ worth of experiments actually occurred, with the majority of these either been 

disbanded or the ‘products’ discarded. For the sample which did not fall into this category, 

the results by eye we’re not promising. Rather than looking like a white/milky solution, the 

product came out looking exactly like the starting product and it looked like nothing had 

happened at all. This occurred throughout all the experiments for that week. As Previously 

mentioned, some were discarded. This is because, the solution came out looking black and 

looked like (and smelled like) it had burnt. The runs which were scheduled for that session 

after the solution had coming out looking black, were the ones which were disbanded. The 

process may be scaled up effectively, however, on this visit it appeared to not work due to 

the systematic/experimental setup. Areas where problems occurred are detailed below: 

Firstly, one of the main problems was due to browning and burning of the solution. The most 

plausible reason for this occurrence was due to the choice of heat exchanger on the pilot 

scale setup. Even though the net heat for the heat exchanger was set between 45-55 °C, the 

heat exchanger was steam jacketed, meaning that steam at 100 °C was used to heat the 

piping. This could have caused localised heating in parts of the piping which would have 

soared the temperature above 45-55 °C. Because the solution was mainly composed of 

protein, this extra temperature would easily denature proteins, rendering them unusable and 

could have been a major contributing factor as to why the experiments never produced any 

AFE. Also, because sugar was present within most of the solutions, the localised higher 

temperatures was hot enough to caramelise the sugar, which would explain the burning 

colour and smell produced during the experiments.  
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The flow-through cell in the lab held 50 ml and the one at Campden BRI held 500 ml. With 

the tip in the lab being 13 mm, the tip at Campden BRI was not 10x the size of the one in the 

lab. This threw off the surface area of the tip to volume ratio of the flow-through cell quite 

dramatically. This caused the dead zone for cavitations to be significantly increased, which 

caused fewer interactions between the cavitations and protein, therefore resulting in a lower 

production of AFE.  

 

Thirdly, another major problem could have been with the utilisation of the ultrasonic probe. 

The sonication probe in the lab penetrates the flow through cell quite deep, so that solution 

was in the vicinity of tip from the moment it entered the flow-through cell until it left. However, 

the sonicator at Campden BRI was quite short, so this did not happen. This meant that a lot 

of solution did not come into near contact with the sonication probe because of the size of 

the flow-through cell. This also brings in another problem with solution possibly sitting and 

cooking in the flow through cell without reacting (this may have formed the black solutions).  

  

The fourth major issue lied with the air inlet. The air inlet in the lab went directly into the flow-

through cell which meant that when the proteins are unfolding, the air was there to quickly 

react with the protein forming AFE. However, with the flow through design at Campden BRI, 

this was not possible, so the air is introduced into the tube before the solution reached the 

flow-through cell. If the solution inside the flow-through cell was just ‘sitting’ there then 

because the air is less dense, it will have travelled in and out of the flow though cell without 

reacting. This is also possible even if it is not sitting there because of the density difference; 

and the affinity to travel quicker through the pipes; and because the flow though cell was 

much larger, it could easily escape without reacting, which may be why it looked like protein 

solution was coming out as the ‘product’. Also, the air inlet to the pipe was not secure and 

was fastened on by tape, it was unclear as to whether any air was leaking, but if it was then 

that would have a bearing on the flow rate and could have an impact on the product 

formation. 
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The problems listed above are what are believed to be the main concerns and are the most 

likely to have the biggest impact on whether the process will work or not. However, there 

could be other contributing factors as to why the process did not work like it should do:  The 

first of these is in regard to the mixing efficiency of the protein solution. The mixing stage at 

Campden BRI was by far less effective than in the lab. The main difference apart from the 

volume of solution to be mixed, is that in the lab the stirrer bar mixing was quick and from the 

centre out and forms a ‘whirlpool’. Whereas the larger mixer was much slower, so the protein 

did not dissolve as easily, as it was subjected to bulk flow mixing. Another potential 

problematic area was with regard to the centrifuge step (or lack of). Because on the pilot 

scale, there was no centrifuge capable of holding the required amount of solution, then the 

process was automatically going to be less efficient compared to the laboratory. Even when 

best efforts were tried to get the sediment from the bottom into the system (some protein 

settled out naturally), the solution looked cloudy and opaque compared to the centrifuged 

solutions in the lab, which are translucent in nature. Another potential issue is with regard to 

ingredient composition during the D.O.E., particularly with respect to the HCl. In the 

laboratory, the amount of HCl is not taken into account with regard to the w/v% as it was not 

a large amount. The solution was made up to 5 % and then the acid is added. However, at 

Campden BRI, the statistician added in the HCl as part of the overall % composition, 

meaning that there could be less than 5% EWP actually present. This however, should still 

produce AFE (and not a protein solution), so it should not have a large bearing on the 

issues, but could be part of a series of issues that need addressing.  

7.3.2. Solutions  

Following on from the problems associated with the D.O.E, another visit was scheduled to 

find the main root of the problem highlighted in section 7.3.1. This time the aim was to test 

different parameters that could be affecting the production to find out how to either a) 

optimise the process and/or b) fix the major problems.  



119 | P a g e  

  

The air flow was tested to see if this had an impact on the process, as the change in volume 

ratio of the flow could have meant a different residence time/ different ratio of air and liquid 

flow might be needed. The amplitude, temperature and liquid flow rate were kept constant so 

that the only variable was the air flow. The liquid flow was kept constant so that on each test, 

the ratio varied in a controlled environment. The test is shown in Table 7-3.  

Table 7-3. The parameters tested to determine if air flow played a major factor in the problems of the Pilot Scale.  

Product flow rate   9.80 L/hour (0.16 L/min)   

Residence time   3.83 mins   

Solution temperature   49.1 to 50.7 ° C   

Sugar and salt content    0 %   

Amplitude   60 %   

Air flow rates   0.1 L/min  

0.2 L/min   

0.3 L/min   

0.45 L/min   

0.75 L/min   

  

The aim to solve all of the associated problems was to change the position of the output pipe 

so that it was in line with the sonication tip, as with the lab scale. This aimed to remove the 

excess volume (of the flow through cell), creating a better volume ratio as the solution did 

not flow above the outlet pipe. It also meant that the solution did not have to travel so far to 

exit the vessel, and it would mean that the penetration depth of the probe was not as 

important, as the solution would reach the probe before the outlet pipe.               

