eTheses Repository

Development and optimization of heat pipe based compound parabolic collector

Abdullahi, Bala (2015)
Ph.D. thesis, University of Birmingham.

PDF (10Mb)Accepted Version


Compound Parabolic Collector (CPC) has numerous advantages such as high optical efficiency and wide applications. This thesis describes experimental and theoretical investigations of the effects of solar radiation available, design and orientation on different configurations of low concentration CPCs for Kano, Nigeria.

Two solar radiation models were developed for characterizing solar radiation for regions in the northern hemisphere like Kano. Results showed that tilting the collector to the monthly optimum angle gives the maximum radiation obtainable in each month with highest increase of 28.6 and 24.8% in December and January respectively. For seasonal tilt; the best angles were 27.05° (October to March) and 0° (April to September) while for fixed collector, tilting at 12.05° (latitude) provides the highest performance.

Using advanced ray tracing technique, detailed investigations of the effects of acceptance angle, receiver radius, truncation, etc. were carried out on the CPC performance. While with the truncation of 70%, results showed that compound parabolic collector can achieve daily average optical efficiencies of 86.2% and 75.4% for acceptance angles of 60° and 40° respectively.

The performance of the thermosyphon (receiver) was investigated both experimentally and numerically. Using an in house solar simulator developed in this work, the performance of the developed CPC fitted with thermosyphon was experimentally investigated. Results showed that the CPC can function well with thermosyphon inclination angle up to 40° where it gives efficiency between 76% and 66%.

The outcome of this work shows the potential of using this developed system in Kano environment for cooling applications.

Type of Work:Ph.D. thesis.
Supervisor(s):Al-Dadah, Raya
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Mechanical Engineering
Subjects:TJ Mechanical engineering and machinery
Institution:University of Birmingham
ID Code:6106
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page