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Abstract 

Cancer of the gastrointestinal tract remains a significant cause of morbidity and mortality. Although 

surgical resection of the primary tumour remains the cornerstone of curative treatment, 

chemotherapy forms an increasingly important component of the management armamentarium. 

Response to therapy, however, is by no means uniform and thus the development of new agents is 

highly desirable.  

There is a significant body of evidence implicating iron in the malignant progression of 

gastrointestinal cancer.  Tumours acquire an excess of iron which in turn propagates their malignant 

phenotype. This project aimed to demonstrate that a strategy to deplete tumour cells of iron using 

the licensed iron chelator Deferasirox was effective in the treatment of oesophageal and colorectal 

cancer.     

Deferasirox significantly impedes cellular viability and proliferation both in-vitro and in-vivo in 

oesophageal and colorectal cancer models. The drug can overcome established chemotherapy 

resistance and may also act as a chemosensitiser. The disturbance of normal intracellular iron 

homeostasis and increased dependence of gastrointestinal tumour cells on iron means chelation 

may offer targeted therapy. Certain iron regulatory proteins may also serve as biomarkers for 

treatment efficacy.  Deferasirox therefore represents an effective and well tolerated adjunct to 

existing therapies that should be considered for future clinical trials.  
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Chapter 1. Introduction 

 

1.1 Gastrointestinal Cancer 

 

Cancer is a disease characterised by uncontrolled growth and spread of structurally and biologically 

abnormally differentiated cells that can originate from any tissues within the body. 1  

 

On a worldwide basis, there are over 12.5 million new cases of cancer each year and the disease is 

responsible for over 7.5 million deaths. 2 In the United Kingdom (UK), cancer is a major cause of 

morbidity and mortality with over 300,000 people per year diagnosed. 3 The disease is responsible 

for more than 1 in 4 deaths in the UK; a figure significantly greater than those caused by ischaemic 

heart disease or stroke. 4 

 

The gastrointestinal tract runs from the mouth to the anus and includes organs such as the 

oesophagus, stomach, small intestine, colon and rectum. 5 Cancer of the gastrointestinal tract 

encompasses a range of heterogeneous malignancies arising from different organs which, when 

grouped together, accounts for approximately 20% of all new cancer diagnoses each year. 6 

 

Within this thesis two specific forms of gastrointestinal malignancy have been focused upon; the 

first being cancer of the oesophagus (a disease whose incidence has increased dramatically over 

recent decades) and the second, cancer of the colon and rectum (the second largest cause of cancer 

related death in the UK). 7, 8 
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1.2 Cancer of the Oesophagus 

 

1.2.1 Structure and Function of the Oesophagus 

 

The oesophagus is a muscular tubular structure, approximately 25 cm in length, joining the pharynx 

to the stomach. 5 Its primary function is the conduction of food from the mouth to the stomach 

through the action of peristalsis. 5 It is lined predominantly by squamous epithelium and (apart from 

some striated muscle in the upper cricopharyngeal sphincter) is comprised of smooth muscle under 

autonomic control. 9 The distal oesophagus is protected against the regurgitation of acidic gastric 

contents by a ‘functional’ lower oesophageal sphincter assisted by the constricting muscle bands of 

the diaphragm and an acute angle of entry into the stomach. 9 The final 1.5-2 cm of the oesophagus 

is situated below the diaphragm and is lined my columnar epithelium. 9 The transition point from 

squamous to columnar epithelium occurs at around 40 cm (from the incisor teeth) and is clearly 

visible on endoscopy. 9 

 

1.2.2 Oesophageal Cancer 

 

Owing to the different types of epithelium found within the oesophagus there are two main forms of 

oesophageal carcinoma – squamous cell carcinoma (SCC, which tends to arise in the upper two 

thirds of the oesophagus) and adenocarcinoma (OAC, which typically arises in the lower third). 9 

Other less common subtypes include melanoma, leiomyosarcoma and small-cell carcinoma. 10 

 

Cancer of the oesophagus is a global health problem and was the 6th most common cancer on a 

worldwide basis in 2002. 11 It is characterised by a worldwide geographical variation in incidence, 

being the 4th most common tumour in developing countries but only the 15th in developed countries. 

12  
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Over the past 30 years the relative incidence of oesophageal carcinoma has risen dramatically, 

largely driven by an unprecedented increase in cases of the OAC subtype. 13 In the UK, oesophageal 

carcinoma is now the 9th most common cancer (by incidence) with over 8,000 new cases per year. 14 

There is a strong male to female preponderance with an incidence ratio of 2:1 in favour of males. 14 

Overall 5 year survival rates remain poor (13%). 14 This compares with rates of 20% in China and 

15.4% in the United States. 15 The disease is uncommon below the age of 50. 16 

 

1.2.2.1 Squamous Cell Carcinoma 

 

Squamous cell carcinoma (SCC) of the oesophagus remains the predominant histological type of 

oesophageal carcinoma worldwide. 17 It typically arises in the upper two thirds of the oesophagus 

and risk factors for its development are well documented (Table 1.1). Heavy alcohol intake is 

associated with at least a 20 fold greater risk and smokers have at least 5 times the risk of non-

smokers. 16 

 

Rates of SCC are highest in the so called Asian belt encompassing Turkey, north eastern Iran, 

Kazakhstan and northern and central China. 17 Incidence rates in these areas are greater than 100 

cases per 100 000 population annually. 17 SCC rates are also high in certain parts of southern and 

eastern Africa. 17 
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1.2.2.2 Oesophageal Adenocarcinoma 

 

OAC typically arises in the lower third of the oesophagus. 9  

 

The main risk factors for OAC are listed in Table 1.1. Symptomatic gastro-oesophageal reflux disease 

(GORD) is one of the strongest risk factors, although preceding symptoms are said to be infrequent 

or absent in more than 40% of patients who develop the disease. 18 Obesity, which is increasing 

dramatically worldwide, is also a risk factor for both OAC in its own right and for GORD. 19, 20  

 

In cases of longstanding GORD, the lower oesophagus may come to be lined by columnar mucosa, a 

condition referred to as Barrett’s oesophagus or Barrett’s metaplasia (BM). 9 At endoscopy, proximal 

extension of pink columnar mucosa can be seen replacing the pearly-white squamous epithelium of 

the lower oesophagus. 9 Initially, this transformation in epithelium is in the form of tongues 

extending up from the gastric cardia, but as it develops it may come to represent a complete 

cylinder of columnar epithelium that can occupy much of the distal half of the oesophagus. 9  

 

Microscopically, BM consists of columnar epithelium, containing goblet cells and intervening mucus-

producing cells which both secrete intestinal-type mucins (a form of intestinal metaplasia). 9 Whilst 

the initial change from squamous epithelium to a gastric-type mucosa is accepted as being a 

response to acid reflux, the development of intestinal-type features cannot be explained solely as a 

response to acid. 9 Other factors, such as bile reflux, are also likely to play a role. 9 

 

The reported prevalence of BM in the general population is 1.6%. 21 In patients undergoing 

endoscopy for GORD type symptoms it is 10-15%. 22 As well as GORD, abdominal obesity is a risk 

factor for the development of BM. 23 
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BM is the strongest risk factor for OAC and its presence is estimated to increase the risk of 

developing OAC by 30 to 125 fold. 24, 25, 26 The annual conversion rate of BM to OAC has been 

estimated to be as high as 0.5% per year with the risk being greatest in patients with high-grade 

dysplasia of the oesophagus (which progresses to OAC in 16-59% of cases). 17, 27, 28, 29, Genetic 

abnormalities present in BM (e.g. chromosomal instability, cell cycle abnormalities, expression of the 

proto-oncogene c-Myc, p53 mutational status and KI67 staining) have all been postulated as 

potential biomarkers of progression to OAC although none have been conclusively validated. 17, 30 
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Table 1.1 Risk factors for oesophageal SCC and OAC 

Squamous Cell Carcinoma (SCC) Adenocarcinoma (OAC) 

Tobacco use Symptomatic gastro-oesophageal reflux disease 

Alcohol consumption Barrett’s oesophagus 

Mutations in alcohol metabolising enzymes Obesity 

Achalasia Tobacco use 

Caustic injury Previous thoracic radiation 

Previous thoracic radiation Diet low in vegetables and fruit 

Poor oral hygiene Increased age 

Nutritional deficiencies Male sex 

Non-epidermolytic palmoplantar keratoderma Medications that relax lower oesophageal sphincter 

Low socioeconomic status Family history 

 
Adapted from Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. 

The Lancet 2013; 381: 400-12. 17 
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1.2.3 The Genetic Basis of Oesophageal Cancer 

 

Understanding of the molecular events surrounding the development and progression of 

oesophageal carcinoma has until recently been somewhat limited. Recent progress in molecular 

biology, however, has revealed a number of genetic and epigenetic alterations that are found in 

both the SCC and OAC subtypes. 31 

 

Commonly mutated genes within both SCC and OAC include Tumour Protein p53 (TP53) and 

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA).31 TP53 is a major 

tumour suppressor gene whilst PIK3CA is a kinase activator of the phosphoinositide 3-kinase 

(PI3K)/AKT pathway. 31 32 33 

 

Of note, comparisons of mutated genes found within non-dysplastic Barrett’s epithelium, high grade 

dysplasia and OAC revealed that the majority of recurrently mutated genes in OAC, with the 

exception of TP53 and SMAD4, were also mutated in non-dysplastic Barrett’s epithelium. 34 SMAD4 

(Mothers against decapentaplegic homolog 4), like TP53 is known to function as a tumour 

suppressor. 31 

 

A number of genes have also been shown to undergo amplification or loss of heterozygosity in 

oesophageal carcinoma. 31 Of note, epidermal growth-factor receptor (EGFR), Myc, K-ras and PIK3CA 

have all demonstrated amplification in SCC, whilst TP53, cyclin-dependent kinase inhibitor 2A 

(CDKN2A) and the adenomatous polyposis coli (APC) gene have shown loss of heterozygosity. 31 

Again, all of the latter genes function as tumour suppressors. In addition, amplification or 

overexpression of the oncogene human epidermal growth-factor receptor 2/neu (ERBB2) has been 

observed in around 25% of OAC. 35  
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Epigenetic alterations arising from hyper or hypo methylation of genes (including APC and CDKN2A) 

and also manipulation of gene expression through the action of microRNAs (small, noncoding RNA 

molecules that can also induce epigenetic modifications) have also been demonstrated in both SCC 

and OAC. 31 

 

1.2.4 The Management of Oesophageal Cancer 

 

1.2.4.1 Diagnosis and Staging 

 

Dysphagia (difficulty in swallowing) is the most common symptom of oesophageal carcinoma 

although this often develops insidiously. 16, 17  In patients with SCC, the most common presentation is 

dysphagia, typically associated with a history of smoking, long-term alcohol intake and accompanied 

by weight loss 16 

 

Patients with OAC are typically white men with a history of GORD who have recently developed 

dysphagia. 17 Physical examination often reveals little, except in advanced cases where wasting, 

hepatomegaly (due to metastasis), a Virchow’s node in the left supraclavicular fossa or hoarseness 

(as a result of recurrent laryngeal nerve involvement) may be present. 16 

 

Definitive diagnosis is reached through direct visualisation of the tumour at endoscopy and 

subsequent biopsy and histological confirmation. 17  

 

Once the diagnosis of oesophageal carcinoma is made, accurate staging of the disease must be 

performed in order to determine disease extent, plan appropriate treatment and define prognosis. 
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The staging work-up involves a number of approaches including history, physical examination, 

endoscopy, endoscopic ultrasonography (EUS, to assess the local extent of the tumour into the 

oesophageal wall) , computerised tomography (CT) scans of the chest and abdomen (to assess local 

disease and metastasis), positron emission tomography (PET) scans (to assess distant metastasis), 

and bronchoscopy (to assess thoracic invasion). 36 Laparoscopy may also be performed to exclude 

occult distant metastasis prior to consideration of definitive surgical resection. 17 

 

Oesophageal cancer is staged using the tumour, node and metastasis (TNM) classification (Table 

1.2). 37 
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Table 1.2 The TNM staging system for oesophageal carcinoma 

Primary tumour (T) 

TX Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis High-grade dysplasia 

T1 Tumour invades lamina propria, muscularis mucosa, or submucosa 

T1a Tumour invades lamina propria or muscularis mucosa 

T1b Tumour invades submucosa 

T2 Tumour invades muscularis propria 

T3 Tumour invades adventitia 

T4 Tumour invades adjacent structures 

T4a Resectable tumour invading pleura, pericardium, or diaphragm 

T4b Unresectable tumour invading other adjacent structures,  

such as the aorta, vertebral body and trachea 

Regional lymph nodes (N) 

NX Regional lymph node(s) cannot be assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in 1-2 regional lymph nodes 

N2 Metastasis in 3-6 regional lymph nodes 

N3 Metastasis in 7 or more regional lymph nodes 

Distant metastasis (M) 

M0 No distant metastasis 

M1 Distant metastasis 

 
Adapted from the National Comprehensive Cancer Network (NCCN) clinical practice guidelines in 

oncology. Oesophageal and oesophagogastric junction cancers. Available at 

http://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf. 38 

http://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf
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1.2.4.2 Treatment of Oesophageal Cancer 

 

Locally advanced disease, as defined by the extent of the primary tumour and involvement of loco-

regional lymph nodes (higher than stage T2, node positive without distant metastasis, or both) is 

generally treated with curative intent comprising a multimodal approach that includes surgical 

resection of the tumour. 17 Advanced (metastatic or disseminated) and recurrent disease are treated 

with palliative intent through chemotherapy to extend survival or local therapies, such as 

radiotherapy and endoscopically sited stents, to relieve dysphagia. 17 

 

1.2.4.2.1 Neoadjuvant Therapy 

 

Chemotherapy prior to surgical resection (neoadjuvant) can be used to control the early spread of 

systemic disease. 39 The UK Medical Research Council Oesophageal Cancer Working Group study 

demonstrated that the use of chemotherapy before surgery significantly improved 3 year survival 

compared to surgery alone. 40 In this study, the group of patients given Cisplatin and 5-fluorouracil 

(5-Fu) in 2 cycles followed by surgery had a median survival of 16.8 months compared to 13.3 

months in the group undergoing surgery alone. 40 These results were supported by the MAGIC trial 

which demonstrated that the administration of Epirubicin, Cisplatin and 5-Fu (ECF) for 3 cycles pre 

and post surgery significantly improved 5 year survival compared to surgery alone (36 vs. 23%, 

P=0.009). It was also noted that the resected tumours were significantly smaller and less advanced in 

the group given chemotherapy. 41 

 

A number of studies have also investigated the role of chemoradiotherapy followed by surgery 

compared with surgery alone in patients with potentially resectable oesophageal carcinoma. 42, 43, 44, 

45, 46, 47, 48 Most thus far have demonstrated non-significant results, although a meta-analysis of over 

1200 patients demonstrated a significant 13% absolute difference in survival at 2 years in patients 



12 
 

given neoadjuvant chemoradiotherapy followed by surgery compared with those receiving surgery 

alone. 48  This compared with an absolute survival benefit of 7% at 2 years in patients given 

chemotherapy alone followed by surgery. 48 

 

1.2.4.2.2 Adjuvant Therapy 

 

Adjuvant chemotherapy for oesophageal carcinoma treated with primary resection may be of 

benefit, especially in patients with node positive disease. 17 A study of 556 patients randomised to 

either surgery alone or surgery followed by chemoradiotherapy (5-Fu, Leucovorin and radiotherapy) 

demonstrated both increased median survival in the group given adjuvant therapy (36 vs. 27 

months) and reduced risk of relapse. 49  

 

Randomised trials of adjuvant therapy with radiation alone have been inconclusive and its indication 

is currently restricted to positive resection margins or residual disease following resection. 17 

 

1.2.4.2.3 Advanced Disease 

 

A significant proportion of patients with oesophageal carcinoma have advanced or metastatic 

disease at diagnosis (approximately 50-75%).50,
 51 In these patients curative treatment is not possible 

and median overall survival with best supportive care is around 3 months. 52  Palliative 

chemotherapy may be given and is chosen on the basis of projected efficacy, the patient’s co-

morbidities and the side effect profiles of proposed chemotherapy agents. 17  

 

Few palliative regimens have been validated in phase III trials. The REAL-2 study of 1002 patients 

with oesophagogastric cancers assessed three-drug regimens that included Epirubicin plus either 

Oxaliplatin or Cisplatin and 5-Fu or Capecitabine. 52 Median survival in the group given Epirubicin 
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plus Oxaliplatin and Capecitabine (EOC) was greatest, although still only 11.2 months.  A recent 

Cochrane review comparing chemotherapy with best supportive care for advanced oesophageal 

carcinoma did not demonstrate any survival benefit with chemotherapy. 51 Furthermore, the authors 

concluded that there was no consistent benefit of any specific chemotherapy regimen utilised and 

that there is a need for well designed, adequately powered, phase III trials comparing chemotherapy 

versus best supportive care for patients with metastatic oesophageal cancer. 51 

 

There is without doubt a need for the development and investigation of new drugs and treatment 

regimens to improve prognosis in these patients. With this in mind, agents containing small 

molecules and antibodies that have been created on the basis of tumour biology are being 

incorporated into multimodal therapies. 53 The most commonly used agents include the 

angiogenesis inhibitor Bevacizumab and the epidermal-growth-factor receptor (EGFR) inhibitors 

Panitumumab and Cetuximab. 17  

 

The REAL-3 study compared chemotherapy with EOC to EOC plus Panitumumab in patients with 

untreated, metastatic or locally advanced oesophagogastric adenocarcinoma. 54 Median overall 

survival was actually shorter in the group given Panitumumab (8.8 months vs. 11.3 months) and the 

combination was significantly less well tolerated than the standard EOC regime.  

 

The ToGA trial investigated the efficacy of Trastuzumab (Herceptin, a monoclonal antibody directed 

at HER-2) in combination with Cisplatin and fluoropyrimidine chemotherapy in 594 patients with 

HER-2-positive advanced gastric or oesophagogastric junction adenocarcinoma. 55 The combination 

of the antibody with chemotherapy significantly improved overall survival (median 13.8 vs. 11.1 

months) without additional toxicity or adversely affecting quality of life. 55 Although promising, 

however, it should be noted that only around 25% of patients with oesophageal cancer are HER-2 

positive and many patients exhibit either primary or acquired resistance to Trastuzumab. 56 
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1.3 Cancer of the Colon and Rectum 

 

1.3.1 Structure and Function of the Colon and Rectum 

 

The large intestine comprises the caecum, appendix, colon (further divided into ascending, 

transverse, descending and sigmoid components) and rectum. 5 Its primary function includes the 

storage and elimination of food residues, the maintenance of fluid and electrolyte balance and the 

degradation of complex carbohydrates (and other nutrients) by luminal bacteria. 9 

 

The colon and rectum are lined predominantly by columnar epithelium. 9 The mucosa itself is devoid 

of villi and instead comprises perpendicular crypts extending from the flat surface down to the 

muscularis mucosae, separated by a little lamina propria. 9  

 

1.3.2 Colorectal Cancer 

 

Over 40,000 people are diagnosed with colorectal cancer in the UK each year making it the 4th most 

common cancer by incidence (after breast, lung and prostate). 3 The disease is also responsible for 

over 16,000 deaths which means that, although it carries an overall 5-year survival rate of 55% 

(significantly more favourable than that for oesophageal cancer), it is still the 2nd leading cause of 

cancer related death. 8, 57 

 

Approximately 30% of colorectal cancers arise in the rectum, 25% in the caecum and ascending 

colon and 20% in the sigmoid colon (with the remainder spread between the transverse colon, 

splenic and hepatic flexures, descending colon, appendix and anus). 58 Microscopically, colorectal 

tumours are predominantly of the adenocarcinoma type and display varying degrees of mucin 

production and differentiation. 9  
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Whilst approximately 5-10% of colorectal cancers arise secondary to inherited genetic defects, diet 

and lifestyle are without doubt the main contributing factors to the high incidence of the disease, 

particularly in Western countries. 59 Of note, individuals consuming high fat, high protein, low fibre 

diets and diets that contain significant proportions of red and processed meat have an increased risk 

of developing the disease. 9, 60, 61 Other recognised and modifiable risk factors for colorectal cancer 

include smoking, alcohol intake, physical inactivity and obesity. 9
, 60  

 

1.3.3 The Genetic Basis of Colorectal Cancer 

 

The genetic aberrations which accumulate en-route to the development of colorectal cancer have 

been well studied. 62 Mutations can occur through chromosomal instability, defects in DNA repair 

pathways and or aberrant methylation of DNA, leading to the functional silencing of tumour 

suppressor genes or the amplification of oncogenic pathways. 62 

 

The majority of colorectal adenocarcinomas arise in pre-existing adenomas, the so-called 

adenoma→carcinoma sequence, as first proposed by Vogelstein and colleagues (Figure 1.1). 63 

Evidence for this sequence comes from an understanding of the genetic and molecular events 

surrounding the inherited condition Familial Adenomatous Polyposis (FAP) and also from 

epidemiological data. 9 FAP is an autosomal dominant condition resulting from an inherited point 

mutation on the long arm of chromosome 5 leading to deletion of one copy of the adenomatous 

polyposis coli (APC) gene which encodes the tumour suppressor protein APC. 62 Loss of one copy of 

APC is inherently followed by loss of the other during life and thus the accumulation of APC loss 

within intestinal cells leads to hyperproliferation within the intestinal crypts and the formation of 

multiple polyps. 9, 62 Subsequent acquirement of additional mutations in other tumour suppressors 

and oncogenes (the so-called ‘two hit’ theory) leads to the malignant transformation of these polyps 

in almost all untreated cases by the age of 30-40. 9   
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In terms of epidemiological evidence supportive of the adenoma → carcinoma progression, the 

marked geographical variation in the incidence of polyps correlates strongly with the incidence of 

colorectal carcinoma. Furthermore, adenomas and carcinomas are frequently found together in 

resected specimens. 9 Increasing polyp size, villous growth pattern and degree of dysplasia are 

known to correlate with risk of malignancy within polyps.   
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Figure 1.1 The colorectal adenoma → carcinoma sequence 

The initial step in colorectal tumourigenesis is that of adenoma formation, associated with loss of 

the tumour suppressor adenomatous polyposis coli (APC). Larger adenomas and early carcinomas 

typically acquire mutations in K-ras, followed by loss of chromosome 18q and SMAD4 and mutations 

in p53 (often the key step in the transition to invasive adenocarcinoma). Mutations in B-raf are 

usually mutually exclusive to those in K-ras.  

