eTheses Repository

Non-linear analysis of optical and microwave sources

Afroozi Milani, Mohammad (2016)
Ph.D. thesis, University of Birmingham.

PDF (13Mb)Accepted Version

Restricted to Repository staff only until 01 July 2020.


Due to the ever increasing need for better and more capable communication systems, a large quantity of research is focused on the design and simulation of different sections of communication systems including the communication sources. Due to the massive cost of the fabrication involved in designing new communication sources, the accurate modelling and design of these sources using Computer Aided Design is of great interest.

In this thesis fundamentals of laser modelling and nonlinear microwave antenna design; followed by reviewing the most important works carried out by other researchers in these fields. The thesis continues by introducing a proposed, accurate model of the Vertical Cavity Surface Emitting Laser (VCSEL). The proposed model integrates the effects of the matching network as well as the parasitics, due to the VCSEL chip and the packaging mounting and the intrinsic VCSEL noise sources. Further in this thesis, a nonlinear Composite Right/Left Handed frequency doubler Leaky Wave Antenna is designed which is capable of transmitting a signal in a direction that can be varied continuously from backfire to endfire, by varying the input frequency to the structure. The novelty of the proposed design is in the inclusion of nonlinear elements in the CRLH structure and also in the use of a quasi-lumped approach when designing the distributed structure. Finally, in this thesis a novel method of combining harmonic balance and EM analysis for the design and optimisation of nonlinear active antennas is developed. This method responds to the restriction of the CAD software in conveniently combining the analysis of nonlinear active antennas with advanced EM simulations such as radiation patterns. The proposed method enables the advanced EM analysis at the harmonic frequencies, generated within the nonlinear microwave structures when the structure is exited at the fundamental frequency, to be combined with full electromagnetic simulators.

Type of Work:Ph.D. thesis.
Supervisor(s):Gardner, Peter
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Electronic, Electrical and Systems Engineering
Subjects:QC Physics
TK Electrical engineering. Electronics Nuclear engineering
Institution:University of Birmingham
ID Code:6675
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page