A statistical analysis was also performed by the statistician at Campden BRI to determine if a 

different combination of all the variables could produce a specific and required output. Aside 

from the variables, the data used was that of the energy usage throughout the experiment and 

the measured absorbance of the supernatant solutions. However, the absorbance measured 

an energy used are independent of each other and therefore makes it hard to give a direct 

comparison between the two.  

In addition to what has already been performed, two major solutions could come to fruition by 

changing the shape of the ultrasonic probe. A longer probe would not only allow greater 



120 | P a g e  

  

penetration into the solution, but also magnify the intensity of the ultrasonic waves, causing a 

larger amount of cavitations in the sample for the air and protein to bind to. In addition to the 

probe, the flow through cell needs to be of a smaller volume. The distance between the probe 

and cell wall is key to producing cavitation-sample interactions. A smaller flow-through cell 

would decrease the number of dead zones in the sample and therefore promote cavitation-

sample interactions, resulting in a greater yield of AFE.  



121 | P a g e  

  

7.4. Results  

7.4.1 Optimisation Analysis  

7.4.1.1 Air Flow  

  

Figure 7-4. A series of MasterSizer graphs to show the particle distribution of the results from varying the air flow 

at Campden BRI during optimisation experiments. A= A standard experiment where the other variables are not 

controlled. Air flow rate varied experiments: - B= 0.1 Lmin-1, C= 0.2 Lmin-1, D= 0.3 Lmin-1, E= 0.45 Lmin-1, F= 0.75 

Lmin-1.  
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Images A-F in Figure 7-4 show the particle size analysis for the production of AFE at 

Campden BRI under varying flow rates. The air flow rate was changed under controlled 

conditions (only changing one variable), to test the air flow had any effects on the system. 

From the images, it is clear that all of the flow rates that good monodisperse samples were 

produced, due to the large peaks around 0.1 microns. There is a small peak at 100 microns 

which is attributed to aggregates in the solution. This however. is less prominent in the 

higher air flow samples. The peak is small and is negligible in terms of volume. The size at 

100 microns is attributed to either a small protein aggregate of air cell aggregate, as it is too 

small to be a large protein aggregate, as they occur up and around the 1000 micron range. 

This is a minor issue as the small aggregates will be able to be centrifuged at a low g-force, 

whilst still retaining the small air cells in solution. So in conclusion, it appears that the flow 

rate has a minor effect on the production under controlled conditions, as the amount of 

aggregates in solution decreased, however, it appears that there is negligible effect on the 

amount of air cells produced within the desired range of 0.1-1 micron range.  

7.4.1.2 Outlet Pipe  

  

Figure 7-5. Particle size analysis (MasterSizer) graph to show the particle size distribution when the output pipe 

was lowered to be in line with the sonicator.  

Looking at the particle size analysis in Figure 7-5, it would appear that changing the level of 

the outlet pipe had a counterproductive effect on the production of air cells and the reduction 

of aggregates. It was believed that the outlet pipe was a major issue, as the level was too 

high compared to the bench scale.  From the analysis, it appears that the amount of air cells 

decreased and the amount of protein aggregates increased compared to the samples in  

Figure 7-4. However, I believe more rigorous tests need to be performed on this parameter 

as only one sample was taken, not long after the outlet pipe had been changed over. 
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Because of other issues associated (mentioned in section 7.3.1.) there is a possibility that a 

large amount of protein solution could have been sat within the flow through jacket for an 

extended period of time. This would skew the results as the protein would have a higher 

tendency to form irreversible denaturation and aggregation as opposed to just unfolding, 

having been exposed to a long period of heating. This is believed to be the case because 

the samples were not long obtained after those shown in Figure 7-4, so the main cause of 

the difference must be due to the protein which has been stuck at the bottom of the flow 

through jacket, finally being able to remove itself from the flow through cell, hence it will have 

undergone more heating and therefore more susceptible to aggregation. It is believed that 

more work should be undertaken on this parameter in the future, because with the same 

setup around the sonication vessel, a greater reliability between the bench and the pilot 

scale could be produced.  

7.4.2. Statistical Analysis    

Deviations occurred within the statistical analysis due to the fluctuation of controlled 

variables that the statistics could not predict. The main cause being the fluctuation in 

temperature of the heat exchanger, due to being heated by steam. Because of this, the 

range was between 42.8 and 54.3 °C rather than between the intended 45-55°C range. 

These variations unbalanced the correlations and therefore led to the sequential sum of 

squares being used to calculate the p–values for each co-efficient.  

The variables which were measured and are changeable, are the absorbance and energy 

usage measurements. The variables ranged from -0.0155 to 0.3069 for absorbance and 

53.5 to 239.50 W for energy usage (The small negative values are attributable to 

measurement noise and had negligible influence on the statistical analysis). To both of these 

variables a full quadratic surface response model was fitted consisting of linear terms for 

each variable; a quadratic term for each variable and a 2-way interaction terms for each pair 

of variables.   
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Figure 7-6. A graph showing the Absorbance Vs Temperature with data obtained from the statistical model. 

Produced by Jermann et al [74].  

There is evidence (p<0.001) that the quadratic response model used may not be the best 

model and other models may present a better fit. This is due to the data deviating from the 

line of best fit with values (MS=0.000962) which are larger than the error that can be 

explained by repeatability (MS=0.00017). The deviation of the data and the model is 

attributed to the lack of fit (24 %). The response surface fits quite well (R-Sq=76 %) but the 

dataset is not large enough to explore alternative statistical models.  

From the statistical absorbance results obtained, it can be determined that the temperature 

has the biggest effect on the absorbance with 38 % sum of the sequential squares. The 

remaining 38 % (to make it up to 76 % plus 24 % lack of fit) were due to linear terms of the 

amplitude and the salt, the square terms and the interactions between terms. Looking at it 

from a statistical point of view, the evidence suggests that there is an effect with sugar, 

principally in the square term and with the interaction of temperature. The effect of residence 

time is determined by its interaction with the effect of temperature.  
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Figure 7-7. A graph showing the Amplitude Vs Energy with data obtained from the statistical model. Produced by 

Jermann et al [74].  

