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ABSTRACT 
 

 

 The development of metrological and analytical methods for the detection and 

quantification of nanomaterials (NMs) has been identified as one of the most urgent and 

important research priorities to advance eco-responsible nanotechnology (Alvarez et al., 

2009).  Several nanometrics such as mass, number and surface area are currently under 

scrutiny by nano(eco)toxicologists in order to identify the most appropriate metrics to 

express the hazard of NMs and therefore to perform risk assessments. Currently, NM mass 

concentration is almost universally used as a metric because of challenges with analytical 

measurements, while the mass concentration is measured by a analytical technique called 

inductive coupled plasma mass spectroscopy. For example, the mass concentration doesn't 

facilitate to quantify the NM aggregation in an exposure media but can be quantified by 

particle number measurement. The particle number concentration is an important metric in 

nano-ecotoxicology and environmental systems to better understand biological uptake and 

toxicity, aggregation, dissolution and other fate processes. However tools/methods capable 

of providing fully quantitative assessment of the number size distribution and number particle 

concentration are lacking and are urgently needed. Microscopy techniques are the only 

suitable techniques available that can provide accurate information on nanoparticle (NM) 

number size distribution and number concentration at low concentrations, although others 

such as single particle- inductive coupled plasma mass spectroscopy (SP-ICPMS) are being 

developed. However, sample handling issues such as quantitative recovery of NMs from 

suspension are key challenges hampering their routine application for this purpose. This 

project has successfully fulfilled the key challenges and developed a novel sampling 

technique for force and electron microscopy to detect and to quantify the particle number 

concentration both in realistic environmental relevant conditions and exposure media.  
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Chapter 1 INTRODUCTION 
 

1.1 Nanoscience and Nanotechnology  
 

Nano is generally defined as the length of scale between 1-100 nm, matter at the 

nanoscale often exist in between the mesoscopic and microscopic as shown in the Figure 1-

1, called as nanoscopic dimensions and displays novel properties within the nanoscale 

range (Lead and Valsami-Jones, 2014). Nanoscience involves in understanding of 

processes and properties at the nanoscale range 1-100 nm (Stone et al., 2010) . The current 

advances in the technology enabled the manipulation, imaging and controlling the matter 

exist in nanoscale range (Lead and Valsami-Jones, 2014). The products obtained by such 

manipulations within the nanoscale range are said to be nanomaterials (NMs) (Baalousha 

Mohammed et al., 2014, Baalousha et al., 2014b, Lead and Valsami-Jones, 2014).  The 

study of these NMs in terms of characterisation, design, production and application of 

structures, devices and systems by controlling shape and size at nanometre scale is known 

as nanotechnology (Xu, 2004). Nanotechnology is having huge benefits in many areas such 

as engineering, medicine, environmental sciences and bioscience and so on.  

 

Figure 1-1 Nanoscopic particles lie between mesoscopic and microscopic particle (Klabunde 

and Richards, 2001). 
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 Nanoscience and nanotechnology are concerned with the nanoscale, which is 

usually defined between 1 to 100 nm (ASTM, 2006) in size. Figure 1-2, below puts the size 

of the NMs in comparison with the micro sizes (Buzea et al., 2007) which lies between 1-100 

nm. At the nanometer scale, materials exhibit new physical properties by manipulating its 

atoms and molecules (Hassellov et al., 2008, Louie et al., 2014) .  Nanomaterial is “a 

material having one or more external dimensions in the nanoscale or which is 

nanostructured” and whereas nanoparticle is a “nano-object with all three dimensions in the 

nanoscale” taken from BSI definition. Nanostructures exhibit their unique properties leading 

to improved applications (Leppard, 2008). NMs have been used in many scientific disciplines 

for the manufacture of nano-electronic circuits (Wang and Chou, 1992), cryptology 

(Benjamin Arazi, 2006), aerospace engineering (Baur and Silverman, 2007), space 

exploration and automotive, environmental remediation. However, concerns have been 

raised that the release of NMs into the environment will pose significant risks to human 

health (Gaiser et al., 2009) and ecosystem functioning (Roco, 2005a, Pedro J. J. Alvarez, 

2009).  

 

Figure 1-2  size of the nanomaterials compared to ‘micro’ and ‘nano’ sizes.(Buzea et al., 

2007) 
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However, the production volume of NMs (Piccino et al, 2012) and the number of nano-

enabled consumer products has grown rapidly in the last decade and is expected to increase 

even faster in the near future. Several concentration measures such as: mass, number, and 

surface area, which are currently under scrutiny by nano(eco)toxicologists,  environmental 

scientists and metrologists in order to identify the most appropriate dose metrics to express 

the hazard, fate and behaviour of NMs and therefore to perform risk assessments,(Liang et 

al., 2011, Donaldson et al., 2013, Donaldson and Poland, 2013, Duffin et al., 2002, Duffin et 

al., 2007, Sager and Castranova, 2009). However, only mass concentration measurement 

can be unambiguously performed currently. Similar considerations apply for understanding 

NM environmental fate and behavior, where number concentration is of particular 

importance in understanding NM aggregation behavior.  

1.2 Thesis outline 
 

This PhD thesis consists of seven chapters whose topics are summarised below: 

Chapter 1 Introduces the concepts of nanomaterials (NMs) and describes both the aims and 

objectives of the thesis. It also gives outline of the thesis. 

Chapter 2 Introduces nanomaterial (NM) concepts, types and classification, NM source and 

production, NM transportation and risks in the release of NMs to the environment, analytical 

techniques limitations to measure the NMs, the review on various analytical techniques 

based on particle number, aims and objectives of the thesis. 

Chapter 3 Describes the theory of synthesis and characterisation of NMs 

Chapter 4 The first section of this chapter gives a detailed description of the methodology 

used to synthesise gold NMs and multi method approach to characterise the in-house 

synthesised NMs for its various physical properties. The second section is based on the 

detailed explanation of the sample preparation techniques which is vital part of the thesis. 

Whereas, different types of sample preparation was employed to image the NMs by force 
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and electron microscopy which eventually lead to the development of the appropriate sample 

preparation technique that satisfy the critical aim of the research. The third section of this 

chapter is based on the different media added to the NMs to observe the NMs fate and 

behaviour. Detailed explanation for the preparation of the different media is given. The last 

section is paramount importance which is the main objective of the thesis gives the detailed 

protocol on  how to scan the images by microscopies and how to validate the sample 

preparation technique which is adapted to measure the particle number.  

Chapter 5 is based on the characterisation results, which are divided into two sections. The 

first section is on in-house synthesis of NMs whereas; the second section is on 

characterisation results using different analytical techniques.  

Chapter 6 is on results and discussion based on the measurement of particle number using 

atomic force microscopy. This chapter gives the validation of sample preparation techniques 

and how the NMs distributed on the AFM substrates and recovery of NMs on its substrates 

and finally the measurement of particle number. 

Chapter 7 This chapter is based on results and discussion using transmission electron 

microscopy to validate the sampling technique by adding NMs to both simple and complex 

media. This chapter is divided three sections. The first section is based on the measurement 

of particle number concentration by adding simple media to Au NMs. The second section is 

based on adding synthesised NMs to the three different complex media and measuring the 

number concentration and later compared for the change in fate and behaviour of NMs. 

Lastly, the third section uses silver Ag NMs for the measurement of particle number 

concentration both in pure water and by complex media.  

Chapter 8 is based on the conclusion of the thesis and further work of the technique to 

control NM arrangement on the substrates.  
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Chapter 2 RESEARCH BACKGROUND  
 

2.1 Introduction 
 

  Nanotechnology is an innovative technology that uses the concepts of nanoscience 

to develop novel products and applications incorporating nanomaterials (NMs,  materials 

within the size range 1-100 nm, with novel, size dependent properties) (Christian et al., 

2008). Nanoscience is the manipulation of NMs at atomic and molecular scales (size range 

1-100 nm), that leads to the new NM properties (Lead et al., 1999, Hannah and Thompson, 

2008). Nanomaterial properties can differ significantly when compared to those materials 

having a larger or smaller scale than 1-100 nm (Ju-Nam and Lead, 2008) .In nanoscale 

materials, the percentage of atoms on the surface of a material becomes more significant 

when compared to bulk materials (Heitbrink et al., 2009), one of the main reasons is spatial 

confinement of electronic properties.  NMs have increased surface-volume ratio compared to 

bulk material that is, for a given volume of material the external surface is greater that results 

in domination of the surface properties of the NMs compared to the bulk material properties 

(Lead and Smith, 2009). An illustration of surface-volume ratio of NMs is shown in the Figure 

2-1 in comparison with the non-nanoscale materials. The larger external specific  surface 

area (SSA) of NMs is useful for all those that uses material surface to perform specific 

applications (Heitbrink et al., 2009), that is chemical reactions takes place at the NM surface, 

thereby NMs having larger specific surface area is vital when compared to the bulk 

material(see Figure 2-1). Few examples: (i) at the macroscale gold  is not very reactive, 

while at nanoscale gold NMs are very reactive and (ii)a bulk silver material is inactive 

compared to Ag NMs; for instance,  the silver NMs is toxic, can kill viruses upon contact 

(Baalousha and Jamie, 2011). Thereby, materials with a size range between 1-100 nm are 

of particular interest because of their chemical and physical properties. These distinctive 

physical-chemical properties allow for novel applications within the nanoscale materials, 
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hence nanotechnology promised to revolutionise the many different fields of science and 

technology.  

 
Figure 2-1. Illustration of how surface area-to-volume ratio of nanomaterials is increased 

compared with non-nanoscale-sized materials. (Taken from National Nanotechnology 

Initiative ) 

2.1.1 Evolve of nanotechnology 
 

The first academic nanotechnology journal was published in the year 1990 (first initiated 

by Japan's STA funding on nanotechnology projects), which provoked rapid growth in 

nanotechnology  (Roco, 2005b).  Later, National Nanotechnology Initiative (NNI) (US 

government research) and other nanotechnology proponents such as National Initiative on 

Nanotechnology (NION) in UK, similar nanoscience initiatives in EU and worldwide,  initiated 

to revolutionise the production of nano-enabled tools which are stronger, lighter, low-cost 

and durable materials and which are used in drug development, water decontamination and 

communication technologies (Donaldson et al., 2013).  Thereafter, the production of 

nanomaterials (that is the matter in the range of 1-100 nm ) and the number of consumer 

products has grown rapidly in the last decade and continues to grow.(Piccinno et al., 2012, 

Wilson, 2012). Figure 2-2 below shows the timeline projection related to the investments and 

business ongoing in the worldwide market of nanotechnology and its production. USA is the 

http://www.nano.gov/
http://www.nano.gov/
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leading country in terms of its market both investments and technology which is followed by 

European Union, China, Japan and South Korea. As per the market timeline graph shows 

the process of production and investment is 25% doubling each three years with respect to 

the usage increase in nanoscale products (Roco 2011). 

 

Figure 2-2. Market timeline projection of the worldwide products that incorporate 

nanotechnology (Roco 2011).                                       

 

The following sections were based on the different types of NMs and its classification, 

sources and production of NMs followed by the release of NMs to the environment and its 

transportation into the environment. Later section is discussed on the risks involved by the 

release of NMs and NM exposure level measurement metric which is the highlight of this 

current project.  Thereby, special attention is given to the measurement of nanomaterial 

number followed by the analytical instruments that can facilitate the accurate 

characterisation and measurement of the NMs. 
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2.1.2 Natural and manufactured NMs 
 

 There are three types of NMs: natural, incidental and manufactured. Natural NMs are 

distributed everywhere in the oceans, soil systems, atmosphere, air, both underground water 

and surface water (Nowack and Bucheli, 2007). They are formed mainly because of 

hydrolysis, erosion, volcanic eruption, minerals, and plant roots on rocks, spray, fine sand, 

and dust and so on by the results of naturally occurring physical, chemical and biological 

processes (Wagner et al., 2014, Handy et al., 2008). The other formation of naturally 

occurring NMs are biogenic NMs formed by microorganisms to fulfil metabolic requirements 

(Duffin et al., 2007), geogenic and atmospheric such as aerosols (Lead, 2011). Some of the 

natural NMs include silica, potassium, Mg, Fe which is hydrated alumniosilicates, Iron 

oxides/hydroxides and aluminium oxides/hydroxides ‘(Gottschalk et al., 2013b).  Therefore, 

the naturally occurring NMs were present in the environment not from recent revolution in 

nanotechnology, NMs present in the environment the day the earth was born but concern on 

rapid growth of engineered NMs release into the environment (Nowack and Bucheli, 2007). 

The different types of NMs and its formation through various roots as explained above such 

as through biogenic, pyrogenic, geogenic and atmospheric with examples summarised in 

Table 2-1.  

 The incidental NMs are man-made NMs that has been emerging rapidly in leading 

business and industrial research companies which make NM release to environment almost 

certain. For example through industrial emission which is known to have many health 

impacts by the release of toxic to environment and while other examples are diesel exhaust, 

welding fumes, industrial effluents, sandblasting, ambient air, rural areas such as human 

activities like wood burning; cooking, urban areas and some workplaces such as particles 

released during manufacture, smaller particles remain airborne for longer period in 

comparison with the larger particles (Balmes et al., 2015).  
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 The ENMs are manufactured nanoparticles with specific nanoscale dimensions used 

for specific applications, for example, nano-diamonds which are attached to chemotherapy 

drugs to treat brain tumors and leukaemia. (Wang et al., 2014), metal oxides NMs such as 

titanium oxide NMs, zinc oxide NMs and iron oxide NMs are used in skincare products 

(Gottschalk et al., 2011), zinc oxide NMs are used in photovoltaic cells, as a coating agent to 

protect wood, plastic and textiles from the exposure to UV rays (Dark, 2006, Meredith et al., 

2013),  silver NMs are used in fabric to kill bacteria and so on, iron oxide NMs to clean 

arsenic from water wells and thereby engineered NMs have enormous uses. 

 In brief, a review of the origin of different types NMs in the environment, they fall into 

three genera: such as  

i. Naturally occurring NMs from plant process, volcanic ash, sea spray, geological 

constructions, mining and various other human activities,  

ii. Incidental NMs produced by man from cooking, diesel exhaust and  

iii. Engineered NMs are produced synthetically; this is one of the focuses in this 

research work.  
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Table 2-1 Classification of nanomaterials (Nowack and Bucheli, 2007) 

  
Formation 
 Examples 

Natural 

C-
containing 

Biogenic 
Organic colloids Humic, fulvic acids 
Organisms Viruses 

Geogenic Soot Fullerenes 
Atmospheric Aerosols Organic acids 

Pyrogenic Soot 

CNT 
Fullerenes 
Nanoglobules, 
onion-shaped 
nanospheres 

Inorganic 

Biogenic 
Oxides Magnetite 
Metals Ag, Au 

Geogenic 
Oxides Fe-oxides 
Clays Allophane 

Atmospheric Aerosols Sea salt 

Anthropogenic 
(manufactured, 
engineered) 

C-
containing 

By-product Combustion by-
products 

CNT 
Nanoglobules, 
onion-shaped 
nanospheres 

Engineered 
Soot 

Carbon Black 
Fullerenes 
Functionalized 
CNT, fullerenes 

Polymeric NP Polyethyleneglycol 
(PEG) NP 

Inorganic 

By-product Combustion by-
products 

Platinum group 
metals 

Engineered 

Oxides TiO2, SiO2 
Metals Ag, iron 
Salts Metal-phosphates 
Aluminosilicates Zeolites, clays, 
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2.1.3 Classification of nanomaterials (NMs)  
 

 In general NMs are classified based on their composition, dimensionality, 

morphology, and uniformity (Aitken et al., 2009). Nanoparticle composition consists of 

composite of several materials or single material composition (See Figure 2-2). Single 

material composition which can be easily produced/ synthesised, NM synthesis is explained 

in detail in further Section 2.7. Composition further divided  into organic and inorganic 

(Nowack and Bucheli, 2007) (see Figure 2-3). Based on dimensionality of NMs such as 1D, 

2D and 3D, for example in quantum well where electrons are confined in one dimension (1D) 

at nanoscale but the other two dimensions are not, example., nanocoating, nanofilms etc., 

and while 2D nanostructures that is quantum wires include nanowires, nanotubes where 

electrons are confined in two dimensions at nanoscale while the other dimension is not in 

nanoscale and finally spherical NMs are three dimensional (3D), where electrons are 

confined in all three dimensions in nanoscale as in quantum dots, clusters, nano-crystallites 

etc. The third classification is the morphology i.e. based on the shape of NMs for example; 

flatness, sphericity and aspect ratio. Aspect ratio further classified based on high aspect ratio 

(examples: nanowires, nanotubes and other various shapes such as zigzag, helices and so 

on) and low aspect ratio (examples; spherical, oval, prism cube and so on).   The fourth 

classification is NM uniformity and agglomeration, i.e. the dispersion of individual NMs either 

in aerosols or in suspension without flocculation otherwise presence of NMs in the form of 

agglomeration that is the formation of flocculation (NMs tends to cluster, explained in detail 

in further section 2.1.6). The following section is based on the discussion of how these NMs 

are produced and in this thesis main focus is on the production of engineered NMs. 
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Figure 2-2. Classification of NMs based on nanostructure dimensions, morphology, 

composition, uniformity and agglomeration state (Duffin et al., 2002). 
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Figure 2-3: Size distribution of various types of environmental colloids and particle and 

several analytical instruments used to characterise NPs. Techniques abbreviated are: field-

flow fractionation (F/FFF). fluorescence correlation spectroscopy (FCS). Laser induced 

breakdown detections (LIBD). Taken from (Lead and Wilkinson, 2006). 
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2.1.4 Sources and production of engineered NMs 
 

The main focus of this study is production of engineered NMs. There are two 

approaches to manufacture the engineered NMs, they are top-down and bottom-up (see 

Figure 2-5). The bottom-up method is a chemical approach refers to the build-up of a 

material from the bottom: atom by atom, molecule by molecule or cluster by cluster, where 

the atoms and molecules were assembled or manipulated based on the required 

applications to generate nanostructure (Madhumitha and Roopan, 2013b). While the top-

down is the physical method, breaking down of bulk material into nanoscale materials 

(Tiruvannamalai-Annamalai et al., 2014), the breaking down is performed by milling, grinding 

or volatilisation of solid materials which is later followed by condensation and leaving behind 

the nanostructure (Madhumitha and Roopan, 2013a).   

The advantages of the bottom-up approaches are as follows: (i) better chance to 

obtain nano structures with less defects (ii) homogeneous chemical composition and (iii) 

better short and long range ordering and few while disadvantages of top-down approaches 

are: (i) introduces internal stress (ii) surface defects ( i.e. imperfections of the surface 

structure) and (iii) contaminations. But the top-down approach leads to the bulk production of 

nano material (Iqbal et al., 2012). Regardless of the defects produced by top down 

approach, they will continue to play an important role in the synthesis of nano structures. But 

in turn leads to extra challenges in the device design and fabrication due to its imperfections 

of the surface structure (Biswas et al., 2012).  

The production of NMs in this research is based on the bottom-up approach using 

chemical synthesis methodology which is given in detail in Section 2.3.  The bottom-up 

approach leads to the creation of the near-identical structures of NMs to obtain the required 

shape and size by fine tuning/ changing of the reducing agent, temperature, dispersing 

agent and the reaction time which results in monodispersed NMs. Some of the examples 

are: semiconductor quantum dots for lasers (Agarwal et al., 2007), hydrothermal synthesis of 
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metal NMs (Piccinno et al., 2012) and self-organised PVP polymer architectures (Rosa et al., 

2010).                                                              

 

Figure 2-3. Production of NMs (Madhumitha and Roopan, 2013b) 

 

 At higher end for the more sophisticated applications of nanotechnology such as 

molecular nanotechnology (Al Globus et al., 2000, Cunha et al., 2015), graphene as a next-

generation conducting material to replace traditional electrode materials (Jo et al., 2012), 

transceiver nanoantennas (Cunha et al., 2015) and made the  manufactures more 

competitiveness to fabricate the nanomaterials having specific physical –chemical properties 

such as: (i) identical sized particles (all are mono sized and with uniform size distribution (ii) 

particles having similar shapes (iii) monodispersed that is NMs should be equally spaced by 

as per the coulombs law and (iv) particle composition (Ju-Nam and Lead 2008).  The 

following section describes the how these engineered NMs released into the environment. 
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2.1.5 Release of NMs to the environment 
 

The release of NMs into the environment occurs through the production of NM containing 

products e.g. release of NMs from commercial textiles during washing and disposal 

(Hartmann et al., 2014). With the increased presence of NMs in commercial products, it is 

vital to know what form the NMs were released and the amount of NM released into the 

environment (Hitchman et al., 2013).  The lack of knowledge based on the amount of NMs 

released into the environment during production is a growing debate due to the unavailability 

of reliable data (Klaine, 2008, Colvin, 2003). Therefore, it is necessary to have clear 

guidelines or protocol to quantify these NMs the effects on environmental and human health, 

which is the main objective of the research. 

 

Figure 2-4: Schematic overview of the possible transformation of ENMs in the environment 

and release of NP from products and (intended or unintended) applications: (a) release of 

free NP, (b) release of aggregates of NM, (c) release of NM embedded in a matrix and (d) 
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release of functionalized NM. Environmental factors (e.g. light, microorganisms) result in 

formation of free NM that can undergo aggregation reactions. Moreover, surface 

modifications (e.g. coating with natural compounds) can affect the aggregation behaviour of 

the NM (Nowack and Bucheli, 2007) 

 

 Release of NMs to the environment not necessarily as a single NM but also as 

shown in Figure 2-4 may be release of NMs embedded in a matrix form (Koehler et al 2008), 

aggregates of NM and release of functionalised NMs, the environmental factors such as 

light, microorganisms that result in the formation of free NM or that can undergo aggregation 

reactions (Nowack and Bucheli, 2007). Thereby the released NMs in various forms as well 

as the nature of the consumer products that contains NMs may have an harmful impact on 

the environment and humans which is not known (Smita et al., 2012).  With the rapid and 

huge production of the engineered NMs and it's release to the environment concurrently, the 

released/ exposure NMs having undesirable intrinsic features leads the harmful impacts on 

the organisms also it is vague about the benefits of NMs that can offset the hazard 

associated (Colvin, 2003). Thereby it is necessary to have appropriate guidelines to evaluate 

and quantify these effects and it is crucial to know physical and chemical properties of NMs 

accurately that confer toxicity.   However, after such increased use of NMs and their release 

into the environment (Health & Safety Laboratory, 2011)  giving rise to poorly understood 

environmental risk. The reason for poor understanding of environmental risk is lack of 

knowledge regarding amount of NM released into the environment, thereby further research 

is required to fulfil the gaps (Keune et al., 2012). In order to fulfil the gaps many 

nanotechnology proponents, commissioned and funded research to review and have a good 

knowledge on amount of NMs released and identify the gaps in the research to till date with 

the view to formulate proposals (Report, 2007). Further, discussion is based on the plausible 

transformation of the released engineered NMs.  
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Figure 2-5: Plausible environmental transport of nanoscale materials based on current and 

potential future applications (Stone et al., 2010) 

The plausible exposures related to engineered NMs transport or diffusion  into 

environment is given in the Figure 2-5 which is taken from royal society and royal academy 

of engineering (RS/RAEngg 2004) (Stone et al., 2010).  

 

 The above Figure 2-5 shows the overview of the possible transformation that occurs 

after the release of ENMs into the environment. ENM transformations can be classified as 

physical, chemical and biological in nature. Their definitions of these transformations are 

summarised in the Table 2-1 (Hartmann et al., 2014). 
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Table 2-1: Definitions of environmental behaviour/distribution process for ENMs in the 

context of this report based on definitions in (Hartmann et al., 2014, Stone, (2010), Nowack 

et al., 2012). 

Environmental 
process Definition 

1. Photo/chemical transformation 

1.1.a  
Photocatalytic 
degradation 

Chemical change induced by light, which includes excitation of 
photocatalytic ENMs (absorption of a photon causing generation of 
free radical species) and photolysis of the ENM or components of 
the ENM (e.g. decomposition of coating material) 

1.1.b  
Oxidation    
(chemical) 

The nanoparticle surface atoms or molecules are oxidized by loss of 
electrons 

1.1.c  
Reduction (chemical) 

The nanoparticle surface atoms or molecules are reduced by uptake 
of electrons. 

1.2.a 
Speciation/ 
complexation 

ENMs (or released ions / molecules) associating with other 
molecular or ionic dissolved chemical substances in the 
environmental matrix. This includes interactions with 
macromolecules (e.g. chemisorption to the ENM surface, forming a 
surface coating). 

1.2.b  
Dissolution 

Process whereby a solid ENM dissolves (release of individual ions 
or molecules) in water. 

1.2.c  
Precipitation  

The process of dissolved species forming a solid phase (such as 
metal ions released from an ENM precipitating into a solid material) 

2. Physical transformation 
2.1.a  
Agglomeration 

Reversible coagulation of primary particles to form clusters 

2.1.b  
Aggregation 
(homoaggregation) 

Irreversible fusing of primary particles to form larger particles of the 
same material. 

2.2.a  
Sedimentation  

Process whereby ENMs in suspension settle out of the water phase. 

3. Interactions with other surfaces and substances 

3.1.a  

Adsorption/ 
‘heteroaggregation’ 

The association of the ENM with other solid surfaces in water. This 
can be divided into: ENM as sorbent: When other substances 
adsorb onto the ENM surface. ENMs as sorbate: When ENMs 
adsorb onto other surfaces. 

3.1.b Desorption Detachment of the ENM from other surfaces into water. 

4. Biological transformation  

4.1.a  

Biologically mediated 
processes 

whereby an ENM undergoes a transformation due to the presence 
of living organisms. This may include processes such as biological 
oxidation and degradation, interactions with bio-macromolecules 
excreted by organisms (e.g. leading to surface coating of the ENM). 
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 Four types of transformations of manufactured nanomaterials which takes place in 

the environment detailed with subclasses for each transformations and process.  

2.1.6 Nanoparticle aggregation and DVLO theory 
 

 ENMs when released to the environment becomes unmanageable, example when 

ENMs released into the natural water or humic acid, ENMs might come in contact with 

organic matter and their size, shape or any other physical properties change. Particle 

agglomeration, aggregation or sedimentation occurs and individual ENMs exist is 

unpredictable. Stability is said to be 'resistance to aggregate' of ENMs (Diegoli et al., 

2008).The process of aggregation is explained in detail below. 

 

 NM aggregation in suspension is mainly due the low energy barrier towards 

aggregation (Baalousha et al., 2008) which can be explained through DLVO theory 

quantitatively, which was developed by Dejaguin–Landau–Verwey–Overbeek (DVLO). 

Theoretically, the process of stability is described by DVLO theory (Merk et al.). The DVLO 

theory combines van der Waals attraction (Eq. 2.1) and electrostatic repulsion (Eq. 2.2) 

which results in the total interaction energy (VT = VA + VR) (Baalousha et al. 2008):,  

  

                     Eq. 2.1 

 

 

  Eq. 2.2 
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  Where  is the permittivity of the medium; R is the particle radius; is the 

surface potential (dimensionless); k is the Boltzmann Constant; T is the absolute 

temperature; h is the surface separation between particles; e is the electron charge; A is the 

Hamaker Constant;  is the inverse-Debye Huckel screening length and can be calculated 

for electrolyte solutions containing different salts (Baalousha et al. 2008):  

                      Eq. 2.3 

where, n, is the number concentration of ion, i, and z, is the valence of the ions. 

  Law of physics on electrostatic interactions i.e. the theory of Coulomb's law states by 

considering two NMs having similar charge and of same type in suspension, the force due to 

this charge is identical, NMs stay isolated due to the existence of repulsive force between 

them that leads to a stable suspension. As the distance between the NMs increases the 

coulombic repulsive force will remain otherwise attractive forces will eventually dominate 

resulting in the NM aggregation. The surface charge of NM in the suspension is affected 

either increase or decrease of pH and ionic strength of a suspension, which leads to the 

process of aggregation, but if the pH is higher aggregation/agglomeration occurs regardless 

of the salt concentration (Nichols et al., 2002). The process of aggregation and 

agglomeration of NMs also occurs when exposed to environment has been published in 

many studies (Baalousha, 2009, Baalousha et al., 2008, Chen et al., 2006). However, highly 

stabilised NMs can decrease their stability and aggregate/agglomerate when exposed to 

highly concentrated NOM (Gimbert et al., 2007). Measurement of surface charge of ENMs or 

zeta potential describes the stability of the colloidal suspension. If NM aggregates are larger 

particles, these larger NMs settle through gravitational force said to be sedimentation. 

Gravitational settling of NMs is given by the Stokes' law: 

    Fd =6πrnVd                                   Eq. 2.4 
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 Where, Fd = is the drag force of the aggregates, n is the fluid viscosity, V is the 

velocity of the aggregate relative to the fluid, and r is the particle radius. Stokes' law states 

that the larger aggregates settles quicker compared to the dispersed NMs.  

 

 The fate  and behaviour (example: dissolution, aggregation, disaggregation) of NMs 

in environmental and toxicology media  have been under investigation for many years with 

misleading assumptions made typically based on NM concentration, for example: NM 

aggregates in exposure media (behaviour) and their fate is subjected to sedimentation and 

eventually removal from the water column. Further discussion is based on different metrics 

used for the quantification of NMs and limitations in analytical tools to quantify the 

appropriate metrics. Thereby, prior to the assessment of fate and behaviour of NMs there is 

a need for higher and more consistence standards to characterise NMs and the metrological 

analysis should be fully reported, without such information our understanding of the human 

and environmental hazard and risks of nanotechnology is of doubtful and questionable.  

 

2.1.7 Limitation for the measurement of NM metrics    
 

 Measurement of NM concentrations are currently under scrutiny by 

nano(eco)toxicologists related to exposure media and at realistic environmental relevant 

conditions, in order to identify the most appropriate dose metrics to express the hazard of 

NMs and therefore to perform risk assessments (Oberdörster et al., 2005; Oberdörster et al., 

2007). The first step in implementing such risk assessment is to have the ability to accurately 

measure NM properties and concentration. Although there is a considerable improvement in 

the characterisation of NMs when compared to the early efforts uncertainties since 

knowledge gaps limiting  in the measurement of dose metrics which is of concern as the 

dispersion of tested NMs in exposures will alter both the effective NM dose and the nature of 

the toxicant (dispersed and aggregated form) (Dale et al., 2015).  
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There are three main dose metrics utilised in toxicology and environmental studies: 

 

i. mass concentrations (units mg L-1) 

ii. particle number concentrations (particles. L-1) 

iii. surface area concentrations (m2  L-1) 

 

 NM mass concentration measurement by ICP-MS (or graphite furnace atomic 

absorption spectroscopy - GF-AAS) is very widely used metric for inorganic NMs because it 

is relatively accurate and widely available. Some of the advantages and limitations of ICP-

MS when compared to other analytical techniques such as atomic absorption spectroscopy 

(AAS), ICP atomic emission spectroscopy and GFAAS are (i) ICP-MS detection limits is in 

the range of 1-10 ppt (parts per trillion) for solutions but whereas the limitations, ICP-MS 

have detection limits to simple solutions having low level of other dissolved materials and 

degrades because of very poorly dissolved capability i.e. some elements such as S, Ca, Fe, 

K and Se have serious interferences in ICP-MS (Gschwind et al., 2011). (ii) ICP-MS also 

gives isotope information (Krystek et al., 2011) (iii) ICP-MS having good sensitivity able to 

detect at lower concentration as low as below ppb (ng/g) and (iV) ICP-MS have major 

advantage with high sample throughput i.e. to analyse vast number of samples for trace 

elements typically less than 5 minutes/sample (Krystek et al., 2011). If six or more 

elements/sample at sub ppb  concentrations ICP-MS is better in comparison with the 

GFAAS (one to three  elements/sample at sub ppb concentration) (Wimuktiwan et al., 2015). 