 

Adapted from Walther A, Johnstone E, Swanton C et al. Genetic prognostic and predictive markers in 

colorectal cancer. Nat Rev Cancer. 2009; 9(7): 489-99. 64  

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Walther%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed?term=Johnstone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed?term=Swanton%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nature+Reviews+Cancer+9%2C+489-499
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Loss of APC leads to polyp formation through activation of the Wnt signalling pathway (Figure 1.2). 62 

Wnt signalling occurs when the onco-protein β-catenin translocates to the nucleus (following its 

accumulation within the cytoplasm) and binds to members of the T-cell factor-lymphocyte enhancer 

factor (TCF-LEF) family to create a transcription factor that regulates a number of genes ultimately 

involved in cellular growth and proliferation (including c-Myc). 62, 65, 66 The normal functioning of APC 

is crucial for the abrogation of Wnt signalling through its formation of a destruction complex 

(alongside glycogen synthase kinase 3β and AXIN (axis inhibitor)) which phosphorylates β-catenin, 

targeting it for ubiquitination and proteasomal degradation. 65 In the absence of APC, β-catenin is 

able to evade degradation and thus accumulates within the cytoplasm, precipitating subsequent 

translocation to the nucleus and activation of transcription factors.  

 

As well as in FAP, APC is known to be mutated in approximately 85% of sporadic cases of colorectal 

cancer and is the initiating mutation in the vast majority of instances. 62 In addition, a small subgroup 

of tumours that retain functioning wild-type APC have been shown to harbour mutations in β-

catenin itself that renders the protein resistant to the Wnt degradation complex. 62 
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Figure 1.2 The Wnt signalling pathway 

In the presence of Wnt signalling and functioning APC, β-catenin associates with a multi-protein 

destruction complex comprising APC, AXIN and GSK3β. β-catenin is phosphorylated by CK1/CK2 and 

GSK3β leading to its ubiquitination (through binding to β-TrCP) and degradation by the proteasome. 

Members of the TCF/LEF family remain bound in the nucleus by repressors that belong to the GRO 

(groucho-related gene) family and are therefore inactive. In the absence of APC (i.e. in the presence 

of an APC mutation), the destruction complex is no longer functional, preventing the 

phosphorylation of β-catenin, thus allowing its accumulation within the cytoplasm and subsequent 

translocation to the nucleus where it activates TCF/LEF. This in turn leads to the transcription of pro-

proliferative proteins such as c-Myc and cyclin D1.  

 

Adapted from Narayan S, Roy D. Role of APC and DNA mismatch repair genes in the development of 

colorectal cancers. Mol Cancer 2003; 2: 41. 67  
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Inactivation of the tumour suppressor protein p53 through mutation of TP53 is the second key 

genetic step in the development of colorectal cancer. 62 In most tumours, the two TP53 alleles are 

inactivated, usually by a combination of missense mutation that inactivates the transcriptional 

activity of p53 and a 17p chromosomal deletion that eliminates the second TP53 allele. 62 Wild-type 

p53 mediates cell-cycle arrest and a cell-death checkpoint, which can be activated by multiple 

cellular stresses, including DNA damage, ultraviolet light and oxidative stress. 62 The inactivation of 

TP53 (present in around 35-55% of tumours) often coincides with the transition of large adenomas 

into invasive adenocarcinomas. 68
 

 

Mutational inactivation of the tumour suppressing TGF-β signalling pathway is a third crucial step in 

the progression to colorectal cancer. 62  Mutational inactivation of TGFBR2 and/or mutations altering 

expression of its downstream target SMAD4 (present in around 30% of cancers) also coincide with 

the transition from adenoma to high-grade dysplasia or carcinoma. 62  

 

The mitogen activated protein kinase (MAPK) signalling cascade (Figure 1.3) can also become 

constitutively active during the development of colorectal cancer through oncogenic mutations in K-

ras and B-raf (occurring in 37 and 13% of cases respectively) resulting in the activation of numerous 

transcription factors (such as the Ets family and c-Myc). 62, 69   K-ras mutations activate the GTPase 

activity that signals directly to raf. B-raf mutations in turn signal B-raf serine-threonine kinase 

activity, which then further drives the MAPK signalling cascade. 62 This pathway can be further 

perturbed through over-expression or mutation of the epidermal growth factor receptor (EGFR; the 

up-stream regulator of MAPK) which is present in 27-77% of colorectal cancers. 69 Aberrant EGFR 

signalling (and mutations in K-ras) can also lead to constitutive activation of the phosphatidylinositol 

3-kinase (PIK3CA) signalling pathway resulting in cell-survival signalling and suppression of apoptosis. 

62 In addition, mutation of the tumour suppressor PTEN (present in 10-15% of colorectal cancers) 

also results in constitutively active PIK3CA signalling. 62 
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Figure 1.3 The MAPK signalling cascade 

The MAPK (mitogen activated protein kinase) signaling cascade (also known as the RAS–RAF–MEK–

ERK pathway) forms a phospho-relay system that translate a plethora of extracellular signals into 

diverse cellular responses. After binding of ligands, such as growth factors, to their respective 

receptor tyrosine kinase (RTK), receptor dimerization triggers the intrinsic tyrosine-kinase activity. 

This is followed by auto-phosphorylation of specific tyrosine residues on the intracellular portion of 

the receptor. These phosphorylated tyrosine residues then bind the sequence homology 2 (SH2) 

domains of adaptor proteins such as GRB2. Such a complex formation recruits SOS (son of sevenless, 

a cytosolic protein) into close proximity to RAS on the plasma membrane. Like other G proteins, RAS 

(H-ras, N-ras and K-ras) cycles between the GDP-bound inactive form and the GTP-bound active 

form. In the quiescent state, Ras exists in the GDP-bound form. The binding of SOS to Ras causes a 

change in conformation leading to the dissociation of GDP and binding of GTP. GTP-bound Ras is the 

activator of this signalling module. It initiates the signal cascade by phosphorylating Raf (A-raf, B-raf 
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or C-raf). Raf in turn phosphorylates the MEKs (MEK1 and MEK2) which then phosphorylate the ERK 

MAPKs (extracellular signal-regulated kinases, ERK1 and ERK2). Activated ERKs then translocate into 

the nucleus where they phosphorylate specific substrates that are involved in the regulation of 

various cellular responses. In addition, ERK-mediated transcription can result in the up-regulation of 

RTK ligands (such as TGFα), thus creating an autocrine feedback loop.  

 

Adapted from Chin L. The genetics of malignant melanoma: lessons from mouse and man. Nature 

Reviews Cancer 2003; 3: 559-570. 70  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.nature.com/nrc/journal/v3/n8/full/nrc1145.html
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1.3.4 The Management of Colorectal Cancer 

 

1.3.4.1 Diagnosis and Staging 

 

Patients with suspected colorectal cancer typically present electively (with abdominal bloating and 

pain, change in bowel habit, bleeding per rectum, loss of appetite, weight loss or iron deficiency 

anaemia) or as an emergency (with bowel obstruction or perforation secondary to the tumour). 9  

Patients may also present with symptoms secondary to the metastatic spread of the primary 

tumour. 9 In the UK, a screening programme has now been established meaning asymptomatic 

patients may also present following a positive faecal occult blood test. 71 

 

A definitive diagnosis of colorectal adenocarcinoma is achieved through histological examination of a 

biopsy (obtained through colonoscopy) or through examination of the resected tumour specimen (if 

an emergency operation was necessitated). 72  Following confirmation of the diagnosis, the cancer is 

then staged using CT of the chest, abdomen and pelvis and, additionally for rectal cancer, an MRI 

scan of the pelvis. 72 

 

As in the oesophagus, colorectal cancer is staged using the TNM system (Table 1.3). 73  

 

 

 

 

 

 

 

 



24 
 

Table 1.3 The TNM staging system for colorectal carcinoma 

Primary tumour (T) 

TX Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ 

T1 Tumour is confined to submucosa 

T2 Tumour invades muscularis propria 

T3 Tumour invades through muscularis propria (but does not penetrate) serosa 

T4 Tumour has penetrated serosa and peritoneal surface 

T4a Tumour penetrates to the surface of the visceral peritoneum 

T4b Tumour directly invades or is adherent to other organs or structures 

Regional lymph nodes (N) 

NX Regional lymph node(s) cannot be assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in up to 3 regional lymph nodes 

N2 Metastasis in 4 or more regional lymph nodes 

Distant metastasis (M) 

M0 No distant metastasis 

M1 Distant metastasis (including lymph node metastasis to non-regional lymph nodes) 

 

Adapted from The National Institute for Health and Care Excellence (NICE). Staging colorectal cancer. 

Available at http://pathways.nice.org.uk/pathways/colorectal-cancer. 73 
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1.3.4.2 The Treatment of Colorectal Cancer 

 

Surgical resection of the primary tumour remains the cornerstone of curative treatment for 

colorectal cancer. 72 Laparoscopic resection has become increasingly popular in recent years, both 

for colonic and rectal lesions. 74 In addition, local excision of early stage (T1 and T2) rectal tumours 

through trans-anal endoscopic microsurgery (TEMS) is also now being offered by some centres. 75  

 

1.3.4.2.1 Neoadjuvant Therapy 

 

Short course radiotherapy or long cause chemoradiotherapy is now routinely offered to patients 

pre-operatively with rectal cancer with the aim of decreasing local recurrence rates. 72 A recently 

published meta-analysis assessed the safety and effectiveness of neoadjuvant (chemo)radiotherapy 

in rectal cancer. 76 Although neoadjuvant radiotherapy was shown to decrease local recurrence 

(hazard ratio, HR = 0.59; 95%CI: 0.48-0.72) compared to surgery alone, it had only a marginal benefit 

on overall survival (HR = 0.93; 95%CI: 0.85-1.00) and was associated with increased perioperative 

mortality (HR = 1.48; 95%CI: 1.08-2.03). Neoadjuvant chemoradiotherapy improved local control as 

compared to radiotherapy alone (HR = 0.53; 95%CI: 0.39-0.72), but again had no influence on long-

term survival. 76 

 

Neoadjuvant therapy for colon cancer is currently not routinely used, although preliminary results 

from trials investigating its efficacy in locally advanced (T3 and T4) tumours show much promise. 77 

 

1.3.4.2.2 Adjuvant Therapy 

 

Adjuvant therapy is currently advocated for the post-operative treatment of colorectal cancer 

patients with positive lymph node involvement (Stage III) or with high risk Stage II disease (T3 and T4 



26 
 

lesions). 72 Current regimens are based largely around Oxaliplatin and 5-Fu (+/- folinic acid) with 

variable results. 72, 78 Metastatic colorectal cancer is also treated systemically with the 

aforementioned agents in combination with Irinotecan. 72 

 

1.3.4.2.3 Advanced Disease 

 

As well as the standard chemotherapeutic agents already mentioned, advanced (metastatic) 

colorectal cancer has also been the focus for the introduction of new systemic treatments targeted 

against specific features of the tumour’s biology.  

 

The monoclonal antibodies Cetuximab, Panitumumab and Bevacizumab have all been utilised (often 

in combination with existing reagents) with variable results. Cetuximab and Panitumumab are 

monoclonal antibodies directed against EGFR, whilst Bevacizumab is an anti VEGFR antibody. All 

have shown improvement in survival when given alongside existing chemotherapy regimens in 

metastatic colorectal cancer although the presence of mutations within individual tumours has been 

shown to influence response to therapy (e.g. K-ras or B-raf in the case of EGFR monoclonal 

antibodies). 79 Furthermore, tumours that were initially sensitive to the effects of these agents have 

also been shown to subsequently develop resistance. 79 Further work is undoubtedly needed within 

this area to conclusively identify biomarkers predictive of therapy response and also to delineate 

mechanisms for overcoming established therapy resistance (be it primary or secondary). 
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1.4 Iron 

 

1.4.1 Iron Absorption and Metabolism 

 

Iron plays a crucial role in the regulation of numerous cellular functions and is thus essential for life. 

80 The ability of iron, through redox cycling, to function as both an electron donor and acceptor 

means that it serves as a co-factor within the active site of several key enzymes in a number of 

critical biochemical pathways including ATP generation, oxygen transport, cell cycling and DNA 

synthesis. 80 

 

Iron exists in the diet in either the organic (heme, e.g. from red meat) or in-organic (from various 

legumes) form. The absorption of both occurs within the small intestine, predominantly in the 

duodenum. 81 There is no iron absorption within the colon or rectum. 81 

 

1.4.1.1 In-organic Iron 

 

In-organic iron is absorbed through a process which begins with the reduction of dietary ferric iron 

(Fe3+) to ferrous iron (Fe2+) through the action of the ferrireductase duodenal cytochrome b (DCYTB) 

which is highly expressed on the enterocyte brush border (Figure 1.4).  82, 83 Some reduction of ferric 

iron also takes place within the stomach secondary to the action of hydrochloric acid. 80 

 

Following reduction by DCYTB, ferrous iron is then transported into the enterocyte by divalent metal 

transporter 1 (DMT1, also known as NRAMP2/DCT1), which is found at the apical membrane. 84, 85 

Once inside the enterocyte the iron is either i) immediately utilised within the various cellular 

processes in which it participates, ii) stored in an inert form for later use bound to the protein 

ferritin or iii) exported out of the enterocyte into the systemic circulation. 86  
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Exit from the enterocyte requires the ferroxidase hephaestin (HEPH) and the basolateral iron 

transporter ferroportin (FPN, also termed IREG1 or metal transporter protein 1). 87, 88, 89 Iron is then 

transported in the serum bound to transferrin (Tf), which can bind two atoms of ferric iron. Tf-bound 

iron then interacts with transferrin receptor 1 (TfR1) on the plasma membrane of cells which take up 

iron. Finally, the iron/Tf/TfR1 complex is internalised by receptor mediated endocytosis and iron is 

released from transferrin by a mechanism requiring endosomal acidification. 90 Within the 

endosome, the acidic environment triggers the release of ferric iron from Tf and its subsequent 

reduction to ferrous iron through the ferrireductase activity of STEAP3 (six transmembrane epithelial 

antigen of the prostate 3). The Tf/TfR1 complex then recycles back to the cell surface, where 

transferrin can take part in further rounds of iron uptake. Finally, ferrous iron is transported out of 

the endosome into the cytosol by DMT1 where it joins the labile iron pool and, as in the enterocyte, 

is either used in a multitude of cellular processes or stored as ferritin. 92 
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Figure 1.4 The intestinal absorption of iron 

Iron is absorbed across the apical membrane of the enterocyte as either heme or non-heme iron. 

Once within the cell it is either immediately used for the plethora of intracellular processes for which 

it is required, stored for later use in ferritin or exported out of the cell across the basolateral 

membrane. 

Adapted from Rizvi S, Robert E Schoen RE. Supplementation with oral vs. intravenous iron for 

anaemia with IBD or gastrointestinal bleeding: Is oral Iron getting a bad rap? The American Journal 

of Gastroenterology 2011; 106: 1872-1879. 91 
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1.4.1.2 Organic Iron 

 

Organic (heme) iron is absorbed from the small intestine through a process only recently 

characterised and distinctly separate to that of in-organic iron. 92  Originally it was thought that 

heme was absorbed through passive diffusion, however, the heme carrier protein (HCP1) has now 

been shown to function within the small intestine and represents the best candidate for a heme 

transporter. 80, 93  Interestinlgy, HCP1 has also been shown to act as a folate transporter, intimating 

that folate and heme may in fact compete for absorption through this mechanism and that 

consequently there may still be other heme absorption proteins yet to be discovered. 92, 94 Once 

within enterocytes, heme is broken down into biliverdin and iron(II) by heme oxygenase-1 (HO-1). 95  

From this point, the ferrous iron obtained from heme is regulated and transported in the same 

fashion as its in-organic counterpart. 

 

1.4.1.3 Regulation of Iron Metabolism 

 

As the human body possesses no direct capacity to excrete iron (other than small amounts through 

desquamation) it has adapted several mechanisms to regulate iron absorption and thus maintain an 

appropriate iron balance. 96  

 

1.4.1.3.1 Iron-regulatory Proteins 

 

The uptake, usage and storage of iron is maintained within tight limits by the regulation of the 

various iron transport proteins at the post-transcriptional level according to the intracellular 

concentration of iron. 80 The iron regulatory proteins 1 and 2 (IRP1 and IRP2) bind to iron responsive 

elements (IREs) located in the 5’- or 3’- untranslated regions of the mRNA of the iron metabolism 

proteins (e.g. TfR1, DMT1, ferritin and ferroportin) dependent on the intracellular iron concentraton 
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(Figure 1.5). 97, 98 At times of iron depletion, the IRPs bind with IREs located at the 3’ end of the iron 

uptake protein’s mRNA (stabilising its translation) and the 5’ end of iron storage protein’s mRNA 

(inhibiting translation). This ultimately results in an increase in expression of TfR1 (and to a certain 

extent DMT1) and a reduction in the expression of ferritin and ferrportin. 97, 98 Conversely, in iron-

replete cells, IRPs are unable bind to these same IREs leading to a reduction in iron uptake and an 

increase in iron storage (IRP1 instead functions as a cytosolic acinotase whilst IRP2 is degraded). 97, 98 
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Figure 1.5 Iron-regulatory protein interactions respond to intracellular iron levels 

IRP1 and IRP2 bind to IREs present in either the 5′ or the 3′ UTR of mRNAs. IREs are found in the 5′ 

UTR of mRNAs encoding ferritin, ferroportin and hypoxia-inducible factor 2α (HIF2α), and also in the 

3′ UTR of mRNAs encoding TFR1 and IRE-containing isoforms of DMT1. Binding of IRPs to 5′ IREs 

inhibits translation, whereas binding to 3′ IREs stabilizes mRNA. IRPs bind to IREs under conditions of 

low iron levels; under conditions of high iron levels, IRP1 loses its IRE-binding activity and acquires 

enzymatic activity as a cytosolic aconitase, whereas IRP2 is degraded. Thus, under conditions of low 

iron levels, the IRE–IRP system functions to increase iron uptake (by stabilizing mRNAs that encode 

TFR1 and DMT1) and decreases iron storage and efflux (by inhibiting the translation of ferritin and 

ferroportin). Binding of IRPs to mRNAs encoding HIF2α is thought to function as a feedback loop to 

inhibit erythropoiesis when iron levels are low. 