Unlike absorbance, the energy usage depends on less parameters, as it is a function 

process rather than recipe and structure. Therefore, the model was only fitted for 

temperature, amplitude and residence time but not for ingredients (salt and sugar). From the 

statistical analysis there is strong evidence that the effect of amplitude (p<0.001), 

temperature (p<0.001) and weaker evidence of residence time (p=0.014). The fit in the 

model summary is 98 %, most of which is accounted for by amplitude (97.5%). The effect of 

temperature and residence time share the extra 0.5 %, so they have a much smaller effect. 

A linear relationship to amplitude fits 97.5 % of the energy usage. This shows that the 

amplitude is directly correlated to the energy usage. This was proved in small scale tests in 

section 3.5.3., so reinforces this relationship. And it shows that ultrasonic probes, 

independent of size show a linear relationship to energy usage both statistically and 

experimentally, allowing for more controlled experiments to be undertaken.  

7.4.3. Performing a Recycle on the Pilot Scale  

A recycle was performed for the first time on the pilot scale at Campden BRI. Due to the lack 

of centrifuge and timescales associated with the industrial setup, the recycle method of 

choice was the Non Top-Up Continuous Method (NTUCoM) v2. This allowed a constant 
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cycle of reactants/products. As this was the first attempt, rather than a four-hour cycle 

consisting of a large reactant volume to flow thorough cell ratio, a smaller amount was used. 

The amount was enough so that all of the system was filled with either reactant or product, 

and then this volume was circulated for an hour. It was calculated that one pass through the 

whole system took 15 minutes, so this was equivalent to four passes, same as on the 

laboratory scale. Samples were taken at 10, 20, 40 and 60 minute intervals. This gave a 

rough equivalent to 0, 1, 2 and 3 recycles, respectively.  

  

Figure 7-8. Particle size analysis (MasterSizer) graph to show the particle size distribution when a continuous 

recycle was performed at Campden BRI. A= 0 recycles (10 minutes), B= 1 recycle (20 minutes), C= 2 recycles 

(40 minutes), D= 3 recycles (60 minutes).  

Images A-D in Figure 7-8 show the particle size analysis for the recycle. Aside from image B, 

which is believed to be an anomalous result, the particle size is very similar throughout the 

process, where there is a large peak in the desirable range around 0.1 microns and a small 

peak around the 100 micron range, where aggregates would be expected. The lack of 
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aggregates is a promising factor as it was expected to be higher because the solution is not 

centrifuged. Much care was taken to make sure that the protein sediment did not enter the 

system. However, allowing for human error, it would be expected that some would be 

deposited into the system, so it is a promising result that there is no evidence of this 

occurring and obscuring the particle size analysis as a general trend. However, B is an 

anomalous result and does not fit the pattern, like the rest of the images. It could be 

attributed to this, or because the sample taken for analysis is so small, it could have just had 

a large amount of protein/AFE aggregates in a localised amount of solution.  

The peak at 0.1 microns increases with time and recycles, showing that as the process 

progresses, the amount of AFE is increased and the amount of aggregates decreases. This 

shows that the recycle process was a success and provides a starting point for more 

experiments of its kind and better optimisation into the larger scale production.   

7.5. Conclusion  

Conclusions drawn-up from the scale up process work at Campden BRI would render the 

process as a success; but also a success that still needs a lot of work and optimisation. A 

recycle was performed and the ability to produce samples at varying parameters was also 

successful. However, these are successes in the fact that there was production for the first 

time on a larger scale rather than it being confined to just the bench setup. The samples 

produced were not as concentrated as those on the bench scale and did not produce the 

same quality of emulsion. The D.O.E. encountered problems, some of which have been 

resolved to date but the D.O.E was performed too early and more optimisation of the various 

parameters should have been utilised prior to the D.O.E. There is still a large amount of work 

to be undertaken in terms of optimising the process and bringing the production amount up 

to what can be produced on the small scale and beyond. But it has shown good early signs 

that this could be a viable option for industry once the parameters for a larger scale have 

been identified and optimised, as a lot of the parameters used on the smaller scale were not 

applicable to the larger scale.  
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Chapter 8- Conclusion and Future Work  

8.1. Conclusion  

The aims of the project were to maximise the output of AFE whilst minimising the waste from 

the parent EWP solution, and to take AFE production up to the pilot scale (or prepare 

sufficient parameters and methodologies to take the production to a larger scale). This was 

achieved in a number of ways.   

The Critchley-Green Recycle Methods showcased a variation of methods, each of which 

focused on different parameters of AFE production, giving a good understanding of the 

whole picture and not just the yield obtained. The water bath method was a good starting 

point for method development and showed a protein usage, but would be unusable in 

formulations due to the large amount of protein aggregation caused by excessive heating. 

The optimal way to heat the solution with minimum exposure time to excess heat energy 

was found by using a heat exchanger. The heat exchanger methods showed a high protein 

usage which corresponded to an equally high output of AFE, with negligible protein 

aggregation. All methods produced over 90 % AFE yield with the highest output being 98.7 

%. The ambient heat exchanger method was found to be the most efficient in terms of yield 

with all yields obtaining >95 % yield. However, the same process from a cold starting 

temperature produced less recycles, so is more efficient in terms of time scales compared to 

its ambient counterpart. In terms of maximising yield and reducing the waste, these methods 

on the whole have proved to be the most effective.   