Hence the mass concentrations metrics by ICP-MS is widely used to measure accurate NM 

mass concentration and well established but being questioned as none of the method is as 

yet fully validated for alternative metrics, especially in complex media. Due its limitation such 

as incapable to measure the accurate number of NMs irrespective of morphology, density or 

optical properties, unable to distinguish aggregates/agglomerates from primary nanoparticles 
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and unable to isolate target NM matrices of naturally occurring NMs, hence particle number 

and surface area concentrations put forward as an alternative metrics. 

 

 Particle number measurement is an alternative metrics considered as appropriate 

(OberdÃrster et al., 2007)  in nano-ecotoxicology and environmental studies because of the 

various reasons as stated above i.e. the limitations acknowledged by mass concentration 

measurement. Currently less attention is paid to the quantification in NM suspensions, which 

leads to the incompetence and misleading to fully understand the NM behaviour and fate. 

While there is a requisition to have most relevant and appropriate metric system relating 

dose measurement to observe environmental and biological fate, behaviour, and health 

effects. The particle number measurements are widely suggested as an appropriate metric 

(Seaton et al., 1999, OberdÃrster et al., 2007). In atmospheric studies, particle number is 

easy to measure but in aquatic systems it is not. Hence development of methodology for 

number concentration is a prerequisite. In aquatic systems, there is a current gap, and 

whereas in atmospheric numerous papers were published on the measurement of particle 

number concentration but they were related to the atmospheric nanomaterials (NMs) such 

as aerosols in road traffic, atmospheric nucleation processes, combustion sources, and 

sources of semi-volatile materials (Borucu et al., 2010, Gidhagen et al., 2005) by using an 

instrument called condensation particle counter (CPC) which counts particles one at a time 

(Aalto et al., 2005) but NONE for aquatic. Scientists have undertaken a significant amount of 

research into the effects of nanomaterials over the past few years. To date this has often 

produced conflicting and contradictory results from different studies on the same NM. It is 

now widely recognized that the major problem with existing studies is the inability to 

adequately characterize the dose of nanomaterials. More specifically, toxicologically relevant 

dose metrics to describe nanoparticle dose-response relationships, in particular based on 

number concentration.  
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 Thereby, there are a number of challenges associated with the measurement the 

particle number concentration, which will be discussed in detail in further section mainly 

analytical techniques suffer inherent limitations and also sampling preparation methodology 

to these analytical techniques is critical to produce accurate results. Hence appropriate 

sampling techniques must be investigated and validated before carrying on with the 

analytical techniques to perform particle number measurement. Hence, this project is on to 

find the methodology/protocol to obtain the appropriate dose metric that can be utilised to 

both environmental and exposure media characterisation otherwise data obtained is 

meaningless without suitable, reliable and detailed information on metrics. Thereby this 

study is emphasised on the development of the new methodology which is challenging to 

measure the particle number of nanomaterials that also facilitates to count the number of 

aggregates in NM suspension both in environmental and exposure media. 

 Specific surface area (SSA) is another dose metric system used in  NM 

characterisation that has become increasingly recognised as important because of the huge 

surface area exhibited by NMs. SSA is used when evaluating dose-response relationships of 

NM in understanding nano-toxicology studies (Oberdorster et al., 2007). The larger surface 

area of NM results in increased surface effects thereby affecting the surface properties such 

as electronic structure, reactivity and so on. SSA must have the ability to measure in 

complex biological media and when particles are dispersed in a liquid medium (Budnyk et 

al., 2010, Heitbrink et al., 2009). The analytical instrument used to measure the SSA is 

Brunauer–Emmett–Teller (BET) technique. Surface area has been defined by ISO (ISO, 

2012a) as the “the quantity of accessible surface of a sample when exposed to either 

gaseous or liquid adsorbate phase. Surface area is conventionally expressed as a mass 

specific surface area or as volume specific area where the total quantity of area has been 

normalised either to the sample’s mass or volume” and that “Specific surface area is defined 

as the surface area of a substance divided by its mass, unit [m2/g]; or the surface area of a 
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substance divided by its volume, unit [m2/cm3]. (Definition taken from (ISO, 2012b)) The 

research should also consider reporting results in both m2/g and m2/cm3.” (ISO, 2012b).  

 The following sections are review on some of the published papers related to number 

concentration metric. The analytical techniques such as NTA, single particle ICP-MS 

spectroscopy and laser induced breakdown detection (LIBD) are used to measure the NM 

number. The review of these techniques is as described below. 

2.1.8  Review on techniques related to particle number concentration 
 

 The current research is based on the measurement of particle number in liquid 

suspensions.  The nanoparticle tracking analysis (Boyd et al., 2011, Carr, 2008, Du et al., 

2010, Gallego-Urrea et al., 2010) is one such instrument used to measure the particle 

number where NMs were suspended in liquid. NTA is a new technique that also measures 

the hydrodynamic size and particle number measurement which was introduced in the year 

2004 (Carr, 2008, Du et al., 2010, Haiss et al., 2007a). Whereas, NTA technique as inherent 

limitations in term of accurate sizing of nanomaterials (NMs), accurate determination of 

number concentration and the lower particle size limit (Carr, 2012). By using NTA 

instrument, NMs in suspension can be visualised on an individual basis based on Brownian 

motion (Malloy and Carr, 2006, Du et al., 2010).  While NTA technology comprises of the 

direct illumination of laser beam on to the surface of the particles in suspension. This can be 

visualised, sized, counted in real time using the CCD camera, Carr et al. (Carr, 2008, Malloy 

and Carr, 2006) also developed the single particle tracking programme (HaloTM 2.3 NTA), 

software.  The study was carried out by the Du et al. (Du et al., 2010) to compare the 

number concentration of NIST PS nanobeads at different concentration, both by 

experimentally and mathematically which is shown in the graph (see Figure 2-7). They 

reported there was a very good agreement between the calculation and experimental 

method and also stated that accuracy can be increased by controlling the sample 

concentration. Whereas the size of NMs used in NTA published papers were in the range of 
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50 to 100 nm. But NTA technique suffer inherent limitations in term of accurate sizing of 

nanomaterials (NMs), accurate determination of number concentration and the lower particle 

size limit i.e. 50 to 100 nm (Carr, 2012).  NTA provides hydrodynamic diameter 

measurement for the NMs size similar to DLS instrument (see Section 3.5.1). 

 

Figure 2-6 Comparison of the measured particle number concentration with mathematical 

calculation and the experimental concentration of the NIST precision nanobeads (Du et al., 

2010).  

  

 While single particle ICP-MS spectroscopy is another analytical technique to 

measure the number concentration. This method was first proposed by McCarthy et al. (J. 

McCarthy, 1993). Each pulse shown in the graph (see Figure 2-7) can be counted as a 

single particle and the amplification of the each signal is a function of the particle size. 

(Degueldre and Favarger, 2003a).  This transient signal was induced because of the flash of 

ions in plasma torch, which can be detected and measured by the mass spectrometer 

detector of SP ICP-MS. This process is a light based technique. Another technique adopted 

to analyse aerosols is inductive coupled plasma –atomic emission spectroscopy (ICP-AES) 

(GROW, 1997), which was first proposed by Brochet et al.(Brochet U.K, 1998) .  
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Figure 2-7  Based on the above signal, particle number concentration can be obtained  

(Degueldre and Favarger, 2003b). 

 Figure 2-8 shows the signal obtained by SP-ICP-MS; each pulse is represented as a 

single particle. Equation below gives the number of NM counted per second which is said to 

equal to the NM flux that is every NM entering the plasma is counted (Miller, 1924).  

      Eq. 2-5 

where: cp=nanoparticle concentration in sample (mL-1) , Fs is sample flow rate mL/min), p=   

average analyte mass in nanoparticle (g) and εn is nebulisation efficiency.  

  

 The process of investigation to calculate the number of NM is still undergoing by 

integrating DLS with SP-ICP-MS and FFF coupled with SP-ICP-MS. This instrument suffers 

sensitivity issues when environmental samples are fed to the instrument (Degueldre and 

Favarger, 2003b). For the measurement of particle number concentration there is a huge 

limitation in analytical instruments to provide precise measurement.  The following section is 

based on the analytical instruments that can facilitate to measure the NM number 

concentration. 
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2.1.9 Analytical Instrumentation  
 

 The invention of force microscopy by IBM scientists in 1986 (Binnig et al., 1986), is 

one of the foremost instrumentation to image the NMs. To date the instrumentation such as 

microscopies and spectroscopies improvised and also facilitate to couple with the various 

instruments example TECNAI TEM can be coupled with elemental analysis instrument (X-

EDS). There are many limitations when considering to image or view the NMs of size range 

1-100 nm, such limitations are discussed below.  

Analytical techniques such as nanoparticle tracking analysis, ICP-MS and microscopy 

(Baalousha and Lead, 2012; Boyd et al., 2011; Mitrano et al., 2012) techniques suffer 

inherent limitations either in term of accurate sizing of NMs, accurate determination of 

number concentration, the lower size limit or the availability of a standard validated 

procedure for sample preparation and analysis.(Baalousha and Lead, 2012; Linsinger et al., 

2012) Other analytical methods deliver other NM size distributions (e.g. intensity for dynamic 

light scattering (DLS) and mass/volume for field flow fractionation (FFF) that need to be 

mathematically converted to the required number-based size distribution. This conversion is 

usually based on a number of assumptions (e.g. the NMs are spherical, non-permeable and 

non-aggregated) and is thus prone to errors, difficult or even impossible if the mass fraction 

of NMs is not sufficiently large.(Baalousha and Lead, 2007; Baalousha and Lead, 2012; 

Baalousha et al.  

 

In brief, the analytical techniques such as LIBD-laser induced breakdown detection, 

FCS, and NTA can measure number particle concentration in suspension and in dynamic 

mode; however, these techniques do not have the ability to distinguish a target NM in a 

complex media or in a mixture of NMs of different compositions. NTA and SP-ICP-MS suffer 

inherent limitations of the lower size limit (e.g. typically >10 nm). Therefore, LIBD, FCS and 

NTA were also ruled out for further investigation.  
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An ideal technique for the determination of particle number concentration should be able 

to  

 

i. Determine an accurate number of NMs irrespective of morphology, density or optical 

 properties of NMs, 

ii. Distinguish aggregates/agglomerates from primary nanoparticles,  

iii. Isolate a target nanoparticle in a complex matrix containing nanoparticles of different 

composition (e.g. manufactured nanoparticles in a matrices of naturally occurring 

 nanoparticles),  

iv. Measure number concentration at environmentally relevant concentrations  

(ng-µg L-1) and 

v. Cover the entire nanosize range (e.g. 1-100 nm),  

vi. Provide an accurate measurement of NM dispersion. 

 

 However, there is a need for validated analytical tools/methods capable of providing 

fully quantitative assessment of NM exposure and dose based on the different dose metrics 

at environmentally/toxicologically relevant concentrations. Thereby this research was a 

challenge to develop and validate accurately the analytical tool that facilitates the above 

mentioned points.  

 

 

 

 

 

 

 

 



31 
 

2.2 Research aims and objectives 
 

 This project aims to develop a fully validated method for the quantification of number 

concentration of engineered NMs in aqueous exposure and environmental systems. To 

achieve this goal the following sub-objectives are identified:  

 

Aim 1:    To synthesize and characterize a range of Ag and Au NMs   

Aim 2:    To develop and validate a sample preparation method to enable the quantification 

    of particle number concentration by force and electron microscopy  

 Aim 3:   Demonstrate the applicability of this validated sample preparation method to detect 

   and quantify the number concentration of NMs in complex media at realistic      

   concentrations  
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Chapter 3 THEORY OF SYNTHESIS AND CHARACTERISATION OF NMS 
 

3.1 Theory for the synthesis of nanoparticles  
 

 In this section different types of synthesis are critically reviewed. There are various 

methods for the synthesis of metal nanoparticles, in general the process of NM synthesis are 

categorised into (i) chemical methods and (ii) physical methods. which  are given in the form 

of flow chart (see Figure 3-1). Some of these synthesis methods were further discussed. 

Chemical Synthesis
Physical Synthesis

Non-
hydrochemcial
method

Solvothermal 
Method

Hydrochemical 
method

Ultrasonicationelectrochemical 
method

photochemical microwave-
polyol

Spark discharge 
method

Arc Discharge 
Method

Types of NM Synthesis

 

Figure 3-1. Types of NM synthesis 
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3.1.1 Chemical Synthesis Methods 

 

 Chemical synthesis is a process of reduction reaction, for example, reducing the 

precursor such as Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) in the presence of 

reductants.  The structure of these NMs can be more easily controlled than physical 

methods and can be performed by optimizing experimental parameters like temperature, 

surfactants and solvent compositions. Chemical synthesis may be categorised as follows (i) 

Solvothermal Method (ii) Hydrothermal method and  (iii) Non- hydrochemcial method. 

 

3.1.1.1  Hydrochemical Method 
 

 In this hydrochemical method, the chemical reaction takes place in aqueous solution 

rather than organic or polyol solutions (Franklin Kim, 2002). The hydrochemical method has 

many advantages in synthesis of metal and other NMs, such as (i) uniform size of NMs (ii) 

understanding of the growth mechanism and (iii) providing a relatively slow growth rate, 

which is favourable to control kinetically (Cao et al., 2009, Cao).  

 

3.1.1.2   Ultrasonification method 
 

 A schematic illustration of this method is shown in the Figure 3-2. The procedure 

adapted by Li et al. and synthesised nanoprisms, by added PVP and ethylene glycol solution 

in a conical flask, stirred by a magnetic stirrer followed by adding gold stock solution to the 

flask (Li et al., 2006).  Subsequently the flask was mounted on a sonification flask and 

ultrasonically irradiated for a certain time as given in detail by Li et al. (Li et al., 2006) . 

During irradiation, argon gas was utilised to remove the oxygen in the flask.  
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Figure 3-2. Schematic illustration of an ultrasonically irradiated process (Amendola et al., 
2008) 

 

3.1.1.3   Non-hydrochemical Method 
 

 Non-hydrochemcial methods are categorised as follows, the: (i) Polyol Reduction 

Method (Cristina E. Hoppe)  and (ii) Template Method (Liu et al., 2009). The Template 

method is classified further as soft template and hard template. In case of the Polyol 

reduction method, NPs are synthesised by using polyols such as ethylene glycol, PVP and 

so on, known as polyol process (Wei et al., 2011). 

 

3.1.2 Physical Synthesis Methods 
 

 Further methods of synthesising nanomaterials are the: (i) arc discharge method 

(ADM) (ii) chemical vapour deposition (iii) electrodeposition (iv) sol-gel synthesis (Schramm 

et al., 2012) (v) high energy milling/ball milling (Chen and Liu, 2012) (vi) nanolithography and 

use of natural nanoparticles. Method (i) and (ii) are similar, separates molecules and atoms 

are by vaporisation and then allows them to deposit in a controlled manner to form 

nanoparticles (Ashkarran et al., 2009, Lee and Park, 2007, Tseng et al., 2009, Tien et al., 

2010).  The schematic set-up of the arc discharge method is shown in the Figure 3-3. (iii) is 

similar to the first two methods but occurs in solution. In ball milling, nanocrystalline 
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structures are derived from macro-crystalline structures but the original integrity of the 

material is retained (Farbod and Khademalrasool, 2011).  

3.1.2.1  Arc Discharge Method 
 

 The arc discharge method consists of mainly two parts – a high current DC power 

supply and a reactor, which includes two electrodes either Ag or Au (anode, cathode) and a 

micrometer or servo control system to move the anode towards the cathode, to maintain gap 

distance between two electrodes. Arc discharge happens between two electrodes when a 

high voltage is applied.  In the case of electrodeposition (Ashkarran et al., 2009) reactors will 

be immersed in gold solution, when the arc discharge happens between the electrodes the 

HAuAl4 reduces by means of electrons from the plasma zone (Ashkarran et al., 2009). 

 

 

Figure 3-3. DC arc discharge system (Lee and Park, 2007, Lung et al., 2007, Ashkarran et 

al., 2009, Tien et al., 2010) 

 

3.1.2.2  Spark discharge method 
 

 The schematic shown in Figure 3-4 and Figure 3-5 is similar to the arc method, 

instead of arc between the electrodes, a spark is initiated by gas breakdown. This is one of 
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the most versatile techniques for the generation of the nanoparticles in the gas phase. Here 

the electrode material is evaporated in the vicinity of the spark (Ashkarran et al., 2009) and 

also the vapour cloud is less compared to the evaporation-condensation process. Also, 

cooling period below the boiling point is quick enough to obtain very high concentration of 

very small particle forms. 

 

 

 

Figure 3-4. Schematic of arc discharge method (Tseng et al., 2009) 

 

 

 

 

Figure 3-5. Schematic illustration of spark discharge method (Tabrizi et al., 2008, Tabrizi et 

al., 2009) 
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3.2 Conclusion for Synthesis Procedure 
 

 In section 3, both chemical and physical synthesis methods are explained concisely. 

But for the current research, to measure the particle number concentration, initial work was 

carried out by synthesising the gold nanoparticles using the wet-chemical approach (Cristina 

E. Hoppe, Xu et al., 2007, Zhou et al., 2009). This type of synthesis was selected because 

the gold nanoparticles are extremely stable non-toxic, biocompatible and less polydispersed  

Au NPs can be easily synthesised in-house. A one-step procedure (Chen and Liu, 2012) 

was adopted for growth of spherical gold nanoparticles and using poly (N-vinyl-2-

pyrrolidone) PVP as a capping agent. PVP is a commonly used protective agent in metal 

nanoparticles synthesis and  easily soluble in water and protects against agglomeration of 

colloids. This process is known as polyol process (Xu et al., 2007, Sun and Xia, 2002).  Here 

the gold nanoparticles can be easily synthesised approximately by 10 minutes by adding 

sodium hydroxide as an initiator for the reduction of HAuCl4 in the presence of PVP as a 

capping agent. Using this process, extremely stable and monodispersed NMs can be 

obtained (Zhou et al., 2009). This is considered to be a green chemistry concept because it 

doesn’t consume energy and reaction time is much less. Investigators of this approach 

concluded that synthesis is much faster, green chemistry concepts evolved by the not 

consuming energy and eradication of toxic surfactants (Cristina E. Hoppe, Zhou et al., 2009).  
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3.3 Theory of characterisation Techniques 
 

 Some of the different analytical techniques employed in this research for the 

characterisation of NMs are explained in detail below.  

3.4 Dynamic Light scattering (DLS) 
 

Dynamic light scattering is also known as photon correlation spectroscopy (PCS), which is a 

very popular technique to measures the size of the nanoparticles (Hoo et al., 2008).  A laser 

light beam, is directed into a solution containing nanoparticles in liquid media (Pecora, 

2000). The light is scattered and then detected at certain angles (Pecora, 2000). The size 

measurement is based on scattered light fluctuations over time caused by the Brownian 

motion of nanoparticles (Schmidt and Skinner, 2004). The principle of operation of dynamic 

light scattering is given shown in the Figure 2-18. 

 

Figure 3-6. Principle of operation of dynamic light scattering instrument  

 

 The principle of this instrument is shown in the Figure 3-6.  A laser passes through 

the cell via attenuator, the light is scattered and detected by a photomultiplier (detector), 

which transforms the variation of scattered light intensity  to the correlator. The graph shows 

the intensity of light scattered as a function of time at a given angle (see Figure 3-6) (Miller, 

1924).  Thereby, the correlation calculations are derived from the fluctuations of scattered 
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light, which allows the diffusion coefficient D, of the Brownian particle to be determined. The 

rate of decay of the correlation function provides the line width of the scattering light 

(Schmidt and Skinner, 2004, Miller, 1924, Sartor), which is given below in equation 2-1 

 

                                             Eq. 3-1 

 

where Γ is the decay rate. Dt   the translational diffusion coefficient  and at the range of angles 

depending on the wave vector q. (Schmidt and Skinner, 2004)   

      

                       Eq. 3-2 

 

where λ is the incident laser wavelength, n0 is the refractive index of the sample and θ is 

angle between the detector and the sample cell. 

 

                                                                                        Eq. 3-3 

 where D is the diffusion coefficient of particles,  is the Boltzmann constant, T is the 

temperature, η is the dynamic viscosity of the continuous phase and is the hydrodynamic 

radius.  From this equation the hydrodynamic radius of an object can be determined.  

 

 The hydrodynamic size is measured by DLS which gives radius of its dense core 

and the thickness of any layer of adsorbed molecules on its surface (like polymers, water, 

surfactants and so on) (Sartor). This hydrodynamic size measurement may give additional 
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information such as core size and the capping size of NMs when compared to the radius 

measurement using other techniques like transmission electron microscopy (TEM).    

 

Figure 3-7. Hydrodynamic radius of a particle coated with ionic polymer (Pecora, 2000, 

Sartor). 

  

 Although DLS is suitable for size measurements at the nanoscale, in dilute and 

transparent media, it has a number of limitations while for samples exposed to environment 

becomes ineffective if the media is opaque (Pecora, 2000). No light transmitted through the 

complex /opaque media. The natural organic materials NOM or any low heat capacity 

solvents are very sensitive to the thermal effects induced by the absorption of the laser 

beam .  

 

3.4.1 Electrophoretic Mobility (EPM) and Zeta Potential 
 

 Electrophoretic mobility (EPM) is the mobility of the dispersed particles under the 

influence of an electric field. EPM is measured as the velocity per unit voltage gradient of a 

particle in a liquid (10-8 m2 V-1 S-1).  Its value is dependent on the charge at the boundary 

between the atoms moving with the particles and those remaining in the bulk solution. (Jiang 

et al., 2009, Jérôme F. L. Duval, 2007).  
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Figure 3-8 Schematic representation of zeta potential (Jérôme F. L. Duval, 2007). 

 

 Zeta potential (V), is a potential that exists between the particle surface and 

dispersing liquid  that determines the particle interaction forces or degree of repulsive or 

attractive between particles, stability of the NMs depends upon the balance of the repulsive 

and attractive forces, which exists between the particles as they approach each other. In 

other words, instability of the particles is mainly due to little or no repulsive force between 

them, which results in aggregation or flocculation (Carr et al., 2008). Samples are said to 

stable if they have a large negative or positive zeta potential (Griffiths et al., 2011) that range 

between > +30 mV or > -30 mV. 

 As shown in the Figure 3-8, the liquid layer surrounding the particle consists of two 

parts; Stern region (ions are strongly bounded) and outer diffuse layer (ions are less firmly 

associated). In the diffuse layer the ions within the boundary move due to gravity, those ions 

beyond the boundary stay with the bulk dispersant.  
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Figure 3-9. Effect of pH on zeta potential (Kirby and Hasselbrink, 2004)  

 

 The potential that exists at this boundary is the zeta potential. Particles with zeta 

potentials > +30 mV or > -30 mV are normally considered stable. Zeta (ξ) potential can be 

calculated from EPM based on (Jérôme F. L. Duval, 2007) equation 3-4. 

 

                                                                                                                    (Eq.3-4) 

 

 where ξ is the zeta potential, ν is the measured electrophoretic velocity, η is the 

viscosity, ε is the electrical permittivity of the electrolytic solution and E is the electric field.  

 

3.4.2 Ultra violet – visible spectroscopy 
 

 SPR is a theory to interpret how nanosize metal surfaces interact with incident light.  

It is measured by Vis spectroscopy. It emerged as a powerful optical detection technique, for 

the interaction of photons with the surface of NPs which provides the observed light. SPR is 

defined (Link et al., 2000) as coherent motion of the conduction-band electrons caused by 
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interaction with an electromagnetic force (EMF) (Mohd Sultan and Johan). For spherical 

particles, which are those less than 20 nm, this is explained by Mie theory. Link et al. 

provided the theory for larger NPs and other shapes like rod GNPs. As the particle 

aggregates the absorbance band also increases as well as shifts left to right with larger sizes 

(Van Hyning and Zukoski, 1998). In this technique, the aggregated particle will display 

further increases in absorbance and higher wavelength (Mock et al., 2002, Miller and 

Lazarides, 2005). SPR of gold NPs of particle size 2-50 nm shows an absorption maximum 

at 520 nm, while silver NPs have a maximum absorption of 400 nm. In spectroscopy, 

absorbance (A) is defined as:(Mohd Sultan and Johan) 

 Aλ= log10 (I0/I) (Eq.3-5) 

 

 where I is the intensity of light at a specified wavelength λ, which are passed through 

the samples i.e. transmitted light intensity  and I0 is the intensity of light before it enters the 

sample i.e. incident light intensity (Mohd Sultan and Johan).  Its unit is given as AU. In 

UV/VIS spectroscopy absorbance is expressed as ratio of (I/I0), called transmittance (%T) 

and expressed as a percentage. Therefore, the absorbance A, based on the transmittance is 

given as; 

 A = - log (%T) (Eq.3-6) 

 

 

3.4.3 Flow field-flow fractionation (F/FFF) 
 

 Flow field-flow fractionation is widely used for separation and characterisation for  

particles and polymers > 1 nm is size (Giddings, 1993). This technique is used in a wide 

range of research areas and the theory of FFF was proposed by Giddings in 1960s 

(MYERS, 1976). After the proposal of this technique, different sub-techniques (Giddings, 

1993) are categorised such as, flow (F/FFF), sedimentation (SdFFF), thermal (ThFFF), 
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electrical (ElFFF) and gravitational (GrFFF). In this project, the F/FFF technique is utilised. It 

is again categorised into two types, symmetrical FFF (FlFFF) and asymmetrical FFF 

(AsFlFFF), whereas, in this study symmetrical FFF is used.  

 A schematic representation of the F/FFF is shown in the Figure 3-10. It is a 

symmetrical system which is developed in 1970 (Fraunhofer and Winter, 2004). Separation 

process in this system occurs in the ribbon-like channel with an applied filed (see Figure 3-

10. This channel contains the Perspex blocks surrounded by ceramic frits. In order to 

prevent small particles passing through an ultrafiltration membrane is placed between the frit 

and channel (Baalousha et al., 2005b).  The membrane acts as an accumulation wall that 

prevents loss of samples through ceramic frits. 

 

Figure 3-10 Schematic diagram of F/FFF channel (Assemi et al., 2004).  

 

 Separation of particles takes place in the channel by a carrier solution, usually a low 

ionic strength salt solution or surfactant in pure water (Assemi et al., 2004).  The selection of 

carrier solution is of paramount importance in order to minimise sample interactions and 

maximise separation. Several of them are reported by (Dycus et al., 1995).  

 



45 
 

 

Figure 3-11 Schematic illustration F/ FFF separation mechanism.(Giddings, 1993, Assemi et 

al., 2004, Fraunhofer and Winter, 2004). 

 

 When the particles are injected through sample loop at the top of the channel, 

particles are carried along the parabolic flow profile as shown in the figure above, where the 

smallest particles move fastest. Immediately after injecting the sample, the sample moves 

towards the accumulation wall, i.e. when the stop-flow procedure starts where channel 

remains on but channel flow off (Thang et al., 2001). During the flow, the specific thickness 

NMs or species spread into different zones depending upon the hydrodynamic diameter and 

the applied flow field (Koliadima and Karaiskakis, 1990). The smallest particles were carried 

prior to the larger ones, along the parabolic flow and fractionation starts (Thang et al., 2001). 

After separation, the sample can be detected by various methods, usually in-line from the 

channel end. Methods the F/FFF may be coupled with are: (i) UV (most common method of 

detection). (ii) fluorescence (Hassellov, 2005) (iii) ICP-MS (Stolpe et al., 2005, Lyven et al., 

2003, Baalousha et al., 2006), (iv) multi angled laser light scattering MALLS (Baalousha et 

al., 2005b, Baalousha et al., 2005a) (v) transmission electron microscopy (TEM) (Gimbert et 

al., 2006, Gimbert et al., 2007, Baalousha et al., 2006) and (vi) AFM (Baalousha and Lead, 

2007). 

 

 



46 
 

3.4.4 Atomic force microscopy (AFM) 
 

 Atomic force microscopy evolved from scanning probe microscopy (SPM). SPM is 

used to visualise and manipulate the atoms and molecules. Three dimensional images can 

be obtained, which also provides nanometer scale resolution. AFM works by placing a probe 

on the end of the cantilever. The force between the probe and the end of the cantilever is 

measured by the simple theory of spring constant (see Figure 3-12). The probe (tip) is at the 

end of the cantilever (A), the amount of force between the probe and sample depends upon 

the spring constant or stiffness. This is said to be Hooke’s Law (Meyer, 1992):    

 F = - k*x (Eq.3-7) 

where F is force in N, x is the cantilever deflection in metre and k is spring constant N/m. 

The force between the tip and the sample can be calculated by maintaining the constant tip-

sample separation and by using Hooke’s law. Where the spring constant k, which the beam 

with constant cross section is given by (Meyer, 1992): 

 

 k = 3 E I / l3      (Eq.3-8) 

where E is the young’s modulus, l is the length and I is the moment of inertia. The moment of 

inertia I, for the beam of width b and thickness d is given by the equation:  

 I = b d3 / l2 (Eq.3-9) 

 As per the interactions between the tip and sample surface, AFM can be classified as 

(i) contact mode (repulsive) and (ii) non-contact mode (attractive). The force between the tip 

and the sample surface is very small, i.e. < 10-09 N.  The working principle of AFM in contact 

mode is shown in the Figure 2-19. 
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A B C
 

Figure 3-12 (A) Schematic diagram showing the operating principles of the AFM in the 

contact mode (picture from digital instruments, CA) (B) Schematic illustration of the 

cantilever and the distance between the probe and the sample surface, (C) SEM image of 

the SPM cantilever with the probe. (Picture taken from MikroMasch).(Meyer, 1992) 

 

 AFM technique utilises tip or probe scans across the sample surface. The tip-sample 

position is adjusted based on the set-point determined by the user. After the set-point is 

given, the tip comes in contact with the sample surface by adsorbed gas layer (Meyer, 

1992). Then, scanning of the sample takes place under the action of a piezoelectric actuator 

(Uchihashi et al., 1994). The laser beam is aimed at the back of the cantilever-tip assembly 

and reflects off the cantilever surface towards the split photodiode detector, which can detect 

even a small moment of the deflections in cantilever (Rao et al., 2007). Each deflection (i.e. 

the distance the scanner moves in the Z-direction) is recorded by the software. The position 

of the reflected beam on the photodiode detector is monitored by the position sensitive 

detector (PSD), i.e. a two or four segmented photodiode. A feedback loop maintains the Z-

direction movement (i.e. between tip-sample) to the set-point. Otherwise the tip will crash 

into the sample surface.  
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3.4.5 Transmission electron microscopy (TEM) 
 

 Ernst Ruska, the German engineer was the first to commercially introduce the 

instrument in the year 1931. Transmission electron microscopy (TEM) provides information 

on shape, size and imaging of NMs which were produced between the interactions of the 

samples with the electrons generated by electron gun in the microscopy. The image 

obtained from this technique also gives shape factor, fractal dimensions and particle size 

distributions. Furthermore, TEM can be coupled with the energy dispersion X-rays (EDX), 

electron energy loss spectroscopy (EELS) and which can provide the chemical and 

elemental information.   

 

Figure 3-13.   FEI Philips TECNAI F204 (Oxford Instrumentation). 

 

 The instrument employed in this research is shown in Figure 3-13, Phillips TECNAI F20, 

fitted with Oxford Instruments ISIS EDS and Gatan digi PEELS,  with a resolution of 0.24 

nm and a focal length of 1.77 nm.  
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 The basic principle of instrument operation is shown in the Figure 3-14 below.  An 

electron beam from an electron gun passes through the electromagnetic condenser lens 

through the sample and through an objective lens and then down to CCD camera. 

Condenser lens controls the size and intensity of the beam hitting the sample. The objective 

lens controls the magnification. TEM images show the internal structure of specimen of 

magnification up to one million times, if the structure is in atomic resolution.  

 

Figure 3-14.   Schematic illustration of the internal function of TEM (taken from the oxford 

instruments).  