 

Adapted from Torti S, Torti F. Iron and cancer: More ore to be mined. Nature Reviews Cancer 2013; 

13: 342-55. 99  
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1.4.1.3.2 Hepcidin 

 

Hepcidin is a peptide secreted by the liver that acts as a systemic iron regulatory hormone. 100 It 

binds to ferroportin 1, thus trigerring its internalisation and lysosomal degradation. This results in 

the inhibition of iron release from iron exporting cells (such as enterocytes and also macrophages) 

and a subsequent decrease in serum iron levels. 101  

 

1.4.2 The Redox Activity of Iron 

 

Iron possesses the unique ability to cycle between two stable configurations, the ferric (Fe3+) and 

ferrous (Fe2+) states. 80  This allows it to act as both an electron donor and acceptor.80  

 

Fe2+ + H2O2 → Fe3+ + OH• + OH- 

Figure 1.6 The Fenton Reaction 

 

In the Fenton reaction (Figure 1.6), a hydroxyl free radical is produced through the donation of an 

electron from the ferrous iron. 99 This highly reactive free radical is able to induce cell death through 

the initiation of a series of chemical reactions ultimately resulting in DNA oxidation, mitochondrial 

damage and the peroxidation of membrane lipids. 80 In addition, excess free iron can also react with 

unsaturated lipids to produce alkoxyl and preoxyl radicals. 80  All of these oxidative reactions result in 

the impairment of cellular function and lead to the damage of cells, tissues and organs.  
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1.4.3 Iron in Health and Disease 

 

Iron is essential for life; it plays a crucial role in oxygen transport and storage (where both 

haemoglobin and myoglobin contain iron) and is equally as vital for processes such as ATP 

generation, effective DNA synthesis and cell cycle progression. 80, 102  As iron is so important within 

the body, deviation from the normal tight regulation of its metabolism can have deleterious effects.  

This is best exemplified by the clinical syndrome of iron deficiency anaemia, a condition that occurs 

when the body has insufficient amounts of iron to meet its metabolic demands. 103  The 

consequences of iron deficiency include compromised immunity, physical impairment (e.g. lethargy, 

shortness of breath) and poor cognition. 104 

 

Conversely, as the body does not possess a system for its effective excretion, excess systemic iron 

(as in the iron storage disease Hereditary Haemochromatosis or in iron-overload conditions such as 

β-thalassemia and Friedrich’s Ataxia) leads to iron deposition in a number of organs including the 

heart, pancreas and liver. 105 This in turn causes irreversible tissue damage and fibrosis through the 

action of reactive oxygen species generated by the iron. 106, 107  As such, excess iron has been 

implicated in a number of diseases including ischaemic heart disease, diabetes mellitus and 

neurodegenerative disorders. 108, 109, 110 

 

1.4.4 Iron and Cancer 

 

Iron has also been implicated in the development of cancer. 111  This is perhaps not entirely 

surprising since iron is essential for ATP production, DNA synthesis and cell cycle progression; all 

activities that are increased in cancer cells. 112 Neoplastic cells therefore have a higher requirement 

for iron and it has been shown that the perturbation of cellular iron uptake proteins arrests cell 
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growth in-vitro and in-vivo. 113 Iron may also accelerate tumour initiation by enhancing the formation 

of free radicals which, as outlined earlier, damage cells and are potentially mutagenic. 99 

 

1.4.4.1 Epidemiological Studies 

 

In an early study examining the association between biochemical markers of iron stores and cancer, 

Stevens et al analysed more than 14,000 participants in the first US National Health and Nutrition 

Examination Survey. 99, 114, 115 The authors demonstrated that transferrin saturation at the time of 

enrolment into the study was significantly higher in men who subsequently developed cancer than in 

those who did not.  

 

Studies have also investigated the incidence of cancer in patients with Hereditary 

Haemochromatosis (HH), a condition characterised by iron overload, particularly in the parenchymal 

cells of the liver, heart and endocrine organs (such as the pancreas and pituitary).116 , 117 There is a 

20-200 fold increased risk of hepatocellular carcinoma in HH patients and individuals which carry 

mutations in haemochromatosis (HFE), one of the mutated genes that underlies HH, may also be at 

an increased risk of certain extrahepatic cancers, including breast and colorectal. 118, 119, 120  

 

Conversely, a 2008 study by Zacharski and colleagues demonstrated that repeated phlebotomy over 

a period of 4.5 years in elderly men with peripheral arterial disease (inferring a reduction in total 

body iron levels) reduced both overall cancer risk (HR 0.65, p=0.036) and cancer specific mortality 

(HR 0.49; p=0.009). 121 Although the authors interpreted their results with caution, their findings 

were consistent with other observations of a decreased cancer risk of several cancers (such as liver, 

lung, colon, stomach and oesophageal) in individuals who frequently donate blood. 99, 122 
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A meta-analysis of 33 studies assessing iron intake and colorectal cancer risk revealed that 

approximately 75% of the studies included associated higher iron intake with an increased risk of 

colorectal cancer. 123 A recent study by Ward and colleagues also demonstrated an increased risk of 

oesophageal adenocarcinoma amongst individuals with a higher intake of heme iron or total iron 

from meat. 124    

 

1.4.4.2 Human Tissue Studies 

 

The up-regulation of the pertinent cellular iron transport proteins has been demonstrated in a 

number of cancers including oesophageal, colon and breast. 24, 82, 125  

 

Boult and colleagues studied human samples of BM and OAC. 24 DMT1, DCYTB and TfR1 were found 

to be overexpressed in OAC tumour samples relative to BM and increased iron acquisition occurred 

as a result. 24 Interestingly, DMT1 expression was also shown to correlate with the presence of 

metastatic OAC. 

 

A similar phenomenon has also been noted in colorectal cancer, where Brookes and colleagues 

demonstrated increased iron acquisition in human colorectal tissue along the progression from 

adenoma to carcinoma. 82 In addition, the authors also demonstrated over expression of the cellular 

import proteins DCYTB, DMT1 and TfR1 along with internalisation of the iron exporter ferroportin. It 

was concluded that these adaptations along the pathway from adenoma to carcinoma favour the 

acquisition of intracellular iron which in turn is likely to drive proliferation and repress cell adhesion. 

82 Increased iron acquisition along the progression to colorectal cancer has been demonstrated in 

other studies also. 126 
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Finally, Pinnix and colleagues demonstrated an association between decreased ferroportin gene 

expression and reduced metastasis free and disease specific survival in breast cancer patients. 125 

Paradoxically, high ferroportin and low hepcidin gene expression in samples of breast tumour 

identified a cohort of patients with >90% 10 year survival.  

 

1.4.4.3 Animal Studies 

 

A number of animal models have demonstrated the ability of iron to drive tumourigenesis, 

particularly in the presence of underlying genetic mutations. 102, 127, 128, 129  

 

Of note, Chen et al demonstrated that administration of intra-peritoneal iron dextran to rats that 

had undergone oesophagogastroduodenal anastomosis (to simulate reflux) caused an increase in 

the rate of OAC formation compared to rats without iron supplementation. 129 Interestingly, all of the 

tumours which developed occurred at the squamo-columnar junction, the area where iron 

deposition was greatest.  

 

Radulescu et al investigated the effect of dietary iron intake in combination with a pre-existing 

mutation in the tumour suppressor gene APC on intestinal tumourigenesis. 102  It was demonstrated 

that the administration of an iron deficient diet to mice genetically predisposed to the development 

of intestinal tumours (through loss of APC) significantly increased rates of apoptosis within intestinal 

crypts resulting in decreased tumour proliferation and increased survival. Conversely, administration 

of excess dietary iron was found to significantly increase rates of tumourigenesis (compared to 

controls) and negatively influence survival. 102 Furthermore, analysis of murine intestinal tissue 

revealed an up-regulation in the expression of the iron import proteins TfR1 and DMT1 following 

loss of APC.  Up-regulation of DMT1 was also noted in the intestinal tumours of APCMin/+ mice with 
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activated HIF-2α in a separate study, leading the authors to postulate that dysregulation of iron 

homeostasis was a critical factor in the progression of colorectal tumourigenesis. 130 

 

1.4.4.4 Cell Based Studies 

 

Several in-vitro studies have demonstrated a dysregulation of iron homeostasis in cancer cells.  99, 131  

Perturbation of normal iron metabolism has been demonstrated in colorectal, oesophageal, breast, 

lung, renal, hepatocellular, prostate, melanoma, pancreatic and haematological cell lines. 99 

 

Of note, iron administration has been shown to increase proliferation rates in oesophageal and 

colorectal cell lines. 24, 82 In addition, iron has also been shown to amplify Wnt signalling (the major 

oncogenic signalling pathway in the colon) in APC deficient colorectal cells resulting in elevated 

levels of c-Myc and suppression of the cell adhesion protein E-cadherin. 132 In B-cell lymphoma cell 

lines, c-Myc has been shown to increase the expression of TfR1, subsequently leading to an increase 

in cellular proliferation. 133 

 

‘Knockdown’ of IRP2 has been shown to increase ferritin expression whilst decreasing TfR1 

expression in lung and breast cancer cells.  134, 135 Moreover, suppression of IRP2 significantly 

impaired the subsequent growth of lung and breast cell xenografts. 135, 136   

 

Interestingly, down-regulation of ferritin has been shown to increase the sensitivity of breast cancer 

cells to the chemotherapeutic agents Doxorubicin and Cisplatin in-vitro.  137, 138 

 

Thus, a dysregulation of iron metabolism appears to be intimately linked to tumourigenesis; 

cancerous cells acquire an excess of iron which drives their malignant phenotype both directly 

(through DNA synthesis and ATP generation) and indirectly (through ROS generation and the 
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amplification of Wnt signalling). Furthermore, the increased expression of proto-oncogenes such as 

c-Myc (associated with Wnt) may, it seems, further enhance cellular iron acquisition (through 

increased IRP2) leading to a self-perpetuating cycle of increased tumourigenesis. 

 

1.4.5 Iron Chelators as Anti-cancer Agents 

 

Given the association between dysregulated iron metabolism and cancer, there is now significant 

interest in the investigation and development of iron chelating drugs (aimed at depriving tumour 

cells of iron) as anti-neoplastic agents. 80, 92  

 

1.4.5.1 Experimental Iron Chelators 

 

A number of synthetic iron chelators have been created and subjected to pre-clinical testing to 

evaluate their anti-neoplastic effects.  These include O-Trensox, Tachypyridine, the 

thiosemicarbazones and Triapine. 92  Several mechanisms have been proposed for the anti-neoplastic 

effects of these agents including iron depletion, induction of apoptosis, cell cycle modulation and 

redox cycling.  92  

 

Of particular note, the agent Dp44MT (a member of the thiosemicarbazone family of iron chelators) 

developed by Richardson and colleagues has shown great promise as an anti-neoplastic agent in a 

number of in-vitro and in-vivo studies. 139, 140  The drug has demonstrated anti-proliferative effects in 

over 28 different human cell lines (including lung, melanoma and breast) in-vitro and of note, is also 

able to overcome Etoposide and Vinblastine resistance in breast and epidermoid carcinoma cell lines 

respectively. 92  In-vivo, Dp44mT markedly inhibits the growth of human lung carcinoma, 

neuroepithelioma and melanoma tumour xenografts in nude mice. 139 These positive findings, 
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however, have so far been largely negated by a number of significant side effects (including weight 

loss and cardiac fibrosis) associated with the drug in experimental models. 92 

 

More recently, the 2-benzoylpyridine thiosemicarbazone (BpT) chelators have been synthesized in 

an attempt to overcome some of the side effects seen with Dp44MT. 141 In-vitro studies using these 

agents have shown them to have greater anti-proliferative activity than Desferrioxamine and 

Triapine (but crucially not Dp44MT) in SK-N-MC neuroepithelioma cell lines. 141 In-vivo, the agent 

Bp44MT is also able to reduce tumour growth and decrease levels of cyclin D1 expression in DMS-53 

lung carcinoma xenografts relative to control. 142  

 

Thus far, however, despite these promising findings, the clinical application of all experimental iron 

chelators remains limited. As such, interest has been stirred in the anti-neoplastic potential of iron 

chelating agents that are already licensed and employed safely in other diseases. 80, 92 

 

1.4.5.2 Approved Iron Chelators as Anti-cancer Agents  

 

At present there are 3 chelating agents in routine clinical use; Desferrioxamine (DFO) is the longest 

serving agent and requires subcutaneous infusions; Deferiprone and Deferasirox are newer chelators 

and have the advantage over DFO of oral administration. 80  

 

1.4.5.2.1 Desferrioxamine 

 

DFO was the first iron chelating agent to be introduced into clinical practice and has been used in 

the treatment of the iron overload associated with β-thalassemia for a number of years. 80 It is a 

hexadentate chelator capable of binding iron in a 1:1 ratio (Figure 1.7). The drug has poor 

membrane permeability (it is hydrophilic rather than lipophilic) which, when combined with its short 
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half-life and rapid metabolism, means it must be given as a subcutaneous infusion several times a 

week in order to effectively chelate iron. 92 

 

As early as 1988, it was noted that DFO demonstrated anti-tumour effects upon human 

neuroblastoma cells most likely through iron deprivation in a time and dose dependent manner. 143  

Subsequent studies have demonstrated DFO to have similar effects in several gynaecological 

malignancies and also in leukaemia. 144, 145, 146  

 

Results from clinical trials of DFO as an anti-cancer agent are varied and this, coupled with its 

laborious method of delivery, accounts for why it is unlikely to be taken forward as an anti-cancer 

agent. 147  

 

1.4.5.2.2 Deferiprone 

 

Deferiprone (Ferriprox® / L1 / CP20) was the first orally administered iron chelator introduced into 

clinical use (Figure 1.7). 92 Like DFO, it has demonstrated promising anti-proliferative effects in a 

number of cancer cell lines in-vitro including neuroblastoma, hepatocellular carcinoma, cervical 

carcinoma and leukaemia. 144, 148, 149, 150, 151 

 

Unfortunately, the drug’s in-vitro anti-neoplastic effects have not been replicated with the same 

magnitude in-vivo and this, combined with a list of potentially significant side effects seen when 

used in humans (including agranulocytosis, neutropenia, arthralgia, liver fibrosis and gastrointestinal 

disturbances), means further investigation of the drug in this context has been limited thus far. 151, 

152, 153  
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Figure 1.7 The Chemical Structure of the Approved Iron Chelators Desferrioxamine (A), 

Deferiprone (B) and Deferasirox (C) 
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1.4.5.2.3 Deferasirox 

 

Deferasirox (Exjade® / ICL670A) is also an orally administered iron chelator and was first approved 

for the treatment of transfusional iron overload associated with β-thalassaemia major in adults and 

children over the age of 6. 154, 155 

 

Deferasirox is a hydroxyphenyl-triazole, tridentate chelator and as such two molecules are required 

to form a stable complex with a single iron ion. 156   The active molecule (ICL670A, Figure 1.7) is, 

unlike DFO, highly lipophilic and 99% albumin bound. Deferasirox has a high affinity for iron 

(approximately 14 and 21 times greater than its affinity for copper [Cu2+] and zinc [Zn2+] 

respectively). 156  

 

In-vivo animal pharmacokinetic studies have demonstrated that Deferasirox is rapidly absorbed from 

the gut and is capable of mobilising iron from various organ systems including hepatocytes and 

cardiomyocytes. 156, 157 

 

Phase 1 clinical trials for the use of Deferasirox in iron overloaded individuals demonstrated that its 

serum concentration is directly proportional to the dose administered. 158 Unbound Deferasirox has 

a mean half-life of 11–19 hours and plasma levels are maintained within a therapeutic range over a 

24-hour period (20 mg/kg/day: peak levels approximately 60–100 µmol/L, trough levels 

approximately 15–20 µmol/L), providing constant chelation activity. 159 

 

The proof of concept for Deferasirox treatment in humans was achieved through a dose escalation 

study in patients with β-thalassemia and transfusional iron overload. 159 The study demonstrated 

chelation efficiency for the drug of up to 20.5%, establishing an effective dose between 20–30 
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mg/kg/day. Data from subsequent phase II and III comparative studies in transfusion dependent β-

thalassemia patients provided evidence that Deferasirox’s efficacy is comparable to DFO. 160, 161 

 

Furthermore, the recently published results of a 3 year multicentre trial assessing the efficacy of 

Deferasirox in myelodysplastic syndrome has shown that it significantly reduced serum ferritin and 

serum labile iron pool in all transfusion dependent patients with elevated levels upon treatment 

commencement. 162   

 

Deferasirox has been shown to be generally well tolerated in both adults and children. 161 A total of 

652 patients received Deferasirox during core clinical trials with the most frequent adverse events 

being transient gastrointestinal disturbances (nausea, vomiting, abdominal pain, constipation and 

diarrhoea) and skin rashes. 161, 163, 164 These events rarely required drug discontinuation and many 

resolved spontaneously. 161 Mild, non-progressive increases in serum creatinine were also observed 

in 34% of patients.  

 

The incidence of serious adverse events as a result of Deferasirox treatment appears to be low. 162 

The EPIC study reported serious drug related adverse events in 14 of 327 (4.3%) patients given 

Deferasirox. 164 Likewise, the eXtend and eXjange study documented 7 events in a total of 167 (4.2%) 

patients. 165 Serious adverse events experienced with the drug include cases of gastrointestinal 

haemorrhage, myocardial infarction, neutropenia, thrombocytopenia, lens opacity, derangement in 

liver function and acute renal failure. 165 As such, all patients commenced on the drug require 

baseline evaluation of their renal and hepatic function with subsequent monitoring during therapy. 

The drug should be discontinued if increases in creatinine greater than 33% of baseline in 2 

consecutive readings are recorded with subsequent reintroduction at a lower dosage followed by 

monitored escalation. 166 
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1.4.5.2.3.1 Deferasirox as an Anti-neoplastic Agent 

 

Over the past few years, the potential for Deferasirox to act as a cytotoxic agent has been 

investigated. 167, 168  At present results are predominantly limited to in-vitro and in-vivo laboratory 

studies. 167, 168, 169 Human data currently comprises only small case series and anecdotal case reports. 

170, 171, 172 

 

1.4.5.2.3.1.1 In-vitro and Pre-clinical Effects of Deferasirox 

 

Deferasirox administration has been shown to decrease cellular viability, inhibit DNA replication and 

induce DNA fragmentation (all with a greater in-vitro cytotoxic effect than the chelator O-trensox) in 

both human hepatoma cell lines and normal human hepatocyte primary cultures. 167  Interestingly, in 

contrast to other iron chelators, Deferasirox also induces cell cycle blockade during S-phase rather 

than G1. 
167  Furthermore, much higher concentrations of Deferasirox are required to induce 

cytotoxicity in primary hepatocyte cultures compared to hepatoma cells (25 µM versus >200 µM) 

suggesting that malignant lines may be more sensitive to Deferasirox exposure than benign tissues; 

an observation previously seen with DFO, Deferiprone and O-Trensox. 143, 167, 168  

 

Exposure to Deferasirox has also been shown to cause a marked reduction in polyamine synthesis; 

possibly through inhibition of ornithine decarboxylase (ODC) mRNA levels which in turn results in 

decreased cellular viability and DNA replication. 173  Natural polyamines (e.g. putrescine, spermidine 

and spermine) are (like iron) required for cell proliferation to occur effectively. They are considered 

to be critical for the regulation of cell growth, differentiation and death and, unsurprisingly, their 

intracellular levels and uptake are significantly enhanced in tumour cells. 174 In turn, the enzyme ODC 

is a crucial component of the polyamine biosynthesis pathway and has been labelled a putative 

proto-oncogene by some. 174  
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The anti-neoplastic effect of Deferasirox upon lung tumour xenografts was recently assessed. 169 Oral 

Deferasirox was found to significantly reduce xenograft size with no effects seen on mouse health, 

haemoglobin levels or biochemical parameters. 169 Deferasirox increased expression of the 

metastasis suppressor protein, n-Myc downstream regulated gene-1 (NDRG1) and up-regulated the 

cyclin-dependent kinase inhibitor p21CIP1/WAF1. In line with previous findings in myeloid leukaemia 

cells, the drug also increased the expression of apoptosis markers, including caspase-3 (a serine 

protease that induces apoptosis). 169, 175, 176  

 

The potential impact of Deferasirox upon the nuclear factor kappa-light-chain-enhancer of activated 

B cells (NFκB) pathway has also been investigated. 177 NFκB plays a pivotal role in the pathogenesis of 

a number of cancers by regulating several fundamental cellular processes such as apoptosis, 

proliferation, differentiation and tumour migration. 178 It has been shown to be constitutively active 

in most tumour cell lines and has also been identified in tumour tissue from patients with multiple 

myeloma, acute myeloid leukaemia, prostate cancer and breast cancer. 178, 179, 180, 181, 182 Deferasirox 

was found to dramatically reduce NFκB activity in both leukaemia cell lines and blood samples from 

patients with myelodysplastic disorders. 177  Furthermore, the addition of ferric hydroxyquinoline 

during incubation did not reinstate NFκB activity suggesting that the effect produced by Deferasirox 

may be independent of chelation induced cell iron deprivation. 177  In addition, inhibition of the NFκB 

pathway was seen solely with Deferasirox (it did not occur with either DFO or Deferiprone). 