The Non Top-Up Methods did not produce as high of a yield, but gave insights into other 

areas where yield was counteracted by efficiency in timeframes. The NoTUCeM was an 

intermittent method to work out the parameters for the continuous method; however, it did 

show that a depleted solution can still produce a good output and was key to the success of 

the continuous method. The NoTUCoM was the lowest AFE producer. However, it provided  
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a novel process for AFE production with respect to being the first production method to be 

completely continuous. The Method also showed that the air cells are very robust and can 

withstand multiple exposures to both heat and ultrasonic energy, without degradation or 

particle breakdown. This is useful from an industrial point of view as it has shown that AFE 

would able to withstand formulation and heat treatment processes’, making it useful in food 

applications, of which it has been engineered for. It was the ability of being able to produce a 

continuous method that allowed for the adaptation using the cross-flow filtration module and 

provided a much reduced time scale compared to top-up methods, showing feasibility for 

larger scale processes where timeframes are an important factor as well as output.  

The scale up work at Campden BRI was not designed to be as effective as the laboratory 

scale processes. The aim was to achieve AFE formation on a larger scale. With respect to 

this, the work was a success, even if it was in low amounts. It showed that the production is 

transferrable to the larger scale if the process is optimised. In addition to showing that the 

production is scalable, a number of issues with the scale up were effectively addressed. 

Some of these were resolved throughout the course of the project, but some will require 

substantially more time and maybe even a separate project within itself. If the issues can 

continue to be addressed effectively, then the optimisation of the process should increase 

and eventually start to produce the quantities of AFE comparable to the laboratory scale test, 

and improve upon this to take the production further.  

The final method attempted was the cross-flow filtration (CFF) methods. This method 

stemmed from the NoTUCoM where it was shown that a complete continuous process was 

feasible. Where the issue of air cell production after the first pass was the major limiting 

factor in the method, the aim of using the CFF module was to isolate the AFE particles and 

remove the unreacted EWP solution. It was unsure as to whether this would work for AFE, 

so the aim was not to produce a recycle, but to show that the method worked and that it 

could be feasible for a continuous recycle process, which could yield much higher results 

than that of the NoTUCoM. This was effectively done through two different methods- a two 
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stage process and a one stage process. The two stage process was a precursor to a fully 

continuous method to see if the CFF module worked within itself, with no other factors for 

AFE processing. The one stage process combined these two stages into a single continuous 

process, emulating a more complex version of the NoTUCoM. The process caused the AFE 

solution to concentrate itself and produce not only a higher volume of air cells per area, but 

also a monodisperse sample. These results showed that the method worked effectively and 

was able to produce concentrated AFE solutions of at least three times of that found 

previously, with the potential to achieve up to a 10x concentrated solution. The CFF worked 

for both a one stage and two stage process, showing reliability and consistency in the 

method for future work. It was not without its own issues, where over pressuring at high flow 

rates and longer timescales at slower flow rates proved problematic. Some changes to the 

setup were changed to enhance efficiency and it was found that introducing backpressure 

into the CFF module negated the need for a vacuum pump to remove the EWP supernatant 

from the solution bulk. If the parameters can be optimised, it has the potential to produce a 

new and efficient way for the production of formulation ready AFE, as the AFE would not 

need as many homogenisation steps due to the monodispersity and concentration of the 

emulsion. This could be a very useful method for larger scale applications as it would 

significantly reduce the timeframes compared to current methods and could fit in with the 

timeframes associated with industry. The initial studies into this method are very promising 

and could pioneer a new way of AFE production in the future, especially once where the 

process is optimised and recycles have been tested using this process. This is synonymous 

for both the bench and larger scale setups.  

Overall, the method effectively answered the questions asked of the project and went 

beyond the scope into novel processes never attempted before for AFE production. The aim 

was to take it to a larger scale in any form. This happened in the form of various methods but 

more work is needed on both the laboratory and pilot scale to take the process up to an 

industrial scale. But the foundations have been laid to take the research beyond the scope of 

this project and there are potentially many avenues to explore with regards to laboratory 
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scale work (detailed in section 8.2) as well as optimising the processes already in place to 

take the production to the industrial scale.  

8.2 Future Work  

In terms of future research, it is an open book. This is the first time recycling methods have 

been used for AFEs and has opened a wide variety of potential research. Specific research 

that could be undertaken in the future is looking partial recycles, where upon you take a 

certain percentage of product, and recycle, as opposed to the full batch of solution. This 

could lead to modelling of what is the ‘perfect recycle’ in terms of concentrations amount and 

whether a full batch needs to be recycled, or only a portion of it. Also, looking at the recycles 

as a function of different amplitudes is an area which could provide a lot of useful 

information. Amplitude and energy output has been tested for a single pass, but it would give 

data on whether recycling more times at a lower amplitude for longer is more effective than 

recycling at a higher amplitude for a shorter amount of time. It would also give a comparison 

for energy output which would be more useful in determining which to choose for industrial 

purposes where the cost of energy is taken into account. In addition to this, recycles could 

be performed with the addition of salt and sugar ingredients to see how much affect they 

have on the AFE production on the laboratory scale.   

The cross flow-filtration method was tried to determine if a single pass could work and 

produce results. Following on from the results obtained, a recycle could be performed in the 

same way as the one stage process using the same methodology, but instead of collecting 

the EWP supernatant, it could be transferred back into the starting vessel. It could also be 

adapted with the addition of a spin centrifuge, so that it is a purely continuous process, 

saving time, and reducing the amount of foam produced. From the spin centrifuge it would 

have to go into the intermediate collection vessel, ready to be passed through the secondary 

peristaltic pump. Another potential addition to the setup could be for the solution from the 

intermediate collection vessel to travel through a secondary heat exchanger with cold water 

running through it to cool the solution down, so that it did not a) damage the cross-flow 
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filtration module and b) diffuse through the membrane more than it should do, due to having 

higher solubility and energy compared to a cold state.  It would then travel from the heat 

exchanger into the cross-flow filtration module which would deposit the concentrated/filtered 

AFE solution into the original starting vessel ready for another pass (like in the one stage 

method). As a single pass was able to be performed with good efficiency, a recycle should 

be able to be produced, and the addition of the extra apparatus would enhance the efficiency 

of the process (but should be able to be produced without the additional equipment). Due to 

the size of the lab and equipment available, the larger setup would not be possible, but a 

schematic is shown in Figure 8-1 on what the setup would look like. In addition to using 

performing a non-top-up recycle, like the one stage process, a STUM could potentially also 

be performed using the CFF module and be a purely continuous process. This would be the 

first completely continuous process for a STUM method. Because the outlet streams can be 

monitored, the supernatant and the AFE solution concentrations can be worked out by dry 

weight analysis. Instead of adding more solid protein into the mix and centrifuging, a protein 

solution containing the same percentage of protein, as used up in the reaction, could be 

made up and used to top up the existing supernatant solution e.g. if the dry weight analysis 

of the Concentrated AFE was 10 %, then a 10 % EWP solution could be made up to add the 

extra protein back into the system. This would save time and energy and would produce a 

more viable option for industry and larger scale processes.  

