Combustion and emissions of a direct injection gasoline engine using EGR

Lattimore, Thomas (2016). Combustion and emissions of a direct injection gasoline engine using EGR. University of Birmingham. Ph.D.

[img]
Preview
Lattimore16PhD.pdf
PDF - Accepted Version

Download (3MB)

Abstract

This research has examined the combustion and emissions of a spray-guided direct-injection spark-ignition (DISI) engine using exhaust gas recirculation (EGR). The impact of EGR type, swirl and tumble intake airflows, compression ratio and fuel type were also investigated.

EGR addition resulted in significant fuel consumption improvements and differing particulate matter (PM) behaviour depending on the knock limited maximum brake torque (KLMBT) spark advance achieved. When comparing EGR types, cooled EGR achieved the best fuel consumption and cooled EGR after three-way catalyst (TWC) achieved the best gaseous emissions (NOx and HC).

Swirl and tumble intake airflows significantly increased fuel consumption. However, these increases could be minimized with EGR addition. Swirl significantly reduced the accumulation mode particulate emissions, providing a potential solution for PM reduction. EGR addition did not significantly affect PM for the swirl and tumble intake airflow conditions.

20%vol 1-butanol addition to gasoline fuel (Bu20) resulted in significant PM reductions at 8.5 bar IMEP. At 7.0 bar IMEP, EGR addition allowed the KLMBT spark timing to be advanced, as the compression ratio was increased. Fuel consumption was improved by 0.4% due to the spark advance and reduced pumping losses, and PM improved because the formation of primary particles was reduced.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Xu, HongmingUNSPECIFIEDUNSPECIFIED
Wyszynski, Miroslaw L.UNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering
Funders: None/not applicable
Subjects: T Technology > TD Environmental technology. Sanitary engineering
T Technology > TJ Mechanical engineering and machinery
URI: http://etheses.bham.ac.uk/id/eprint/6677

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year