
 
 

 

 

 

ELUCIDATING THE DRIVERS, CONTEXTUAL SENSITIVITY AND RESILIENCE OF 

URBAN ECOLOGICAL SYSTEMS  

 

by 

 

JAMES DAVID HALE 

 

 

 

A thesis submitted to the University of Birmingham for the degree of DOCTOR OF 

PHILOSOPHY BY PUBLISHED WORK 

 

 

 

 

 

 

School of Geography, Earth and Environmental Sciences 

College of Life and Environmental Sciences 

University of Birmingham 

June 2015 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



 
 

ABSTRACT 

As the global population urbanises, the benefits derived from contact with nature 

increasingly depend upon the presence of diverse urban ecological communities. 

These may be threatened by changes in land-cover and the intensification of land-

use.  A key question is how to design and manage cities to retain desirable species, 

habitats and processes.  Addressing this question is challenging, due to the dominant 

role of humans in shaping spatially and temporally complex urban landscapes. 

 

Earlier research identified ecological patterns along urban–rural gradients, often 

using simplified measures of built form and disturbance.  The central theme within 

this thesis is that we require a more mechanistic understanding of the processes that 

created today‘s ecological patterns, which recognises the interactions between social 

and ecological sub-systems. 

 

Using bats (Chiroptera) as a case study group, I identified a broadly negative 

association between bat activity and built density.  Urban tree networks appeared 

beneficial for one species, and further work revealed that their role in facilitating 

movement depended upon the size of gaps in tree lines and their illumination level.  

Resilience analyses were used to map diverse dependencies between the 

functioning of urban bat habitats and human social factors; illustrating the value of a 

more mechanistic, systems-based approach. 
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INTRODUCTION 

 

Urban landscapes are far from natural, yet they contain semi-natural elements that 

are often of great value to those that live and work in cities (Tzoulas et al., 2007).  

One might therefore expect that management to enhance desirable species, habitats, 

and ecosystem processes would be a common characteristic of modern cities.  

However, despite considerable efforts to green urban areas, gaps in our 

understanding of how urban ecological patterns and processes have emerged are 

preventing their full potential being realised (Breuste et al., 2008, Niemela, 1999). 

 

Ecologists have historically avoided the study of nature within cities (Collins et al., 

2000, Grimm et al., 2008, Niemela, 1999), possibly because models for how more 

natural ecosystems operate are not easily transferred to such highly modified 

landscapes (Shochat et al., 2006).  Recently, ecosystems within urban areas have 

received greater research attention (Gaston, 2010), supported by a more holistic 

view of the environment that urban organisms experience.  Habitats within cities are 

not limited to green and blue patches, fragmented by a matrix of concrete, tarmac 

and rubble. Rather, the high diversity of urban land-covers and human activities 

(Breuste et al., 2008) has created, often unintentionally, a variety of novel habitat 

features, food webs and communities.  For example, residential houses can provide 

excellent nesting spaces for bats (Chiroptera) (Altringham, 2003), urban roads can 

provide useful sources of carrion for coyotes (Canis latrans) (Morey et al., 2007), and 

the species richness of a brownfield can be many times greater than a nearby park 

(Donovan et al., 2005).  Explicit recognition of the various roles that humans play in 

structuring urban ecological systems is evident within many recent studies.  Models 
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for nutrient cycling have been adapted to include the artificial fertilisation of gardens 

and the removal of green waste (Templer et al., 2015), impacts of domestic cats 

have been accounted for within studies of avian reproductive success (Bonnington et 

al., 2013), and research on urban seed dispersal has explored the role of vehicles 

entering and leaving the city (von der Lippe and Kowarik, 2008).   

 

The importance of nature within urban areas  

Cities and towns are habitats for people, and are where the majority of the global 

population now reside.  By 2050 two thirds of the global population will live in urban 

areas (UN, 2014).  In many parts of the world, rural populations are declining whilst 

urban populations are increasing, raising questions about the impact of urban 

expansion and densification on human wellbeing (Kent and Thompson, 2014, Moore 

et al., 2003).  The liveability of these cities is therefore of considerable importance 

and the role that semi-natural components can play in enhancing residents‘ quality of 

life is increasingly being recognised (Bolund and Hunhammar, 1999, Gaston et al., 

2013).  At coarse spatial scales, human population density tends to correlate 

positively with species richness (Luck, 2007).  One implication of this is that human 

settlements may threaten this local biodiversity though expansion and disturbance, 

yet these local opportunities for citizens to enjoy positive wildlife experiences might 

promote more environmentally responsible behaviour (Dunn et al., 2006, Nisbet et 

al., 2008).  These findings support the argument that the conservation and 

enhancement of semi-natural habitats within cities may have benefits that range from 

local to global.  Interest in conserving semi-natural features, communities and 

ecological processes within cities is therefore high in many parts of the world 
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(McDonnell and Hahs, 2013), as reflected by the various urban planting projects 

(Pincetl, 2010), planning policies (Conway and Urbani, 2007, Sadler et al., 2010), 

professional networks (Müller and Kamada, 2011) and journals (e.g. Urban Forestry 

& Urban Greening) that focus on this subject.  If we accept that many forms of nature 

within cities are desirable, the next step is to understand the urban forms and 

processes that need to be modified to deliver and retain this diversity. 

 

The complexity of urban systems  

Cities are meta-stable, self-organising systems, whose multiple forms, flows and 

functions can change rapidly (Grimm et al., 2008, Ahern, 2013).  Economic cycles 

and periods of physical redevelopment (Dallimer et al., 2011), coupled with changing 

technologies and social practices, can result in stresses to existing habitats and 

species (Partecke et al., 2006), whilst at the same time creating conditions for the 

development of new (often novel) behaviours (Fuller et al., 2007) and ecological 

communities (Goddard et al., 2010).  These threats and opportunities are also 

enhanced through the large movement of materials and people into the city, bringing 

with them (often unintentionally) a variety of species, along with new ideas about how 

the city should be managed.  An additional layer of complexity is delivered by the 

multiple scales at which urban areas are managed (Borgström et al., 2006, Ernstson 

et al., 2010, Sadler et al., 2010), and at which spatial and temporal patterns and 

impacts occur (Grimm et al., 2008, Luck, 2010, McDonnell and Pickett, 1990).  For 

example, decisions relating to private gardens typically take place at the scale of 

individual households, whilst many of the species that use these gardens operate 

over larger spatial extents (Goddard et al., 2010).  The complexity of cities presents a 
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variety of challenges to the conservation, enhancement and creation of urban 

biodiversity and ecosystem services.  Clear description of the urban context for 

surveys and experiments is important, yet an immediate barrier is that no clear 

definition of ‗urban‘ exists, and definitions of what constitutes ‗urban‘ are rarely 

provided within ecology studies (McIntyre et al., 2000).  High-densities of humans, 

sealed surfaces and infrastructure are widely accepted urban characteristics; yet the 

boundaries between urban, suburban, urban-fringe and rural are largely arbitrary 

(Gaston, 2010).  Less subjective descriptions of urban form and its intensity of use 

are increasingly possible thanks to advances in remote sensing and mapping.  Broad 

measures of urbanisation are useful for supporting comparative research, although 

these are often too simplistic to shed light on mechanisms that are driving a particular 

ecological response (McDonnell and Hahs, 2008). However, more choices for how to 

describe urban areas may unintentionally create even greater difficulty in drawing 

comparisons between studies.  Additional complexity is introduced by the desire to 

better account for the human drivers of urban ecological processes, as ecological 

models are expanded to include political, economic and cultural dimensions (Collins 

et al., 2000, Pickett et al., 2001). 

 

Urban ecology as interdisciplinary research 

Ecological models for urban areas still struggle with identifying elements of the 

human sub-system that are most relevant, and with understanding how and why 

these vary in space and time (Collins et al., 2000).  The human dimensions of urban 

systems tend to be heavily simplified by ecologists, and incorporating information and 

tools from the social sciences may improve the ability of ecologists to capture key 
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information about the cultural, social, economic and built context for their research 

(McIntyre et al., 2000, Pickett et al., 2001).  I argue that to undertake effective 

ecological research within urban environments requires an explicit acknowledgement 

that humans are central to shaping the structure and function of this ecosystem type.  

It is also likely that the answers to key questions within urban ecology lie outside the 

traditional disciplinary boundaries of ecological research, and that working across 

disciplines may be beneficial.  An interdisciplinary approach to urban ecology has 

been widely advocated (McIntyre et al., 2000, Pickett et al., 2001, Alberti et al., 2003, 

Tzoulas et al., 2007), and collaboration between the ecological and social sciences 

would be expected to be mutually beneficial (Niemela, 1999).  However, it is not clear 

that interdisciplinary research is always required, as much can be gained by multiple 

disciplines working together without aiming for coherence or synthesis of disciplinary 

knowledge (Petts et al., 2008).  Interdisciplinary studies of urban areas have been 

supported by funding agencies within North America (Grimm et al., 2000, Collins et 

al., 2000) and Europe (Petts et al., 2008).  However such collaborative work is 

recognised as being particularly challenging, not only due to differences in how 

disciplines frame and address research questions, but also due to the dominance of 

traditional disciplinary views on how the quality of the resulting research should be 

evaluated (Petts et al., 2008, Boyko et al., 2014).  The papers presented within this 

thesis are the direct result of two cross-disciplinary projects funded by the 

Engineering and Physical Sciences Research Council:  Urban Futures and Liveable 

Cities (grants EP/F007426/1 and EP/J017698/1). 
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Within the five papers that form this thesis, I have endeavoured to incorporate this 

broader view on the role of humans in shaping semi-natural communities within 

urban landscapes.  These papers range from a straightforward ecology-in-cities 

approach (Grimm et al., 2000), which includes anthropogenic variables in the 

modelling of ecological patterns (paper II); to an ―ecology of cities‖ perspective that 

treats the city as a social–ecological system (papers II and V).  I have also focused 

on the topic of artificial outdoor lighting, a pervasive characteristic of urban areas and 

a strong indicator of human activity (Elvidge et al., 1997, Sutton et al., 2001).  

Extensive and intensive lighting of human settlements has radically altered the cycles 

of darkness and light that natural ecosystems have experienced for hundreds of 

millions of years, yet comparatively little is known about its ecological impacts (Hölker 

et al., 2010).  A major barrier to exploring the landscape-scale impacts of artificial 

lighting is the huge variability in the brightness, density and spectral quality of lamps.  

This diversity is an indication of the multiple of reasons why such lighting has been 

introduced (e.g. safety, security, aesthetic and amenity) and is also the result of 

partial lamp replacement as new lighting technologies become available.  Paper III 

describes how high-resolution aerial night photography for the entire city of 

Birmingham was used to explore basic patters in urban lighting, to identify sites for 

field surveys and to estimate city-wide ecological impacts (paper IV).  

 

Aims and nature of the research 

The central theme within this thesis is that whilst identifying broad urban ecological 

patterns is important, it is insufficient as an endpoint if the ultimate goal is to support 

conservation practice in cities.  To realise the long-term improvement of urban 
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biodiversity, I argue that we require a more mechanistic understanding of the 

processes that have created the patterns we observe today.  In addition, research 

methods are needed that can clarify the social, environmental and economic factors 

upon which these processes depend.   

 

We chose bats as a study group, as they are highly mobile and their presence at a 

particular location may provide a broad indication of its ecological health.  In addition, 

mammals, nocturnal and cryptic taxa are poorly represented in the literature on the 

ecological impacts of urban intensification (McDonnell and Hahs, 2008).  The variety 

of bats known to be present within the study region also provided the opportunity to 

compare their response to different configurations of the built form, and to empirically 

test earlier observations that some bat species are sensitive to the structural 

connectivity of tree cover (Verboom and Huitema, 1997) and lighting (Stone et al., 

2009).   

 

Key aims for this thesis are to: 

1. Describe the spatial patterning of the bat community within a UK city and 

identify the land-cover and land-use variables with which they are associated.  

2. Explore the underlying mechanisms that shape these patterns. 

3. Identify broad urban system conditions upon which the bat community 

depends. 
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THEORETICAL FRAMEWORK 

 

Given the complexity of urban areas and their unusual characteristics in comparison 

to other landscapes, some have asked whether new theoretical approaches are 

required to support ecological studies in cities and towns (Collins et al., 2000, 

Niemela, 1999, Wu, 2014), and to support urban research more generally (Short, 

2014).  The position I adopted within this thesis is that existing ecological theories are 

still appropriate, as long as urban landscapes are reconceptualised by ecologists to 

better account for the dominant role that humans play in shaping ecological patterns 

and processes (Alberti et al., 2003, Niemela, 1999).  However, the point at which this 

integration of knowledge from several urban disciplines becomes so transformative 

that it forms new theory is unclear.  The papers within this thesis apply standard 

landscape ecology theory to urban areas (Breuste et al., 2008), but incorporate data 

on human modified land-cover and human practices that impact ecological function.  

In addition, these papers make use of resilience theory (Gunderson, 2000) to identify 

dependencies between urban ecological and social sub-systems, and to explore the 

vulnerability of ecological mitigation and enhancement initiatives. 

 

Landscape ecology and urban areas   

Urban areas differ from other landscapes, not only in terms of the diversity (Breuste 

et al., 2008) and intensity of human activity, but also in spatial characteristics such as 

patchiness (Niemela, 1999).  The size of land-cover parcels tends to reduce towards 

the centre of cities, whilst their physical isolation tends to increase (Luck and Wu, 

2002, Zhang et al., 2004).  Metapopulation theory (Hanski and Gilpin, 1991) and 
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island biogeography theory (MacArthur, 1967) predict that small and isolated habitat 

patches have the lowest biodiversity and lowest rates of re-colonisation, yet these 

theories were not specifically developed for urban landscapes.  A recent meta-

analysis of the factors influencing biodiversity levels within cities found that positive 

relationships do exist between species diversity and habitat patch area, but that there 

is little evidence for an effect of distance between patches (Beninde et al., 2015).  

The implication here is that the probability of movement within urban landscapes is 

not simply a function of patch distance, and that other factors influence movement 

choices and events.  Studies of movement within cities indicate that the nature of the 

urban land-cover between habitat patches (i.e. the matrix) may be particularly 

important.  For example, radio-tracking and genetic techniques have revealed that 

urban roads may not only act as physical barriers to carnivore movement, but that 

despite their spatial proximity, populations on either side of the road may become 

genetically isolated from each other (Riley et al., 2006). The results of such studies 

could be scaled to model ‗resistance‘ to movement across an entire landscape, 

recognising that the energetic costs and risks associated with movement may vary at 

fine spatial scales (Zeller et al., 2012).  However, few studies have attempted to 

model landscape resistance within urban landscapes (but see Verbeylen et al. 

(2003)). 

 

Several approaches have been adopted that attempt to describe the urban 

landscape in a manner that facilitates a more structured investigation of intra-urban 

ecological performance, and inter-city comparison.  The most notable of these is the 

urban-rural gradient (McDonnell and Pickett, 1990); at its simplest it can be thought 
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of a transect that runs from the edge to the centre of a city, but more typically it 

involves the selection of sampling locations that vary in the level of ‗urbanisation‘ of 

their local context (McDonnell and Hahs, 2008).  For example, survey sites might be 

selected along a gradient of percentage built land cover, population density or air 

pollution within a specified distance from the site boundary.  This diversity of metrics 

illustrates a key drawback of this approach, in that urban intensification is a complex 

anthropogenic gradient, along which many types of disturbance and habitat 

modification occur.  Such anthropogenic variables often co-vary at multiple spatial 

scales (Andersson et al., 2009).  The gradient approach can therefore be useful 

when seeking to stratify sampling evenly along a particular axis of disturbance, 

especially when testing for intermediate disturbance effects (see Wilkinson (1999)).  

However, it is unlikely to reveal the underlying mechanisms behind the patterns it 

identifies. 

 

These landscape ecology theories and hypotheses are directly relevant to paper I, 

where the extent and structural connectivity of habitat patches is considered in the 

analysis of urban bat activity along an urbanisation gradient.  In addition, within paper 

IV the fine-scale impacts of structural fragmentation of tree cover and lighting are 

modelled and used to create a resistance surface for an entire city. 

 

Cities as systems, and ecological resilience 

It could be argued that ecology as a discipline is particularly well placed to study 

heterogeneous human dominated landscapes such as cities.  Ecologists deal with 

complex systems, disturbances, feedback loops, energy and material flows, and 
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processes that operate at multiple scales (Ahern, 2013, Pickett et al., 2001).  

Ecological theory has been ‗borrowed‘ and applied to largely unrelated areas.  

Models for nutrient cycling within food webs have inspired the field of industrial 

ecology (Nielsen, 2007), and ecological concepts such as competition and 

succession have been used by social scientists to understand human social 

organisation (Wu, 2014). 

 

Whilst it is clear that many recent ecological studies in urban areas have taken into 

account the impact of built structures or human activity in some way, several authors 

have argued that greater integration of human and ecological systems is needed at a 

conceptual level.  A variety of models have been proposed in an attempt to capture 

the key social and semi-natural components of cities and their often complicated 

interactions (Alberti et al., 2003, Grimm et al., 2000, McDonnell and Pickett, 1990, 

Pickett et al., 1997).  For example, patterning of urban habitats may be influenced by 

land-use planning decisions, which may themselves be influenced by the values and 

aspirations of local residents, combined with political and market pressures, and so 

on.  In this case, to better understand habitat patch dynamics in urban areas, 

research would be needed to model the impact of, for example, economic cycles, as 

their effects cascade through the various levels of urban decision-making. This 

radical conceptual shift has been referred to as the ‗ecology of cities‘ (Grimm et al., 

2000, Pickett et al., 2001), where cities themselves are treated as ecosystems and 

where the performance of particular natural or human components can only be 

properly understood by identifying their interactions with the broader urban context.  

One benefit from treating cities as systems is that it allows them to be approached 
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from different theoretical perspectives.  The concept of system resilience may be of 

particular value when exploring urban sustainability (Ahern, 2011), and whilst several 

definitions exist, it is used within this thesis to mean ‗the capacity of a system to 

absorb disturbance and reorganize while undergoing change so as to still retain 

essentially the same function, structure, identity, and feedbacks‘ (Walker et al., 

2004).  Resilience is a concept that is drawn from the study of ecological systems 

such as shallow lakes or savanna rangelands (Gunderson, 2000).  Internal 

processes within these systems are able to prevent minor disturbances from 

fundamentally altering their state (referred to as their stability domain).  Here I use 

the concept of resilience to explore the vulnerability of ecological features, processes 

and high-level functions within urban systems.  Within papers II and V, I endeavour to 

identify the broader urban system conditions upon which various ecological 

processes and functions depend and to explore which dependencies are particularly 

sensitive to how the urban system evolves over time.  In paper V, I then draw upon 

observations of resilience in natural ecosystems to identify strategies for future 

proofing the benefits of urban trees. 

 

A conceptual framework for this thesis 

I have created a conceptual framework (Fig.1) to illustrate the human and ecological 

sub-systems that operate within an urban area, and to identify where the papers 

within this thesis contribute to knowledge about this social-ecological system.  This 

figure is intended to emphasise the similarity between these two dimensions, and to 

highlight their potential to interact.  I have used parentheses within this figure to 

indicate where my thesis papers fit within this framework. This figure has been 
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informed by various conceptual models created to support a more integrated study of 

urban systems (Alberti et al., 2003) and to clarify the stocks and flows of materials 

through cities (Kennedy et al., 2011).  Please note that the boundaries of these sub-

systems are not defined, as they will necessarily vary depending on the research 

question being asked (Jax, 2005, Pickett et al., 2001).   

 

Each sub-system has three elements: Forms, Processes and High-level functions.   

 Forms.  This element includes examples of the structure and composition of 

the sub-system.  It can be thought of as a snapshot of the constituent parts of 

the urban system.  It includes spatial patterns and some of the driver elements 

identified in the conceptual model of Alberti et al. (2003, Fig. 6), social 

institutions given in Pickett et al. (2001, Fig. 3), and resources listed in 

Kennedy et al. (2011, Fig. 2). 

 Processes. These include nutrient cycling, the movement of people or 

materials, and social interactions.  I included some of the drivers and 

processes from (Alberti et al., 2003), and this element captures the process of 

changing ecological conditions and human perceptions referred to by Grimm 

et al. (2000, Fig. 3). 

 High-level functions.  Within this model, processes interact with forms to 

create high-level functions.  The use of the term function can be problematic in 

ecology, as it can have a variety of very different meanings (Jax, 2005).  It is 

often used as a synonym for process, or to refer to the role that an individual 

component plays within the broader system.  However, here we use it to 

denote higher level purposes or key outcomes of the sub-system as a whole 
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(Jax, 2005).  Many of the intended functions of cities are clear – they provide a 

centralised access point to food, information and other resources, as well as 

security and opportunities for social interaction.  Despite this, it is clear that 

they also have emergent properties and their high level functions may 

therefore change over time.  In comparison, identifying the high-level functions 

of the ecological sub-system is more challenging.  Natural ecosystems have 

not been designed for specific purposes, but have emerged as species and 

habitats have adapted to a set of biophysical conditions, or have been 

managed to meet human needs.  I argue that the primary goal of natural 

systems is therefore to persist and that the high-level functions of ecosystems 

are those that are key to their persistence.  For the ecological sub-system I 

suggest three high-level functions: the retention of biomass (e.g. via the 

process of primary production), self-renewal (e.g. via processes of pollination 

and succession) and adaptive capacity (e.g. via the maintenance of response 

diversity within the species pool). 
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Figure 1. 

 

A conceptual model of an urban social – ecological system, divided into its ecological 

and human sub-systems.  Roman numerals in parentheses indicate where the 

papers within this thesis fit within this model.  For example, paper IV considers how 

patterns in tree cover (habitat) and lighting (infrastructure) combine to impact the 

process of movement. 
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PAPER SUMMARIES 

 

This thesis is based upon five papers.  Please note that I use the plural ―we‖ within 

this section, as the papers that form this thesis were written with the support of co-

authors from a broad variety of disciplinary backgrounds. 

 

Paper I is a study of bat activity within the West Midlands conurbation of the United 

Kingdom.  It combines a gradient and multi-scale approach to landscape analysis 

with a technique that explores habitat accessibility via tree networks.  This study was 

motivated by the limited information on the impact of infill development and land-

cover change on urban biodiversity.  Studies along anthropogenic gradients have 

often lacked a clear description of how the gradient was defined (McDonnell and 

Hahs, 2008), and of the broader landscape context within which the data were 

collected.  In addition, the spatial scale at which species respond to the landscape is 

vital information for conservation managers, particularly as species can select habitat 

at contrasting and multiple scales; yet estimates of habitat use are often made using 

a low number of scales due to practical considerations (Mayor et al., 2009).  We 

therefore took care to stratify our sampling in a manner that could be replicated by 

others, and to measure clearly defined land-cover and land-use variables at multiple 

spatial scales.   

 

Bats were surveyed at ponds located throughout the West Midlands.  Site selection 

was informed by a GIS analysis of the land-cover and land-use within 1 km2 circle 

surrounding candidate ponds.  These ponds were then assigned to one of five 
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landscape categories, and six ponds from each category were selected for surveys.  

Each site was surveyed three times, using two types of detector – a fixed detector 

that recorded the time and nature of bat calls for the entire night, and a handheld 

detector that was used to identify bat activity for 1.5 hours following sunset.  These 

methods were complementary, with the fixed detector survey collecting more data, 

and the handheld detector allowing concentrations of bat activity in the vicinity of the 

pond to be surveyed more effectively.  We identified broad correlations between bat 

activity and the physical structure and composition of the urban landscape. The 

analysis draws particular attention to the positive role that structural connectivity of 

tree cover appears to play for Pipistrellus pipistrellus, particularly in areas of high 

built-density.  This species was also found to be particularly sensitivity to the nature 

of land-cover at a local scale, in comparison to the other species recorded.   We also 

found a broadly negative impact of built surface cover on the urban bat community. 

However, P. pipistrellus activity exhibited a more complicated ‗humped‘ shape 

response, the cause of which is unknown.  Whilst this study helps to fill a clear gap 

within urban gradient studies, the applicability of these results to fine-scale 

conservation efforts is still problematic, as the mechanism(s) by which high building-

density appears to deter bats remain unclear.  A key question that remains is 

whether the urban bat community can be enhanced simply by reducing levels of built 

density and planting more trees, or whether the underlying mechanisms that drive 

patterns in bat activity are more subtle and context specific? 

 

Paper II explores the vulnerability of ecological features (such as artificial bat roosts) 

within an urban development case study in the city of Lancaster, UK.  This is a 
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relatively straightforward analysis of how ecological mitigation and enhancement is 

considered within an urban redevelopment proposal.  However, it draws upon a 

variety of ideas about how urban systems can be conceptualised and tested.  The 

site chosen for this study is called Luneside East, a post-industrial brownfield site 

near to the commercial centre of Lancaster.  Sites like Luneside East can be found in 

many UK cities, being composed of abandoned and collapsed buildings, 

contaminated soils and encroaching vegetation.  Such sites are often promoted by 

local and national government as development opportunities, yet they frequently 

contain species of conservation concern that are legally protected (Harrison and 

Davies, 2002).  In the case of Luneside East, surveys by ecological consultants had 

revealed the presence of commuting or foraging P. pipistrellus, whilst some of the 

structures were also identified as potential winter roosts.  Mitigation for potential roost 

losses, and enhancements to foraging habitats had been proposed by the developer, 

along with enhancements to bird nesting habitat.  The central question within this 

paper is whether these ecological interventions would continue to function far into the 

future, once the development process and initial monitoring period had been 

completed.   

 

To address this question we employed a systems approach, to identify the broader 

social, economic and environmental conditions upon which these interventions 

depended.  For example, for an artificial bat roost to be of use, bats need to be able 

to commute from the roost to feeding areas in the surrounding landscape.  We then 

questioned whether these conditions might be undermined in the future, using a set 

of future socio-political scenarios developed for UK urban areas.  A resilient habitat, it 
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is argued, is one that would continue to function despite radical changes to the 

values and behaviours of local residents, to the surrounding built form, to technology, 

or to the local economy. The resilience analysis highlighted several uncertainties 

over whether key habitat features would remain undisturbed, whether important 

microclimates would be preserved and whether functional habitat connectivity would 

be maintained.  Some suggestions for improving the resilience of these features are 

made, such as locating artificial roosts in parts of the site where functional 

connectivity is less likely to be undermined.  However, at the time of writing there was 

little empirical data on impact thresholds for factors such as artificial lighting, or on 

the sensitivity of P. pipistrellus to the fragmentation of urban tree cover.  This paper 

serves to highlight the failure of current practice to consider the extent to which 

ecological mitigation and enhancement is sensitive to changes within and adjacent to 

the development site over time.  In addition, it reveals important knowledge gaps 

about how protected species respond to fine scale environmental change within 

urban areas. 

 

Paper III focuses on the subject of urban artificial lighting, which is known to have a 

range of ecological impacts (Rich and Longcore, 2006).  We present the first ever 

spatial analysis of fine-scale multispectral lighting data for an entire city. High-

resolution aerial night photography was captured for the city of Birmingham (UK) and 

analysed to identify spatial patterns in lighting associated with built density, grain of 

sample size and land-cover/land-use. We argued that a lack of high-resolution 

baseline lighting data for cities has prevented artificial lighting being included 

meaningfully within the impact assessments of development proposals (as illustrated 
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in paper II).  Such data are also essential for addressing a broad variety of research 

questions relating to human and ecological health, amenity and economic costs.  We 

found positive relationships between artificial lighting and built density at coarse 

spatial scales, whilst at fine scales lighting varied depending on land-use. Of 

particular note was that industrial land uses are responsible for much of the bright 

lighting within the city, despite covering a relatively small area of land. This paper 

illustrates the value of generating city-wide data on ecological disruptors, as 

assumptions that street lighting is the dominant source of urban light pollution may 

not always be correct.  

 

Paper IV draws together elements of the preceding papers to ask whether variations 

in artificial lighting and gaps in urban tree cover can combine to deter bat movement 

within urban areas.  Again, the focus is on the city of Birmingham (UK).  We were 

motivated to write this paper by the knowledge gaps around the fine-scale ecological 

impacts of lighting and urban form. These knowledge gaps had limited the detail at 

which the resilience analysis within paper II could be undertaken.  In addition, we 

were keen to try and understand the mechanisms that were responsible for the low 

bat activity within heavily developed areas, described in paper I. This provoked us to 

undertake a more mechanistic and fine-scale study of lighting and bats, focusing on 

the potential impacts of street lighting on bat movement.  This mechanistic approach 

then allowed us to scale the results to estimate landscape scale impacts. 

 

Our broad hypothesis was that the commuting behaviour of bats such as P. 

pipistrellus would be impacted by the nature of gaps in urban tree lines.  Bats were 
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surveyed at gaps in tree cover, which varied in width and illumination level.  Crossing 

events were recorded, and the probability of crossing was modelled as a function of 

gap width and illumination.  We found that street lighting within gaps could create a 

barrier to bat movement.  Importantly, this impact was found to be context 

dependent, as the barrier effect of lighting varied depending on the size of the gap.  

Models derived from this fieldwork were then applied to high-resolution tree and 

lighting data for the whole of Birmingham (derived from papers I and III), predicting a 

high resistance to movement in heavily developed areas.  Finally, in recognition that 

urban systems are dynamic, often unpredictable and dominated by human activities, 

we generated different scenarios for urban lighting, to explore how landscape 

resistance might be impacted in the future.  One interpretation of these results is that 

functional connectivity for bats need not always be poor within urban centres, and 

that improvements could be made simply through the strategic dimming of street 

lights and narrowing of gaps 

 

Paper V considers the topic of urban tree cover and the factors which may influence 

its persistence and performance over time.  Its focus is on UK urban areas, although 

it draws on a global literature on the potential benefits of urban trees to local 

residents, the impact of landscape context on the delivery of these benefits and on 

how urban tree cover has varied in the past.  We have focused upon urban trees as 

these could be thought of as the archetypal urban sustainability intervention.  They 

have multiple positive functions for human wellbeing and have the potential to 

facilitate more biodiverse cities (see papers I and IV), yet these benefits may take 

many decades to be realised.  Relatively little is known about the factors that impact 
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the delivery of benefits from urban street trees over large timescales, and this 

analysis is intended to highlight and challenge the social, environmental, and 

economic assumptions that are implicit within large-scale urban tree planting 

projects.   

 

This study employs the same resilience analysis methods used in paper II, but in 

comparison this analysis was possible at a much finer level of detail.  First, a range of 

potential benefits were identified through workshops and a literature review.  For 

each intended benefit, the broad system conditions upon which it depends were then 

identified (e.g. aesthetic benefits may depend not just on the tree being visible, but 

also upon the values and past experiences of local residents).  Finally, a set of future 

urban scenarios were used to test whether these conditions might be undermined in 

the future.  These scenarios have the advantage over alternative approaches that 

use predictions of risks based upon trend analysis (e.g. in relation to climate change), 

as they also include socio-political changes that are much less predictable. We argue 

that by focusing upon the system conditions that these benefits depend, rather than 

the tree itself, we are better able to examine the underlying mechanisms that support 

the resilience of these benefits. 

 

We find that many benefits appear to be dependent on continued levels of tree 

maintenance, on public values which are supportive, and on a built form which is 

relatively stable over time.  For example, large trees and extensive canopy cover are 

important to the delivery of urban cooling and biodiversity goals, yet they create a 

range of conflicts with built infrastructure and human activities that need to be 
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managed over long timescales.  In future scenarios where funding for the 

management of urban street trees is not considered a priority, one might expect to 

see a reduction in the abundance of large trees within urban areas.  We conclude by 

suggesting some changes that may improve the resilience of urban trees and their 

benefits, including the use of targeted payments for the retention of trees within 

priority neighbourhoods, and a more formal integration of members of the public, 

NGOs and municipal departments in the co-management of street trees. 

 

This work can be seen as complementary to papers I and IV which flag up the 

importance of urban tree cover to the urban bat community, as it could be used to 

test the vulnerability of related urban habitat enhancement proposals.  It also makes 

a broader point about the short-term focus of ‗million tree‘ planting projects, and the 

need to query whether such projects have fully considered the timescales required to 

deliver the benefits that are often promised. 
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CONCLUSION 

 

Much of the discussion about sustainability and cities over recent decades has 

focused on the performance of particular classes of urban form, e.g. compact vs. 

sprawling cities (Gordon and Richardson, 1997, Burton, 2000, Neuman, 2005).  This 

interest may well be a reaction to changes in urban development policy (Dallimer et 

al., 2011, Williams, 1999, Harrison and Davies, 2002) or to the consistency with 

which certain types of development are viewed to have failed in the past (Jacobs and 

Manzi, 1998).  However, it is important to be alert to the danger of assuming that 

there are deterministic relationships between urban form and sustainability 

performance.  Such an assumption appears to be common within the field of urban 

design, where the goal is often to reach a single idealised urban form (Ahern, 2013).  