  

  



133 | P a g e  

  

 

Figure 8-1. A schematic to show the potential setup of a 1 stage process combining the Non Top-Up Continuous 

Method and the Cross-Flow Filtration Module.  

Aside from using the CFF module, a small adaptation to the setup could be implemented, 

mainly for the Non Top-Up continuous methods, where a secondary heat exchanger is 

placed between the sonication vessel and the collecting vessel. Due to the process being 

continuous, the AFE coming out will be hot, so if some protein is still left in solution then it 

could be exposed to much longer periods of heat and denature (similar principle to water 

bath method). A secondary heat exchanger with cold water flowing through it would cool 

down the AFE after production. Therefore, it would not be hot in in the collecting vessel for a 

prolonged period of time, minimising the protein denaturation. The idea for the setup is 

shown in the schematic in Figure 8-2.  
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Figure 8-2. A theoretical schematic for the set up involving two heat exchangers. One hot and one cold.  

Another prospect for other methods is to use more one sonicator, either in series or in parallel. 

In parallel, the pipe would split after heating in the heat exchanger (although it could potentially 

split after the pump and have two heat exchangers) and the solution would branch off into two 

sonicators which are not connected together, and then the resulting AFE product would collect 

at the same point. This could minimise the backpressure, with regards to air being minimised 

due to more diffusion of the air through multiple pathways. It also means that in theory that 

you could sonicate double the amount of solution on the laboratory scale in the same amount 

of time. The theoretical schematic is shown in Figure 8-3.   
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Figure 8-3. A Theoretical Schematic to show how a system with two sonicators in parallel would look. A= Two 

sonicators attached to two heat exchangers- split after pump. B= Two sonicators with one heat exchanger- split 

after heating.  
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In series, the setup would be essentially the same but with the addition of an extra sonication 

probe and air flow. Utilising two sonication probes in series could minimise the need for 

multiple recycles as it would essentially act as a recycle in itself. Any protein that has 

unreacted would pass into the second sonicator and react with the superoxide radicals there. 

The flow rates would have to be adjusted accordingly but with two sonicators and two air 

flows/radical production, it could give the proteins twice the chance of reacting (so long as 

the AFE produced in the first sonicator does not block the cavitational voids in the second 

sonicator). The theoretical schematic is shown in Figure 8-4.  

  

  

  

 

  

  

  

Figure 8-4. A Theoretical Schematic to show how a system with two sonicators in series would look 8-4.  

So the parallel sonicators would look at minimising the internal pressures and increasing 

volume output, whilst the series sonicators would look at minimising the amount of recycles, 

which for both the Non Top-Up Continuous Method and large scale systems, it could prove 

quite useful as it would minimise the production timescale.  
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Similar to the tandem and series sonicator, the same principles could be used and applied to 

the heat exchanger. Multiple heat exchangers could be used for one sonication probe and 

give a larger surface area for heating if in parallel, and a longer period of heating if in series. 

However, from the results it appears that heating is sufficient, so out of these the parallel 

would be the more useful of the two. And as shown in Figure, if there are multiple sonication 

vessels in parallel, then more than one might be required if two separate reaction pathways 

were to be created. After the heat exchanger proving very useful as a heating source, it is 

very doubtful that any future work will include a water bath as the heating source.  

A tangent to the main goals would be to look at the tip degradation with respect to energy 

usage and AFE production. As shown in section 3.5.3. The amplitude relates directly to the 

energy input, which in effect is the amount of energy input into the reaction, affecting yield. If 

the tip is old, then pitting can occur and therefore the amplitude to energy conversion is not 

as effective. This could have an impact on AFE production. The tip can be monitored by an 

interferometer at defined periods of time. This could be compared against energy output 

which could then be compared to AFE production and would lead to the understanding of 

how tip quality affects the AFE production. Modelling of the data could also be done, to see 

when the best time to change to a new tip is.  

With regards to future work on scaling up the process, the process needs to be optimised 

and the problems stated in section 6.3.1., need to be addressed. If these points are 

addressed with regards to the setup, then the yields and production could increase 

especially once the optimal conditions are found (which could be different to the small scale). 

If this is successful, then the future would be to take everything that has been discovered on 

both the laboratory and pilot scale and implement it to an industrial scale production, where it 

will be of great use to industry.  

 

As well as focusing on EWP, now that recycle methods have high efficiency for EWP-AFE 

production, other types of AFE such as BSA-AFE could be tested to see if the effect is the 
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same as experienced with these methods, or whether the different proteins react to the 

recycle methods in different ways.  

And as with any research, more repeats and more analysis will give a deeper understanding 

into the mechanisms of the production and how best to ‘tune’ and optimise the production  

process.  
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APPENDIX  

Data tables 

Table 3-1. The various weights of the protein solution plus watch glass during the control experiment.  

Time     

       (hours)   Mass (g)   

 

Watch Glass 1  Watch Glass 2  Watch Glass 3  

 161.91  167.93  173.58  

0  172.02  178.14  183.97  

1  168.63  174.62  180.55  

2  166.09  172.09  177.98  

3  164.21  170.14  176.04  

4  162.90  168.83  174.60  

6  162.44  168.43  174.09  

8  162.35  168.36  174.02  

10  162.31  168.34  174.01  

 12  162.31            168.34           174.01  

 24  162.31            168.34           174.01  

 48  162.31            168.34            174.01  

 72  162.31            168.34            174.01  

 

Table 3-3. The energy recorded for pure water after 5 minutes of constant sonication and a conversion to other 

energy representations.  