 TEM is one of the most powerful and impressive instrumentation with a huge number 

of advantages they are as follows: 

 Having wide range of applications that can used in different scientific, industrial and 

educational departments 

 Images have very high resolution 0.24 nm and can obtain higher quality images 
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 TEM provides surface analysis, shape of NM measurements, size measurements 

and structure. 

 When coupled with X-EDS can obtain the elemental analysis. 

In this investigation, TEM is used very extensively to image the NMs and measure the 

nanoparticle number concentrations. 

 

 

3.4.6 Nanoparticle tracking analysis (NTA) 
 

 NTA is used for sizing, counting, visualizing and measuring the particle number 

concentration. The particles to be viewed are suspended in liquid and they move under 

Brownian motion. Smaller particles move faster than the larger particles. Through the 

application of stokes equation, particle size can be calculated and also the particle 

concentration can be estimated using the software provided.  

 

 

3.4.7 Inductively coupled plasma mass spectrometry (ICP-MS) 
 

 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)  is used to measure the 

mass concentration of the NMs in suspension and measures all most all the elements in the 

periodic table. It also detects both metallic ((Hirner et al., 2006)) and non-metallic (Ammann, 

2007)  elements at concentrations as low as 10 ppt and very vastly used to measure the 

mass concentration of NMs and utilised in many fields such as environmental and life sciences, 

geochemistry, archaeology and so on (Gurunathan et al.). The diagram shown below was the 

first ever developed ICP-MS in the year 1992. Later in the year 2014, ICP-MS is improvised or 

enhanced its specification to quantify single particles which is said to single particle ICP-MS. 
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Figure 3-15.  Schematic illustration f the ICP-MS instrument which was first introduced in the 

year 1983 (Jarvis and Jarvis, 1992) 

 

 The first introduction of the ICP-MS instrument and made commercially available is 

shown in the above Figure 3-15, which was first introduced in 1983, later version on this 

technique continually improvised. Figure 3-16 shows the recently improvised version of the 

ICP-MS in 2012. Some of the vital components of the ICP-MS are sample introduction 

system, ICP torch and radio frequency (RF), quadrupole mass filter and detector, Vacuum 

system, electrostatic analyser ESA, coil, and interface (see Figure 3-16). NM samples are 

introduced into the spray chamber where the ions are generated.  The plasma source 

ionises the all most all the elements in the periodic table, an interface system will transfer all 

the ions from corrosive high temperature and high pressure surrounding from the argon 

plasma (as an excitation source ionises the sample) into the mass spectrometry analyser 

having room temperature under low pressure (where mass spectroscopy selectively 

transmits sample / analyte ions into ratio of mass/charge) to the detector (Allabashi et al., 

2009). The mass analyser filter gives the ratio of mass/charge, the separation of ions 

obtained on the basis of mass/charge ratio (Gurunathan et al.). In order to obtain the mass 

concentration of the element (which is the sample used) the principle is the electrical signal 
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from the detector (de Wit et al., 1993) is compared with a signal given by a certified 

reference material used to calibrate the system (Zeisler et al., 2006).  This is used in the 

studies to measure the mass concentration of the synthesised NMs which can be used to 

correlate or cross verify with the measurement of particle number. But ICP-MS technique 

limits the use if the samples having complex media such as natural organic materials and 

exposure media. 

 

 

Figure 3-16.  A diagram showing the cross section of the different components of modern 

ICPMS (de Wit et al., 1993) 
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Chapter 4 MATERIALS AND METHODOLOGY 
 

4.1 Chapter summary  
 

 In this research, synthesis of good quality of NMs was of paramount importance for 

the quantification of particle number. Gold nanoparticles were selected since they are 

electron dense, easily distinguishable from many backgrounds, easy to synthesis, cost-

effective and as well as can control the size and shape. Gold nanoparticles were 

synthesised with two different coating such as citrate and polyvinyl pyrrolidone (PVP). The 

process of synthesis of gold NMs is given in the first section. These NMs were characterised 

and quantified for number measurements using different spectroscopic and microscopic 

techniques. The second section of this chapter describes the different techniques used to 

characterize the physicochemical properties such as size of the NMs and the mass 

concentration measurements of NMs.  

 

The third section presents the sample preparation techniques for the microscopic 

studies. The methods include AFM and TEM techniques which is the most challenging part 

of the study. This technique required further development of sampling methods to allow for 

the measurement of particle number. The method developed in this work is detailed in this 

section and is referred to as the improvised/ enhanced method. Thereby, third section is 

emphasised on improvised method. This improvised sampling technique validation was 

performed by using microscopies by counting NMs present in pure water media (simple 

media). 

 

The fourth section of this study is based on the process of adding different 

environmentally relevant media to the synthesized nanoparticles. The last section presents 
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the validation and the imaging methodology of the substrates by AFM and TEM techniques 

for quantitative measurement of particle number and size.   

 

4.2 Synthesis of gold nanoparticles  
 

 Gold nanoparticles (AuNMs) were synthesised in-house by chemical method of 

synthesis, according to the methods described elsewhere (Wraycahen et al., 1995, 

Greenwood et al., 1995, Zhou et al., 2009, Baalousha et al., 2010, Hitchman et al., 2013). 

Two separate AuNM suspensions were produced; either coated with polyvinylpyrrolidone 

(PVP10-AuNMs) or citrate (cit-AuNMs) and was used in this study to validate a fully 

quantitative sample preparation protocol for particle number concentration using TEM. The 

two NMs (cit-AuNMs and PVP-AuNMs) were selected to represent charge- and sterically- 

stabilised NMs, respectively. 

 

4.2.1 Materials 
 

 

 The  chemicals used for  the  synthesis of gold NMs have been purchased from 

Sigma-Aldrich are as follows: tetrachloroauric acid (HAuCl4.3H2O), poly(N-vinyl-2-

pyrrolidone) with the average molecular weight of 10 000 g/mol (PVP10), trisodium citrate 

dihydrate  HOC(COONa)(CH2COONa)2·2H2O and NaOH.  These chemicals were analytical 

grade, and used without further purification. The water used for all reactions and 

preparations was ultra-high purity water with a resistivity of > 18.2 MΩ cm at 250 C. All 

glassware used for the synthesis immersed for 24 hours in aqua regia (3 parts HCl: 1 part 

HNO3), later rinsed with UHPW and air dried. Substrates for the microscopies such as 

Carbon coated copper grids for TEM sample preparation and mica sheets 11mm x 11mm x 

0.15 mm for AFM was purchased from the Agar Scientific, UK.  
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4.2.2 Synthesis of Au NMs capped with citrate  
 

 The synthesis of Au NMs by citrate reduction of HAuCl4.3H2O was according to the 

procedure followed by Turkevich (Turkevich, 1951b) later modified by Frens (Frens, 1973) 

and others. A 100 ml stock solution of 25 mM Hydrogen tetrachloroaurate was prepared 

using ultra high purity (UHP) water, of which one ml was further diluted in 99 ml of UHP 

water. The diluted solution of HAuCl4 was heated to boiling point while stirring vigorously and 

then 4 ml of trisodium citrate stock solution (concentration of citrate stock solution - 25 mM) 

was added quickly. Further heating was carried out for approximately 15 minutes until the 

colour of the solution changed from pale yellow to deep red. Finally the solution is kept at 

room temperature. The purification of the samples was carried out during sample 

preparation by washing the NM containing substrate after ultracentrifugation and later dried 

under room temperature (for detailed see Section 4.5).  

 

4.2.3 Synthesis of Au NMs capped with polymer (PVP10) 
 

 Au NMs with a PVP coating were synthesised using two different synthesis methods 

such as, hot and cold method. In case of the hot method, the mixture of gold and PVP 

solutions was heated to the temperature of 70 0C. While for the cold method procedure; 

synthesis of AuNMs was carried out at room temperature. The procedures are explained in 

detail below.  

 

4.2.3.1  Hot process  
 

 For the preparation of the Au NMs by the hot process method, the 100 ml stock 

solution of 25 mM Hydrogen tetrachloroaurate was prepared using ultra high purity (UHP) 

water, of which one ml was further diluted in 99 ml of UHP water. The diluted solution of 
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HAuCl4 was heated to boiling point while stirring vigorously and then the solution of PVP10 

was added as summarised in Table 4-1 and heated at 70 0C for 3.5 hours. After cooling, the 

solution was washed with water in the ratio of 3:1 and centrifuged for 10 minutes at 4000 

rpm. Eventually, these NMs were dispersed in water and filtered with 100 nm filter paper. For 

these studies, the hot process was ruled out for the further experimentation due to the 

aggregation and polydispersity of NMs.  

 

 

4.2.3.2   Cold process  
 

 The cold process of synthesis of NMs was given in detailed in the published papers  

(Zhou et al., 2009). In this process the Au NMs were synthesised without the use of the 

reducing agent, reducing energy consumption, with less reaction time and retaining control 

of size. As shown in the Table 4-1, three different sizes of PVP capped Au NMs were 

synthesised.  Briefly, PVP-Au NMs were synthesized by adding an aqueous solution of 

tetrachloroauric acid (100 ml of 5 mM) to a solution of 2.5 mM PVP with vigorous stirring at 

room temperature (30 minutes at 210 C). 100ml of 0.1M sodium hydroxide (NaOH) solution 

was then added to initiate the reduction of the gold ions to form Au NMs.  

 

 In this method, colour changes occur faster when compared to the hot process, the 

colour of the solutions have changed from yellow to wine red in 10 minutes to obtain wine 

red colloid dispersion.  In order to get different sizes of AuNMs, the ratio of gold precursor to 

capping agent was altered as shown in Table 4-1.  The cold process resulted in 

monodispersed NMs, easy to synthesis and very stable. Thereby, AuNMs synthesised with 

cold process were used for the further sampling and quantification. The purification of the 

samples was carried out during sample preparation by washing the NM containing substrate 

after ultracentrifugation and later dried under room temperature (for detailed see Section 

4.5).  
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Table 4-1  Concentrations of the reactant used for the synthesis of AuNMs capped with PVP  

 

Size of 
Nanoparticles 
Synthesised 

(Instrument Used – 
TEM) (~nm) 

 

Method of 
Synthesis 

 

HAuCl4 
ml/(mM) 

PVP 
(mM) 

Molar 
ratio of 

HAuCl4 : 

Capping 
agent 

Temperature 

(0C) 

Reducing 

agent 

25±3.8 (0.46)b Hot 
100 ml 

5 mM 

180 ml 

2.78 
mM 

1  : 6.46 70 -- 

20±3.3 (0.50)b Hot 
20 ml 

2.58 mM 

180 ml 

2.78 
mM 

1  : 9.70 70 -- 

10±2.8 (0.28)b Cold 
100 ml 

5 mM 

200 ml 

1 mM 
1  :  0.40 21 NaOH 

15±3.6 (0.35)b Cold 
100 ml 

5 mM 

200ml 

0.5 
mM 

1  :  0.10 21 NaOH 

50±4.4 (0.29)b Cold 
100 ml 

5 mM 

200ml 
0.25 
mM 

1 :  0.05 21 NaOH 

b () coefficient of variation = standard deviation/mean 

 

4.3  Multi-method approach used to characterise the synthesised gold   
 nanoparticles  

 

 The synthesised NMs were fully characterised by using a number of analytical and 

imaging techniques such as  

(i) TEM, Tecani F20 (NM diameter),  

(ii) AFM XE100 (NM height),  

(iii) DLS (z-average Z-dh hydrodynamic diameter),  

(iv) NTA (number average hydrodynamic diameter),  

(v) UV-vis spectroscopy (plasmon resonance),  
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The measurements are presented in Table 4-1 in results section. The mass 

concentration of AuNMs in the stock solution was determined by ICP-MS (Agilent 7500cs 

instrument) as described in our published AFM paper (M. Baalousha§+*, 2014).  

 

 The following sections give a detailed explanation how these measurements were 

carried out, including the related sample preparation of all the above techniques.  

 

4.3.1  Hydrodynamic and zeta potential measurement with dynamic light scattering 
 (DLS) 

 

 

 The instruments used for this research include the Malvern Instruments, Nano ZS, 

model number ZEN3500, which measures the particle size, molecular weight and zeta 

potential. Disposable polystyrene cuvettes were used, where the sample must be pipetted 

carefully into cuvette. A standing operating procedure (SOP) was developed, obtaining 

consistency in this method. 5-10 measurements were performed to obtain the size of the 

NMs. 

 Zeta potential measurement was performed using the same Malvern instrument 

Nano ZS.   Quartz glass cuvettes were used. Initially, before placing the sample for 

measurement, instrument calibration was performed with either pure water (which should 

result in a value close to zero), or with the standard solution (Malvern) of know zeta potential 

with at least 5 to 10 measurements. The equipment was calibrated before application to 

samples.   

 

4.3.2 Nanoparticle Tracking Analysis (NTA) 
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 The NTA used in this project is the LM20 from nanosight. The working of this 

instrument is given in the previous section. The gold nanoparticles are used for measuring 

both the size and the particle number concentration. The NTA 2.2 Software programme at a 

maximum video rate of 30 fps was used. Videos with a resolution of 640480 pixels were 

captured. The chamber was cleaned prior to each measurement with ethanol and DI-water 

to ensure that any contaminants that may affect the measurement were removed. The O-

ring was regularly checked to ensure no cross contamination occurred. Camera and shutter 

settings were set manually for each sample.  The sample was injected into the cell to 

measure the parameters. With the same experimental setting, ten measurements were 

performed. The average of the ten measurements was taken as the final result. 

 

4.3.3 Ultraviolet -Visible spectroscopy 
 

The sample used for measuring SPR was poured on a cuvette. Before the sample was 

placed in the instrument, a baseline of the instrument was corrected using pure water. After 

obtaining the baseline, the cuvette containing the sample was placed inside the instrument. 

The absorbance obtained was plotted against wavelengths 200-800 nm or a selected region 

of interest. 

4.4  Mass concentration of gold with Inductively Coupled Plasma Mass 
 spectrometry     (ICP-MS) 

 

 The mass concentration of Au NMs (both citrate and PVP capped) in the stock 

solution was determined by ICP-MS (Agilent 7500cs instrument, Wokingham, UK). One mL 

of stock suspension of Au NMs was diluted with 5mL ultrahigh purity water (UHPW, 18 MU 

cm_1) and 1.25 mL of concentrated aqua regia to achieve 20% aqua regia (Sigma Aldrich, 

Dorset, UK) to solubilise the gold NMs. The solution was then diluted 10 times to achieve 2% 

aqua regia acid in the suspension, which is suitable for ICP-MS analysis. The samples were 

further diluted 100 times in 2% aqua regia before analysis to match the calibration range of 
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ICP-MS, which is 0–100 ppb. The initial concentration of both citrate and PVP capped NMs 

are given in results section. The dissolved fraction of Au NMs was determined by performing 

ultrafiltration (stirred ultrafiltration cell, Millipore, UK) using a 1 kDa regenerated cellulose 

membrane (Millipore, UK) and measured by ICP-MS. The percentage of the dissolved gold 

ions was generally <1%. 

 

4.5  Sample preparation 

 

 The most critical and challenging part of this research was the sample preparation 

method for microscopic techniques such as AFM and TEM. Both of these techniques are 

primarily limited by sample preparation rather than by the capability of microscopy 

techniques techniques to count and measure the size of NMs. Different preparation 

techniques have been employed in the literature to prepare samples for microscopy analysis 

(AFM and TEM) including adsorption, drop deposition and ultracentrifugation (Balnois and 

Wilkinson, 2002b). Only a few studies have applied this method (Hassellov, 2005, Boyd, 

1994, Wu et al., 1990a, Wu et al., 1990b, Baalousha, 2009). These methods are widely 

applied qualitatively, but have never been validated for quantitatively measurement of 

particle number concentration from a suspension of NMs. These widely adopted sample 

preparation methods suffer from a number of issues when used for number concentration 

analysis such as poor statistical power, requiring the counting of large number of NMs to 

compensate for the following: 

(i) Low and inconsistent recovery of NMs on the sample substrate and  

(ii) A non-uniform distribution of NMs on the sample substrate.  

 

 The adsorption method is a passive method and depends largely on the diffusion of 

NMs to the substrate as well as the interaction between the NMs and the sample substrate, 
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and thus the medium physicochemical properties. Hence, the adsorption method 

interrogates the smallest fraction of NMs with higher diffusion and those NMs that bind 

strongly to the AFM substrate (Domingos et al., 2009). Thereby this method was ruled out. 

The drop deposition method is known to induce aggregation artefacts due to reasons such 

as locally-increased salt concentrations on drying (Domingos et al., 2009b).  

The ultracentrifugation method is an active method that forces all NMs in the 

suspension onto the substrate; however, losses of NMs may occur after centrifugation due to 

the release of NMs from the substrate or during the essential washing process if the NMs 

are not strongly attached to the substrate (Baalousha et al., 2014a). Without substantive 

washing, severe artifacts can occur in case of AFM, which may result in analysis artifacts 

and bias. These artefacts are discussed by Baalousha et al., (Baalousha and Lead, 2013a). 

An issue with AFM is the contact of the tip of the AFM cantilever with the substrate. This is 

not a problem with TEM imaging. 

This work has developed a fully quantitative sampling method that allows for the 

measurement of the size and number of NMs and its aggregates (i.e., determined as the 

number of primary NMs within aggregates) at environmentally realistic concentrations. The 

application of the developed method has demonstrated the concentration-dependent 

aggregation of NMs for low NM concentrations.  To develop such capability it has been 

necessary to: 

a) Develop a validated sample preparation method to enable the measurement 

of NM number concentration, and  

b) To demonstrate the applicability of this validated sample preparation method 

to detect and quantify the number concentration of Au NMs both in simple 

and complex media at realistic concentrations (e.g. 1-20 µg L-1).  
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 To obtain quantitative measurements it is of paramount importance to recover the 

NMs suspended in the solution onto the substrate (AFM and TEM). After reviewing potential 

methods reported in the literature, a selection of methods has been explored. The most 

promising methods have been further developed and modified. Sample preparation 

protocols were tested to quantitatively measure NM number concentration from aqueous 

suspensions. An improved method was later developed which is referred to as the 

improvised sampling technique. While in this study, the first two methods (stated below) 

were tested to quantitatively to measure NM number concentration from aqueous 

suspensions. Such methods are listed below:  

(i) Drop deposition and  

(ii) Ultracentrifugation (Santschi et al., 1998, Baalousha, 2009, Johnston et al., 2007, 

Boyd, 1994, Wu et al., 1990a, Wu et al., 1990b).  

(iii) Ultracentrifugation with PLL functionalisation of the substrate - improvised 

sampling technique 

 

These methods were imaged using both AFM and TEM technique which is explained in 

detail in the following section. 

 

4.5.1 Drop Deposition Method 
 

4.5.1.1  TEM sample preparation with drop deposition method 
 

 The necessary equipment required for drop deposition is pipette to drop small 

volumes of NMs (10 μL), ultrapure water, diluted NMs or samples, TEM grid, UK and 

specimen tweezers. A small drop of NMs that is 20 µl of various concentrations (see results 

section) of Au NMs was placed on the carbon coated TEM grids (purchased from Agar 

Chemicals, 1x S160-3 Carbon films on 3mm 300 mesh grids type).  The droplet on the TEM 
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grid was allowed evaporate, under ambient air conditions. Later TEM imaging was carried 

out. 

4.5.1.2  AFM sample preparation with drop deposition method  
 

 The AFM equipment required the following to scan the AFM images; metal discs as 

shown in Figure 4-1, mica sheet cut in ~ 1 cm squares, tweezers and a pipette to drop small 

volume on the pipette. The mica sheet was firmly attached to the metal disc using double 

sided tape. The sample was then dropped on to the mica until it barely covers the whole 

surface (10-20 μL is usually enough), without making the sample pours over the edge of the 

mica. Let the sample adsorb to the mica surface during 5 min. Later, wash off un-adsorbed 

nanoparticles, salts and other components of the sample matrix.  The droplet on the AFM 

grid was allowed to evaporate, under ambient air conditions. The AFM sample was then 

stored in a closed container until further image analysis using AFM technique.  

 
Figure 4-1  AFM method of sample preparation 
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4.5.2 Ultracentrifugation Method for both TEM and AFM substrates 

 

 For the ultracentrifugation sampling technique the substrates for microscopy (either 

mica sheet for AFM or TEM grid) were prepared by suspension of NMs (11.1 ml) using 

Beckman ultracentrifugation tube shown in the Figure 4-2. The substrate (either TEM or 

AFM substrates) placed on the Teflon stub, where the NMs will be precipitated by the 

ultracentrifugation at 150000 g using a Beckman ultracentrifuge (L7-65 Ultracentrifuge, 

Beckman Coulter Ltd, High Wycombe, UK.) with a swing out rotor SW40Ti on a carbon 

coated TEM grids. The applied ultracentrifugation force is sufficient to collect all AuNMs 

larger than 5.0 nm, assuming gold density of 19.3 g cm-3. In order to validate the sample 

preparation protocol for the quantification of number concentration of NMs and to assess the 

applicability range of this protocol for the NM investigated in this study, two independent 

replicates of six different concentrations of cit-AuNM and PVP-AuNMs in UHPW in the range 

of 0.2-100 ppb were prepared for both TEM and AFM analyses.  

14 mm

95 m
m

13 mm

Teflon Stub

 

Figure 4-2:   Beckman ultracentrifugation tube with Teflon stub to hold TEM grid. 

 

The ultracentrifugation method is an active method that forces all NMs in the 

suspension onto the substrate. An issue with this method is the loss of NMs (the detailed 
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explanation regarding the percentage loss of NMs given the results Chapter 6 and Chapter 

7) that may occur due to the essential washing process if the NMs were not strongly 

attached to the substrate. However, washing, is required to prevent artefacts due to salt 

precipitation and other processes (Baalousha and Lead, 2013a). 

 The objective of the sample preparation is to get full recovery of the NMs on the 

substrate, fulfilling the main research aims for quantifying the number of NMs. The number 

of NM count recovered by this method is discussed in the results chapter.  The technique 

was been modified allowing for the full recovery of NMs on the substrate. This method is 

explained in the following section.  

 

4.5.3 Ultracentrifugation with surface functionalisation of the substrate 

 

In order to obtain the full recovery, enhance the retention and distribution of the NMs on the 

substrates two methods were examined; 

(i) Surface of the substrate was functionalised with a positively charged poly-l-lysine 

PLL polymer (Sigma Aldrich, Dorset, UK), and  

(ii) Addition of CaCl2 (Maitra et al., 1999) to the NM suspension before 

ultracentrifugation, which was used only for AFM. 

 

 Functionalisation using PLL was carried out for both AFM and TEM substrates. For 

TEM grids, the surface of the grid were covered with a drop of 0.1% poly-l-lysine (Huang et 

al., 2001) for 15 minutes followed by rinsing three consecutive times in UHPW to remove 

excess poly-l-lysine, after which the TEM grids were left to dry overnight under ambient air 

conditions in a covered Petri dish. Following ultracentrifugation, the TEM grids were washed 

thoroughly by immersing them three consecutive times in UHPW for 30 seconds each, then 

the TEM grids were left to dry under ambient air conditions before ultracentrifugation of the 
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suspensions of NM. A similar procedure was followed for AFM by using freshly cleaved mica 

substrates. 

 

 The second method of sampling technique used for AFM was the addition of CaCl2 

(Yamashita et al., 2002, Maitra et al., 1999) to the NM suspension prior to ultracentrifugation. 

The addition of CaCl2 was mainly to obtain the uniform distribution of NMs on the substrate 

and also for strong attachment of NMs to the mica sheet in case of AFM technique, possibly 

due to the bridging by Ca2+ of the negatively charged mica surface on the partially negatively 

charged mica sheet (Baalousha and Lead, 2013b). Therefore, addition of the divalent 

cations to the sterically stabilized NMs combined with the ultracentrifugation may be used to 

improve the uniformity of the NMs distribution on the AFM substrate. PVP-Au NM samples 

were prepared in 10 mM CaCl2, whereas cit-AuNMs were prepared in 100–300 mM CaCl2 

on a bare AFM substrate. The higher concentration of CaCl2 used for PVP-AuNMs 

compared with cit-AuNMs is due to the higher colloidal stability of PVP-Au NM suspensions 

compared to cit-AuNMs (Hitchman et al., 2013).  

 

 

4.6  Simple and complex media 
 

In Simple media the sampling approach was validated using citrate- and PVP- coated 

Au NMs in pure water, which demonstrated an even distribution of NM on the TEM grid and 

high NM recovery (See results chapter 5 and Chapter 6, for 80-100%) at environmentally 

relevant NM concentrations (ca. 0.20-100 µg L-1).  

 

  Whereas the applicability of the sampling method to complex environmental 

conditions was then demonstrated by detecting and quantifying number particle 

concentration of citrate- Au and PVP Au NMs spiked in three different media at 
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environmentally NM relevant concentrations of 1 to 20 µg L-1. The three different complex 

media used were as follows: 

 

(i) EPA synthetic soft water,  

(ii) 5 mg SRFA in one litre of EPA soft water and 

(iii)  Natural surface water sample was collected from the Vale Lake. 

 

Both citrate and PVP capped Au NMs were diluted at different concentrations using 

the above three media. These findings are key to improve the understanding of NM 

environmental behaviors, fate, effects and dose; and were only enabled by the novel fully 

quantitative sampling method. TEM analysis was performed by coupling with the X-EDS with 

all the three complex media mentioned above (see in results sections). The preparation of 

the above three different media is given in detail below. 

 

4.6.1 EPA synthetic soft water 

 

 Preparation of EPA synthetic soft water was followed using the protocol mentioned in 

EPA methods for measuring the acute toxicity of effluents (Environmental Protection Agency 

Office of Water (4303T): Washington, 2002). This method takes into account the hardness of 

the water, its pH and its alkalinity. The Table 3-2 below shows the chemical material 

quantities of different hardness of synthetic freshwater that have been used.  

   

Table 4-2  Preparation of synthetic freshwater after using regent grade chemicals1 

 

Reagent Added (mg/L) to deionised 
water Approximate Final Water Quality 

NaHCO3 
CaSO4.
C2H2O MgSO4 KCl pH Hardness Alkalinity 

Very soft 12.0 7.5 7.5 0.5 6.4-6.8 10-13 10-13 
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Soft 48.0 30.0 30.0 2.0 7.2-7.6 40-48 30-35 

Moderately 
Hard 96.0 60.0 60.0 4.0 7.4-7.8 80-100 57-64 

Hard 192.0 120.0 120.0 8.0 7.6-8.0 160-180 110-120 

Very hard 384.0 240.0 240.0 16.0 8.0-8.4 280-320 225-245 

1Taken in part from Marking and Dawson (1973). 

 

The procedure for the preparation of synthetic softwater is described below.  

(i) The reagent grade chemical (such as NaHCO3, MgSO4 and KCl) added to the 

deionised water (measurements are in (mg/L) 2 as mentioned in the protocol or given 

same in the Table 4-2 above).  

(ii) After 24 hours of aeration of these chemicals, the solution of CaSO4.C2H2O was 

prepared (also in (mg/L) 2 as mentioned in the protocol) and added to the above 

mentioned chemicals. Later, the mixtures were stirred using magnetic stirrer.   

4.6.2 Suwannee river fulvic acid (SRFA) 

 

 SRFA was purchased from International Humid Substances Society, USA. A 5mg L-1 

SRFA was prepared by dissolving 5 mg SRFA in one litre of EPA soft water (Environmental 

Protection Agency Office of Water (4303T): Washington, 2002). EPA softwater was prepared 

by dissolving 48 mg of sodium bicarbonate (NaHCO3), 2 mg potassium chloride (KCl), 30 mg 

of calcium sulphate (CaSO4), and 30 mg of Magnesium sulphate (MgSO4) in 1 L of ultrahigh 

purity water (R=18 MΩ). The final solution pH was 6.8.   
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4.6.3 Natural Surface Water/Lake Water 

 

 Natural surface water sample was collected from the Vale Lake, a site close to 

Birmingham, United Kingdom. The samples were collected in autumn (27th November 2013). 

All sampling bottles were high density polyethylene, rinsed with dilute nitric acid, UHWP and 

the sample water, all of which were discarded. Water conductivity 481 µs, dissolve oxygen 

62.3 % at 6.66 mg/L, pH 7.48 and insitu temperature was 60 C were measured at the time of 

sampling, samples were filtered (Nuclepore track-Etch membrane, 0.45 µm purchased from 

Whatman) in the laboratory within 2 hours of sampling. Small volumes were filtered at low 

flow rates, minimizing the impacts of filtration.  

 

4.7 Imaging NMs for size and number concentration measurements from both TEM 
and AFM analysis 

 

4.7.1 Imaging for number measurements by TEM 

  

 All TEM analyses were performed using TECNAI F20 Field Emission gun (FEG) TEM 

coupled with an x-ray Energy Dispersive Spectrometer (X-EDS) from Oxford Instruments. 

Qualitative X-EDS analysis was performed to determine particle elemental composition. For 

imaging NMs on the substrate, different areas on each grid were randomly imaged 30 

images being investigated for each TEM grid. The number of NMs in each image was 

counted by using image J software.  

 

 For TEM analysis in results section presents the analysis of images of NMs using the 

three different methods of sample preparation such as drop, ultracentrifugation and 

substrate functionalisation with ultracentrifugation. The different media used for the TEM 

analysis were: 
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(i) Ultra-high purity water, - simple media 

(ii) EPA synthetic soft-water, - complex media 

(iii) SRFA-EPA  – complex media 

(iv) Natural lake water – complex media. 

 

4.7.2 Imaging for size Measurements by TEM and AFM 

 

 For each sample, a minimum of 2000 NMs was used to calculate the size and shape 

using Digital Micrograph software (Gatan Inc, Pleasanton, CA, USA) and image J analysis 

software, which are sufficient to produce a representative number particle size distribution 

(Baalousha et al.). The measured sizes were then classified into intervals of 0.5 nm to 

construct particle size distribution histograms.  

 

 AFM analyses were performed using an XE-100 AFM (Park systems Corp., Suwon, 

Korea). The measurements were carried out in true non-contact mode using a silicon 

cantilever with a typical spring constant of 42 N m_1 (PPP-NCHR, Park systems Corp., 

Suwon, Korea). All scans were performed under ambient conditions, which have been 

shown to produce accurate sizes, despite loss of most, but not all water (Balnois and 

Wilkinson, 2002a).18, 22 Images were recorded in topography mode with a pixel size 

resolution of 256 x 256 and a scan rate of 0.5–1.0 Hz. Three different areas on each 

substrate were investigated and 5–9 images were collected from each area as described in 

Figure 4-3, resulting in 15–27 images being investigated for each substrate. On average, the 

time taken for AFM analyses per sample was about 2 hours. The scanned area per image 

varied between 1 mm x 1 mm to 5 mm x 5 mm depending on the sample concentration and 

the number of NMs on each image to facilitate NM counting. 
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For the particle number measurements by AFM technique, two methods of sample 

preparation were followed such as:  

 

(i) Sampling technique by surface functionalization of the substrate with a positively 

charged poly-L-lysine polymer (Sigma Aldrich, Dorset, UK) and later followed by 

ultracentrifugation and drying process as explained in detail in Section 3.5.3 as well 

as 

(i) Addition of CaCl2 to the NM suspension before ultracentrifugation given in detail in 

Section 3.5.3. 

 

These methods were utilised for the fully qualitative and quantitative measurement of the 

particle number number.  The results (see Section 5.2) obtained from this above two 

sampling techniques is also published (M. Baalousha§+*, 2014). 