This approach fails to recognise the dynamic nature of cities, and that sustainability 

goals may necessarily change over time.  In the context of this thesis, I would argue 

that simply because low levels of bat activity were associated with heavily developed 

locations, it does not mean that these sites will always perform so poorly.  Alternative 

states might well be possible where high chiropteran diversity could be sustained 

within urban centres, through a combination of strategic habitat creation and a 

reduction in disturbance from lighting and other factors currently associated with 

densification.  Crucially, the persistence of more biodiverse cities may depend not 

just upon radical physical changes to the urban form, but also on a reinforced shift in 

the values, knowledge and expectations of local residents, workers and landscape 

managers. 
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The key aims for this thesis were to: 

1. Describe the spatial patterning of the bat community within a UK city and 

identify the land-cover and land-use variables with which they are 

associated.  

2. Explore the underlying mechanisms that shape these patterns. 

3. Identify broad urban system conditions upon which the bat community 

depends. 

 

I am confident that when taken as a whole, the papers that form this thesis have 

addressed each of these aims.  Aim 1 was covered within in paper I, where stratified 

surveys of the urban bat community were undertaken and modelled against 

landscape variables.  The patterns identified within this paper also highlighted 

potential causative mechanisms (Aim 2), namely movement via tree cover and 

disruption by urban intensification (possibly due to lighting – paper III).  These 

mechanisms were explored in paper IV, through a more mechanistic study on the 

impact of gaps in tree cover and of lighting, on bat commuting behaviour.  Aim 3 was 

addressed within papers II and V.  The system conditions that the functioning of 

artificial bat roosts and new feeding areas depended upon were identified in paper III, 

along with their vulnerabilities.  A similar approach was then applied to urban trees in 

general (V), which are a key habitat component and predictor of activity for several 

urban bats (paper I). 
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Areas for future research 

A key aim of paper I was to survey the entire bat community, yet this was extremely 

challenging in practice.  The calls (and ecology) of three UK bat species are so 

similar that we decided to treat them as a single guild for the purposes of analysis, 

but this is not an ideal outcome.  In addition, other species such as the brown long-

eared bat Plecotus auritus are known to be present in urban areas (Altringham, 

2003), yet their calls are of such low volume that detector based surveys are rarely of 

use and this species was not recorded in this study.  A more complete analysis might 

have been accomplished by trapping bats in flight, although logistically this would be 

extremely challenging.  Improvements in detector technology and call analysis 

software (Obrist et al., 2004) would also be expected to facilitate a more complete 

survey of the urban bat community in the future. 

 

The land-cover and land-use variables that were used within paper I were selected 

from mapping and remotely sensed data that were broadly available for UK urban 

areas at that time.  This has the practical benefit that the results might be more easily 

applied to other cities.  However, it is possible that alternative explanatory variables 

might have been more appropriate.  For example, the best model of evening activity 

for Pipistrellus pipistrellus included the area of gardens within a 50m radius.  Whether 

it was the gardens themselves that are beneficial (e.g. as feeding habitat) or whether 

garden area is actually an indicator of local roost availability in residential buildings is 

unclear.  The causes of such associations need to be understood, and in this 

example the use of landscape data on building age, condition and thermal 

performance may well be beneficial for future studies.  The extent and grain of 
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analysis employed in urban landscape ecology studies can make a huge difference 

to the relationships detected between urban land-cover and species richness (Luck, 

2007) and to models of habitat use (Mayor et al., 2009).  Our analysis demonstrates 

the value of a multi-scale approach, as it highlights how different components of the 

urban bat community are sensitive to the composition of the landscape at different 

scales. 

 

At the time of writing papers III and IV, there was much suspicion amongst bat 

researchers and practitioners that artificial lighting was detrimental to bat activity, yet 

very limited empirical data was available to support this.  Paper III was particularly 

timely, as it was published at approximately the same time that the EU Loss of the 

Night COST Network (LoNNe) was established.  It was therefore able to support a 

broader discussion about how best to measure light pollution, about where light 

pollution was most intense within cities, and which species and social groups were 

subjected to the greatest exposure.  It also facilitated the mechanistic approach 

employed in paper IV, responding to calls for mechanistic studies that can be linked 

to ecosystem-scale environmental changes (Shochat et al., 2006).  However, it is 

clear that a wide range of other mechanisms could be shaping the patterns we 

observed.  For example, it would be interesting to explore how predation, competition 

and prey availability varied along this urbanisation gradient, and to undertake 

experimental manipulation of these factors. 

 

Papers II and V captured a range of system conditions that are likely to impact the 

functioning of urban bat communities, yet the scenarios used to test their resilience 
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still contain many assumptions in relation to human behaviour.  Paper V identifies 

several studies that considered public attitudes to urban tree cover, which may be 

key to determining its long-term persistence.  What became clear during the writing of 

this paper was that attitudes seem to vary widely, depending upon factors such as 

age of residents, household size, tenancy turn-over rates, employment and income 

(Zhang et al., 2007, Conway and Bang, 2014).  Given the complexity and apparent 

context sensitivity of public attitudes to ecological features within urban areas, this 

subject would clearly benefit from more attention, with greater integration of 

ecological and social-science approaches (Wu, 2014). 

 

If the ultimate goal of ecological research is to support conservation practice (which 

is my personal view), an important question is whether these research findings are of 

value to practitioners?  Perhaps the most useful outcome of this thesis is the model 

presented in paper IV, as this could be used to create resistance surfaces for other 

cities, given data on lighting and tree cover.  However, it should be noted that the 

data used to generate this model was collected from a single city and that we cannot 

assume it can be reliably applied elsewhere, particularly to cities outside of the UK.  

The need for comparative ecological studies involving multiple cities is well 

recognised (McDonnell et al., 2009), and I look forward to undertaking fieldwork in 

some more exotic cities in the future! 
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1. School of Geography, Earth and Environmental Sciences, The University of 

Birmingham, Birmingham, United Kingdom 

2. Imperial College London, Silwood Park Campus, Ascot, United Kingdom 
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Abstract 

Background: Urbanisation is characterised by high levels of sealed land-cover, and 

small, geometrically complex, fragmented land-use patches. The extent and density 

of urbanised land-use is increasing, with implications for habitat quality, connectivity 

and city ecology. Little is known about densification thresholds for urban ecosystem 

function, and the response of mammals, nocturnal and cryptic taxa are poorly studied 

in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, 

guild and community level, so are ideal model organisms for analyses of this nature. 

 

Methodology/Principal Findings: We surveyed bats around urban ponds in the West 

Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban 

land classes, representing a gradient of built land-cover at the 1 km2 scale. Models 

for bat presence and activity were developed using land-cover and land-use data 
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from multiple radii around each pond. Structural connectivity of tree networks was 

used as an indicator of the functional connectivity between habitats. All species were 

sensitive to measures of urban density. Some were also sensitive to landscape 

composition and structural connectivity at different spatial scales. These results 

represent new findings for an urban area. The activity of Pipistrellus pipistrellus 

(Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, 

being much reduced beyond the threshold of ~60% built surface. The presence of 

tree networks appears to mitigate the negative effects of urbanisation for this 

species. 

 

Conclusions/Significance: Our results suggest that increasing urban density 

negatively impacts the study species. This has implications for infill development 

policy, built density targets and the compact city debate. Bats were also sensitive to 

the composition and structure of the urban form at a range of spatial scales, with 

implications for land-use planning and management. Protecting and establishing tree 

networks may improve the resilience of some bat populations to urban densification. 

 

1. Introduction 

Fifty years of agricultural intensification, fragmentation and urbanisation have 

radically altered the landscape composition of the UK (Robinson and Sutherland, 

2002). Urban areas have grown substantially over the last 20 years (Grimm et al., 

2008) and now support the majority of the global population (UN, 2010). Urbanisation 

is characterized by an increase in sealed land-cover density (McKinney, 2002), 

geometric complexity, fragmentation of land-use patches (Luck and Wu, 2002, Zhang 
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et al., 2004), and a reduction in patch size (Zhang et al., 2004, Sadler et al., 2006). 

Combined with varying disturbance levels (Williams et al., 2009), this results in a 

spatio-temporally complex land-use mosaic (Cadenasso et al., 2007, McDonnell and 

Pickett, 1990), with far-reaching consequences for species dispersal (Tremblay and 

St Clair, 2009), ecological function (McDonnell et al., 1997) and ecological service 

provision (Eigenbrod et al., 2011). In some countries, urbanisation has resulted in 

urban sprawl into agricultural land (Irwin and Bockstael, 2007), while in others 

policies favour compact city forms (Burton, 2000). Where greenbelts constrain urban 

sprawl (Sadler et al., 2010), there is evidence that urban landscapes have densified 

and lost greenspace, especially over the last decade (Dallimer et al., 2011). Little 

data exist that indicate how much densification the urban ecosystem can withstand 

before ecosystem function is substantially impaired. In terrestrial habitats increased 

urbanisation generally has a negative effect on species richness, although this 

pattern is not universal (McKinney, 2008). Organism responses to increasing urban 

land-cover are species and trait-specific, but generally differentiate between 

generalist species that thrive or show humped abundance patterns, and specialist 

species that exhibit declines (Williams et al., 2009, Bates et al., 2011, Tratalos et al., 

2007, Croci et al., 2008, Evans et al., 2011, Niemela and Kotze, 2009).  

 

Urban density thresholds for species presence and abundance are likely to be 

contingent upon sampling methodology and the spatial scale at which built density 

and landscape composition are measured. There is currently a multiplicity of 

approaches evident in the literature (Hahs and McDonnell, 2006, McDonnell and 

Hahs, 2008) clarification is needed in order to improve comparability between studies 
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and to aid the translation of results into conservation practice. Clarity may be gained 

by studying taxa whose species are sensitive to different measures of urbanisation at 

a range of spatial scales, as well as to the surrounding landscape. There is already a 

considerable literature on birds and urbanisation (Tratalos et al., 2007, Evans et al., 

2011, McDonnell and Hahs, 2008), but their life histories and responses to 

urbanisation do not always reflect those of other groups (Gagne and Fahrig, 2007). 

Mammals, nocturnal and cryptic taxa are poorly studied in this respect and bat 

(Chiroptera) communities are ideal candidates for research. They typically include 

species that exploit built structures (Altringham, 2003) are sensitive to landscape 

scale, patch effects (Gehrt and Chelsvig, 2003, Gehrt and Chelsvig, 2004), and to 

changes in structural connectivity (Verboom and Huitema, 1997, Gaisler et al., 1998).  

The few studies focusing on the effect of urbanisation on bat species indicate 

variability in response to changing urban form at a species, guild and community 

level. In studies of cities in the Czech Republic (Gaisler et al., 1998), Mexico (Avila-

Flores and Fenton, 2005) and Australia (Threlfall et al., 2012) bat activity was lower 

in high density residential areas, than in low density areas (e.g. suburban, urban 

fringe) and semi-natural areas. In addition, lower species richness was reported in 

the urban centre and densely developed areas. This contrasts with other studies in 

the USA (Gehrt and Chelsvig, 2003, Gehrt and Chelsvig, 2004), where positive 

relationships have been reported between both overall bat activity and species 

richness of natural habitat fragments and the urban density of the surrounding 

landscape. Several studies have identified positive relationships between 

urbanisation and the activity of certain species (Gehrt and Chelsvig, 2003, Gehrt and 

Chelsvig, 2004, Avila-Flores and Fenton, 2005, Lookingbill et al., 2010) but other 
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species clearly favoured semi-natural areas or exhibited a broad tolerance of 

urbanisation (Gaisler et al., 1998, Avila-Flores and Fenton, 2005). It has been 

suggested that these responses reflect differences in wing and call morphology, with 

species specialising in cluttered habitats avoiding brightly lit and poorly vegetated 

urban areas (Avila-Flores and Fenton, 2005). 

 

Given the intensity of compositional change in urban areas (Grimm et al., 2008, 

Dallimer et al., 2011), and the associated high levels of fragmentation (Luck and Wu, 

2002), one might expect that connectivity and linkage would be a central theme in 

urban ecology, as it is in other landscapes (Robinson and Sutherland, 2002, 

Boughey et al., 2011, Cornulier et al., 2011, Lawton et al., 2010). Indeed, connective 

features such as green networks and corridors have been influential in guiding city 

planning in many areas of the world (Turner, 2006, Fleury and Brown, 1997), and the 

creation and preservation of wooded corridors does seem to present an ideal 

opportunity for restoration aimed at enhancing spatial population resilience in cities 

(Marzluff and Ewing, 2001). However, there are very few studies that focus on this 

element. Studies on plants and invertebrates (Angold et al., 2006, Small et al., 2006) 

in UK greenways identified multiple structural and functional roles that were species 

specific in terms of habitat provision, but did not indicate a strong functional conduit 

role that enhanced movement and dispersal. Although evidence that wooded linear 

features such as streets and riparian corridors facilitate connectivity for birds in urban 

areas (Fernandez-Juricic, 2000, Shanahan et al., 2011), there are few studies 

pertaining to urban bats, although several have identified relationships between 

linear features and bat activity in agricultural areas (Verboom and Huitema, 1997, 
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Limpens, 1991, Downs and Racey, 2006). Such features appear to have roles in both 

feeding and movement and thresholds for loss of functional connectivity are still 

unclear (Lookingbill et al., 2010, Oprea et al., 2009). 

 

Here we explore the influence of urban landscape composition and structural 

connectivity on the presence and activity of bats at a range of spatial scales. We 

stratified sampling sites evenly across classes of urban form whose composition and 

extent were clearly defined a priori using a wide range of environmental data 

captured in a Geographical Information System (GIS). Foraging sites with similar 

local land-cover were selected to reduce the effect of confounding local variation in 

habitat type, and their landscape context measured consistently at multiple spatial 

scales. A proxy measure of functional connectivity was developed for each scale 

based on the traits of the species encountered. Both walking surveys and fixed 

position detectors were used to record bat activity. Using the assemblage and 

environmental data we addressed the following research objectives: (1) To 

characterize bat activity and presence in relation to urban density and landscape 

composition; (2) To assess the spatial scale at which species respond to the urban 

landscape; (3) To establish the significance of connectivity for bat activity in a heavily 

urbanised landscape. 

 

We achieved our objectives and explore in the Discussion section the issues 

surrounding quantifying land-cover, land-use, functional connectivity and species 

specific responses to landscape change. Despite some progress with mapping key 

variables at a high spatial resolution and large spatial extent, our proxies for roost 
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potential (large trees and residential buildings) and lighting (road area) did not add 

any explanatory power to the models and could be improved on. Future studies may 

benefit from data on tree species, building age and densities of lighting columns. 

 

2. Results 

We recorded bat calls within a total of 14,176 survey minutes using the fixed-point 

automatic detector (see section 5. Materials and Methods).  Of these, 11,545 minutes 

contained calls identifiable to species or guild level. These included 9,950 active 

minutes (86% of the identifiable bat calls) of P. pipistrellus calls, 1,330 (11%) of P. 

pygmaeus and 345 (3%) belonging to the NSL (Nyctalus noctula, Eptesicus 

serotinus, Nyctalus leisleri) guild, with some minutes including calls from more than 

one species/guild. Walking surveys added an additional 1178 active minutes (75%) 

for P. pipistrellus, 190 (12%) for P. pygmaeus, 49 (3%) for the NSL guild and 163 

(10%) Myotis calls, all of which where from bats observed feeding over the pond 

surface and were therefore confirmed as Myotis daubentonii. Bats were recorded at 

all of the thirty survey sites. Only P. pipistrellus was recorded at all sites, although P. 

pygmaeus was recorded at 93.3% of sites. The NSL guild was recorded at 73.3% of 

sites but was virtually absent from those within the Dense Urban land class (Fig. 1). 

M. daubentonii was present at 33.3% of sites and was negatively associated with 

increased urbanisation (Fig. 1). Full-night activity for both P. pipistrellus (p = 0.043) 

and the NSL guild (p = 0.035) was significantly higher in the Rural compared to the 

Dense Urban land class (Fig. 1). Evening activity for P. pipistrellus and the NSL guild 

followed similar patterns, although the differences between classes were not 

significant. 
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Multiple models were created for all species and guilds and the best of these are 

presented in Table 1. These models included data extracted using concentric buffers 

applied both to the landscape around each pond (concentric landscape) and 

restricted to the landscape intersected by a connectivity mask (connected landscape) 

(Fig. 2). In general, P. pipistrellus activity was highest at sites surrounded by low or 

moderate levels of built land-cover or at well-connected sites in highly urban areas. 

The best models all included the area of built land-cover within 350 m of survey 

ponds, with activity peaking at intermediate levels of built land-cover and being lower 

but more variable at high levels of urbanisation (Fig. 3). These models included a 

positive association with connected tree cover (>6 m high) within a radius of 150 m 

for sites in Dense Urban and Dense Suburban land classes (Fig. 4). Evening activity 

was also positively associated with connected garden area within both 50 and 500 m. 

These garden parameters were not present in the full-night model, but were replaced 

by a measure of connected vegetation cover within 200 m of the site (Table 1). 

 

Pipistrellus pygmaeus activity was highest at ponds located within a highly vegetated 

landscape but poorly connected at a local level. All models included negative 

parameter coefficients for connected tree cover (>6 m high) within a radius of 100–

200 m. Evening models included a positive relationship between activity and 

connected vegetation within 1 km, and the full-night models included a negative 

association with the area of built land-cover within 1 km. 

 

No valid GLM or GAM activity models were identified for M. daubentonii, or the NSL 

guild, but several logistic regression models were selected for evening presence 
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data. The evening presence model for M. daubentonii included a positive relationship 

with natural land-cover (concentric) within 150 to 350 m of the survey sites (Table 1). 

For the NSL guild evening activity was negatively associated with built land-cover 

(concentric) within 350–750 m (Table 1). For these species, restricting the landscape 

analysis to the areas adjacent to tree networks (connected landscape) did not result 

in any valid models. Candidate all-night NLS presence-absence models all exhibited 

residual spatial patterning (e.g. Figure S1). We used a spatial correlation structure to 

compensate for this, but it did not improve either the residual spread or the AIC of the 

models, so all the models were rejected. 

 

    Figure 2.  

 

A survey pond and two methods used to extract landscape data at multiple scales. 

(A) An unrestricted extraction of landscape data using concentric buffers. (B) 

Connected (available) landscape mask created using tree networks buffered by 50 

m. This polygon was used as a mask to restrict the landscape analysis to the area 

within this network. In both examples, landscape data were extracted at distances of 

50, 100, 150, 200, 350 and 500 m from the pond centre. 
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           Figure 3.  

 

Partial plot of smoothed evening bat activity and percentage built land-cover within 

350 m of surveys sites. This was included in the final model for evening activity of P. 

pipistrellus (see Table 1 for full model).  
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Figure 4.  

 

Conditional scatter plot of P. pipistrellus evening activity against connected tree cover 

(>6 m) within 150 m. (A) sites within Dense Urban and Dense Suburban (B) Dense 

Suburban and Suburban (C) Suburban and Light Suburban, (D) Suburban and Rural 

land classes. 

 

 

3. Discussion 

We investigated the response of a bat community to urbanisation, landscape 

composition and structural connectivity at a variety of spatial scales using 

standardized samples across five urban landscape classes (Figs. 5 & 6), targeting 

small ponds with consistent levels of adjacent riparian woodlands. All species were 

found to be sensitive to at least one measure of urbanisation and some were 

additionally influenced by landscape composition and structural connectivity at 
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different spatial scales. For two species, habitat associations differed between 

evening and full-night models. 

 

      Figure 5.  

 

The West Midlands metropolitan county study area. It includes the metropolitan 

borough centres of A Wolverhampton, B Dudley, C Sandwell, D Walsall, E 

Birmingham and F Solihull. Bat survey ponds are indicated by a black circle and 

were stratified by urban land classes, which are represented by a grid of 902×1 

km2 pixels covering the study area. These range from Dense Urban (white) to 

Rural (dark green). Canals and railways are indicated by fine black lines. 
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Figure 6.  

 

 

 
Landscape data summaries for 1 km2 circles surrounding each pond. (A) Mean area 

and SD for 3 of the 13 land-cover and land-use types derived from the Ordnance 

Survey Mastermap and used to assign ponds to land classes (see Table S1). (B) 

Mean area and standard deviation for vegetation cover and trees>4 m high. 
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3.1 Urban Density 

Three broad measures of urbanisation were derived for this study (i) the area of built 

(sealed) land cover parcels derived from OS digital data, (ii) the area of natural 

(vegetated) land-cover parcels and (iii) the area of vegetated (remotely sensed) land-

cover (Table 2). It is notable that all of the species/guilds in our study were found to 

be sensitive to at least one of these measures of urban density, given the limited 

evidence on the response of bat communities to urbanisation (Gehrt and Chelsvig, 

2003, Oprea et al., 2009). Each measure provided significant explanatory power to 

different models, supporting calls for the use of multiple measures of urbanisation in 

gradient studies (Hahs and McDonnell, 2006). It is likely that these measures differ in 

their representation of key resources or ecological disruptors as they are broad and 

indirect measures of a complex anthropogenic gradient (McDonnell and Hahs, 2008). 

Although most species demonstrated a negative association with urbanisation, we 

found a non-linear relationship between P. pipistrellus activity and built surface cover. 

Activity peaked at ~40% built cover, yet at levels above ~60% activity rapidly 

reduced, implying the existence of a threshold or tipping point (Scheffer, 2010). This 

is the first report of such a relationship for a bat species, although non-linear 

relationships with urbanisation have been identified for other taxa (Tratalos et al., 

2007). Pipistrellus pipistrellus could be described as an ‗urban adapter‘ (Blair, 1996), 

whilst the remaining species would be ―urban avoiders‖ of varying sensitivity. These 

results broadly agree with those of other studies, for example, that Myotis species 

tend to avoid villages (Vaughan et al., 1997) and urban centres (Gaisler et al., 1998). 

European work (Gaisler et al., 1998) suggests that small bats with low wing loadings 

are tolerant of even dense urbanisation, but large bats with high wing loadings 
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generally avoid urban centres. This is, however, at odds with work in Australia which 

suggests the reverse (Threlfall et al., 2011), and is also in disagreement with studies 

of urban bird traits, which suggest large size/wings are a trait of urban adapters 

(Croci et al., 2008). These differences may be an artefact of differences in urban 

composition and morphology between European and Australian cities, the scale that 

urbanisation is measured at, how urban density is defined and the degree to which 

different species are willing to accept human subsidised resources (e.g. building 

roosts). 
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3.2 Landscape composition 

The often contradicting findings from studies of urban bat communities illustrate 

some of the broader challenges associated with attempting to identify ecological 

patterns along urbanisation gradients (McDonnell and Hahs, 2008). The descriptions 

of the urban form provided by Gaisler et al. (1998), Avila-Flores and Fenton (2005) 

and Gehrt and Chelsvig (2003) varied considerably in their detail. We addressed this 

issue by accessing high-resolution parcel based and remotely sensed data for land-

cover and land-use for the entire study area. 

 

Although all species demonstrated a negative response to broad measures of 

urbanisation, considerable differences in activity were evident between sites at 

similar points along these gradients. This suggests that more subtle variations in 

landscape composition may also be important. Pipistrellus pipistrellus evening 

activity was found to be positively associated with gardens, which might be expected 

given their propensity for roosting in buildings (Simon, 2004) and for early evening 

emergence. An additional explanation is that gardens might typically provide tree 

cover that facilitates early emergence and feeding. These findings pose further 

questions about the mechanisms behind associations between bat activity and 

residential land-covers reported elsewhere (Gehrt and Chelsvig, 2003, Gehrt and 

Chelsvig, 2004, Gaisler et al., 1998, Hourigan et al., 2008). As with other studies, 

differences were found between the landscape composition preferred by P. 

pipistrellus and P. pygmeaus. A positive association between P. pipistrellus and local 

tree cover was expected given their known use of edges as commuting and feeding 

areas (Verboom and Huitema, 1997, Gaisler et al., 1998), and their role in increasing 
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the attractiveness of adjacent roost sites (Jenkins et al., 1998). The association of P. 

pygmeaus with aquatic habitats described elsewhere (Vaughan et al., 1997, 

Davidson-Watts and Jones, 2006, Sattler et al., 2007) was not observed in this study. 

However, this may reflect variations in the quality of riparian vegetation (Scott et al., 

2010), which we were unable to measure at a landscape scale. 

 

We expected M. daubentonii to demonstrate a strong positive association with the 

area of water in the vicinity of the survey sites (Dietz et al., 2006), yet we did not find 

support for this in our results. It is possible that by surveying ponds we removed 

water as a limiting variable or that the social dynamics of this species served to mask 

important habitat associations (Kapfer et al., 2008). Members of the NSL guild are 

reported to seek out pastures, parks and other open green spaces (Vaughan et al., 

1997). Their relatively high wing loadings, medium-high aspect ratios and low call 

frequencies permitting them to hawk in the open, typically feeding on large insects 

(Altringham, 2003). Our presence models broadly support this, although we were 

unable to differentiate between ground vegetation types and management for the 

extent of our study area. 

 

In general, we expected bat presence and activity to reflect the local availability of 

roosts (Jenkins et al., 1998) and foraging sites (Vaughan et al., 1997). Several of our 

landscape variables were intended to be proxy measures for these key resources, 

yet the value of our roost metrics was limited. There is an inevitable trade-off 

between the detail and availability of urban habitat data and the spatial scale of 

analysis (McDonnell and Hahs, 2008) and it is likely that greater effort is required to 
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map roost potential effectively. In addition, both roosting bats (Jenkins et al., 1998), 

commuting bats (Gaisler et al., 1998) and their insect prey are sensitive to variations 

in microclimate, which in urban areas will be heavily influenced by human activity. 

Additional data that improves the integration of human processes such as land 

management and intensity of use into urban ecological models may therefore clarify 

how roosting or feeding potential varies within each land-cover type. 

 

3.3 Landscape connectivity 

Our approach employed proxy measures of functional connectivity to estimate the 

areas of the landscape theoretically available to bat species that commute along tree 

networks and is an extension of the accessible habitat model (Eigenbrod et al., 2008, 

Pascual-Hortal and Saura, 2006). Functional connectivity is concerned with the ability 

of individuals to move between resource patches within the landscape rather than 

explicitly measuring the structure of landscape elements, although structure is 

frequently used as a proxy for function (Tischendorf, 2001, Tischendorf and Fahrig, 

2000). The measures of structural landscape connectivity used to extract landscape 

variables from the GIS appeared to be a good approximation of functional 

connectivity for the two Pipistrellus species. Euclidian distance may be a more 

appropriate for measuring accessible habitat for M. daubentonii and the NSL group. 

This supports previous studies highlighting the importance of linear landscape 

features (Verboom and Huitema, 1997, Limpens, 1991, Downs and Racey, 2006), 

but this study is unique in demonstrating the functional importance of structural 

connectivity of tree cover for bat species in urban landscapes. As M. daubentonii has 

a similar wing aspect ratio and loading to the two Pipistrellus species we had 
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expected models for M. daubentonii to include measures related to connectivity. It is 

possible that structural connectivity is relevant to this species, but that our landscape 

measures were insufficient to detect this relationship. However, given that our site 

data for this species is limited to activity within the first 1.5 hours after dusk and that 

this species is a late emerger, such interpretations should be treated with caution. 

Whilst the concept is relatively straightforward, measuring functional connectivity in 

urban landscapes is challenging, particularly as the patch/matrix distinction is often 

unclear and actual movement paths are not easily observed. Previous studies have 

successfully employed expert judgement to estimate landscape resistance values for 

different urban matrix types (FitzGibbon et al., 2007). Our approach is easily 

replicable and scalable, but relies on the accurate mapping of individual trees in three 

dimensions and on a consistent response by bats within a population to gaps in tree 

networks. For studies of highly mobile bird species, estimating the path of movement 

within the urban matrix has delivered improved models compared to more general 

landscape measures (Tremblay and St Clair, 2009) and it is worth noting that for both 

Pipistrellus species studied, the only valid models we identified were those that 

included variables measured using a connectivity mask. At sites where the built land-

cover of the surrounding landscape was over 40%, structural connectivity was critical 

for maintaining high levels of P. pipistrellus activity. Urban density dependent 

relationships with connectivity such as this have not been demonstrated before. 

 

3.4 Spatial scale 

Gehrt and Chelsvig (2003) and Lookingbill et al. (2010) located bat survey sites 

within natural reserves along an urbanisation gradient. However, the direct 
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comparison of these studies is difficult as the spatial extent used to define 

urbanisation and characterize the landscape differed between studies. We attempted 

to avoid such issues by measuring urban density at a wide range of spatial scales. 

This identified broad patterns, with edge specialists (Pipistrellus spp.) being sensitive 

to landscape composition even at small spatial scales (50–100 m). Their relatively 

fast and agile flight appears to allow them to utilise relatively small foraging areas, 

supported by a high wing aspect ratio, low wing loading and small size (Altringham, 

2003). This may well explain their presence in densely built areas, as patch sizes 

tend to decrease with urbanisation (Zhang et al., 2004). That P. pygmaeus responds 

to the landscape at radii of up to 1 km may reflect a need to travel further to access 

preferred feeding habitats (Davidson-Watts and Jones, 2006) such as highly 

structured riparian vegetation (Scott et al., 2010). The NSL aerial hawkers guild 

seeking un-built land-cover at larger scales (≥500 m) would be expected, given that 

their large size and high wing loading is suited to efficient flight over large open areas 

(Altringham, 2003). 

 

There are few studies that attempt to characterize the response of bats to urban 

landscapes at multiple radii that extend over a large spatial extent, although the 

response of groups such as birds has been explored (Hostetler and Holling, 2000). 

Our data suggest that individual species may be sensitive to changes in landscape 

composition at multiple spatial scales. For example, evening models for P. pipistrellus 

include connected garden area within a radius of 500 m and connected tree cover 

within 150 m. We speculate that the 500 m radius may indicate the ―roost catchment‖ 

of the pond i.e. that bats using the pond, tend to roost in houses within 500 m. The 
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area within 150 m of a pond may be relevant to the quality and accessibility of the 

local feeding area, with ponds surrounded by a high density of tree networks being 

particularly desirable. These results corroborate other studies that conclude multiple 

spatial scales may be relevant to bats (Lookingbill et al., 2010) and urban mammals 

(Garden et al., 2010). 

 

4. Conclusions 

We have demonstrated that the density of landscape urbanisation, its composition 

and configuration are important to the urban bat community. These relationships are 

scale dependent and species-specific. The broadly negative associations with 

urbanisation for all species imply that a transition to more compact urban forms that 

reduce greenspace and habitat would inevitably impact the species richness of the 

urban bat community. This work informs the continuing debate about the 

sustainability of this approach to development (Neuman, 2005). The presence of 

thresholds for ecological function raises the possibility that development densities 

could be specified with ecological thresholds in mind, and that tipping points should 

be explored in more detail for other taxa. The importance of connectivity for the 

Pipistrellus species suggests that some ecological function could be retained even 

within high-density developments and that protected tree networks may deliver some 

spatial resilience (Nystrom and Folke, 2001) to the impacts of increased urban 

densities. It remains to be seen whether tree networks play a similar role for other 

organisms (but cf. (Tremblay and St Clair, 2009)). Our data on ecologically important 

land-covers, land-uses and spatial scales should support urban planners and 

managers in making spatially explicit decisions about urban conservation (Garden et 
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al., 2010). We recommend that a multi-scale approach to planning and management 

be adopted, whilst recognising that this may be challenging given the typical spatial 

scales of urban land ownership (Ernstson et al., 2010, Goddard et al., 2010) and 

decision-making (Conroy, 2003). In particular, we suggest that when creating new 

urban bat habitats, consideration is given to ensuring that they remain functionally 

connected and therefore available to at least part of the urban bat community into the 

future. 

 

5. Materials and Methods 

5.1 Ethics Statement 

The landowners gave permission for access to the sites. All Bat species are 

protected in the UK and licenses are needed if they are handled, mist-netted, or 

disturbed in their roosts. As our sampling involved only monitoring at foraging sites 

there were no licensing issues. 

 

5.2 Study Area and site selection 

The West Midlands metropolitan county (population ~2.3 million) is a highly 

urbanised region of the United Kingdom (UK), covering 902 km2. As a centre of the 

industrial revolution it has undergone multiple cycles of development and distinct 

zones can be identified representing pre, wartime and post-war regeneration. The 

study area includes several urban centres (Fig. 5) with high levels of sealed land-

cover, canals, railways, residential areas of varying housing density, industrial zones, 

parks, nature reserves and agricultural land on the urban fringe. Existing survey 

records for the study area indicate that several species of bat were present, 
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including: Pipistrellus pipistrellus (Schreber 1774), Pipistrellus pygmaeus (Leach 

1825), Myotis daubentonii (Kuhl, 1817), Eptesicus serotinus (Schreber, 1774), 

Nyctalus leisleri (Kuhl, 1817) and Nyctalus noctula (Schreber, 1774). These species 

vary considerably in their roosting, commuting and feeding behaviour (Table S1). 