Interestingly, it was also noted that pre-incubation of cells with Deferasirox followed by subsequent 

incubation with Etoposide lead to an increase in the number of apoptotic cells compared to both 

drugs alone. 177  

 

Deferasirox also appears to be capable of repressing signalling through the mammalian target of 

rapamycin (mTOR) pathway by enhancing expression of the regulated in development and DNA 

damage response protein (REDD1, also known as HIF-1 responsive protein) to give anti-proliferative 
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effects on myeloid leukaemia cells. 183 The mTOR pathway is known to demonstrate aberrant activity 

in a number of cancers including ovarian, breast, colon, brain and lung.184  Over activity of this 

pathway culminates in de-regulation of the cell cycle and increased cellular proliferation. Conversely, 

inhibition of the mTOR pathway results in cytostatic effects possibly through a reduction in proteins 

ultimately required for cell cycle progression including the previously mentioned ODC and cyclin D. 

184 REDD1 has been previously identified as a stress-response gene and is strongly induced by 

hypoxia. 185  

 

Finally, Deferasirox has been shown to attenuate Wnt signalling (a major oncogenic signalling 

pathway in a number of cancers, most notably colorectal) through an iron dependent mechanism. 

102, 186  

 

1.4.5.2.3.1.2 Human Studies 

 

A number of studies have anecdotally described an improvement in red blood cell parameters 

amongst patients with myelodysplastic disorders following chelation therapy with Deferasirox.  For 

example, post-hoc analysis of a recently published 3 year prospective multicentre trial (which was 

designed primarily to assess the safety and efficacy of Deferasirox as an iron chelator in 

myelodysplastic syndrome) revealed improvement in haematological parameters amongst a sub-

group of patients within the first year of treatment. 162   

 

The results seen in the previous trial have been supported by a number of case reports. 170, 171, 172 Di 

Tucci and colleagues administered Deferasirox as chelation therapy to a patient with primary 

myelofibrosis and previous transfusion dependency.170 After 2 months of therapy the patient's 

transfusion requirement progressively decreased and ceased completely after 5 months. Guariglia et 

al. also documented the case of a 74 year old male patient with refractory thrombocytopenia given 
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Deferasirox as chelation therapy who, despite persistence of the karyotypic and morphological 

abnormality, became transfusion independent following 6 weeks of therapy. 187   Interestingly, once 

treatment with Deferasirox was stopped the patient again became transfusion dependent; 

Deferasirox was thus restarted and the patient became transfusion independent once more. 

 

Finally and perhaps of most interest, another case report documented that Deferasirox 

administration achieved complete remission in a patient with previously chemotherapy resistant 

acute monocytic leukaemia. 188 Following relapse and subsequent rejection of further 

chemotherapy, the patient underwent regular blood transfusions with the addition of Deferasirox as 

chelating therapy for 12 months. Four months after discontinuation of Deferasirox the patient’s 

blood cell count normalised and the patient became transfusion-independent. Bone marrow 

aspiration and biopsy revealed a haematological and cytogenetic complete remission.  

 

The mechanism by which chelation therapy with Deferasirox may induce haematological 

improvement remains unclear. It is known that iron chelators promote iron release from storage 

sites, facilitating its usage for haematopoietic tissue. 187, 188  Reduction in iron stores appears to up 

regulate erythropoietin response with subsequent increase in haemoglobin release. 189  In patients 

with myelodysplastic syndrome in particular, treatment with Deferasirox significantly reduces ROS, 

membrane lipid peroxidation and labile iron pools. 189 It also increases glutathione levels in red blood 

cells, neutrophils and platelets. 190  
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1.5 Conclusion  

 

Gastrointestinal cancer remains a significant health problem throughout the world. 2 In the UK in 

particular, both oesophageal cancer (with its increasing incidence and poor outcome) and colorectal 

cancer (as the 4th most common malignancy) place significant burdens on both the individuals 

affected and society as a whole. 3, 4, 7, 58   As such, the development and implementation into clinical 

practice of new treatments that are either solely effective or can enhance the efficacy of existing 

therapies would be highly desirable.   

 

Iron is intimately involved in tumourigenesis and it has been shown to have a role in the propagation 

of both oesophageal and colorectal cancers. As such, iron chelation represents a promising avenue 

in the treatment of cancer. Although experimental chelating agents have demonstrated significant 

anti-proliferative and chemosensitising properties, associated side effects mean that at present 

approved iron chelators offer the best chance of translation into clinical practice.  

 

Of the three chelators currently in clinical use, Deferasirox has the advantage of once daily oral 

administration (unlike DFO) and is well tolerated with a safety profile that appears superior to other 

chelators. The drug possesses potent anti-neoplastic effects in a number of pre-clinical cancer 

models and furthermore, these cytotoxic and anti-proliferative actions appear to be mediated 

through a number of different oncological pathways and are not merely restricted to the action of 

iron deprivation through chelation.  

 

Considering Deferasirox’s potentially multi-modal therapeutic action, ease of administration, good 

safety profile and anecdotal clinical experience to date, the drug makes for an attractive 

chemotherapeutic agent in the treatment of cancer.  
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1.6 Hypothesis and Aims 

 

Normal iron metabolism is dysregulated in gastrointestinal cancer in a way that favours the 

propagation of tumourigenesis. As such, a strategy to starve tumour cells of iron represents a 

potential novel treatment worthy of further investigation. With this in mind, iron chelation therapy 

has shown early promise in a number of malignancies. Furthermore, iron chelators have also been 

shown to possess chemosensitising properties when given in combination with existing agents in 

experimental models. None of this has been investigated before in the context of gastrointestinal 

cancer, however. Thus, the aims of this thesis are: 

 

1. To determine the efficacy of the iron chelating agent Deferasirox as an anti-neoplastic and or 

chemosensitising agent in oesophageal cancer. 

2. To determine the efficacy of the iron chelating agent Deferasirox as an anti-neoplastic and or 

chemosensitising agent in colorectal cancer. 

3. To determine the role of IRP2 in colorectal cancer in order to offer a predictive marker for 

iron chelation efficacy. 

4. To determine the ability of the iron chelating agent Deferasirox to chemosensitise a panel of 

re-purposed drugs in oesophageal and colorectal cancer. 
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Chapter 2. Materials and Methods 

 

2.1 Materials 

 

2.1.1 Cell Lines Utilised 

 

2.1.1.1 Oesophageal Cell Lines 

 

OE19 

 

Also known as JROECL19, the OE19 cell line was established in 1993 from an adenocarcinoma of the 

gastric cardia/gastroeosophageal junction in a 72 year old male patient. 191 The tumour was 

identified as pathological stage III and showed moderate differentiation.  

 

OE33 

 

Also known as JROECL33, the OE33 cell line was established from an adenocarcinoma of the lower 

oesophagus in a 73 year old female patient. 191 The cancer had developed on the background of 

Barrett’s metaplasia. The tumour was identified as pathological stage IIa and showed poor 

differentiation.  

 

OE21 

 

Also known as JROECL21, the OE21 cell line was established from a squamous cell carcinoma of the 

mid oesophagus in a 74 year old male patient. 191 The tumour was identified as pathological stage IIa 

and showed moderate differentiation. 
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TE4 

 

The TE4 cell line was a kind gift from Professor Winand Dinjens at Erasmus MC, Rotterdam, Holland. 

It was established from a squamous cell carcinoma of the oesophagus and has been shown to be 

highly resistant to chemotherapy with Cisplatin. 192    

 

2.1.1.2 Colorectal Cell Lines 

 

RKO 

 

The RKO cell line is a poorly differentiated colon carcinoma cell line taken from an 82 year old female 

patient. It expresses wild type APC, p53 and GADD45. 193    

 

SW480 

 

The SW480 cell line was established from a primary adenocarcinoma of the colon in a 50 year old 

male. The line expresses constitutively active c-Myc and K-ras along with mutated p53. It also 

contains a truncated/mutated APC. 193 

 

SW620 

 

The SW620 cell line was established from a metastatic lymph node taken from the same patient as 

the SW480 cell line 1 year later when the disease recurred. It is thus a colonic adenocarcinoma 

metastasis and is essentially isogenic with the SW480 cell line. The line expresses c-Myc and K-ras as 

well as mutant APC. 193 
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HT29 

 

The HT29 cell line was a kind gift from Dr Bert Vogelstein of the John Hopkins University, Baltimore, 

USA. It originates from a colonic adenocarcinoma in a 44 year old female and expresses the 

oncogenes c-Myc and K-ras. It also possesses mutant APC. 193 

 

This cell line was modified by Dr Vogelstein to express wild type APC following incubation with 100 

µM zinc chloride for 24 hours. 63 This occurs through the action of a zinc inducible, Hygromycin B 

resistant APC expressing vector (pSAR-MT-APC) transfected by Dr Vogelstein and confirmed through 

Western blotting. 63  The cell line has subsequently been utilised in a number of studies as a model 

for investigating the effect of APC expression on cell phenotype behaviour. 194, 195 

 

HCT116 

 

The HCT116 cell line is a colonic adenocarcinoma cell line originating from an adult male patient. It 

possesses wild type APC and p53 but has activated c-Myc and K-ras expression. 193  

 

In addition, an isogenic HCT116 p53 -/- cell line was also utilised, which was a kind gift from Dr Bert 

Vogelstein of the John Hopkins University, Baltimore, USA. This cell line has undergone targeted 

deletion of both p53 alleles and is a suitable model for studying the effects of p53 on cell growth and 

subsequent response to therapy. 196 
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Caco-2 

 

The Caco-2 cell line is a colonic adenocarcinoma cell line originating from a 72 year old Caucasian 

male. 193 In addition, when cultured under specific conditions the cells become differentiated and 

polarized such that their phenotype (morphologically and functionally) resembles the enterocytes 

lining the small intestine. 197 Thus, Caco-2 cells are most commonly cultured to a confluent 

monolayer on a cell culture insert filter (e.g. Transwell). When cultured in this format, the cells 

differentiate to form a polarized epithelial cell monolayer that provides a physical and biochemical 

barrier to the passage of ions and small molecules. 197 This Caco-2 monolayer model is widely used 

across the pharmaceutical industry as an in-vitro model of the human small intestinal mucosa to 

predict the absorption of orally administered drugs. 

 

Colo320 

 

The Colo320 cell line originates from a 55 year old female and is a Duke’s C colonic adenocarcinoma. 

It possesses mutations in both the APC and p53 tumour suppressor genes but displays wild type K-ras 

and B-raf. 193 

 

Colo205 

 

The Colo205 cell line originated from the ascitic fluid of a 70 year old male patient with colonic 

adenocarcinoma previously treated with 5-Fluorouracil. Like the Colo320 cell line, it possesses 

mutations in APC and p53, however, it also contains a BRAF V600E mutation. 193 
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Table 2.1 Genetic status and oncogene expression in certain colorectal cancer cell lines utilised 

Cell Line RKO HCT116 HT29 Colo320 Colo205 Caco-2 SW480 SW620 

APC status Wild type Wild type Mutated * Mutated Mutated Mutated Mutated Mutated 

p53 status Wild type Wild type Mutated Mutated Mutated Mutated Mutated Mutated 

K-ras  Wild type Mutated Wild type Wild type Wild type Wild type Mutated Mutated 

c-Myc 

expression 

Detected Detected Detected Detected Detected Detected Detected Detected 

PIK3CA Mutated Wild type Mutated Wild type Wild type Wild type Wild type Wild type 

B-raf Mutated Wild type Mutated Wild type Mutated Wild type Wild type Wild type 

 
*also wild type inducible 

Adapted from American Tissue Culture Collection (ATCC). Colon cancer and normal cell lines. 193 

 

RGC2 

 

The RGC2 cell line is derived from a colonic adenoma and was a kind gift from Professor Ann 

Williams, School of Cellular and Molecular Medicine, University of Bristol, UK. It possesses wild type 

APC and expresses c-Myc. 198 

 

AAC1 

 

The AAC1 cell line is derived from a colonic tubular adenoma displaying mild dysplasia. 199 It has an 

APC mutation, expresses c-Myc and also possesses a K-ras mutation. 
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2.1.2 Materials Utilised 

 

General, Cell Culture and Molecular Biology Reagents 

General, cell culture and molecular biology reagents were obtained from the following sources: 

 

Abbott, Global 

Isoflurane 

 

Amersham Pharmacia, Amersham, Buckinghamshire  

ECL reagent; Hybond PVDF, Hyperfilm x-ray film, Peroxidase linked secondary antibodies;  

 

Antec International, Sudbury, UK 

Virkon 

 

Applied Biosystems, Cheshire  

96 well optical plate; optical adhesive covers; RNAlater; TaqMan ribosomal RNA control reagent 

 

Appleton Woods, Selly Oak, Birmingham  

10 ml and 25 ml pipettes; Bijou 3 ml and 7 ml tubes; Eppendorfs; Universal 15 ml and 50 ml tubes 

 

Becton Dickinson (BD), Plymouth UK 

Falcon 5 ml round bottom counting tubes; FACS tubes (5 ml 12/75 mm); BD Matrigel 

 

Bioline, Humber Road, London, UK 

SensiMixtm II qRT-PCR probe kit 
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Bio-optica, Milano, Italy 

Tris Buffered Saline, W-CAP TEC Buffer 

 

Boehringer Mannheim, Lewes, East Sussex  

Mycoplasma detection Kit 

 

Chance Propper, Smethwick, West Midlands  

Glass coverslips 

 

DAKO UK Ltd, Cambridge, UK 

DAKO Antibody Diluent; DAKO ChemMate substrate buffer; DAKO REAL DAB and Chromogen Kit; 

DAKO Pen 

 

Eurogentec, Seraing, Belgium 

Reverse transcriptase core kit 

 

Fisher Scientific, Loughborough, Leicestershire   

BCA protein assay 

 

Geneflow, Southampton  

Acrylamide 
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Invitrogen, Paisley, Renfrewshire (incorporating Gibco BRL)  

Dulbecco's Modified Eagles Medium (DMEM) with Glutamax-1, pyridoxine and 4500mg/L glucose; 

Foetal Calf Serum; Hygromycin B; McCoy’s 5A medium; Normal goat serum; Optimem medium; 

Penicillin and Streptomycin solution; PLUS Reagent; PureLink HiPure Plasmid Filter Purification Kits – 

Maxi Prep; Puromycin; Roswell Park Memorial Institute (RPMI) medium with 25 mM Hepes buffer 

and L-glutamine; Super Ooptimal Broth with Catabolite repression (S.O.C) media; Trizol reagent; 

Trypsin EDTA. 

 

Iwaki, Stone, Staffordshire (Subsidiary of Barloworld scientific) 

25, 75 and 150 cm2 tissue culture flasks; 96 well culture plates; 12 well culture plates; 6 well culture 

plates 

 

Pall Corporation, Newquay, Cornwall  

0.2 µm filters 

 

Promega, Chilworth Research Centre, Southampton 

Dual-Luciferase Reporter Assay System; Nuclease free water 

 

Roche Applied Science, Lewes, East Sussex 

BrdU proliferation assay; Proteinase and phosphatase inhibitor cocktails 

 

Sigma Chemical Company Limited, Poole, Dorset 

Agarose; Ammonium acetate; Ammonium persulphate; -mercaptoethanol; Bromophenol Blue; 

Calcium chloride; Citric acid (tri-sodium citrate); DAB (3,3’-diaminobenzidene tetrahydrochloride) 

tablets; DAPI (4’,6-diaminido-2-phenylindole); Deoxynucleotide (dNTP) mix; Dimethyl Formamide; 

Dimethyl Sulfoxide (DMSO); Dithiothreitol (DTT); DNAse I; Ferrous sulphate; Ferrozine (3-(2-Pyridyl)-
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5,6-diphenyl-1,2,4-triazine-4,4-disulfonic acid); Formalin; Glycerol; Glycine; N-[2-

Hydroxethyl]piperazine-n’-[2-ethanesulfonic acid] (HEPES); H2DCF-DA (2,7-dichloro-fluorescein-

diacetate); Hydrochloric acid; Hydrogen Peroxide 30% w/v; Hydroquinone (1,4-Benzenediol); LB 

Broth EZMix powder; Isopropanol; Lauryl sulphate; MgCl2; Mayer’s Haematoxylin 0.1% Solution; 

Methanol; MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); NP40; 

Paraformaldehyde; Polyoxyethylenesorbitan monolaurate (Tween 20); Phosphate buffered saline; 

Potassium Acetate; 1,2-propanediol; Propidium Iodide; RNase A; Sodium Acetate; Sodium Ascorbate; 

Sodium Carbonate; Sodium Chloride; Sodium Citrate; Sodium dodecyl sulphate (SDS); TEMED; 

Trichloroacetic Acid, Tris HCl; Trizma base; Urea; Xylene  

 

Turumo, Europe 

Capijet blood tubes 
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 2.2 Methods 

 

2.2.1 Routine Cell Culture 

 

Cell lines were cultured in an incubator at 37 C and 5% CO2 atmosphere for all experiments (apart 

from those involving the induction of hypoxia where a hypoxic chamber at 1% O2, 5% CO2, and 94% 

nitrogen was utilised). Unless stated otherwise, cells were grown in Dulbecco's Modified Eagles 

Medium (DMEM) supplemented with 10% (v/v) Foetal Calf Serum (FCS), 50 U/ml penicillin and 50 

µg/ml streptomycin. Colo320 and Colo205 cells were cultured in RPMI medium containing 10% (v/v) 

FCS, 50 U/ml penicillin and 50 µg/ml streptomycin. HT29 cells were cultured in McCoy’s 5A medium 

containing 10% (v/v) FCS, 50 U/ml penicillin, 50 µg/ml streptomycin and also 0.6 mg/ml Hygromycin 

B.  

 

All cell lines utilised grow as an adherent monolayer and were passaged at approximately 90% 

confluence by aspirating the culture medium, washing the monolayer in sterile phosphate buffered 

saline (PBS) and incubating with 5 ml of 0.05% (w/v) trypsin EDTA until cells had detached (typically 

5-10 minutes). Five ml of culture media was then added and cells were disaggregated by trituration 

and then centrifuged at 1500 rpm for 5 minutes. The cell pellet was either re-suspended in culture 

media and reseeded or was re-suspended in 1 ml of freezing medium (10% (v/v) dimethyl sulphoxide 

(DMSO), 20% (v/v) FCS, 70% (v/v) media as appropriate) and placed in a cryovial for cryopreservation.  

 

Vials were kept at –70 oC for 3 days before transfer to liquid nitrogen storage. Frozen cells were 

resurrected by rapid warming of the cryovial in a 37 oC water bath and the cells were then washed 

and suspended in pre-warmed culture media.  Cells were seeded into tissue culture flasks and 

cultured in the standard manner. All cell culture procedures were performed in a laminar flow tissue 
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culture cabinet using aseptic technique. Mycoplasma testing was performed periodically to ensure 

cells remained negative. 

 

2.2.2 Preparation of Pharmaceutical Agents  

 

Deferasirox 

 

A 10mM stock solution of Deferasirox (ICL670A, Exjade ®Novartis Pharmaceuticals, Switzerland) was 

produced by dissolving 37.34 mg of the drug in 10 ml of serum free DMEM. The resulting solution 

was sterile filtered prior to use and then diluted as appropriate for the experiment performed. 

 

Cisplatin 

 

A 100 µM stock solution of Cisplatin was prepared by adding 300 µl of 1 mg/ml Cisplatin to 9.7 ml of 

serum free DMEM. The stock solution was then diluted as appropriate for the experiment performed. 

 

5-Fluorouracil  

 

A 500 µM stock solution of 5-Fu was prepared by adding 26 µl of 25 mg/ml 5-Fu to 9974 µl of serum 

free DMEM. The stock solution was then diluted as appropriate for the experiment performed. 

 

ECF 

 

The chemotherapy combination of Epirubicin, Cisplatin and 5-Fu (ECF/ECX) is commonly used in the 

treatment of oesophageal cancer. 41 For the purposes of the experiments performed, the individual 

agents were prepared at their pre-determined IC25s of 0.5 µM (Epirubicin), 4 µM (Cisplatin) and 4 
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µM (5-Fu) and combined together in serum free media. The stock solution was then diluted as 

appropriate for the experiment performed. 

 

Trametinib 

 

The MEK (MEK1 and MEK2) inhibitor Trametinib was purchased from Santa-Cruz Biotechnology. 

Following re-suspension in DMSO the drug was added to standard media and used at the 

concentrations documented (typically 10 nM). 

 

Sorafenib 

 

The intracellular serine/threonine kinase (B-raf) inhibitor Sorafenib was purchased from Santa-Cruz 

Biotechnology and following re-suspension in DMSO was added to standard media to produce the 

documented experimental concentrations (typically 1 µM). 