 

a

Area 1
Area 2

Area 3

Area 1
Area 2

Area 3

b

Area 1

Area 2

Area 3

Area 1

Area 2

Area 3

 

Figure 4-3  Areas and images scanned by AFM for each sample. Three areas at different 

locations on the AFM substrate and (a) 5 and (b) 9 images were collected by area, resulting 

in collecting 15-29 images for each sample. 
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4.7.3 Height Measurements by AFM 
 

 Height measurements of NMs were performed using the transect analysis using the 

XEI data processing and analysis software of the microscope (Park Systems Corp., Suwon, 

Korea). For each sample, a minimum of 200 height measurements were performed, which 

are sufficient to produce a representative particle size distribution (Boyd et al., 2011). The 

measured heights were then classified into intervals of 0.5 nm to construct particle size 

distribution histograms, which was fitted with a log-normal distribution function as described 

elsewhere (Boyd et al., 2011). 

 

4.7.4 Validation of the AFM and TEM sample preparation for number concentration 

 measurements  

 

 The above sections emphasised on the process of sampling and imaging using AFM 

and TEM technique. The improved sampling technique has been validated using the 

following criteria: 

 

(i) Uniformity of NM distribution on the substrate between images,  

(ii) The % recovery of NMs on the substrate compared to the concentration of 

NMs in suspension and  

(iii) The correlation of number concentration measured by TEM/AFM vs. mass 

concentration in suspension (linearity).  

 

 

 The uniformity of NM distribution on the substrate was evaluated by comparing the 

number of particles counted at different areas (see Figure 4-3), which was performed by 

calculating the coefficient of variation of the number of NMs per μm2 on the images collected 

at different location on the grid (CV = σ/mean of number NMs per μm2 on the different 
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images). Low CV values indicate uniform distribution of NM on the substrate. The number of 

NMs in each image was counted by using image J software, (Ncounted/image) and the number of 

NMs (NM L-1) in suspension (Nsuspension) was calculated from counted number of NMs in each 

TEM image using Eq.4.1 

 

    Eq.4.1 

 

Where Vimage is the volume of suspension above each TEM image (in litres), which 

can be calculated according to Eq.4.2 

 

     Eq.4.2 

 

Where Aimage is the area of each image and h is the height of water column on top of the 

image.  

 

The mass of NMs (Mrecovered) in suspension can be calculated from the number of NMs in 

suspension (calculated in Eq.1) according to Eq.4.3  

 

    Eq.4.3 

 

Where v is the volume of the average NM, ρ is the density of the NMs and Nsuspension is the 
number of NMs in the suspension (calculated from Eq. 4.1).  

 



74 
 

 The total centrifuged mass of NMs (Mcentrifuged) in the centrifuged volume (Vcentrifuged) 

can be calculated according to Eq.4.4 

 

   Eq.4.4 

 

Where Csuspension is the concentration of NMs in the centrifuged suspension.  

 

 Equation 4.4 assumes that Au NMs are insoluble/colloidal form and monodisperse, 

which is confirmed by the dissolution analysis and the narrow size distribution of the NMs 

used in this study. 

 

 The recovery of NMs on the TEM grid can be calculated according to Eq.4.5 

assuming that the NMs are insoluble and spherical (shape factor for citrate and PVP-Au 

NMs See results sections).  

 

    Eq.4.5 

 

 The following assumptions are embedded in the calculation of the recovery: (i) no 

losses of NMs to the containers during storage, dilution and ultracentrifugation and (ii) all 

counted NMs are single entities and no interactions occurred between the NMs.  
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4.7.5 Number of images required for representative measurement of number 
 concentration.  

 

 The number of images required to obtain a representative measurements of NM 

number concentration was assessed by quantifying the mean number concentration and 

standard deviation of the mean as a function of the number of images analyzed (Baalousha 

et al., 2014a). To determine the minimum number of images required to obtain accurate and 

statistically representative particle number concentration of the entire suspension of NMs, 

we investigated the stability of the calculated mean number concentration and standard 

deviation of the mean (σmean, Eq.4.6) on subpopulations of the scanned images (n=2-27 

images) (Baalousha, 2012, Boyd and Cuenat, 2011).  

 

 Eq.4.5 
n

mean


 
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Chapter 5 Nanoparticle Characterisation using multi-method  

  approach 
 

 

5.1 Introduction 
 

 Nanoparticle analysis and characterisation is of paramount importance to know the 

physical and chemical properties by using robust analytical approaches (Herrmann, 

November 2012). Environmental risk assessments of engineered nanomaterials were 

necessary through very extensive characterisation of NM and their aggregates (Hassellov et 

al., 2008, Stolpe et al., 2005). Thereby, wide characterisation is performed and discussed in 

terms of NM size measurement such as NM height, diameter, hydrodynamic diameter, size 

distribution using various analytical method and later NM size measurements were 

compared.  While electron microscopy and atomic force microscopy, with respect to imaging 

plays a vital role in determination of the shape and size of NM.  It was proved in little 

research work that the toxicity can be shape dependent (Pal et al., 2007, Schaeublin et al., 

2012). Furthermore, physicochemical properties of NM are a prerequisite to obtain a 

quantitative analytical methodology / protocol to determine the NM particle number either in 

simple or complex media. Which in turn considered that the measurement of particle number 

is more appropriate for dose-response relationship (explained in Chapter 2) (Oberdorster et 

al., 2007). 
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5.2 Results and discussion 
 

 This chapter is devoted to the discussion of the characterisation and synthesis 

results using different analytical approaches such as transmission electron microscopy 

(TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), nanoparticle tracking 

analysis (NTA), inductively coupled plasma mass spectrometry (ICP-MS) and ultraviolet–

visible spectroscopy (UV-vis). The AuNMs of different size and capping were synthesised in-

house using different synthesis method as described in Chapter 4 and Section 4.2 and its 

following subsections. To characterise the in-house synthesised gold nanoparticles special 

attention were given to obtain the good quality of the product of the synthesis method by 

comparing the physicochemical properties in terms of size distribution, shape of the particle, 

monodispersity and solubility. The gold nanoparticles synthesised were characterized using 

a multi-method approach (Domingos et al., 2009a, Baalousha, 2012b, Baalousha, 2012a) 

and the key physicochemical properties discussed in this chapter are as follows:  

 

(i) Size measurement of nanoparticle using TEM, DLS, NTA, and AFM  

(ii) Shape Factor using TEM  

(iii) Zeta potential and 

(iv) UV-vis. 

 

 The above initial characterisations were performed to test how the NMs behave when 

exposed to the environmental relevant conditions. As prepared, suspensions of the gold 

NMs were later added to the three realistic environmental conditions such as lake water, 

synthetic soft water and SRFA to observe the unwanted matrix effects or changes to the 

samples.  
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 The section below gives in detail the characterisation of NMs using various analytical 

approaches. Later chapters are related to the fully quantitative measurement of NMs by 

using techniques AFM and TEM.  

 

5.3 Synthesis and growth of gold NMs 
 

 Gold NMs were synthesised in-house using two different capping agents such as: 

citrate and PVP. Synthesis of these NMs is given in detail in Chapter 4 and Section 4.2. As 

shown in Table 4-1, different sizes of PVP capped Au NMs were synthesised by utilising two 

different methods of synthesis. The two different methods used were called the cold method 

and the hot method (section 4.2.3). By the cold method synthesis very well dispersed PVP 

capped Au NMs were prepared without any aggregation when compared to the hot method.  

The TEM and AFM micrograph shows the Au NMs dispersion by both hot and cold process. 

As seen in the Figure 5-1 below, the Au NMs by hot method were aggregated while by cold 

method NMs are very well dispersed without any aggregation. The requisition of this project 

is to obtain a very well dispersed Au NMs i.e. without aggregation and with uniform NM size 

distribution.  
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Hot process method Cold process method 

0 . 1  µ m0 . 1  µ m   

0 . 1  µ m0 . 1  µ m   

0 . 1  µ m0 . 1  µ m   

 

Figure 5-1   A typical TEM Images of PVP capped Au NMs synthesised by two different   

synthesis processes such as: (a) hot process and (b) cold process. 
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 Figure 5-1 shows the typical TEM micrographs obtained by two different synthesis 

methods as described in Chapter 4 and Section 4.2. i.e. hot and cold method of synthesis. 

Both the hot and cold method of gold NMs synthesised in-house capped with PVP. The hot 

method of synthesis resulted in the aggregation and not uniformly dispersed (See Chapter 3 

and its subsections for the synthesis NMs by hot process) on the substrate as shown in the 

Figure 5-1(a). In this work, synthesis of Au NMs without any aggregation is a prerequisite in 

this investigation and to have very well monodispersed Au NMs for the initial analysis for the 

purpose of dose metric measurement i.e. particle number measurement.  The PVP capped 

gold NMs synthesised by cold method approach were non-aggregated (see Figure 4-1(b)) 

and used for the further characterisation to analyse the uniformity in distribution, 

monodispersity, size distribution, spherical and various other analysis using analytical 

techniques such as DLS, Uv-vis and so on is explained in the further sections. 

 

  Similarly for the synthesis of citrate capped gold NMs, the process of 

synthesis was given in detail in Chapter 4 and in Section 4.2.2. The citrate capped NMs 

were synthesised in-house by chemical synthesis method (Turkevich, 1951b, Gurunathan et 

al., Ferns, 1973). Citrate capped Au NMs were synthesised by trial and error method until 

non-aggregated NMs were obtained.  
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A 1 0 0  n m1 0 0  n m  B 1 0 0  n m1 0 0  n m  

C 1 0 0  n m1 0 0  n m  D  

Figure 5-2   TEM Images of citrate capped Au NMs synthesised by trial and error method 

using chemical synthesis processes, images (A, B and C) are aggregated and (D) non-

aggregated. 

 

 The above TEM micrograph shows the initial synthesis of NMs which were 

aggregated and polydispersed in Figure 5-2 (A, B and C).  But the prerequisite of the 

investigation is to obtain the monodispersed NMs without any aggregation. By the trial and 

error method and continuous synthesis of citrate gold NMs finally achieved the non-

aggregated and monodispersed NMs, the synthesis of the monodispersed (See Figure 5-2D) 

citrate capped NMs is given in detailed in Chapter 3 and in Subsection 4.2.3.  
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 Furthermore, various sizes of NMs synthesised by trial and error method is given in 

Table 4-1. The PVP capped gold NMs having size 10±2.8 nm selected for the further 

characterisation and measurement of particle number.  Whilst, citrate capped gold NMs 

capped having size of 15±3.3 nm. The wine red colour of the solution indicates the stability 

of the citrate capped Au NMs (Faraday, 1857, Frens, 1973, Turkevich, 1951a). These gold 

NMs were characterised for various physicochemical properties explained in upcoming 

sections. 

 

5.4 Characterisation of Au NMs capped with citrate and PVP 
 

 The physicochemical properties of the synthesised AuNMs were characterised by 

utilising various analytical techniques both microscopies and spectroscopies (Baalousha and 

Lead, 2013a, Baalousha, 2012a, Baalousha, 2012b). The microscopies and spectroscopies 

used for this study are explained in detail in the Chapter 3 and in Section 3.5. Some of the 

physicochemical properties that were measured are size, shape, surface plasmon 

resonance, monodispersity and surface charge. 

 

5.4.1 In-house synthesised NMs used for characterisation 

 

 In this research, chemical process of synthesis is identified as the appropriate to 

synthesise Au NMs after critical reviews (see Chapter 3) of different types of synthesis. By 

trial and error method of chemical synthesis, Au NMs coated with citrate and PVP were 

synthesised. PVP Au NMs with cold process (see Table 4-1) of chemical synthesis having 

three different sizes were synthesised. Au NMs capped PVP having size of 10±2.8 nm used 
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for the particle number measurement and citrate capped Au NMs of size 15±3.3 nm used for 

measurement of particle number. 

 The process of synthesis of citrate capped Au NMs is given in detail earlier in chapter 

4 and in section 4.2. The AuNMs capped with citrate having a size of 15±3.3 nm will be used 

for the particle number measurement.  The wine red colour (see Figure 5-3) of the solution 

indicates the stability of the citrate capped AuNMs (Faraday, 1857, Frens, 1973, Turkevich, 

1951a). 

 

 

5.4.2 Wavelength measurement by Ultraviolet-visible Spectroscopy (Uv-vis) 
 

  For the in-house synthesised PVP capped Au NMs (size 10±2.8 nm) using cold 

method process and citrate capped Au NMs (size of 15±3.3 nm), UV-vis spectroscopy is 

used to analyse the presence of gold nanoparticles and its dispersity. Experimental 

procedure to measure the  sharp absorbance peak i.e. a measure of wavelength (λmax) 

where the absorbance (A) reaches to its peak value (Haiss et al., 2007b). Formation of gold 

NMs can be affirmed by measuring the UV-vis absorbance which shows the NMs localised 

surface plasmon behaviours (Frederick, 1976) and the colour changes from yellow to ruby 

red during synthesis of gold nanoparticles (the process of synthesis was given in the 

Chapter 4 and Section 4.2) indicates the formation of the gold NMs in the suspension (Mohd 

Sultan and Johan).  
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Figure 5-3:  (A) UV-vis measurements of AuNMs citrate coated, (B) absorbance spectra of 

citrate coated AuNMs having 519 nm and (C) the stability test was carried out quarterly for 

24 months having absorbance peak of 519 nm. 
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 The experimental procedure to measure the absorbance peak was given in detail in 

methodology Chapter 4 and in subsection 4.5.3. The above Figure 5-3 shows the 

synthesised citrate-Au NMs have a single UV-vis absorbance peak centered at 519 nm, 

indicating that the suspensions of NMs are stable and free of aggregated NMs. Since 

spectra shows the single sharp peak and absence of other peaks indicates the 

monodispersity of the AuNMs. Stability test was carried out quarterly for 24 months, the NMs 

were found to be stable having absorbance peak 519 nm. 

 
A B  

1 0 0  n m1 0 0  n m

a b
0 . 1  µ m  

0

0.5

1

1.5

2

2.5

300 400 500 600 700 800

A
b

so
rb

a
n

ce
 (

A
U

)

Wavelength (nm)  

C. 

 

Figure 5-4 (A) UV-vis measurements of AuNMs PVP coated (B) absorbance spectra of PPV 

coated AuNMs having 525 nm and (C) the stability test was carried out quarterly for 24 

months having absorbance peak of 525 nm 
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 The above Figure 5-4, shows the synthesised PVP capped Au NMs also have a 

single UV-vis absorbance peak centered at 525 nm, indicating that the suspensions of NMs 

are stable and free of aggregated NMs (Amendola et al., 2008). Since spectra shows the 

single sharp absorbance peak and absence of other peaks indicates the monodispersity of 

the Au NMs. Stability test was carried out quarterly for 24 months, the NMs were found to be 

stable having absorbance peak 525 nm.  

 

5.4.3 Z-average Hydrodynamic Diameter (Z-dh) and zeta potential 
 

 DLS technique measures the size of the nanoparticles which is the core size of the 

NM plus the size of the capping agent i.e. said to be hydrodynamic diameter (z-average). 

The detail experimental procedure for the measurement of size of NMs i.e. hydrodynamic 

diameter of NMs by DLS technique was given in the Chapter 4 in Section 4.5.  
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Figure 5-5   DLS diagram illustrates the hydrodynamic size distribution by intensity of PVP 

capped AuNMs, obtained by repeating the measurements for the purpose of accuracy. 

 

 The Figure 5-5 shows the size distribution spectra of the PVP capped NM. The single 

narrow peak curve of intensity shows the monodispersity of NMs. The hydrodynamic 

diameter (z-average) of PVP-Au NMs is 20.14±2.6 (see Table 5-1) and having low 

polydispersity index of 0.15 respectively. To compare the size distribution with other 

techniques such as AFM, TEM and NTA see Table 5-4. Zeta potential measures the electric 

charge on the surface of the NMs. Surface charge of PVP-Au NMs i.e. zeta potential of -

8.3±1.6. PVP-Au NMs are sterically stabilized. 
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Table 5-1 hydrodynamic diameter (z-average) and Zeta potential of PVP and citrate capped 

Au NMs 

Coating of Au 

NMs 

Z-dh (nm) (polydispersity 

index) 

DLS 

Zeta Potential (mV) 

DLS 

Citrate 20.78±2.6 (0.17)a -43±1.3 

PVP 20.14±1.8 (0.15)a -8.3±1.6 

  a () polydispersed index,  

Z-dh:   Z-average Hydrodynamic Diameter  

DLS:   Dynamic Light Scattering 

  

Figure 5-6   DLS diagram illustrates the hydrodynamic size of citrate capped Au NMs, 

obtained by repeating the measurements for the purpose of precision. 
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 Figure 5-6, shows the size distribution spectra of the citrate capped NM respectively. 

The hydrodynamic diameter (z-average) of cit-AuNMs 20.78±1.8 and having low 

polydispersity index of 0.17. To compare the size distribution with other techniques see 

Table 5-1. While the zeta potential measures the electric charge on the surface of the NMs. 

Surface charge of Cit-Au NMs have a high surface charge (zeta potential = -43±1.3 mV). Cit-

Au NMs are charge stabilized.  

 

5.4.4 Particle spherical diameter measurement by TEM 
 

 For the measurement of particle size, the NMs in the suspensions needed to be dried 

on to the substrate later imaging by TEM were performed. Transmission electron microscopy 

(TEM) imaging is more preferred method to measure the core size of the particle since gold 

cores look distinctively darker than the capping agents as well as when NMs added to  

environmental relevant conditions (Leppard, 2008). The reason for the darkness of the core 

is higher electron densities (Wang, 2000). The procedure / sampling technique to dry the 

NMs on the substrate for the purpose of TEM imaging is given in detail in Chapter 4 and in 

Section 4.3, various sampling technique methods were also described in methodology 

chapter.  

 To obtain higher accuracy in the measurement of NM size, total of 40 TEM images 

were utilised and approximately 2000 NMs diameter were measured. The size of NMs was 

measured by using Gatan Digital Micrograph (available from TEM - Tecani Philips F20 

oxford instrumentation) and Image J software. Table 5-1 shows the particle spherical 

diameter measurement by TEM technique, for both citrate and PVP capped Au NMs. 
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Figure 5-7:      Particle size distribution as measured by transmission electron microscopy: 

(A and B) Citrate capped Au NMs (15±3.3) and (C and D) PVP capped Au NMs (10±2.8).  

To obtain higher precision in the size measurement nearly 2000 particles are considered for 

measuring diameter of the particle using ~40 images.  
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Table 5-2: Particle spherical diameter measurement by TEM 

Coating of 

AuNMs 

Equivalent spherical 

diameter (nm) 

TEM 

Range of NMs (nm) 
% NMs <15nm based 

on measured sizes b 

TEM 

Citrate 15±3.3 (0.22)b 8-23 83% 

PVP 10±2.8 (0.28)b 6-18 95% 

   b () coefficient of variation = standard deviation/mean 

   TEM:  Transmission Electron Microscopy  

 

The number size distribution of the citrate capped Au NMs and PVP capped Au NMs 

measured by TEM together with the fitted distribution functions are shown in Figure 5-7. The 

number average size of citrate capped Au NMs and PVP capped Au NMs was found to be 

around 15.0±3.3 nm (with a range 8-23 nm) and 10.0±2.8 nm (with a range 6-18 nm) (see 

Table 4-2), respectively. The coefficient of variation was about 0.22 and 0.28 for cit-Au NMs 

and PVP capped Au NMs respectively, suggesting that the two suspensions of NMs have 

relatively low polydispersity.(Baalousha et al., Baalousha and Lead, 2013b) Both NMs 

contain a high% of NMs smaller than 15 nm; 83% and 95% for cit-Au NMs and PVP-Au 

NMs, respectively. Also, both NMs are spherical (Figure 5-12). The larger sizes measured by 

DLS can be attributed to the weighting (intensity based for DLS) and the permeability of the 

NMs, in particular the PVP-Au NMs(Baalousha, 2012). 

 

5.4.5 Hydrodynamic diameter measurement by NTA  
 

 The NM suspension will be injected to the NTA chamber specially designed optical 

flat (see methodology Chapter 4) integrated to optical microscope and computer (Carr et al., 

2011), were Brownian motion can be visualised on the computer screen with the help of the 
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NTA software. NM suspension with very low concentration needed to be injected to the 

optical chamber to visualise the non-aggregated NMs. In this investigation, NM stock 

solution was diluted to 100,000 times for both citrate and PVP capped Au NMs and then 

injected to the optical chamber of NTA instrument. Experimental procedure to measure the 

hydrodynamic diameter of NMs was given in detail in methodology Chapter 4 and in 

subsections 4.5.2. The NTA software allowed capturing the still images of the moving NMs 

as seen in the Figure 5-8 and Figure 5-9 for citrate capped and PVP capped Au NMs 

respectively.  

  

Particle size/ConcentrationParticle sample video frame
 

Figure 5-8  Particle sample video frame and its size representation obtained from the NTA 

technique for citrate capped AuNMs having size range of 23 nm. 
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Particle size/ConcentrationParticle sample video frame
 

Figure 5-9  Particle sample video frame and its size representation obtained from the NTA 

technique for citrate capped Au NMs having size range of 77 nm. 

 

 The number average hydrodynamic diameter measured by NTA was generally higher 

than the z-average hydrodynamic diameter measured by DLS and the number average 

diameter measured by TEM for citrate Au NMs is 23 nm (Figure 5-8) and for PVP-Au NMs is 

77 nm. This is likely due to the lower size detection limit of NTA (ca. 10-15 nm for Au NMs) 

(Carr, 2012), which induces a bias toward larger size as the NMs studied in this article 

contains a significant fraction of NMs < 15 nm (Table 5-4).   
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5.4.6 Particle height measurement by (AFM)  
 

 

 To measure the height of NM using AFM technique, NMs in the suspension have to 

be dried on the substrate. The sample preparation technique was given in detail in 

methodology Chapter 4 and in subsection 4.3.3.   Figure 5-10 (a and b) shows the 

micrograph obtained by the AFM technique for both citrate and PVP capped Au NMs 

respectively. The height of the particle is measured by the AFM (Park Systems Corp., 

Suwon, Korea) using software provided by the AFM instrument called XEI data processing 

and analysis software where the line profile panel of XEI software displays the cross-

sectional height profile of the particle. For each sample, a minimum of 200 NMs height 

measurements were performed, which are sufficient to produce a representative particle size 

distribution (Baalousha, 2012).  Table 5-2 shows the particle spherical diameter 

measurement by AFM technique, for both citrate and PVP capped Au NMs. 
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Figure 5-3.  Particle size distribution as measured by atomic force microscopy (A) Cit-Au   

NMs (13.3±2.1) and (B) PVP-Au NMs (12.2±2.2) nm. 

Table 5-3: Particle height measure using AFM technique 

Coating of Au 

NMs 
Range of NMs (nm) 

Particle height (nm) 

AFM 

PVP 6.5-17 12.2±2.2(0.18)b 

Citrate 6.5-21 13.3±2.1(0.16)b 

 b () coefficient of variation = standard deviation/mean 

 AFM Atomic force microscopy  
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 The height of particle obtained by the AFM technique i.e. number size distribution of 

the cit-Au NMs and PVP-Au NMs together with the fitted distribution functions are shown in 

Figure 5-10. The average size of cit-Au NMs and PVP-Au NMs was found to be around 

13.3±2.1 (with a range 6.5-21 nm) and 12.2±2.2 (with a range 6.5-17 nm), respectively. The 

coefficient of variation was about 0.16 and 0.18 for PVP-Au NMs and cit-Au NMs 

respectively, suggesting that the two suspensions of NMs have relatively low polydispersity 

(Baalousha and Lead, 2013b). The size of NM, having varied between 1-10 nm, said to be 

nanocluster resulting in narrow size distribution, these have special properties (Qin et al., 

2014) hence these particles have technological interests especially in microelectronics, data 

storage and so on.  

 

5.4.7 Particle shape factor 
 

 Shape of the particles is very important for toxicity studies (Pal et al., 2007) but less 

known about its effect on environmental processes. Particle shape can be measured by the 

circularity factor, C (Fernandez-Garrido et al., 2014) which can be defined by the equation 5-

1. 

                 

   Eq.5-1 

 where, A and P are the area and perimeter of the NM respectively. If the particle in 

spherical then the circularity factor will be 1 suppose if it's less than one i.e. (0.17-0.54) then 

the NM shape will be more elongated. For square and triangle the circularity factor will be 

0.80 and 0.61 respectively. As per the synthesised NMs in this study the Au NMs both citrate 

and PVP capped represents spherical when imaged by TEM technique as shown in the 

Figure 5-11. Approximately >95% of NM synthesised have a shape factor of 1 (see below 

Figure 5-12), so the shape of the Au NMs synthesised are spherical.  
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Figure 5-4.  TEM image of the synthesised Au NMs showing highly spherical and 

monodispersed 
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Figure 5-5  Shape factor of (a) cit-Au NMs and (b) PVP-Au NMs calculated from the 

micrograph of TEM image of approximately 1500 NMs from 30 images. 
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 For the measurement of shape of the NMs, total of 1500 NMs were considered from 

30 images obtained from TEM technique. The software used to measure the shape of NMs 

was image J analysis. The graphical representation shows the percentage of NMs circular/ 

spherical. As explained above, the maximum percentage (> 95%) of NMs i.e. have circularity 

factor 1. As per the calculation using the Equation 5-1, about 97.8 % of PVP capped NMs 

and 96.8 % of citrate capped NMs were having circularity factor of 1. Therefore, the in-house 

synthesised NMs are spherical in shape.  

 

5.4.8 Mass concentration measurement by ICP-MS 
 

 The process of sample preparation technique for the ICP-MS measurements 

explained given in detail in methodology Chapter 4 and Section 4.6. The initial concentration 

measurements of Cit-Au NMs and PVP-Au NMs were 101.6±3.2 and 167.6±3.2 mg L-1. The 

dissolved fraction of AuNMs was determined following ultrafiltration (stirred ultrafiltration cell, 

Millipore, UK) using 1 kDa regenerated cellulose membrane (Millipore UK) and measured by 

ICP-MS. The percentage of dissolved gold ions was < 1%.  

5.4.9 Comparison of the sizes of NMs measured using different techniques 
 

 The size measurements results of various analytical techniques were summarised in 

the Table 5-4 below. As shown in the Table 5-4, the DLS and NTA measured particle size 

will be always higher than the TEM and AFM techniques. DLS and NTA measurements were 

calculated from the 10 replicates while for TEM and AFM, approximately 2000 NMs were 

measured from 30 images using image J software. But NTA size measurements were 

random for each replicates due to lower size detection limit of the instrument (particles < 20 

nm unable to detect) (Malloy and Carr, 2006). 
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Table 5-4 Physicochemical properties of citrate and PVP coated AuNMs measured by different analytical techniques 

Coating 

of 

AuNMs 

Z-dh (nm) 

(polydispersity 

index) 

DLS 

Zeta 

Potential 

(mV) 

DLS 

Equivalent 

spherical 

diameter (nm) 

TEM 

Particle height 

(nm) 

AFM 

% NMs <15nm 

based on 

measured sizes b 

TEM 

Number 

average 

Hydrodynamic 

diameter (nm) 

NTA 

Wavelength of 

maximum Uv-

vis absorbance 

Citrate 20.78±2.6 (0.17)a -43±1.3 15±3.3 (0.22)b 12.2±2.2(0.21)b 83% 23 519 
PVP 20.14±1.8 (0.15)a -8.3±1.6 10±2.8 (0.28)b 13.3±2.1(0.19)b 95% 53.25 525 

 

a () polydispersed index, b () coefficient of variation = standard deviation/mean 

Z-dh:   Z-average Hydrodynamic Diameter  

DLS:   Dynamic Light Scattering  

NTA:   Nanoparticle Tracking Analysis  

TEM:   Transmission Electron Microscopy  

AFM:   Atomic Force Microscopy  

Uv-vis:  Ultraviolet-visible Spectroscopy  
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5.5 Characterisation of PVP Ag NMs 
 

 This section relates the detection and quantification of particle number concentration 

of silver nanoparticles. The synthesised silver nanoparticles of 5.54 mg/L were received from 

the Center for Environmental Nanoscience and Risk, University of South Carolina. USA, and 

exposure media from the Oregon State University, Sinnhuber Aquatic Research Laboratory 

(OSU/SARL), USA. In collaboration, toxicology experiments were performed whilst the 

measurement of particle number concentration was performed as part of this thesis.  

The initial characterisation of Ag NMs capped with PVP is necessary to establish any 

transformations under environmental exposure conditions. It was deemed necessary to first 

fully characterise the physiochemical properties of the NMs as received. In order to achieve 

this, a multi-method approach was adopted to quantify the NM properties (Domingos et al., 

2009a). Table 5-5 below summarised the results obtained by the characterisation of PVP 

capped Ag NMs. The following discussion is related to the NM characterisation.  

  

Table 5-5. Physicochemical properties of PVP coated Ag NMs measured by different 
analytical techniques 

Coating 

of 

AgNMs 

Z-dh (nm) 

(polydispersity 

index) 

DLS 

Zeta 

Potential 

(mV) 

DLS 

Equivalent 

spherical 

diameter (nm) 

TEM 

% NMs <15nm 

based on 

measured sizes 

by TEM 

Wavelength of 

maximum Uv-

vis absorbance 

PVP 31.14±1.8 (0.25)a -8.3±1.6 19.4±6.8 (0.38)b 81% 425 

a () polydispersed index, b () coefficient of variation = standard deviation/mean  

 

Z-dh:   Z-average Hydrodynamic Diameter  

DLS:   Dynamic Light Scattering  

TEM:   Transmission Electron Microscopy  

Uv-vis:  Ultraviolet-visible Spectroscopy  
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Figure 5-13.  (A) UV-vis measurements of AgNMs PVP coated having peak absorbance 

Particle of 425 nm. (B and C) size distribution as measured by transmission electron 

microscopy of AgNMs (19.4±6.8 nm) suspended in UHPW and ultracentrifuged on poly-l-

lysine functionalized TEM substrate. 
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 Firstly, spherical diameter of the Ag NMs the TEM imaging was carried out. TEM 

facilitates the accurate diameter of NM (Nowack and Bucheli, 2007), explained in detail 

further. The PVP capped Ag NMs were ultracentrifuged by forcing the NMs to retain on 

surface by PLL functionalisation of the substrate i.e. improvised sampling technique protocol 

validated previously for the Au NMs. The substrate was imaged on different parts of the TEM 

grid by TEM technique and used nearly 20 images for the size measurements. Figure 5-13 

(A) shows the uv-vis spectra of Ag NMs having the absorbance peak at 425 nm. The stability 

test of Ag NMs was not required since the characterisation and particle number 

measurements were carried out by freshly prepared Ag NMs.  

 Figure 5-13(B) shows the micrograph of transmission electron microscopy of PVP 

capped Ag NMs. The size of the Ag NMs was of the individual NMs was measured, about 

2000 NMs were measured from a set of TEM images to obtain the accurate range of NM 

size. The size distribution of NMs from the electron micrographs were analysed using the 

imaging software Image J. The number size distribution of the PVP capped Ag NMs 

measured by TEM together with the fitted distribution functions are shown in Figure 5-13(C). 

The number average size of PVP capped Ag NMs was found to be around 19.4±6.8 nm 

(with a range 5-35 nm). The coefficient of variation was about 0.38 for PVP-AgNMs 

respectively, suggesting that the suspensions of NMs have relatively high 

polydispersity.(Baalousha et al., Baalousha and Lead, 2013b) Both NMs contain a high% of 

NMs falls in the range of 4 - 25 nm.  Hence, Ag NMs are polydispersed having wider range 

of NMs. 
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Figure 5-14.  Shape factor of Ag NMs calculated from the micrograph of TEM image of 

approximately 2000 NMs. 

 While the shape of NMs is vital part of the physicochemical characterisation since the 

particle shape is very significant to the toxicity studies (Asharani et al., 2008, Bar-Ilan et al., 

2009). The above Figure 5-14 shows the graphical representation of the percentage of NMs 

having a range of shape factor (0.5 to 1) The shape factor was calculated by using the 

formula circularity factor, C (Fernandez-Garrido et al., 2014) (detailed in Section 5.3.7). The 

average shape factor for Ag NMs was found to be 0.773±0.127. Therefore, as per the 

standards stated (Lead et al., 1999)the shape was the NMs were slightly elongated.  