In order to stratify the survey sites along an urbanisation gradient we first classified 

the landscape using land-use and land-cover data from OS Mastermap (OSM) 

(Ordnance Survey, 2008), which is a high-resolution parcel based GIS dataset (Table 

S1). OSM polygon data were converted into a 2 m pixel resolution raster and 

displayed in a GIS (ArcGIS 9.2, ESRI Redlands, USA). A grid of 1 km2 cells was 

used to extract raster summaries using Hawth's Analysis Tools (Beyer, 2004), as this 

is close to the average minimum foraging areas of both P. pipistrellus and P. 

pygmaeus (Davidson-Watts and Jones, 2006), which are the smallest foraging areas 

for the species we expected to encounter (Table S2). Five land classes were 

identified using a cluster analysis of landscape variable percentages (Table S1) in 

SPSS 18.0 (c.f. Owen et al., 2006) and excluding squares with greater than 30% 

water cover or 80% tree cover. These represented a gradient from Rural (R), Light 

Suburban (LS), Suburban (S), Dense Suburban (DS) and Dense Urban (DU) land 

classes (Figs. 5&6). In order to reduce the potential for variations in local habitat 

composition to obscure the effect of landscape context (Gagne and Fahrig, 2007, 

Duguay et al., 2007), survey sites were restricted to small (515–2146 m2) unlit ponds 

with at least 30% riparian edge tree cover. This choice was a reflection of the 

attractiveness of aquatic, riparian and woodland edge habitats for foraging to all the 

species we expected to record (Russ, 1999) and the need to identify a foraging 

habitat patch that would be present in all land classes. Candidate ponds were 



68 
 

assigned to one of the five land classes based on the land-cover and land-use 

percentages for a 1 km2 circle surrounding each pond (Fig. 6) and six survey sites 

were then selected from each land class. All ponds were separated by at least one 

kilometre (pond centre to pond centre). 

 

5.3 Bat sampling methods 

Ponds were surveyed for bat activity fortnightly between May and August 2009. We 

avoided nights where strong rainfall or wind were predicted and surveyed several 

sample points within each site (Fischer et al., 2009). A variety of techniques have 

previously been applied to compare bat species presence and activity between sites, 

with detectors generally regarded as superior (Hourigan et al., 2008). We used a 

combination of walking transects (Gaisler et al., 1998, Vaughan et al., 1997) and 

fixed point detector surveys (Avila-Flores and Fenton, 2005), which allowed multiple 

microhabitats habitats to be surveyed and activity to be recorded from dusk to dawn. 

Evening walking surveys were undertaken for a period of 1.5 hours following sunset 

using a Pettersson D240x ultrasound bat detector (Pettersson Electronic, Sweden), 

in heterodyne mode, alternating between 20 and 50 kHz. Sample calls of 3.4 

seconds were recorded in time expansion mode and transferred to a Sony 

MZ_NH6000 Minidisk recorder (Sony, Japan). Walking routes circled each pond at 

varying distances (0- 50 m from edge), with the purpose of detecting and observing 

bats that were active in the close vicinity, as well as directly over the pond. Fixed 

point surveys were initiated at dusk and terminated at dawn, using an AnaBat SD1 

frequency division bat detector (Titley Scientific, Australia) installed at the edge of the 

pond at a height of 1 m, using an acoustic reflector (Corben, 2007). Tests confirmed 
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that bats active within at least 15 m (horizontal distance) and up to ~10 m above 

ground level were detectable, with bats calling at low frequencies (20–30 kHz) 

recorded at an unknown but greater distance. 

 

5.4 Call analysis 

Bat calls were identified to species level where possible, using parameters given in 

Russ (1999). Where species identification was not possible in the field, bat calls 

detected on walking surveys were recorded and analyzed using BatSound 3.31 

(Pettersson Electronic, Sweden). Calls recorded using fixed point Anabat detectors 

were processed automatically using filters within AnalookW (Corben, 2009). Although 

Myotis sp. calls were identified at several sites the call quality was highly variable. 

Subsequent tests confirmed that using a reflector on the Anabat dramatically reduced 

the detectable range for this group, so Myotis calls from the fixed detector were 

excluded from analysis. Species or guild specific call filters were developed and their 

results compared to a 10% sample of the call dataset to estimate the percentage of 

bat calls incorrectly rejected by filters, calls allocated to the incorrect species/group, 

and files incorrectly identified as a bat call. Considerable caution was applied, 

preferring filters that discarded a greater percentage of calls. As considerable overlap 

in call parameters has been reported for Nyctalus noctula, Eptesicus serotinus, 

Nyctalus leisleri, and these species were rarely observed in flight (which would aid 

identification), we processed these (NSL) calls as a single functional group of large, 

early emerging bats with similar foraging behaviours (Table S2). 

 

5.5 Landscape and connectivity environmental variables 



70 
 

Using the GIS we selected a range of variables that related to roosting, commuting 

and feeding resources or that could be used as broad measures of urbanisation 

(Table 2). Summaries of the area of built (sealed manmade) or natural (vegetated) 

surface cover (derived from the OSM landscape parcels) and the (remotely sensed) 

vegetation layer provided broad indications of urbanisation density. Whilst the parcel 

based mapping was useful for estimating dominant land-cover, parcel types such as 

gardens were excluded as they contained varying levels of built and semi-natural 

land-cover. The remotely sensed vegetation layer was therefore used to gain a better 

reflection of vegetation cover. For the species we encountered, roost sites are likely 

to be located either in buildings or trees. Buildings provide a variety of roost 

opportunities due to their varied age, materials, architectural style and degree of 

maintenance. In addition to buildings, we included gardens from the OSM as an 

indirect measure of residential building availability, which we hypothesized might 

offer an enhanced roosting resource compared to commercial or industrial structures. 

Tree cover with a minimum height of either 15 m or 20 m was also included as a 

variable, as this was expected to indicate roost potential in mature woodland. 

 

Several bat species are reported to fly along tree-lines when commuting and feeding 

(Verboom and Huitema, 1997, Russ, 1999). We estimated suitable commuting 

habitats by identifying areas of the landscape where vegetation was greater than 4, 

6, 10 or 15 m high, which correspond to the range of typical flight heights for these 

species (Table S2). In addition, the raster representing vegetation greater than 4 m 

high was converted to a polygon feature class and buffered by a distance of 20 m. 

This resulted in a layer representing tree networks separated by gaps of no more 
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than 40 m, which was used as a measure of structural connectivity and a proxy for 

functional connectivity. Although gaps of this size are not likely to be problematic for 

most species when commuting within rural landscapes (Verboom and Huitema, 

1997), we hypothesized that with increasing urbanisation, an increase in artificial 

lighting could be sufficient to deter bats from crossing such gaps (Stone et al., 2009). 

Whilst we were unable to access spatial lighting datasets, we used a road dataset 

derived from the OSM as an indirect indicator of lighting and traffic disturbance. 

Insect feeding potential was represented by OSM derived polygons depicting water 

bodies (canals, streams and still waters), natural land-cover (predominantly 

vegetated) and supplemented with a high-resolution remotely sensed vegetation 

layer.  Finally, the perimeter length of tree patches within tree networks connected to 

each pond was estimated, as many species are known to feed along woodland 

edges (Downs and Racey, 2006, Russ, 1999). 

 

Two approaches were taken to extract landscape variable summary data for the 

landscape surrounding each survey site. Firstly, using the GIS we created multiple 

concentric circular buffers around the ponds and extracted complete summaries of 

the underlying landscape data (Fig. 2A). Such a multi-scale approach is increasingly 

common (Garden et al., 2010, Cushman and McGarigal, 2004), although we used a 

particularly large number of radial extents (14, between 50 m and 4 km) in an attempt 

to accurately identify the spatial scales of relevance for each species. This approach 

assumes that all of the landscape is potentially available to the species concerned. 

Our second approach was to restrict the landscape analysis to the parts of the 

landscape adjacent to tree-lines. As both P. pipistrellus and M. daubentonii activity 
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has been reported to occur predominantly within ~50 m of water and woodland edges 

(Gaisler et al., 1998, Downs and Racey, 2006), we buffered the tree networks 

connected to each pond by 50 m, creating a connectivity mask. Landscape variable 

summaries were again extracted at multiple radii around each pond centre, but this 

time the available landscape data were limited to the areas intersected by the 

connectivity mask (Fig. 2B). 

 

5.6 Data analysis 

The measure of bat activity used for each site was the total number of minutes in 

which a call was recorded, for each species or functional guild (hereafter termed 

active minutes). We make no assumptions that this is a measure of individual bat 

abundance. Variation in bat activity between land classes was analyzed in SPSS 

using either a one-way ANOVA or a Kruskal-Wallace test if variances were 

heterogeneous. Tukey or Nemenyi post hoc tests were used to identify which classes 

differed in activity (Wheater, 2000). 

 

The relationships between the environmental measures and bat activity were 

modelled using a combination of Brodgar v2.6.4 (Highland Statistics, Newburgh, UK) 

and R (version 2.11.1) (R Development Core Team, 2010) using the mgcv and nlme 

libraries. We used up to three response variables per species (or guild): (i) the total 

minutes of bat activity recorded by the fixed detector for the first hour and a half 

following dusk (evening) (ii) total bat minutes recorded by the fixed detector from 

dusk to dawn (full-night) and (iii) presence using either the fixed detector or walking 
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transect surveys (when bat activity data were either unavailable or did not produce 

valid models). 

 

Data exploration was undertaken prior to statistical analyses, and as a result, we 

included an additional nominal explanatory variable differentiating between sites in 

highly urban (Dense Urban and Dense Suburban) and less urban land classes 

(Suburban, Light Suburban and Rural). This was used as a conditional variable in the 

fixed element of the models for some species (e.g. Table 1). 

 

Initially we developed species or guild specific models independently for each spatial 

scale (50, 100, 150, 200, 350, 500, 750, 1000, 1250, 1500, 1750, 2000, 3000 and 

4000 m). First, we used co-plots to inspect co-variation between explanatory 

variables at each scale and where variables had high correlations (>0.5) one of the 

pair was removed. We then assessed these against the response variables, 

removing explanatory variables with correlation scores of <0.3. This reduced the 

potential pool of explanatory variables considerably. None of the explanatory 

variables at higher spatial scales (>1000 m) showed significant relationships with any 

of our response variables. This left a pool of seven spatial variables at eight spatial 

scales (56 in total). We entered these into all the models and used Akaike 

Information Criterion (AIC) to identify the most parsimonious model for each species 

or guild, ensuring that model variables had variation inflation scores (VIFs) of <3 

(Zuur, 2010). Where initial co-plots suggested linear relationships between the 

response and explanatory variables we used generalised linear modelling (GLM) 

(McCullagh and Nalder, 1983). Non-linear relationships were analyzed using 
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generalised additive modelling (GAM) (Hastie, 1990). The deviance/degrees of 

freedom ratio was used to assess possible over-dispersion in the models (Zuur, 

2010). We used negative binomial distributions to account for over-dispersion (Ne) 

(O'Hara, 2010) and logistic regression with a binomial (Bi) distribution for presence 

data (McCullagh, 1983). Finally, this process was repeated with the variables from 

the best models at each scale combined to derive multi-scale models, pooling site 

based, concentric and connected variables for each species. All Models were 

validated using graphical visualisation tools in Brodgar and R. We plotted the 

residuals against fixed values to assess model homogeneity, QQ-plots for normality 

and plotted residuals against environmental co-variables to test for independence 

(Zuur, 2009). Lastly, we used bubble plots in the gstat R library to examine each 

individual model for spatial autocorrelation (Pebesma, 2004). Where patterns 

indicated no spatial patterning the models were accepted (e.g. Figure S2). After 

validation we were left with a pool of 51 models: Pipistrellus pipistrellus evening (9), 

all-night (8); Pipistrellus pygmaeus evening (9), all-night (12), M. daubentonii evening 

(5) and NSL guild evening (8). Of these, candidate models with AIC≤2 of the optimum 

model were retained (Burnham, 2002) (Table 1).  
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Supporting Information 

Supporting information can be found in the Appendix at the end of this thesis.  

Figure S1 Residual bubble plot for NSL all-night Anabat data from logit binomial 

presence-absence data. The plot shows clumping of similar size positive residuals in 

the middle of the plot, indicative of spatial structuring in the data. Negative residuals 

in black and positive residuals are grey. The size of the circles indicates the size of 

the residuals. 

Figure S2 Bubble plot for P. pipistrellus all-night Anabat residuals from a GAM of bat 

activity minutes. The plot indicates no spatial structuring in the data. Negative 

residuals in black and positive residuals are grey. The size of the circles indicates the 

size of the residuals. 



76 
 

Table S1 Mean area (m2) and standard deviation of Ordnance Survey (OS) land-

cover type for each urban land class. 

Table S2 Broad life history data for bat species recorded within the study area. 
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Abstract 

There is a need for biological conservation at the global scale, and urban 

conservation has the potential to support the delivery of this wider goal. Despite 

historic trends, efforts are underway to protect and enhance the quality, quantity and 

accessibility of green infrastructure within cities, including biodiversity features within 

new developments. However, there are questions over their long-term persistence 

and function. This paper applies an urban futures resilience analysis to a case study 

site to illustrate how such concerns may be explored and addressed in practice. The 

analysis identifies vulnerable sustainability solutions and clarifies the aspects that 

may be improved. The results suggest that the resilience of these solutions is 

questionable, even though resilience has clearly been considered. In particular, 

future compliance with, and enforcement of, planning conditions is questionable. The 

resilience of these ecological solutions may be improved by including some 

redundancy, designing for low maintenance, incorporating microclimate buffers and 

locating features in areas unlikely to be subject to future disturbance. The 

establishment of endowment funds or other dedicated funding mechanisms should 
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also be explored. The paper also recommends that a futures-based resilience 

analysis be included within the development planning process. 

 

1. Introduction 

The need for biological conservation at the global scale is clear, as rates of 

extinction, habitat loss and degradation show little sign of slowing (Butchart et al., 

2010). Local-scale conservation efforts within urban areas have the potential to 

support the delivery of this wider goal. This may be by way of the direct protection 

and enhancement of species of conservation concern or through the development of 

accessible green spaces where people are able to experience a range of species 

and habitats. Urban landscapes provide many opportunities for direct conservation 

and enhancement, particularly through the regeneration process (Sadler et al., 2011). 

These include the protection of relict native habitats, the construction of natural 

habitat analogues (Lundholm and Richardson, 2010) such as brown roofs 

(Oberndorfer et al., 2007) and artificial roosts (Williams, 2010), and changes to the 

management of amenity green spaces (Sadler et al., 2011). It has also been argued 

that positive experiences with urban wildlife have indirect benefits for global 

conservation in the form of greater public support for related policies and campaigns 

(Dunn et al., 2006). In addition, the ecological services provided by urban wildlife and 

green spaces are relevant to the delivery of numerous sustainability goals (MEA, 

2005) related to quality of life, social cohesion and sense of place (Miller, 2005). 

Ensuring a diverse and accessible urban wildlife community should therefore be 

central to strategies for both global biological conservation and sustainable 

development. The majority of the global population now reside in cities (UN, 2010) 
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and the extent and density of urban areas are expected to continue to increase 

during this century (Irwin and Bockstael, 2007). Urbanisation is often characterised 

by high levels of impervious surfaces (McKinney, 2002), patch fragmentation (Luck 

and Wu, 2002, Zhang et al., 2004) and heterogeneity in land cover type over time 

and space (Cadenasso et al., 2007, McDonnell and Pickett, 1990). Despite 

considerable variability, increasing urbanisation generally results in a reduction in 

species richness (McKinney, 2008) and ecosystem services (Tratalos et al., 2007). A 

reduction in the area and accessibility of urban green spaces during the latter half of 

the twentieth century has been reported for the UK in general (UKNEA, 2011a) and 

across Europe (Fuller and Gaston, 2009). However, there are indications that some 

losses are now being reversed (UKNEA, 2011b). Efforts have been made to 

compensate for losses and to enhance biodiversity within new developments 

(DEFRA, 2007), focusing on the planning, design and installation of habitat structures 

(DCLG, 2010, Williams, 2010). However, relatively little is known about the long-term 

persistence of these structures and their ecological function post-development 

(Sadler et al., 2010). Recent high-profile failures of some artificial habitats (e.g. http:// 

news.bbc.co.uk/2/hi/uk_news/england/london/8215035.stm) and analyses of post-

mitigation success (e.g. Waring, 2011) highlight the need to consider whether such 

investments are sufficiently future-proofed. This paper applies an urban futures 

resilience analysis to a regeneration case study site in the UK in order to explore the 

vulnerability of a selection of ecological interventions (hereafter termed ecological 

sustainability solutions) that are commonly undertaken to deliver biodiversity goals 

within urban regeneration projects. The focus is on species of birds and bats that are 

protected under European and UK law and are frequently identified as targets for 
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mitigation, compensation or enhancement during development schemes. While it is 

appreciated that a large number of ecological sustainability solutions may be 

included within regeneration projects, this paper focuses on three examples in order 

to illustrate how a futures-based resilience analysis can be applied in practice. The 

information available for these examples is therefore limited, reflecting the level of 

detail supplied in the various planning documents relevant to the case study site. 

 

       Figure. 1 

 

Plan view of proposed site layout (modified from the Luneside East masterplan 

design code (LCC, 2007: p. 11, Figure 12) and reproduced by permission of 

Lancaster City Council). The hashed area indicates a major tree network expected to 

facilitate bat movement through the site. The white area labelled A indicates the 
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embankment of a disused railway line and the black strip labelled B indicates the 

embankment of a mainline railway 

 

2. Methodology 

2.1 Case study site: Luneside East 

Luneside East is a post-industrial site in Lancaster, UK, proposed for mixed-use 

regeneration. In 2004, it was Lancaster City Council‘s (LCC) largest single 

regeneration project, with a vision to transform the largely vacant and derelict site 

into a vibrant, well-used and integrated quarter (LCC, 2004). The site (owned by 

LCC) is 6.6 ha in area and is bounded by a mainline railway (owned by Network 

Rail), a disused railway embankment (owned by LCC), a river and an established 

residential area (Figure 1). The land cover is typical of many brownfield sites, with 

built structures of varying integrity, contaminated soils and a mix of bare ground, 

ephemeral vegetation, scrub and semi-mature trees (Rogers et al., 2012). The site 

has outline planning permission (granted in 2001), an environmental statement 

(2001), a development brief (2004) and a masterplan design code (2007). These 

documents were used to inform the analysis in this paper, although it is 

acknowledged that the plans are currently under review. 

 

2.2 The urban futures resilience analysis methodology 

The urban futures methodology addresses the question: will today‘s sustainability 

solutions deliver their intended benefits whatever the future brings? The analysis is 

divided into four steps (Boyko et al., 2012, Rogers et al., 2012). In step 1, the 

sustainability solutions are listed and their intended benefits are described. This step 

is particularly important because clarity on the nature of each solution and its 
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intended purpose underpins the validity of subsequent steps in the analysis. The 

prerequisite conditions for the delivery of each intended benefit are outlined in step 2, 

including the key patterns and processes that need to be in place if each solution is 

to function effectively. Step 3 provides an analysis of whether these necessary 

conditions are likely to remain in place in the future. To provide a structured approach 

to this analysis, the following plausible, robust and divergent future scenarios have 

been defined for UK urban areas. 

 

(a) Policy reform (PR). Government action is promoted in an attempt to reduce 

poverty and social conflict, although behaviour change is slow. There is a belief that 

markets require strong policy guidance and legislation/regulation to address inherent 

tendencies toward economic crisis, social conflict and environmental degradation. 

The tension between continuity of dominant values and greater equity for addressing 

key sustainability goals is not easily reconciled. 

(b) Market forces (MF). The self-correcting logic of the market predominates, with 

individualism and materialism as core human values. Well-functioning markets are 

thus considered key to resolving social, economic and environmental problems. This 

scenario assumes that the global system in the twenty-first century evolves without 

major surprise and incremental market adjustments are able to cope with social, 

economic and environmental problems as they arise. 

(c) Fortress world (FW). Powerful actors safeguard their own interests and resources 

at the expense of an impoverished majority who must live in ghettoes. The world is 

divided, with the elite in interconnected, protected enclaves and an impoverished 
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majority outside. Armed forces impose order, protect the environment and prevent 

collapse. 

(d) New sustainability paradigm (NSP). An ethos of ‗one planet living‘ pervades and a 

fundamental questioning of progress emerges in light of sustainability goals. New 

social–economic arrangements and fundamental changes in values result in changes 

to the character of urban industrial civilisation rather than its replacement.  

 

These four scenarios were selected from the six scenario variants developed by the 

Global Scenarios Group (www.gsg.org) (Raskin et al., 1998) and adapted to reflect a 

UK urban context, as part of the urban futures project (www.urbanfutures.org). For 

each intended benefit, the necessary conditions are considered in the context of an 

extensive characteristics list developed to describe each future scenario (Boyko et 

al., 2012, Rogers et al., 2012). In the final step, if the necessary conditions are 

unlikely to be supported in some of the future scenarios then the solution is classed 

as vulnerable, prompting a revision of plans for its design, construction and 

maintenance. An example of how this methodology may be applied in practice is 

provided below, drawing on Luneside East regeneration as a case study. 

 

3. Results 

3.1 Ecological sustainability solutions suggested for the Luneside East regeneration 

site  

Biodiversity concerns are referred to within the LCC core strategy (LCC, 2008) and 

several ecological sustainability solutions were proposed for the site following an 

environmental impact assessment (EIA) (Entec, 2001). These were intended either to 
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mitigate/compensate for impacts on local biodiversity or to deliver ecological 

enhancements. These solutions and their intended benefits are most clearly stated 

within the Luneside East environmental statement (Entec, 2001) and a selection are 

summarised in Table 1. The analysis presented here is limited to the solutions with 

clearly stated intended benefits. This is vital because, without clarity on the purpose 

of each solution, its vulnerability cannot be assessed. 

 

3.2 Conditions necessary for the solutions to deliver their intended benefits 

3.2.1 Bats 

A bat (Chiroptera) survey was undertaken to inform the EIA, as all bats are legally 

protected at European level under the EU 1992 habitats and species directive. All 

bats and their roosts are also legally protected in the UK under The Conservation of 

Habitats and Species Regulations 2010, with reckless or intentional disturbance in 

England an offence under the Wildlife and Countryside Act 1981 (as amended) and 

the Countryside and Rights of Way Act 2000. In addition, bats have a dedicated 

species action plan as part of the Lancashire biodiversity action plan. The survey 

identified common pipistrelle bats (Pipistrellus pipistrellus) commuting or foraging in 

several parts of the site and the possibility that some buildings may contain winter 

hibernation roosts. The associated development impacts, proposed solutions and 

their necessary conditions are now outlined. 

 

(a) Artificial bat roosts. The most current proposals include the installation of ‗bat 

boxes‘ (artificial bat roosts) to compensate for possible loss of winter hibernacula, but 

do not specify their type or location. However, it is clear that any compensation for 
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the loss of possible winter roosts (see Table 1) should include artificial roosts in 

structures that are undisturbed, with a cool and stable temperature. Disturbance may 

include physical movement, predation, poisoning from pest control or building 

treatment products, high-frequency noises, artificial lighting and changes in 

temperature or humidity. The artificial roosts must also be accessible to the bats and 

be retained on-site as features. Assuming these conditions will be met during 

installation, the success of this solution would be dependent on these conditions 

continuing indefinitely into the future. 

(b) Bat foraging habitat. The proposed increase of, and enhancement to, foraging 

areas within the site are primarily intended to benefit bats that are active during the 

spring, summer and autumn. During this period, common pipistrelles typically roost in 

warm inhabited buildings, and the EIA report concluded that modern houses outside 

the boundary of the site were the most likely location of summer roosts for the bats 

recorded as foraging on-site. For the enhanced foraging areas to be successful, they 

must be available to common pipistrelles following completion of the Luneside East 

development. This requires that local summer roosts continue to be present, that 

bats can commute from these roosts to the Luneside East feeding areas and that the 

foraging habitats produce sufficient quantities of their insect prey. 

 

3.2.2 Birds 

Although no nesting sites were recorded as part of the EIA, enhancements are 

currently proposed to support several species that are listed within the Lancashire 

biodiversity action plan (Table 1). These birds are protected at European level under 

the EU 1992 habitats and species directive and the 2009 birds directive. They are 
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legally protected in the UK under The Conservation of Habitats and Species 

Regulations 2010, with intentional killing, injury or damage of the birds, their eggs or 

active nests an offence in England under the Wildlife and Countryside Act 1981 (as 

amended) and the Countryside and Rights of Way Act 2000. The success of the bird 

nesting boxes proposed as ecological enhancements depends on conditions similar 

to those required for artificial bat roosts. Boxes must be retained on-site, accessible 

to the birds and remain undisturbed. All species that are intended to benefit from 

these enhancements at the Luneside East site require nesting sites that are out of 

direct sunlight (Williams, 2010). Some require unobstructed flight paths to the nests 

and others, such as swifts (Apus apus), require a site free of climbing plants that may 

give access to predators. Again, these conditions must continue to be present 

indefinitely into the future if the nest boxes are to function as intended. 

 

3.3 Performance of the Luneside East ecological solutions within the urban future 

scenarios  

The analysis indicates that, under certain scenarios, it is questionable whether the 

habitat features of interest will remain undisturbed, whether microclimates will be 

preserved and functional connectivity maintained (Table 2). Habitat management is 

considered unlikely to be undertaken in two of the scenarios and its presence is 

questionable in a third. It is only in the NSP scenario that all the conditions necessary 

for these sustainability solutions to function are likely to be present. The reasoning 

behind these results and implications for specific solutions are now discussed. 

 

 



97 
 

Table. 1 
 

Ecological solution  Intended benefits  Post-development 
retention mechanisms 

A    Bat hibernation 
boxes  

Compensation for possible 
loss of winter hibernation 
roosts within existing 
buildings on-site 

 

Condition to be checked 
every 5 years by an 
ecologist. Planning controls 
used to ensure the required 
management, repair and 
replacement is undertaken 

B   Expansion and 
management of semi-
natural vegetation as 
bat foraging habitat 

 

To enhance the foraging 
habitat for the common 
pipistrelle (Pipistrellus 
pipistrellus) with new habitats 
created to complement those 
retained as part of the 
disused railway embankment 

Planning controls to ensure 
the implementation of a 
management plan in 
perpetuity, with checks every 
5 years. New habitats to be 
monitored annually for first 3 
years by an ecologist 

C  Bird nesting boxes Enhancements for local 
priority bird species such as 
swifts (Apus apus), house 
martins (Delichon urbica), 
house sparrows (Passer 
domesticus) and starlings 
(Sturnus vulgaris) 

Condition to be checked 
every 

5 years by an ecologist. 
Planning controls used to 
ensure cleaning, repair and 
replacement 

Proposed ecological sustainability solutions for the Luneside East development, 

their intended benefits and evidence that retention (post-development) has been 

considered. This summarises information from the LCC environmental statement 

(Entec, 2001). 
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Table. 2 
 

Necessary conditions for the 
success of proposed solution 

Scenario 

PR MF FW NSP 

Habitat features not intentionally 
disturbedABC   ?   

Habitat features not accidentally 
disturbedABC ? ? ?  

Microclimates (light, temperature, 
moisture) are maintainedAC ? ? ?  

Functional connectivity is 
retainedAC  ? ? ?  

Habitats are managed to deliver 
their intended ecological functionB ? X X  

Summary of results from a futures-based sensitivity analysis of key local 

conditions. Superscripts A, B and C indicate the solutions listed in Table 1 that 

these conditions relate to.  indicates where a condition is expected to be 

supported within a particular scenario, ? means that it is unclear whether the 

condition will be supported and X indicates that support for this condition is 

unlikely. 

 

4. Discussion 

4.1 Vulnerability of proposed ecological sustainability solutions 

4.1.1 Artificial bat roosts 

Bats rarely cause nuisance to householders and therefore the intentional disturbance 

of an artificial roost is considered unlikely. However, in future scenarios such as MF, 

in which materialism and individualism are valued over environmental concerns and 

planning enforcement is expected to be weak, artificial bat roosts may be removed if 

the structure is damaged or droppings impact the aesthetics of a building.  
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Accidental disturbance is considered to be a reasonable risk within three of the 

scenarios. In the PR scenario, policies to meet social sustainability goals (e.g. 

encouraging flexible building use) may result in warmer or inconsistent hibernation 

roost temperatures, undermining their success. In addition, apparent ‗holes‘ (roost 

entrances) in a building envelope may be inadvertently sealed during routine 

maintenance, to ensure good thermal performance. Artificial lighting of the roost or 

roost entrance is considered a risk in several scenarios, preventing or disturbing 

access for bats (see Waring (2011) for case studies where this has occurred 

elsewhere). In the PR scenario, this lighting may be intended to encourage walking 

as an alternative to night-time car use while, in the MF scenario, lighting may be used 

as a tool for raising the visual profile of the development or illuminating advertising 

boards. Artificial lighting of roost entrances may also occur in the FW scenario, but in 

this case may be used to increase site security or the perception of safety. The 

proposed planning conditions to require monitoring and maintenance of roosts on a 

five-yearly basis are unlikely to be enforced in either the MF or FW scenarios, as 

values and priorities lie elsewhere. 

 

4.1.2 Bat foraging habitat 

The current proposals imply that winter rather than summer roosts will be created as 

on-site compensation. Any new foraging habitat created on the Luneside site would 

therefore be used in the summer by bats that are roosting off-site in adjacent 

residential areas. However, roosts within off-site buildings are considered vulnerable 

in three of the four scenarios as they may be unintentionally lost during building 

renovation or changes to the immediate built environment. The loss or isolation of off-
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site roosts would make on-site feeding areas redundant from the perspective of bat 

conservation. For several UK bat species (including the common pipistrelle), unlit tree 

lines are important commuting routes between roosts and foraging areas. The bat 

survey and consultant‘s report included within the EIA identified the trees along the 

disused railway embankment and along the active railway line as particularly 

important in this respect (Figure 1). 

 

In the current analysis, the function of the disused railway embankment as a 

commuting route is considered vulnerable in three of the four scenarios. Future tree 

losses may occur if their canopies are managed in the PR scenario to improve 

passive solar gain for adjacent buildings, in the MF scenario to maintain a desirable 

view or in the FW scenario as a local supply of fuel. In addition, artificial lighting may 

also increase in these scenarios, thus threatening the accessibility of foraging areas 

(Stone et al., 2009). Feeding areas are considered vulnerable to disturbance or 

degradation in three scenarios. Although planning policy in PR would generally 

support their retention, the loss of these areas may be permitted if it contributes to 

achieving targets for higher residential density and social equity. In the MF scenario, 

if the land value of these foraging areas were to be high, planning decisions would be 

likely to favour development over conservation. Should these foraging areas remain 

undeveloped, they are likely to be vulnerable to gentrification, typified by amenity 

planting with non-native species, frequent maintenance and low insect productivity 

(Donovan et al., 2005). Low land values would likely result in the abandonment of 

habitat management and potentially a reduction in foraging quality over time. The 

proposed planning conditions to monitor and maintain semi-natural vegetation in 
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perpetuity are unlikely to be enforced in either the MF or FW scenarios, as values 

and priorities lie elsewhere. 

 

4.1.3 Bird nesting boxes 

As with the bat hibernation boxes, bird nesting boxes may be intentionally removed in 

scenarios where planning enforcement is weak and aesthetics are prioritised over the 

environment. Bird nesting boxes are potentially more vulnerable than artificial bat 

roosts, particularly those for house martins (Delichon urbica) and starlings (Sturnus 

vulgaris), which may be considered a nuisance due to their droppings and noise 

respectively (Williams, 2010). Again, accidental disturbance appears to be a greater 

threat, with exposure of nests to direct sunlight (following changes to tree or building 

cover) being of particular concern. Although the monitoring and repair of these 

features is inexpensive, a planning condition to ensure their maintenance on a five-

yearly basis is unlikely to be enforced in either the MF or FW scenarios, as priorities 

lie elsewhere. 

 

4.2 Resilience of selected ecological solutions proposed for Luneside East 

Resilience is a term increasingly used in discussions about sustainable development, 

but is applied differently depending on the context of its use (Folke et al., 2010, 

Pickett et al., 2004). Walker et al. (2004: p. 1) define resilience as ‗the capacity of a 

system to absorb disturbance and reorganize while undergoing change so as to still 

retain essentially the same function, structure, identity, and feedbacks‘. In this paper, 

resilience is defined as the capacity of a sustainability solution to continue to deliver 
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its intended benefits, despite changes to its environmental, social, economic or 

political context. 

 

The results of the selective analysis described in this paper suggest that none of the 

ecological solutions proposed for Luneside East is particularly resilient, even though 

some consideration has clearly been given to sustaining their intended benefits post-

development (Table 1). The difficulties in ensuring the long-term maintenance of 

biodiversity compensation and enhancements are well known among practitioners 

and issues such as the governance and management of urban green space have 

been explored in the academic literature (e.g. Hermy, 2011, James et al., 2009). The 

futures-based resilience analysis illustrated here may be a particularly valuable tool 

for improving the communication of these vulnerabilities among key decision makers. 

The next step is to explore how these solutions might be modified to improve their 

resilience, so that they deliver their intended benefits in any envisaged future. 