 

Ferrous Sulphate 

 

A stock solution of 10 mM ferrous sulphate (FeS04) was prepared by dissolving 111.2 mg FeS04 in 40 

ml of sterile distilled water (SDW). In addition, either 395 mg (enhanced) or 7.9 mg (standard) of 

sodium ascorbate (equivalent to 50 mM and 1 mM respectively) was added to prevent the iron from 

oxidising in solution, thus maintaining an adequate pool of Fe2+ for absorption by the cells. The FeS04 

stock solution was then filtered and diluted in serum free media as appropriate for the particular 

experiment (typically 100 µM FeSO4).  
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Zinc Chloride 

 

Zinc chloride was dissolved in SDW and used at the previously published concentration of 100 µM for 

48 hours to induce APC expression in the HT29 colonic cell line. 63 

 

Library of Redeployed Drugs 

 

The library of 99 redeployed drugs was a kind gift from Professor Chris Bunce and Dr Farhat Khanim, 

School of Biosciences, University of Birmingham, UK. The library contains drugs from all sections of 

the British National Formulary (BNF). Drugs are utilised at concentrations equivalent to the peak 

serum concentration achieved through their standard dosing regimen as recommended in the BNF 

(Table 2.2). 200 

 

Drugs were initially prepared as stock solutions equivalent to 10,000x their reported peak serum 

concentration and kept at -20 0C until required. 200 For experiments, 1 µl of stock solution was added 

to standard DMEM containing 10% FCS (v/v) and 1% penicillin/streptomycin (v/v). Working solutions 

were prepared fresh for each experiment. 
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Table 2.2 Library of redeployed drugs  

 

 

Drug x10,000 stock (mM) Chlorambucil 16.173

Prednisolone 716.000 Metoclopromide 2.974

Amantidine 35.000 Domperidone 0.446

Folic acid 1.041 Thalidomide 109.000

Thiamine 1.186 Chloroquine 1.980

Ranitidine 15.500 Metformin 121.000

Fluoxetine 6.820 Niclosamide 32.000

Dexamethasone 4.332 Pravastatin 0.269

DMSO Control Nortryptyline 4.636

Vitamin K1 0.008 Dantrolene sodium 37.000

Carbamazepine 508.000 Omeprazole 26.113

Propanolol 5.105 Diclofenac 12.570

Erythromycin 52.000 Ritodrine 1.390

Retinol 10.000 Selegiline 2.011

Bendroflumethiazide 1.186 Mebendazole 16.933

Propylthiouracil 1057.000 Flupentixol 0.118

Nicotinic acid 1000.000 Acipimox 382.000

Theophylline 110.000 Ethanol Control

Nicotinamide 409.000 Desferrioxamine 132.000

Ascorbic acid 950.000 Imipramine 2.241

Acyclovir 222.000 Artemisinin 14.000

Allopurinol 460.000 Propantheline 0.468

Chlorpheniramine 0.409 Diltiazem 4.010

Neostigmine 0.150 Ampicillin 162.000

Alpha tocopheryl acetate 500.000 Methanol Control

Bromocriptine 13.750 Amphotericin b 43.000

Cyclophosphamide 2000.000 Danazol 17.780

Imatinib 51.000 Penicillin V 914.000

Zinc acetate 3234.000 Mesalazine 26.120

Valproic acid 6017.000 Finasteride 1.074

Rifampicin 122.000 Colchicine 0.175

Metronidazole 760.000 Levothyroxine 1.500

Praziquantel 350.000 Methotrexate 10.000

Flutamide 62.235 Mifepristone 4.600

Clomipramine 8.540 Nicotine 2.157

Testosterone 0.400 Cefaclor 625.000

Calciferol/ergocalciferol 0.500 Vitamin B12 0.001

Doxycycline 68.000 Medroxyprogesterone acetate 2.330

Aspirin 3330.000 Bezafibrate 83.000

Ibuprofen 1939.000 Paroxetine 1.734

Norethisterone 0.294 Trimethoprim 69.000

Itraconazole 8.800 Water Control

Methyldopa 57.200 Naloxone 0.875

Fenofibrate 26.300 Simvastatin 0.186

Clofibric acid 2330.000 Flecainide 21.000

Clobetasol propionate 0.099 Pilocarpine 3.000

Paracetamol 1323.000 Fluconazole 617.000

Alverine citrate 100.000 Acitretin 12.250

Mefenamic acid 414.000 DMEM (1) Control

Prochlorperazine 66.000 DMEM (2) Control
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Table 2.2 Library of redeployed drugs  

Drugs were utilised at concentrations equivalent to the peak serum concentration achieved through 

their conventional dosing regimens. 200 Stock solutions were made at 10,000x concentration (mM). 

Working solutions were created by adding 1 µl of stock solution to 10 ml of standard media. For 

compounds marked control, 1 µl of reagent (at standard concentration) was added to 10 ml standard 

media.  
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2.2.3 Cell Viability Assay 

 

Cells were plated out and subjected to conditions as outlined within each experimental section.  

 

After the defined time points, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assays were performed in order to determine cellular viability. The MTT assay is a colorimetric assay 

for measuring the activity of cellular enzymes that reduce the tetrazolium dye, MTT, to its insoluble 

formazan form. The more viable (and active) the cells, the more the MTT is reduced.  

 

Briefly, 10 μl of MTT solution (5 mg/ml in sterile PBS) was added to 100 µl of culture media in each 

well of the 96 well plate and incubated for 3 hours. Following this period, the media (containing the 

MTT) was aspirated and replaced with 100 μl of dimethyl sulfoxide (DMSO) to dissolve the 

accumulated formazan crystals. After 15 minutes at room temperature, the plates were placed into 

a Bio-Tek ELx800 absorbance micro plate reader and absorbance read at 490 nM. The resulting 

optical densities were used to calculate percentage viability with respect to control (normalised to 

1). 

 

2.2.4 Cell Proliferation Assay 

 

The pyrimidine analogue 5-bromo-2'-deoxyuridine (BrdU) is incorporated into cellular DNA in place 

of thymidine during replication and can therefore be used to quantify cellular proliferation. 

Incorporated BrdU can be detected by the use of a peroxidase conjugated anti-BrdU antibody 

followed by a colorimetric reaction involving tetramethyl-benzidien (TMB).  

 

After the defined experimental time point, cells were labelled with BrdU (10 µl per well, diluted 1 in 

100 v/v with plain media) for 4 hours at 37 0C, then fixed and DNA denatured with FixDenat solution 
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(200 µl per well for 30 minutes at room temperature). Cells were then incubated with anti-BrdU 

antibody for 90 minutes at room temperature (50 µl per well, diluted 1 in 100 with antibody diluent). 

Immune complexes were detected after washing, using a TMB substrate reaction (100 µl per well) 

with the subsequent product assessed at 405 nm (after 15 minutes) on a micro plate reader. The 

resulting optical densities were used to calculate percentage viability with respect to control 

(normalised to 1). 

 

2.2.5 Oesophageal Cell Line Xenografts 

 

Suspensions of OE19 cells (1 x 107 cells) were centrifuged and re-suspended in 50 µL of culture 

media. Immediately prior to injection, the cell slurry was mixed 50/50 (v/v) with Matrigel 

(extracellular matrix). The cell suspension was then subcutaneously injected into NOD-SCID (severely 

immunodeficient) mice (100 µl per mouse). After a period of tumour establishment (typically 2 

weeks), mice were divided into groups and given treatments as per the experimental protocol. 

 

Throughout the experimental period, mouse health and weight were closely monitored. Tumour 

growth was also measured weekly using calipers. Following the treatment period, mice were 

anaesthetised and exsanguinated by direct cardiac puncture and blood/plasma retained for full 

blood count and biochemical analysis (creatinine and serum iron). Tumours were removed and 

weighed to assess tumour burden. All work was carried out under Home Office approved conditions 

and in accordance with the United Kingdom Animals (Scientific Procedures) Act of 1986. 

 

 

 

 

 



68 
 

2.2.6 NFκB Reporter Assay 

 
The pGL4.32 vector contains five copies of an NF-κB response element (NF-κB-RE) that drives 

transcription of the luciferase reporter gene luc2P and was a kind gift from Dr Chris Dawson, School 

of Cancer Sciences, University of Birmingham, UK. 

 

Briefly, OE19, OE21 and OE33 oesophageal cells were plated out into 12 well plates and co-

transfected the following day with the pGL4.32 vector and the CMV-Renilla plasmid (Promega) using 

Lipofectamine 2000 transfection reagent. Following an overnight expression period, cells were 

treated with either control solution (standard DMEM), TNFα (20 ng/ml in DMEM, positive control) or 

Deferasirox. After being returned to the incubator again overnight whilst induction took place, 

luciferase activity was quantified using a dual-luciferase® reporter assay system the following day.  

 

After reading the plates on a Victor plate reader, the reading of the luciferase signal was corrected 

with the reading of the Renilla (as per manufacturer’s instruction). Fold change in luciferase reporter 

activity (NFκB activity) was then calculated using the formula: 

 
Fold Induction =  Average relative light units of induced cells (either TNFα or Deferasirox) 

Average relative light units of control cells 

 

Data was thus expressed as a fold change relative to control NFκB levels (normalised to 1). 

 

2.2.7 Protein Quantification Assay 

 

A protein assay was performed on cellular lysates in order to determine protein concentration prior 

to Western blotting, the ferrozine assay and the ferritin ELISA. 

 



69 
 

Protein concentration of samples was determined using a BCA™ (bicinchoninic acid) protein assay 

and compared with bovine serum albumin at standard concentrations between 0 and 2 mg/ml. 10 μl 

of each standard, or 10 µl of each cell lysate, were aliquoted in triplicate onto a clear flat bottomed 

96-well plate. 200 μl of BCA™ working reagent (reagent B 1:50 in reagent A) was added to each well 

and incubated for 30 minutes at 37 °C. Absorbance was then measured at 550 nm using a Bio-Tek 

ELx800 absorbance microplate reader. The sample protein concentrations were then derived from a 

graph of standard concentrations plotted against optical density at 550 nm. 

 

2.2.8 Western Blotting 

 

Cells were cultured in 6 well plates as per the desired experimental conditions. For lysate 

preparation, the media was removed and cells washed 3 times with 1 ml PBS. 160 µl RIPA lysis buffer 

(1% (w/v) NP40 (nonyl phenoxypolyethoxylethanol) (5 g); 0.5% sodium deoxycholate (2.5 g); 0.1% 

SDS (0.5 g) in 500 ml deionised water) containing protease and or phosphatase inhibitor cocktail 

tablets (as required) was then added to each well. Lysates were prepared on ice, subjected to 

ultrasound probe sonication and stored at -4°C prior to use.  

 

Prior to sample preparation a protein assay was performed (as outlined previously) so that equal 

volumes of lysate could be loaded (typically 10 or 20 µg). Lysates were mixed with loading dye (500 

μl 4x SDS + 200μl β-mercaptoethanol) at a ratio of 4:1 and then boiled for 5 minutes at 100 °C.  

 

Standard 10% resolving gels were made for all antibodies except ferritin (for which a 12.5% gel was 

utilised). The 10% resolving gel comprises 1-2 mg of ammonium persulphate; 3.5 ml deionised 

water; 10 ml gel stock 2 (0.75 M TRIS + 1 g SDS made up to 500 ml with deonised water, pH 8.8); 6.5 

ml 30% acrylamide/ 8% bisacrylamide and 60 μl TEMED). Once set, stacking gels were made (1-2 mg 

ammonium persulphate, 3.7 ml deionised water, 5 ml gel stock 1 (0.25 M TRIS + 1 g SDS made up to 
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500 ml with deionised water; pH 6.8), 1.3 ml acrylamide and 60 μl TEMED). The 12.5% resolving gel 

comprised the same components as the 10% gel except it contains 1.9 ml of deionised water and 8.1 

ml of 30% acrylamide/ 8% bisacrylamide. 

 

For 10 lane gels 20 μg of protein was loaded per well into the gel (10 µg for 15 lane gels), with one 

lane containing 2.5 μl of PageRulerTM Plus Prestained Protein Ladder (ThermoScientific) per gel. 

Samples were stacked for 10 minutes at 100 V then run at 180 V until proteins had migrated fully 

(typically 45 minutes). Running buffer comprised 10x buffer stock (30 g TRIS, 144 g glycine, 10 g SDS 

in 1 L water, (pH 8.3)) diluted 1:10 with deionised water.  

 

After samples had been run, proteins were transferred from the gel onto a polyvinylidene difluoride 

(PVDF) membrane. Transfer was carried out in 1x transfer buffer (100 ml 10x transfer buffer (30.28 g 

Tris base + 144 g glycine +1 g SDS in 1 L); 700 ml deionised water and 200 ml methanol) for 100 

minutes at 100V. Following transfer, membranes were blocked for 1 hour with 5% skimmed milk 

powder (w/v) dissolved in 1x TBST (10x TBST: 200 mls 1 M TRIS pH 8; 175.5 g NaCl; 10 ml Tween20 

made up in 1.8 L deionised water) on a horizontal mixing plate. 

 

Following blocking, membranes were incubated overnight at 4 °C with primary antibodies (as 

outlined in Table 2.3) dissolved in either 5% milk: 1xTBST (w/v) or 5% BSA: 1xTBST (for 

phosphorylated antibodies).  

 

After overnight incubation the primary antibody was removed and the membrane washed x4 in 

1xTBST (x1 immediate wash followed by x3 washes of ten minutes each). The membrane was then 

incubated for 1 hour at room temperature in either an anti-mouse or anti-rabbit secondary antibody 

as appropriate (diluted 1 in 10,000 v/v in either 5% milk:1xTBST or 5% BSA:1xTBST. After 1 hour the 

secondary antibody was removed and the membrane washed x4 as previously outlined prior to the 
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application of the ECL developing reagent (typically 4 ml ECL per membrane for 5 minutes).  The 

membranes were finally placed on hyperfilm x-ray film in a darkroom and developed.  

 

Films were subsequently scanned and analysed semi-quantitatively using ImageJ analysis software 

(Softonic®) and Microsoft Excel 2010 (Microsoft). In all cases, band intensity for the antibody of 

interest was expressed relative to expression of the ubiquitously expressed protein β-actin. 
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Table 2.3 Primary antibodies utilised in Western blotting protocols  

Target 

Antigen 

Molecular 

weight 

Source Antibody class Optimal Dilution 

β-actin 42 kDa 
Abcam 

Ab8226 

Mouse IgG anti-

human 
WB: 1/10000 

β-catenin 94 kDa 
BD Biosciences 

562505 

Mouse IgG anti-

human 
WB: 1/2000  

B-raf 95 kDa 

Santa-Cruz 

Biotechnology 

SC-5284 

Mouse IgG anti-

human 
WB: 1/200 

Ferritin 20 kDa 
Abcam 

Ab7332 

Rabbit IgG anti-

human 

WB: 1/5000 

 

HIF-1α 120 kDa 
BD Biosciences 

610958 

Mouse IgG anti-

human 

WB: 1/250 

 

IRP2 105 kDa 

Source 

Bioscience 

Lifesciences 

LS-B675 

Rabbit IgG anti-

human 

WB: 1/500 

 

p-ERK 1/2 

p-ERK 1 44 

kDa 

p-ERK 2 42 

kDa 

Cell Signalling 

Technology 

9101 

Rabbit IgG anti-

human 
WB: 1/500 

p-IκB-α 41 kDa 

Santa-Cruz 

Biotechnology 

SC-101713 

Rabbit IgG anti-

human 
WB: 1/500 

TfR1 

190 kDa 

dimer, 95 kDa 

subunit 

Invitrogen   13-

6800 

Mouse IgG anti-

human 

WB : 1/1000 
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2.2.9 Quantification of Intracellular Iron Levels by Ferrozine Assay 

 

The ferrozine assay permits the quantification of intracellular iron levels. Ferrozine forms a stable, 

water soluble, magenta complex with divalent iron that is suitable for colorimetric quantification. 

 

Cells were cultured in 6 well plates with media as per the experimental conditions. After a pre-

determined incubation period the monolayer was washed three times with 1 ml PBS. After thorough 

aspiration of the PBS, 160 µl of HEPES saline (10 mM HEPES in 0.9% (w/v) sodium chloride at pH 7.4) 

was added to the well in order to lyse the cells. The cell monolayer was then separated from the 

plate bottom using a cell scraper. 90 µl of the lysate suspension was removed and added to 200 µl 

20% (w/v) trichloroacetic acid in 4% (w/v) sodium pyrophosphate (TCA) This was boiled for 5 

minutes then re-centrifuged for a further 5 minutes at 12000 RPM. 200 µl of the supernatant was 

aspirated and added to 600 µl of Ferrozine stock solution (100 μl of 0.23 M sodium ascorbate, 80 μl 

of 10 mM ferrozine and 420 μl of 2 M sodium acetate). This solution was thoroughly mixed and 200 

μl aliquots placed in triplicate in a flat-bottomed clear 96 well plate. The colorimetric change in each 

sample was measured using a Bio-Tek ELx800 plate reader at 550 nm. The absorbance in the blank 

was used to correct each sample. The protein concentration (analogous to overall cell number) in 

each sample was determined (by performing a protein assay on the remaining 60 µl of lysate, as 

outlined previously) allowing the iron content of each sample to be expressed as a function of 

protein content (ng Fe / µg protein). 

 

2.2.10 Quantification of Cellular Ferritin Concentration by Ferritin ELISA 

 

The Spectro Ferritin MT ELISA kit (Ramco Laboratories Inc) was utilised as an alternative method (to 

Western blotting) of quantifying intracellular ferritin protein expression. 
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Cells were plated out and treated as per the desired experimental conditions. Following this, lysates 

were extracted using HEPES saline lysis buffer (as described in the ferrozine assay) and a protein 

assay performed (as previously outlined). Briefly, 10 or 5 μl (depending on protein concentration) of 

sample was then loaded per well along with the ferritin calibrator solutions (provided with the kit) at 

6, 20, 60, 200, 600 and 2000 ng/ml. To this, 200 μl of unconjugated antihuman ferritin was then 

added before incubating on a horizontal mixing plate for 2 hours. Wells were then washed with 

deionised water before the addition of 200 μl substrate solution.  Following incubation for 30 

minutes at room temperature, 100 μl of 0.24% (w/v) potassium ferricyanide was added to develop 

the colour and the plate was then read at reading at 490/595 nm using the Victor2 Multilabel 

Counter (Perkin Elmer). 

 

A595 values were subsequently subtracted from A490 values for each sample and compared to the 

calibration curve. Values were then corrected for protein concentration and expressed as ng ferritin 

/ µg protein. 

 

For all iron based experiments, cells were plated out in 6 well plates at a concentration of 

2x105/well. The following day cells were challenged for 1 hour with either standard media (control), 

media containing 100 µM FeSO4 (+500 µM Na ascorbate) or media containing Deferasirox 40 µM + 

100 µM FeSO4. Where the ability of Deferasirox to remove iron from pre-loaded cells was being 

assessed, an additional group treated with 100 µM FeSO4 for 1 hour followed by Deferasirox (40 µM) 

for 1 hour was also included. The ferrozine assay was performed immediately after the treatment 

period ended. In the case of the western blot and ferritin ELISA, standard media was placed back on 

the cells and left overnight to permit translation of ferritin protein.  
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2.2.11 Transwell Radio-labelled Iron Uptake Studies  

 

Cell culture plates (6 well) were coated overnight in rat-tail collagen and placed in ultra-violet (UV) 

light for 24 hours. Permeable transwell inserts (Corning) were then placed into each well, upon 

which Caco-2 cells were seeded at 2 x 105 cells/ml. DMEM (2 ml) supplemented with 10% (v/v) FCS, 

50 U/ml penicillin and 50 µg/ml streptomycin was then added to both the apical and basolateral 

chambers. Cells were then cultured for 14 days with a fresh media change taking place every 2 days. 

After this time the Caco-2 cells were sufficiently differentiated to form a confluent monolayer, 

complete with microvilli and tight junctions.  

 

At 24 hours prior to iron uptake experiments being performed the culture media was removed and 

replaced with minimal essential media (MEM, Sigma) containing epidermal growth factor (20 mg/L), 

triiodothyronine (0.05 µM/L), PIPES (piperazine-N,N’-bis[2-ethanesulfonic acid]) (10mM/L), 

hydrocortisone (11 µM/L), sodium selenite (0.02 µM/L ) and insulin (0.87 µM/L).  

 

After the 24 hours period cells were then stimulated with media containing 59FeCl3 (with or without 

Deferasirox at the concentrations specified within individual experiments) for 1 hour before it was 

removed and replaced with standard DMEM. The transwell inserts were finally removed 24 hours 

later and cells were washed twice with 2 ml Versene (0.2 g/L EDTA in PBS) before being lysed with 

RIPA buffer (as outlined previously). 200 µl of each lysate was subsequently removed and 

transferred to a scintillation tube where 2 ml of OptiPhase HiSafe scintillation fluid (Perkin Elmer) 

was added prior to reading on a beta/gamma counter. Counter readings were expressed as counts 

per minute (CPM) and normalised to sample protein content (using the protein assay as previously 

outlined). 
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2.2.12 Cell Cycle Analysis 

 

Fluorescence-activated cell sorting (FACS) with propidium iodide (PI) labelling was utilised in order to 

determine treatment effect upon the cell cycle.  