 Energy Dispersive X-ray Spectroscopy gives an elemental composition of NM as 

synthesised is shown in Figure 5-15 for the micrograph. This confirms the presence of Ag 

NMs in the suspension. The elemental composition obtained from this analysis is given in 

the Table 5.6. 
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Figure 5-15   EDX spectra of Ag NMs obtained from the Tecnai Philips F20 TEM  

 

Table 5-6       Elemental analysis for NMs as obtained by EDX 

Element Carbon Oxygen Silicon Sulphur Chlorine Copper Silver 

Weight /  
% 1.51 2.77 1.04 0.34 0.08 41.34 62.55 
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5.6 Conclusion 
 

 

The main objective of this chapter is to synthesise the very well monodispersed 

nanoparticles having good quality and to perform characterisation. Gold nanoparticles with 

two different capping agent PVP and citrate were synthesised. Also range of sizes of NMs 

was synthesised. Characterisation of these nanoparticles is a prerequisite prior to the 

exposure to the realistic environmental conditions. Physicochemical properties of 

synthesised particles needed to be known so that the fate and behaviour of the NMs after 

exposure can be compared to its original properties.  

After critical review for the synthesis of NMs, wet chemical method, identified as the 

ideal method to obtain the monodispersed NMs. To measure the physicochemical properties 

of these NMs range of different techniques both spectroscopies and microscopies were 

employed. In brief, physicochemical properties analysed for the in-house synthesised citrate 

and PVP capped Au NMs were as follows: 

i. size measurements by techniques such as NTA, DLS, TEM and AFM,  

ii. concluded the NMs are spherical in shape by TEM imaging and the small 

variation in the shape of NMs plays a key role when penetrates to human cell 

(Schaeublin et al., 2012) may be toxic. But less known effects in 

environmental relevant conditions.   

iii. from ICP-MS it is confirmed that 99.2% of gold ions were converted into NMs 

and percentage dissolved gold ions found to be < 1%  

iv. while from DLS technique identified the NMs were more stable by surface 

charge measurements and monodispersed by obtaining sharp observance 

peak as well as stability test was performed quarterly for 24 months and 
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v. monodispersity is also calculated using TEM by identifying 95% and 83 % of 

the NMs < 15 nm for PVP-Au NMs and cit-Au NMs respectively.  

Both Au NMs coated with citrate and PVP were fully characterised, extremely good 

quality will be used for the measurement of particle number concentration. In order to 

measure the particle number, these NMs will be added to the ultra high purity water (UPHW) 

(simple media) and also exposed to the realistic environmental conditions (complex media) 

to know their fate and behaviour analysed.  

Hence fully quantitative assessment of the measurement particle number will be 

presented both in simple and complex media in the following upcoming chapters.  
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Chapter 6 Number concentration measurement of citrate and         

         PVP AuNMs by simple media using AFM technique 
 

6.1 Chapter Summary 
 

 This chapter presents results and discussion of particle number measurement of 

citrate Au NMs and PVP capped Au NMs by using the technique atomic force microscopy 

(AFM). As previously stated in Section 4.3, sampling technique is a critical part and has 

been limited by the sample preparation rather than by the capability of microscopy 

techniques to count and measure the size of NMs. After analysing many techniques 

provided in literature, in this study ultracentrifugation is considered as appropriate sampling 

techniques. Also ultracentrifugation technique is improvised and enhanced by surface 

functionalisation see Section 4.3.3. In this chapter both the functionalised and non-

functionalised substrates were imaged by AFM and the recovery of NMs obtained by these 

substrates is shown as an evident to look at the difference between the sampling techniques 

employed. The analysis of two different types of substrate functionalisation carried out was 

(i) ultracentrifuged with substrate functionalisation by Poly-l-lysine (PLL) polymer and (ii) 

addition of CaCl2 to the NM suspension before ultracentrifugation. These two techniques 

were employed to obtain the uniform distribution between the images, as well as NM 

retention and recovery on the substrate were also considered to be very important for the 

particle number measurement. Image analysis was carried out to obtain uniformity of 

distribution between the images explained in detail.   

 The first section of this chapter is related to the distribution of nanoparticles on the 

substrate. While the second section presents the percentage recovery of NMs on the 

substrate and later sections on correlation between with the particle number concentration 

and the known mass concentration measured by ICP-MS.  

 Lastly, particle number measurements of the NMs and the number of images 

required for the measurement of the particle number is presented in detail. The results 
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obtained from this chapter have been published in Environmental Science: Processes and 

Impacts on 25 February 2014. This paper is attached at the end the thesis in Appendix B.  

 

6.2 Distribution of NMs on the AFM substrate 
 

 Distribution of NMs on the substrate is the uniformity of the NMs arrangement 

between the set of 30 images scanned per substrate. Total six substrates were prepared 

each having a different concentration of NMs ranging from higher concentration to lower 

concentration (33.5-670.5 ppb, See Figure 6-1). The number of NMs on each substrate is a 

concentration dependent. The higher concentration of NM suspension must have higher 

number of NMs on the substrate having uniform distribution between the images and vice 

versa.   This is further explained in detail in methodology Chapter 4 and in subsection 4.7.5. 

 Distribution of NMs on the substrate was analysed with different sample preparation 

techniques and different media. The sample preparation and different media analysed are as 

follows: 

(i) Non- functionalisation of substrate - means without treating substrate with 

PLL. Precipitation of Au NMs with simple media (adding Au NMs ultra-high 

purity water) by ultracentrifugation method of sampling technique. 

(ii) Adding CaCl2 to the NM suspension before ultracentrifugation  

(iii) PLL functionalisation of substrate - means treating substrate with PLL before 

ultracentrifugation, Au NMs suspended in UHPW and 

(iv) PLL functionalization sampling method with complex media i.e. adding Au 

NMs to natural surface water, Suwannee river fulvic acid and EPA synthetic 

soft water. 
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By employing above mentioned sampling techniques with different media, substrate 

for AFM imaging was prepared.  The distribution of NMs on the substrate was imaged and 

given in detail in the following sections.  

6.3 NM suspension on non-functionalised substrate 
 

 AFM images of PVP capped Au NMs and citrate capped Au NMs suspended in ultra-

high purity water (UHPW) at the range of concentrations is shown in the Figure 6-1, Figure 

6-2 and Figure 6-3 respectively. The AFM substrates were not functionalised by PLL. 

 

6.3.1 PVP capped Au NMs on non-functionalised substrate 
 

 Five AFM substrates were prepared each having different NM concentration as 

explained in the methodology Chapter 4 and in subsections 4.3.2. As shown in the Figure 6-

1, shows the distribution of PVP capped Au NMs having different concentration such as the 

670.5 ppb, 335.3 ppb, 167.6, 67.1 and 33.5 ppb. The distribution of PVP capped Au NMs at 

concentrations such as 670.5 ppb, 335.3 ppb and 167.6 ppb are found to be overloaded. On 

further dilution of the samples to 67.1 ppb and 33.5 ppb, the distribution of NMs found to be 

non-uniform or random distribution. In some areas, no NMs were observed and in other 

areas high number of NMs and aggregates were observed. This suggests that the NMs were 

not attached strongly to the AFM substrate and detached from and re-deposited during 

substrate washing resulting in losses of NMs at some areas and aggregation of NMs at other 

areas. 
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C 
(ppb) 10 μm x 10 μm 5 μm x 5 μm 3 μm x 3 μm 2 μm x 2 μm 1 μm x 1 μm 

670.5 

     

335.3 

     

167.6 

     

67.1 

     

33.5 

     
  

Figure 6-1  AFM micrographs of PVP capped Au NMs suspended in UHPW and 

ultracentrifuged on freshly cleaved non-functionalised mica substrate at different 

concentrations of Au NMs (33.5-670.5 ppb). 

  The uniformity of NM distribution on the substrate is crucially important to 

avoid the bias in counting the number of NMs. If an area of low/high number of NMs is 

imaged and used to calculate number particle concentration in the ultracentrifuged 

suspension that results in the inaccurate particle number measurements. Thereby, the 

uniformity in the distribution of NMs between the different images is more vital for further 

analysis for the quantification of particle number. Further dilution were carried out, different 
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concentration diluted were 16.8, 3.4 and 1.7 ppb to have additional analysis on the 

distribution of NMs with the ultracentrifugation method of sample preparation without surface 

functionalisation. 

C (ppb) Batch 2 Bach 3 

67.1 

  

33.5 

  

16.8 

  

3.4 

  

1.7 

 

NA 

  

Figure 6-2  AFM micrographs (5 μm x 5 μm) of PVP capped Au NMs suspended in UHPW 

and ultracentrifuged on freshly cleaved non-functionalised  mica substrate at different 

concentrations of Au NMs (1.7-67.1 ppb).  

NA: not analysed 
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 Similarly in Figure 6-2, shows the distribution of PVP capped Au NMs further diluted 

at different concentration where the distribution of NMs were still found to be non-uniform 

and few NMs were aggregated. While at the concentration of 33.5 ppb, large population of  

NMs were found in batch 2 while none of the NMs were seen in batch 3 (see Figure 6-2), for 

the same concentration (33.5 ppb) the distribution of NMs quantitatively varied between the 

images.  Furthermore analysis was carried out for the citrate capped Au NMs having 

ultracentrifugation method of sampling technique without surface functionalisation.  

6.3.2 Citrate capped Au NMs on non-functionalised substrate 
 

a b   

Figure 6-3 AFM micrographs (5 μm x 5 μm) of Cit-AuNMs in ultrahigh purity water (UHPW) 

prepared on freshly cleaved non-functionalised  mica substrate at different concentrations 

(a) 101.6 ppb Au and (b) 40.64 ppb Au.  

  

 Further Figure 6-3 shows the AFM images for citrate capped Au NMs having non-

uniform distribution between the images. Mainly due to the losses of NMs on the substrate or 

to the AFM tip interaction on the surface of the substrate while scanning.  To prevent the 

loss of NMs or further particle interaction once sorbed, it is vital to functionalise the substrate 

surface to retain/adhere the NMs during the process of ultracentrifugation. This process is 

explained in detail in methodology Chapter 4 in the Section 4.3.3.  
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 The following section is based on the discussion on the uniformity in NM distribution 

on the substrate by adding CaCl2 to the NM suspension before ultracentrifugation and its 

results explained in next section. 

 

6.3.3 Adding CaCl2 to the NM suspension before ultracentrifugation  
 

The procedure followed for the sample preparation by adding CaCl2 to NMs is given 

in detail in Chapter 4 and in Section 4.3.3. The AFM micrographs of citrate capped Au NMs 

suspended in 100 μM, CaCl2 and ultracentrifuged on the non-functionalised mica substrate. 

At different concentration of Au NMs from 1 ppb to 203.2 ppb is shown in the Figure 6-4, for 

100 μM CaCl2 and ultracentrifuged on a freshly cleaved mica substrate. From these images 

it was found that for citrate coated NMs at higher concentration of Ca2+ ions results in 

improved distribution but not for all the images, still Ca2+ ions resulted in aggregation and 

therefore not been investigated. The reason for the improved distribution by the addition of 

CaCl2 is likely due to the bridging of Ca2+ of the negatively charged mica surface and 

negatively charged PVP coating. At higher concentration 203.2 ppb and 101.6 ppb found be 

randomly distributed between the images and also aggregation was observed on few 

images. Again at lower concentration at 10.2 ppb, NM distribution was not uniform and less 

NMs were observed between the images but at further more lesser concentration 2 ppb, the 

number NMs found to be more when compared to the 10.2 ppb. Therefore, the addition of 

100 μM CaCl2 to NM samples resulted in the non-uniform NM distribution between the 

images. Similarly, the distribution of NMs were analysed by adding higher concentration of 

200 μM CaCl2 to the NMs.  
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C (ppb) Image 1 Image 2 Image 3 

203.2 

   

101.6 

   

20.3 

   

10.2 

   

2.0 

   

1.0 

   
  

Figure 6-4  AFM micrographs (5 μm x 5 μm) of Cit-AuNMs suspended in 100 μM CaCl2 and 

ultracentrifuged on freshly cleaved non-functionalised mica substrate at different 

concentrations of AuNMs (1-203.2 ppb) expressed as ppb Au.   
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C (ppb) Image 1 Image 2 Image 3 

203.2 
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101.6 
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20.3 
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10.2 
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2.0 
 

3um x 3um 

   

1.0 
 

3um x 3um 

   

 

Figure 6-5  AFM micrographs (5 μm x 5 μm)  of Cit-AuNMs suspended in 200 μM CaCl2 and 

ultracentrifuged on freshly cleaved non-functionalised  mica substrate at different 

concentrations of AuNMs (1-203.2 ppb) expressed as ppb Au.   
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Further addition of 200 μM, CaCl2 to citrate capped Au NMs and ultracentrifuged on a 

non-functionalised freshly cleaved mica substrate, Figure 6-5 shows the images at different 

concentration of Au NMs from 1 ppb to 203.2 ppb.  From these images it was found that for 

citrate coated NMs at higher concentration of Ca2+ ions results in improved the distribution of 

NMs (see Figure 6-5) but not for all the images when compared with the 100 μM, CaCl2, still 

Ca2+ ions resulted in aggregation. At higher concentration that is, of 203.2 ppb and 101.6 

ppb NMs were randomly distributed between the images and also aggregation was observed 

on few images. But at lower concentration from 20.3 ppb to 1.0 ppb, NM distribution was 

improvised between the images. Therefore, the addition of 200 μM CaCl2 to NMs resulted in 

the uniform NM distribution when between the images when compared to 100 μM CaCl2 but 

still may be loss of NMs which is quantitatively analysed in later discussions. 

For the PVP AuNMs the addition of 10 mM CaCl2 ultracentrifuged on bare AFM 

resulted in uniformity in the NM distribution between the images (see Figure 6-6). The 

uniformity in distribution between the images is possibly due to the bridging by Ca2+ of the 

negatively charged mica surface and the partially negatively charged PVP 

coating(Baalousha and Lead, 2013b). Therefore, addition of divalent cations to sterically 

stabilized NMs combined with ultracentrifugation can be used to improve the uniformity of 

NM distribution on the AFM substrate. But at 10 mM  CaCl2 ultracentrifuged on non-

functionalised AFM as shown in Figure 6-8, still few aggregates were present.   
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C (ppb) 10 μm x 10 μm 5 μm x 5 μm 3 μm x 3 μm 1 μm x 1 μm 

33.5 

    

16.8 

    

3.4 

    

1.7 

    

0.34 

     

Figure 6-6  AFM micrographs of PVP-Au NMs (5 μm x 5 μm) suspended in 10 mM CaCl2 

and ultracentrifuged non-functionalised  mica substrate at different concentrations of Au NMs 

(0.34-33.5 ppb) expressed as ppb Au. 

Additionally, overloading of NMs were observed on AFM micrograph (Figure 6-4 and 

6-5) at concentration >100 ppb for the NMs investigated in this study. This overloading 

depends on the size and the density of the NMs being investigated, because for a given 

concentration of NMs in suspension, the number of NMs increases with the decrease in NM 

density and size. Further analysis is performed at concentrations < 100 ppb for the NMs, this 

investigation is beneficial since it allows low concentration measurements to be performed 
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which are more representative of likely exposure scenarios from the environment, consumer 

goods and the workplace and allows more realistic toxicology experiments to be performed. 

Further distribution analysis carried out with NMs suspended on PLL functionalised 

substrate. 

 

6.3.4 PLL functionalised Au NMs suspended in UHPW  
 

The sampling technique for PLL functionalisation AFM substrate is explained in the 

Chapter 4 and in Section 4.3.3. Five AFM substrates having five different concentrations 

from 1.0 ppb to 101.6 ppb were prepared for the imaging by AFM technique. A total of 30 

images per substrate were taken. The Figure 6-7 below shows the AFM images of citrate 

capped Au NMs in UHPW ultracentrifuged on poly-l-lysine functionalised substrate. For each 

concentration as seen in Figure below three images were shown. Higher concentration has 

higher population of NMs when compared to subsequent further lower concentration. 

Qualitatively when compared from image to image per concentration, NM distributions were 

seen to be uniform between images. The uniformity in the NM distribution between images 

will be explained further quantitatively. The uniformity in the distribution of NMs between the 

images were seen, presumably due to the strong and immediate  attachment of the NMs to 

the AFM substrate following ultracentrifugation, preventing further particle interaction once 

sorbed. The strong attachment of the NMs is mainly due to the charge attraction between 

the negatively charged citrate capped Au NMs and the positively charged functionalized 

substrate (Basic Coulombs law,(R. P. Feynman, 1964)). Qualitatively, distribution of NMs on 

the substrates both non-functionalised CaCl2 and PLL functionalised is explained in further 

sections below.  
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Figure 6-7  AFM micrographs (5 μm x 5 μm) of Citrate capped Au NMs in UHPW and 

ultracentrifuged on poly-l-lysine functionalized mica substrate at different concentrations of 

Au NMs (1.0-101.6 ppb). 

 

The Au NMs added to natural organic materials (that in complex media) suspended 

on PLL functionalised substrate were also analysed. But unable to image due to the tip 

interaction with the substrate caused the damaged the tip and distortion in the signalling 

which provided a poor quality of images. Thereby, scanning the organic contained substrate 
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by AFM technique leads to blurring of the image. Hence, the artifacts by AFM technique of 

imaging organic or complex media contained sample will lead to distortion in the scanning 

that may be due to various reasons such as artifacts related to the tip, type of sample or 

interaction between the samples. So, AFM technique is ruled out for NMs suspended 

complex media.  

 

  

 

Figure 6-8  AFM micrographs (5 μm x 5 μm) of PVP capped Au NMs in UHPW and 

ultracentrifuged on poly-l-lysine functionalized mica substrate at concentration of 1 ppb. 

       

Quantitatively, the distribution of citrate capped Au NMs and PVP capped Au NMs in 

UHPW ultracentrifuged on non functionalised AFM substrate was found to be not uniform 

since coefficient of variation CV > 0.2, Figures 5-4 and 5-5 and Table 6-1. and therefore has 

not been investigated. For PVP capped Au NMs, the addition of 10 mM Ca2+ ions resulted in 

uniform distribution of the NMs on the AFM substrate shown in Figure 6-6, having CV < 0.2, 

Table 6-1, but still aggregation is seen on the substrate as shown in the Figure 6-8. The 

distribution of citrate capped Au NMs in UHPW ultracentrifuged on functionalized AFM 

substrate was seen to be more uniform between the images (Figure 6-7, CV < 0.2, Table 
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S2), due to the strong attachment of the NMs to the substrate. In the next section is based 

on the discussion of the strong attachment of NMs on the substrate and also to look at how 

much percentage NMs suspended in UPHW has been precipitated on the non functionalised 

and functionalised substrate. Therefore further analysis is given on the recovery of NMs on 

the substrate.  

6.4 Recovery of NMs  
 

 To obtain the percentage recovery, the number of NMs on the substrates was 

counted. Percentage recovery is the ratio of the number of NMs on each substrate to the 

number of NM in suspension. The recovery of NMs on the AFM substrate was assessed by 

(i) ignoring NM size polydispersity (e.g. using the mass calculated in Eq.4 in Section 4.7.5 

and (ii) considering NM size polydispersity (e.g. using the mass calculated in Eq.4 in Section 

4.7.5). Accounting for size polydispersity results in a higher recovery (~25-70%, Table 5-1), 

indicating the importance of accounting for NM polydispersity when considering the size 

distribution and calculation of NM mass from microscopy techniques (Baalousha and Lead, 

2013b). The samples studied here have very low polydispersity (CV is about 0.16 and 0.18). 

Samples with higher polydispersity will result in larger uncertainties in the calculated 

recoveries. Thus, the discussion below takes into account NM polydispersity when 

calculating NM recovery. 
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Table 6-1: Recovery of Cit- and PVP-AuNMs by ignoring and considering size 

polydispersity. The Citrate and PVP AuNMs prepared by Ultracentrifugation on a mica 

substrate functionalized by poly-l-lysine. The PVP-AuNMs were prepared by 

ultracentrifugation on a non-functionalised  mica substrate from 10 mM CaCl2 suspension. 

Concentration 
of Cit-AuNMs 

(ppb) 

PLL B1a 

(%) 

PLL B1b 

(%) 

Concentration 
of PVP-

AuNMs (ppb) 

10 mM 
CaCl2-B1a 

(%) 

10 mM 
CaCl2-B1b 

(%) 

101.6 63.8 70.9 67.1 30.2 33.2 

20.3 61.1 64.1 33.5 36.7 40.3 

10.2 48.5 52.3 16.8 23.7 26.0 

2.0 59.3 66.0 3.4 33.8 37.1 

1.0 65.7 68.9 1.7 27.3 30.0 

   0.34 41.2 45.3 

 

NA : Not Available 

a: Ignoring polydispersity 

b: Considering polydispersity 

 

For Au NMs samples in UHPW ultracentrifuged on the non functionalised  AFM 

substrate, recovery was very poor and was in the range of 0 to 0.5% for citrate-Au NMs and 

4 to 45% for PVP-Au NMs. For citrate coated NMs, the addition of 100-200 µM Ca2+ ions 

resulted in an increased recovery (1-27%) compared to that in UHPW and higher number 

concentrations of NMs, but also resulted in formation of aggregates of NMs (Figure 6-4 to 

Figure 6-6).  
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Table 6-2 Recovery of Citrate and PVP coated Au NMs given in brief on non functionalised, 

on addition of CaCl2 and PLL functionalised substrates 

Citrate capped Au NMs 
Recovery 

(%) 
PVP capped Au NMs 

Recovery 

(%) 

Non functionalised  
AFM substrate 
ultracentrifuged 

0-0.5 
Non functionalised  AFM 

substrate 
ultracentrifuged 

0-3 

100-200 µM CaCl2 
added to Au NMs and 

ultracentrifuged on Non 
functionalised  

substrates 

1-27 

10 mM CaCl2 added to 
NMs followed by 

ultracentrifugation on 
Non functionalised  

substrates 

26-45 

PLL substrate 48-71 PLL substrate  30-45 

 

The addition of 10 mM CaCl2 to PVP-Au NMs followed by ultracentrifugation on bare 

mica substrate resulted in an increased recovery of the NMs (26-45%, Table 6-2) and about 

an order of magnitude higher number concentration compared to those prepared in UHPW. 

The functionalisation of the AFM substrate with PLL resulted in higher recovery of 

citrate Au NMs (48-71% Table 5-1). The reason to have higher recovery in case of the citrate 

NMs on PLL functionalised is mainly due to the higher potential of attraction between NMs 

and the substrate. Citrate NMs has a higher negative charge measured by zeta potential of -

43 mV and the zeta potential for PVP capped Au NMs of -8.3 mV. Thereby, the citrate Au 

NMs were likely to be more strongly attracted to the positively charged poly-l-lysine 

functionalised AFM substrate when compared with the PVP Au NMs.  

The lower recovery for PVP capped Au NMs compared to the citrate capped Au NMs 

is due to the presence of aggregates of PVP-Au NMs (Figure 6-8) without washing, which 

were not accounted for in the recovery calculations. The number of the aggregates 

represents about 35% of the counted particles; however, it is impossible to estimate the 

number of NMs within the aggregates by AFM, due to limitation of the technique. Some of 
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the aggregates contained of 2 to 3 NMs, but other larger aggregates contain unknown 

number of NMs (Figure 6-8). While with washing results in PVP Au NMs losses the retention 

on the mica substrate even after functionalisation of the mica, which result in the loss of NMs 

may be as said before the zeta potential is less compared to citrate NMs. Thereby, results in 

the less recovery compared to the citrate NMs. Recovery data in brief, is given in the Table  

6-2. 

These results from the recovery of NMs suggests that by treating or functionalising 

the surface of the substrate with positively charged polymer is the method of choice to 

electrostatically stabilise NMs that leads to the higher recovery. While the other choice is the 

sterically stabilise the NMs by the addition of divalent cations ca2+ to enhance NM-substrate 

interactions.  

  

 

Figure 6-9  AFM micrographs (5 μm x 5 μm) of PVP-Au NMs suspended in UHPW and 

ultracentrifuged on poly-l-lysine functionalized mica substrate not washed. 

For PVP-capped Au NMs, the percentage recovery of NMs was for between non-

functionalised substrate  was found to be between 0% to 3% (see Table 6-2).,  while for 10 

mM CaCl2 suspended in NMs the percentage recovery was between 26% - 45 % , the 
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percentage range decreased when compared to non-functionalised Au NMs. But for the PLL 

functionalised substrate, were the substrate was washed after ultracentrifugation was found 

to be 30%-45%.  The aggregation and non uniformity of NMs on the substrate may be due to 

misplacement of the NM on the mica grid due to the surface charge of the mica when reacts 

with the polymer (Rojas, 2002). The AFM tip interaction also influences the dislocation of the 

NMs due to electrostatic force between the tip and the sample surface.  

 

6.5 Particle number measurement of NMs 
 

 To validate the sampling technique at different NM concentrations, the particle 

number concentration was calculated at a range of concentrations, which is needed to be 

investigated and also required to assess the range of applicability of the sample preparation 

method.  

 Table 6-3 provides particle number concentration data for citrate-capped Au NMs 

prepared by three different techniques. Calculating the NM per μm2 on the sample surface, 

for five different NM concentration. Particle number on non functionalised substrate was 

found to be having higher CV represents non uniform distribution of NMs (CV= 0.22 and 

0.46), thus less number of NMs of 0.4±0.1 to 1.1±0.5, particles per μm2 for 101.6 ppb.    
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 Table 6-3 Number of NMs counted per μm2 of AFM substrate for cit-AuNMs 

Concentration 
(ppb Au) 

UHPW-
B1 

CV 

UHPW-
B2 

CV 

100 μM 
CaCl2 

CV 

200 μM 
CaCl2 

CV 

Poly-l-lysine 

CV 

101.6 
0.4±0.1 

(0.22) 

1.1±0.5 

(0.46) 
ND 

23.8±3.8 

(0.16) 

200.7±20.5 

(0.10) 

20.3 NC NA 
1.5±0.3 

(0.24) 

4.2±1.4 

(0.34) 

38.3±3.2 

(0.08) 

10.2 NA NA ND 
2.6±0.7 

(0.27) 

15.2±0.9 

(0.06) 

2.0 NA NA 
1.7±0.4 

(0.31) 

1.4±0.4 

(0.27) 

3.2±0.6 

(0.18) 

1.0 NA NA ND 
0.9±0.3 

(0.34) 

1.6±0.2 

(0.12) 

 

The number in the brackets is the coefficient of variation of the number of NM per μm2 

of the substrate 

 NA: Not analysed 

 ND: not detected/not sufficient number of particles to be counted 

 OL: overloading 

 CV: coefficient of variation 

 While by the addition of 100 μM CaCl2 (CV= 0.16 and 0.34), as per the above table 

approximately 1.6±0.3 particle per μm2 for 20 ppb. For 200 μM CaCl2 added to NMs slightly 

improved particle number 4.2±1.4 particle per μm2 for 20 ppb. Particle number on PLL-

functionalised substrate was found to be having lower CV represents uniform distribution of 

NMs (CV= 0.06 and 0.18), thus more number of NMs of 200.7±20.5 to 1.6±0.2, particles per 

μm2 for 101.6 ppb to 1 ppb respectively. 
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Table 6-4: Number of NMs counted per μm2 of AFM substrate for PVP-Au NMs 

Concentration 
(ppb Au) 

UHPW -B1 

CV 

UHPW -B2 

CV 

UHPW -B3 

CV 

10 mM 
CaCl2 

CV 

PLL 

CV 

670.5, 335.3 

and 167.6 
Overloading NA NA NA NA 

67.1 ND 
147.4±7.8 

(0.05) 

68.6±43.5 

(0.63) 

83.6±11.5 

(0.14) 

98.5±8.3 

(0.08) 

33.5 
19.4±4.8 

(0.25) 

7.3±1.8 

(0.26) 
ND 

50.8±4.5 

(0.09) 

68.1±5.3 

(0.17) 

16.8 NA ND ND 
16.4±2.1 

(0.13) 

28±1.4 

(0.09) 

3.4 NA ND NA 
4.7±1.7 

(0.15) 

6.9±0.4 

(0.10) 

1.7 NA ND NA 
1.9±0.3 

(0.14) 

3.1±0.2 

(0.11) 

0.34 NA ND NA 
0.6±0.2 

(0.33) 

1.6±0.1 

(0.24) 

The number in the brackets is the coefficient of variation of the number of NM per μm2 of the 
substrate 

 NA: Not analysed 

 ND: not detected/not sufficient number of particles to be counted 

 CV: coefficient of variation 

 Similarly, the number of NMs counted per μm2 of AFM substrate for PVP capped Au 

NMs was found to be similar to citrate capped as given in the Table 6-5. The particles per 

μm2 for PLL functionalised were found to be higher when compared to the non functionalised 

grid.  
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Table 6-5 Number concentration (particle.L-1) of cit-Au NMs in diluted samples 

Concentration 

(ppb Au) 

UHPW-B1 

CV 

UHPW-B2 

CV 

100 μM 

CaCl2 

CV 

200 μM 

CaCl2 

CV 

Poly-l-lysine  

CV 

101.6 
5.90 x 1009 

0.22 

1.34 x 1010 

0.46 
ND 

2.84 x 1011 

0.16 

2.67 x 1012 

0.10 

20.3 NC NA 
1.75 x 1010 

0.24 

5.00 x 1010 

0.34 

5.09 x 1011 

0.08 

10.2 NA NA ND 
3.12 x 1010 

0.27 

2.02 x 1011 

0.06 

2.0 NA NA 
1.99 x 1010 

0.24 

1.73 x 1010 

0.27 

4.20 x 1010 

0.18 

1.0 NA NA ND 
1.04 x 1010 

0.34 

2.17 x 1010 

0.12 

NA: Not analysed 

ND: not detected/not sufficient number of particles to be counted 

OL: overloading 

 Table 6-5 represents particle number concentration (particle L-1) of citrate capped 

AuNMs in diluted samples. Five different concentrations is shown in the table from 101.6 to 

1.0 ppb. The number of particles per litre in PLL functionalised substrate was found to be 

higher when compared to the non-functionalised sampling techniques.  Higher concentration 

NM suspension have higher particle.L-1 (2.67 x 1012 particle.L-1) with lower CV (0.10) 

confirming uniform distribution between the images. As the mass concentration decreases 

from 101.6 ppb to 1.0 ppb, the particle number also decreases (2.67 x 1012 to 2.17 x 1010 

particle.L-1). 
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 Table 6-6  Number concentration (particle.L-1) of PVP-AuNMs in diluted samples 

Concentration 

(ppb Au) 

UHPW -B1 

CV 

UHPW -B2 

CV 

UHPW -B3 

CV 

10 mM 

CaCl2 

CV 

PVP 

(washed) 

CV 

670.5, 335.3 

and 167.6 
Overloading NA NA NA NA 

67.1 ND 
1.76 x 1012 

0.05 

8.21 x 1011 

0.63 

1.11 x 1012 

0.14 

1.48 x 1012 

0.13 

33.5 
2.50 x 1011 

0.25 

9.43 x 1010 

0.26 
ND 

6.75 x 1011 

0.09 

6.13 x 1011 

0.18 

16.8 NA ND ND 
2.17 x 1011 

0.13 

3.10 x 1011 

0.10 

3.4 NA ND NA 
6.22 x 1010 

0.15 

5.65 x 1010 

0.12 

1.7 NA ND NA 
2.51 x 1010 

0.14 

2.04 x 1010 

0.14 

0.34 NA ND NA 
7.58 x 1009 

0.33 

7.64 x 1009 

0.22 

 

NA: Not analysed 

ND: not detected/not sufficient number of particles to be counted 

CV: coefficient of variation 

 

 Similarly, Table 6-6 represents particle number concentration (particle.L-1) of PVP 

capped Au NMs in diluted samples. Six different concentrations are shown in the table from 
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167.0 to 0.34 ppb. The number of particles per litre in PLL functionalised substrate was 

found to be higher when compared to the non-functionalised  sampling techniques.  At very 

high concentration of > 67.1 ppb, NMs are overloaded.  