 

4.2.1 Suggestions for improving the resilience of the proposed ecological solutions 

While modification of the proposed solutions is not within the scope of this paper, 

some general approaches are considered below. Intentional disturbance is the threat 

to the functioning of habitat features that is perhaps the most difficult to respond to. 

Increased legal penalties for removing bat/bird boxes may be sufficient deterrent in 

some cases, but their effectiveness relies on feedback loops that may be degraded in 

some scenarios (e.g. residents may fail to report wildlife crime and responsible 

agencies may fail to act). A more reliable approach may involve designing these 

features in a manner that makes them more difficult to disturb, less likely to cause 



103 
 

nuisance and easier to maintain. This could be as simple as integrating bird nesting 

boxes or artificial bat roosts into the building fabric (e.g. using bat bricks) rather than 

attaching them to outside walls (see Williams, 2010). Ensuring that people are aware 

that solutions are vulnerable to disturbance can be achieved through management 

agreements that specify community participation or warning signs incorporated into 

specific features that will be visible during building maintenance. However, in 

scenarios where development decisions are market led, awareness of such tensions 

may make little difference. 

 

The strategy of locating key features in areas where conflicts are less likely to arise 

may be successful, particularly where this includes the transfer of ownership to a 

community land trust or where these features are likely to be valued and protected by 

multiple decision makers. In the case of Luneside East, the active railway 

embankment immediately adjacent to the site would appear to be ideal for providing 

resilient access for bats to foraging areas. The topography and adjacent land use 

makes future development pressure unlikely, while the dense vegetation would 

probably be valued by both residents as a screen from noise and the landowner as it 

impedes public access to the railway track. However, establishing a broader 

connected tree network would provide some useful redundancy, as tree lines in the 

surrounding landscape are still considered vulnerable. Similarly, locating artificial 

winter roosts throughout this network creates a diversity of accessible roost options, 

so should a roost be damaged or isolated, bats may respond by switching to a local 

alternative. In addition, creating artificial summer roosts on-site would have the 
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benefit that the function of new on-site feeding areas is not reliant on bats roosting in 

off-site areas, which may be more vulnerable to loss or isolation. 

 

Maintaining microclimates (such as temperature and moisture) within a particular 

range is crucial to the success of many ecological solutions. There is a need to buffer 

against extreme changes and it is clear from the analysis that feedback loops reliant 

on well-resourced and ecologically motivated planning authorities are particularly 

vulnerable. Alternatives include locating sensitive ecological features on sites where 

adjacent land use or topography is unlikely to change or to include lighting, thermal 

or moisture buffers as part of the solutions themselves (e.g. lighting shields around 

roost entrance, moisture-absorbent substrates and ceramic heat sinks). In future 

scenarios where resources are under pressure or public values are unsupportive, 

habitat management may be much reduced. Design may again play a useful role in 

improving resilience, with a focus on designing for longevity and low maintenance. 

Additional mechanisms to support long-term maintenance may also be explored, 

such as establishing endowment funds or the management of ecological features 

(e.g. as commercial woodland) to generate funds in perpetuity. 

 

4.3 Resilience and the development planning process 

Building resilience into a sustainability solution requires awareness that the drivers of 

its future success may be social, environmental or economic. It may therefore be 

necessary for professional input from a range of disciplines (e.g. legal, financial, 

design and communication). This is particularly true when identifying the conditions 

that need to be in place for a solution to function and for considering how the solution 
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might be modified. Various attempts have been made to conceptualise urban areas 

in a manner that includes the human and ecological components on equal footing, to 

facilitate collaboration between disciplines (Alberti et al., 2003, Folke et al., 2005). 

Conceptualisation of cities as social–ecological systems and improving the 

collaboration between disciplines is a key ingredient to integrating ecological 

conservation into urban planning (Niemela, 1999) and providing a strong basis for 

managing system resilience (Folke et al., 2010). The urban futures resilience 

analysis methodology has therefore been developed to support broader systems 

thinking, to be as accessible as possible (avoiding discipline-specific language and 

concepts) and has been tested using a wide variety of sustainability solutions (as 

discussed elsewhere in this special issue). In principle, any sustainability solution 

could be analysed in this way as long as sufficient information is available to define 

the solution, its intended benefits and the condition necessary for these benefits to be 

delivered in the future. 

 

As sustainability has become a key goal in urban planning policy (Bramley et al., 

2006), it follows that resilience management for sustainability should play a 

prominent role in the planning process. Attempts to improve the longevity of 

ecological compensation and enhancement measures are evident in both urban 

planning policy and practice, yet their effectiveness is often questionable. Implicit 

within related planning conditions are assumptions about resources, values and 

governance; that is, that in the future funding will be available for the required 

management and there is the will and capacity to enforce these conditions. This is 

illustrated in Table 10.3 of the Luneside East environmental statement (Entec, 2001: 
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p. 98), which states that ‗planning controls should be used to ensure that the area (of 

semi-natural vegetation) is managed in perpetuity‘. The implication is that a condition 

for continued management will be attached to any consent for development and 

monitored by LCC in perpetuity, yet there is no guarantee that LCC will have the 

capacity to do this in the future. Declines in the quality of green infrastructure 

reported in recent decades (DTLR, 2002) and reports of poor post-development 

compliance of mitigation features to planning conditions (e.g. Waring, 2011) indicate 

that the current system of ecological governance is failing. While there appears to be 

a broad awareness among practitioners that some mitigation and enhancement 

measures may be temporary, there are few tools that allow these concerns to be 

demonstrated to a diverse audience. It is therefore suggested that consideration of 

future-proofing should be explicitly included within the Royal Institute of British 

Architects‘ outline plan of work (RIBA, 2007) and that evidence of a resilience 

analysis be required as part of planning submissions for development consent. 

 

As a cautionary note, careful consideration needs to be given to the appropriate level 

of resilience to incorporate into a particular sustainability solution. Increasing the 

resilience of one desirable component of a system may compromise the resilience of 

others (Folke et al., 2010). A balance is therefore required between future-proofing 

particular sustainability solutions and retaining the flexibility to adapt the regeneration 

site in the future. 
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5. Conclusions 

In this paper, resilience is defined as the capacity of a sustainability solution to 

continue to deliver its intended benefits, despite changes to its environmental, social, 

economic or political context. Recent reports raise concerns as to whether the 

ecological sustainability solutions often implemented as part of regeneration projects 

will continue to deliver their intended benefits in the long term. Their performance 

may rely on questionable assumptions about resources, values and governance in 

the future and it is argued that there is a need for a tool that can make these 

vulnerabilities explicit. 

The urban futures resilience analysis method illustrated here provides a structured 

approach to identifying vulnerable sustainability solutions and to clarifying the 

aspects of each solution that may need to be improved. The results of this selective 

analysis suggest that none of the ecological solutions proposed for the Luneside East 

case study is particularly resilient, even though some consideration has clearly been 

given to sustaining their intended benefits post-development.  

In particular, the effectiveness of planning conditions and enforcement is questioned, 

given future scenarios where political and financial priorities may lie elsewhere. In 

terms of improving the resilience of these ecological solutions, the inclusion of some 

redundancy, designing for low maintenance, including microclimate buffers and 

locating features in areas unlikely to be subject to future disturbance may be 

particularly effective. The establishment of endowment funds or other dedicated 

funding mechanisms should also be explored. 
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Ensuring that current investments in sustainability solutions will continue to deliver 

their intended benefits into the future should be at the heart of sustainable 

development. It is thus recommended that resilience analysis techniques such as the 

one presented here be explicitly included within the development planning process. 
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Abstract 

Artificial lighting is strongly associated with urbanisation and is increasing in its 

extent, brightness and spectral range. Changes in urban lighting have both positive 

and negative effects on city performance, yet little is known about how its character 

and magnitude vary across the urban landscape. A major barrier to related research, 

planning and governance has been the lack of lighting data at the city extent, 

particularly at a fine spatial resolution.   Our aims were therefore to capture such data 

using aerial night photography and to undertake a case study of urban lighting.  We 

present the finest scale multi-spectral lighting dataset available for an entire city and 



115 
 

explore how lighting metrics vary with built density and land-use. We found positive 

relationships between artificial lighting indicators and built density at coarse spatial 

scales, whilst at a local level lighting varied with land-use. Manufacturing and housing 

are the primary land-use zones responsible for the city‘s brightly lit areas, yet 

manufacturing sites are relatively rare within the city. Our data suggests that efforts to 

address light pollution should broaden their focus from residential street lighting to 

include security lighting within manufacturing areas. 

 

1. Introduction 

As the global population grows and becomes increasingly urban (Grimm et al., 2008, 

UN, 2010), cities are increasing in their spatial extent (Antrop, 2000), intensity of use 

(Dallimer et al., 2011) and physical heterogeneity (Wu et al., 2011). Measuring 

variation within urban systems (in terms of their composition, configuration and 

function) plays a vital role in supporting research and management for improved 

sustainability performance (McDonnell and Pickett, 1990, Bolund and Hunhammar, 

1999, Cervero, 2001, Zhang et al., 2004, Glaeser, 2011). However, systematic urban 

data collection and interpretation is challenging (Weng and Lu, 2007) given the high 

spatial variability within (Cadenasso et al., 2007) and between urban areas (Fuller 

and Gaston, 2009), the co-variability between features of urbanisation (Hahs and 

McDonnell, 2006) and scale dependent relationships (Andersson et al., 2009). 

Multiple and diverse measures of urbanisation at a range of spatial scales are 

therefore desirable (McDonnell and Hahs, 2008). 
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One variable that is closely associated with urbanisation is outdoor artificial lighting. 

Remotely sensed data are good predictors of both urban extent (Imhoff et al., 1997, 

Small et al., 2005) and population size (Elvidge et al., 1997b, Sutton et al., 2001) at 

coarse spatial scales. Like urbanisation, the spatial coverage and intensity of artificial 

light pollution appear to be increasing (Cinzano, 2006, Holker et al., 2010); whilst the 

spectrum of the night sky is also changing due to the replacement of lighting 

infrastructure (Massey and Foltz, 2000). Lighting has strong cultural links to ideas of 

modernity and safety (Lyytimaki et al., 2012) and is a hallmark of development, giving 

people greater choices as to where, when and how long their activities can take 

place. However, lighting has other direct effects on health (Falchi et al., 2011, 

Stevens, 2009), culture and amenity (Cinzano et al., 2001, Mizon, 2002, RCEP, 

2009), safety (Wanvik, 2009), security (Farrington and Welsh, 2002) and ecology 

(Longcore and Rich, 2004, Bruce-White and Shardlow, 2011) and indirect effects on 

economics (Gallaway et al., 2010) and carbon emissions (Elvidge et al., 1997a).  

Given the broad sustainability implications of increases in artificial lighting, research 

programs are emerging that examine this phenomenon from a range of disciplinary 

perspectives (e.g. www.verlustdernacht.de).  However, strategies and policies for the 

management of artificial lighting are less comprehensive than might be expected 

(Lyytimaki et al., 2012).  The lack of high resolution mapping of artificial lighting is 

increasingly recognised as an important barrier to related research and management 

(Elvidge et al., 2007).  Datasets exist globally at a coarse spatial (~3km) and spectral 

resolution, allowing broad variations in urban lighting to be detected (Cinzano et al., 

2001); but sub-city patterning cannot be explored effectively (Elvidge et al., 2007, 

Sutton et al., 2007).  Numerous colour photographs are available from the 
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International Space Station with a spatial resolution of up to 60m (Elvidge et al., 

2007).  Although these images are starting to be used to detect demographic 

patterns within urban areas (Levin and Duke, 2012), individual lamps still cannot be 

identified (Elvidge et al., 2007).  Finer spatial resolution data do exist, but typically 

have a limited spatial extent (Elvidge et al., 2007, Barducci et al., 2003) (but see 

(Kuechly et al., 2012)).  This hinders the development of a strong evidence base to 

support urban lighting strategies, as cities can be highly heterogeneous even at fine 

spatial scales (Wu et al., 2011, Zhang et al., 2004).  For example, little is known 

about how lighting varies with urban land-use (Kuechly et al., 2012, Doll, 2008, 

Luginbuhl et al., 2009) or along built density gradients. Improved baseline urban 

lighting maps are also needed in order to apply the results of published lighting 

research e.g. (Davies et al., 2012), to implement existing planning guidance on urban 

lighting zones (Luginbuhl et al., 2009, ILE, 2005), to enforce planning consents and 

legislation related to lighting nuisance (Morgan-Taylor, 2006, Flanders Government, 

2012) and to monitor changes over time. Therefore, there is a need to secure lighting 

datasets at the city scale; and at a spatial and spectral resolution sufficient to 

advance lighting research and the planning and governance of urban lighting.   

 

In this study our aims were: 1) to develop a method for securing fine resolution urban 

lighting datasets and 2) to undertake a city case study exploring how lighting varies 

with built density and land-use.  Here, we present the finest resolution multi-spectral 

night-time photograph of an entire city, processed to derive estimates of surface 

illuminance and the location and nature of individual lamps.  We found positive 
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relationships between artificial lighting indicators and built density at coarse spatial 

scales, whilst at a local level lighting varied significantly with land-use.  

 

2. Methods 

2.1 Data collection and processing.   

Aerial night photography was collected in March 2009 by the UK Environment 

Agency (Fig.1).  The target area was Birmingham, a large city (268km2) within the 

highly urbanised West Midlands metropolitan county of the United Kingdom.  Surveys 

were undertaken by plane at a height of ~900m, using a colour Nikon D2X digital 

camera, a 24mm AF Nikkor lens and a 1/100ths exposure.  The resulting RGB 

images were orthorectified, mosaiced and re-sampled from 10cm to 1m pixel 

resolution.  This single image was then processed to derive two landscape indicators 

of artificial lighting: a raster layer representing incident surface lux and a point layer 

representing the location and class of individual lamps.  These indicators were 

considered to be of broad interest for those studying and managing lighting in urban 

landscapes. 

 

Field surveys of ground incident lighting were undertaken in order to develop these 

indicators, using a USB2000+VIS-NIR Spectrometer (Ocean Optics, Florida, USA).  

Surveys were stratified over a range of lamps types located in both dense urban and 

residential neighbourhoods.  Starting below each lamp, ground measurements of 

incident lux (lx) were collected at 1m intervals along a linear transect (total 400 

measurements).  Using a GIS (ArcGIS 9.2, ESRI Redlands, USA) these point survey 

data were superimposed onto a single band (greyscale) raster, generated by  
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   Figure.1 

 

Aerial night photography examples.  (A) The city of Birmingham and (B) a retail 

distribution centre.  Copyright Environment Agency 2009. All rights reserved. 

 

averaging pixel values from the RGB image of the city using ER Mapper 7.2 (ER 

Mapper, San Diego, USA).  The pixel value below each point was then extracted, 

allowing the relationship between incident lux and pixel value to be modelled.  Model 

fit was found to improve when the measurements taken between 0 and 2m from the 

lamp were removed.  This was likely due to inconsistent signal sources for the 

camera; in some cases the signal coming directly from unshielded lamps whilst in 

others from light reflected by the surfaces below a shielded lamp.  The equation for 

the final model (Fig. S1) was then used to reclassify the greyscale raster to represent 

incident lux (hereafter referred to as the ―lux layer‖).  To derive an estimate of noise 

we extracted raster summaries for 25ha of the greyscale raster corresponding to 
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areas of the landscape known to be unlit.  For these dark locations, 99% of greyscale 

pixels had values of less than 20 (Fig. S2).  Pixel values < 20 were therefore 

considered to be unlit for the purposes of the landscape analysis.  Three raster layers 

were generated representing areas lit to ≥10, ≥20 and ≥30lx. 

 

To identify the point location of all lamps within the landscape, we used the focal 

statistics and raster calculator tools in ArcGIS to identify the brightest pixels at a 

processing resolution of 10m. First, a focal maximum layer was created using a 

circular roving window of 10m radius.  The raster calculator tool was then used to 

identify pixels in this focal maximum layer whose values were identical to the original 

greyscale raster, which were then reclassified into a binary raster layer representing 

potential lamp locations (the candidate lamp layer).  A 10m sample radius was 

chosen because street lamps are typically spaced at greater intervals and it was also 

found that this reduced the occurrence of false lamp signals due to highly reflective 

surfaces.  Although generating this layer succeeded in identifying lamp locations, a 

large proportion of the candidate lamp pixels did not correspond to a lamp.  These 

were the result of small variations in greyscale pixel values within dark areas such as 

parks and gardens.  To address this, statistics for a selection of confirmed lamp 

locations were compared to a sample of these ―dark‖ locations.  Focal statistics 

layers were created from the greyscale raster as well as from the individual red, 

green and blue layers of the mosaiced night photograph.  These layers were 

generated using circular neighbourhoods of radii up to 7m, as well as annuli that 

excluded the neighbourhood centre.  Using a CHAID classification tree (SPSS 18.0), 

we found that the majority (95.4%) of locations representing lamp centres had 
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average green pixel values between 1m and 2m from the lamp of ≥ 14 whilst the 

majority (99.8%) of locations within unlit areas had values for this measure of < 14.  

This threshold was therefore used to remove dark locations within the candidate 

lamp layer and the remaining pixels were converted to a point layer representing 

117,599 lamp centres within the city. 

 

Elvidge et al. (2010), demonstrated the potential for discriminating major lamp types 

by using a 3 band sensor that broadly covered the visible light spectrum.  Whilst the 

RGB bands in our image did not correspond exactly to the band widths proposed by 

Elvidge et al. (2010), we considered it feasible that they would be sufficient to 

differentiate between the major classes of street lamps present in the city:  mercury 

vapour (MV), metal halide (MH), low pressure sodium (LPS) and high pressure 

sodium (HPS).  Focal statistics were extracted for 240 lamp centres of known class 

and a CHAID classification tree was used to differentiate between lamp types (Fig. 

S3).  The first discriminating variable was the green to red ratio (G:R) for pixels up to 

1m from the lamp centre.  A G:R of 0.96 separated the orange lamps (LPS and HPS) 

from white lamps (MH and MV), with an accuracy of 98.3% in both cases.  LPS and 

HPS lamps were then differentiated based on the maximum greyscale pixel value 

between 2 and 4m from the lamp centre. Values <= 48 indicated an LPS lamp 

(96.7% correct), whilst HPS lamps typically had values > 48 (81.7% correct) (Table 

1).  MH and MV were differentiated based on the average blue pixel value up to 1m 

from the lamp centre.  Values > 33.2 gave a 93.3% correct classification for MH, 

whilst values <= 33.2 gave a 98.8% correct classification for MV.  These thresholds 

were then used to classify all city lamp centres into the 4 broad lamp classes.  
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Table. 1 

Observed Predicted lamp class 
Lamp 
class Sample  LPS HPS MH MV Percentage Correct 

LPS 60 58 1 0 1 96.7% 
HPS 60 10 49 0 1 81.7% 
MH 60 1 0 56 3 93.3% 
MV 60 1 0 0 59 98.3% 

Classification of lamps using pixel values from the aerial night photograph, 

corresponding to individual lamp locations.  Accuracy is estimated based on a 

sample of 60 known lamps for each lamp class.  LPS = low pressure sodium, HPS = 

high pressure sodium, MH = metal halide, MV = mercury vapour.   

 

2.2 Landscape analysis.   

The sampling strategy was intended to reflect key scales and boundaries of urban 

ownership, management and decision-making (Cadenasso et al., 2007, Andersson, 

2006). GIS analyses were undertaken to explore patterns between two broad lighting 

metrics (lit area and number of lamps) and measures of urban composition.  To 

explore the effect of urban density, Ordnance Survey MasterMap (OSMM) land-cover 

and land-use parcels that were dominated by built land-cover (e.g. roads, car parks 

and buildings but not gardens) were combined into a single built category.  These 

were then converted to a 1m resolution raster representing built land-cover for the 

entire city. Grid squares of increasing size (0.01km2, 0.25km2, 1km2 and 4km2) were 

then used to extract summaries of built land-cover and lighting metrics. Because 

broad urbanisation gradients typically fail to capture the effect of different land-uses 

(Alberti, 2005), we employed a complementary approach to measuring urban 

performance by sampling the lighting of land-use units.  Importantly, we used two 

contrasting land-use classifications to maximise the utility of the results (Table S1); 
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National Land Use Database (NLUD) zones (Dunn and Harrison, 1995) and OSMM 

parcels.  NLUD data included categories such as housing, manufacturing and 

education, which were available for the entire city as 100m grid squares (0.01km2).  

OSMM parcels were typically smaller than 0.01km2 and irregularly shaped, 

representing features such as gardens, pavements and buildings.  OSMM parcels 

were grouped to reflect five broad management categories (Table S1).  Each 

0.01km2 NLUD land-use zone was therefore typically composed of a number of 

smaller OSMM land-use parcels (Fig. 2).  Lighting indicator summaries were 

extracted for both the land-use zones and land-use parcels at the city scale.  These 

were used to estimate the percentage contribution of different land-uses to the total 

number of lamps and total lit area within the city.  In addition, we calculated the lamp 

density and percentage lit area for each land-use zone and parcel type.  These 

provided an indication of how intensely lit different land-uses were, irrespective of 

how much they contributed to lighting at the city scale. 
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     Figure. 2 

 

Aerial photography, mapping and lighting indicators for a 100m square manufacturing 

zone and road intersection.  (A) A daytime aerial photograph (© Bluesky International 

Limited 2007), (B) Ordnance Survey MasterMap land-cover and land-use parcels 

(2008), (C) a night time aerial colour photograph (© Environment Agency 2009) and 

(D) a raster representing ground lux, overlain by a point layer representing lamp 

centres. 
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3. Results  

3.1 Landscape scale patterns between lighting and built density.   

8% of the total land surface of the city was found to be illuminated to at least 10lx.  In 

addition, 65% of all lit surfaces (≥10lx) and 80% of all city lamps were directly 

associated with built land-cover.  Lighting indicators demonstrate positive and often 

non-linear relationships with the density of built land-cover. The percentage of lit area 

increases in a non-linear fashion along these urbanisation gradients (Figs 3A & C), 

whilst lamp density increases linearly (Fig. 3B).  As the scale of sampling (window 

size) increases, the fit of these models improves; although the relationships remain 

essentially the same (Fig. 3A & B). The results for sampling at the 0.01km2 scale are 

presented for comparison in figure S4.  The percentage of each sample square that 

is lit to ≥10lx rises from ~5% in rural or semi-natural areas to ~30% in densely built 

areas (Fig. 3A).  Similarly, lamp density rises from ~0 lamps/ha in rural or semi-

natural areas to ~15/ha in densely built areas (Fig. 3B).  The composition of lamp 

types also changes along the 1km2 urban gradient (Fig. 3D), with LPS lamps 

dominating provision at low built densities, shifting to (broader spectrum) HPS and 

MH lamps in densely built areas. Changes in the density of individual lamp types 

along the 1km2 urban gradient are presented in figure S5. 
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Figure. 3.  Percentage built land-cover plotted against a variety of lighting metrics.   

 (A) Percentage lit area (≥10lx) sampled at 0.25km2, 1km2 and 4km2 scales.  (B) 

Density of lamps sampled at 0.25km2, 1km2 and 4km2 scales.   



127 
 

 

 

Figure. 3 ctn. Percentage built land-cover plotted against a variety of lighting metrics.  

(C) Percentage lit area ≥10, ≥20 and ≥30lx at the 1km2 scale.  (D) Lamp class 

sampled at the 1km2 scale.  LPS = low pressure sodium, HPS = high pressure 

sodium, MH = metal halide, MV = mercury vapour.  Y axis values are standardised as 

a percentage of the total number of lamps within each built density class.  Built 

density values represent class maximum (10 = 0-10% built land cover). 
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3.2 Lighting and land-use.   

The contribution of different OSMM land-use parcels to the total lit surface area 

within the city varied, with roads/pavements (38%) and other built surfaces such as 

car parks (17%) contributing the majority of the total area ≥10lx (Fig. 4A). These land-

uses are also the main sources of the city‘s brighter lighting, although 

roads/pavements are responsible for a lower percentage (29%) of areas ≥30lx than 

built surfaces (40%) (Fig. 4A). For NLUD land-use zones, housing (45%) and 

manufacturing (12%) areas were responsible for the majority of city lighting ≥10lx and 

approximately equal proportions of areas ≥30lx (Fig. 4B).  The distribution of lamps 

between land-uses is similar to that for lit areas, with the majority of city lamps being 

associated with OSMM roads/pavements (52%) and other built surface parcels 

(14%).  LPS lamps dominate the lighting of roads/pavements (Fig. 5A), whilst the 

lamp types associated with other built surface parcels are more evenly spread 

between LPS, HPS and MH (Fig. 5B). When considering NLUD land-use zones, 55% 

of city lamps are associated with housing and 11% with manufacturing.  Whilst LPS 

lamps dominate lighting provision within housing zones (Fig. 5C), the lamps in 

manufacturing zones are more evenly divided between LPS, HPS and MH (Fig. 5D).   

A more detailed breakdown of lighting and land-use at the city scale is presented for 

comparison in Table S1.  
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      Figure. 4.   

 

 

Percentage contribution of land-uses to the total area of the city ≥10, ≥20 and 

≥30lx. (A) Roads/pavements and built surface Ordnance Survey MasterMap 

(OSMM) land-use parcels.  (B) Housing and manufacturing National Land Use 

Database (NLUD) zones. 
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Figure. 5 

 

The relative proportions of lamp classes associated with different land-uses.  (A) 

Roads/pavements and (B) other built surface OSMM land-use parcels, located within 

(C) housing and (D) manufacturing NLUD zones. 

 

Although OSMM roads/pavements and other built surface parcels within NLUD 

housing and manufacturing zones are responsible for the majority of lighting within 

the city, other land-uses are still intensely lit and therefore may contribute 

significantly to lighting at local scales (Fig. 6). For example, although office land-use 

is limited in terms of urban areal extent (<1% of total city area) (Table S1), a 0.01km2 

office zone typically has over twice the lamp density and five times the brightly 

illuminated surface area than the average land-use zone within the city (Fig. 6B).  In 

contrast, a typical 0.01km2 area of housing (which is the dominant land-use zone in 

the city) has just half the brightly lit area than the city average. 
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Figure. 6.  Lamp density and percentage illuminated area (≥30lx) for total city 

area covered by different land-uses.  (A) OSMM land-use parcels and (B) NLUD 

land-use zones.  Values have been standardised, with values > 1 indicating 

abundance is greater than the landscape average. 
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4. Discussion 

The earth is experiencing a step-change in artificial lighting provision (Holker et al., 

2010, RCEP, 2009, Pimputkar et al., 2009).  The replacement and expansion of 

lighting infrastructure raises the possibility of unintended and broad scale impacts on 

human health and wellbeing (Cinzano et al., 2001, Foster and Wulff, 2005) and on 

ecosystem processes (Longcore and Rich, 2004).  Although beneficial for many 

social applications; strong, broad spectrum and extensive lighting at night can 

interrupt key physiological and behavioural processes for species of plants and 

animals, including humans (Falchi et al., 2011, Navara and Nelson, 2007).  Point 

sources can be a cause of nuisance due to glare and lighting trespass (Morgan-

Taylor, 2006) whilst diffuse sky glow can obscure views of the night sky (Cinzano et 

al., 2001) and eliminate natural cycles in lunar illumination (Kyba et al., 2011).  It is 

therefore vital that baseline lighting data are collected, against which to measure 

these changes and to support research into understanding the implications for social 

and ecological systems.  A major advance has been the collection of global data on 

the extent and magnitude of night lighting (Cinzano et al., 2001). However, many key 

urban research questions require higher resolution data (Elvidge et al., 2007).  

Advances in high-specification digital camera technology have now made broad-

scale aerial night photography a possibility (Kuechly et al., 2012).  For the first time 

we are able to explore patterns between lighting and urban land-use, using metrics 

and scales that are relevant to those involved in research, planning and management 

of cities. 
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4.1 Built density   

The results of this case study indicate that high built densities are associated with 

more extensive, brighter and broader spectrum lighting. This has implications for 

debates about the sustainability performance of the compact city (Neuman, 2005); 

with the economies that arise from dense urban development (Williams, 1999) 

potentially being accompanied by greater light pollution.  The co-variability between 

lighting and built density also has implications for studies employing urban-rural 

gradients (McDonnell and Pickett, 1990); which should take steps to avoid potential 

confounding effects of lighting on the social or environmental variables of interest.  At 

fine spatial scales (< 0.25km2), built density is a poorer predictor of urban lighting.  

Spatial patterning is therefore nested, with small dark spaces existing even within 

densely built, brightly lit neighbourhoods.  Lighting at fine scales is socially and 

ecologically relevant and appears to be related to land-use. 

 

4.2 Land-use   

The results of our analysis of OSMM parcels and NLUD zones illustrate which land-

uses are predominantly responsible for lighting at the city scale and which have a 

strong local effect.  As might be expected, roads/pavements and other built surface 

parcels within housing and manufacturing zones are responsible for a large 

proportion of the lamps and brightly lit surfaces within the city, reflecting the role that 

lighting plays in transport, safety and building security.  This suggests that these 

land-uses should be the target of proactive strategies to reduce light pollution, such 

as dimming (RCEP, 2009), shielding (ILE, 2005) and switch-off (Smith, 2009).  The 

large-scale replacement of LPS suburban street lighting underway in the UK presents 
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an opportunity to reduce some aspects of light pollution, although it may cause 

others to increase.  The replacement lamps are generally well shielded (Mizon, 

2002), and their timing and brightness is more easily altered.  However, public 

opposition to switch-off has been considerable (RCEP, 2009).  The use of broader 

spectrum lamps is being driven by the desire for improved colour perception, but may 

result in greater disturbance to natural processes (Falchi et al., 2011).  Whilst efforts 

to address current light pollution should continue to focus on suburban street lighting, 

our research suggests that the security lighting of manufacturing areas may warrant 

similar attention. These areas occupy a small fraction of the city with relatively few 

lamps, yet are responsible for a large proportion of bright urban lighting.  Concerns 

have already been raised about light pollution arising from the security lighting of 

commercial areas (Mizon, 2002, RCEP, 2009, Luginbuhl et al., 2009), and our study 

provides strong evidence that this is an issue at the city scale.  Retail and distribution 

land-use zones alone account for 11% of all brightly lit surfaces, rising to 34% when 

manufacturing areas are included; yet these account for just 10% of the city 

landscape (Table S1).  Similar results have been found for central Berlin (Kuechly et 

al., 2012).  In contrast to street lighting, modifications to the positioning and triggering 

of security lamps may well be more publicly acceptable as well as more effective 

from a security perspective than current practice (Mizon, 2002, Morgan-Taylor, 

2006).  Although they are relatively infrequent land-uses within the case study area; 

built surfaces within office, retail, transport, community/health, manufacturing and 

storage zones have lamp and lighting densities that are considerably higher than the 

landscape average. This has implications for land-use planning as such development 
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may have strong local effects; and future growth in the service and retail sectors has 

the potential to deliver greater pollution at the city scale.  

 

Whilst useful for raising awareness of the likely lighting implications of development 

proposals, it is still not known how well these findings transfer between cities and to 

what extent the lighting characteristics of land-uses described here are fixed. For 

example, large-scale replacement of lighting infrastructure in the future is likely to 

result in brighter and broader spectrum lighting (RCEP, 2009, Pimputkar et al., 2009), 

although the reverse may be true in some cases (Luginbuhl et al., 2009). 

 

4.3 Future applications of urban lighting indicators 

Although not the focus of this paper, there are a range of additional research and 

planning applications for the lighting datasets described here. Light maps have the 

potential to address several topical issues in urban studies and the diversity of 

applications for remotely sensed lighting data is illustrated by research resulting from 

the interdisciplinary EU MANTLE project (Doll, 2008). Similar questions might be 

addressed using higher resolution data, but as urban relationships and management 

priorities can be scale dependent, additional questions might also be explored. 

Higher resolution data have the potential for characterising urban forms (Kruse and 

Elvidge, 2011) and for generating lighting inventories for infrastructure management. 

They might also be used to scale the results of field studies and research 

experiments to explore their implications for an entire city. Remotely sensed lighting 

maps are considered to be unique in their ability to reflect human activity (Doll, 2008).  

As research into urban areas tends to underplay their social dimensions (Alberti, 
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2005), the collection and use of lighting maps may help to better integrate these 

aspects into the modelling of urban systems.  From an applied perspective, high 

resolution mapping would also enable the development of more sophisticated urban 

lighting masterplans, tailoring lighting to meet the needs of the community at a fine 

spatial scale and to improve urban lighting governance (Morgan-Taylor, 2006, 

Aubrecht et al., 2010).  Changes to the nature and operation of lighting infrastructure 

also have the potential to permit considerable financial and carbon savings (Gallaway 

et al., 2010), although some public opposition might be expected (RCEP, 2009). How 

environmental information is presented can be key to facilitating behavioural change 

(RCEP, 2007) and striking images of cities, neighbourhoods and streets at night 

could play a useful role in encouraging a broader social debate about lighting, energy 

and climate change. Combined with analyses such as those presented here, these 

images may also be useful in challenging false assumptions on the causes and 

magnitude of artificial lighting and its associated impacts (Lyytimaki et al., 2012).   