                                           Energy used   

         Amplitude          (Jmin-1)    kJhr-1        eVhr-1  Watts (Js-1)    kWh  

 20  1076  64.56      4.03 x1023        17.93  0.018  

 30  1693  101.56      6.34 x1023        28.21  0.028  

 40  2413  144.77      9.04 x1023        40.21  0.040  

 50  3145  188.68      1.18 x1023        52.41  0.052  

 60  3659  219.53      1.37 x1023        60.98  0.061  

 70  4267  256.01      1.60 x1024        71.11  0.071  

 80  5110  306.59      1.91 x1024        85.16  0.085  

 90  5613  336.78      2.10 x1024        93.55  0.094  

 100  6375  382.51      2.39 x1024      106.25  0.106  
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Table 3-4. The energy recorded for 5 % EWP solution after 5 minutes of constant sonication and a conversion to 

other energy representations.  

Energy Used  

Amplitude                  (Jmin-1)  kJhr-1           eVhr-1   Watts (Js-1)        kWh  

 20  948       56.88       3.55x1023        15.80       0.016  

 30  1611  96.65      6.03 x1023        26.85    0.027  

 40  1988  119.26      7.44 x1023        33.13   0.033  

 50  2430  145.80      9.10 x1023        40.50   0.041  

 60  2816  168.94      1.05 x1024        46.93   0.047  

 70  3245  194.66      1.21 x1024         54.07   0.054  

 80  3938  236.30      1.47 x1024         65.64   0.066  

 90  4583  274.97      1.72 x1024         76.38   0.076  

 100  5133  307.97      1.92 x1024         85.55  0.086  

            
Table 3-5. The energy recorded for AFE solution after 5 minutes of constant sonication and a conversion to other 

energy representations.  

                                         Energy used  

Amplitude                   (Jmin-1)     kJhr-1       eVhr-1  Watts (Js-1)           kWh  

 20  1007        60.43    3.77 x1023        16.79  0.017  

 30  1673      100.39    6.27 x1023        27.89  0.028  

 40  2165      129.90    8.11 x1023        36.08  0.036  

 50  2775      166.49    1.04 x1024        46.25  0.046  

 60  3211      192.67    1.20 x1024        53.52  0.054  

 70  3688      221.26    1.38 x1024        61.46  0.061  

 80  4325      259.50    1.62 x1024        72.08  0.072  

 90  5133      307.98    1.92 x1024        85.55  0.086  

 100  5784      347.04    2.17 x1024        96.40  0.096  

 
Table 4-1. The calculation results from the data obtained from the initial amplitude testing as a guide to recycling.  

Amplitude          Protein Required to Recycle  Protein Used 

                                 (%)                                (g/100mL)                             (%) 

                                   0   0                               0 

                                 30    1.35                                26.9 

                                 60     2.53                                50.6 

                               100     3.04                                60.7 
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Table 5-1. The amount of protein used per each recycle for the STUM heated by a water bath.  

Recycle  Protein Used Per Recycle (%)  

 Experiment 1 Experiment 2  Experiment 3   

        0             50.5              35.2             42.1  

        1             17.6              33.7             26.1  

        2             13.7              15.1               13.9  

        3             13.4              11.5             13.2  

  

Table 5-2. The total protein used for the STUM with water bath heating (WBH).  

Recycle   Total Protein Used (%)  

 Experiment 1 Experiment 2 Experiment 3  

0          50.5              35.2              42.1  

1          68.1              68.9              68.2   

        2             81.8              84.0              82.1  

        3             95.2              95.5              95.3  

 
Table 5-3. The amount of protein added per each recycle for the STUM with WBH.  

Recycle                         Protein Added (g)  

 Experiment 1  Experiment 2 Experiment 3 

      0            31.0       21.1 25.2 

      1              8.8       16.9 14.8 

      2              6.0  6.4   6.2 

      3      0     0      0 

 

Table 5-4. The concentrations of the waste protein solution after each pass for the STUM with WBH.  

Recycle                    Concentration (w/v%)  

 Experiment 1 Experiment 2  Experiment 3 

        0             2.1             2.9              2.4  

                       5.0             5.0               5.0  

        1             4.0             2.9              2.3  

                       5.0             5.0              5.0   

2          3.0             3.2              3.3  

                       5.0            5.0              5.0  

        3             3.9             4.3              3.4  

 

Table 5-5. The total amount of protein used when using a heat exchanger from ambient start.  

Recycle               Total Protein used (%)  

 Experiment 1** Experiment 2  Experiment 3  

0          32.0                 39.7                50.1  

1          65.0             66.2             70.9  

        2             83.4             85.8             88.5  

        3             95.8             98.7             97.2  
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. Table 5-6. The amount of protein used per recycle when using a heat exchanger from ambient start.   

        

Recycle  Protein used per recycle (%) 

Experiment 1** Experiment 2 Experiment 3  

0                  32.0     39.7                50.1  

1                  33.0     26.5                20.8  

2                  18.4              19.6                17.6   

      3                     12.4              12.9                  8.7  

 
Table 5-7. The concentrations of the waste protein solution after each recycle from ambient start.  

Recycle Concentration (w/v%)  

Experiment 1** Experiment 2 Experiment 3  

0               3.1                  2.3                 1.8  

5.0                  5.0                  5.0  

1               4.1                  2.5                 3.1  

5.0                  5.0                 5.0  

2               3.6                  2.2                 2.7  

5.0                  5.0                 5.0  

       3                  2.4                  3.4                 3.8  

 
Table 5-8. The amount of protein added per each recycle from ambient start.  

Recycle                            Protein Added (g)  

   Experiment 1**  Experiment 2 Experiment 3  

      0  20.0             23.8   26.3  

      1  17.2  18.6  15.5  

      2  9.6  12.2  8.0  

      3  0  0  0  

   
 Table 5-9. The total amount of protein used when using a heat exchanger from cold start.  