A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

Figure 6-10  Representative atomic force microscopy images of PVP-AuNMs suspended in 

10 mM CaCl2 showing a uniform distribution of PVP-AuNMs on non-functionalised  AFM 

substrate and the decrease of the number of NMs recovered with the decrease in NM mass 

concentration in ppb (a) 67.1, (b) 33.5, (c)16.8, (d)3.4, (e) 1.7 and (f) 0.34. All images are 2 

µm x 2 µm. 

 

 As the concentration of NM decreases from 67.1 ppb to 0.34 ppb, the particle count 

also decreases 1.48 x 1012 to 7.64 x 1009 particle.L-1. As the NM concentration decreases for 
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the range of concentrations (67.1 ppb to 0.34 ppb), particle count also decreases, this can 

be visualised by typical AFM micrograph shown in the Figure 6-10.The next step is to look at 

the correlation between the NM suspended at the range of concentration with respect to 

particle count. 

 

6.6 Correlation between the mass and number concentration 
 

 The comparison was carried with the known mass concentration (by analytical 

instrument) and measured particle number. The mass concentration of in-house synthesised 

NMs i.e. the citrate capped Au NMs and PVP capped Au NMs was measured by the ICP-

MS. The measurement of the mass concentration by ICP-MS was explained in detail in 

Chapter 5 (characterisation of NMs results and discussion) and in Section 5.4.8. . The initial 

concentration measurements of Cit-Au NMs and PVP-Au NMs were 101.6±3.2 and 

167.6±3.2 mg L-1 respectively. The particle number concentration measured for various 

concentrations was given in previous Section 5.4. 

  For non-functionalised mica substrates for both citrate and PVP NMs, as expected 

the recovery data was very poor (in the range of just 0 to 0.5% and 0-3% respectively), the 

correlation between mass and number concentrations is not possible to assess. 

Similarly, for the citrate capped Au NMs of 100 and 200 uM CaCl2 ultracentrifuged on 

substrate and also for 10 mM PVP capped Au NMs with non-functionalisation and PLL 

functionalised substrate due to the absence of NMs on substrates (see Table 6-2) as seen in 

the recovery data, it is not possible to assess the correlation between the mass and number 

concentration.  The reason may be PVP-Au  NMs in UHPW ultracentrifuged on poly-l-lysine 

functionalized surface, presumably because of the inconsistent losses of NMs at different 

concentrations due to the weak attachment of the NMs to the AFM substrate.  
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Figure 6-11 Correlation between the mass and number concentration of NMs (a) NM/l in 

diluted suspension and (b) NM/μm2 on the mica substrate. Cit-AuNMs was prepared by 

ultracentrifugation on a poly-l-lysine functionalized mica substrate and PVP-Au NMs in 10 

mM CaCl2 was prepared by ultracentrifugation on a non-functionalised  mica substrate. All 

number concentrations represent average and standard deviation of two independent 

replicates. 

 

Similarly, for PVP-Au NMs, the addition of 10 mM CaCl2 and ultracentrifugation on 

bare (non-functionalised substrate) mica substrate resulted in better correlation (r2= 0.992, 

Figure 6-11) between number and mass concentrations. The number of NMs counted per 

μm2 of the mica substrate for cit-AuNMs ultracentrifuged on poly-l-lysine functionalized mica 

and for PVP-AuNMs in 10 mM CaCl2 ultracentrifuged on bare mica substrate also shows a 

good correlation with the mass concentration (Figure 6-11b and Table 6-3 to Table 6-6) and 

suggests that the sample preparation method is applicable within the concentration range of 

0.34-100 ppb for the NMs investigated in this study. Lower concentrations will result in 

higher uncertainty and variability because of the low number of NMs present on the AFM 

substrate (Figures 6-6 and 6-7, Table 6-3 and Table 6-6) or will require collecting more 

images to count sufficient number of NMs, in particular for sizing purposes. Higher 
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concentrations will result in overloading (particle-particle interaction, Figures 6-5 and 6-6) of 

the AFM substrate and therefore it becomes impossible to obtain true counts of the NMs and 

to calculate NM recovery on the AFM substrate. The concentration range of 0.34-100 ppb is 

applicable for AuNMs of approximately 12-13 nm in diameter. However, the range of 

concentrations will depend on the size and composition (density) of the NMs.  

 

As previously explained in Section 4.7, scanning of a substrate is carried out 

randomly over the entire surface. The number of NMs on each scanned image is counted. 

Thereby, it is necessary to know the number of images required to count the NMs, in order 

to measure the particle number concentration per substrate. 

 

6.7 Number of images required for representative measurement of  
 particle number 

  

 To identify the number of images required to count NMs, two samples were tested for 

comparison with uniformly distributed NMs on the substrate with respect to non-uniformly 

distributed NMs on the substrate. Since Citrate Au NMs in UHPW by ultracentrifugation on a 

PLL functionalised substrate as well for PVP 10 mM CaCl2 suspended in Au NMs by 

ultracentrifugation method on non functionalisation mica are uniformly distributed between 

the images (see Figure 6-14) compared with non-uniform (see Figure 6-14) distribution of 

NMs between images of a substrate, with the 300 μM CaCl2 prepared by ultracentrifugation 

on a non functionalised AFM substrate.  
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Figure 6-12  Dependence of the calculated mean number concentration and standard 

deviation of the mean on the number of images scanned by atomic force microscopy of  the 

cit-AuNMs prepared by ultracentrifugation at 150 000 g on poly-l-lysine functionalized AFM 

substrates at different concentrations (ppb): (a) 101.6, (b) 20.3, (c) 10.2, (d) 2.0 and (e) 1.0. 

 

 The effect of the number of images on the mean number concentration and standard 

deviation of the mean for cit-Au NMs in UHPW prepared by ultracentrifugation on a poly-l-
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lysine functionalized substrate is shown in Figure 6-12 and for PVP-Au NMs in 10 mM CaCl2 

prepared by ultracentrifugation on non-functionalised  mica substrate is shown in Figure 5-

13. The mean number particle concentration tends to a stable value for ≥ 20 scanned 

images. The standard deviation of the mean generally decreases with the increase in the 

number of images and reaches a stable value (see Chapter 4 and Section 4.7.5) at about 

≥20 images. Therefore, 20 images is the required minimum number of images to obtain 

mean number concentration and standard deviation (σ) representative of the entire 

population of NMs. 

 

 The mean number concentration and standard deviation of the mean for cit-Au NMs 

suspended in 300 μM CaCl2 prepared by ultracentrifugation on a non-functionalised AFM 

substrate and for PVP-Au NMs suspended in UHPW are shown in Figure 6-14. Neither the 

mean nor the standard deviation tends to a stable value for the number of images scanned 

for all samples. Therefore, it is impossible to obtain a representative number particle 

concentration from these samples. 
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Figure 6-13  Dependence of the calculated mean number concentration and standard 

deviation of the mean on the number of images scanned by atomic force microscopy of  the 

PVP-coated AuNMs prepared by adding 10 mM CaCl2 on a non-functionalised  substrate at 

different concentrations expressed as ppb Au: (a) 67.1, (b) 33.5, (c) 16.8, (d) 3.4, (e) 1.7 and 

(f) 0.34. 
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Figure 6-14  Dependence of the calculated mean number concentration and standard 

deviation of the mean on the number of images scanned by atomic force microscopy of  the 

cit-coated AuNMs prepared by adding 300 μM CaCl2 on a non functionalised mica substrate 

at different concentrations expressed as ppb Au: (a) 101.6, (b) 20.3, (c) 10.2 (d) 2.0 and (e) 

1.0. 
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Therefore, the number of images required for obtaining the representative measurement 

particle number is > 20 images for AFM techniques. As seen in Figure 6-14, neither the 

mean number concentration nor standard deviation of the mean is stable for all different 

range of concentration when compared with the Figure 6-13. In Figure 6-13, the standard 

deviation of the mean decreases becomes stable after 20 images. Thus minimum of 20 

images are to be scanned by analytical instrument to obtain accurate particle number 

measurement for AFM technique. Stability after 20 images can be attained only if the 

sampling technique was PLL functionalisation of substrate followed by ultracentrifugation.  

6.8 Conclusion  
 

 The atomic force microscopy technique enables a full quantitative analysis of NMs at 

environmentally and toxicologically relevant concentrations that is 0.34-100 ppb for the first 

time. For the purpose of qualitative analysis, various methods of sampling technique were 

carried out to improvise the particle number measurement. The  method improvised was 

based on combining substrate functionalisation and ultracentrifugation to ensure high and 

uniform recovery of NMs on the AFM substrate and quantitative determination of the number 

of NMs and their number size distribution i.e. forcing the NMs onto the substrate was carried 

out by surface functionalisation of the substrate while the adding cations to NM suspension. 

 The quality of the sample preparation method was evaluated using well stabilised in-

house synthesised Au NMs coated with citrate and PVP using criteria are as follows: 

(i) full recovery of NMs on the AFM substrate 

(ii) the uniformity of NMs distribution on the AFM substrate and 

(iii) correlation between the mass and the number concentration. 
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 Both citrate and PVP AuNMs were uniformly distributed between the images 

scanned on the mica substrate, i.e. the coefficient of variation calculated between the 

number of NMs counted on different area of the substrate was<0.20. The recovery of NMs 

on the substrate was fully quantified for the first time and it was up to 71%. Also the number 

of counted NMs on the substrate was well (r2>0.95) correlated with the concentration of NMs 

in suspension. 

 The next chapter will investigate the sampling technique proposed and validated by 

using the transmission electron microscopy. This technique is more powerful in comparison 

with the AFM. The instrument capability (TEM technique) will enable to overcome the AFM 

limitations such as determining the number of NMs present within the aggregates and 

distinguishing between the natural and manufactured NMs when coupled with spectroscopy 

techniques.  

 The results obtained from AFM technique was published in 'Environmental Science: 

Process and Impacts'. The published paper is attached at the end of thesis. 
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Chapter 7 Number concentration measurement of citrate and             

  PVP Au NMs by simple and complex media  and Ag NMs  

  with E3 media using TEM technique 
 

7.1 Chapter Summary 

        

This chapter is related to the results and discussion based on TEM technique. This 

technique, for the first time fully validated to obtain the accurate measurement of particle 

number both in simple and complex media i.e. at realistic environmental conditions for gold 

NMs and in exposure media for silver nanoparticles.   

 

In brief, as said before, the aim of this research was to development of metrology and 

analytical methods for the detection and quantification of NMs in environmental samples has 

been identified as one of the most urgent and important research priorities to advance eco-

responsible nanotechnology (Alvarez et al., 2009). For an ideal technique, to measure the 

particle number concentrations especially in complex samples because of the presence of 

the debris, salts and various other materials less than nanoscale, the following should be 

able to  

(i) Determine the number of NMs irrespective of morphology, density or optical 

properties of NMs,  

(ii) Distinguish agglomerates from dispersed NMs,  

(iii) Identify a target NM in a complex matrix containing NMs of different composition (e.g. 

manufactured NMs in a matrices of naturally occurring NMs),  

(iv) Measure number concentration at environmentally relevant concentrations (e.g. ng-

µg L-1), and  

(v) Cover the entire nanoscale range (i.e. 1-100 nm). 
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Transmission electron microscopy (TEM) has the potential to meet the requirements 

outlined above (Baalousha, 2012a, Baalousha, 2012b). However, TEM is primarily limited by 

sample preparation rather than by the capability of microscopy techniques similar to the 

AFM. Different preparation techniques have been employed in the literature to prepare 

samples for microscopy analysis (AFM and TEM) including adsorption, drop deposition and 

ultracentrifugation (Baalousha, 2012, Baalousha et al., 2005a, Baalousha et al., 2005c, 

Baalousha, 2012a, Wilkinson et al., 1999a). These widely adopted sample preparation 

methods suffer from a number of issues when used for number concentration analysis such 

as poor statistical power, requiring the counting of large number of NMs to compensate for  

(i) Low and inconsistent recovery of NMs on the sample substrate and  

(ii) Non-uniform distribution of NMs on the sample substrate.  

 

Thereby, this chapter gives detailed description of the NMs distribution on the substrate 

that will be compared with the widely used drop deposition and ultracentrifugation method 

with the improvised NMs distribution achieved successfully by this study. Moreover, this 

chapter also gives the elaborate description to meet the requirements of the above stated 

such as improvised distribution of NMs on the substrate that leads to the accurate 

measurement of the particle number on the substrate by using TEM technique. Whereas, the 

FEI Tecnai F20 TEM has a scanning unit STEM integrated, had a bright field and dark field 

detector that can identify the existence of the particles other than target Au NMs.  

 

This results in the demonstration of the applicability of the validated sample preparation 

method to detect and quantify the particle number concentration of Au NMs both in simple 

and complex media at realistic environmental conditions at different concentrations (e.g. 1-

20 µg L-1) using transmission electron microscopy. Also reports on the measurement of 

particle number of Ag NMs in E3 media. This novel, fully quantitative sampling approach has 

enabled for the first time measuring the size of NM aggregates and also determined as the 

number of primary NMs within aggregates at environmentally realistic concentrations, and 
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demonstrated the concentration-dependent aggregation of NMs at such low NM 

concentrations.  

 

The first section of this chapter is related to the discussion of the measurement of 

particle number concentration of cit-Au NMs and PVP Au-NMs in ultra-high purity water (that 

is called as simple media). While the sample preparation technique adopted for the TEM 

technique is similar to sampling technique used for AFM, the detailed explanation is given in 

chapter 4 and Section 4.5.  

 

The second part of the first section of this chapter is the study based on adding Au NMs 

to the three different complex media at realistic environmental conditions. The three different 

complex media are as follows: 

(i) EPA synthetic soft water  

(ii) 5 mg/L Suwannee river fulvic acid in EPA soft water and  

(iii) Filtered Natural surface water  

 

The process of adding the Au NMs to the above mentioned complex media is given in 

detail in Chapter 4 and in Section 4.6. For both the simple and complex media, particle 

number measurements for five different concentrations were carried out. The five different 

concentrations were in the range of 1-20 µg L-1. However, the result obtained from this study 

is explained in detailed. The results obtained from this chapter will be published soon; paper 

to be published is attached at the end of this thesis in Appendix B. 

 

The above section of this chapter is related to the particle number concentration of gold 

nanomaterials while the third section is based on the silver nanomaterial. Similar protocol 

followed to the Ag NMs for the particle number measurements. Analysis carried out by using 

the Ag NMs both in simple (UHPW) and complex media. The complex media used was E3 

media (zebrafish). The Ag PVP NMs was added to E3 media to analyse the fate and 
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behaviour of the Ag NMs. The measurement of particle number of Ag NMs with and without 

E3 media is compared in this section. This study was conducted in courtesy with Mr. Michael 

T. Simonich, Ph.D. Student, (Oregon State University, Sinnhuber Aquatic Research 

Laboratory, USA). Oregon University was carried out with the toxicity study of the Ag-PVP 

NMs.  

 

7.2 Measurement of particle number concentration by simple media and complex 
media 

 

The in-house synthesised gold nanoparticles capped with citrate and PVP were used 

for the analysis. Measurement of particle number concentration was carried out by adding 

citrate Au NMs and PVP Au NMs in ultra-high purity water (UHPW) at five different 

concentrations ranging between 1-20 µg L-1. All TEM analyses were performed using 

TECNAI F20 Field Emission Gun (FEG) TEM coupled with an X-ray Energy Dispersive 

Spectrometer (X-EDS) from Oxford Instruments. Qualitative X-EDS analysis was performed 

to determine particle elemental composition especially in complex media (explained in detail 

in further sections). Scanning the images on the TEM grid was performed by randomly 

selecting the different grid area that covers the entire substrate resulting in 35 images being 

investigated for each TEM grid. The number of NMs in each image was counted by using 

image J software.  To count accurately number of NMs on these substrates, the evaluation 

of the sample preparation is paramount importance.  

Initially, the evaluation of the sample preparation method was performed by using the 

widely used method such as  

(i) Drop method  and  

(ii) Ultracentrifugation method.  
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These two methods of sample preparation method for the particle number were 

explained in detail in previous Chapter 4, Section 4.3 and in Subsection 4.3.1 and 4.3.2. and 

later, the evaluation was carried out for the improvised method of sample preparation i.e.. 

(iii) Surface functionalisation and ultracentrifugation method. 

This method of sample preparation was explained in detail in Chapter 4 and 

Subsection 4.3.3. In order to obtain the accurate measurement of particle number the few 

criteria was adopted in this study are as follows: 

(i) NM distribution on the TEM grid between images, 

(ii)  The % recovery of NMs on the TEM grid compared to the concentration of 

NMs in suspension and  

(iii) The correlation of number concentration measured by TEM vs. mass 

concentration in suspension (linearity).  

 

The uniformity (consistent number of NMs between the grid areas) of NM distribution 

on the TEM grid was evaluated by comparing the number of particles counted at different 

areas on the TEM grid, which was performed by calculating the coefficient of variation of the 

number of NMs per μm2 on the images collected at different location on the grid (CV = 

σ/mean of number NMs per μm2 on the different images). Low CV values indicate uniform 

distribution of NM on the TEM grid. 

 

The number of NMs in each image was counted by using software, MatLab image 

processing toolbox (Ncounted/image) and the number of NMs (NM L-1) in suspension (Nsuspension) 

was calculated from counted number of NMs in each TEM image using the mathematical 

modelling see Chapter 4 and in Section 4.7.4.  
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In the previous chapter it is established that the ultracentrifugation is the most 

appropriate sample preparation method for microscopy (atomic force microscopy, AFM), 

providing the most representative number particle size distribution, number average sizes, 

fully quantitative number particle concentration at environmentally relevant concentrations 

(0.1-100 ppb) with high recovery (60-80%). 

 

Similarly the validation of surface functionalisation followed by ultracentrifugation method 

of sample preparation protocol was applied by using TEM technique for simple, 

environmentally relevant and exposure media. Our unpublished results suggest that AFM 

does not sufficiently discriminate between the NMs and natural colloids. Below we discuss 

the quality of the  particle number concentration data produced, in simple and complex 

media in terms of (i) uniformity of NM distribution on the TEM grid, (ii) NM recovery, (iii) 

number vs. mass concentration correlation and (iv) the minimum number of images required 

to achieve accurate number particle concentration.  

 

7.2.1 Measurement of particle number of Au NMs in simple media by TEM technique  
 

7.2.1.1 Introduction  
 

Nanoparticles from suspensions was deposited onto a TEM grid prior to analysis and 

several sample preparation protocols to deposit NMs from suspension onto a TEM grid have 

been employed in the literature including adsorption, drop deposition and ultracentrifugation. 

Only a few studies have applied this method (Hassellov, 2005, Boyd, 1994, Wu et al., 1990a, 

Wu et al., 1990b, Baalousha, 2009). These methods are widely applied qualitatively, but 

have never been validated to quantitatively measure particle number concentration from a 

suspension of NMs. At the beginning of this research, the drop method of sample 

preparation was attempted to have a glance and analyse the NM distribution on the TEM 

grid and also measurement of particle number was carried out. The process of sample 
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preparation for drop method carried out in this research was given in detail in Chapter 4 and 

in Section 4.5.1. Below sections is the discussion pertaining to the quality of the distribution 

of NMs on the substrate initially by drop deposition method adding UHPW i.e. simple media.  

Secondly, the NM distribution on the substrate was analysed for the ultracentrifugation 

method of sampling techniques. The procedure for sample preparation was given in detail in 

Chapter 4 and Subsection 4.5.2. The quality of distribution of NMs and the measurement of 

particle number is given in detail in upcoming sections below.  

Third, in order to improvise distribution of NMs and to obtain the good agreement in 

particle number concentration with respect to the suspension of NMs on the grid, the grid 

was functionalised with the PLL and NMs were ultracentrifuged on the PLL functionalised 

grid to obtain good quality of distribution and without any losses of suspended NMs on the 

grid (sample preparation is explained in detail in Chapter 4.3.3).  The distribution of NMs by 

this improvised sampling technique and their particle number results and discussion is 

carried out in further sections below. 

 

7.2.1.2 Distribution of NMs in simple media on TEM grids 
 

Distribution of NMs means the uniformity of NMs on the substrate between the set of 

images scanned by TEM. The uniformity in distribution of NMs on the substrate depends on 

the sample preparation technique which was critical part of this investigation. Strong 

attachment of NMs is a vital part of the research such that all the precipitated NMs on the 

substrate shouldn't be either misplaced or lost. Also all the NMs from the suspension must 

be precipitated on the substrate. Uniformity of NMs distribution between images taken at 

different positions on the TEM grid is essential to obtain representative particle number 

concentrations and number size distribution, as well as to minimize the number of images 

required to obtain a representative number particle concentration.  
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Qualitatively, TEM images of cit-Au NMs and PVP-Au NMs suspended in UHPW and 

prepared by drop deposition shown in the Figure 7-1 shows a non-uniform distribution of the 

nanoparticles between images. As shown in Figure 7-1 below for cit-Au NMs having 

concentration 20.3 ppb which is in the first column the larger NMs were found in the first 

image when compared with the other two images. Also for the PVP NMs having 16.8 ppb 

shows the similar distribution when compared with each other i.e. the large disparity in the 

number of NMs between the images. Since drop deposition sampling technique results lack 

of uniformity of NM distribution between the images on the TEM grid is likely due to losses 

and/or displacement of NM on the TEM grid during the washing process. And also the non-

uniformity is presumably due to the NMs not attached strongly to the TEM grid that allows 

the particle movement on the grid surface. The number NMs on each image were also 

counted and are reported quantitatively. Total of 30 images were taken for each 

concentration.  
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Figure 7-1: Transmission electron microscopy images of (a) citrate-AuNMs (20.3 ppb) and 

(b) PVP-AuNMs (15.79 ppb) on bare-TEM grid. Samples were prepared by drop deposition 

method. 

 

 Similarly for the ultracentrifugation method of sample preparation the particle 

distribution of citrate Au NMs and PVP Au NMs shows the random distribution of NMs 

between the set of images. Qualitatively, the below Figure 7-2 shows the distribution of NMs 

the on TEM substrate having the concentration of 9.49ppb for cit Au NMs and 15.79ppb for 
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PVP Au NMs. Larger disparity in the number of NMs were found when compared from image 

to image as shown in Figure 6-2 below. 

 

 

Figure 7-2: Transmission electron microscopy images of Citrate- and PVP- capped-AuNMs 

on bared-TEM grid (a) cit-AuNMs at 9.49 ppb and (b) PVP-AuNMs at 15.79ppb. NMs were 

suspended in UHPW. Samples were prepared by ultracentrifugation method on non-

functionalised TEM grid. 
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 Subsequently, improvised TEM grids were functionalized with a positively charged 

polymer (poly-l-lysine) to enhance particle attachment to the TEM grid. TEM images of 

citrate capped Au NMs in UHPW ultracentrifuged on poly-l-lysine functionalized TEM grid 

(see Figure 7-3 below) show a rather uniform distribution of NMs between the images taken 

at different positions on the TEM grid. The uniformity between the images is presumably due 

to the strong attachment of the NMs to the TEM grid following ultracentrifugation, preventing 

particle movement on the grid surface. As seen in the Figure 7-3, the image of five different 

concentrations, from higher concentration to lowest concentration i.e. 17.96 ppb to 0.19 ppb 

was analysed. Optimal grid coverage by citrate capped Au NMs was observed for the 

concentration range of 17.96 to 0.19  ppb (Figure 7-3), and grid overloading was observed at 

the highest cit-Au NMs concentration used in this study (101.5 µg L-1) (See Figure 7-6a). 

Optimal coverage indicates no obvious overloading, and subsequent surface aggregation, 

and sufficient NM numbers per image to enable particle counting within a reasonable time 

frame.  

 

The comparison between the three different sampling technique can be seen visualized 

through the representative TEM images.  The ultracentrifugation method of sampling with 

substrate functionalisation gives the best results for the optimal coverage of the NMs on the 

grid. Similarly, the imaging for the PVP capped Au NMs was also carried out for five different 

concentrations. 
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Figure 7-3: Representative transmission electron microscopy images showing a uniform 

distribution of Citrate capped-AuNMs on TEM grid that is treated with 0.1% w/v poly-l-lysine 

and the decrease of the number of NMs recovered with the decrease in NM mass 

concentration in ppb (a) 17.96, (b) 9.49, (c) 1.85, (d) 0.89 and (e) 0.19. NMs were 

suspended in UHPW. 
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 Figure 7-4 shows the TEM images of PVP capped Au NMs in simple media i.e. 

UHPW, show a reasonable coverage of the TEM grid within the concentration range from 

0.34 - 31.38 ppb.  For example, the concentration of 15.79 ppb, (in Figure 7-4) the NM 

distribution between three images (images in second row) were consistent when compared 

with the images (shown in Figure 7-1 and Figure 7-2 in the first column) by the drop (for 

same concentration15.79 ppb) and ultracentrifugation deposition, the distribution of number 

of NMs varies drastically i.e. the number of particles in some images are more when 

compared, and in some lesser. This is qualitatively explained with the TEM images whereas 

quantitatively explanation is given in detail in further sections. This is the first time evaluated 

with the improvised sampling technique which encompasses active deposition (by 

ultracentrifugation) and retention (by charge attraction) of NMs on the TEM grid. 

 

Consequently, all subsequent analyses were performed at concentrations in the ranges 

of 0.20 to 17.96 ppb for cit-Au NMs, and 0.34 to 31.38 ppb for PVP-Au NMs. To compare the 

distribution with respect to each concentration is explained in the next section. 
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Figure 7-4: Representative transmission electron microscopy images showing a uniform 

distribution of PVP-AuNMs on TEM grid that is functionalized with 0.1% w/v poly-l-lysine and 

the decrease of the number of NMs recovered with the decrease in NM mass concentration 

in ppb (a) 31.38, (b) 15.79, (c) 3.34, (d) 1.55 and (e) 0.34. NMs were suspended in UHPW. 
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 Figure 7-5 shows the representative transmission electron microscopy images 

showing a uniform distribution of citrate coated Au NMs on TEM grid that is treated with 

0.1% w/v poly-l-lysine. For the higher concentration the number of NMs was found to be 

overloaded as shown in Figure 7-4 (A) for 101.5 ppb. As the sample concentration 

decreases (that is increase in dilution with pure water), the number of NMs also decreases.  

 

 

Figure 7-5: Transmission electron microscopy images showing a uniform distribution of 

Citrate coated-AuNMs on TEM grid that is treated with 0.1% w/v poly-l-lysine and the 

decrease of the number of NMs recovered with the decrease in NM mass concentration in 

ppb (a) 101.5, (b) 17.96, (c) 9.49, (d) 1.85, (e) 0.89 and (f) 0.19. Scale bar in all images is 

100 nm. The cit-AuNMs were suspended in UHPW. 
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 Similarly, Figure 7-5 below shows the representative TEM images or PVP capped 

NMs, showing the distribution of NMs, for the concentration decreasing from higher to lower 

i.e. from 100 ppb to 0.34 ppb.  For the higher concentration it can be seen TEM substrate is 

overloaded, as the concentration decreases the number of nanoparticles decreased.  

D E F

A B C

 

Figure 7-6:  Transmission electron microscopy images showing a uniform distribution of 

PVP coated-AuNMs on TEM grid that is treated with 0.1% w/v poly-l-lysine and the decrease 

of the number of NMs recovered with the decrease in NM mass concentration in ppb (a) 

101.5, (b) 31.38, (c) 15.79, (d) 9.49, (e) 1.55 and (f) 0.34. Scale bar in all images is 100 nm. 

The cit-AuNMs were suspended in UHPW. 

  

 Quantitatively, the uniformity of NM distribution between the images was evaluated 

by comparing the number of particles counted at different areas on the TEM grid, which was 

performed by calculating the coefficient of variation of the number of NMs per μm2 on the 
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images collected at different location on the grid (CV = σ/mean of number NMs per μm2 on 

the different images). Low CV values indicate uniform distribution of NM on the TEM grid. 

 

  

Table 7-1: Number concentration (particle L-1) of cit-Au NMs in stock solutions 

Concentration 
(µg L-1) 

NMs in UHPW on 
non-functionalised 

TEM grid (drop 
Method) 

CV 

NMs in UHPW on 
bared  TEM grid 

(ultracentrifugation 
Method) 

CV 

NMs in UHPW on 
PLL functionalised 

TEM grid 
CV 

101.5 NA NA Overloading 

20.3 8.58 x 1012 

0.32 
1.05 x 1013 

0.31 
2.49 x 1015 

0.09 

10.2 6.52 x 1012 

0.28 
3.68 x 1012 

0.32 
2.55 x 1015 

0.13 

2.0 NA NA 2.90 x 1015 

0.10 

1.0 NA NA 3.02 x 1015 

0.37 

0.20 NA NA 2.79 x 1015 

1.00 
 NA: Not analyzed 

 UHPW: ultrahigh purity water 
 
 CV: coefficient of variation 

 

Thereby quantitatively, the uniformity of NM distribution on the TEM grid was described 

by the coefficient of variation (CV) of the number of NMs on different images taken at 

different locations on the TEM grid (Table 7-1). The Table 6-1 shows the different 

concentration for drop deposition method of sample preparation, the CV was relatively high 

(0.32 and 0.28 for cit-Au NMs and 0.16 and 0.29 for PVP- Au NMs, respectively). Lower the 

CV, the stronger the attachment but for drop deposition the CV was found to be higher.  

Hence, the drop deposition method of sample preparation resulted in the non-uniform 

distribution of NMs on the substrate between the images. The next step from the drop 

deposition method is to calculate the percentage of NMs recovered on the substrates.  
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Table 7-2: Number concentration (particle.L-1) of PVP-Au  NMs in stock solutions 

Concentration (µg 
L-1) 

NMs in UHPW 
on bared  TEM 

grid (drop 
method) 

CV 

NMs in UHPW on 
bared  TEM grid 

(ultracentrifugation) 
CV 

NMs in UHPW on 
PLL functionalised 

TEM grid 
(ultracentrifugation) 

CV 
670.0, 335.0 and 

167.5 NA NA Overloading 

31.38 2.86 x 1014 

0.29 
1.35 x 1015 

0.18 
8.82 x 1015 

0.05 

15.79 3.46 x 1014 

0.16 
3.39 x 1014 

0.21 
1.40 x 1016 

0.07 

3.34 NA NA 1.32 x 1016 

0.20 

1.55 NA NA 1.31 x 1016 

0.19 

0.34 NA NA 1.33 x 1016 

0.40 
NA: not analysed 

CV: coefficient of variation 

UHPW: ultrahigh purity water 

 

 For samples prepared by ultracentrifugation on non-functionalized TEM grid, 

the CV was also relatively high (0.30-0.32 and 0.18-0.29 for citrate capped and PVP Au 

NMs, respectively) compared with the CV for samples prepared by ultracentrifugation on 

PLL-functionalized TEM grids (0.09-0.13 and, 0.05-0.19 for cit-Au NMs (2.0-20.3 µg L-1) and 

PVP-Au NMs (1.7-33.5 µg L-1), respectively (Table 7-1 and Table 6-2). At very low 

concentration, a higher CV was observed (CV = 0.4 to 1.0) for cit-Au NMs (0.2-1.0 µg L-1) 

and (CV = 0.4 to 1.0) for PVP-Au NMs (0.34 µg L-1), due to the low number of NMs 

recovered on the TEM grid of such dilute samples. The higher uniformity of NM distribution 

on the TEM grid (indicated by the lower CV of the number of TEM detected in different 

images) is likely due to the strong, possibly irreversible attachment of NMs to the PLL-

functionalized TEM grid. Furthermore, these results suggest that best results can be 

achieved for NM suspensions within the concentration range of 0.2 to 33.5 µg L-1, although 

the CV is higher at the lower concentration essentially because of the poorer counting 
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statistics. These concentrations are ideal for Au NM in the size range of 10-15 nm. Lower 

mass concentrations of NM suspensions can be analyzed for smaller NM sizes and for NMs 

of lower density as, for a constant NM mass concentration, the number of NMs increases 

with the decrease in particle size and in material density. Analyzing NMs at such low 

concentrations is beneficial as predicted environmental concentrations of engineered NMs 

are likely to be in the range of ng - µg L-1.(Gottschalk et al., 2009, Gottschalk et al., 2013b, 

Blaser et al., 2008).  