 

Artificial lighting can play an important role in shaping urban sustainability, yet little is 

known about how it varies with land-cover and land-use.  In this paper we have 

demonstrated that aerial night photography can be effective in clarifying these 

relationships and in challenging conventional approaches to tackling unnecessary or 

problematic urban lighting. 

 

Acknowledgments 

We would like to thank the following people and organisations that have helped 

support this research. The Birmingham Environmental Partnership. Staff at the 



137 
 

Environment Agency Geomatics Group - www.geomaticsgroup.co.uk (data collection 

and licensing). Geospatial data were provided by the Ordnance Survey (GB) and 

comprised: OS MasterMap Topography Layer [GML geospatial data], coverage: 

Birmingham, Black Country and Solihull, Updated: November 2008, Ordnance 

Survey (GB), using: EDINA Digimap Ordnance Survey Service, 

http://edina.ac.uk/digimap. Accessed 1st December 2008. 

 

Supporting information 

Supporting information/supplementary figures can be found in the Appendix at the 

end of this thesis.  

 

Figure S1. Ground incident lux plotted against corresponding greyscale pixel value 

for survey locations within Birmingham. The equation for the best fit line (y = 

0.0128X2+0.2246X +0.8517) was used to reclassify the greyscale raster. R2 = 

0.9146. A 95% confidence interval is also indicated. 

Figure S2. The distribution of greyscale pixel values for known ―dark‖ locations (lit to 

<1lx). 

Figure S3. CHAID classification tree for lamp classes. 1 = low pressure sodium 

(LPS), 2 = high pressure sodium (HPS), 3 = metal halide (MH) and 4 = mercury 

vapour (MV). The first discriminating variable was the green to red ratio (G:R 0–1 m) 

for pixels up to 1 m from the lamp centre. LPS and HPS were then differentiated 

based on the maximum greyscale pixel value between 2 and 4 m (GS 2–4 m) from 

the lamp centre. MH and MV were differentiated based on the average blue pixel 

value up to 1 m from the lamp centre (BL 1 m). 

http://edina.ac.uk/digimap
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Figure S4. The results for sampling of lighting metrics at the 0.01 km2 scale. (A) 

Percentage area ≥10lx and (B) density of lamps, both plotted against percentage built 

land-cover. 

Figure S5. Changes in the density of lamp classes along the 1 km2 urban gradient. 

(A) MH and LPS lamps and (B) MV and HPS lamps. 

Table S1. Land-uses and lighting metrics for the city of Birmingham. Land-uses are 

given as a fraction of total city area, along with their contribution to the total city area 

lit ≥30lx and to the total number of city lamps. Two alternative measures of land-use 

are given; land-use parcels based upon the Ordnance Survey MasterMap (OSMM) 

(2008) and land-use zones based on the National Land Use Database (NLUD) 

categories (1995). 
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Abstract 

As the global population urbanises, dramatic changes are expected in city lighting 

and the urban form, which may threaten the functioning of urban ecosystems and the 

services they deliver.  However, little is known about the ecological impact of lighting 

in different urban contexts.  Movement is an important ecological process that can be 

disrupted by artificial lighting.  We explored the impact of lighting on gap crossing for 

Pipistrellus pipistrellus, a species of bat (Chiroptera) common within UK cities.  We 

aimed to determine whether the probability of crossing gaps in tree cover varied with 

crossing distance and lighting level, through stratified field surveys.  We then used 

the resulting data on barrier thresholds to model the landscape resistance due to 

lighting across an entire city and explored the potential impact of scenarios for future 

changes to street lighting.  The level of illumination required to create a barrier effect 

reduced as crossing distance increased.  For those gaps where crossing was 

recorded, bats selected the darker parts of gaps.  Heavily built parts of the case 

study city were associated with large and brightly lit gaps, and spatial models indicate 

movement would be highly restricted in these areas.  Under a scenario for brighter 

street lighting, the area of accessible land-cover was further reduced in heavily built 

parts of the city. We believe that this is the first study to demonstrate how lighting 

may create resistance to species movement throughout an entire city. That 

connectivity in urban areas is being disrupted for a relatively common species raises 

questions about the impacts on less tolerant groups and the resilience of bat 

communities in urban centres.  However, this mechanistic approach raises the 

possibility that some ecological function could be restored in these areas through the 

strategic dimming of lighting and narrowing of gaps.   



148 
 

1 Introduction 

Urban areas are now home to over half of the world‘s population (UN, 2010), are the 

drivers behind much of the global CO2 emissions and resource demands 

(Wackernagel et al., 2006; Hoornweg et al., 2011) and are highly modified 

environments (Grimm et al., 2008). They are therefore at the heart of debates about 

climate change, resource security, nature conservation and human wellbeing 

(Newman, 2006; Grimm et al., 2008; Hodson & Marvin, 2009; Glaeser, 2011).  Given 

the diversity and complexity of change within urban areas (Dallimer et al., 2011), 

there is a need to explore how their sustainability performance might vary under 

alternative scenarios for their future structure and operation (Lombardi et al., 2012).  

In this paper we explore how the disruption of the nocturnal urban environment by 

different levels of artificial lighting can impact species movement – a key ecological 

process. 

 

Growth, sprawl, compaction and fragmentation of the built form varies within and 

between urban areas (Williams, 1999; Luck & Wu, 2002; Couch et al., 2005; Irwin & 

Bockstael, 2007; Adams et al., 2010; Seto et al., 2011) and changes in built extent, 

density and land-use may occur over relatively short time periods (Pauleit et al., 

2005; Seto & Fragkias, 2005; Dallimer et al., 2011).  In addition to shifts in urban 

form, changing technologies and social practices also radically alter urban 

environments (Gandy, 2004).  One important example is outdoor artificial lighting, a 

pervasive yet diverse characteristic of cities that is changing in many regions (Bennie 

et al., 2014a; Kyba et al., 2014).  Remotely sensed measures of light emissions from 

the earth‘s surface have been found to correlate with built land-cover (Hale et al., 
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2013), population density (Sutton et al., 1997), electric power consumption (Elvidge 

et al., 1997) and per capita income (Ebener et al., 2005).  Outdoor artificial lighting 

also varies considerably within cities depending on land-cover and land-use 

(Luginbuhl et al., 2009; Kuechly et al., 2012; Hale et al., 2013; Levin et al., 2014).  

Intensification and expansion of lighting is evident at both local and global scales 

(Hölker et al., 2010a; Bennie et al., 2014a), a process fuelled by the emergence of 

cheaper and more efficient lighting technologies (Tsao et al., 2010; Kyba et al., 

2014).  The large-scale introduction of such technologies would also be expected to 

result in changes to the dominant spectral composition of outdoor lighting (Stone et 

al., 2012).  However, despite a broad trend of growth in artificial lighting, some 

locations are becoming darker (Bennie et al., 2014a) as lamps are shielded, dimmed 

or even removed to reduce light pollution, running costs and carbon emissions 

(RCEP, 2009; Falchi et al., 2011; Gaston et al., 2012).  Changes in artificial lighting 

can impact city performance in a variety of ways (Smith, 2009; Falchi et al., 2011), 

yet many of the potential sustainability impacts remain unexplored (Hölker et al., 

2010a; Lyytimaki et al., 2012). The nature of lighting infrastructure and its operation 

has obvious implications for energy demands and costs (Gallaway et al., 2010; Tsao 

et al., 2010).  However, artificial lighting also has numerous positive and negative 

impacts on social practices and human health; lighting has enabled greater flexibility 

in the timing of work and leisure activities, although at the cost of disruption to 

circadian rhythms, behaviours and physiological processes (e.g. Navara & Nelson, 

2007; Falchi et al., 2011; Cho et al., 2013).  Less is known, however, about how 

natural systems are disturbed and the resulting effects on ecological function and 

service provision (Rich & Longcore, 2006; Hölker et al., 2010b; Gaston et al., 2012).  
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In this paper we focus on ecological impacts of artificial lighting in urban areas and 

explore how these may vary with different levels of illumination and configurations of 

the built form. 

 

The value of the semi-natural components of cities is increasingly recognised, 

particularly from the perspective of those ecosystem functions with strong links to 

human wellbeing (Carpenter et al., 2006; Sadler et al., 2010; Haase et al., 2014).  

Given the known effects of artificial lighting on a variety of species and habitats 

(Longcore &  Rich, 2004; Hölker et al., 2010b; Gaston et al., 2012) and the rapid 

changes to urban street lighting already underway, research is needed that explores 

the potential disruption of ecological processes at the city-scale.  Individuals of most 

species are sensitive to natural cycles of day and night (Hölker et al., 2010b), with 

light acting both as information and a resource (Gaston et al., 2013).  For some 

species the disruption of these cycles by artificial lighting can impair particular parts 

of their life history e.g. feeding and growth (Boldogh et al., 2007), commuting to 

foraging sites (Stone et al., 2009) or the timing of reproduction (Kempenaers et al., 

2010).  Conversely, lighting can bring direct advantages such as concentrating prey 

(Blake et al., 1994; Jung & Kalko, 2010) or for diurnal and crepuscular species it may 

extend the hours of activity (Negro et al., 2000).  A further complication is that lighting 

may deliver both costs and benefits to a single individual, making the net impact 

challenging to estimate.  For example, artificial lighting has been found to delay roost 

emergence in the bat Pipistrellus pygmaeus (Downs et al., 2003), but also to provide 

foraging locations for the same species (Bartonička et al., 2008).  Impacts on 

individual fitness may be sufficient to alter populations and even community 
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composition (Perkin et al., 2011; Davies et al., 2012), with the potential to affect 

important ecosystem functions and services such as pollination (Eisenbeis, 2006) or 

seed dispersal (Lewanzik & Voigt, 2014).  However, population or ecosystem-scale 

research related to artificial lighting is rare (Gaston et al., 2013; Lyytimäki, 2013).  

One further notable research gap relates to lighting thresholds for ecological impacts 

and their spatial extent (Gaston et al., 2013).  

 

Here we examine the impact of lighting on animal movement within urban areas as 

movement is a process relevant to individual fitness, population resilience and to 

broader ecosystem structure and function (Nathan et al., 2008).  Despite the 

importance of movement for enabling organisms to forage, disperse and ensure gene 

flow between populations, the direct measurement of functional connectivity is not 

always practical (Nathan et al., 2008; Zeller et al., 2012).  Tracking and genetic 

studies may provide evidence that some patches within a landscape are functionally 

connected, but on their own these approaches fail to explain why movement may 

have been recorded in some contexts but not in others.  Understanding the factors 

that affect movement between habitat patches is therefore important for conservation 

practice (Rayfield et al., 2010; Watts et al., 2010), particularly in landscapes 

undergoing rapid environmental change (Zeller et al., 2012).  This can be highly 

complicated as movement may not only depend on patterns of land-cover and land-

use within a landscape, but also on the motivation and ability of individuals to move 

(Tischendorf &  Fahrig, 2000; Nathan et al., 2008; Pe'er et al., 2011). 

 



152 
 

The flight behaviour of several bat species may be influenced by artificial lighting 

(Kuijper et al., 2008; Stone et al., 2009, 2012; Polak et al., 2011) which can cause 

deviation of the flight path to avoid the most heavily lit area (Kuijper et al., 2008; 

Stone et al., 2009), or barrier effects where approaching bats turn and fly in the 

opposite direction (Stone et al., 2009).  Barrier effects on commuting bats have also 

been demonstrated for structures such as motorways that bisect habitat networks 

(Kerth & Melber, 2009).  Several European bat species are known to fly along 

woodland edges and tree lines when commuting between their roost and feeding 

locations (Racey &  Entwistle, 2003), and the activity of some species is higher with 

increasing proximity to these corridor features (Verboom &  Spoelstra, 1999; Downs 

&  Racey, 2006).  This suggests that movement for nocturnal bat species might be 

simultaneously impacted by the structural fragmentation of habitat networks and by 

the artificial lighting of commuting routes, both of which are common within urban 

areas, potentially increasing levels of landscape resistance.  Here we modelled the 

effect of both crossing distance and illumination level on the crossing behaviour of a 

common urban bat (Pipistrellus pipistrellus) at gaps in urban tree networks.  The 

resulting model was then used to explore the landscape-scale implications of 

different urban lighting scenarios for movement. 

 

The study objectives were to: 

1) Determine whether the probability of bats crossing gaps in tree lines varies 

with crossing distance and illumination, and to model any barrier effects;  

2) Develop spatial models for landscape resistance due to artificial lighting; 
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3) Explore the implications of these resistance models for habitat accessibility 

along an urban gradient. 

 

 2. Materials and methods  

These methods are divided into five distinct sections (Fig. 1): (1) the selection of 

survey gaps within networks of urban tree cover, (2) surveys of gap crossing events 

by bats, (3) the development of statistical models for gap crossing probability that 

identify distance-dependant lighting thresholds for barriers to movement, (4) the 

translation of this barrier lux model into spatial GIS models for landscape resistance 

under contrasting lighting scenarios for a case study city, and (5) an analysis of how 

these scenarios for landscape resistance may impact habitat accessibility along an 

urban gradient. 

 

  Figure. 1 

 

A flow diagram representing key steps within the methods 



154 
 

2.1 Selection of survey gaps 

For P. pipistrellus, movement between resource patches is facilitated by linear 

features such as tree lines (Verboom &  Spoelstra, 1999) and therefore the patch-

matrix-corridor model (Forman, 1995) would appear to be an appropriate starting 

point for exploring some of the mechanisms that deliver functional connectivity for 

this species.  A key assumption within this model is that the matrix creates resistance 

to the movement of individuals between habitat patches and that this resistance is 

reduced by the presence of linear habitat features that form structural connections 

between patches.  To directly measure functional connectivity between bat roosts 

and feeding areas within an urban area would be extremely challenging, particularly 

as both feeding areas and roosts may be difficult to identify or gain access to, given 

their frequent association with private built infrastructure (Blake et al., 1994; 

Altringham, 2003).  This therefore led us to focus on corridor features known to 

facilitate movement and to explore the degree to which structural gaps in these 

features and lighting within the intervening matrix could influence crossing behaviour.  

Field observations were undertaken in the summer of 2010 within the West Midlands 

of the United Kingdom (UK), a highly urbanised metropolitan county covering 902 

km2 with a population of ~2.3 million (S1).  P. pipistrellus is a species of bat that is 

broadly distributed over Europe and the Near East (Altringham, 2003), is commonly 

found within UK cities and can be found throughout the UK West Midlands (Hale et 

al., 2012).  It is nocturnal and easily surveyed and was therefore chosen as a model 

species for exploring the impacts of lighting on bat movement in urban areas.  Bats 

were surveyed at gaps in networks of tree cover, as this species is known to follow 

the edges of tree lines when commuting between roosts and feeding areas (Downs &  



155 
 

Racey, 2006).  Tree cover is ubiquitous within the West Midlands, with the exception 

of the most densely built areas.  Trees are typically located along road edges, railway 

embankments and waterways, in gardens and recreational green spaces and within 

the broader amenity planting of commercial areas.  Such trees are rarely isolated, but 

tend to form linear features that follow existing or historic land-use boundaries such 

as the perimeter of a park or residential development.  These lines of trees are 

readily identifiable from aerial photography and their canopy typically forms a 

structural network that connects a variety of urban land-covers.  Despite this high 

structural connectivity, gaps within this network are evident.  Tree lines were selected 

that were at least 20m wide and composed of trees >4m in height, which we consider 

ideal commuting features for P. pipistrellus (c.f. Verboom &  Spoelstra, 1999).  Gaps 

in tree lines were defined as locations where a tree line terminated, but where after a 

break of at least 20m a second tree line continued along approximately the same 

direction.  In some cases it is likely that such tree lines had originally formed a single 

boundary feature, which was subsequently bisected by the building of a road.   Gaps 

were illuminated to varying levels (S1) by sodium-vapour street lamps (the dominant 

source of outdoor artificial lighting within the city (Hale et al., 2013)).  

 

Our aim was to explore the impact of different gap widths and lighting conditions on 

crossing behaviour.  Rather than experimentally manipulating gap characteristics, we 

identified a selection of gaps within which to undertake surveys, stratified by width 

and illumination level.  To support this stratification process, gaps were each 

assigned single values for width and illumination as follows:  (1) A variety of gaps in 

tree lines were identified in ArcGIS 9.2 (ESRI, USA) using a raster layer representing 
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tree cover >4m in height derived from remotely sensed 1m resolution colour and 

near-infrared photography (Bluesky International Limited, UK, 2007) and LiDAR data 

(The GeoInformation Group, UK, 2006).  Gaps where the built land-cover within a 

350m radius exceeded 60% were excluded, as activity for P. pipistrellus tends to be 

lower in these areas (Hale et al., 2012).  (2) Measurements of surface illumination 

within each gap were collected in the field following a 2m interval grid of survey 

points, using a USB2000+RAD spectroradiometer (Ocean Optics, USA).   (3) These 

point measurements were subsequently digitised within the GIS and spline 

interpolation was used to generate a 1m resolution raster layer representing surface 

lux within each gap (Fig. 2).  (4) Five transect lines crossing each gap were created 

in the GIS at 5m intervals parallel to the main axis of the tree line (Fig. 2), and the 

length of each transect line was recorded.  (5) Each transect line was then 

intersected with the lux raster to identify the maximum lux encountered, using 

Hawth's Analysis Tools (Beyer 2004).  The result of this process was the calculation 

of five width and five lux values for each gap (S1).  From these, the median width and 

median lux value were used to characterise each gap, in order to provide typical 

values to inform the final stratified selection of survey gaps.  (6) 27 survey gaps were 

then chosen to ensure strong coverage across three width and three illumination 

categories (S1). 

  



157 
 

             Figure. 2 

 

A gap in an urban tree line caused by a road, as represented in the GIS.  Dark green 

areas represent tree cover >4m high and the variation in road surface lux is indicated 

by the yellow gradient.  Parallel transects (blue lines) were used to provide an 

indication of potential crossing routes, the distance of these routes and the maximum 

lux that they encounter (indicated by numbered circles).  Actual bat crossing routes 

(red arrow) were mapped based on surveyor (black circle) observations and 

confirmed based on camera (blue rectangle) recordings. 
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2.2 Gap crossing surveys 

In order to record crossing behaviour of P. pipistrellus, surveys were undertaken at 

each gap for a 1.5h period following dusk (c.f. Berthinussen & Altringham, 2012).  

Surveyors were positioned at either end of the gap and used Batbox Duet detectors 

(Batbox, UK) to be alerted to approaching bats.  As directionality of bat detectors is 

generally poor, it was necessary for surveyors to identify and record the crossing 

route of each bat, which was later digitised onto the GIS.  This species typically 

commutes at a height of 2.5-10m (Russ, 1999; Verboom & Spoelstra, 1999; 

Berthinussen & Altringham, 2012) and individuals were visible when crossing lit gaps.  

However, when bats crossed in groups or when dark gaps were surveyed, the 

crossing routes were confirmed using video recordings.  Two cameras were used: a 

Thermovision A20M thermal camera (FLIR systems, United States) and a DCR-

HC19E digital video camera (Sony, Japan) in NightShot mode, with additional near-

infrared (NIR) lighting provided by a 70 degree angle 850nm IR LED flood lamp 

(Camsecure, UK).  Such lighting is routinely used in bat surveys (Berthinussen &  

Altringham, 2012) and we found no research to indicate NIR sensitivity for any bat 

species.  The potential for mammals to sense NIR wavelengths has been raised by 

Newbold and King (2009) and the possibility of NIR lighting impacting bat behaviour 

should therefore not be excluded, although we emphasise that our research design 

was systematic across all sites.  Bat calls were recorded using a pair of AnaBat SD1 

frequency division bat detectors (Titley Scientific, Australia) positioned at either end 

of the gap, allowing each crossing event to be attributed to a species or species 

group.  Calls were identified in AnalookW (Corben, 2009) using bespoke filters (Hale 

et al., 2012).   
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2.3 Models for crossing behaviour 

Two analyses were undertaken to explore the response of bats to potential crossing 

routes that differed in their width and illumination level, using data from the gap 

crossing surveys.  The primary analysis sought to identify barrier thresholds for gap 

crossing, using logistic regression to estimate the probability of a barrier effect (c.f. 

Awade et al., 2012).  First, we created a single dataset of distance and lux values 

(referred to as the ‗crossing distance‘ and ‗crossing lux‘ respectively) for crossing 

events and failures.  For crossing events, these values were extracted from the GIS 

using the digitised crossing routes.  For survey gaps where no crossings were 

recorded, distance and lux data were extracted from the GIS using the gap transect 

lines.  As lux levels could be highly variable within a gap, we extracted the maximum 

lux value encountered along each crossing route or gap transect.  This data was then 

used to generate a series of binary logistic regression models in R 2.11.1 (R Core 

Team, 2010) as follows, using the MASS library (Venables &  Ripley, 2002).   To 

explore whether the level of illumination required for a barrier effect (the ‗barrier lux‘) 

varied with crossing distance, subsets of data were selected for modelling using a 

20m moving window (see Fig. 3 for examples).  The barrier lux was defined as the 

lux level required for a crossing probability of 5% or less.  The barrier lux and mid-

range distance from each logistic regression model were then used to model barrier 

lux as a linear function of crossing distance (henceforth referred to as the ‗barrier lux 

model‘) (Fig. 4).   

 

 



160 
 

     Figure. 3 

 

Examples of binary logistic regression models for the probability of gap crossing by 

P. pipistrellus at different lux levels.  Models are given for crossing distances of (a) 

20-40m, and (b) 60-80m.  The dashed lines indicates where the probability of 

crossing = 0.05. 

 

The second analysis aimed to explore whether the routes taken by bats crossing 

survey gaps differed from the typical values for the corresponding gaps, in terms of 

lighting and distance.  In order to highlight potential biases in crossing behaviour, 

values for the distance of each digitised crossing route were plotted against the 

median width of the gap being crossed, calculated using distance data from the 5 

gap transects.  Similarly, the lux of each crossing route was plotted against the 

median lux value of the gap being crossed.  
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                 Figure. 4 

 

Gap crossing successes and failures for P. pipistrellus.  For crossing events, the 

distance and maximum lux for each crossing route are plotted (blue diamonds).  For 

gaps where no crossing events were recorded the distance and maximum lux for gap 

transects are plotted (red squares). The dashed line represents an estimate of the 

barrier lux for any given crossing distance, generated using the linear regression 

equation from the barrier lux model. 

 

2.4 Spatial models for the impact of artificial lighting on landscape resistance 

Generating resistance surfaces is an increasingly popular way to provide quantitative 

estimates of how different environmental parameters such as land-cover type or 

human population density may impede animal movement (Zeller et al., 2012).  

Spatial environmental data are typically combined with biological data from surveys 

to generate cost surfaces that can be interpreted as maps of resistance/barriers to 

movement.  In this case, we created a resistance surface to represent the combined 

effect of distance from tree cover and illumination by artificial lighting on bat 

movement.  We generated this resistance surface for the city of Birmingham, as it is 
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within the broader West Midlands metropolitan county where our gap surveys were 

undertaken, and high-resolution lighting and tree cover data are available for the full 

extent of the city (Hale et al., 2012; Hale et al., 2013).  Our aim was to use the barrier 

lux model to generate a resistance surface by using rasters representing distance to 

tree cover and incident lux as input values for the model variables, from which we 

could classify the landscape into either accessible or inaccessible patches of land-

cover.  A key assumption within this model was that lighting would have no barrier 

effect on individuals of P. pipistrellus commuting along contiguous tree lines and 

woodland edges (c.f. Stone et al., 2012), but that lighting had the potential to act as a 

barrier to the crossing of open areas between tree cover.     

 

First, the ArcGIS Cost Distance tool was used to generate a 1m resolution raster 

layer for the entire city representing distance to the nearest tree cover >4m high.  In 

most cases the output raster values represented linear distance to tree cover.  

However, non-linear distance calculations were also permitted in order to recognise 

that euclidian distance measures would be inappropriate for locations where tall 

buildings would create a barrier to straight line flight at typical commuting height.  To 

achieve this, parts of buildings > 30m in height were selected from the 2008 

Ordnance Survey MasterMap (OSMM) land-use dataset and saved as NoData 

values within a 1m resolution raster layer.  All other raster cells were assigned a 

value of 1 and this layer was then used as an input cost raster as part of the cost 

distance calculations.  Next, the distance value attributed to each pixel was doubled 

to represent the minimal possible flight distance for a bat leaving and returning to tree 

cover via that pixel location.  This distance layer was then used to calculate the lux 
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level that would be required for a barrier effect at each pixel location, using the 

Raster Calculator tool to apply the regression equation from the barrier lux model to 

the distance value of each pixel value.  The resulting barrier lux layer was compared 

to a second layer representing incident lux (2009) for the entire city at 1m resolution, 

estimated from aerial night photography (Hale et al., 2013).  When the lux value for a 

pixel from the 2009 lighting dataset was equal to or greater than the corresponding 

pixel value within the barrier lux layer, the pixel was classified as inaccessible to our 

study species.  The resulting resistance surface was converted to a polygon layer 

representing zones surrounding urban tree cover that would be expected to be 

accessible to bats, based upon the lighting levels in 2009 (Fig. 5).  This process was 

repeated to generate resistance surfaces for two contrasting urban lighting scenarios.  

The first scenario was for a city without any lighting (the Dark City) and was intended 

to serve as a baseline model for the independent effect of the structural connectivity 

of tree cover on landscape resistance.  The second was for a heavily lit scenario (the 

Bright City).  This Bright City scenario used the 2009 lighting layer as a starting point, 

but the surface lighting values of all roads were increased to a minimum of 20 lux; 

representing a plausible but extreme scenario for future urban road lighting. 

 

  



164 
 

    Figure. 5 

 

Zones surrounding urban tree cover where the lighting levels are predicted to be 

insufficient to act as a barrier to movement for P. pipistrellus.  This was derived from 

a resistance surface generated within the GIS at 1m resolution, by applying the 

barrier lux model to a raster representing distance to tree cover (2006/7) and by 

comparing the output to a map of incident lux (2009).  Key: green = trees >4m, blue 

network = areas surrounding tree cover where lighting has no barrier effect, blue 

gradient indicates distance from tree cover, yellow = surface illuminance >20lx, grey 

= buildings, red dot = an urban pond used by bats for foraging.  Building outlines 

derived from OS MasterMap land-cover and land-use parcels reprinted from original 

mapping with permission from the Ordnance Survey (2008).  
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2.5 Habitat accessibility along an urban gradient 

Urban gradient analyses have been extensively used as a means for exploring the 

impact of ‗intensification‘ on species presence or abundance.  Such approaches are 

a practical response to concerns about the increasing density and extent of urban 

areas, yet as many ecologically relevant variables co-vary along such gradients 

(Hahs &  McDonnell, 2006), it is rarely clear how these variables combine to drive the 

ecological patterns observed.  The aim of this analysis was to use GIS analyses to 

explore how the landscape resistance resulting from variations in urban tree cover 

and lighting could impact habitat accessibility along a gradient of built land-cover.  

Sampling was centred on small ponds (maximum area 2000m2), as these are 

potential foraging sites for P. pipistrellus and are distributed throughout the city.   The 

underlying assumption of this analysis was that ponds would have greater value as 

foraging habitats if the surrounding landscape had low resistance to bat movement.  

All ponds within Birmingham were identified from OSMM land-use polygons using the 

GIS and each pond centre was buffered by 350m, a key spatial scale for predictive 

models of P. pipistrellus activity identified in an earlier study (Hale et al., 2012).  The 

percentage built land-cover within 350m of each pond was then estimated using 

OSMM polygon data and each pond was assigned to one of seven ‗density classes‘ 

ranging from a low density class of 10-20% built land-cover, to a class of ponds 

surrounded by between 70 and 80% built land-cover.  35 of these ponds were then 

selected for use in the gradient analysis, 5 from each density class.  A greater 

number of ponds could not be selected without causing uneven sampling, because 

few ponds were present in heavily built areas. 
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The polygon layer representing patches of land-cover predicted to be accessible 

under 2009 lighting levels was then clipped by a 350m buffer zone surrounding each 

pond and those patches that intersected the pond were retained (Fig. 6).  The total 

area of accessible land-cover connected to each pond was then recorded as a 

percentage of the total surface area within 350m of the pond.  This was modelled 

against the percentage built land-cover within the 350m buffer zone using a 

generalised additive model (GAM) in R 2.11.1, using the MGCV library (Wood, 2006).  

This process was then repeated for the accessible land-cover models generated for 

the Dark City and Bright City scenarios. 

 

            Figure. 6 

 

Two spatial models for areas of accessible land-cover within 350m (red circle) of an 

urban pond (red dot), under a Dark City scenario (blue) and a Bright City scenario 

(yellow).  In this example when no lighting is present 44% of the local landscape is 

predicted to be accessible from the pond, shrinking to 36% in the brightly lit scenario. 
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          Figure. 7 

 

 

(a) Maximum lux for bat crossing routes vs. maximum lux of the median gap transect.  

The line indicates where the crossing route lux and gap lux values are equal. (b) 

Distance of each crossing route vs. the median gap width (based upon gap 

transects).  The line indicates where the crossing route distance and gap width are 

equal.   
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3. Results 

3.1 Crossing behaviour 

The majority of the bats that were recorded crossing gaps were P. pipistrellus and 

therefore all results presented here relate to this species.  Individuals of P. 

pipistrellus were recorded in the vicinity of all survey gaps, but were only observed 

crossing 19 of the 27 gaps.  The lighting threshold for a barrier effect reduced with 

increasing crossing distance (Fig. 4), following the linear model: barrier lux = 

-0.46*crossing distance + 46.2, where the barrier lux is the lux value at which the 

probability of crossing is 5%.  The majority of bats (95.6%) selected crossing routes 

that were darker than the median gap lux value (Fig. 7a), indicating that bats were 

choosing to cross in the darker parts of gaps; whereas the length of crossing routes 

was not consistently larger or smaller than the median gap width (Fig. 7b). 

3.2 Landscape connectivity analysis 

Landscape resistance for P. pipistrellus varied within the City of Birmingham (Fig. 8a) 

along a gradient of built density (Fig. 8b), as a result of the fine grained arrangement 

of trees and lighting (S2).  When modelled using 2009 lighting data, accessible land-

cover was highest in areas where built surfaces account for less than 25% of the 

landscape, but dropped markedly when built land-cover was greater than 65%.  

Much of this effect is due to the abundance and arrangement of tree cover, although 

the impact of lighting is clear at higher built densities (Fig. 9). Compared to a Dark 

City model, lighting levels in 2009 further reduce the percentage of accessible land-

cover surrounding ponds by up to 5% in heavily built areas, and by up to 7% under a 

Bright City scenario (Fig. 9). 
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  Figure.8 

 

(a) A spatial model of areas within the City of Birmingham where accessibility for P. 

pipistrellus is not restricted (indicated by green networks) by artificial lighting levels 

present in 2009.  Accessible land-cover is poor in the urban centre and other highly 

built up areas, as well as at the rural fringe.  (b) Estimates of habitat accessibility 

along a gradient of built surface cover, based on measurements for 35 typical 

―foraging ponds‖.  Habitat accessibility is defined as the percentage of surface area 

within a 350m radius of each pond that the model predicts to be available to bats 

under a given lighting scenario, and that also intersects the pond.  Shaded areas 

represent 95% confidence intervals. 
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               Figure. 9 

 

The impact of lighting on the area of accessible land-cover connected to urban ponds 

under Bright (Red) and 2009 (Blue) city lighting scenarios, compared to the levels 

found under a Dark City scenario. 

 

 

4. Discussion  

Outdoor artificial lighting is one of many urban characteristics that are changing 

rapidly across the globe, yet relatively little is known about its unintended 

consequences for environmental wellbeing. There is a need for research to identify 

these potential impacts, and to contextualise the results in a way that allows 

mitigation to be targeted effectively.  Our analysis demonstrates that lighting can 

affect landscape resistance in cities, even for a species of bat (P. pipistrellus) that 

that has been recorded in many urban land-cover types (Gaisler et al., 1998; Hale et 
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al., 2012).  The greatest impacts on this species are likely to be in brightly lit areas 

where structural connectivity of tree cover is already low, characteristics typical of 

heavily built areas such as urban centres.    

 

4.1 Bats, connectivity and lighting 

There is a need to better understand those factors that influence the ability of 

organisms to move between resource patches and for tools that can predict the 

impacts of changes at a landscape-scale (Adriaensen et al., 2003).  Central to this is 

the recognition that functional connectivity of habitats is dependent on both 

landscape structure and individual behaviour (Tischendorf &  Fahrig, 2000).  To our 

knowledge, this is the first study to quantify the effect of lighting on gap crossing in 

bats and to explore how barrier effects may accumulate across a landscape.  

Distance thresholds for gap crossing have been identified in the field for groups such 

as birds (Creegan &  Osborne, 2005; Awade &  Metzger, 2008) and mammals (van 

der Ree et al., 2004) and then translated into maps of accessible habitat (Awade &  

Metzger, 2008).  However, few attempts have been made to model landscape 

resistance for bats (but see Frey‐Ehrenbold et al., 2013), or to integrate lighting into 

gap crossing models. 

