eTheses Repository

Controlling local quantum fluctuations of light using four-wave mixing in an atomic vapour

Embrey, Christopher (2016)
Ph.D. thesis, University of Birmingham.

Loading
PDF (4Mb)Accepted Version

Abstract

The spatial character of the noise on a light field affects its usefulness for imaging. Multi-spatial-mode (MSM) squeezed light has noise below the quantum noise limit in multiple spatial modes, and can be used for super resolution imaging. The generation of such light has long been an experimental goal within the field of quantum optics.

This work introduces the theory behind the generation of squeezed light, and its measurement using a homodyne detector. A four-wave mixing process in a rubidium 85 vapour is used to experimentally generate squeezed light. The properties of this squeezed light are investigated, through the use of homodyne detection with a bichromatic LO.

This thesis further investigates how the squeezed quadrature changes from amplitude to phase over a range of 40 MHz. The MSM nature of a squeezed light field is directly investigated. The field is shown to contain at least 75 squeezed spatial modes in the frequency domain, each squeezed at a level of up to -2.5 dB. This thesis develops techniques to measure the spatial character of noise on a light field in the time domain. These are promising techniques for the analysis of the MSM nature of a squeezed light in the time domain.

Type of Work:Ph.D. thesis.
Supervisor(s):Boyer, Vincent
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Physics and Astronomy
Subjects:QC Physics
Institution:University of Birmingham
ID Code:6440
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page