 

Cell lines were seeded into T25 flasks such that a confluence of 70% would be achieved at time of 

FACS. Cells were cultured as per the experimental conditions. Following treatment, the cells were 

trypsinised and centrifuged at 1500 rpm for 5 minutes. The cell pellet, following media aspiration, 

was washed by re-suspension in PBS containing 1% FCS (v/v) and then centrifuged at 1500 rpm for 5 

minutes. Upon re-suspension, cells were adjusted to 1x106 cells per 1 ml PBS. 1 ml of PBS containing 

cells was then vortexed whilst 1 ml of ice cold 95% ethanol (v/v) was added drop wise whilst to fix 

the cells. Cell suspensions were then stored at -20 0C prior to use.  

 

Prior to preparing the cells for analysis, the following solutions were made up: 

10x PI stock solution (0.5 mg/ml) – 0.5mg PI dissolved in 0.038 M sodium citrate (pH 7.0), covered 

and stored at 4 0C. 

10 ml PI working solution (50 μg/ml) - 1ml PI stock solution, 100 µl 1 M TRIS (pH 7.5), 50 µl 1 M 

MgCl2, 20 µl RNase A (20 mg/ml), 8.9 ml diethylpyrocarbonate (DEPC) H2O, covered and stored at 4 

0C. 

 

For analysis, cells were centrifuged at 2000 rpm for 5 minutes and the supernatant aspirated. The 

pellet was washed in PBS and centrifuged at 2000 rpm and the supernatant aspirated for the final 

time. The pellet was then resuspended in 500 μl PI working solution, transferred to FACS tubes and 

incubated at 37 0C for 30 minutes in the dark. Cells were then gently vortexed immediately prior to 

being analysed on a Coulter® EPICS XL® analyser and Multicycler for Windows. Cells were sorted into 

G0-G1 and S-G2-M pools. 
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2.2.13 Mouse Models of Colorectal Tumourigenesis 

 

A number of transgenic murine models of in-situ colorectal tumourigenesis were utilised in order to 

test drug effects upon intestinal phenotype and mouse survival. 

 

The Villin-CreER+ Apcfl/fl mouse contains a lox-flanked APC allele on an oestrogen inducible Cre 

background. Following induction of the Cre recombinase with a single dose of intraperitoneal 

Tamoxifen (80 mg/kg), both copies of the APC gene are lost throughout the whole intestine (villus 

and crypt). As a result, a hyper-proliferative phenotype develops over the following 4 days where the 

normal crypt-villus architecture is distorted, such that crypt like cells occupy the vast majority of the 

crypt-villus axis. 201 Mice are taken on day 5 as they would become rapidly unwell if left beyond this. 

This model permits analysis of the effects of a single dose of a drug upon the intestinal phenotype 

through quantification of the number of mitotic figures and apoptotic bodies present within the 

crypts. 102   

 

Lgr5-CreER+ APCfl/fl mice are similar to Villin-CreER+ Apcfl/fl mice except that the Apc deletion which 

occurs post Tamoxfen induction (80 mg/kg intraperitoneal injection on 2 consecutive days) is solely 

within the intestinal stem cells. 202 Again, this represents a rapid model of intestinal tumorigenesis 

with an increase in crypt size seen and mice subsequently developing numerous adenomas within 

50 days following Cre induction. 102 As this is a less aggressive model of intestinal tumorigenesis than 

the Villin-CreER+ Apcfl/fl, it permits analysis of the effect of multiple doses of a drug on both intestinal 

phenotype and ultimately mouse survival (as used in this project).  

  

Lgr5-CreER+ APCfl/fl Ptenfl/fl mice also have an inducible deletion in the Pten tumour suppressor gene 

which becomes activated (along with the APC deletion) upon injection of a single dose of 

intraperitoneal Tamoxifen (80 mg/kg intraperitoneal x1). 203 This is a more aggressive model of 
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tumourigenesis than the Lgr5-CreER+ APCfl/fl as the superimposed Pten deletion permits the 

development of invasive adenocarcinomas. 203 Again, this model can be used to examine the effect 

of multiple doses of a drug on both intestinal phenotype and ultimately mouse survival (as used in 

this project). 

 

Mice were gavaged Deferasirox as per the individual experimental conditions and all work was 

carried out under Home Office approved conditions. 

 

2.2.14 Immunohistochemistry 

 

Murine Tissue 

 

Murine intestines (duodenum, small intestine and colon) were harvested immediately after the 

animal was culled. Guts were washed with tap water (using a 200 µl pipette tip and 5 ml syringe), 

opened longitudinally and placed on filter paper before being submerged in methacarn (4 parts 

methanol : 2 parts chloroform : 1 part acetic acid) for at least 4 hours. Following this period, the guts 

were rolled longitudinally in a proximal to distal intestinal direction and placed in formalin. Samples 

were then transferred to the University of Birmingham Human Biomaterials Resource Centre (HBRC) 

where they were embedded into paraffin blocks.  

 

When required for immunohistochemistry, slides were sectioned at 5 µm intervals and applied to 

SuperFrost glass slides. Slides were dewaxed via submersion in xylene for 10 minutes (x2) before 

being hydrated in successive ethanol washes (2 x 5 minutes in 100% ethanol, 1 x 5 minutes in 95% 

ethanol, 1 x 5 minutes in 70% ethanol and 1 x 5 minutes in tap water).  
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Antigen retrieval was achieved via submersion of slides in dilute citrate buffer (27 mls of 21% (w/v) 

citric acid added to 123 mls of 2.9% (w/v) sodium citrate in a total volume of 1.5 L deionised water, 

ph 6)  in a microwavable pressure cooker.  Once the pressure had been optimised, the slides were 

removed from the pressure cooker and permitted to cool for 30 minutes at room temperature 

(whilst remaining in the citrate buffer). 

Slides were then blocked for 20 minutes using Envision+ 2% (v/v) hydrogen peroxide solution prior 

to being washed x3 in PBS and then incubated for 45 minutes in 10% (v/v) normal goat serum. 

 

The primary antibody (activated/cleaved caspase-3, 1 in 800 dilution with 1% BSA, rabbit polyclonal, 

R&D Systems, AF835; phospho-histone H3, 1 in 500 dilution with 1% BSA, rabbit polyclonal, Cell 

Signalling Technology, 9701 ) was then left on overnight at 4 0C. 

  

Slides were then removed from the primary antibody and washed x3 in PBS before incubation with 

the secondary antibody (Envision+ labelled polymer HRP-conjugated) for 1 hour at room 

temperature. Slides were then washed again x3 in PBS. 

 

Positive staining was visualised using the DAB+ chromogen (3,3´-diaminobenzidine 

tetrahydrochloride) in DAB substrate buffer  (1 drop of chromogen : 1ml of solution substrate 

buffer), with approximately 200 µl applied to each slide for approximately 5 minutes. Slides were 

then washed x3 in PBS before being transferred to water. 

 

Counterstaining was performed with 0.1% Mayer’s haemotoxylin (for 30 seconds) prior to the slides 

being dehydrated in increasing concentrations of ethanol (1 x 2 minutes in 70% ethanol, 1 x 2 

minutes in 95% ethanol, 2 x 2 minutes in 100% ethanol and finally 2 x 5 minutes in xylene). Slides 

were then mounted with Depex and a coverslip applied.  
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NB For haemotoxylin and eosin staining, slides are dewaxed and hydrated as previously described. 

Slides are then stained with 0.1% Mayer’s hemotoxylin (for 30 seconds) prior to being rinsed in 

running tap water and then submersed in 0.3% acid alcohol (700 ml ethanol, 300 ml deionised 

water, 3 ml hydrochloric acid). Slides are then washed again in running tap water and submersed 

in Scott’s tap water substitute (2 g sodium hydrogen carbonate, 20 g magnesium sulphate, 1 L 

deionised water) before being rinsed in tap water again and finally stained for 2 minutes in 1% 

eosin.  Slides were then dehydrated and mounted as previously described.  

 

Images were visualised from paraffin sections using a Nikon Eclipse E600 microscope and digital 

image captured using a Nikon DXM1200F camera (Surrey, UK). Nikon ACT-1 version 2.62 software 

was used for image acquisition (Surrey, UK). 

 

Slides were analysed blindly and scored by expressing the total number of mitotic figures and 

apoptotic bodies per half crypt as a percentage of the total number of cells within that crypt (50 half 

crypts scored for each hematoxylin and eosin (H&E) stained slide). 102 For slides stained with cleaved 

caspase-3 and or phosphor-histone H3 antibodies the total number of positive cells per crypt (for 25 

whole crypts) were expressed as a percentage of total cell number in the same crypt. 

 

Human Tissue 

 

Paraffin embedded sections from 32 patients with colorectal adenocarcinoma undergoing surgical 

resection were collated from archive and processed by the University of Birmingham Human 

Biomaterials Resource Centre (HBRC) for use in immunohistochemistry. Full ethical approval to use 

the samples was obtained by Dr Chris Tselepis, School of Cancer Sciences, University of Birmingham. 
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Slides were stained using automated Ventana® platforms (Roche) using the UltraView Universal DAB 

Detection Kit (Roche) at Birmingham Heartlands Hospital. Antigen retrieval was carried out using the 

high pH, cell conditioning 1, setting for 64 minutes at 99 °C. Following treatment with Universal DAB 

inhibitor, containing 3% hydrogen peroxide solution, slides were incubated for 32 minutes at 37 °C 

with IRP2 primary antibody (Table 2.3). A secondary antibody multimer, active against mouse, goat 

and rabbit IgG and labelled with horseradish peroxidase was used to oxidise universal DAB+ 

chromogen detector. Between each stage, sections were washed by the Ventana platform and 

evaporation minimised by application of a liquid coverslip. 

 

Following preparation, slides were independently scored by a Consultant Histopathologist based on 

intensity of staining (0- none, 1- mild, 2- moderate, 3-strong staining) and percentage of cells stained 

(0, 0-24%; 1, 25-49%; 2, 50-74%; 3-75-100%). The assigned values were then multiplied to give a 

total score for each section out of nine. 24  Chi-Square analysis was then performed using Minitab® 

17.0 (Minitab Inc). 

 

2.2.15 RNA Extraction and cDNA Generation  

 

RNA extraction from frozen tissue 

 

Matched frozen tumour and normal tissue obtained from 41 patients with colorectal 

adenocarcinoma undergoing resection was thawed on ice and homogenised in 750 µl Trizol reagent 

using a PolyTurrax homogeniser. 

  

Samples were then incubated for 5 minutes at room temperature to allow complete dissociation of 

nucleoprotein complexes. 100 µl of chloroform was added and vortexed for 15 seconds and then 

incubated at room temperature for 15 minutes. Samples were then centrifuged at 12,000 g for 15 
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minutes at 4 oC and the upper aqueous phase harvested. RNA was precipitated by addition of 250 µl 

isopropanol and incubated for a further 10 minutes at room temperature. RNA was pelleted by 

centrifugation at 12,000g at 4 oC for 10 minutes and washed with 75% ethanol. The 75% ethanol was 

then aspirated and the residual volume allowed to evaporate followed by RNA re-suspension in 10 µl 

of nuclease free water. Optical density of the re-suspended RNA was measured at 260 nm on a 

spectrophotometer and the concentration of RNA calculated using the equation 1 OD unit= 40 µg/ml 

RNA. RNA was stored at -80 oC. 

 

RNA extraction from cells 

 

Cells were cultured in 6 or 96 well plates as per experimental conditions. Following removal of 

media, cells were washed twice with filter sterilised PBS and 100 or 500 µl Trizol was added to each 

well of 96 or 6 well plates respectively. Cells were incubated for 10 minutes at room temperature 

before aspirating well contents; samples were stored at -20 °C until use and then processed for RNA 

as per tissue samples. 

 

cDNA Generation 

 

cDNA was synthesized from RNA using a reverse transcription system (Eurogentec). A Nanodrop-

1000 spectrophotometer (Thermo Scientific) was used to determine the mRNA concentration of 

samples extracted from Trizol. 1 µg RNA was used per sample, dissolved in a total volume of 14 µl 

nuclease free water. 6 µl of SuperScript®VILO® mastermix (4 µl 10x SuperScript®Enzyme mixed with 

2 µl of 5x VILOTM Reaction Mix) (InvitrogenTM) was added to each sample. Samples were run on a 

thermal cycler (MyCycler®, Bio-rad) at 25 °C for 10 minutes, 42 °C for 60 minutes and 85 °C for 5 

minutes before storage at -20 °C. 
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2.2.16 qRT-PCR 

 

TaqMan® Gene Expression Assays (Applied Biosystems®) were used to detect IRP2 and TfR1 mRNA 

expression. Master-mixes comprised 0.04 µl ROX solution 25 µM (Bioline Reagents Ltd), 7.5 µl 

SensiMix® II Probe (SensiMix® II Probe Kit (Bioline Reagents Ltd)), 1 µl of TaqMan® probe, 0.075 µl 

18s yy probe 6.5 µM (Eurogentec), 0.15 µl 18s primer mix 10 µM (Eurogentec) and 5.235 µl nuclease 

free water per reaction. 14 µl was added to 1 µl template in separate wells of a 96 well plate; the 

plate was then sealed and centrifuged at 1200 rpm for 2 minutes prior to reading. PCR was carried 

out using ABI FAST Realtime PCR and 7500 RT PCR Systems (both Applied Biosystems®) using the 

following cycle: 50 °C for 2 minutes, 95 °C for 10 minutes, 40 repeats of 95 °C for 15 seconds and 60 

°C for 1 minute. All experiments were carried out in triplicate. 

 

Cycle threshold (ct) values were normalised relative to 18s control to give dCt. Fold changes relative 

to control were calculated based on 2-ddCt (where ddCt is dCT of cancer minus dCT of normal for each 

pair) and statistical analysis of differences between groups performed as appropriate.   

 

2.2.17 IRP2 siRNA ‘Knockdown’ 

 

Cells were seeded at 5x104/ml in 96 well plates or 5x105/ml in 6 well plates. IRP2 Silencer®siRNA (Life 

Technologies®, sequence: (5'-3') GGAACAUUUUCUUCGCAGAtt; antisense 

UCUGCGAAGAAAAUGUUCCtg) was re-suspended in nuclease free water to create a 100 µM stock 

solution. A 10 µM working stock was made using nuclease free water immediately prior to use. 

siRNA and lipofectamine®2000 were diluted in Opti-MEM® Medium (Gibco®, Life Technologies®) 

before being combined to give a final concentration of 20 pmol SiRNA to 6 μl lipofectamine per 100 

μl and left for 5-10 minutes at room temperature. 10 µl or 250 µl of working solution was then 

added to cells in a 96 or 6 well plate respectively. Cells were harvested at 24 hours.  
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Silencer® Select Negative Control siRNA #1 was prepared in exactly the same way and used as a 

control in all experiments.  

 

All ddCt values were calculated relative to negative control SiRNA. Expression levels were compared 

by conducting statistical analysis on 1 divided by the average dCT value for each group. 

 

2.2.18 Preparation of B-raf V600E Inducible Cell Lines 

 

A construct containing a B-Raf V600E mutation was successfully created and transfected into 

HCT116 colorectal adenocarcinoma cell lines. In short, a doxycycline-inducible HA epitope-tagged B-

Raf V600E cDNA was constructed in a puromycin resistant pTIPZ lentiviral vector using a pEF-myc-B-

RafV600E construct kindly donated by Dr Richard Marais (Institute of Cancer Research, London, United 

Kingdom).   

 

Following PCR amplification of B-RafV600E from pEF-myc-B-RafV600E using primers encoding a HA-

epitope tag at the N-terminus the PCR product was digested with Sbf1 and Asc1 restriction enzymes 

and ligated into pTIPZ lentiviral vector which had also been cut at the same sites. Samples were 

transformed into competent bacteria by heat shock before plating on agar plates containing 100 

g/ml ampicillin and incubation at 32 0C overnight. Bacterial clones were inoculated into broth and 

grown overnight at 37 0C and 150 rpm before isolation of pTIPZ plasmid DNA using a Qiagen 

Miniprep kit. Successful ligation of the vector and B-Raf V600E insert was confirmed through gel 

electrophoresis (1% agarose gel) following Sbf1/Asc1 diagnostic digest. Positive clones were sent for 

DNA sequencing to definitively confirm the presence of the correct HA-B-Raf V600E insert. 

 

pTIPZ HA-B-Raf V600E and a control empty pTIPZ vector (EV) were delivered into the HCT116 

colorectal cell line via lentiviral infection. Lenti-viruses were manufactured by 293T cells following 
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transfection of the pTIPZ HA-B-Raf V600E and pTIPZ EV constructs with viral packaging plasmids. 

Viral supernatant from transfected HEK293T cells was collected two days later and diluted 1:1 with 

normal growth media. The target HCT116 cells were seeded into 6 well plates at a concentration of 

4x105 cells per well 24 hours prior to the infection. On the day of infection, the standard media was 

aspirated from each well and replaced with viral supernatant. The plates were incubated at 37°C for 

12-18 hours before the viral media was aspirated and replaced with standard media containing 

antiobiotic selection. The pTIPZ plasmid contains a puromycin resistant gene to allow for selection of 

virus infected cells. Selection of infected HCT116 cells was achieved with 0.5 µg/ml of puromycin in 

standard growth media. 

 

Following successful outgrowth of puromycin resistant cells a doxycycline dose response curve was 

performed and Western blotting carried out in order to confirm increasing HA-B-Raf V600E 

expression with increasing doxycycline concentration. 

 

 

 

Figure 2.1 HCT116 V600E doxycycline dose response curve 

Western blot demonstrating increasing B-raf expression with increasing concentration of 

doxycycline. Cells were incubated for 48 hours, lanes indicate doxycycline concentration in µg/ml. 
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2.2.19 Sulforhodamine Colorimetric (SRB) Assay  

 

The SRB cytotoxicity assay permits cell density determination through quantification of cellular 

protein content. 204 Cells were seeded into 96 well plates at an approximate density of 5x104/ml and 

treated as per the experimental conditions outlined. At the end of the experimental period cells 

were fixed through the addition of 20 µl 20% trichloroacetic acid (w/v) and incubated at 4 0C for 30 

minutes. The excess solution was then removed from each well and the plates washed x3 with 

deionised water before being left to dry for at least 2 hours at room temperature. 100 µl of 0.4% SRB 

was then added per well and left for 10 minutes at room temperature before the SRB was removed 

and the wells washed using 1% acetic acid (v/v). The plates were then left again to dry for several 

hours, before 200 μl of 50 mM Tris solution (pH 8.8) was added to each well to dissolve the SRB 

crystals. Once all crystals had fully dissolved, the absorbance was read at 510 nm using a microplate 

reader. 

 

Values were expressed as a fold change relative to the control group’s mean absorbance (normalised 

to 1). 