 

Measures of tree/hedge connectivity have been used to model bat activity in both 

rural and urban landscapes.  A connectivity index for rural trees and hedgerows was 

developed by Frey‐Ehrenbold et al. (2013), and used to identify a positive association 

between connectivity and activity patterns for three bat guilds.  Their results indicate 

that the distance between patches impacts their likelihood of use.  In addition, a 
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connectivity measure used by Hale et al. (2012) found a significant effect of 

connected urban tree cover on bat activity, based upon the assumption that bats 

could cross gaps in tree cover of <40m.  In both cases the connectivity model was 

developed using weightings or distance thresholds chosen to broadly reflect what 

was known of the species movement ecology, although the results of this study 

suggests that the inclusion of lighting in such connectivity models could be beneficial.  

Researchers have also experimentally tested the effect of lighting on bat movement 

(e.g. Stone et al., 2009) and others have modelled the effect of lighting on the 

movement of nocturnal species by using street lamp locations to create spatially 

explicit lightscapes (Bennie et al., 2014b); however no studies have considered 

lighting thresholds for gap crossing.  Stone et al. (2009) used experimental lighting of 

rural hedge lines to disrupt movement for the relatively slow flying lesser horseshoe 

bat (Rhinolophus hipposideros), demonstrating a significant barrier effect.  In a later 

study (Stone et al., 2012) they found no effect of lighting on P. pipistrellus despite 

using similar illumination ranges to our study.  The study by Stone et al. (2012) differs 

to this study in two important ways: firstly in terms of the structural connectivity of the 

hedges/tree lines (continuous vs. fragmented), and secondly the landscape context 

(rural vs. urban).  It is possible that illuminating a tree line to 50 lux is insufficient to 

disrupt the commuting behaviour of P. pipistrellus, but that the creation of a similarly 

lit gap may be enough to deter crossing.  Moreover, it is possible that a small section 

of lit hedge in an otherwise dark rural landscape may be of little concern to the fast 

flying P. pipistrellus, whereas the perceived predation risk from crossing a lit gap in 

an already extensively lit urban area may be high enough to deter crossing.  
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4.2 Habitat accessibility and urban context 

Ecological studies along urbanisation gradients are relatively common and typically 

indicate a reduction in species richness or abundance at high levels of built density 

(McKinney, 2008).  However, given that many variables such as land-cover and 

disturbance co-vary (Hahs &  McDonnell, 2006; Hale et al., 2013) it is often unclear 

which underlying mechanisms are responsible for the ecological patterns observed 

(Threlfall et al., 2011).  Here we found that along a gradient of increasing built land-

cover, the area of tree canopy cover reduces whilst brightly lit surfaces increase (S2) 

and that these combine to increase the resistance to movement within heavily built 

areas.   

 

4.3 Implications for conservation 

Relating movement patterns to measures of landscape structure is desirable 

(Kindlmann &  Burel, 2008), particularly as habitat features are often easily mapped.  

However, it is clear that simple maps of contiguous habitat do not necessarily 

correspond to functionally connected areas (Tischendorf &  Fahrig, 2000) as 

individuals may move between habitat patches for a wide variety of reasons (Nathan 

et al., 2008), crossing a potentially hostile matrix in the process.  Networks of tree 

cover along with broader elements of ‗green infrastructure‘ are commonly recognised 

in urban planning policy as ‗wildlife corridors‘, although the evidence base for their 

efficacy is mixed (Angold et al., 2006; Gilbert-Norton et al., 2010).  Whether such 

structural features actually function to reduce landscape resistance has been a much 

debated question in landscape ecology (Beier & Noss, 1998).  Awareness of the 

potential impacts of habitat fragmentation (Kerth &  Melber, 2009) and lighting (Stone 



174 
 

et al., 2009) on bat movement has led to a range of mitigation practices, yet in some 

cases they appear ineffective (Berthinussen &  Altringham, 2012).  The ability to 

commute from roost to feeding areas is crucial to the survival of P. pipistrellus and 

commuting distances >1km are not uncommon (Davidson‐Watts &  Jones, 2006).  It 

is therefore plausible that restrictions on movement in parts of a city could have 

fitness impacts at the individual level, as well as limiting the size and extent of urban 

populations.  This highlights the need for a stronger evidence base to support work to 

protect and improve landscape permeability for urban bats.  Whilst bat roosts within 

the European Union are legally protected under the EU Habitats Directive 

(1992/43/EEC), the level of protection afforded to commuting routes is less clear 

(Garland &  Markham, 2007).  Analyses such as those presented here could support 

the development of related policy, by clarifying the likely location of commuting routes 

and the thresholds for their disturbance.  These results suggest that networks of 

urban trees support the movement of P. pipistrellus, even when they contain gaps of 

up to 80m.  However, it is clear that access to feeding habitats may be undermined 

by lighting within the surrounding landscape, even if the structural elements of the 

tree network remain unchanged.  Although the impacts of lighting demonstrated here 

are subtle, the approach used to characterise barriers was conservative and lower 

thresholds for identifying impacts on movement may be more appropriate for 

conservation purposes.  This is supported by the finding that individuals consistently 

crossed in the darker parts of the gap, even when those gaps were poorly lit, 

suggesting that all crossing events may be associated with costs (e.g. greater 

predation risks) that commuting individuals attempt to minimise.  The strategic 

dimming of lights in the vicinity of gaps, combined with the narrowing of gaps through 
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tree planting might therefore be reasonable conservation measures for this species in 

urban areas. Such an approach may also have benefits for other bat species that are 

even less tolerant of lighting such as Myotis spp (Stone et al., 2012).  However, the 

impacts on P. pipistrellus of a broader scale reduction in urban lighting may be more 

complex, given that this species is able to exploit concentrations of its insect prey 

surrounding individual lamps (Blake et al., 1994).  Species of bats may respond to 

gaps (Kerth &  Melber, 2009) and also lighting (Stone et al., 2012) very differently; 

therefore whilst this approach could be used to model the impact of lighting on 

landscape resistance for other species, further research is needed to identify 

appropriate threshold values.  Similarly, it is unknown whether the barrier lux model 

developed here is suitable for all individuals of P. pipistrellus, or for different times of 

the night.  Movement is a key component of functional connectivity and it is important 

to recognise that a range of factors may influence movement events.  Whilst patterns 

of tree cover and lighting appear to be important, further work is needed to identify 

how resistance may vary with different land-covers or the impact of habitat quality 

and social structure on movement decisions. 

 

The use of contrasting lighting scenarios to explore potential impacts on landscape 

resistance could be incorporated into practical conservation measures at a variety of 

scales.  Scenarios are commonly used in sustainability research and practice to test 

the resilience of infrastructure, communities, resources and natural systems to a 

variety of stressors (Nakicenovic &  Swart, 2000; Carpenter et al., 2006; Hunt et al., 

2012).  The ecological impacts of different scenarios for land-cover have been 

explored by other authors (Adriaensen et al., 2003; Kong et al., 2010; Sushinsky et 
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al., 2013) but we believe this is the first study that has explored the impacts of 

different urban lighting scenarios at the city scale.  This approach may be useful for 

exploring the impact of specific proposals for changes to urban lighting (Gaston et al., 

2012) or tree cover (Pincetl, 2010).  However, the limited knowledge of how these 

characteristics can change over time (Gaston et al., 2012; Gillespie et al., 2012) 

means that a broader sensitivity analysis may be required to identify network 

connections that are particularly vulnerable or resilient. 

 

Given the rapid changes underway in cities, urban biodiversity is often faced with 

multiple ecological disruptors that may be changing simultaneously; disentangling the 

impacts of these disruptors presents a major challenge.  For conservation to shift 

from a largely reactive to a more proactive approach, it must move on from detecting 

broad patterns in urban biodiversity to a more mechanistic understanding of the 

processes that drive them (McDonnell & Hahs, 2013).  The results of this study 

indicate that the structural connectivity of tree cover and the levels of lighting within 

the intervening matrix combine to affect gap crossing behaviour for a common urban 

bat.  In the case study city, this model predicts that as a result, habitat accessibility 

may reduce with increasing built density, although the potential exists for de-coupling 

this relationship in the future. This has implications for conserving urban biodiversity 

in cities that are becoming brighter and more densely developed. 
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Abstract 

Tree planting is widely advocated and applied in urban areas, with large-scale 

projects underway in cities globally.  Numerous potential benefits are used to justify 

these planting campaigns.  However, reports of poor tree survival raise questions 

about the ability of such projects to deliver on their promises over the long-term.  

Each potential benefit requires different supporting conditions - relating not only to 

the type and placement of the tree, but also to the broader urban system within which 

it is embedded.  This set of supporting conditions may not always be mutually 

compatible and may not persist for the lifetime of the tree.  Here, we demonstrate a 

systems-based approach that makes these dependencies, synergies and tensions 

more explicit, allowing them to be used to test the decadal-scale resilience of urban 

street trees.  Our analysis highlights social, environmental, and economic 

assumptions that are implicit within planting projects; notably that high levels of 

maintenance and public support for urban street trees will persist throughout their 

natural lifespan, and that the surrounding built form will remain largely unchanged.  

Whilst the vulnerability of each benefit may be highly context specific, we identify 

approaches that address some typical weaknesses, making a functional, resilient, 

urban forest more attainable. 
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Graphical abstract. 

 

 

1. Introduction 

Greening our cities might be thought of as the archetypal urban sustainability 

solution.  The potential of trees, in particular, to deliver a range of social, 

environmental and economic benefits is recognised by both researchers and 

practitioners, yet it is clear that the dynamic nature of urban areas may threaten the 

survival of trees to maturity and/or undermine their delivery of key benefits to society.  

Here we demonstrate an approach that: (i) integrates different disciplinary 

perspectives on the benefits and drawbacks of urban street tree planting, (ii) 

identifies system conditions upon which these depend, and (iii) tests the vulnerability 

of these conditions using contrasting scenarios for urban futures. 
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1.1. The benefits of urban tree cover 

In recent years a multitude of large-scale urban tree planting campaigns have been 

initiated in cities around the world (e.g. the New York City Million Trees program, the 

UK Big Tree Plant, and Global ReLeaf), and support for urban greening can be found 

at both local and national levels of government (Stewart et al., 2004, Kang and 

Cervero, 2009, James et al., 2009, Conway and Urbani, 2007, Petts et al., 2008, 

Escobedo et al., 2008, Young, 2011). Whilst the financial (McPherson et al., 1997) 

and natural resource (Pincetl et al., 2013) costs may be considerable, such planting 

programmes typically claim that a wide range of sustainability benefits will be 

delivered; including, but not limited to: building energy savings, improved air quality, 

carbon capture, increased biodiversity, improved water quality, and greater human 

health and wellbeing (McPherson et al., 2008, Young, 2011, Pincetl et al., 2013).  

Discipline-specific studies provide evidence to support these claims (Dwyer et al., 

1991, Akbari, 1992, Donovan et al., 2005, Currie and Bass, 2008, Escobedo et al., 

2010, Savard et al., 2000, Matteo et al., 2006, Price, 2003) and the broad 

identification, quantification and valuation of potential ecosystem services supplied by 

the urban forest has received substantial attention (McPherson et al., 1997, Xiao and 

McPherson, 2002, Nowak et al., 2008, Sander et al., 2010, Escobedo et al., 2011, 

Roy et al., 2012, 2008, Mullaney et al., 2015).  There are also drawbacks associated 

with increasing urban tree cover that need to be considered, typically referred to as 

disbenefits or disservices (Roy et al., 2012, Escobedo et al., 2011).  These include: 

health and safety risks (and associated fears), public nuisance (e.g. fallen leaves 

sticking to parked cars), financial costs from maintenance and infrastructure damage, 
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and environmental impacts relating to waste, pollutants and the introduction of pests 

(Roy et al., 2012). 

 

1.2. Threats to urban tree cover 

Tree cover within some cities has undergone periods of expansion and contraction in 

recent decades (Myeong et al., 2006, Gillespie et al., 2012, Díaz‐Porras et al., 2014, 

Merry et al., 2014), and the level of tree cover in several US cities has been found to 

be in decline (Nowak and Greenfield, 2012).  Estimates of annual tree mortality rates 

are highly variable (Roman and Scatena, 2011), with reported losses of 3% to >50% 

for newly planted street trees, depending on local land-uses and social influences 

(Nowak et al., 2004, Lu et al., 2010).  This raises the question of whether large-scale 

urban tree planting can succeed in delivering benefits over the long-term, given the 

impermanence of past urban tree cover.  A diverse range of factors influence urban 

tree survival, ranging from vandalism or removal of the tree itself, to restricted access 

to key resources such as soil moisture (TDAG, 2014).  Threats are also emerging or 

intensifying as a result of globalisation, urbanization, and population growth (Tubby 

and Webber, 2010, TDAG, 2014).  A recent review of the success of large-scale 

urban tree planting initiatives in the US points to the problem of uncertainties 

regarding long-term funding and political support (Young, 2011).  Future risks from 

factors such as pests, diseases and climate change have been addressed at many 

levels by researchers (Tubby and Webber, 2010), urban forestry and arboriculture 

professionals (TDAG, 2014), and regulatory organisations.  For example, the 

European Parliament is currently considering a revision of its Plant Health Regime to 

address concerns about emerging risks related to pests, diseases and the spread of 
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non-native species.  In addition, databases exist to help identify pests and diseases 

that are considered a risk to tree health (DEFRA, 2015) and to support more climate 

and disease resistant choices for urban tree planting (Forest Research, 2015).  

However, threats to trees associated with changes to the built form, urban 

governance and social values appear less well addressed. 

 

1.3. Contextual and temporal sensitivity of ecosystem services supplied by trees 

The nature and magnitude of the sustainability benefits delivered by urban trees can 

be strongly influenced by their urban context, in its broadest sense (e.g. their built, 

cultural, ecological or economic context).  It should therefore be recognised that 

large-scale urban tree planting projects may include a wide variety of planting 

locations and tree types, and involve a pool of stakeholders with different 

motivations, expectations and resources (Pincetl, 2010).  Recognising this context is 

important, as key biophysical processes can be influenced by local land-covers, land-

uses and social practices (Supplementary Information S1).  For example, 

transpiration and shade from trees can benefit people and infrastructure via 

summertime cooling (Akbari et al., 2001, Armson et al., 2012), but may be disrupted 

in situations where built infrastructure damages tree roots or where sealed surfaces 

reduce soil moisture levels (Mullaney et al., 2015).  The presence of receptor groups 

(beneficiaries) is also an important consideration.  For example, trees planted in 

residential neighbourhoods may deliver benefits through the cooling of houses in 

summer, which they would be unable to deliver if planted within other land-use types 

(McPherson et al., 2011).  In addition, the degree to which urban trees effect net 

urban carbon emissions depends not only on their size, health and species, but also 
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on the surrounding land-use, on the energy requirements of adjacent buildings and 

on how the resulting green ‗waste‘ is managed (McPherson and Kendall, 2014). 

 

Given that the benefits delivered by urban trees can vary depending on their context, 

what happens when this context changes?  Are some benefits particularly sensitive 

to future social, environmental or economic changes?  Redevelopment, densification, 

population increases and demographic shifts are common characteristics of many 

cities (Dallimer et al., 2011), potentially impacting the production and consumption of 

urban ecosystem services.  In addition, the ways that citizens value trees may 

change over time (Ordóñez and Duinker, 2010).  Even if the built and social context 

of an urban tree were to remain stable and supportive over the short term, some 

benefits may still take many years to accumulate (McPherson et al., 2011), as they 

often scale with the size or maturity of the tree (McPherson et al., 1997).  A key 

challenge is therefore to ensure that the potential benefits of urban tree planting are 

realized over the following decades and centuries, in the face of a complex, uncertain 

and changing urban context (Grimm et al., 2008). 

 

1.4. Trees, urban systems and resilience thinking 

Studies that consider threats to the longevity and performance of urban trees often 

focus on technical questions and solutions related to the tree itself, such as 

identifying planting techniques that will improve the chances of long-term survival and 

growth (Grabosky and Bassuk, 1995).  This reflects a broader pattern within 

sustainable urban forestry, to focus on technical and numerical standards related to 

the trees themselves (Ordóñez and Duinker, 2010).  However, a much broader range 



196 
 

of social, environmental and economic factors are clearly relevant to the persistence 

and functioning of urban trees (Young, 2011, Pincetl et al., 2013), as evidenced by 

the variability in tree cover and survival between land-use types (Nowak et al., 2004), 

built densities (Díaz‐Porras et al., 2014) and land ownership (Gillespie et al., 2012).  

There is therefore a need for approaches that can explore the current and future 

performance of the urban forest in a way which acknowledges its diverse range of 

values (Ordóñez and Duinker, 2010), and also the dynamic nature of the landscape 

within which these are embedded. 

 

Cities are complex, metastable systems with highly-coupled flows of mass, energy, 

people and capital (Pickett et al., 2001, Alberti and Marzluff, 2004).  Analyses of the 

risks to the ecosystem services supplied by urban trees must therefore recognise that 

trees are embedded within this broader ‗system of systems‘, and may benefit from 

identifying key system components, dependencies, processes and outputs.  For any 

given benefit to be sustained, a set of system conditions needs to persist, which 

extend beyond the simple presence of an urban tree (McPherson et al., 1997, Pincetl 

et al., 2013, Escobedo et al., 2011, Nowak and Dwyer, 2007, Conway and Bang, 

2014).  A culture of planting ‘the right tree in the right place‘ recognises the 

importance of context and is clearly embedded in the psyche of many arboriculturists 

and foresters (TDAG, 2014, James et al., 2012).  However, systematic recording and 

analysis of these contextual dependencies and their vulnerability has thus far been 

absent. 
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Addressing sustainability challenges within urban areas typically requires the 

integration of a variety of perspectives within analyses and decision making, and 

calls have been made for more interdisciplinary research and collaboration in relation 

to urban ecosystems (James et al., 2009, Ahern, 2013).  However, such 

interdisciplinary collaboration in both research and practice can be extremely 

challenging (Boyko et al., 2014, Petts et al., 2008, Pincetl, 2010).  ‗Resilience‘ is a 

concept that can be used to stimulate interdisciplinary research, to support 

understanding, management and governance of complex linked systems of people 

and nature, and to guide development pathways in changeable and uncertain 

environments (Folke, 2006).  Resilience has multiple definitions, but here it is used to 

mean continuity in the desirable aspects of system performance, despite disturbance 

or re-structuring of the system itself.  When applied to sustainability in cities it helps 

to emphasise the inherent instability of urban spaces and their uses, and that the 

performance of an idealized sustainable urban form may depend on its capacity to 

tolerate, adapt, or even to provoke change (Ahern, 2013).  An urban tree could 

therefore be conceptualised as being part of, and intimately linked to, a broader 

socio-economic and biophysical system, which if disturbed sufficiently may prevent 

the tree from delivering key benefits to society.  Using the concept of resilience to 

frame a discussion about risks to urban tree performance also helps to highlight the 

difference between the intervention (i.e. the planting of a tree), its intended benefits 

and the conditions upon which these benefits depend.  Distinguishing the intervention 

from its intended benefits makes explicit that it is the benefits that the tree delivers 

that need to be resilient, even if the tree itself and the urban system within which it is 

embedded undergo changes in the future.   
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This study aims to illustrate an approach that can be used to integrate different 

perspectives on the risks to the long-term performance of urban tree cover, and to 

provide insight into the resilience of potential benefits associated with street tree 

planting in the UK.  We apply a recently developed method for analysing urban 

‗sustainability solutions‘ (Lombardi et al., 2012, Rogers et al., 2012) that: (i) explicitly 

pairs a sustainability solution (in this case urban street tree planting) with its intended 

benefits; (ii) identifies system conditions necessary for the delivery of each benefit 

and (iii) uses future urban scenarios to systematically test the vulnerability of these 

conditions.  

 

We conclude that the potential benefits of urban street tree planting are often 

dependant on the presence of system conditions related to the level of tree 

maintenance, public values, local government policies, and the density and 

configuration of the surrounding built form.  Key conditions may not persist within 

future urban scenarios where market forces are more dominant, where individualist 

attitudes prevail or where poverty and inequality are high.  We suggest that resilience 

might be increased by broadening planting locations to include private green spaces 

immediately adjacent to streets and improving the co-management of street trees by 

individuals, NGOs and municipal departments.  This could be supported by the 

introduction of market-based systems to incentivise the participation of a broad range 

of stakeholders in the long-term protection and management of urban street trees.  In 

addition, planting techniques that reduce the need for supplementary watering, 

reduce maintenance requirements, isolate roots from potentially polluted urban soils 
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and that facilitate transplantation, have the potential to improve the resilience of 

urban street tree benefits. 

 

2. Materials and Methods 

2.1. Diverse perspectives on threats to the benefits of urban street trees 

In order to explore how urban street tree performance might become vulnerable over 

time we followed steps 1-4 of the Designing Resilient Cities Method (Lombardi et al., 

2012, Rogers et al., 2012, Pugh et al., 2012), as outlined at 

www.designingresilientcities.co.uk.  At the heart of this method is the recognition that 

cities are complex systems and that the success of urban interventions may depend 

on multiple factors.  It is therefore desirable to seek input from a broad range of 

perspectives at each methodological step (Fig. 1).  In the present case, we sought 

UK practitioner input from experts in the fields of architecture (Royal Institute of 

British Architects), town planning (Lancaster City Council) and the built environment 

(Building Research Establishment), via workshops led by members of the Urban 

Futures project (Rogers et al., 2012).  Participants were invited to question the 

resilience of specific development proposals (Hale and Sadler, 2012) or previously 

implemented solutions (Lombardi et al., 2012), and to identify conditions upon which 

their performance depended.  Participant numbers ranged from approximately 20-40 

and were selected by making contact with professional groups/institutions and local 

municipalities.  Our final workshop included the entire Urban Futures academic team 

and covered the following disciplines: Forestry, Air Quality, Design, Architecture, Civil 

Engineering, Spatial Planning, Environmental Psychology, Human Geography, 

Ecology, Utility Services and Economic Development.  At this workshop, participants 
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drafted a formal list of the intended benefits of urban street tree planting and 

associated necessary conditions, drawing upon the outcomes of earlier workshops, 

as well as their own knowledge from related research and practice.  This draft list 

was then circulated for comments to a wider pool of academic and practitioner 

project partners. 

 

  Figure 1.  

 

An overview of key steps within the methods. 
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2.2. Urban street trees and their intended benefits 

The first step within this methodology is to clearly define the ‗sustainability solution‘ 

that is being tested and to state explicitly its intended benefits.  Tree planting within 

urban areas can be highly varied, from commercial forestry within a large temperate 

park to amenity planting within the business district of a tropical city.  We therefore 

narrowed the scope of our analysis by analysing a generic solution of planting a 

single street tree within a UK urban area.  We define a street tree as any tree 

growing immediately adjacent to a road.  In the UK such trees are often planted in 

pits dug directly into the paved pedestrian walkway that runs parallel to the road.  

Previous authors have identified a need for increased planting within UK cities (Britt 

and Johnston, 2008) and urban greening has received considerable support at the 

UK government level over recent decades (Tubby and Webber, 2010).  In addition, 

urban street trees are associated with a large set of benefits and challenges (Dandy, 

2010, Mullaney et al., 2015) that would be interesting to explore from a systems 

perspective.  This solution was considered broad enough to capture many of the 

likely threats to urban tree performance, whilst providing sufficient context to make 

the results useful to those addressing concerns about the legacy of today‘s urban 

planting initiatives. 

 

Urban street trees are multi-functional (Mullaney et al., 2015), and are therefore 

introduced or retained in cities for a variety of reasons, by a variety of actors (TDAG, 

2014).  This multi-functionality is both desirable and unavoidable, but it may also 

create confusion about which ecosystem services a particular street tree is being 

managed to deliver, and which services should be prioritised.  We developed a list of 
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potential benefits and drawbacks associated with urban street tree planting, based 

upon group discussions and workshops, claims within publicity material for large-

scale urban tree planting initiatives and evidence from the academic literature (S1), 

and then screened these to ensure their relevance to UK urban areas.   

 

2.3. Necessary system conditions 

Next, we identified conditions that would need to be in place in order for each of 

these benefits to be delivered, and for key drawbacks to be avoided.  These 

‗necessary conditions‘ can be as simple as the continued presence of a tree, or as 

specific as a particular type of on-going maintenance.  For example, street trees 

planted adjacent to a building can reduce heating requirements during cold weather, 

on the condition that they are an evergreen species and that they are positioned so 

as not to inhibit possible solar gain.  For each intended benefit, the necessary 

conditions were initially identified through group discussions and workshops, followed 

up by literature searches.  This process of identifying necessary conditions is 

subjective and partial, given the many dimensions of the urban system; furthermore, 

outcomes will be influenced by the professions and disciplines contributing to the 

process.  However, it has the advantage that assumptions about dependencies are 

made explicit and recorded.  Revision in light of new data is straightforward and 

indeed recommended.  Care was taken to avoid duplication and overlap as much as 

possible (i.e. listing a condition that implicitly includes another listed condition), 

although this is difficult to eliminate completely when considering such a complex 

system.  Whilst it would not compromise the efficacy of the methodology, avoiding 

duplication is important, both for simplifying the analysis and for clarifying thinking 
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about which characteristics of the urban system are most relevant.  The list of 

benefits, drawbacks and associated necessary conditions was then arranged as a 

matrix, similar to the score-matrix method used to support design decision-making in 

engineering.  This benefit-condition matrix was used to identify particular conditions 

that were necessary for certain benefits to be delivered, conditions that might be 

required only in particular contexts, and those which had the potential to compromise 

the delivery of other benefits.  This process facilitates the identification of synergies 

in, and tensions between, delivering multiple benefits from urban street tree planting.  

The literature evidence base to support this analysis is given Supplementary 

Information S2. 

 

2.4. Scenario-based resilience analysis 

We then undertook a scenario-based resilience analysis to identify those necessary 

conditions that might not be supported in the future, and to make the reasons for their 

vulnerability more apparent.  Four plausible and internally consistent scenarios for 

UK urban areas in 2050 were considered, derived from a broader scenario set 

developed by the Global Scenarios Group (Gallopin et al., 1997).  The broad 

characteristics of these four global scenarios were retained (Fig. 2).  However, as 

part of the Urban Futures project (Lombardi et al., 2012) their characteristics were 

adapted and expanded to make them more relevant to UK urban areas, covering 

themes such urban form, natural environment, technology, policy, governance, social 

values and economy.  These urban UK scenarios had been created to allow for the 

pressure-testing of sustainability solutions against an uncertain future (Boyko et al., 

2012, Rogers et al., 2012).  Such scenarios are distinct from predictions, 
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extrapolations or any other formal forecasting method (Carpenter et al., 2006, Hunt et 

al., 2012) and have the advantage that they allow for the inclusion of shocks, phase 

changes and tipping points that can occur within complex socio-ecological systems 

(c.f. Carpenter et al., 2006, Fischer-Kowalski and Haberl, 2007, Renaud et al., 2010).  

Whilst climate change is considered here, its nature is identical within each scenario.  

However, its impacts on urban trees may vary between the urban scenarios 

depending on their capacity to respond to this threat.  The use of multiple urban 

scenarios recognises that the future cannot be predicted with any degree of certainty, 

whilst still providing a framework for exploring whether solutions put in place today 

could still function within a future that we may not necessarily expect or desire.  The 

combinations of drivers that underpin these scenarios are intended to differ from 

those typically found within UK cities and in some cases they result in radically 

different visions of the future.  These scenarios can be mapped to fall along a 

gradient of social values that range from an individual to a community focus, or a 

gradient that ranges from an open and globalised economy to one that is much more 

localised (Hunt et al., 2012).  We contend that together these scenarios define the 

boundaries of a likely plausibility space for UK urban areas in 2050.  The future 

scenarios we used are described briefly below, with further details provided in Boyko 

et al. (2012).  The scenario characteristics we consider particularly relevant to urban 

trees are given in Supplementary Information S3. 

 

(a) Policy Reform (PR). Government action attempts to reduce poverty and social 

conflict within the confines of a globalized free market.  Individual behaviours are 

slow to move from materialistic self-interest although it is widely accepted that 
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markets require strong regulation to avert economic crisis, social conflict and 

environmental degradation.  Tensions continue to grow between continuity of the 

dominant social values and the desire for greater equity to address key sustainability 

goals. 

(b) Market Forces (MF).  There is strong belief in the ‗hidden hand‘ (i.e. self-

correcting logic) of the free market as key to resolving social, economic and 

environmental problems. Individualism and materialism are core human values.  This 

scenario assumes that the global system in the twenty-first century evolves without 

major surprise.  Incremental market adjustments have (so far) been able to cope with 

major social, economic and environmental problems as they have arisen.  

(c) Fortress World (FW).  As a result of the (partial) breakdown in world order, 

powerful and self-interested actors protect their resources whilst an impoverished 

majority are (literally or effectively) disenfranchised and live in ghettos.  In this divided 

world, the elite live in an interconnected network of enclaves and the impoverished 

majority scratch a living outside.  Armed forces impose order, protect those parts of 

the environment valued by the elite, and prevent complete collapse of society. 

(d) New Sustainability Paradigm (NSP).  An ethos of sustainability (of ‗one-planet 

living‘), has taken root throughout society, bringing with it a fundamental questioning 

of materialism.  New socio–economic patterns follow from these fundamental 

changes in values.  In order to maintain global communication and economies of 

scale, cities are transformed rather than abandoned or replaced. 

 

  

 



206 
 

   Figure 2.  

 
Broad characteristics of the future scenarios used within this analysis.  Edited and 

reproduced with permission of Gallopin et al. (1997).   

 

For each necessary condition, we searched the database of scenario characteristics 

for those that were deemed to be most relevant.  The characteristics of each 

scenario that were considered to either support or undermine each necessary 

condition are given in S3.  Using these characteristics, we deduced whether each 

necessary condition was likely to be ‗Vulnerable‘, ‗Partially Vulnerable‘ or ‗Supported‘ 

within a particular scenario.  The classification of ‗Partially Vulnerable‘ was used 

where a condition was considered likely to be supported in some urban contexts but 

not in others, within the same scenario.  By using multiple scenarios with a wide 

range of characteristics, we were able to subject the necessary conditions to a much 
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more rigorous test of vulnerability than would be the case if only current conditions, 

or those conditions pertaining to predictions for a single future scenario, were 

considered. 

 

Finally, the results of this scenario analysis were interpreted in terms of resilience.  

Those benefits whose necessary conditions were found to be vulnerable under a 

range of future scenarios were identified as potentially lacking resilience.  Options for 

addressing these vulnerabilities are explored in the discussion. 

 

3. Results  

3.1. Necessary conditions 

Overall, the most common conditions that were identified as being necessary for 

delivering particular benefits were those that related to the presence and health of 

the street tree (Table 1), such as access to sufficient light and water.  Other 

frequently identified conditions were that that the tree is large or mature, that high 

levels of canopy cover exist in the surrounding urban area, that the tree is maintained 

for amenity, that people are present nearby, and that the tree is visually accessible to 

the public.  However, several conditions that are necessary for delivering one 

intended benefit are considered likely to undermine the delivery of other benefits.  

These conditions include those that relate to the presence of a large or mature tree, 

the presence of large-scale tree cover, the tree being maintained for wildlife, the 

surrounding area being built to high-density and the tree being physically accessible 

to the public.  As a result, it is clear that delivering any of the benefits considered 

here has the potential to undermine other benefits, or to result in drawbacks. 
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3.2. Scenario analysis 

When subjected to the scenario based resilience analysis, all necessary conditions 

were considered to be vulnerable to some degree and most were found to be at least 

partially vulnerable within three of the four future scenarios (Table 2).  These 

vulnerabilities are most evident within the Market Forces (MF) and Fortress World 

(FW) scenarios, where economic and security interests (respectively) are prioritised 

over environmental concerns.  Several conditions relating to the species of street tree 

appear to be particularly vulnerable.  Even in the Policy Reform (PR) and New 

Sustainability Paradigm (NSP) scenarios where careful consideration is given to the 

most appropriate tree species for a particular location, the large-scale replacement of 

street trees with more appropriate species is unlikely to take place.  This means that 

the species of street trees planted as part of current initiatives are those that would 

broadly be expected to be present in 2050, under these scenarios.  In addition, within 

the MF and FW scenarios, the species of tree that are retained and planted are likely 

to be those that happen to be in fashion or that have particular value in terms of 

timber or fuel.  Other conditions which appear particularly vulnerable are the 

continued presence of a street tree at the original planting site, the tree‘s roots not 

spreading excessively, its maintenance to benefit wildlife and its structural 

connectivity to a broader tree network.  Whilst a necessary condition may be 

vulnerable in several scenarios, the reasons for this were not always the same.  For 

example, the structural connectivity of tree networks may not always be supported 

within the PR scenario because high-density land redevelopment to deliver key social 

goals takes priority over environmental concerns.  In this scenario, tree networks may 
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become structurally fragmented as policies are implemented to achieve a more 

compact urban form and to deliver new public transport systems.  Although policy 

would specify the need for mitigation, trade-offs would be expected where 

infrastructure projects have a particularly high social value.  Tree networks may also 

be removed in the MF scenario, but for different reasons such as the avoidance of 

damage to built infrastructure, the reduction of litigation risks and the widening of 

major transport corridors.  The protection and management of urban tree networks is 

also less likely within the FW scenario, in which a ‗tragedy of the commons‘ has 

unfolded within much of the city; street trees in many areas are illegally taken for 

timber and fuel by the impoverished citizens, with the government unable or unwilling 

to prevent this. 
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Table 2.   