Recycle                   Total Protein Used (%)  

 Experiment 1** Experiment 2 Experiment 3  

0             44.4              38.0             41.0  

1             74.6              67.6             69.9  

       2                92.7              91.4             91.5  

  

Table 5-10. The amount of protein used per recycle when using a heat exchanger from cold start  

Recycle              Protein Used Per Recycle (%)  

 Experiment 1** Experiment 2 Experiment 3  

0             44.4              38.0            41.0  

1             30.2              29.6            28.9  

       2                18.1              23.8            21.6  
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Table 5-11. The concentration of the waste protein solution after each recycle from cold start.  

Recycle                  Concentration (%w/v)  

 Experiment1** Experiment 2  Experiment 3  

0            2.1              2.4              2.4  

                        5.0             5.0              5.0  

1            3.4              2.3              2.1  

5.0             5.0              5.0  

       3               3.7              1.9              2.4  

 
Table 5-12. The amount of protein added per each recycle from cold start.  

Recycle                           Protein Added (g)  

        Experiment 1** Experiment 2  Experiment 3  

0            24.4                   24.7                24.6  

1            22.1                    22.2        22.4  

       2                    0                         0             0   

 

Table 5-13. The amount of protein used in each sonication step during the NoTUCeM.  

Sonication                  Protein Used (%)   

 Experiment 1  Experiment 2  Experiment 3  

1       43.5         48.9  42.8  

2        50.9         58.9  47.2  

3        55.3         63.1  48.2  

4        68.7         78.5  62.4  

        
Table 5-14 The concentration of the waste protein solution after each sonication during the NoTUCeM.  

Sonication             Concentration (%w/v)  

Experiment 1 Experiment 2 Experiment 3  

        1                    2.3       2.3                  2.3  

        2                    1.9       1.6                  1.9  

        3                    1.6       1.3                  1.7  

        4                    0.7       0.5                  1.1 

 
Table 5-15. The final usage and concentration of the protein solution using the initial (multiple stage) NoTUCoM. 

Experiment    Protein Used (%)   Concentration (w/v%)  

        1**                   51.0                    2.3  

        2                      49.6                    2.2  

        3                      48.5                          2.2  

  

Table 5-16. The final usage and concentration of the protein solution using the NoTUCoM (v2) feedback method.   

Experiment       Protein Used (%)    Concentration (w/v%)  

 

  

1  55.8  1.89  

2  51.5  2.10  

3  53.9  1.93  
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Table 7-4. A table showing a summary of the model for the absorbance results obtained. Produced by the 

Statistician at Campden BRI and Jermann et al [74].  

 Analysis of variance   

Source    DF   Seq SS   Seq MS   F-value   P-value   

Linear terms   

Sugar (%)   1   0.001949   0.001949   2.68    

Salt (%)   1   0.030153   0.030153   41.5     

Amplitude (%)   1   0.012286   0.012286   16.91   0.000*   

Residence time (%)   1   000018  0.000018   0.02   
 

Temperature (°C)   1   0.15352  0.15352   211.3     

Square terms   

Residence time x Residence time   1   0.002486   0.002486   3.42    

Temperature x Temperature   
 

1   0.012261   0.012261   16.88     

2-way interactions   

Sugar x Salt 
  

1   0.000387   0.000387   0.53   0.467   
Sugar x Amplitude   1   0   0   0   0.994   

Sugar x Residence time   1   0.000118   0.000118   0.16   688  

      

Sugar x Temperature   1   0.006515   0.006515   8.97   0.003*  
Salt x Amplitude   1   0.003756   0.003756   5.17   0.025*   

Salt x Residence time   1   0.002651   0.002651   3.65   
 

Salt x Temperature   1   0.014175   0.014175   19.51     

Amplitude x Residence time   1   0.000528   0.000528   0.73   0.395   

Amplitude x Temperature   1   
  

0   0   
 

Residence time x Temperature   1   0.024886  0.024886   34.25     

Sugar x Sugar   

Salt x Salt   

  1   

1   

0.006217   

0.006749   

0.006217   

0.006749   

8.56   

9.29   

0.004*  

003*  

Amplitude x Amplitude     1   0.040853   0.040853   56.23    
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Error   138   0.100264   0.000727   

Lack of fit   97   0.093297   0.000962   5.66   0.000   

Pure error   41   0.006967   0.00017  Total   158   0.419772   

Model summary   

  S   R-sq   R-sq (adj)   R-sq (pred)   

   0.0269545   76.11   72.65   68.07   

* Significant p-values    

 

 

 

 



153 | P a g e  

  

Table 7-5. A table showing a summary of the model for the energy results obtained. Produced by the Statistician 

at Campden BRI and Jermann et al. †In this table SS and MS are calculated based on raw data, indicating how 

much of the variation in energy is fitted by different terms [74].  

  

  

Analysis of variance     

   

Source   DF   Seq SS   Seq MS   P-Value†   

Amplitude (%)   1   484886   484886   0.000*   

Residence time (min)   1   520   520   0.107   

Temperature (°C)   1   3122   3122   0.000*   

Amplitude x Amplitude   1   1457   1457   0.082   

Residence time x Residence time   1   468   468   0.014*   

Temperature x Temperature   1   101   101   0.920   

Amplitude x Residence time   1   468   468   0.069   

Amplitude x Temperature   1   135   135   0.538   

Residence time x Temperature   1   25   25   0.283   

   

  
Error   225   6685   30     

    

Lack of fit 122 4877 40 Pure error 103 1808 18 
  

  

Total   234   497867     

   
  

Model summary     

  
  S   R-sq   R-sq (adj)   R-sq (pred)     

  

   5.45095   98.66   98.6   98.44     
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Raw Data from the Mastersizer for the STUM HE (ambient) initial sonication.  

  

Raw Data from the Mastersizer for the STUM HE (ambient) recycle 1.    

  

Raw Data from the Mastersizer for the STUM HE (ambient) recycle 2.  

Master s izer Raw Data   
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Raw Data from the Mastersizer for the STUM HE (ambient) recycle 3.  

  

Raw Data from the Mastersizer for the STUM HE (cold) initial sonication.  

  

Raw Data from the Mastersizer for the STUM HE (cold) recycle 1.  
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Raw Data from the Mastersizer for the STUM HE (cold) recycle 2.  