 

2.2.20 Statistical Analysis 

 

Analyses of data were performed using Minitab 17.0 (Minitab Inc. 2013) and Microsoft Excel 2010 

(Microsoft 2010). Kolmogorov-Smirnov testing was performed to ascertain if data conformed to the 

normal distribution. Normally distributed data was then analysed using Student’s T-test and non-

parametric data analysed using the Mann-Whitney U test or the 1-sample Wilcoxon test as 

appropriate. Comparison between categorical variables was made using the Chi-squared test and 

formal correlation assessed with Spearman’s Rank co-efficient. Significance was accepted at α-level 
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of 5% (p≤0.05) and all data means presented with ± standard error of the mean (SEM). Where shown, 

univariate and multivariate analyses were performed using Strata 12.1 (Stata Corp LP®). 
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Chapter 3.  A Role for Deferasirox as an Anti-neoplastic and Chemosensitising Agent in 

Oesophageal Carcinoma 

 

3.1 Introduction 

 

Carcinoma of the oesophagus is an increasingly significant cause of morbidity and mortality. In 2008 

alone there were approximately 482,300 new cases worldwide and the disease was responsible for 

over 400,000 deaths. 205 In the United Kingdom, overall 5 year survival rates remain around 13% as 

most patients have advanced disease on presentation meaning that only around 25% can undergo 

potentially curative surgical resection.  14, 206, 207  

 

There are two main histological types of oesophageal carcinoma; squamous cell carcinoma (SCC) and 

oesophageal adenocarcinoma (OAC). Of note, there is now an emerging body of evidence 

implicating iron in the development and propagation of OAC. 119, 129, 208, 209, 210, 211    

 

Data from a number of human studies identifies a positive association between increased intake of 

heme iron from red meat and OAC risk. 124, 212, 213, 214  Of note, a higher intake of haem iron (quartile 4 

versus quartile 1 for intake) from meat sources was associated with an odds ratio of 3.04 (95% 

confidence interval 1.2-7.72) for the development of OAC in one population-based case-control 

study. 124 Furthermore, in terms of specific daily intake of red meat, a 2013 meta-analysis 

demonstrated an increased relative risk for OAC of 1.45 (95% confidence interval 1.09-1.93) per 100 

g/day increase in red meat intake. 212 

 

In further support of an association between iron and OAC, the conversion of BM into OAC has been 

shown to be associated with increased cellular iron loading and overexpression of the cellular iron 

import proteins DMT1 and TfR1 in human tissue samples. 24 Excess iron has also been shown to 
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exacerbate OAC tumourigenesis in animal models and cause an increase in OAC cell line proliferation 

in-vitro. 24, 82, 129 All of these associations are not entirely surprising, since iron is essential for a 

number of key cellular processes including DNA synthesis, ATP generation and cell cycle progression; 

all activities that are increased in cancer. 112 

 

Iron chelating agents have demonstrated anti-neoplastic effects in a number of previous studies. 80, 

92 To date, however, the majority of this data has been derived from experimental iron chelators 

which possess a number of potential side effects and remain unlicensed for human use. 139  

 

A number of licensed iron chelators are already in routine clinical use, however, albeit limited to the 

treatment of iron overload associated with conditions such as β-thalassaemia and multiple blood 

transfusions. Of these, the orally administered iron chelator Deferasirox® (Novartis, Switzerland) has 

shown promise as an anti-neoplastic agent in a number of pre-clinical studies and anecdotal case 

reports of clinical experience. 167, 169, 170, 171, 172, 175, 177 Of note, a recent paper from our group 

demonstrated that Deferasirox can inhibit cellular iron uptake (by as much as 20-50%) and reduce 

intracellular iron levels in oesophageal cancer both in-vitro and in-vivo. 215  

 

Interestingly, Deferasirox appears to have an increased efficacy against malignant cells (compared to 

their ‘normal’ counterparts) and may achieve its anti-neoplastic effects via a number of different 

mechanisms (not merely just iron deprivation by chelation alone) including inhibition of the nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFκB) signalling pathway (which is known to 

be dysregulated and influence response to therapy in OAC). 175, 177, 216, 217, 218  

 

The efficacy of Deferasirox in oesophageal malignancy (particularly OAC) is therefore worthy of 

further investigation. 
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3.2 Chapter Aims 

 

The value of licensed iron chelators and in particular the orally administered agent Deferasirox in 

oesophageal carcinoma have not been fully addressed, thus the aims of this chapter are: 

 

1. To assess the efficacy of the licensed oral iron chelator Deferasirox as an anti-neoplastic 

agent in oesophageal carcinoma (in-vitro and in-vivo). 

2. To assess the efficacy of the licensed oral iron chelator Deferasirox as a chemosensitising 

agent in oesophageal carcinoma (in-vitro and in-vivo). 

3. To assess the effect of the licensed oral iron chelator Deferasirox on the NFκB signalling 

pathway in oesophageal carcinoma. 

4. To assess the iron status of patients presenting with oesophageal adenocarcinoma in order 

to determine suitability for a future trial of Deferasirox in humans.  
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3.3 Results 

 

3.3.1 The efficacy of Deferasirox as an anti-neoplastic agent in oesophageal carcinoma in-vitro 

 

3.3.1.1 Overview 

 

The OAC cell lines OE19 and OE33 and the SCC cell line OE21 were seeded into 96 well plates and 

cultured in media with or without Deferasirox at varying doses (0-40 µM) for 24, 48 and 72 hours. 

Cells were counted and seeded (4x104/ml following optimisation) such that an approximate 

confluence of 70% was achieved in the control group (0 μM Deferasirox) at time of assay.  

 

After the defined time points, MTT assays were performed in order to determine cellular viability (as 

previously outlined) relative to the control group. 

 

3.3.1.2 Results 

 

Following 24 hours incubation, Deferasirox did not reduce cellular viability across any of the 

oesophageal cell lines tested (Figure 3.1). Indeed, at doses of 2 (OE19 and OE21), 10 (OE19 and 

OE21) and 20 µM (OE21) a statistically significant increase in MTT readout was actually seen. This 

enhancement in viability, however, did not persist in any of the cell lines beyond 24 hours. 

 

By 48 hours, Deferasirox had significantly reduced cellular viability at concentrations of 10-40µM. 

The largest reduction in viability seen was 57.5% at 40 µM in the OE19 OAC cell line (38.1 and 50.0% 

at the same concentration in the OE33 and OE21 lines respectively, all p<0.05 vs. control). 
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At 72 hours, 40µM Deferasirox had significantly reduced cellular viability by 73.2, 58.4 and 69.2% in 

the OE19, OE33 and OE21 cell lines respectively (all p<0.05 vs. control). 

 

Across all 3 cell lines tested, the approximate IC50 of the drug equated to 40 µM at 48 hours and 20 

µM at 72 hours. 
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D  

Figure 3.1 Deferasirox decreases OAC and SCC cellular viability in-vitro                                   

The OAC cell lines OE19 (A) and OE33 (B) and the SCC cell line OE21 (C) were co-cultured alongside increasing doses of Deferasirox (as specified) for a period of 24-

72 hours. Deferasirox did not suppress cellular viability within the first 24 hours of incubation, however, it did cause a significant reduction in cell viability across all 

3 cell lines in a time and dose dependent manner beyond the 48 hour time point. Data presented as mean fold change relative to standard media control 

normalised to 1, error bars denote ±SEM, p values for corresponding fold changes are shown in (D) where shaded boxes represent p<0.05. 
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3.3.2 The efficacy of Deferasirox as a chemosensitising agent in oesophageal carcinoma in-vitro 

 

3.3.2.1 Overview 

 

The chemotherapy regimen of Epirubicin, Cisplatin and 5- Fluorouracil (ECF) is typically used in the 

treatment of OAC and SCC with variable results. 41 Cellular viability (MTT) and proliferation (BrdU) 

assays were performed in order to assess whether pre and or concomitant treatment with 

Deferasirox (20 or 2 µM) could enhance the efficacy of this regimen.  

 

Various treatment combinations (as outlined in Table 3.1) were administered to OE19, OE21 and 

OE33 cells over 24-72 hours before MTT and BrdU assays were performed (as previously outlined) to 

assess cellular viability and proliferation respectively.  
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Table 3.1 Treatment regimens applied to cells for the ECF combination chemotherapy experiment 

Regimen Day 2 (24 hours) Day 3 + 4 (48-72 hours) 

1 Control media Control media 

2 Control media ECF 

3 Deferasirox ECF 

4 Control Deferasirox + ECF 

5 Deferasirox Deferasirox + ECF 

6 Deferasirox Control media 

7 Control media Deferasirox 

8 Deferasirox Deferasirox 

 

Deferasirox was used at a concentration of 20 or 2 µM. Epirubicin, Cisplatin and 5-Fluorouracil were 

used at their pre-determined IC25 of 0.5, 4 and 4 μM respectively. MTT (viability) and BrdU 

(proliferation) assays were performed after 72 hours treatment in total.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

3.3.2.2 Results 

 

All 3 of the oesophageal cell lines tested demonstrated a marked and highly significant sensitivity to 

48 hours of treatment with ECF therapy in terms of both viability and proliferative activity (mean 

reduction of 46.4 and 64.0% in viability and proliferation respectively across all 3 cell lines, Figure 

3.2). Despite this, pre-incubation with 20 μM Deferasirox for 24 hours prior to the ECF alone for the 

following 48 hours further reduced cellular viability and proliferation across all 3 cell lines compared 

to ECF alone (mean additional reduction of 28.2 and 25.0% on MTT and BrdU respectively). 

Interestingly, pre-treatment with the lower dose of 2 µM Deferasirox also resulted in a significantly 

enhanced reduction in OE19 and OE21 cellular viability and OE19, OE33 and OE21 cellular 

proliferation compared to ECF alone.  

 

Of note, at both of the Deferasirox concentrations tested, there was no additional statistical 

advantage in continuing the chelator alongside ECF in any of the cell lines after it had already been 

given as a pre-treatment (Deferasirox/Deferasirox+ECF). Likewise, there also appeared to be no 

additional advantage in giving Deferasirox alongside ECF (Control/Deferasirox+ECF) to the OAC cell 

lines at either of the doses tested. This was not the case in OE21 SCC cell line, however, where an 

additional reduction in cellular viability of 24.5 and 17.6% was seen with 20 and 2 µM Deferasirox 

respectively. 
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Figure 3.2 Pre-treatment of OAC and SCC cell lines with Deferasirox can enhance subsequent 

response to chemotherapy with ECF in-vitro 

OE19 (A-C), OE33 (D-F) and OE21 (G-I) cell lines were subjected to various treatment regimens (as 

outlined) for a total period of 72 hours prior to cellular viability (MTT) and proliferation (BrdU) assays 

being performed. The chemotherapy regimen of Epirubicin, Cisplatin and 5-Fluorouracil (ECF) was 

utilised, comprising each of the constituent drugs at their pre-determined IC25. The addition of 

Deferasirox for 24 hours as a pre-treatment before ECF administration significantly enhanced the 

reduction in cellular viability and proliferation seen, even at the lower dose of 2 µM Deferasirox.  

 

Data presented as mean fold change relative to standard media control normalised to 1, error bars 

denote ±SEM, treatment given for first 24 hours indicated prior to / and treatment given for 

subsequent 48 hours indicated post /. Corresponding fold changes shown in (C), (F) and (I) where * 

denotes p<0.05 vs. control, # p<0.05 vs. control/ECF and $ p<0.05 vs. Deferasirox/Deferasirox.   
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As expected, administration of Deferasirox alone at a concentration of 20 µM (for a total of 72 

hours) resulted in a significant reduction in both cellular viability and proliferation across all of the 

lines tested that was at least comparable to 48 hours of ECF alone. In the OE19 OAC cell line, 

Deferasirox monotherapy for 72 hours was actually statistically more efficacious that ECF alone, this 

was not the case, however, in either the OE33 or OE21 cell line. 

 

Of note, Deferasirox monotherapy at 20 µM for 72 hours was broadly statistically comparable to the 

Deferasirox/ECF pre-treatment regimen in terms of the effect on both cellular viability and 

proliferation. This was not the case, however, with the lower Deferasirox dose of 2 µM, where, as 

would be expected, monotherapy was broadly significantly less efficacious than both ECF alone and 

the Deferasirox/ECF pre-treatment regimen. 

 

Interestingly, unlike in the previous experiment (Figure 3.1, page 92) where Deferasirox 

concentrations of 20 µM (OE21) and 2 µM (OE19 and OE21) for 24 hours did show stimulatory 

activity, this was not seen in this experiment in any of the cell lines tested. This may be related to the 

timing of assay, as in the previous experiments the assay was performed immediately after the 24 

hour time period, whereas in this series of experiments the drug was removed and replaced with 

standard media at 24 hours but the assay was not performed until 72 hours in total had passed. This 

indicates Deferasirox may still have an effect on cell viability and proliferation even after its removal. 
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3.3.3 The ability of Deferasirox to overcome established chemotherapy resistance in oesophageal 

carcinoma in-vitro 

 

3.3.3.1 Overview 

 

In order to assess whether Deferasirox therapy may be effective in overcoming established 

chemotherapy resistance (both as monotherapy and in combination with existing agents), a Cisplatin 

resistant ‘clone’ of OE33 OAC cells was created by co-culturing them alongside progressively 

increasing doses of the drug over several months. In addition, the Cisplatin resistant TE4 

oesophageal SCC line was also utilised. 192   

 

For experiments, cells were again seeded into 96 well plates and cultured alongside standard media, 

media containing Cisplatin, media containing Deferasirox and Cisplatin and media containing 

Deferasirox alone for 72 hours. MTT assays (as previously described) were utilised to determine 

cellular viability after 72 hours of treatment. 

 

3.3.3.2 Results 

 

The OE33 OAC ‘clone’ cell line demonstrated Cisplatin resistance up to 2 µM at 72 hours (Figure 

3.3A). The cell line retained sensitivity to 20 µM Deferasirox alone (9% reduction in viability, p<0.05 

vs. control), however, the drug appeared less efficacious than when used at an equivalent dose in 

the parental oesophageal cell line in previous experiments (sections 3.3.1 and 3.3.2). When 

Deferasirox (20 µM) and Cisplatin (2 µM) were given in combination, however, a highly significant 

39.8% reduction in cellular viability was seen. This was statistically significant (p<0.05) compared to 

control and both Cisplatin and Deferasirox alone. A similar reduction in cellular viability (40%) was 

seen when Deferasirox was given in combination with the higher dose of 4 µM Cisplatin.  
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Figure 3.3 Treatment with Deferasirox can overcome established Cisplatin resistance in OAC and 

SCC cell lines in-vitro 

Cell viability assay (MTT) demonstrating ability of Deferasirox to overcome Cisplatin resistance when 

given alone and or alongside Cisplatin at the concentrations specified to a ‘clone’ OE33 cell line (A) 

and the TE4 SCC cell line (B and C). Data shown represent mean fold change relative to standard 

media (normalised to 1), error bars denote ±SEM, *p<0.05 vs. control, # p<0.05 vs. equivalent dose 

of Cisplatin, $ p<0.05 vs. equivalent Deferasirox alone, ^ p<0.05 vs. parental cell line. Cisplatin 

utilised at specified concentrations apart from in C, when used at 2 µM throughout. 
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As expected, the TE4 cell line demonstrated no significant reduction in cellular viability when treated 

with Cisplatin alone (up to a concentration of 8 µM, Figure 3.3B). Again, however, Deferasirox alone 

(20 µM) significantly reduced viability by 52.3% compared to control. Interestingly, in this cell line, 

there was no additional effect seen by giving Deferasirox (20 µM) alongside any of the Cisplatin 

doses tested (2, 4 and 8 µM). A significant combinatorial reduction in cellular viability (35.2%) was 

seen, however, when a sub-therapeutic dose of Deferasirox (5 µM) was combined with low dose, 

sub-therapeutic Cisplatin (2 µM, Figure 3.3C). 

 

3.3.4 Deferasirox as an anti-neoplastic and chemosensitising agent in a murine xenograft model of 

oesophageal adenocarcinoma 

 

3.3.4.1 Overview 

 

In order to assess the potential for Deferasirox to act as an anti-neoplastic and or chemosensitising 

agent in-vivo (and validate our previous in-vitro findings) a murine xenograft model using OE19 OAC 

cells was created. 

 

Briefly, suspensions of OE19 cells (1 x 107 cells) were centrifuged and re-suspended in 50 µL of 

culture media. Immediately prior to injection, the cell slurry was mixed 50/50 (v/v) with Matrigel 

(extracellular matrix). The cell suspension was then subcutaneously injected into NOD-SCID mice 

(100 µl per mouse under general anaesthesia) and following a period of tumour establishment, mice 

were divided into groups and given one of 6 treatment regimens: 
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1. Control vehicle 

2. Deferasirox alone (20 mg/kg on alternate days for 3 weeks via oral gavage)  

3. Cisplatin alone (0.75 mg/kg every 3rd day for 3 weeks by intra-peritoneal injection; a pre-

determined sub-optimal dose)  

4. Deferasirox (20 mg/kg on alternate days) and Cisplatin (0.75 mg/kg every 3rd day) in 

combination for 3 weeks 

5. Deferasirox (20 mg/kg) alone on alternate days for 1 week followed by 3 weeks of Cisplatin 

treatment alone (0.75 mg/kg every 3rd day) 

6. Deferasirox (20 mg/kg) alone on alternate days for 1 week (commenced at the same time as 

5.) followed by no further treatment during the experimental period 

 

The vehicle for gavage consisted of 30% 1,2-propanediol/70% sterile 0.9% sodium chloride solution; 

Cisplatin was dissolved in sterile distilled water. Following treatment, mice were anaesthetised and 

exsanguinated by direct cardiac puncture and blood/plasma retained for full blood count and 

biochemical analysis (urea, creatinine and serum iron). Tumours were removed and weighed to assess 

tumour burden. All work was carried out under Home Office approved conditions. 

 

3.3.4.2 Results 

 

Deferasirox administration alone on alternate days for 3 weeks resulted in a significantly smaller final 

xenograft size compared to the control group (83.5% reduction, 35.5 mg vs. 214.9 mg, p=0.032) without 

any effect on haemoglobin, serum iron or creatinine levels (Figure 3.4).  At the dose used, Cisplatin alone 

for 3 weeks also reduced xenograft size although this failed to reach the threshold for statistical 

significance (68.0 mg vs. 214.9 mg, p=0.064).   
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Figure 3.4 Deferasirox significantly reduces murine OE19 xenograft size when administered orally 

for 3 weeks 

Deferasirox (20 mg/kg) given orally on alternate days for 3 weeks resulted in a significantly smaller 

xenograft size relative to control (83.5% reduction, p=0.032, (A)). Pre-treatment of mice with oral 

Deferasirox for just 1 week followed by 3 weeks of Cisplatin therapy (0.75 mg/kg) administered 

intra-peritoneally every third day also resulted in a significantly smaller xenograft relative to control 

(75.9% reduction, p=0.044), however, this was not significantly smaller than the group given 

Cisplatin alone (23.9% reduction relative to Cisplatin alone, p=0.455). Deferasirox was well tolerated 

by the mice as indicated by the parameters shown in (B) (error bars denote ±SEM, *p<0.05 vs. 

control).  
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The combination of Deferasirox with Cisplatin for 3 weeks did not improve tumour response compared 

to either control, Cisplatin alone or Deferasirox alone (69.9 mg Deferasirox + Cisplatin vs. 214.9 mg 

control, p=0.067 vs. control, p=0.941 vs. Cisplatin alone, p=0.124 vs. Deferasirox alone). Pre-treatment 

of mice for 1 week with Deferasirox prior to 3 weeks of Cisplatin monotherapy did, however, result in a 

significantly smaller xenograft compared to control (51.71 mg vs. 214.9 mg, p=0.044) albeit at the 

expense of a small rise in serum creatinine levels (38.18 vs. 35.83 µM/L, p=0.045 vs. control). 

 

Treatment of mice for 1 week with Deferasirox resulted in a final xenograft size of 75.7 mg (p=0.075 vs. 

control) which was statistically larger than the group given 3 weeks of Deferasirox monotherapy (75.7 

mg vs. 35.5 mg, p=0.047). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 
 

3.3.5 The effect of Deferasirox upon the NFκB signalling pathway in oesophageal carcinoma 

 

3.3.5.1 Overview 

  

In order to assess the potential efficacy of Deferasirox upon the NFκB signalling pathway in 

oesophageal carcinoma a dual luciferase reporter assay was utilised using the OE19, OE33 and OE21 

cell lines. In addition, Western blotting was performed against the phosphorylated form of the IκBα 

protein. IκBα forms a complex with NFκB, keeping it in an inactive state; phosphorylation of the 

protein at Ser32 and Ser36 leads to activation of NFκB. Thus, p-IκBα can be used as a surrogate 

marker of NFκB activity. 219 

 

3.3.5.2 Results 

 

All 3 oesophageal carcinoma cell lines demonstrated activation of the NFκB signalling pathway. TNFα 

is known to be a potent inducer of NFκB activity (as demonstrated in Figure 3.5 where TNFα (20 

ng/ml) significantly induced NFκB activity in all 3 oesophageal cell lines tested). Of note, the 

induction in NFκB by TNFα was greatest in the OE21 SCC cell line (10.64 fold) compared to 1.07 and 

1.92 in the OE19 and OE33 OAC lines respectively.  
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Figure 3.5 Deferasirox reduces NFκB activity in OAC and SCC in-vitro 

Dual luciferase reporter assay demonstrating that 24 hours Deferasirox administration significantly 

reduces NFκB signalling activity compared to control across all 3 cell lines tested. Data presented as 

mean fold change in NFκB reporter activity relative to standard media control, error bars denote 

±SEM, *p<0.05 vs. control. 
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Deferasirox administration (160 µM overnight) significantly reduced NFκB reporter activity in all 3 

cell lines (0.18, 0.09 and 0.38 fold in OE19, OE33 and OE21 lines respectively, p<0.05 vs. control). 