Necessary Conditions 

Future scenarios 

PR MF FW NSP 

Species is native * * * * 

Species is a low VOC emitter * * * * 

Species is evergreen * * * * 

A tree is still present * * x  

Lateral root spread is not excessive * x x  

Tree is connected to a broader tree network * x x  

Tree is maintained for wildlife * x x  

Tree is not in a street canyon with busy road * * x  

Tree is maintained for amenity *  * x 

Consistent water supply for healthy growth * * *  

Root growth not substantially impeded * * *  

Tree's access to light maintained * * *  

Tree is large or mature * * x  

High canopy * * x  

Tree is part of a densely-vegetated barrier * * x  

No persistent noise * * *  

No artificial lighting * * *  

Tree blocks solar access to building * * *  

Surrounding area built to high-density  * * * 

Tree does not overhang road or pavement *   x 

Low stress from air pollution  * x  

Low stress from soil pollution  * *  

Tree is physically accessible to public  * *  

Tree is growing in a pervious surface  * *  

Tree is visually accessible to the public  * *  

People are present nearby  *  * 

Large-scale tree cover across urban area   x  

A summary of the results of the scenario based resilience analysis.  Those necessary 

conditions considered vulnerable within a particular scenario are marked with ‗X‘ in 

the corresponding column.  ‗*‘ represents those considered partially vulnerable, whilst  

‗‘ is used to indicate where a condition is likely to be supported.  PR = the Policy 

Reform scenario, MF = Market forces, FW = Fortress World, NSP = New 

Sustainability Paradigm. The scenario characteristics used to support this analysis 

are given in S3.   
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4. Discussion 

The analysis presented here is based upon a generic proposal to plant a single street 

tree within an urban area in the UK, and would therefore need to be adapted for a 

more specific planting proposal and for a particular geographical location.  The 

outcomes of the analysis are also sensitive to the variety of disciplines involved in 

identifying key benefits and their dependencies, and to how they interpret the 

scenario characteristics.  Our aim was to consider the broad range of benefits that 

might be derived from urban street trees in the UK and to capture the diverse system 

conditions upon which they depend over time.  There is evidence that studies of 

ecosystem services tend to focus on biophysical or economic dimensions and much 

less on socio-cultural services and drivers (Menzel and Teng, 2010, Martín-López et 

al., 2012).  To a great extent this bias results from the difficulty in quantifying the 

latter.  We argue that by ensuring a range of disciplinary ‗voices‘ were at the table 

and that by using highly contrasting future scenarios, we forced a broader 

questioning of the social, technological, economic, environmental and political 

dependencies.  However, we acknowledge that our analysis may still be limited by 

deficiencies or biases within academic and practitioner knowledge.  This is a 

fundamental problem in the study and synthesis of complex systems.  This 

knowledge gap has been recognised and participatory research processes have 

been proposed as one mechanism for improving our understanding the social-

cultural dimension of ecosystem services (Menzel and Teng, 2010).  Despite these 

caveats, the outcomes are considered to be broadly indicative of how the benefits 

delivered by urban street trees might be vulnerable to loss over time. 
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4.1. Benefits, Necessary Conditions, Synergies and Tensions 

The variety of necessary conditions, synergies and tensions identified in Table 1 

illustrates both the diversity of factors that may influence street tree performance and 

the complexity of the urban system within which they are embedded.  It raises 

questions about whether urban tree planting programs are able to realise such a 

broad range of intended benefits in the short term, and then to sustain them until 

2050, a timeframe that is still significantly less than the potential lifespan of most tree 

species planted in urban areas. 

 

We find that environmental benefits, which are often cited as the rationale behind 

urban greening programmes due to the relative ease of their monetisation, depend 

on system conditions which are not always mutually compatible. For example, using 

a street tree to reduce summertime air temperatures and to cool an adjacent building 

(via shading), may conflict directly with a desire to warm the building in winter, should 

the shading limit solar gain.  Likewise, whilst it is desirable to block cool air flows in 

winter, the opposite may be desired in summer in continental climate zones. This 

clash has long been recognised in urban tree planting literature (McPherson et al., 

2008), where it is recommended that deciduous trees be used for shade, and 

evergreen trees be used to provide wind shelter along the northern perimeter of a 

building (in northern hemisphere sites), providing an example of how tensions can be 

resolved by careful planning, as long as such benefit trade-off information is recorded 

and built into management plans.  Spatial incompatibilities of intended benefits may 

also occur in areas such as busy street canyons, where street trees may be effective 

at providing useful shade and reducing perceptions of overcrowding, yet perform 
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poorly in relation to air quality, where they can trap air pollutants emitted within that 

canyon, increasing population exposure (Gromke et al., 2008).  This may be at least 

partially resolved by high levels of canopy thinning (Jin et al., 2014), although 

pruning, combined with street noise, lighting and moving vehicles would be expected 

to undermine many of the tree‘s potential biodiversity benefits (Forman and 

Alexander, 1998).  Such synergies and tensions are however not universal, and 

careful analysis of the local context can reveal ways to reduce some potential 

conflicts.  For example, in a busy street canyon where only electric vehicles were 

permitted or where trees are heavily pruned, conflicts between improving air quality 

and delivering shade would be much reduced.  

 

What we broadly term as ‗social‘ benefits, such as: creating desirable environments 

for recreation and health, improving urban aesthetics, increasing residential and 

business property values, increasing inward investment in the area and decreasing 

perceptions of overcrowding, are often compatible with each other.  However, the 

conditions that support social benefits are often incompatible with those necessary 

for ecological benefits, such as providing an effective feeding resources for urban 

bird and bat communities.  This incompatibility is partly due to the more aggressive 

maintenance that trees in streets tend to be subjected to (e.g. the removal of insect-

rich standing dead wood (Tyrväinen et al., 2003)), which is also linked to how local 

communities value different forms of tree cover (Dandy, 2010, Conway and Bang, 

2014).  In addition, trees in areas of high population density are at risk of being 

subjected to artificial lighting and noise, which are known to have negative impacts 

on urban invertebrates, birds and mammals (Forman and Alexander, 1998, Parris 
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and Schneider, 2009, Gaston et al., 2013, Hale et al., 2015).  As a result, tensions 

between social and ecological benefits would be expected to make street trees 

vulnerable to removal/functional simplification under certain future scenarios. 

 

4.2. Scenario analysis and resilience implications 

Scenarios have been used in a variety of ways to consider how ecosystems and the 

services they provide might change in the future (Carpenter et al., 2006, Metzger et 

al., 2008, Bateman et al., 2013, Deal and Pallathucheril, 2009) although this 

approach has rarely been applied at the city or sub-city scale (c.f. Perino et al., 

2011).  Their purpose here was to broaden the debate about urban street trees and 

resilience, to include not only threats that are expected to increase over time (e.g. 

climate change, pests and diseases (Tubby and Webber, 2010)), but also socio-

political changes that may be much less predictable.  Many of these scenario 

characteristics can be recognised in urban areas around the world.  The contrasts 

between these scenarios can be used to highlight and question the implicit 

assumption within today‘s urban planting proposals that key urban conditions will 

persist.  For example, the initiation of ‗Million Tree‘ planting schemes by politicians 

implies that there is currently broad public support for large-scale urban tree planting, 

yet public attitudes to urban trees are highly variable (Dwyer et al., 1991, Zhang et 

al., 2007, Pincetl, 2013, Conway and Bang, 2014).  In this case, our scenario 

analysis helps provide a structure for questioning whether key benefits would be 

sustained if local people become less supportive of urban street trees in the future.  

Some planting initiatives also appear to depend on broad public involvement, as they 

rely in part on residential and other private land owners for providing planting sites 
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and subsequent tree maintenance (Gillespie et al., 2012, Pincetl, 2013).  In a future 

where the management responsibilities for urban street trees shifts further from the 

municipal to the individual level, long-term success may well depend on a sustained 

shift in public attitudes regarding responsibilities for urban tree stewardship (Moskell 

and Allred, 2013) and on improved participatory democracy in the form of a 

greater/more formal integration of volunteers into city management functions (Pincetl 

et al., 2013).  Similarly, given that funding for the maintenance of urban trees is often 

considered inadequate (McPherson et al., 1997, Dandy, 2010) and likely to be further 

reduced in many areas in the context of fiscal austerity (Rotherham, 2010, Young, 

2011, Pincetl, 2013), our methodology prompts the user to consider whether current 

planting strategies and techniques are sufficient to ensure that street trees planted 

today could survive in a future where maintenance budgets were virtually non-

existent. 

 

The vulnerabilities identified during this process might be addressed in a variety of 

ways; our analysis aims to initiate a broad-based discussion about potential risks to 

the long-term delivery of urban ecosystem services and to help structure the 

response.  Essential to this is the recognition that urban trees are part of a complex 

social-ecological system (Pincetl et al., 2013) and that their delivery of benefits over 

the long-term relies on more than simply the persistence of the trees themselves.  

Broad strategies proposed for improving resilience in cities include maintaining high 

response diversity, multi-functionality, redundancy and decentralisation (Ahern, 

2013).  These themes are explored within the sections below, with suggestions for 

areas of future research.  Our analysis highlights three classes of system conditions 
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which appear to be particularly important: (i) retention and survival to maturity, (ii) 

large-scale planting and (iii) social context.  We discuss vulnerabilities and the 

resilience implications for key benefits below. 

 

4.3. Retention and survival to maturity 

The presence of a tree is a self-evident requirement for the delivery of each benefit 

(Table 1) and it is therefore unsurprising that various forms of direct protection for 

individual street trees are commonly put in place within UK urban areas (Dandy, 

2010, TDAG, 2014) and elsewhere.  However, from this analysis street trees are still 

considered to be vulnerable to removal within their natural lifespan, either directly or 

via the degradation of key growing conditions; in some scenarios these trees may not 

be replaced (Table 2).  Retention of tree cover over long time periods by the 

replacement of dead trees (MillionTreesNYC, 2013) might help to improve the 

resilience of some benefits.  However, many benefits are most effectively delivered 

by large or mature trees, as they are often highly visible, can have disproportionally 

high ecological value (Le Roux et al., 2014), and exert a considerable influence over 

microclimates.   

 

Long payback periods may be required before the benefits of urban trees have 

covered the initial costs of planting (McPherson et al., 1997), yet half of urban street 

trees may die before they reach 13 to 20 years old (Roman and Scatena, 2011).  

Those trees that do survive to maturity can generate a variety of tensions in urban 

areas (Table 1, Carpaneto et al., 2010, Dandy, 2010, Conway and Bang, 2014), 

creating pressure for their removal.  There is a perception amongst practitioners that 
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large street trees are already being lost in UK urban areas (Dandy, 2010, Rotherham, 

2010) and such trees appear even more vulnerable under the MF and FW scenarios 

(Table 2).  Key drivers for tree loss, restricted growth or periodic replacement include 

direct impacts from climate change (MF, FW), pests and disease (MF, PR), 

competition for space within high-density developments (PR, FW, NSP), and 

concerns about the costs of infrastructure damage (MF), litigation (MF), health 

impacts (MF, PR) and maintenance (MF).  This implies that to reduce the risk of tree 

loss, careful attention should be given to the precise location of planting.  Areas to 

avoid are sites where threats to public safety might reasonably be expected now or in 

the future, where high densities of utilities are present/expected, or where physical 

(re)development is a realistic risk during the natural life-span of the tree.  Resilience 

to climate and disease impacts will also be increased by ensuring a diversity of 

genotypes, species and genera are planted (TDAG, 2014).  This ‗response diversity‘ 

can be achieved through an approach that identifies ecological niche function and 

that selects several species that deliver similar benefits, but that respond differently 

to shifts in growing conditions, pests and anthropogenic pressures.   

 

In some cases, more fundamental changes to how urban trees are valued, owned 

and managed may be required (Rotherham, 2010, Young, 2011).  In a future where 

market forces dominate, high land-values combined with the risks posed to valuable 

built infrastructure may create pressures to remove urban street trees that social and 

governance systems are unable to resist.  Resilience might therefore be improved 

through the development of market-based systems that enable the multiple functions 

of an individual street tree to be better captured within decision-making processes.  
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Payment for ecosystem services (Salzman, 2005) has been proposed as a tool for 

their management in urban areas (TEEB, 2011) and long-term funding for non-profit 

and community actors has been identified as an important route for securing the 

stewardship of urban trees (Young, 2011).  However, we found no evidence that 

market-based systems have been considered as a tool for increasing the resilience 

of any of the large-scale urban tree planting initiatives listed in S1.   

 

The availability of sufficient water and root space are also key conditions that must 

be sustained in order for urban street trees to reach maturity, both in terms of 

promoting tree growth and avoiding conflicts from the lateral expansion of their roots.  

Protecting these conditions may be challenging in a future where the local built 

density has broadly increased (PR, FW, NSP) or where the levels of protection and 

maintenance for urban trees have declined (MF, FW).  However, technical solutions 

implemented at the time of planting could provide some resilience, such as the use of 

dedicated soil cells, suspended permeable pavements and the integration of planting 

sites with surface water drainage systems (TDAG, 2014, Mullaney et al., 2015).  In 

addition, planting techniques that make the likelihood of future translocation more 

successful may provide useful flexibility.  This decentralised approach may help to 

isolate individual trees from broader changes to the water table and pollutants within 

urban soils.  Whilst such solutions may not be practical for all urban planting 

situations, they may be cost-effective for high-value trees in high-density locations 

where large numbers of people may benefit and where the potential costs of damage 

to built infrastructure are considerable. 

 



221 
 

4.4. Large-scale tree cover 

Several benefits that are claimed for urban tree planting require the presence of 

large-scale canopy cover in order to be effective, e.g. CO2 assimilation, providing 

feeding resources for wildlife, and reduced stormwater runoff.  In effect, the planting 

of a single street tree will have little impact on delivering these benefits if it is located 

within a landscape that is largely devoid of tree cover.  Our futures analysis shows 

that although in most scenarios large-scale urban tree cover is maintained, 

considerable changes might be expected at the neighbourhood scale.  Losses are 

likely in scenarios where infill development is common and where redevelopment 

typically occurs at higher built densities (PR, FW, NSP), and in poorer 

neighbourhoods where the maintenance of urban trees has become less of a priority 

(MF, FW).  Large-scale planting also greatly increases the chances of drawbacks 

being realised (Table 1), with the potential for economic and social costs due to 

infrastructure damage, litigation and health impacts.  Once again, improved methods 

for capturing the value of key benefits within economic and governance systems 

(James et al., 2009) may incentivise the retention of broad-scale tree cover, under 

scenarios where markets have greater power and where social attitudes to the 

environment are less supportive.  High tree species diversity at the neighbourhood 

scale, as well as a large number of nodes within tree networks may also provide 

useful ecological redundancy, ensuring that alternative feeding resources and 

dispersal routes exist for bird and bat communities, should some be lost over time. 
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4.5. Social context 

For many of their potential benefits to be delivered, urban trees need to be located 

near to people, yet trees can also result in a range of negative impacts on human 

wellbeing (Dwyer et al., 1991, Roy et al., 2012).  Our analysis highlights the added 

complication that the magnitude of some social costs and benefits could vary over 

time and may be highly sensitive to changing social values (Ordóñez and Duinker, 

2010).  In a future scenario where market forces dominate (MF) or consumerist and 

individualist attitudes prevail (MF, PR, FW), street trees are vulnerable to removal if 

the (perceived) risks to health, safety or nuisance are high.  Increased pressure to 

remove street trees might also be expected, as a response to litigation risks and 

infrastructure damage.  One strategy to improve the resilience of urban tree planting 

could be to target parcels of private land that have relatively low densities of buried 

infrastructure, yet are still close to busy public streets.  Gardens/yards and small 

amenity green spaces within high-density residential developments might therefore 

prove to be more resilient planting sites than paved areas immediately adjacent to 

roads, delivering higher rates of survival and growth (McPherson et al., 1997).  

However, homeowner support for such planting locations is not universal (Pincetl et 

al., 2013, Conway and Bang, 2014) and would be much reduced within the Market 

Forces scenario.  This tension might therefore be reduced by making direct 

payments to residents/housing managers for hosting and managing urban street and 

yard trees and the ecosystem services provided; analogous to the practice of paying 

residents to create ‗rain gardens‘ for stormwater interception (Thurston et al., 2010).  

Such payments might be best targeted at economically deprived areas where urban 
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tree cover is often poor (Landry and Chakraborty, 2009), and where its benefits may 

be most needed.   

 

Large tree planting initiatives have had short-term success in engaging volunteers 

with site identification, planting and the management of urban trees (Young, 2011, 

MillionTreesNYC, 2013), often on private land.  However, our analysis flags up the 

risk that public support might decline in the future.  The active engagement of 

individuals, organisations, agencies and institutions in urban tree planting campaigns 

is already common practice in the UK (TDAG, 2014) (e.g. TreeBristol, The Mersey 

Forest, and Plymouth Tree Partnership).  Yet meeting the different needs and 

aspirations of stakeholders within large planting projects can be challenging (Pincetl, 

2010, Pincetl et al., 2013).  Resolving these tensions could increase management 

‗response diversity‘, by ensuring sufficient social capital is sustained over time (Folke 

et al., 2005) to adapt to the changing needs of urban street trees.  Whilst resolving 

long-term funding issues is clearly important (Pincetl et al., 2013), co-management 

might also be strengthened by greater clarification of the roles and responsibilities‘ of 

different actors (Folke et al., 2005). 

 

5. Conclusions 

Our analysis makes explicit the conditions that are necessary to realise many of the 

potential benefits of urban street tree planting within a UK urban context.  It identifies 

synergies and tensions between these benefits and questions the implicit high-level 

assumption within many planting campaigns that trees will survive and provide 

ecosystem services far into the future.  We argue that by focusing on the system 



224 
 

conditions upon which these benefits depend (rather than the tree itself), we are 

better able to examine the underlying mechanisms that drive their compatibility and 

resilience.  Benefits are often dependent on conditions such as continued levels of 

tree maintenance, on public values and policies which are supportive and on a built 

form which remains largely unchanged.  However, we have illustrated that these 

conditions may not be supported within plausible scenarios for future cities and that 

some changes to current practice are required in order to make the desired benefits 

of urban tree planting more resilient. 

 

We suggest that large-scale urban tree planting projects should include explicit 

statements about which benefits will be prioritised and the timescales over which 

they are intended to be delivered.  As with other pieces of urban infrastructure, risks 

to long-term performance should then be identified and holistically addressed.  

Ensuring the replacement of ‗lost‘ street trees is necessary but insufficient; tree 

survival to maturity is also vital for the delivery of many benefits.  Although current 

best practice is to ensure urban tree planting is compatible with its social and built 

context, we suggest that this be broadened to consider the impact of plausible 

changes to the tree‘s context over its natural lifespan.  The main aim of this paper is 

to illustrate how such an analysis could be undertaken.  We also make some 

recommendations for how the resilience of urban street tree planting might be 

improved: 

 Broaden planting locations to include private gardens and residential amenity 

green spaces immediately adjacent to streets, to reduce potential conflicts with 
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people and built infrastructure and to reduce tree mortality due to environmental 

extremes. 

 Introduce annual direct payments for local residents and business owners, to 

incentivise their involvement in the long-term protection and management of 

trees, in neighbourhoods where benefits are most needed. 

 Develop more formal partnerships between the individuals, NGOs and municipal 

departments that are involved in the co-management of street trees in urban 

areas, to increase their legitimacy, accountability and ability to access and share 

resources. 

 For planting in heavily developed areas such as urban centres, incorporate soil 

cells integrated with surface water drainage systems, and use planting techniques 

that facilitate the transplantation of trees at a later date if necessary. 

 

Such changes would involve the broadening of current practice, requiring a greater 

integration of urban foresters and arboriculturists with the long-term spatial planning, 

funding, governance and infrastructure management processes within urban areas. 

 

Supplementary Materials 

Supplementary Information can be found in the Appendix at the end of this thesis.  

S1: Identifying benefits and drawbacks of urban tree planting for use in the scenario-

based resilience analysis, Supplementary Information S2: Justifications used to 

support the necessary conditions identified in Table 2 of the main manuscript, 

Supplementary Information S3: A scenario-based analysis of the vulnerability of the 

conditions required for an urban street tree to deliver its intended benefits. 
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APPENDIX 

Supporting information and supplementary files for each of the five papers are given 

below. 

PAPER I - SI 

  

 

Figure S1. Residual bubble plot for NSL all-night Anabat data from logit binomial 

presence-absence data. The plot shows clumping of similar size positive residuals in 

the middle of the plot, indicative of spatial structuring in the data. Negative residuals 

in black and positive residuals are grey. The size of the circles indicates the size of 

the residuals. 
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Figure S2. Bubble plot for P. pipistrellus all-night Anabat residuals from a GAM of bat 

activity minutes. The plot indicates no spatial structuring in the data. Negative 

residuals in black and positive residuals are grey. The size of the circles indicates the 

size of the residuals. 
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Species Summer roost preference Emergence  Feeding preference 

Pipistrellus 
pipistrellus 
(45kHz) 
 

Built structures – within 
gaps and under cladding 
Preference for pre 1945 
and damaged buildings 

Average Small flies 
Edge 
Half open areas 
Riparian vegetation 
and woodland edge 

Pipistrellus 
pygmaeus 
(55kHz) 
 

Predominantly built 
structures 

Average Small flies 
Edge 
Half open areas 
Strong riparian 
preference but also 
woodland edge 

Myotis daubentonii Structures such as stone 
bridges 
Tree hollows 

Late Aquatic insects 
Close to water 
Closed canopy 
Woodland edge 

Eptesicus 
serotinus 
 

Built structures – within 
gaps and under cladding 

Early Beetles + moths 
Open/Edge 
Parks and gardens 
Pasture 
Woodland edge 

Nyctalus leisleri 
 

Oak and ash trees that are 
larger than others locally 
available. 15-42m 

Early Flies, beetles + moths 
Open 
Wetlands 
Parkland 
Woodland edge 

Nyctalus noctula 
 

Woodpecker tree hollows.  
Beech and 
Oak trees, larger than 
others locally available. 
18_44m 

Early Large insects - flies, 
beetles + moths 
Open 
Woodland 
Pastures 
Lakes 

      

Table S2. Broad life history data for bat species recorded within the study area. A 
selection of information relating to land-cover preferences and flight behaviour of 
bats recorded in this study are presented, along with references for source data. 

 

 

 



243 
 

PAPER III - SI 

 

Figure S1. Ground incident lux plotted against corresponding greyscale pixel value 

for survey locations within Birmingham. The equation for the best fit line (y = 

0.0128X2+0.2246X +0.8517) was used to reclassify the greyscale raster. R2 = 

0.9146. A 95% confidence interval is also indicated. 
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Figure S2. The distribution of greyscale pixel values for known ―dark‖ locations (lit to 

<1lx). 
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Figure S3. CHAID classification tree for lamp classes. 1 = low pressure sodium 

(LPS), 2 = high pressure sodium (HPS), 3 = metal halide (MH) and 4 = mercury 

vapour (MV). The first discriminating variable was the green to red ratio (G:R 0–1 m) 

for pixels up to 1 m from the lamp centre. LPS and HPS were then differentiated 

based on the maximum greyscale pixel value between 2 and 4 m (GS 2–4 m) from 

the lamp centre. MH and MV were differentiated based on the average blue pixel 

value up to 1 m from the lamp centre (BL 1 m). 
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Figure S4. The results for sampling of lighting metrics at the 0.01 km2 scale. (A) 

Percentage area ≥10lx and (B) density of lamps, both plotted against percentage built 

land-cover. 
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Figure S5. Changes in the density of lamp classes along the 1 km2 urban gradient. 

(A) MH and LPS lamps and (B) MV and HPS lamps. 
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Classification 
type 

Land-use class Land-use as 
% of total city 
area 

% contribution 
to total city 
lighting ≥ 30lx 

% contribution 
to total city 
lamps 

OSMM Natural land-covers 33 13 9 
 Gardens 29 5 11 
 Roads & Pavements 15 29 53 
 Buildings 14 13 11 
 Other built surfaces 9 40 15 
NLUD Housing 52 23 55 
 Leisure/recreational 

open space 
16 4 4 

 Manufacturing 7 23 11 
 Agriculture 7 1 1 
 Transport 4 12 6 
 Education 4 5 5 
 Utility services 3 5 1 
 Retail distribution and 

services 
3 11 6 

 Unused land 2 4 2 
 Community and health 2 6 4 
 Wholesale 1 2 1 
 Office 0.5 3 1 
 Storage 0.2 1 0.3 
 Defence 0.1 0.1 0.2 

 

Table S1. Land-uses and lighting metrics for the city of Birmingham. Land-uses are 

given as a fraction of total city area, along with their contribution to the total city area 

lit ≥30lx and to the total number of city lamps. Two alternative measures of land-use 

are given; land-use parcels based upon the Ordnance Survey MasterMap (OSMM) 

(2008) and land-use zones based on the National Land Use Database (NLUD) 

categories (1995). 

 

. 
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PAPER IV – SI 

S1. Information on survey gap locations and characteristics. 

 
The above figure indicates the position of the 27 survey gaps within the UK West 
Midlands (inset).  The majority of sites are within the City of Birmingham, with some 
sites selected from adjacent urban areas and the urban fringe.  Dense urban areas 
such as the centre of Birmingham were avoided.  The percentage of built land-cover 
within a 350m radius of each site was <60%. 
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The above figure illustrates the variety of gap crossing conditions within the survey 
gaps.  Although the 27 survey gaps were stratified by the median gap width and lux, 
an individual gap could vary considerably in lux (and to a lesser extent width).  Lux 
and distance were measured using 5 transects at each candidate gap, to support the 
stratified selection of survey gaps.  The values for all transect data from the final 
survey gaps are represented by the blue diamonds in the above graph.  
 

  

Gap lux 

 

 
 

Dark 0-20 lux 20+ Total 
G

ap
  w

id
th

 

(m
) 

20-40 6.5 (0.7) 4.4(2.2) 1.3(1.5) 48 

40-60 5(0) 4(1.4) 0.7(1.2) 20 

60-80 6(3) 0.0 0.0 18 

 

Total 41 38 7 
 

 

Survey gaps were stratified by 9 broad categories based upon their median gap 
width and lux.  This table illustrates the variation in crossing frequency of P. 
pipistrellus within these broad categories.  Numbers within the main body of the table 
represent the average crossing frequency for each gap category, along with the 
standard deviation in parentheses.  Totals for number of crossing events within each 
width or lux category are given in the final column or row (respectively). 
 

S2. Changes in tree cover and lighting along a built density gradient. 
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PAPER V - SI 

         Table S1. Benefits listed in support of large-scale urban greening programmes. 

Benefit Number of 
citations Programme ref 

Attract wildlife (biodiversity) 3 1, 3, 4 
Mitigate against climate change 1 1 
Carbon capture 2 3, 4, 6 
Save energy 5 1, 2, 3, 5, 6 
Reduce power plant emissions (through lower 
energy use) 1 3 

Reduce greenhouse gases 1 4 
Reduce summer air temperature 1 3 
Shade 1 1 
Shelter 1 1 
Increased longevity of street surfaces 1 2 
Reduce air pollution 6 1, 2, 3, 4, 5, 6 
Reduce asthma and respiratory diseases 1 3 
Reduce flood risk/capture stormwater 2 1, 5 
Improve water quality (stormwater interception) 3 3, 4, 6 
Reduce water consumption 1 4 
Aquifer recharge 1 6 
Reduce erosion 1 6 
Reduce noise pollution 3 1, 2, 5 

Im  Improved aesthetics 3 1, 3, 4 
Higher sales in business districts 3 2, 3, 5 
Increase property value 3 2, 3, 5 
Increased productivity among employees 1 2 
Faster hospital recovery times 1 2 
Lower crime 2 1, 2 
Increased community pride 1 3, 4 
Encourage physical activity 1 3 
Create amenity spaces 1 4 
Reduce stress 1 5 
Calm traffic 1 5 

1 The Big Tree Plant, UK, http://www.defra.gov.uk/bigtreeplant/ [Access: March, 
2015]. 
2 Mile High Million, Denver, USA, http://milehighmillion.org [Access: March, 2015]. 
3 Million Trees NYC, USA, http://www.milliontreesnyc.org [Access: March, 2015]. 
4 Million Trees, South Australia, Adelaide, http://www.milliontrees.com.au [Access: 
March, 2015]. 
5 Million Trees LA, USA, http://www.milliontreesla.org [Access: March, 2015]. 
6 Million Trees, London, Ontario, http://milliontrees.ca [Access: March, 2015]. 
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Notes 

1 May be some limited water stress in hot periods.  2 Tree pruned, leaf litter removed, 

pests controlled.  3 Dead wood retained, complimentary habitats protected.  4 Does 

not impede ground-level visibility.  5 Defined here as an optically opaque barrier.  6 

Key drawbacks to avoid. 

 

Justification 

a Good tree health is not necessarily a requirement for ecological benefits, as dead 

wood can provide a variety of valuable habitats. [1,2]. 

b Human disturbance may be significant for some species [3-5]. 

c High levels of management can limit feeding opportunities for wildlife.  e.g. Heavy 

pruning, pesticide use, removal of dead wood [2]. 

d Presence of some bat and bird species is negatively correlated with surrounding 

built density e.g. [6] . 

e Tree species that have been present the longest in Britain tend to have high insect 

species richness [7]. Non-natives support few insect species. 

f A vegetated area beneath the tree increases habitats for invertebrates. 

g Shading of built and paved surfaces is important as they re-radiate solar radiation 

effectively. Avoiding planting in street canyons eliminates many shading 

opportunities. 

h Only necessary when year-round cooling is required,  rather than summer cooling 

alone. 

j Windbreak effect greatest in low-density suburban-type areas. Trees are unlikely to 

provide significant windbreak in high density areas. 
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k High canopies may only provide a limited barrier effect. 

m Blocking solar access will act to cool the building. Often trees are only used to 

block northerly winds which avoids this conflict  [8]   

n Pruning reduces canopy density, which would be expected to increase noise 

transmission. 

o Soft ground surfaces have been shown to account for a significant portion of the 

sound attenuation by vegetation [9]. 

p Evergreen species will be effective all year-round [10]. 

q Pruning removes biomass, returning CO2 to the atmosphere via decomposition or 

combustion. Maintenance can also have high carbon costs [11]. 

r Large-scale planting is required for a significant amount of CO2 sequestration to 

occur and for broad savings to be accrued through summertime shade and 

wintertime insulation [11,12] 

s Large trees will intercept substantially more rainfall and transpire more, thus being 

more effective [13]. 

t In-leaf trees are more effective due to interception of rainfall – consider seasonality 

of peak rainfall events. 

u Air temperature reductions likely to be of most value during high temperature 

episodes when water supply is most likely to be limited. 

w Water limitations will not affect particulate deposition but will reduce stomatal 

uptake of NO2 and O3. Thus effectiveness may be reduced under warm anticyclonic 

conditions which often exhibit low rainfall and high pollution episodes, or when 

supplementary watering ceases. 
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x Generally large-scale planting is necessary, but trees in street canyons may be an 

exception [14]. 

y Trees in street canyons may increase exposure to pollutants through reducing 

ventilation, when emissions are high enough to overwhelm the pollutant capture 

effect of the tree [14]. The level of emissions varies according to situation (ibid.).  

These impacts can be reduced via high levels of pruning [15]  

z Mature trees highly valued [16,17], but that does not mean immature trees will not 

provide any benefit. 

aa Good visibility increases feelings of safety (Kuo et al., 1998; Kuo and Sullivan, 

2001) – an important aspect of reducing psychological stress. 

bb Leaf, branch and fruit detritus may impede movement and reduce positive feelings 

about trees and the local area.  

cc Roads and paved areas outside buildings are precisely the areas where trees may 

have to be placed to break up a dense city-scape. 

dd Owning property in a neighbourhood with trees may be desirable, due to the 

benefits enjoyed by residents, customers or staff.  However, such trees may not be 

welcomed by all [18].  Public access to these trees may cause problems for local 

property owners in relation to increased social use of the space and risk of litigation 

[19]. 

ee Tall trees may generate conflict with CCTV security cameras [20]. 

ff Reductions in visibility are popularly associated with an increased risk of crime, 

although research doesn't always support this [21,22]. 

gg Re-development and increased use of an area would likely be associated with high 

noise levels. 
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hh Root systems provide support to soil structure [23], although some stabilising 

function may still be preserved after the tree has died [24]. 

jj Public access, made more desirable by trees, might damage surface vegetation and 

encourage erosion of embankment. 

kk Sufficient water supply may prevent large root expansion in search for water and 

may reduce the risk of shrink-swell damage to buildings and other structures for clay-

based soils.  See www.bgs.ac.uk/products/geosure/shrink_swell.html 

mm The chances of root expansion may be higher for a healthy tree. 

nn Drought may trigger early leaf and fruit fall as well as death of branches. 

oo Tree litter over a vegetated surface is less likely to be a slip hazard for pedestrians. 