 

7.2.1.3 Percentage recovery of NMs by simple media 
  

The percentage recovery of NMs is the the ratio of the number of NM population 

recovered on the substrate to the number of NM ultracentrifuged as shown in the Equation 

6-1 below.  For each concentration as shown in the Table 7-3, a TEM grid is prepared and 

from each grid, 30 images were scanned/taken by TEM. The number of NMs on each image 

was counted and the percentage of NMs on the entire TEM substrate was calculated with 

respect to the NM ultracentrifuged.  Percentage of recovery is quantified by calculating the 

ratio of the mass of NM recovered on the TEM grid compared to the mass of NM in 

suspension or centrifuged.(Baalousha et al., 2014c).  

The recovery of NMs on the TEM grid can be calculated according to Eq.7-1 

assuming that the NMs are insoluble and spherical (shape factor for cit- and PVP-Au NMs is 

0.88 and 0.98, respectively, Table 5-3).  

 

   

Eq.7-1 

 

 

%100cov

dcentrifuge

eredre

M

M
R 
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Where: R is the percentage recovery of NMs on the substrate, M recovered is the total 

number of NMs on the grid, M centrifuged is the amount of NMs in suspension ultracentrifuged 

on the TEM substrate and % recovery is the percentage of NMs recovered on the substrate. 

 

The following assumptions are embedded in the calculation of the recovery:  

(i) no losses of NMs to the containers during storage, dilution and ultracentrifugation 

and  

(ii) all counted NMs are single entities and no interactions occurred between the NMs.  

  

Table 7-3: Recovery (%) of cit-Au NMs 

Concentration 

of Cit-Au NMs 

(µg L-1) 

Drop deposition 

NMs in UHPW 

Ultracentrifugation on non-

functionalised TEM grid 

NMs in UHPW 

Ultracentrifugation on PLL 

functionalised TEM grid 

17.96 2.9 3.5 83.8 

9.49 NA 4.2 85.8 

1.85 2.5 NA 96.9 

0.89 NA NA 101.5 

0.19 NA NA 93.7 

Average   92.3 

 

 UHPW: ultrahigh purity water 

NA: Not analyzed 

 

As shown in Table 7-3, for both citrate and PVP capped NMs for two different 

concentrations, percentage recovery was calculated.  Low recoveries of 2.9% and 2.5% for 

citrate coated Au NMs and 2.8% and 2.1% for PVP- coated Au NMs were observed for 

samples prepared by the drop deposition method. Low recovery was mainly due to the 

attachment of the NMs on the substrate by drop deposition method. The NMs that were 

precipitated on the substrate were loosely attached to the substrate. The other reason, may 

be due to the washing of the substrate that results in the loss of NMs.  Hence, enhancement 

of the NM attachment and the quality of distribution of NMs on the substrate plays a vital role 
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in the measurement of the particle number. Another important criteria is the number of 

images required from each TEM grid/substrate to calculate the percentage recovery of the 

entire grid, that is given in detail in the following subsection.  

 

Table 7-4 Recovery (%) of PVP capped Au NMs 

Concentration 

of PVP-Au NMs (µg L-1) 
Drop deposition 

NMs in UHPW 

Ultracentrifugation on non-

functionalised TEM grid 

NMs in UHPW 

Ultracentrifugation on PLL 

functionalised TEM grid 

31.38 NA 8.2 53.2 

15.79 2.1 6.4 84.5 

3.34 2.8 NA 79.7 

1.55 NA NA 79.1 

0.34 NA NA 80.1 

Average   75.3 

 

 For Au NM samples in UHPW ultracentrifuged on non-functionalized TEM grids, the 

recovery improved slightly 3.5% and 4.2% for cit-Au NMs and also improved recovery was 

observed for PVP capped Au NMs upto 8.2%.  

 

 However, for samples prepared by ultracentrifugation on a PLL-functionalized TEM 

grids, significantly higher recovery was achieved for cit-Au NMs in the range from 83.8% to 

101.5%, Table 7-3, and PVP-Au NMs of 53% - 84.5 %, Table 7-4 and Figure 7-6.. The lower 

recoveries for PVP-Au NMs are likely because of the reduced importance of the charge 

interactions of PVP-Au NMs (zeta potential = -8.3±1.6 mV) with the PLL-functionalized TEM 

grid, compared with that of cit-Au NMs (zeta potential = -43±1.3 mV) with the PLL-

functionalized TEM grid. For higher concentration of PVP-Au NMs (31.38 µg L-1), the 

perceived recovery was relatively low compared with those at lower concentrations (0.38-

16.8 µg L-1) because of the high number of particles on the TEM grid and the potential 

overlapping of NMs on the grid. Additionally, higher recoveries (84-101%, for NM 

concentration in the range 0.19 to 17.96 µg L-1) are achieved for Au NMs by TEM in this 
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study compared with our previous results on the same NMs by AFM (53-71%) performed 

under the same conditions.(Baalousha et al., 2014c) This is likely to be due to: 

(i) potential loss of NMs due to tip-NM interactions in AFM analysis, or  

(ii) ability of TEM to distinguish single and aggregated NMs, and the number of individual 

NMs within aggregated, which was not resolved by AFM analysis due to the better 

lateral resolution in TEM compared to AFM. 

 

 

7.2.1.4 Number of images required for representative measurement of particle number  
 

 The number of images required to obtain a representative measurements of NM 

number concentration was assessed by quantifying the mean number concentration and 

standard deviation of the mean as a function of the number of images analysed. The 

quantification of the mean number concentration obtained by counting the NMs of all the 

images scanned per TEM grid.  As explained in the previous Chapter 6 as well as paper 

published by this research study (Baalousha et al., 2014c) and future upcoming sections (by 

improvisation in the sampling technique) proves the number of images to be scanned per 

TEM grid to obtain stable value. That is for cit-Au NMs and PVP-Au NMs prepared by 

ultracentrifugation on PLL functionalized TEM grid, the mean number concentration (See 

Chapter 4 and Figure 4.7.5) tends to a stable value for ≥ 15 images was observed by AFM 

analysis. The standard deviation of the mean decreases with the increase in the number of 

images and reaches a stable value. Therefore, a minimum number of 15 images are 

required to obtain mean number concentration and a standard deviation (σ) representative 

of the entire population of NMs.  
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Figure 7-7:Dependence of the calculated mean number concentration and standard 

deviation of the mean on the number of images scanned by transition electron microscopy of 

the cit-AuNMs prepared by (A) drop deposition (17.96 ppb) and PVP-AuNMs prepared by 

(B) drop deposition (15.79 ppb).the y axes are not correct here  

 

To determine the minimum number of images required to obtain accurate and 

statistically representative particle number concentration of the entire suspension of NMs, 

investigated the stability of the calculated mean number concentration and standard 

deviation of the mean (σmean, Eq.7-2) on subpopulations of the scanned images (n=2-27 

images).(Baalousha and Lead, 2012; Boyd et al., 2011)  

      (Eq.7-2) 

 

Figure 7-7 shows the mean number concentration and standard deviation of the 

mean for cit- Au NMs and PVP-Au NMs prepared by drop deposition method for 

concentration 17.96 ppb and 15.79 ppb respectively. Neither the mean nor the standard 

deviation of the mean tend to a stable value for the number of images scanned for all 

samples, greatly increasing uncertainty. Therefore, drop deposition method of sample 

preparation results in impossible to obtain a representative measurement of particle number 
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concentration. Thereby, the sample preparation technique must be improved to obtain the 

optimal coverage of grid for the consistent count the particle number in each image scanned.  
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Figure 7-8: Calculated mean number concentration and standard deviation of the mean on 

the number of images scanned by transition electron microscopy of the cit-AuNMs prepared 

by (A) ultracentrifugation on non functionalised TEM grid (20.3 ppb) and (B) 

ultracentrifugation non functionalised TEM grid (10.2 ppb); and PVP-AuNMs prepared by (C) 

ultracentrifugation on non functionalised TEM grid (33.5 ppb) and (D) ultracentrifugation on 

non functionalised TEM grid (16.8 ppb). 

 

Whereas, for the ultracentrifugation on non functionalised TEM grid, mean number 

concentration and standard deviation of the mean for citrate capped - Au NMs and PVP 

capped -Au NMs shown in the Figure 7-8 above. Similar to the drop deposition neither the 

mean nor the standard deviation tends to a stable value for the number of images scanned 
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for all samples. Therefore, this method indicates to be modified to obtain the saturated graph 

eventually for the number of images. It is impossible to obtain a representative number 

particle concentration from these samples. 
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Figure 7-9  Dependence of the calculated mean number concentration and standard 

deviation of the mean on the number of images scanned by transition electron microscopy of 

the PVP-AuNMs prepared by ultracentrifugation at 150 000 g on poly-l-lysine functionalized 

TEM grid at different concentrations (ppb): (a) 31.5, (b) 16.8, (c) 3.4, (d) 1.7 and (e) 0.34. 
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Figure 7-10  Calculated mean number concentration and standard deviation of the mean on 

the number of images analyzed by transmission electron microscopy. TEM samples were 

prepared by ultracentrifugation of cit-Au NMs at 150 000 g on poly-l-lysine functionalized 

TEM grid at different concentrations (µg L-1): (a) 20.3, (b) 10.2, (c) 2.0, (d) 1.0 and (e) 0.20. 
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 For the improvised sample preparation technique i.e. sample prepared by the poly-l-

lysine functionalised TEM grid at different concentrations for the PVP capped and citrate 

capped Au NMs shown in the Figure 7-9 and Figure 7-10 respectively.  The calculated mean 

number concentration tends to a stable value for ≥ 15 images, as was observed for AFM 

analysis (paper published related to the previous Chapter 6). The standard deviation of the 

mean decreases with the increase in the number of images and reaches a stable value also 

at about ≥15 images. Therefore, for the first time a fully quantitative sample preparation 

protocol that enables detection and quantification of NM number measurement at low 

concentration was presented. 

7.2.1.5 Correlation between the mass and number concentration 
 

 The correlation between the particle number and mass concentration of NMs is 

important to compare and analyse the applicability of sampling technique to find the lower 

and upper limit sample concentration. This is explained in detail further. The comparison was 

carried with the known mass concentration (by analytical instrument) and measured particle 

number. The mass concentration of in-house synthesised NMs i.e. the citrate capped Au 

NMs and PVP capped Au NMs was measured by the ICP-MS. The measurement of the 

mass concentration by ICP-MS was explained in detail in Chapter 5 (characterisation of NMs 

results and discussion) and in Section 5.4.8.  

 

 For the drop deposition method, the correlation between the measured particle 

number and the mass concentration for cit Au NMs and PVP Au NMs results in the higher 

uncertainty and variability with greater counting statistics because of the low number of NMs 

present on the TEM grid, the presence of low NMs i.e. the percentage recovery is shown in 

Table 7-4.  Thereby, the drop deposition method of sampling technique is ruled out for the 

measurement particle number.   

 Similarly, for the ultracentrifugation method (without functionalisation of the substrate 

see Chapter 3, Section 3.3 and Subsection 3.3.2.) of sampling technique  the correlation 
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between mass and particle number concentrations for cit- Au NMs and PVP- Au NMs was 

ruled out. Because of the lower NM count on the substrate.  
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Figure 7-11  Correlation between the mass and number concentration of Au NMs (A) citrate-

Au NMs suspended in MQ water, (B) PVP-Au NMs suspended in MQ water. Samples 

prepared by ultracentrifugation on a poly-l-lysine functionalized TEM grid. 

 

 Whilst for the ultracentrifugation method of PLL functionalised substrate (see Chapter 

4 and Section 4.3.3) of sampling technique results in the good correlation (Figure 7-11, 

R2=1.00) between the particle number and mass concentration measurement. These results 

suggest that the sample preparation method is applicable within the NM concentration range 

of this is 0.20-17.96 ppb and 0.34-16.8 ppb for cit- Au NMs and PVP- Au NMs investigated in 

this study. Lower NM concentrations will result in higher uncertainty and variability without 

greater counting statistics because of the low number of NMs present on the TEM grid 

(Figures 7-1 and 7-2). However, the lower concentration limit can potentially be reduced, 

given sufficient time and/or automation to collect higher number of images to improve the 

statistical confidence in the data.  

 

 This research developed and presented for the first time a fully quantitative sample 

preparation protocol that enables detection and quantification of NM number concentration 
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for simple media. The methodology was developed to validated the sample preparation 

method to enable the measurement of NM number concentration by TEM, and also 

demonstrated the applicability of this validated sample preparation method to detect and 

quantify the number concentration of Au NMs for the concentrations (e.g. 1-20 µg L-1). The 

percentage recovery of NMs on the grid was seen more improved by TEM analysis when 

compared to the AFM analysis. The sampling approach was validated using citrate- and 

PVP- coated Au NMs in pure water, which demonstrated an even distribution of NM on the 

TEM grid and high NM recovery 84-101%. This novel, fully quantitative sampling approach 

has enabled successfully for the first time measuring the particle number which is applied at 

environmentally realistic concentrations, explained in detail in the next section. Thus will be 

proved transmission electron microscopy (TEM) is a vital metrological tool in nanotechnology 

and as well as environmental nanoscience due to its high spatial resolution and analytical 

capabilities when coupled to spectroscopic techniques. The following discussion is based on 

the detailed view on the fate and behavior nanomaterials when added to the realistic 

environmental media and testing the capability of the analytical tool i.e. TEM to image and 

detect Au NMs in complex media. 
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7.2.2 Detection and quantification of engineered NMs in environmentally 
 representative complex media 

 

 The applicability of the sampling method to complex environmental samples was 

demonstrated by detecting and quantifying number particle concentration of Au NMs spiked 

in the following three different complex media such as  

(i) Synthetic EPA soft water  

(ii) EPA soft water containing 5 mg/L of Suwannee river fulvic acid and as well 

(iii) Filtered lake water / Natural water 

 

All the above mentioned three different complex media at environmentally NM relevant 

concentrations of 1 to 20 µg L-1 used to detect and quantify the number particle. This in turn 

enabled demonstrated a concentration-dependent aggregation of NM at environmentally 

relevant NM concentration. In other words, the number of NMs within the aggregates 

decreased, whereas the number of free NMs increased, with the decrease in NM 

concentration. These findings are key to improve our understanding of NM environmental 

behaviors, fate, effects and dose; and were only enabled by the novel fully quantitative 

sampling method. An ideal technique with realistic environmental samples/complex media 

should be able to  

 

(i)  Determine a true/accurate number of NMs irrespective of morphology, density or 

optical properties of NMs,  

(ii)  Distinguish aggregates/agglomerates from primary nanoparticles,  

(iii) Isolate a target nanoparticle in a complex matrix containing nanoparticles of 

different composition (e.g. manufactured nanoparticles in a matrices of naturally 

occurring nanoparticles),  
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(iv) Measure number concentration at environmentally relevant concentrations (ng-

µg L-1),  

(v)  Cover the entire nanosize range (e.g. 1-100 nm),  

(vi) Provides an accurate measurement of NM dispersion. 

 

The protocol used for the detection and quantification of the number of NMs in pure 

water, similar protocol followed to detect and quantification of Au NMs in complex media. In 

this investigation, NMs added to the three different environmental samples i.e. said to be 

NMs in complex media. The following discussion is based on the NMs interactions with the 

environmental samples. It is a challenge in determining and understanding with the limited 

analytical techniques and hence in this research is the first time for both improved sampling 

technique and measurement of particle number concentration in realistic environmental 

conditions.  

 

7.2.2.1 Au NMs added to SRFA media  
 

Preparation of SRFA media (EPA soft water containing 5 mg L-1 Suwannee River 

fulvic acid) in-house is explained in detail in Chapter 4 in Section 4.6.2. The validated 

sampling technique (ultracentrifugation on PLL functionalized TEM grids) was applied to 

detect and quantify the number of cit-Au NMs in SRFA containing EPA soft water spiked with 

cit-Au NMs (1.0 to 20.3 µg L-1 Au). The typical micrographs with x-ray dispersive 

spectroscopy are presented in a Figure 6-12 and Figure 6-13 respectively. TEM images 

SRFA media show two distinctive materials.  
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1 0 0  n m1 0 0  n m  1 0 0  n m1 0 0  n m   

 

The first material was characterized by low contrast and forms a network structure 

typical of aggregated humic substances,(Leppard, 2008, Wilkinson et al., 1999b, Baalousha 

et al., 2005c) and the second material is characterized by high contrast and is formed of 

distinct spherical particles, which were identified by X-EDS as Au NMs (Figure 7-12). Figure 

7-12 shows the typical TEM micrograph of two concentrations such as 2.0 µg L-1 cit-Au NMs 

having non aggregated Au NMs while 20.3 µg L-1 cit-Au NMs shows the network structure of 

aggregated particles. Thus the concentration-dependent aggregation of NMs revealed at 

environmentally realistic NM concentration by the newly developed fully quantitative sample 

preparation approach for TEM analysis of NMs. As the concentrations of Au NMs decreases, 

aggregation of NMs also decreases.  

 

The bridging of particles at the higher concentrations of Au NMs may be due to the 

surface potential of the citrate coated Au NMs. As stated by (Diegoli et al., 2008, Baalousha 

et al., 2008) zeta potential of NMs less than ±25 mV in media having salts and ions is 

insufficient to prevent coalescence but the highly surface charged NMs have colloidal 

Figure 7-12  Concentration-dependent aggregation of NMs revealed at 

environmentally realistic NM concentration by the newly developed fully quantitative 

sample preparation approach for TEM analysis of NMs (a) 2.0 µg L-1  and (b) 20.3 

µg L-1 
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stability. Whereas, the zeta potential of the citrate capped nanoparticles in SRFA-EPA media 

is -43 mV which is high enough to prevent the aggregation but at higher concentration of 

NMs resulted in the contraction of the electric double layer.   

 

Interestingly at lower concentrations of 1.0 and 2.0 µg L-1, Au NMs occur mainly as 

individual non-aggregated NMs (Figure 4b and c), whereas at the higher concentration of 

20.3 µg L-1, Au NMs occur largely as small aggregates of a few NMs. Figure 7-13 shows a 

typical TEM micrograph of different concentrations such as 1.0, 2.0 µg L-1 and 20.0 µg L-1. 

From this micrograph it was observed as the concentration of NMs increases from 2.0 µg L-1 

to 20.0 µg L-1 the bridging or chaining of the NMs occur. Figure 7-13 below shows the 

micrograph of different concentrations and its X-EDS spectra.  
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A 1 0 0  n m1 0 0  n m B 1 0 0  n m1 0 0  n m  

C D  

Figure 7-13  Transmission electron microscopy images of cit-Au NMs spiked in synthetic 

EPA soft water containing 5 mg L-1 Suwannee River fulvic acid. Mass concentration of cit-Au 

NMs in µg L-1 was (A) 20.3, (B) 2.0, (C) 1.0. (D) a representative X-EDS spectrum collected 

from the dark particles identified as Au NMs. All samples were prepared by 

ultracentrifugation on poly-l-lysine functionalized TEM grid.  

 

From the above micrographs, 100 % of all observed NMs were either single NMs or 

aggregates of 1-5 NMs at 1 µg L-1, 96% of NMs are either single or aggregates of 1-5 NMs 

at 2 µg L-1 and only 38.7% are single NMs or aggregates of 1-5 NMs at 20.3 µg L-1 and 61.3 
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% are aggregates that contain higher numbers of NMs at 20.3 µg L-1. These observations 

are in accord on concentration-dependent aggregation of iron oxide NMs, which was 

observed at high NM concentrations (e.g. 1-200 mg L-1) (Baalousha, 2009). Further it is 

shown in table below quantitatively the number of NMs in each aggregate. The following 

explanation is the number concentration (particle L-1) of citrate capped Au NMs in stock 

solutions in EPA-SRFA media. 

 

 

Table 7-5 : Number concentration (particle L-1) of cit-Au NMs in stock solutions 

Concentration 
(µg L-1) 

NMs in UHPW on 
non-functionalised 

TEM grid (drop 
Method) 

CV 

NMs in UHPW on bared  
TEM grid 

(ultracentrifugation 
Method) 

CV 

NMs in UHPW on 
PLL functionalised 

TEM grid 
CV 

NM in EPA-SRFA on  
PLL functionalised 

TEM grid 
CV 

101.5 NA NA Overloading Overloading 

20.3 8.58 x 1012 

0.30 
1.05 x 1013 

0.31 
2.49 x 1015 

0.09 
2.66 x 1015 

0.03 

10.2 NA 3.68 x 1012 

0.32 
2.55 x 1015 

0.13 
2.81 x 1015 

0.19 

2.0 NA NA 2.90 x 1015 

0.10 
3.02 x 1015 

0.09 

1.0 NA NA 3.00 x 1015 

0.37 NA 

0.20 NA NA 2.79 x 1015 

1.00 NA 

CV: coefficient of variation 

NA: Not analyzed 

UHPW: ultrahigh purity water 

SRFA: Suwannee river fulvic acid 

 

 

 Quantitatively, the measurement of particle number of citrate capped Au NMs 

shown in the above Table 6-6 at different concentrations. To compare particle number of Au 

NMs suspended in simple and complex media with different sampling technique such as the 

drop method and the ultracentrifugation method, without and with functionalization of the 

TEM substrate shown in the above Table 7-6. The particle number (particle L-1) in EPA-

SRFA on PLL functionalised TEM substrate with simple and complex media was found to be 

in the same range (2.49 x 1015 to 3.02 x 1015 particle L-1) and the coefficient of verification 
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(CV) of the number of NMs on different images taken at different locations on TEM grid are 

also lower between the range (CV - 0.03 to 0.10) for the concentrations 2.0 to 20.3 µg L-1. 

Thereby the particle number concentration between the simple and complex media was 

found to be having a good agreement, since no losses of NMs were observed exempting 

aggregation seen at higher concentration (20.3 µg L-1) when media is added to Au NMs. But 

the feasibility of TEM technique integrated with the elemental analysis facility provided to 

identify the natural materials and the NMs. The X-EDS analysis shows the presence of 

naturally occurred NMs (which were not counted) and the sorption of elements such as 

chlorine, sliver, nitrogen, aluminium, carbon, copper, and Silicon on the NMs (Figure 7-13 

D). While the representative X-EDS spectrum showing the dark particles were identified as 

Au NMs.  At higher concentration that is at 20.3 µg L-1, NMs are aggregating, due to surface 

charge neutralization between the SRFA-coated Au NMs.(Chen et al., 2007a, Chen et al., 

2006, Chen and Elimelech, 2007) or may be SRFA replacing citrate coating on Au 

NMs.(Diegoli et al., 2008).  
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Table 7-6  % number fraction of aggregates containing a certain number of primary NMs in 

soft EPA water containing 5 mg L-1 SRFA at a range of NM concentrations ca. 1-20 µg L-1. 

Analysis was performed on 15 images collected at different locations on the TEM grid. 

Number of NMs in an 
aggregate 

1.0 µg L-1 2.0 µg L-1 20.3 µg L-1 

Single NMs 84.5 85.7 6.9 

1-5 15.5 10.2 31.8 

6-10 0.0 4.0 12.8 

11-15 0.0 0.0 10.6 

16-20 0.0 0.0 10.6 

21-30 0.0 0.0 11.3 

31-40 0.0 0.0 8.0 

41-50 0.0 0.0 8.0 

 

  

The above Table 6-6 shows the percentage number fraction of aggregates containing 

a certain number of primary NMs in soft EPA water containing 5 mg L-1 SRFA at a range of 

NM concentrations ca. 1-20 µg L-1. Quantitatively, the number of NMs in an aggregate was 

counted since the individual NMs in a smaller aggregate were loosely bonded so that each 

NM in an aggregate can be identified and counted. The image J or Matlab software 

facilitates to count the number of NMs in an aggregate, suppose if an aggregate appear in 

larger size it is impossible to count the number of NMs in an aggregate. Analysis was 

performed on 15 images collected at different locations on the TEM grid. It was seen that 

about 84.5% and 85.7% of single NMs were seen at lower NM suspensions 1.0 - 2.0 µg L-1 

respectively and about 15.5-10.2% aggregates having 1-5 number of NMs in an aggregate. 

While at higher NM suspensions it was found only 6.9% of single NMs and remaining NMs 

were aggregated as mentioned in the Table 6-6 above. Here, it was demonstrated for the 

first time that NM concentration-dependent aggregation also occur at environmentally 
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realistic NM concentrations and become nearly negligible at very low NM concentrations (ca. 

1-2 µg L-1). These low, environmentally realistic concentrations are at a level where 

analytical techniques usually employed to study NM aggregation e.g. DLS, Uv-vis, 

(Baalousha et al., 2008, Baalousha et al., Lead et al., 1999) fail because of sensitivity and 

selectivity issues. This presents TEM as a possible mean to investigate NM aggregation at 

realistic concentrations. The observed NM aggregation is due to NM surface charge 

neutralization and/or bridging between the SRFA-coated Au NMs.(Chen and Elimelech, 

2007, Chen et al., 2006, Chen et al., 2007b). SRFA has been shown previously to replace 

citrate coating on Au NMs.(Diegoli et al., 2008). The following discussion is on total 

percentage recovery of citrate capped Au NMs spiked in EPA-SRFA media is shown in the 

Table 6-8 below. 

 

 

Table 7-7 Recovery (%) of cit-Au NMs 

Concentration 

of Cit-Au NMs 

(µg L-1) 

Drop 

deposition 

NMs in UHPW 

Ultracentrifugation 

on non-

functionalised TEM 

grid 

NMs in UHPW 

Ultracentrifugat

ion on PLL 

functionalised 

TEM grid 

NMs 

suspended 

in EPA water 

containing 

5mg/L  SRFA 

     

20.3 2.9 3.5 83.8 81.1 

10.2 NA 1.2 85.8 86.0 

2.0 NA NA 96.9 89.07 

1.0 NA NA 101.5 84.05 

0.20 NA NA 93.7 NA 

Average   92.3 84.8 

 UHPW: ultrahigh purity water 

 NA: Not analyzed 

 SRFA: Suwannee river fulvic acid 
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The percentage Au NMs recovered on each TEM substrate at different 

concentrations is given in the above Table 7-8. The calculations to obtain the percentage 

recovery are given in Section 4.7.5. The percentage recovery of citrate capped NMs spiked 

in SRFA-EPA is in the range of 81% to 89% shown in the Table 7-8 for four different 

concentrations range from 20.0 to 1.0 ppb. It is found to be having good agreement with the 

recoveries of NMs in simple media/ UHPW which is in the range of 84 to 96%. Thus, this 

sample preparation protocol can be applied to detect and quantify the number of engineered 

NM in various media.  
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Figure 7-14  Dependence of the calculated mean number concentration and standard 

deviation of the mean on the number of images scanned by transmission electron 

microscopy of the cit-Au NMs spiked with EPA soft water containing 5 mg L-1 Suwannee 

River fulvic acid prepared by ultracentrifugation at 150 000 g on poly-l-lysine functionalized 

TEM grid at different concentrations (ppb) : (a) 20.3, (b) 2.0 and  (c) 1.0 . 

 

 

The next step is to identify the number of images required for the representative 

measurement of particle number. The procedure to calculate the number of images required 

is explained in detail in Chapter 4 and in Subsection 4.7.5. Figure 7-14 above shows the 

mean number concentration and standard deviation of the mean in particles per litre of 

citrate capped Au NMs spiked in EPA-SRFA media, as a function of Au NM concentration.  

For the NMs in complex media the calculated mean number concentration tends to a stable 

value after ≥ 15 image which is similar to the simple media. Also the standard deviation of 

the mean decreases with the increase in the number of images and reaches a stable value 

at about ≥15 images. Therefore, a minimum number of 15 images are required to obtain 

mean number concentration and a standard deviation (σ) representative of the entire 

population of NMs in EPA-SRFA media. The next step is to verify the correlation between 

the mass concentrations with the particle number concentration.  
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Figure 7-15  Correlation between the mass and number concentration of citrate capped Au 

NMs cit-Au NMs spiked with EPA soft water containing 5 mg L-1 Suwannee River fulvic acid 

prepared by ultracentrifugation at 150 000 g on poly-l-lysine functionalized TEM grid at 

different concentrations (ppb). 

 

The applicability of sampling technique to the SRFA-EPA media was analysed and 

comparison of number concentration with the mass concentration obtained by ICP-MS was 

performed. Figure 7-15 above shows the correlation of mass and number concentration. 

Whilst for the ultracentrifugation method of PLL functionalised substrate for the Au NMs 

EPA-SRFA media is proved from the above graph that  results to be having good correlation 

R2=0.99 between the particle number and mass concentration measurement. These results 

suggest that the sample preparation method is also applicable within the NM concentration 

range of this is 0.20-20.00 ppb for cit- Au NMs added to EPA-SRFA media is investigated in 

this study. Similarly, further investigation is carried on by adding Au NMs to the synthetic 

water. 
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7.2.2.2 Au NMs added to the synthetic EPA soft water 
 

 The distribution of NMs on the substrate was validated on the PLL functionalised grid 

followed by ultracentrifuging the suspension of Au NMs in the EPA synthetic softwater. For 

the synthetic EPA soft water, the in-house synthesised Au NMs were added to it. The 

process of making EPA software is given in the Section 4.4.1 in detail. The behaviour of 

NMs were analysed when added to the EPA softwater and in turn the NMs were quantified 

for the measurement of particle number similarly as described in the Section 7.2. (i.e. 

measurement of particle number of Au NMs added in simple media).   
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Figure 7-16  Representative transmission electron microscopy images showing a uniform 

distribution of PVP-AuNMs spiked in EPA soft water on TEM grid that is functionalized with 

0.1% w/v poly-l-lysine and the decrease of the number of NMs recovered with the decrease 
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in NM mass concentration in ppb (a) 31.38, (b) 15.79, (c) 3.34 and (d) 1.55. NMs were 

suspended in UHPW. 

 

 The micrograph of the Au NMs added to the synthetic soft water is shown in the 

Figure 7-20 below.  No changes were observed in the physical state of Au NMs when 

exposed to synthetic EPA software. There were no changes observed in zeta potential, no 

aggregation or morphology of the particles when compared with the initial characterisation of 

the Au NMs with UHPW (see Chapter 5, Characterisation results of Au NMs in UHPW). 

Qualitatively, the distribution of NMs on the substrate in EPA media was evaluated by 

comparing the representative number of particles counted at different areas on the TEM grid, 

which was performed by calculating the coefficient of variation (CV).  

 

Table 7-8   Number concentration (particle.L-1) and percentage recovery of PVP Au NMs in 

         EPA soft water in stock solutions 

Concentration (µg L-1) 

NMs in UHPW  
On PLL functionalised  

TEM grid  
(ultracentrifugation) 

CV 

NMs in EPA soft water  
On PLL functionalised  

TEM grid  
(ultracentrifugation) 

CV 

% recovery NMs in EPA 

media Ultracentrifugation 

on PLL functionalised TEM 

grid 

670.0, 335.0 and 167.5 Overloading Overloading NA 

31.38 8.82 x 1015 

0.05 
9.23 x 1015 

0.08 
62 

15.79 1.40 x 1016 

0.07 
2.63 x 1016 

0.12 
78 

3.34 1.32 x 1016 

0.20 
1.26 x 1016 

0.09 
85 

1.55 1.31 x 1016 

0.19 
9.83 x 1015 

0.15 
82 

0.34 1.33 x 1016 

0.40 NA NA 

NA: not analysed 

CV: coefficient of variation 

UHPW: ultrahigh purity water 
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 Quantitatively, the CV of NMs spiked in EPA softwater was low in the range of 0.08-

0.15 for the concentrations 0.34-31.38 as shown in the Table 7-11. The measurement of 

particle number of NMs in EPA soft water was found to be having very good agreement; 

thereby the PLL functionalised ultracentrifugation method can be applied for the detection, 

quantification and characterisation of NMs in EPA softwater. The percentage recovery of 

NMs spiked in EPA  soft water were also found to be slightly higher by 2% when compared 

with the NMs in pure water. At higher NM concentration i.e. at 31.38 ppb the percentage 

recovery is low due to the high number of particles on the TEM grid and the potential 

overlapping of NMs on the grid.   
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Figure 7-17  Dependence of the calculated mean number concentration and standard 

deviation of the mean on the number of images scanned by transition electron microscopy of 
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the PVP-AuNMs prepared by ultracentrifugation at 150 000 g on poly-l-lysine functionalized 

TEM grid at different concentrations (ppb): (a) 31.5, (b) 16.8, (c) 3.4, (d) 1.7 and (e) 0.34. 