  

Raw Data from the Mastersizer for the NoTUM (NoTUCoM v2) after 1 hour.  

  

Raw Data from the Mastersizer for the NoTUM (NoTUCoM v2) after 2 hours.  



157 | P a g e  

  

  

Raw Data from the Mastersizer for the NoTUM (NoTUCoM v2) after 3 hours.  

  

Raw Data from the Mastersizer for the NoTUM (NoTUCoM v2) after 4 hours.  

  

  

Raw Data from the Mastersizer for the NoTUM- Non Top-Up Centrifugal Method, (NoTUCeM) after 1 hour.  
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Raw Data from the Mastersizer for the NoTUM - Non Top-Up Centrifugal Method, (NoTUCeM) after 2 hours.  

  

Raw Data from the Mastersizer for the NoTUM- Non Top-Up Centrifugal Method, (NoTUCeM) after 3 hours.  

  

Raw Data from the Mastersizer for the NoTUM- Non Top-Up Centrifugal Method, (NoTUCeM )after 4 hours.  
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Raw Data from the Mastersizer for the CFF (2 stages method) - before centrifuge and cross-flow.  

  

Raw Data from the Mastersizer for the CFF (2 stages method) - after centrifuge , before cross-flow.  

  

Raw Data from the Mastersizer for the CFF (2 stages method) - after centrifuge and cross-flow.  
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Raw Data from the Mastersizer for the CFF (1stage method) - before cross-flow.  

  

Raw Data from the Mastersizer for the CFF (1stage method)- after cross-flow  
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Dry weight Analysis  

Table of Dry Weight Analysis- IPS= Initial Project Studies, STUM-WB=Top Up Recycle Method- Water Bath,  
STUM-HEA= Top Up Recycle Method- Heat Exchanger (Ambient), STUM-HEC= Top Up Recycle Method- Heat 

Exchanger (Cold), #= Recycle Number, NoTUCeM- Non Top-Up Centrifugal Method, NoTUCoM- Non Top-Up 

Continuous Method, CFF1- Cross Flow-Filtration (1 stage), CFF2- Cross Flow-Filtration (2 stages).  

Raw data  

 Weight of  Lens  Dry  

Method  Lens  +10ml  Weight  

Test Run  173.62  183.67  173.89  

IPS-30%  173.60  183.64  173.95  

IPS-60%  167.94  176.99  168.13  

IPS-100%  161.92  170.72  162.05  

STUM-WB-run1  173.57  182.40  173.75  

STUM-WB-run1 #1  167.92  177.03  168.27  

 

STUM-WB-run1 #2  113.86  121.87  114.09  

STUM-WB-run1 #3  161.89  168.48  162.14  

STUM-WB- run2   167.93  176.49  168.17  

STUM-WB-run2 #1  167.92  176.12  168.15  

STUM-WB-run2 #2  173.58  182.86  173.87  

STUM-WB-run2 #3  173.56  182.48  173.93  

STUM-WB-run3  167.93  176.34  168.13  

STUM-WB-run3 #1  161.90  168.54  162.04  

STUM-WB-run3 #2  173.56  182.56  173.87  

STUM-WB-run3 #3  167.93  176.30  168.20  

STUM-HEA-run1  173.56  181.31  173.74  

STUM-HEA-run1 #1  161.91  169.61  162.10  

STUM-HEA-run1 #2  161.90  169.57  162.10  

STUM-HEA-run1 #3  173.56  180.08  173.74  

STUM-HEA-run2  173.56  181.31  173.74  

STUM-HEA-run2 #1  161.92  169.45  162.11  

STUM-HEA-run2 #2  173.56  179.98  173.70  

STUM-HEA-run2 #3  167.93  176.55  168.21  

STUM-HEA-run3  161.90  169.85  162.04  

STUM-HEA-run3 #1  167.93  176.52  168.19  

STUM-HEA-run3 #2  173.56  180.53  173.74  

STUM-HEA-run3 #3  173.56  180.67  173.81  

STUM-HEC-run1  161.89  169.26  162.06  

STUM-HEC-run1 #1  167.93  175.58  168.10  

STUM-HEC-run1 #2  161.89  168.87  162.02  

STUM-HEC-run2  161.89  169.26  162.06  

STUM-HEC-run2 #1  167.93  175.58  168.10  

STUM-HEC-run2 #2  161.89  168.87  162.02  

STUM-HEC-run3  173.59  181.68  173.78  

STUM-HEC-run3 #1  161.89  169.12  162.04  

STUM-HEC-run3 #2  55.50  63.20  55.68  
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NoTUCeM-run1-1  173.60  181.52  173.78  

NoTUCeM-run1- 2  167.93  176.38  168.09  

NoTUCeM-run1- 3  137.09  145.56  137.23  

NoTUCeM-run1 -4  173.59  181.72  173.65  

NoTUCeM-run2 -1  167.90  177.20  168.11  

NoTUCeM-run2 -2  173.54  181.74  173.65  

NoTUCeM-run2 -3  161.88  170.92  162.01  

NoTUCeM-run2 -4  167.91  176.81  167.96  

NoTUCeM-run3 -1  137.1  145.16  137.28  

NoTUCeM-run3 -2  113.86  121.83  114.01  

NoTUCeM-run3 -3  55.50  62.80  55.62  

NoTUCeM-run3 -4  173.57  181.70  173.66  

NoTUCoM-run 1  173.57  183.08  173.78  

NoTUCoM-run 2  167.93  176.88  168.12  

NoTUCoM-run 3  167.93  176.77  168.12  

NoTUCoM v2- run 1  167.93  177.08  168.10  

NoTUCoM v2- run 2  173.60  181.90  173.75  

NoTUCoM v2- run 3  167.92  176.88  168.09  

CFF2- conc AFE  161.90  169.85  162.89  

CFF2- EWP soln  173.59  181.75  173.90  

CFF1- Conc AFE 1  161.91  169.24  162.36  

CFF1- EWP Soln 1   167.93  175.78  168.02  

CFF1- Conc AFE 2  173.58  181.65  174.07  

CFF1- EWP Soln 2  137.11  145.62  137.20  
 