For litter falling on paved surfaces maintenance requirements are higher. 
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S3. A scenario-based analysis of the vulnerability of the conditions required for 
an urban street tree to deliver its intended benefits.   
 
Details of the vulnerability of each condition within each scenario have been 

deduced, based upon the relevant scenario characteristics [in brackets].  Where a 

cell is shaded green, the condition is considered to be broadly supported within the 

scenario.  Yellow shading indicates that it may be supported in some circumstances 

but not others, whilst red indicates that this condition is unlikely to be supported.   A 

full set of scenario characteristics can be found at 

www.designingresilientcities.co.uk/downloads/Indicators-2.xls.zip 

 
Necessary 
conditions 

Vulnerability of necessary conditions within each scenario  
 

Policy Reform Market Forces Fortress World New 
Sustainability 

Paradigm 
Species is 
native 

Policy is likely to 
require the use of 
native 
replacement 
trees on publicly 
owned land, but 
the legacy from 
decades of mixed 
planting may 
mean that non-
native street 
trees are still 
abundant within 
this scenario.  
Tensions may 
occur where non-
native species 
are better able to 
deliver certain 
social benefits 
[tree species; 
urban tree/hedge 
cover and 
arrangement, 
degree of policy 
protection for 
ecological 

Street tree species 
may be changed 
depending on 
cultural and 
architectural 
fashion.  In any 
case, but the legacy 
from decades of 
mixed planting 
means that non-
native street trees 
are still abundant.   
[tree species, 
attitudes to 
consumerism]. 

Species suitable 
for coppicing are 
likely to be 
prioritised in 
urban woodlands 
and other treed 
areas with 
restricted public 
access. Practical 
concerns trump 
native species 
selection in poor 
areas, and 
aesthetic 
concerns 
predominate in 
rich areas [tree 
species, attitudes 
to consumerism]. 

Native trees are 
particularly 
valued, yet 
historic planting 
is likely to be 
retained and 
supplemented, 
rather than 
replaced [tree 
species]. 

http://www.designingresilientcities.co.uk/downloads/Indicators-2.xls.zip
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features]. 
Species is 
low VOC 
emitter 

Policy is likely to 
require the use of 
low VOC 
replacement 
species on public 
land, but has 
limited influence 
on the nature of 
tree cover on 
private land [tree 
species; urban 
tree/hedge cover 
and 
arrangement]. 

Urban street tree 
species may be 
changed depending 
on cultural and 
architectural 
fashions. Risk of 
high VOC emitters 
being selected [tree 
species]. 

Species suitable 
for coppicing are 
encouraged in 
urban woodlands 
and other treed 
areas. Low VOC 
emission species 
are a not a 
priority in rich 
areas and not a 
consideration in 
poor ones [tree 
species]. 

Low VOC 
species are 
valued, but 
historic street 
tree planting is 
likely to be 
retained and 
supplemented, 
rather than 
replaced [tree 
species]. 

Species is 
evergreen 

Policy is likely to 
require the use of 
best practice 
(appropriate 
replacement 
species and 
planting 
methods) for 
street trees on 
public land, but 
replacements on 
private land may 
be less optimal. 
A mix of tree 
species is 
encouraged, with 
social benefits a 
high priority.  
Conifers are 
valued for year 
round aesthetics 
and their shelter 
effect when 
planted on the 
windward side of 
buildings 
However, winter 
shade may be a 
problem in high 
density areas 
and evergreens 
may therefore not 
be used [tree 
species; planning 
policy; planning 
adherence]. 

Urban tree species 
may be changed 
depending on 
cultural and 
architectural 
fashion.  Street 
trees may therefore 
be periodically 
replaced. No 
particular priority 
given to evergreen 
trees [tree species]. 

Evergreen 
conifers are fast 
growing and may 
be preferred as a 
secure timber 
supply, but no 
clear preference 
for street tree 
type [tree 
species]. 

Native tree 
species and 
mixed planting 
are valued, with 
evergreen 
species 
retained and 
planted in 
specific 
locations for 
winter shelter.  
Planting 
evergreen 
species is 
avoided in 
street canyons 
with high levels 
of particulates.  
However, much 
historic planting 
is retained 
rather than 
replaced [tree 
species]. 
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A tree is 
still present 

The multiple 
potential benefits 
of trees are 
recognized by 
policy.  However, 
tensions arise 
with conventional 
social values and 
development 
practice, where 
space is needed 
for other 
sustainability 
solutions such as 
built density 
gradients 
surrounding 
transport hubs, 
new public 
transport 
infrastructure or 
affordable 
housing.  Lost 
trees are 
generally 
replaced and 
attempts are 
made to mitigate 
climate change 
related stresses.  
However, policy 
reach regarding 
trees on private 
land is minimal 
and ability to 
restrict tree 
imports (and 
associated pests) 
is limited [total 
amount of green 
space; degree of 
policy protection 
for ecological 
features, 
attitudes to 
consumerism, 
civic activism]. 

Although tree cover 
at the city scale is 
likely to be broadly 
retained, street 
trees are particularly 
vulnerable to 
removal where this 
reduces the risk of: 
damage to surface 
and buried 
infrastructure, 
nuisance, 
maintenance costs, 
or litigation risk and 
where development 
pressures are high 
(e.g. from road 
widening). The 
replacement of lost 
trees is unlikely 
[quality of strategic 
planning for 
biodiversity 
conservation; urban 
tree/hedge cover 
and arrangement; 
urban tree/hedge 
cover and 
arrangement; km of 
road networks, 
attitudes to 
consumerism]. 

Trees are 
vulnerable in the 
majority of the 
urban area, felled 
for fuel and 
timber in areas of 
extreme poverty 
and not replaced.  
Climate change 
related impacts 
would be broadly 
evident, as the 
high density 
urban form 
increases the risk 
of water and heat 
stress.  However, 
some trees are 
valued, retained 
and protected in 
areas controlled 
by the rich, and 
risks from pests 
and diseases are 
moderate due to 
a reduction in 
international 
trade and focus 
on resource 
security [urban 
tree/hedge cover 
and 
arrangement, 
attitudes to 
consumerism]. 

Retention or 
replacement is 
likely in most 
locations as 
there is a 
greater 
awareness and 
value placed on 
urban trees and 
a willingness to 
accept some 
negative 
impacts that are 
difficult to avoid.  
A focus on 
locally grown 
planting stock 
and on design 
solutions to 
minimise heat 
and water 
stress result in 
limited impacts 
from climate 
change and 
pests/diseases 
[total amount of 
green space; 
degree of policy 
protection for 
ecological 
features, 
attitudes to 
consumerism] 

Lateral root 
spread is 
not 
excessive 

Policy mandates 
the use of best 
practice 
(appropriate 
replacement 

Most planting 
makes no provision 
to limit root growth, 
with trees simply 
removed if impacts 

Root growth type 
is not a 
consideration, 
unless trees are 
adjacent to 

Trees are 
valued, and 
historic planting 
is likely to be 
retained and 
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species, planting 
methods and 
mitigation) for 
street trees on 
public land, but 
replacements 
and retrofit on 
private land may 
be less optimal.  
However, there is 
a strong legacy 
of street trees 
with roots that 
damage built 
infrastructure 
[tree species; 
planning policy; 
planning 
adherence]. 

occur or are 
deemed to be high 
risk. As most 
species exhibit 
lateral shallow root 
growth, impacts are 
likely [planning 
policy; planning 
adherence]. 

critical 
infrastructure. 
Water stress in 
poor areas is 
likely to 
encourage lateral 
root spread [tree 
species; planning 
policy; planning 
adherence]. 

supplemented, 
rather than 
replaced.  Soil 
cells and root 
barriers are 
used for new 
planting in high 
risk areas or are 
retrofitted  [tree 
species; 
planning policy]. 

Tree is 
connected 
to a 
broader 
tree 
network 

Some strategic 
planting for social 
and ecological 
benefits takes 
place – improving 
functional 
connectivity, 
shading etc.  
However, the 
arrangement of 
trees may 
change locally, to 
accommodate 
shifts in the 
density of the 
built form. 
Coordination 
between planting 
on public and 
private land is 
poor [urban 
tree/hedge cover 
and 
arrangement; 
urban dwelling 
density]. 

No particular spatial 
arrangement for tree 
planting is pursued, 
although there is a 
reduction in trees 
adjacent to built or 
buried infrastructure 
to reduce potential 
for conflict [total 
amount of green 
space; urban 
tree/hedge cover 
and arrangement]. 

No particular 
spatial 
arrangement is 
pursued. Losses 
of tree in poor 
areas are 
widespread, as 
trees are felled 
for timber or fuel 
[total amount of 
green space; 
urban tree/hedge 
cover and 
arrangement]. 

Spatial 
arrangements 
for delivering 
strategic social 
and ecological 
benefits - 
(connectivity, 
shading etc.) 
are protected 
and 
implemented.  
However, local 
arrangements 
of trees may be 
changed to 
accommodate 
significant shifts 
in the density of 
the built form 
[urban 
tree/hedge 
cover and 
arrangement; 
urban dwelling 
density]. 

Trees are 
maintained 
for wildlife 

Pesticide 
treatment of trees 
on public land is 
generally 
restricted, with 
active 

Street trees are 
heavily managed for 
amenity, reducing 
the abundance of 
insects, fruits and 
microhabitats.  Little 

Maintenance for 
biodiversity only 
occurs if the tree 
is located in 
areas controlled 
by the rich, 

Planning 
policies prohibit 
aggressive 
management 
practices that 
limit flowering, 
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intervention to 
support the 
delivery of 
ecological goals. 
However, few 
controls are 
imposed on tree 
maintenance 
within private 
land [urban 
tree/hedge cover 
and 
arrangement; 
degree of 
maintenance for 
ecological 
features; 
attitudes to 
consumerism]. 

management takes 
place to support 
wildlife 
[management of 
public realm/open 
spaces; cultural and 
historical 
associations; 
attitudes to 
consumerism; 
degree of 
maintenance for 
ecological features]. 

although it is 
unlikely to be a 
priority 
[management of 
public 
realm/open 
spaces; cultural 
and historical 
associations; 
attitudes to 
consumerism; 
degree of 
maintenance for 
ecological 
features]. 

fruiting or insect 
productivity. 
High levels of 
public 
volunteering 
takes place 
[degree of 
maintenance for 
ecological 
features; 
degree of policy 
protection for 
ecological 
features]. 

Tree is not 
in a street 
canyon with 
a busy road 

Street canyons 
are common, due 
to a strong policy 
push for higher 
built densities. 
However, road 
traffic and 
pollution in urban 
centres are much 
reduced [urban 
dwelling density; 
settlement 
pattern; 
passenger road 
travel]. 

Street canyons are 
not ubiquitous but 
still common, and 
increases are seen 
in vehicle numbers 
[passenger road 
travel]. 

An overall 
increase in busy 
road canyons 
due to high built 
densities in poor 
areas. Traffic in 
poor areas 
remains 
significant, 
although less 
abundant than 
the present 
[passenger road 
travel; settlement 
pattern]. 

Reduced 
vehicle usage 
compared to 
present and 
vehicular usage 
kept at the 
border of 
neighbourhoods 
where possible 
[passenger road 
travel; road and 
parking 
characteristics]. 

Trees are 
maintained 
for amenity 

The removal of 
fruits and 
branches to 
improve public 
safety and 
amenity is 
permitted. Fallen 
leaves are 
generally cleared 
from pavements. 
However 
maintenance is 
balanced with the 
need to meet 
ecological goals 
and limited to 
areas where 

Although 
maintenance 
budgets are down 
overall, remaining 
trees are likely to be 
heavily managed for 
amenity, reducing 
the abundance of 
insects, fruits and 
microhabitats. 
Strong canopy and 
root control is 
undertaken for 
visual amenity and 
to reduce pavement 
damage. 
Management is less 

Maintenance for 
amenity only 
occurs if the tree 
is located in 
areas controlled 
by the rich, 
where the 
situation is as for 
market forces 
[management of 
public 
realm/open 
spaces; cultural 
and historical 
associations; 
attitudes to 
consumerism; 

Unlikely. The 
public are 
willing to accept 
urban trees in a 
more natural 
state - 
untidy/dense 
canopy, fallen 
fruit and leaves 
[degree of 
maintenance for 
ecological 
features; 
degree of policy 
protection for 
ecological 
features]. 
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negative social 
impacts are clear 
[degree of 
maintenance for 
ecological 
features; 
attitudes to 
consumerism]. 

intensive in some 
poorer areas 
[management of 
public realm/open 
spaces; cultural and 
historical 
associations; 
attitudes to 
consumerism; 
degree of 
maintenance for 
ecological features]. 

degree of 
maintenance for 
ecological 
features]. 

Consistent 
water 
supply for 
healthy 
growth 

Variable.  
Policies to 
support trees for 
their 
environmental/so
cial benefits 
generally 
succeed in 
protecting the 
infiltration of 
surface waters 
surrounding 
trees, with some 
supplementary 
watering 
undertaken for 
young or highly 
stressed trees. 
However, low soil 
moisture is still 
an issue in areas 
where built 
density has been 
increased and in 
locations where 
mains leakage 
has been 
reduced [water 
efficiency and 
recycling 
measures]. 

Varies with land-use 
and social context.  
Permeable paving, 
the protection of soil 
cells and 
supplementary 
watering is not 
considered a 
priority, yet likely in 
some wealthier 
areas.  However, 
this may be 
balanced by a 
relatively low built 
density within this 
scenario and by 
losses from poorly 
maintained drainage 
and water 
distribution 
infrastructure [asset 
condition; water 
distribution system 
pattern at the city 
scale; 
impervious/pervious 
surfaces]. 

No maintenance 
budgets for trees 
in poor areas, 
combined with 
high levels of 
impervious 
surfaces and 
high built 
densities result in 
broad water 
stress. However, 
ageing 
infrastructure in 
poor areas may 
result in some 
gain in 
groundwater 
recharge and soil 
moisture from 
leaking mains 
water supplies 
and drainage 
systems. In the 
rich areas, some 
water will still be 
allocated for 
irrigation due to 
the aesthetic 
value of urban 
trees [asset 
condition; 
impervious/pervio
us surfaces; 
degree of policy 
protection for 
ecological 
features]. 

Retaining 
access to water 
for existing 
street trees is 
included 
successfully as 
a design criteria 
for 
redevelopment. 
Soil cells are 
protected and 
incorporated 
into SUDS 
whenever built 
density is 
increased 
locally [quality 
of strategic 
planning for 
biodiversity 
conservation; 
degree of policy 
protection for 
ecological 
features]. 

Root 
growth not 

Often this is the 
case.  However, 

Not a planning 
priority, and root 

Not a planning 
priority, and root 

The potential 
impact of 
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substantiall
y impeded 

high-density 
development and 
strong market 
forces 
occasionally 
result in a lack of 
space for roots, 
limiting tree 
growth.  There is 
also a legacy of 
urban tree 
planting in 
insufficient soil 
volumes 
[planning policy; 
urban dwelling 
density; land 
recycling]. 

space may not be 
intentionally 
preserved. But this 
risk is limited as 
cities tend to 
expand outwards 
rather than infilling.  
Problems arise 
where land values 
encourage high 
density 
development. High 
levels of soil 
compaction may be 
a significant issue. 
[land use; land 
recycling]. 

space may not 
be intentionally 
preserved. But 
risk is limited as 
cities tend to 
expand outwards 
rather than 
infilling. Informal 
developments 
unlikely to 
significantly 
modify available 
sub-surface 
space [land use]. 

increased built 
density in some 
areas is 
mitigated 
through careful 
design and 
retrofit [quality 
of strategic 
planning for 
biodiversity 
conservation; 
degree of policy 
protection for 
ecological 
features]. 

Tree's 
access to 
light 
maintained 

Generally this is 
the case.  
However, high-
density 
development and 
strong market 
forces 
occasionally 
result in 
vegetation losing 
optimal solar 
access [planning 
policy; urban 
dwelling density; 
land recycling]. 

Not a planning 
priority, but 
generally a low risk 
due to a tendency 
for urban sprawl. 
Problems arise 
where land values 
encourage high 
density 
development [land 
use; land recycling]. 

Not a planning 
priority. A low risk 
in areas 
controlled by the 
rich due to lower 
population 
densities, but 
vulnerable in 
poor areas [land 
use]. 

Retaining 
access to light 
for trees is 
included 
successfully as 
a design 
criterion for 
redevelopment, 
particularly in 
high density 
areas [degree 
of policy 
protection for 
ecological 
features; 
planning policy]. 

Tree is 
large or 
mature 

A policy of 
protection and 
maintenance 
increases the 
likelihood of tree 
survival to 
maturity, 
although some 
losses would be 
expected due to 
conventional 
development 
pressures and 
the pursuit of 
high-density 
development.  
Tree canopy may 

The low 
development 
density of urban 
form gives a good 
chance for some 
trees to grow to 
maturity. But this is 
offset by a lack of 
policy protection 
and increased 
pollution stresses. 
Positive 
management varies 
spatially (reflecting 
income). [urban 
dwelling density; 
urban water 

Large, mature 
trees are valued 
in rich enclaves, 
where they have 
the space and 
resources to 
grow. But trees 
are unlikely to 
reach maturity in 
the majority of 
the city where 
environmental 
stresses are 
compounded by 
felling and 
coppicing 
[degree of 

Tree health and 
survival is good 
in this scenario. 
Trees are 
strongly 
protected in 
policy and 
valued by the 
general 
population 
[degree of 
maintenance for 
ecological 
features; 
degree of policy 
protection for 
ecological 
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still be heavily 
pruned to reduce 
trapping of 
particulates 
within street 
canyons. [degree 
of policy 
protection for 
ecological 
features, urban 
dwelling density; 
settlement 
pattern]. 

pollution levels; 
degree of policy 
protection for 
ecological features; 
degree of 
maintenance for 
ecological features]. 

maintenance for 
ecological 
features, urban 
tree/hedge cover 
and 
arrangement]. 

features]. 

High 
canopy 

A policy of high 
protection and 
maintenance 
increases the 
likelihood of tree 
survival to 
maturity, yet 
removal and 
pollarding are 
common to 
reduce conflicts 
with 
infrastructure and 
to cope with the 
impacts of 
increased built 
density [degree 
of policy 
protection for 
ecological 
features]. 

Low density of 
urban form gives a 
good chance for 
tree to grow to 
maturity. But this is 
offset by lack of 
policy on protection 
and increased 
pollution stresses. 
Compaction of soils 
may stunt tree 
growth and positive 
management varies 
spatially (reflecting 
income). [urban 
dwelling density; 
urban water 
pollution levels; 
degree of policy 
protection for 
ecological features; 
degree of 
maintenance for 
ecological features] 

Large, mature 
trees are valued 
in rich enclaves, 
where they have 
the space and 
resources to 
grow. But trees 
unlikely to reach 
maturity in poor 
areas where 
environmental 
stresses are 
compounded by 
felling and 
coppicing 
[degree of 
maintenance for 
ecological 
features, urban 
tree/hedge cover 
and 
arrangement]. 

Likely, as tree 
health is good 
in this scenario, 
therefore early 
death is 
unlikely. Historic 
planting is likely 
to be retained 
and 
supplemented, 
rather than 
replaced 
[degree of 
maintenance for 
ecological 
features; 
degree of policy 
protection for 
ecological 
features]. 

Tree forms 
part of 
densely-
vegetated 
barrier 

Environmental 
policy and 
enforcement is 
strong, but 
contiguity may be 
counteracted by 
pressure for high-
density 
development and 
concerns over 
heavy shading 
[degree of policy 
protection for 
ecological 

Vegetated areas 
highly vulnerable to 
redevelopment if the 
market conditions 
are right, yet sprawl 
is the dominant 
development pattern 
[degree of policy 
protection for 
ecological features]. 

Likely to be 
retained in rich 
areas where 
neighbourhood 
quality is 
considered 
important, but 
vulnerable to 
cutting for fuel or 
informal 
development in 
poor areas 
[degree of policy 
protection for 

Wooded areas 
valued by the 
community and 
likely to be 
retained, 
especially if 
mature [degree 
of policy 
protection for 
ecological 
features]. 
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features; dwelling 
density]. 

ecological 
features]. 

No 
persistent 
noise 

Spatially variable, 
but reduced 
compared to 
present due to 
reduced private 
vehicle usage 
[passenger road 
travel]. 

Spatially variable. 
Noisy in city centres 
and near major 
highways, but 
generally quiet in 
sprawling residential 
areas [road and 
parking 
characteristics; 
passenger road 
travel; settlement 
pattern]. 

Spatially variable, 
with an increase 
around busy 
roads in poor 
areas. But overall 
decrease in poor 
areas due to 
reduced traffic, 
and the speed at 
which that traffic 
can travel. 
Ssimilar to 
present day in 
rich areas (more 
use, but spread 
over larger area) 
[settlement 
pattern; 
passenger road 
travel]. 

Much less noise 
due to reduced 
private vehicle 
usage 
[passenger road 
travel]. 

No artificial 
lighting 

Spatially variable 
- no major 
changes 
compared to 
present.  Focus 
is on lighting to 
improve safety 
and perception of 
safety  - 
pavements, 
roads, road 
crossings, 
residential areas 
[artificial external 
lighting quality; 
area of city that is 
artificially lit]. 

Spatially variable.  
Public street lighting 
provision is reduced 
in less affluent 
areas.  The intensity 
and extent of 
lighting in 
private/more affluent 
areas is significantly 
higher for aesthetic 
and security 
reasons [artificial 
external lighting 
quality; area of city 
that is artificially lit]. 

Spatially variable, 
with an overall 
reduction in 
lighting intensity 
and extent.  
Public street 
lighting provision 
for the poor is 
virtually non 
existent.  The 
intensity and 
extent of lighting 
of areas 
controlled by the 
rich is 
significantly 
higher for 
security and to 
increase the 
perception of 
safety [artificial 
external lighting 
quality; area of 
city that is 
artificially lit]. 

Lighting extent 
and intensity is 
much less than 
present, as 
shifts in social 
values make it 
easier to 
remove street 
lamps to reduce 
carbon and 
ecological 
impacts to  
[artificial 
external lighting 
quality; area of 
city that is 
artificially lit]. 

Tree blocks 
solar 
access to 
building 

High energy 
efficiency is 
widespread and 
mandated in 

Solar gain not 
widely utilised for 
heating, with 
conventional 

Solar gain not 
widely utilised for 
heating, with 
conventional 

High energy 
efficiency is 
widespread, 
including 
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policy, including 
recommendation
s for passive 
heating methods. 
In practice 
passive solar 
principles are not 
always used due 
to the constraints 
placed on design, 
and trees may be 
allowed to block 
solar access 
[energy efficiency 
of building and 
urban 
morphology]. 

methods used 
instead. Therefore 
no pressure or 
policy from an 
energy perspective 
to avoid trees 
blocking solar 
access.  However, 
loss of natural 
daylight is generally 
not tolerated and 
trees are often 
removed. [energy 
efficiency of building 
and urban 
morphology]. 

methods used 
instead. 
Therefore no 
social pressure 
or policy to avoid 
trees blocking 
solar access in 
rich areas. The 
poor have little 
influence in 
policy but 
localised social 
pressures may 
force removal of 
trees blocking 
desired solar 
access as 
heating is 
expensive 
[energy efficiency 
of building and 
urban 
morphology]. 

passive heating 
methods. Trees 
used to block 
solar access in 
summer, but 
solar access will 
not be impeded 
at those times 
of year when it 
is most needed, 
e.g. by using 
deciduous trees 
to allow solar 
access in winter 
[energy 
efficiency of 
building and 
urban 
morphology]. 

Surroundin
g area built 
to high 
density 

Increased density 
of the built form 
is pursued, with 
some negative 
implications for 
existing tree 
cover and its 
accessibility 
[urban dwelling 
density; 
settlement 
pattern]. 

Spatially variable, 
depending on land 
values [urban 
dwelling density; 
settlement pattern]. 

Spatially variable, 
with low densities 
in areas 
controlled by the 
elite and a high 
built density for 
the poor majority 
[urban dwelling 
density; 
settlement 
pattern]. 

Spatially 
variable, 
increased 
density in some 
areas permits a 
reduction in 
total built 
surface [urban 
dwelling 
density; 
settlement 
pattern]. 

Tree does 
not 
overhang a 
road or 
pavement 

Some strategic 
planting for social 
and ecological 
benefits takes 
place - 
connectivity, 
shading etc.  
However, 
arrangements of 
trees may 
change locally, to 
accommodate 
changes in the 
density of the 
built form. Trees 
may be removed 

A general reduction 
in trees adjacent to 
paved areas and 
roads to remove 
risks from litigation 
and also to reduce 
damage to adjacent 
built or buried 
infrastructure [urban 
tree/hedge cover 
and arrangement]. 

No particular 
spatial 
arrangement is 
pursued, 
although an 
overall reduction 
in tree cover 
inevitably 
reduces tree 
associated with 
roads and 
pavements[urban 
tree/hedge cover 
and 
arrangement]. 

Spatial 
arrangements 
for delivering 
strategic social 
and ecological 
benefits - 
(shading, 
connectivity, 
etc) are 
generally 
protected.  An, 
increase in tree 
cover for wildlife 
and recreation 
leads to greater 
lining of roads 
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where conflicts 
with social goals 
are inevitable 
(e.g. slipping 
hazard on 
pavement)  
[urban 
tree/hedge cover 
and 
arrangement]. 

with trees 
(although 
overall numbers 
of roads are 
reduced).  
Social attitudes 
are more 
tolerant. [urban 
tree/hedge 
cover and 
arrangement; 
road and 
parking 
characteristics]. 

Low stress 
from air 
pollution 

Air pollution is 
generally low 
[Particulate 
matter, NO2, 
ozone]. 

Spatially variable - 
generally higher 
than present and 
may be excessive in 
poor areas. May 
result in chronic 
stress, reducing tree 
growth, vitality and 
lifespan in most 
polluted areas, but 
acute stress leading 
to rapid 
deterioration of tree 
function unlikely 
[Particulate matter, 
NO2, ozone]. 

Spatially variable 
- generally higher 
than present and 
may be very high 
in poor areas 
where vehicles 
are poorly 
maintained. 
Chronic stresses 
reduce tree 
growth, vitality 
and lifespan in 
most polluted 
areas and 
periods of very 
high pollution 
resulting in acute 
stress leading to 
rapid 
deterioration of 
tree function may 
occur periodically 
[Particulate 
matter, NO2, 
ozone]. 

Air pollution is 
generally low 
[Particulate 
matter, NO2, 
ozone]. 

Low stress 
from soil 
pollution 

Soil pollution is 
generally low 
[urban water 
pollution levels]. 

Spatially variable, 
depending mainly 
on land values 
[urban water 
pollution levels; 
planning policy]. 

Soil pollution may 
be moderate in 
parts of poor 
areas, where 
regulation and 
enforcement is 
lacking. Low soil 
pollution in rich 
areas [planning 
adherence; urban 
water pollution 
levels]. 

Soil pollution is 
generally low 
[urban water 
pollution levels]. 
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Tree is 
physically 
accessible 
to public 

Street trees are 
generally 
accessible to the 
public, but not 
always. Policy 
prioritises 
protection of 
existing tree 
cover over 
protecting public 
access.  Private 
land remains 
largely 
inaccessible 
[urban dwelling 
density; 
settlement 
pattern; 
accessibility of 
public 
realm/open 
space]. 

Spatially variable, 
as access to private 
streets, parks and 
developments is 
increasingly 
restricted. Passive 
restriction occurs in 
public parks where 
path maintenance is 
much reduced 
[management of 
public realm/open 
spaces; provision of 
public realm/open 
spaces; public land 
ownership]. 

Spatially variable, 
but poor overall. 
If trees are 
located in areas 
managed by the 
rich, the rich will 
have access 
(although the 
poor majority will   
be excluded).  
The few 
remaining street 
trees in poor 
areas are likely to 
be accessible. 
[accessibility of 
public 
realm/open 
spaces; quality of 
public 
realm/open 
spaces]. 

Retaining public 
access to street 
trees is included 
successfully as 
a planning 
condition for 
redevelopment, 
particularly in 
high density 
areas 
[accessibility of 
public 
realm/open 
spaces; total 
amount of 
greenspace].  

Tree is 
growing in 
a pervious 
surface 

No major 
changes to 
present day. 
Trees in green 
spaces have 
good access to 
soil and natural 
watering.  Paving 
below street 
trees is removed 
where possible, 
as long as trip 
hazard to 
pedestrians is 
unlikely. Policy 
recognises the 
value of street 
trees as a means 
of mitigating 
surface water 
[degree of 
maintenance for 
ecological 
features; degree 
of policy 
protection for 
ecological 
features]. 

Variable. In areas of 
high land value, 
gentrification results 
in the paving of 
surfaces below 
trees.  Watering 
systems and root 
barriers are installed 
if required, with 
surface water being 
used for tree 
watering in areas of 
high flooding risk. 
Such retrofit 
technologies are not 
applied in less 
affluent areas 
[degree of 
maintenance for 
ecological features; 
provision of public 
realm/open spaces]. 

Spatially variable. 
Rich areas as for 
market forces. In 
poor areas, the 
area of pervious 
surface will 
increase as 
informal 
developments 
are likely on 
compacted soil 
and therefore 
pervious, whilst a 
poor 
maintenance of 
existing 
infrastructure will 
increase the 
perviousness of 
the surface. In 
these areas, the 
surface will be 
vegetated where 
it is not in heavy 
use [asset 
condition]. 

Street trees are 
generally 
located within 
unpaved areas. 
Trees are 
valued, given 
space to grow 
and recognised 
as a means of 
mitigating 
excess surface 
water [degree of 
policy protection 
for ecological 
features; road 
and parking 
characteristics]. 

Tree is Visual access is Spatially variable. Spatially variable. Retaining public 
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visually 
accessible 
to public 

generally good. 
Policy supports 
redevelopment 
that 
retains/enhances 
local identity. 
However, the 
form of high-
density 
development 
may still reduce 
visual access, as 
other social goals 
are prioritised 
[urban dwelling 
density; 
settlement 
pattern; 
accessibility of 
public 
realm/open 
spaces]. 

The business case 
for visual access to 
urban trees is rarely 
made. However, as 
urban expansion 
rather than 
densification is 
preferred, views of 
street trees are 
rarely obscured 
[urban dwelling 
density; settlement 
pattern]. 

If trees are 
located in areas 
managed by the 
rich, the majority 
of the public 
(poor) will have 
limited visual 
access (although 
the rich will have 
excellent access) 
[accessibility of 
public 
realm/open 
spaces; quality of 
public 
realm/open 
spaces]. 

visual access to 
street trees is 
included 
successfully as 
a design criteria 
for 
redevelopment, 
particularly in 
high density 
areas 
[accessibility of 
public 
realm/open 
spaces; total 
amount of 
greenspace]. 

People are 
present 
nearby 

A higher built 
density increases 
the probability of 
people being in 
close proximity to 
trees [settlement 
pattern; urban 
dwelling density; 
land recycling]. 

Population density 
decreases. In some 
cases the market 
might result in a 
depopulation of an 
area or major 
change in land use 
[urban population 
density; land 
recycling; planning 
policy]. 

Population 
density increases 
in most (poor) 
parts of the city. 
[urban dwelling 
density;]. 

Spatially 
variable, as 
some areas 
increase 
significantly in 
built density 
whilst others 
are converted to 
semi-natural 
open space 
[urban dwelling 
density; 
settlement 
pattern; road 
and parking 
characteristics]. 

Large-scale 
tree-cover 
across 
urban area 

No major 
changes in tree 
cover at the city 
scale, but 
numbers of trees 
may change 
locally, to 
accommodate 
significant 
changes in the 
density of the 
built form [total 
amount of green 

Little change in 
overall tree cover at 
the city scale, 
however this masks 
a reduction in 
planned tree 
coverage in 
streets/parks/garden
s, and an increase 
in scrub woodland 
on abandoned 
brownfield sites 
[total amount of 

Decrease at a 
city scale, as 
trees outside the 
enclaves are 
quickly cut for 
fuel as soon as 
they are large 
enough.  Tree 
cover in areas 
controlled by the 
rich is similar to 
present [total 
amount of green 

Increase in total 
tree cover at the 
city scale. 
However, it is 
possible that 
numbers of 
trees may 
change locally, 
to 
accommodate 
significant 
changes in the 
density of the 
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space]. green space; urban 
tree/hedge cover 
and arrangement]. 

space; urban 
tree/hedge cover 
and 
arrangement]. 

built form [total 
amount of 
green space]. 

 