 

 A minimum of 15 images are required to obtain the representative measurement of 

particle number concentration (statistical calculation is given in the chapter 4 and in Section 

4.7.5). The standard deviation of the mean decreases with the increase in the number of 

images and reaches a stable value also at about ≥15 images for NM in EPA media. This is 

graphically shown in the Figure 7-17. Therefore, for the first time fully validated protocol for 

particle number measurements in simple and complex media was successfully investigated. 

 

7.2.2.3  Au NMs added to lake water/Natural surface water  
 

AuNMs were added to filtered lake water samples. The process of collection and 

filtration was explained in detailed in Chapter 4 and Section 4.4.3. In order to validate the 

sample preparation protocol for the detection and quantification of engineered nanomaterials 

in natural waters, natural lake water was spiked with PVP capped Au NMs and observed by 

TEM; the following samples were prepared by ultracentrifugation  

(i) lake water, (without NMs)  

(ii) lake water spiked with 3.4 and 1.7 ppb PVP capped Au NMs  

(ii) 10 fold dilution of lake water (without NMs) and  

(iv)10 folds diluted lake water spiked with 3.4 and 1.7 ppb PVP-AuNMs.  

 

X-EDS with TEM was used to confirm the presence of AuNMs. The number of 

AuNMs/image was counted manually. AuNMs were distinguished by their higher contrast 

compared to natural nanoparticles and colloids and this was confirmed by X-EDS. 
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A 

0 . 1  µ m0 . 1  µ m  

B 

0 . 1  µ m0 . 1  µ m  

C. 

0 . 1  µ m0 . 1  µ m  

D. 

0 . 1  µ m0 . 1  µ m  

Figure 7-18   Representative transmission electron microscopy images showing distribution 

of PVP-AuNMs suspended in complex media (9.1 % of lake water) and UHPW of 90.9 % 

prepared by ultracentrifugation on poly-l-lysine functionalized TEM grid at the concentration 

of (A) overloaded with 100% of lake water without NMs, none of NMs visible  (B) 10 folds 

diluted lake water spiked with 3.4 µg L-1 of NMs and (c and d) 10 folds diluted lake water 

spiked with 1.7 µg L-1 of Au NMs 
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Typical TEM micrographs together with the x-ray energy dispersive spectroscopy are 

presented in Figure 7-18 to Figure 7-19. As shown in the Figure 7-18(a), shows the TEM 

image of the natural water sample after filtered under 450 nm without NMs resulted in 

overloading of the natural organic material (NOM).  Due to the overloading of the NOM, the 

visibility of the synthesised NMs is reduced when the TEM analysis was carried out. 

Thereby, the natural water sample was diluted 10 times in UHPW and further the analysis 

was performed with the concentration of 3.4 ppb and 1.7 ppb respectively (Figure 6-16 (b) 

and (c)), AuNMs spiked in lake water. The recovery of NMs after reacting with natural water 

was found to be more by 3.4 % in comparison to UHPW (Table 7-9).  
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Figure 7-19  Representative TEM images showing distribution of PVP-AuNMs suspended in 

complex media (9.1 % of lake water) and UHPW of 90.9 % prepared by ultracentrifugation 

on poly-l-lysine functionalized TEM grid at the concentration of 3.4 µg L-1 and its 

representative X-EDS spectrum collected from the dark particles identified as Au NMs. 
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Figure 7-20  Representative TEM images showing distribution of PVP-AuNMs suspended in 

complex media (9.1 % of lake water) and UHPW of 90.9 % prepared by ultracentrifugation 

on poly-l-lysine functionalized TEM grid at the concentration of 1.7 µg L-1 and its 

representative X-EDS spectrum collected from the dark particles identified as Au NMs. 

 



190 
 

For the NMs spiked in lake water samples X-EDS was performed. Figure 7-19 and 

Figure 7-20  shows the X-EDS spectrum of the marked area in the micrograph.  The X-EDS 

analysis shows the presence of naturally occurred NMs and the sorption of elements such 

as calcium, chlorine, sliver, nitrogen, magnesium, aluminium, carbon, copper, iron, Silicon 

and Phosphorous on the NMs (Figure 6-19 (a) and (b)) for the concentration range of 3.4 µg 

L-1 and 1.7 µg L-1 respectively.  
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A 0 . 1  µ m0 . 1  µ m  D 0 . 1  µ m0 . 1  µ m  

B 0 . 1  µ m0 . 1  µ m  E 0 . 1  µ m0 . 1  µ m  

C 0 . 1  µ m0 . 1  µ m  F 0 . 1  µ m0 . 1  µ m  

Figure 7-19  Representative transmission electron microscopy images showing distribution 

of cit-AuNMs suspended in complex media (lake water) prepared by ultracentrifugation on 
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poly-l-lysine functionalized TEM grid at the concentration of 3.4 ppb (A-C) and 1.7 NMs (D-

F). 

 

Furthermore images of Au NMs spiked on lake water samples was performed at NM 

concentrations of 3.4 µg L-1 and 1.7 µg L-1 shown in the above Figure 7-21. At the 

concentration of 3.4 ppb when NMs spiked with the natural organic material Au NMs was 

found to be aggregate more in presence of NOM. But the TEM technique provided an 

opportunity to count the number of NMs in each aggregate. As NM concentration decreased, 

number of Au NMs spiked also decreases. But lower NM concentrations will result in higher 

uncertainty and variability (data see Table 7-9) because of the low number of NMs present 

on the TEM grid (Figures 7-21 (C) and (F)), or will require the collection of more images to 

count sufficient number of NMs, which may require automated imaging to acquire a very 

high number of images. Thus, the lower concentration limit can potentially be reduced to few 

tens of ng L-1. Thus, the method presented here will allow quantitative analysis of low 

concentrations (ng to µg L-1) of NMs to be performed, which are more representative of likely 

exposure scenarios from the environment,(Baalousha, 2012a) consumer goods and the 

workplace and allows more realistic toxicology experiments to be performed. Higher NM 

concentrations (>40 ppb) will result in overloading (NM-NM interaction, Figure 7-18) of the 

TEM grid and therefore it becomes impossible to obtain true counts of the NMs and to 

calculate NM recovery on the TEM grid. The NM concentration range of 0.2-18 ppb is 

applicable for Au NMs of approximately 12-13 nm in diameter. For smaller sizes of NMs, 

lower concentrations of 0.20 ppb are feasible, whereas for larger sizes higher concentrations 

will be required. Furthermore, the range of NM concentrations will depend on the size and 

composition (density) of the NMs (see discussion above). The upper concentration range 

can be extended to higher concentrations by centrifuging smaller volumes of NM 

suspensions. 
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Table 7-9 Number concentration (particle.L-1) of PVP-Au NMs in stock solutions 

Concentration 
(µg L-1) 

NMs in UHPW on 
PLL functionalised TEM grid 

(ultracentrifugation) 
CV 

NM in lake water on  PLL 
functionalised TEM grid 

CV 

670.0, 335.0 
and 167.5 Overloading Overloading 

33.5 8.82 x 1015 

0.05 NA 

16.8 1.40 x 1016 

0.07 
1.51x10

16 

0.35 

3.4 1.32 x 1016 

0.20 
1.38 x 10

16 

0.25 

1.7 1.31 x 1016 

0.19 
1.41 x 10

16 

0.28 

0.34 1.33 x 1016 

0.40 NA 

  NA: not analysed 

  CV: coefficient of variation 

  UHPW: ultrahigh purity water 

 

 

The particle number concentration of PVP capped Au NMs in lake water is shown in 

the Table 7-9. The distribution of NMs on the TEM grid after reacting with the natural 

materials CV was found relatively high (0.28 and 0.35) when compared with the UHPW. The 

high CV and particle number is due to the overlapping of the natural organic material and 

aggregation of synthesised NMs or may be misinterpreting in NM count.  But with respect to 

aggregation, the microscopy allowed identifying each NM and count accurately (Figure 7-

20).  But the number of NMs in UHPW has good agreement with the particle number in lake 

water media but 3% higher particle number when compared with the UHPW (See Table 7-9).  
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Table 7-10   Recovery (%) of cit-Au NMs and PVP-Au NMs 

Concentration 

of PVP-Au NMs (µg L-1) 

NMs in UHPW 

Ultracentrifugation on 

PLL functionalised 

TEM grid 

NMs suspended 

in Lake 

water 

33.5 53.2 NA 

16.8 84.5 85.9 

3.4 79.7 80.5 

1.7 79.1 83.5 

0.34 80.1 NA 

Average 75.3 82.0 

UHPW: ultrahigh purity water 

NA: Not analyzed 

SRFA: Suwannee river fulvic acid 

 

 

The recovery of NMs in natural lake water was found to be 80.5 and 86% for PVP-

AuNMs (Table 7-10), in good agreement with the recoveries in UHPW. The recovery of PVP 

Au NMs in UHPW is between 80-85%. Thus, this sample preparation protocol can be 

applied to detect and quantify the number of engineered NM in natural waters.   Further 

analysis was carried out with the number of images satisfactory for the measurement of 

particle number concentration for PVP capped Au NMs in natural lake. 

 

 

 

 

 

 

 

 

 



195 
 

A 

 

B 

 

Figure 7-22  Calculated mean number concentration and standard deviation of the mean on 

the number of images scanned by transmission electron microscopy of the PVP-AuNMs with 

complex media (9.1% lake water and 90.9% of UHPW+NMs) prepared by ultracentrifugation 

at 150 000 g on poly-l-lysine functionalized TEM grid at the concentrations of (ppb) : (a) 3.4 

and (b) 1.7. 

 

 The stability of the calculated mean number concentration and standard deviation of 

the mean with respect to the number of images was investigated for the Au NMs spiked in 

lake water is shown in the Figure 7-22. For the higher NM suspensions i.e. at the 

concentration of 3.4 ppb, the mean number and standard deviation of the mean stabilises 

after 20 images. Therefore, for higher number of NM suspension and at higher content 

natural organic matter (NOM) in media, the number of images required was higher (>=30 

images) when compared with pure water and other less content NOM. Whereas, as the NMs 

in the suspension decreases i.e. for the concentration of 1.7 ppb after 10 images, the graph 

was found to be stable. Therefore, the number of images required for the measurement 

particle number concentration depends upon the type of media NMs suspended and also 

concentration of NMs suspended in the media. 
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7.2.3 Conclusions 
 

This research study presents for the first time a fully validated sample preparation 

protocol for the analysis of engineered NMs by TEM in both simple and complex natural 

aquatic media. The presented sample preparation protocol enables the full quantitative 

analysis of NMs number concentrations and number size distribution by TEM at 

environmentally and toxicologically relevant concentrations (i.e. 0.2-20 ppb). This method is 

based on forcing the NMs onto the TEM grid via ultracentrifugation and the NMs strong 

attachment due to TEM grid functionalization of the TEM grid by a positively charged 

polymer (poly-l-lysine).  

 

The protocol was validated using well stabilized Au NMs (coated by PVP or citrate) using 

the following criteria (i) NM recovery on the TEM grid, (ii) distribution of NM on the TEM grid, 

(iii) correlation between mass and number concentrations. Both citrate- and PVP-Au NMs 

were uniformly distributed on the TEM grid; that is the coefficient of variation between the 

numbers of NMs counted on different areas of the grid was < 0.20. The recovery of the NMs 

on the TEM grid was quantified for the first time and it was up to 100%. The number of 

counted NMs correlated well (R>0.95) with the concentrations of NMs in suspension.  

 

The applicability of the protocol to detect and measure the number concentration of NMs 

in a natural water sample, EPA-SRFA, synthetic EPA was demonstrated where the 

respective media spiked with Au NMs at different concentrations of range from 0.2-33.5 ppb. 

Similarly, AuNMs were uniformly distributed on the TEM grid (CV<0.2) and good correlation 

between number and mass concentrations (R20.9) and high recovery (67-85%) were 

achieved. 

 



197 
 

 

7.3 Particle number and size measurement analysis of Ag NMs by 

 simple media (pure water) and complex media (E3) 
 

 This section relates the detection and quantification of particle number concentration 

of silver nanoparticles. The synthesised silver nanoparticles of 5.54 mg/L were received from 

the Center for Environmental Nanoscience and Risk, University of South Carolina. USA, and 

exposure media from the Oregon State University, Sinnhuber Aquatic Research Laboratory 

(OSU/SARL), USA. In collaboration, toxicology experiments were performed whilst the 

measurement of particle number concentration was performed as part of this thesis.  

 Initially, the physico-chemical characterisations of the Ag NMs were performed. Later 

sections were carried on with the particle number measurements with pure water and with 

media. The characterisation of the Ag NMs by multi-method was explained in detail in the 

Chapter 5 and in Subsection 5.5. 

 

7.3.1 Quantifying the particle number of Ag NMs in pure water/simple media 
 

 The distribution of NMs on the substrate between the set of images taken by TEM 

was found to be uniform. The uniformity in distribution of NMs on the substrate depends on 

the sample preparation technique which was critical part of this investigation to be validated 

for the Ag NMs. Uniformity of NMs distribution between images taken at different positions 

on the TEM grid is essential to obtain representative particle number concentrations and 

number size distribution, as well as to minimize the number of images required to obtain a 

representative number particle concentration.  
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 A 

5 0  n m5 0  n m  

B  

5 0  n m5 0  n m  

C  

5 0  n m5 0  n m  

D 

5 0  n m5 0  n m  

E 

5 0  n m5 0  n m  

F 

5 0  n m5 0  n m  

Figure 7-23 Transmission electron microscopy images showing a distribution of AgNMs on 

TEM grid previously  treated with 0.1% w/v poly-l-lysine and the decrease of the number of 

NMs recovered with the decrease in NM mass concentration in ppb (a and b) 55.40, (c and 

d) 11.08, (e and f) 5.54. Scale bar in all images is 50 nm. The AgNMs were suspended in 

UHPW. 
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Qualitatively, TEM images of PVP-AgNMs suspended in UHPW and prepared by 

enhancing the particle attachment to the TEM grid by surface functionalisation followed by 

ultracentrifugation shown in the Figure 7.23 for three different NM concentrations. For the 

higher concentration of NM suspension i.e. for Figure 7-23 (a and b), TEM technique allows 

to count individual NMs but overlapping of NMs might result in inaccuracy in particle number 

measurement. While for lower NM suspension (Figure 7-23 (c, d, e and f), the TEM allows 

the more accurate count of NMs. The number NMs on each image were also counted and 

are reported quantitatively. Total of 30 images were taken for each concentration.  

 

Table 7-11 Number concentration (particle.L-1) and % recovery of Ag NMs in stock solutions 

Dilution 
ppb 

 

NMs in UHPW on 
PLL functionalised TEM grid 

(particle/L) 
CV 

% Recovery 

554 Overloading NA 

55.4 
7.94 x 1013 

0.10 
74 % 

45.0 
6.96 x 1013 

0.12 
80% 

11.08 
1.25x 1014 

0.27 
84 % 

8.50 
0.96 x 1014 

0.27 
82% 

5.54 
8.25x 1013 

0.15 
80 % 

1.10 
3.92x 1014 

0.34 
87% 

 

  NA: not analysed 

 CV: coefficient of variation 

 UHPW: ultrahigh purity water 
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 Quantitatively, the uniformity of Ag NM distribution on the TEM grid is described by 

the coefficient of variation (CV) of the number of NMs on different images taken at different 

locations on the TEM grid, the process of imaging and the number of images to be taken 

was described in Chapter 4 and in Subsection 4.7.5. The Table 7-11 shows the different 

concentration of NMs, the CV was relatively low (0.10 and 0.27 for PVP- Ag NMs) for higher 

NM suspension.    Hence, sample preparation, resulted in the uniform distribution of NMs on 

the substrate between the images. The measurement of particle number for different 

concentrations is shown in the Table 7.11, which is the range of 7.94 x 1013 to 3.92x 1014 

(particles/L). Furthermore, these results suggest that best results can be achieved for NM 

suspensions within the concentration range of 1.10 to 55.40 µg L-1, although the CV is higher 

at the lower concentration essentially because of the poorer counting statistics. At higher 

concentration of 554 ppb the NMs were found to be overloaded, at the concentration of 55.4 

ppb the number of NMs counted reduced due to the overlapping or aggregation of NMs 

when compared to the lower concentration (11.08 and 5.54 ppb).  

 The percentage recovery of Ag NMs is quantified by calculating the ratio of NM 

recovered on the substrate. The percentage recovery of Ag NMs in pure water is in the 

range of 74% to 87% (see Table 7.11). For higher concentration of PVP-Ag NMs (55.40 µg 

L-1), the perceived recovery was relatively low compared with those at lower concentrations 

(1.10-11.08 µg L-1) because of the high number of particles on the TEM grid and the 

potential overlapping of NMs on the grid. Similarly, percentage recovery of PVP capped gold 

NMs (Table 7.4, at 31.83 ppb observed 53.2% recovery) comparable with the PVP Ag NMs, 

i.e. in terms of lower recoveries observed at higher NM suspension, essentially because of 

the poorer counting statistics and higher recoveries at  lower NM. Furthermore, these results 

suggest that best results can be achieved for NM suspensions within the concentration 

range > 30 µg L-1. 
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Figure 7-20    Calculated mean number concentration and standard deviation of the mean 

on the number of images scanned by transition electron microscopy of the PVP-AuNMs 

prepared by ultracentrifugation at 150 000 g on poly-l-lysine functionalized TEM grid at 

different concentrations in ppb: (a) 55.40, (b) 11.08 (c) 5.54 and (d) 1.10. 

  

 The mean number concentration and standard deviation of the mean for cit- and 

PVP-Ag NMs TEM grid are shown in Figure 7.24. The mean number concentration  tends to 

a stable value for ≥ 15 images, as was observed for AFM analysis (Baalousha et al., 2014a). 

The standard deviation of the mean decreases with the increase in the number of images 



202 
 

and reaches a stable value also at about ≥15 images. Therefore, a minimum number of 15 

images are required to obtain mean number concentration and a standard deviation (σ) 

representative of the entire population of PVP Ag NMs. 
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Figure 7-21   Correlation between the mass and number concentration of  PVP capped Ag 

NMs in MQ water. Samples prepared by ultracentrifugation on a poly-l-lysine functionalized 

TEM grid. 

  Excellent correlation between mass and number concentrations for PVP- Ag NMs 

was observed (Figure 7.25, R2=0.99), indicating no preferential NM loss at any 

concentration. These results suggest that the sample preparation method is applicable within 

the NM concentration range of this is 1.10 - 55.40 µg L-1 for PVP- Ag NMs investigated in 

this study. These highly characterized engineered Ag NMs will be further analysed by adding 

in synthetic E3 media (zebrafish media). In order to validate the protocol employed for the 

measurement particle number of Ag NMs when added to E3 media.   
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7.3.2 Detection and quantification of engineered Ag NMs in E3 media. 
 

 Silver nanoparticles capped with PVP received from (In courtesy with the Sinnhuber 

Aquatic Research Laboratory (SARL), Oregon State University, USA ) were added to the E3 

media to detect and quantify the particle number concentration. E3 media was prepared in 

the University of Birmingham, the recipe for the preparation or protocol was sent by Aquatic 

Research Laboratory, Oregon State University. The protocol for the preparation of E3 media 

is given below. 

 The E3 medium compositions are described in the toxicology report of SARL lab, for 

the purpose of comparative studies both number concentration measurements (part of this 

thesis) and toxicology studies performed by SARL followed similar protocol for the 

preparation of E3 media. The 5.54 mg/L stock solution of Ag-PVP was diluted in 125 μM 

CaCl2 to make 2.22, 0.44, 0.089 and 0.017 mg/L Ag-PVP stocks. These were in turn diluted 

two folds into E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4) in 

the 96-well screening plates to form the final concentrations tested, 2.77, 1.11, 0.22, 0.045, 

0.0085 and 0 mg/L Ag-PVP, in 62.5 μM CaCl2.  The measurement of particle number at 

these concentrations was carried out by TEM.  

 The improvised/enhanced method of sampling technique was used to validate 

and (Chapter 4 and in Section 4.7.4) to detect and quantify the number of PVP Ag NMs in 

E3 media using TEM analytical technique. The NM concentration for PVP Ag NMs spiked in 

E3 media were in the range of 0.0 to 2.77 mg L-1 Ag. Typical TEM micrographs together with 

the x-ray energy dispersive spectroscopy are presented in the following Figure 7-28 and 

Figure 7-29 respectively. 
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Dilution 
(mg/L) Image A Image B Image C 

2.77 

 

 

   

1.11 

 

   

0.22 

 

   

0.045 
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0.0085 

 

   

Figure 7-26  Transmission electron microscopy images showing a distribution of PVP Ag 

NMs on TEM grid that is treated with 0.1% w/v poly-l-lysine , the different concentration 

imaged were as follows in ppb (a) 2770, (b) 1110, (c) 220, (d) 45, (e)8.5 ppb in 62.5 μM 

CaCl2 

  

 Figure 7-26 shows the micrograph of the transmission electron microscopy images 

for different concentration of PVP capped Ag NMs spiked in E3 media. The different 

concentration considered for TEM imaging were as follows: 2770 ppb, 1110 ppb, 220 ppb, 

45 ppb and 8.5 ppb.  At higher suspension Ag NMs, i.e. 2770 and 1110 ppb as seen in the 

above scanned TEM image is overloaded and a particle number concentration could not be 

accurately measured. At the dilution of 220 ppb, concentration of NMs are still higher to 

identify the individual NMs and difficult to predict the number of NMs overlapping even with 

the help of X-EDS. But at the NM concentration of 45 and 8.5 ppb, the particle number can 

be quantified to the accurate value.  
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Table 7-12:  Number concentration (particle.L-1) of AgNMs in both UHPW and E3 media 

 

 

Dilution 

(ppb) 

NMs in UHPW on 

PLL functionalised TEM grid 

(ultracentrifugation) 

CV 

% Recovery 

NMs in E3 media on 

PLL functionalised TEM grid 

(ultracentrifugation) 

CV 

% Recovery 

2770 Overloading NA Overloading NA 

1110 Overloading NA Overloading NA 

554 Overloading NA Overloading NA 

220 NA NA 
5.94x 1013 

0.30 
29% 

55.4 
7.94 x 1013 

0.10 
74 % NA NA 

45 
6.96 x 1013 

0.12 
80% 

9.27 x 1013 

0.18 
79% 

11.08 
1.25x 1014 

0.17 
84 % 

2.65 x 1014 

0.21 
84% 

8.5 
0.96 x 1014 

0.09 
82% 

3.63 x 1014 

0.15 
86% 

5.54 
8.25x 1013 

0.15 
80 % NA NA 

1.10 
3.92x 1014 

0.34 
87% NA NA 

NA: not analysed 

CV: coefficient of variation 

UHPW: ultrahigh purity water 
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Quantitatively, the measurements of particle number at different concentrations of 

PVP Ag NMs in E3 media is given in the above Table 7-12. For the quick glance between 

the NMs in pure water and in media, highlight made in green represents the NMs in pure 

water while without any colour indication shown in the table represents the NMs in media. At 

lower concentrations (1.1 and 11.08 µg L-1), Ag NMs occur mainly as individual non-

aggregated NMs (Figure 7-25), whereas at the higher concentration (> 45 µg L-1), Ag NMs 

occur largely as aggregates of a few NMs. At higher concentration (220 ppb) in E3 media the 

possibility of getting lower percentage of NMs, may be due to the overlapping of NMs and 

organic materials. But higher advantage at lower concentrations, (NMs in media) since less 

probability of the NM aggregation was observed. The measurement of particle number at 

lower concentration of NMs in media is comparatively accurate as stated and proved in the 

previous section for the Au NMs in various media. Characterizing NMs at low concentrations 

is beneficial as predicted environmental concentrations of engineered NMs are likely to be in 

the range of ng - µg L-1.(Blaser et al., 2008, Gottschalk et al., 2013a, Gottschalk et al.)  
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A 

 

B 

 

C 

 

 

Figure 7-22  Calculated mean number concentration and standard deviation of the mean on 

the number of images scanned by transition electron microscopy of the PVP-AgNMs in E3 

media prepared by ultracentrifugation at 150 000 g on poly-l-lysine functionalized TEM grid 

at different concentrations : (a) 220 ppb, (b) 45 ppb and (e) 8.5 ppb. 

  

 For PVP Ag NMs prepared by ultracentrifugation on PLL functionalized TEM grid, the 

mean number concentration (Figure 7-27 (b) and (c)) tends to a stable value for ≥ 20 

images, as was observed for AFM analysis.(Baalousha et al., 2014a). It is proved by the 

above graphical representation. But at higher concentration (Figure 7-29 (a)) graphical plot 

shows the non stabilised SD of the mean, because the percentage recovery is 26% and CV 

is also higher  
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 At higher NM concentration, for example at 220 ppb, only 26% of NMs were 

recovered. The reason for the loss/unseen synthesised NMs in E3 sample is due to the 

dissolution or overlapping of natural organic material (Buffle et al., 1998).  Identification of 

the NMs and other natural nanomaterial in E3 is performed by the x-ray energy dispersive 

spectroscopy.  

 

Figure 7-8   X-EDS spectrum of PVP Ag NMs 

  

 The X-EDS analysis shows the presence of naturally occurred NMs (which were not 

counted) and the sorption of elements such as calcium, chlorine, sliver, nitrogen, 

magnesium, aluminium, carbon, copper, iron, Silicon and Phosphorous on the NMs. Above 

Figure 7-28 shows the X-EDS analysis for the Ag NMs in E3 media where some of the 

elements not seen in X-EDS (magnesium, aluminium, iron, calcium) of Ag NMs in pure 

water. There was no counting error observed either in identifying or differentiating NOM with 

Ag NMs.  
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7.4 Conclusion 
 

 From the Ag NMs with and without media can be concluded that apart from 

successfully measuring particle number of gold NMs both in simple and complex media 

using TEM technique, this studies also facilitates the validation of quantifying the particle 

number of silver NMs in both simple media and E3 media.  Thereby this section enabled the 

successful validation of the protocol of the measurement of NM particle number at different 

concentration range from 55.4-1.10 ppb having good correlation between number and mass 

concentration (R2 ~ 0.99) and high recovery (74-87%) were achieved.  

Similarly the applicability of the protocol to detect and measure the number concentration 

of Ag NMs in E3 media was demonstrated where the respective media spiked with Ag NMs 

at different concentrations of range from 8.5-45 ppb. Ag NMs having good correlation 

between number and mass concentrations (R20.9) and high recovery (75-86%) were 

achieved. 
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Chapter 8 Conclusion and future work 
 

 

 This investigation presents for the first time fully validated nanometrologic system for 

the accurate quantification of particle number concentration both in simple and 

environmentally-relevant media as well as exposure media. Initial analysis was carried out 

using atomic force microscopy where this instrumentation allowed to fully quantify the 

number concentration of NMs in pure water but had a sensitivity issues when environmental 

relevant samples were considered for the quantifications of the complex media samples.  

But whereas using an analytical technique transmission electron microscopy integrated with 

the EDX, along with a developed sample preparation process, quantitative analysis of NMs 

at environmentally and toxicologically relevant concentrations was performed (see Table 7-

1). Various methods of sampling technique was carried out to improvise the particle number 

measurement and concluded that based on forcing the NMs onto a substrate via 

ultracentrifugation leads to the accurate quantification of NMs. Forcing the NMs onto the 

substrate was carried out by surface functionalisation of the substrate while the adding 

cations to NM suspension. Correlation between mass and number concentrations for cit- and 

PVP- Au NMs was observed (R2=1.00), indicating no preferential NM loss at any 

concentration. These results suggest that the sample preparation method is applicable within 

the NM concentration range shown in the Table 7-2 for cit- and PVP- Au NMs investigated in 

this study. This is an ultimate sampling technique that can be applied for both simple and 

complex media and for both gold and silver NMs which is proved in this research for the first 

time. 

 The method was validated using well stabilised in-house synthesised monodispersed 

gold NMs (coated with citrate and PVP)  and silver NMs (obtained from Arnold school of 

public health, Columbia USA) using criteria are as follows: 
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i. uniformity in the distribution of NMs between the images on the substrate 

ii. full recovery of NMs on the substrate 

iii. accurate quantification of particle number 

iv. correlation between the mass and the NM concentration. 

v. count number of NMs in an aggregate by differentiating NOMs 

 Hence the critical and challenging measurement of particle in suspension was 

succeeded with the analytical high resolution instrumentation transmission electron 

microscopy integrated with the X-EDS. The particle number measurement is highly useful in 

toxicology studies (Health & Safety Laboratory, 2011) for the measurement of dose-

response curve and to measure the NMs in realistic environmental relevant conditions. 

Table 8-1: Summary of the NMs added to different media and concentration range validated 

Nanomaterials Used 
NMs added in the 

following media 

Concentration 

range 

methodology 

validates ((µg L-1) 

Citrate  

capped Au NMs 

(a) Pure water 

(b) EPA synthetic water 

(c) SRFA+EPA 

(d) Lake/natural water 

0.20 -20.3 

PVP 

capped Au NMs 
0.34 -31.38 

PVP  

capped Ag NMs 

(a) Pure water 

(b) E3 media 
1.10 - 45.0 

 

  Table 7-1 summarises the different NMs used in this research and adding Au NMs to 

the four different media  and adding Ag NMs to the two different media as stated in the Table 

facilitated successfully apply the protocol for the concentration range mentioned in table 
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under various conditions environmental and exposure media. Thereby, the criteria or the 

aims and objectives speculated in this research was successfully enabled to fully validated 

for the first time to measure the particle number concentration which was demonstrated for 

both environmental and exposure media. 

 For the future analysis the validated protocol can be further analysed using different 

nanomaterials and by adding NMs different complex media. Further integrating various 

spectroscopies to the microscopies such as X-EDS to SP-ICPMS.    

 The sample preparation methodology can be enhanced further to obtain the uniform 

distribution of NMs on the substrates by the introducing the electrodes into the NM 

suspension were the NM surface charge get polarised so that eventually gets non 

aggregated. The other method is substrate polarisation that is placing the substrates on the 

high voltage electrode and simultaneously introducing the droplet of NM suspension.  
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APPENDIX A 
 

Few TEM images and results 
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APPENDIX B 
 
Published work 

Published papers: 

 

Baalousha, M + Prasad, A, Lead J Quantitative measurement of nanoparticle size and number 

concentration from liquid suspensions by atomic force microscopy –Environmental Science Process 

and Impacts - Published FEB-2014 – complete results of Chapter 5 and 6-attached at the end. 

 

A Prasad, M. Baalousha and J. R. Lead Detection and quantification of engineered nanoparticles by 

transmission electron microscopy: protocol validation and application to environmental samples –

Published – Complete results of Chapter 7 

 

Mohammed Baalousha, Ashwini Prasad, Mithun Sikder, , Jamie Lead and Thomas G Chandler3 

Concentration-dependent behaviours of nanoparticles – Published – Results based on Chapter 7 
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The other two papers under review 