 

Western blotting for p-IκBα was then performed on the OE19 OAC cell line as this had shown the 

highest baseline activity in the reporter assay (as inferred by response to TNFα).  Deferasirox (20 

µM) administration significantly reduced p-IκBα protein expression after 48 hours (71.6% reduction, 

p<0.05 vs. control, Figure 3.6). 
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Figure 3.6 Deferasirox administration reduces P-IκBα expression in OE19 OAC cells 

Western blot (A and C) demonstrating that administration of Deferasirox (20 µM) reduces P-IκBα 

expression in OE19 OAC cells. In blot (A), Deferasirox was administered for 24, 48 and 72 hours at 20 

µM. In blot (C), Deferasirox was administered for 48 hours at 20 µM (lanes 1-3 = control media, lanes 

4-6 = Deferasirox).  P-IκBα expression was normalised to β-actin and displayed as a fold change (B 

and D) relative to control (normalised to 1). Error bars denote ±SEM, *p<0.05 vs. control. 
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3.3.6 Determination of the iron status of patients presenting with oesophageal adenocarcinoma 

 

3.3.6.1 Overview 

 

Deferasirox has been shown to significantly reduce serum ferritin and serum labile iron pool in 

patients with iron overload. 162  The drug appears to be well tolerated across these groups with a low 

incidence of serious adverse events to date. 162 The haematological and biochemical effects of iron 

chelator administration to a non-systemically iron overloaded group of patients, however, are not 

known. As such iron chelators may have the potential to induce anaemia; a state known to be 

associated with gastrointestinal cancers. 220   

 

Previous studies in oesophageal cancer have estimated the incidence of anaemia on presentation to 

range from 20-45%. 221, 222 Clearly, any benefit seen for patients treated with iron chelation therapy 

through Deferasirox in terms of anti-neoplastic activity or chemosensitisation would be substantially 

negated by the development of iron-deficiency and or anaemia and its associated side effects. The 

incidence of anaemia and or iron-deficiency in patients presenting with OAC thus needs to be 

formally quantified before any hypothetical trial of iron chelation therapy could commence. 

 

The determination of the systemic iron status of patients presenting with OAC to a tertiary upper 

gastrointestinal resectional centre was therefore achieved through a retrospective analysis of 

prospectively collected haematological and biochemical data. Inclusion criteria were all patients 

presenting with oesophageal OAC (including Siewert types I, II and III) in a 2 year period (2008-10). 

All patients had histologically proven malignancy and were included in the study with informed 

consent and regional ethics approval. Patient demographics were recorded and blood samples taken 

at presentation for haematological and biochemical iron parameters. Patients were followed 

through the normal multidisciplinary team cancer evaluation and treatment pathways. All 
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haematological and biochemical quantification was performed on automated high through put 

analysers at the host institution’s department of haematology and biochemistry. Data collected 

included haemoglobin, serum ferritin, serum iron and soluble transferrin receptor (sTfR). The soluble 

transferrin receptor – ferritin index (sTfR-F index) was also calculated by sTfR/log ferritin. Derivation 

of sTfR-F was performed as it has been shown to accurately distinguish between iron-replete and 

iron-deplete anaemic patients and also to detect the non-anaemic stages of iron deficiency. 223 

 

The normal reference ranges used were: 

Haemoglobin concentration (Hb): male 13.5-18 g/dL and female 11.5-16.5 g/dL 

Serum ferritin: 18-360 µg/L and female 10-320 µg/L 

Serum iron: male 10-32 µmol/L and female 5-30 µmol/L 

sTfR: male and female 2.0-3.6 mg/L 

sTfR-F index: male and female >1.8  equates to storage iron depletion, >2.2 indicates iron deficient 

erythropoiesis and >2.8 iron deficiency anaemia 223 

 

3.3.6.2 Results 

 

In total, 71 patients presenting with OAC were included with a mean age of 65.5 years. 

 

Fifty-five (78%) OAC patients were male. Mean Hb for male OAC patients was 13.8 g/dL and 11.8 

g/dL for females. Mean serum ferritin was 265 µg/L and 91 µg/L for males and females respectively 

and serum iron 13.4 µmol/L and 12.3 µmol/L. Mean sTfR was 2.64 mg/L for males and 2.92 mg/L for 

females. Mean sTfR-F index values were 1.35 for males and 1.72 for females, both within normal 

reference ranges. 
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No significant difference in any tested parameter was observed between resectable and advanced 

OAC at presentation. 

 

A full iron profile was available for 11 patients in total who underwent neoadjuvant chemotherapy 

with Epirubicin, Cisplatin and 5-Fluorouracil/Capecitabine (ECF/ECX). A significant fall in mean Hb 

concentration was evident post neoadjuvant treatment (13.9 g/dL to 12.5 g/dL; p=0.019 pre vs. post 

treatment respectively). No significant differences were observed in mean serum ferritin (161 µg/L 

vs. 280 µg/L; p=0.34), serum iron (13.1 µmol/L vs. 13.8 µmol/L; p=0.81) or sTfR (2.63 mg/L vs. 2.79 

mg/L; p=0.33). Although a significant drop in mean Hb was noted pre and post chemotherapy, no 

change in mean sTfR-F index values was seen (1.47 vs, 1.43; p=0.89 for pre and post treatment 

values) indicating systemic iron levels remained unchanged. 
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Table 3.2 Patients presenting with OAC are systemically iron replete  

 

Key haematological parameters pertaining to systemic iron status were obtained from 71 patients with OAC presenting to a tertiary referral centre. Chemotherapy 

administered is known as ECX and comprised Epirubicin, Cisplatin and Capecitabine (pro-drug converted to 5-Fluorouracil). Data presented as mean, () denotes 

standard deviation, * p<0.05 vs. pre ECX.  

 

NB Section 3.3.6 has been adapted from Ford SJ, Bedford M, Pang W et al. A comparative study of the iron status of patients with oesophageal adenocarcinoma to 

determine suitability for a clinical trial of iron chelation therapy. Annals of the Royal College of Surgeons of England 2014; 96(4): 275-8. 

I gratefully acknowledge Dr Weehaan Pang for data collection, Mr Samuel Ford for assistance with data analysis/interpretation and Ms Olga Tucker for overall 

conception, design and lead of this study.  
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3.4 Discussion 

 

The incidence of oesophageal carcinoma and in particular the OAC subtype is increasing at an 

alarming rate. 13, 14 The disease continues to carry an abysmal 5 year survival rate of around 13%, 

largely driven by the high percentage of patients presenting with advanced, irresectable disease and 

the subsequent paucity of systemic reagents effective against it. 14, 17, 40, 41, 43, 45, 47, 54, 55 Thus, the 

discovery and development of new agents that are solely effective against the disease or can 

enhance the efficacy of existing therapies would be highly desirable. 

 

Iron metabolism appears to be dysregulated in the development of OAC, as illustrated by the 

increase in cellular iron import and deposition seen with the progression from pre-malignant BM to 

OAC. 24 Furthermore, iron has been to shown to both exacerbate tumourigenesis in murine models 

of OAC and increase OAC cellular proliferation in-vitro. 24, 129 Similar phenomena have also been 

demonstrated in other cancers, particularly breast and colorectal. 82, 99, 102, 125  

 

Iron chelators therefore offer great potential as anti-neoplastic agents, although there is little data 

available pertaining to the efficacy of pre-existing licensed agents. 80, 92 Deferasirox is one such agent 

and, unlike the original clinically available chelator Desferrioxamine, has an oral route of 

administration making it an attractive agent to investigate further in the context of cancer. 157   

 

It has been demonstrated in the current study that Deferasirox significantly impairs both OAC and 

SCC cell viability in-vitro in a time and dose dependent manner. The drug displays an IC50 of 

approximately 40 µM at 48 hours incubation and 20 µM at 72 hours. Moreover, Deferasirox also 

demonstrated a marked and significant suppression in OAC xenograft growth when given to mice at 

a dose of 20 mg/kg on alternate days for 3 weeks (83.5% reduction in tumour size, p=0.032 vs. 

control). Again, this was a significantly greater effect than when the drug was given to mice for just 
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one week (mean final xenograft size 35.5 mg vs. 75.7 mg, p=0.047), demonstrating a time dependent 

response to therapy. Crucially, Deferasirox monotherapy was well tolerated with no differences seen 

in final animal weight, haemoglobin, serum iron or serum creatinine compared to the control cohort.  

 

These results are immensely promising and support the findings published in a recent paper from 

our group demonstrating that Deferasirox inhibits oesophageal cellular iron uptake (by as much as 

20-50%) and is also capable of stripping iron from inside cells. 215 In addition, oesophageal xenografts 

harvested from mice given Deferasirox (20 mg/kg) for 3 weeks had a significantly reduced iron 

content (up to 57%) which was also reflected by significant up-regulation in TfR1 expression and 

concomitant down-regulation in H-ferritin and ferroportin expression (at both the mRNA and protein 

levels). 215 Deferasirox has also demonstrated efficacy in in-vivo models of lung cancer and leukaemia 

thus indicating that the effects of the drug are not cell line dependent. 169, 183  

 

Iron is essential for a number of key cellular processes including DNA synthesis, ATP generation and 

cell cycle progression; all of these are activities that by definition are increased in cancer and thus 

malignant cells are known to have a higher requirement for iron than their normal counterparts. 112 

The fact that Deferasirox is able to both inhibit cellular iron uptake and facilitate the removal or iron 

from within oesophageal cancer cells means that the primary mechanism for its anti-neoplastic 

effects when given as a monotherapy is likely to be cellular iron deprivation through chelation. It is 

known that cellular iron depletion results in cell cycle arrest at the G1/S checkpoint and subsequent 

induction of apoptosis. 224 Iron deprivation is also known to inhibit activity of the R2 subunit of the 

enzyme ribonucleotide reductase (which catalyzes the conversion of ribonucleotides into 

deoxyribonucleotides during DNA synthesis) and decrease expression of cyclins A, B and D (all of 

which are vital for cell cycle progression). 225  
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Current response rates to chemotherapy in oesophageal carcinoma are variable, as such the finding 

that Deferasirox can overcome established Cisplatin resistance, both as a monotherapy and when 

given at low ‘sub-optimal’ doses in combination with Cisplatin, in both OAC and SCC cell lines in-vitro 

is of significant interest. 52 Furthermore, the demonstration that pre-treatment of oesophageal cell 

lines with Deferasirox, even at low concentrations, in-vitro for 24 hours prior to administration of the 

ECF chemotherapy regimen results in a significant additional reduction in both cellular viability and 

proliferation raises the potential that the drug may act as a chemosensitiser. 

 

Obviously, a counter argument to this could be that Deferasirox is merely acting through a different 

mechanism of action to existing reagents (i.e. iron chelation rather than DNA cross-linking in the 

case of Cisplatin) and in the case of pre-treatment, any beneficial effects seen are merely achieved 

through the addition of an extra drug that has been commenced earlier, and it is not actually 

genuine chemosensitisation per se. There are, however, a number of additional mechanisms of 

action for the drug proposed in the literature which offer potential routes to chemosensitisation 

including upregulation of the metastasis suppressor n-Myc downstream regulated 1 (NDRG1), the 

cyclin dependent kinase inhibitor p21CIP1/WAF1 and the pro-apoptotic protein Caspase-3 as well as the 

inhibition of polyamine synthesis, mTOR signalling, Wnt signalling and the NFκB pathway. 169, 173, 175, 

177, 183, 186  

 

Thus, of particular interest is the demonstration in this study (by both reporter assay and Western 

blotting) that Deferasirox can inhibit signalling through the NFκB pathway in OAC. NFκB signalling 

plays a pivotal role in the pathogenesis of a number of cancers by regulating several fundamental 

cellular processes such as apoptosis, proliferation, differentiation and tumour migration. 178 It has 

been shown to be constitutively active in most tumour cell lines and has also been identified in 

tumour tissue from patients with multiple myeloma, acute myeloid leukaemia, prostate cancer and 

breast cancer. 178, 179, 180, 181, 182 In OAC, NFκB expression has been shown to increase in a stepwise 
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manner along the progression from normal mucosa (nil) to BM (40%) to OAC (61%). 216  NFκB activity 

pre-therapy (chemo/radiotherapy) for OAC has also been shown to correlate with lack of 

subsequent complete pathological response, increased metastatic progression and decreased 

disease-free and overall survival.  216, 217  NFκB has been shown to be activated in OAC in-vitro by 

common chemotherapeutic drugs (such as 5-Fu) leading to inhibition of apoptosis. 218 Interestingly, 

chemosensitivity can be restored following treatment with an NFκB inhibitor. 218 Furthermore, NFκB 

inhibitors have been shown to suppress oesophageal tumour growth both in-vitro and in-vivo and 

also enhance sensitivity to 5-Fu and Cisplatin in-vitro. 226 As such, the demonstration that NFκB 

signalling is active in OAC cell lines but can be significantly suppressed (by as much as 71.6%) 

through the administration of Deferasirox therapy at a concentration of 20µM is highly relevant and 

offers a mode of action for how the drug may be able to sensitise cells to chemotherapy. Previous 

studies have identified a link between ferritin expression and NFκB signalling. 227 Of note, ferritin has 

been shown to induce NFκB signalling in hepatic stellate cells, which may explain in part the ability of 

Deferasirox (through suppression of intracellular ferritin) to inhibit NFκB signalling. 228 Furthermore, 

down-regulation of ferritin has been shown to increase the sensitivity of breast cancer cells to the 

chemotherapeutic agents Doxorubicin and Cisplatin.  229, 230 

 

The data shown in the current study clearly demonstrates that Deferasirox monotherapy is highly 

efficacious both in-vitro and in-vivo against OAC. The drug is also effective at decreasing viability in 

cell lines that are resistant to therapy with Cisplatin and may enhance the efficacy of existing 

chemotherapeutic reagents when given as a pre-treatment or at a lower dose in combination. It 

should also be noted, however, that the combination of Deferasirox with either ECF (in-vitro) or 

Cisplatin (in-vitro and in-vivo) does not confer any additional benefit over chemotherapy alone and 

indeed in the OE19 in-vivo xenograft model, the addition of Cisplatin to Deferasirox actually 

appeared to reduce the efficacy of the chelator.  This in part may be explained by previous studies 

looking at Cisplatin based combination therapies in germ cell tumours demonstrating that Cisplatin 
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induced cell death occurs predominantly in cells during G2/M of the cell cycle and that use of agents 

which induce G1/S arrest (which is likely to be the case with an iron chelator) is unlikely to offer any 

synergistic advantage. 231 

 

The demonstration that patients presenting with OAC are not systemically iron deplete and that 

chemotherapy with ECX does not negatively impact on iron levels is an important finding. Although 

the data presented here was from a relatively small number of patients drawn from a single, tertiary 

upper gastrointestinal resectional centre, these results will help to justify the design of any future 

clinical trial of Deferasirox therapy in patients with OAC (even though it has also been demonstrated 

here in mouse models that Deferasirox therapy is unlikely to impact on either haemoglobin or serum 

iron levels). 

 

In conclusion, it has been demonstrated that the iron chelator Deferasirox displays significant anti-

neoplastic properties both in-vitro and in-vivo in the context of OAC. Crucially, Deferasirox 

monotherapy was well tolerated in mice treated with the drug with no negative effects on mouse 

health, haemoglobin, serum iron or serum creatinine levels seen. The drug is efficacious in-vitro 

against cells that are resistant to Cisplatin and can improve subsequent response to chemotherapy 

when given either at a low dose alongside or as a pre-treatment prior to existing therapy regimens. 

The drug also appears to reduce signalling through the NFκB pathway, offering an additional 

mechanism of action beyond iron chelation alone. Finally, evidence within this study demonstrated 

that patients presenting with OAC are systemically iron replete and are therefore candidates to be 

entered into any future clinical trial of Deferasirox as an anti-neoplastic agent in oesophageal 

carcinoma. 
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Chapter 4. A Role for Deferasirox as an Anti-neoplastic and Chemosensitising Agent in Colorectal 

Adenocarcinoma 

 

4.1 Introduction 

 

Cancer of the colon and rectum is the 4th most common cancer in the United Kingdom overall (being 

the 3rd most common in men and women when analysed separately). 4  Five year survival rates for 

the disease are 59%, with survival being strongly correlated to disease stage at the time of 

presentation (93.2% of patients with Duke’s A disease survive 5-years, compared to 6.6% with 

Duke’s D disease). 232, 233 

 

As with oesophageal carcinoma, surgery remains the cornerstone of curative treatment for 

colorectal adenocarcinoma, however, for those with locally advanced or systemic disease, 

chemotherapy continues to comprise an important component of the treatment armamentarium. 234 

Again, response to chemotherapy is variable and as such the development of new agents efficacious 

against the disease is highly desirable. 235 

 

Iron appears to be intimately linked to colorectal tumourigenesis. 82, 102  Individuals harbouring a 

mutation in haemochromatosis (HFE), one of the mutated genes that underlies Hereditary 

Haemochromatosis, have also been shown to be at an increased risk of certain extrahepatic cancers, 

including colorectal. 118, 119, 120  Furthermore, a meta-analysis of 33 studies assessing iron intake and 

colorectal cancer risk revealed that approximately 75% of the studies included associated higher iron 

intake with an increased risk of colorectal cancer. 123  It has also been demonstrated that men who 

regularly donate blood may have a lower risk for developing several cancers including colorectal. 122  

Colorectal adenocarcinoma typically develops through the normal mucosa → adenoma → 

adenocarcinoma sequence. 236 With this in mind, increased iron acquisition has been demonstrated 
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in samples of human tissue taken along this progression to adenocarcinoma together with a 

corresponding overexpression in the cellular iron import proteins TfR1 and DMT1 and an 

internalisation of the main cellular iron export protein ferroportin. 82 The systemic iron regulatory 

hormone hepcidin (which through internalisation of ferroportin precipitates cellular iron loading) 

has also been shown to be ectopically expressed in colorectal cancer tissue and correlates with 

tumour T-stage when measured in the urine of patients with the disease. 237 Likewise, iron loading of 

colorectal adenocarcinoma cell lines in-vitro has been shown to stimulate cellular proliferation and 

also repression of the cell adhesion protein E-cadherin. 82 

 

Iron has been shown to amplify Wnt signalling (the major oncogenic pathway in the colon) in-vitro 

following loss of the tumour suppressor APC (an event which occurs in the vast majority of colorectal 

cancers). 132 Furthermore, an upregulation in the expression of TfR1 and DMT1 was seen in 

adenomas extracted from the intestines of transgenic mice harbouring an APC mutation (APC Min/+). 

102 Interestingly, the increase in TfR1 and DMT1 seen was also shown to correlate with expression of 

the proto-oncogene c-Myc, a known Wnt target which has also been shown to activate TfR1 

transcription. 102, 238 Furthermore, in the same study it was demonstrated that ApcMin/+ mice fed a low 

iron diet developed fewer tumours that were also significantly smaller. 102 Conversely, a 2-3 fold 

amplification in tumourigenesis was seen in mice fed a high iron diet compared to the control group. 

Finally, mice fed a low iron diet were shown to have increased overall survival, whereas those on a 

high iron diet had a significantly decreased overall survival (p<0.05 vs. control). 102 The authors 

concluded that excess luminal iron in the context of APC loss was a potent stimulator of intestinal 

tumourigenesis. These findings support similar observations for a propagating effect of iron (both 

luminal and systemic) on murine colorectal tumourigenesis that have been shown previously. 239 

 

Malignant cells have an increased requirement for iron, owing to its vital role in DNA synthesis, ATP 

generation and cell cycle progression. 112 It therefore appears that iron has a dual role in the 
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propagation of colorectal tumourigenesis; firstly, by acting crudely as a ‘fuel in the tank’ for 

malignant cells, driving their increased rate of proliferation through the processes it is crucial to; and 

secondly, through the amplification of oncogenic signalling pathways such as Wnt, further increasing 

cell proliferation, survival and evasion of apoptosis whilst enhancing the cell’s ability to acquire 

further iron and drive proliferation on again (thus forming an almost self-perpetuating cycle). 

 

It thus seems logical that iron chelation may be efficacious in the treatment of colorectal 

adenocarcinoma, however to date, this treatment avenue remains largely unexplored. 
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4.2 Chapter Aims 

 

Given the weight of evidence implicating iron in the propagation of colorectal tumourigenesis, it is 

pertinent to investigate whether iron chelation represents an efficacious and novel treatment option 

for the disease. As such, the aims of this chapter are: 

 

1. To assess the efficacy of the licensed oral iron chelating agent Deferasirox as an anti-

neoplastic agent in colorectal adenocarcinoma in-vitro. 

2. To delineate the effects of Deferasirox administration upon colorectal cellular iron 

metabolism and cell phenotype in-vitro.  

3. To assess the ability of Deferasirox to overcome established chemotherapy resistance in 

colorectal adenocarcinoma in-vitro. 

4. To assess the effect of pertinent genetic mutations and hypoxia upon Deferasirox efficacy in-

vitro. 

5. To assess the efficacy of the licensed iron chelator Deferasirox in colorectal adenocarcinoma 

in-vivo. 
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4.3 Results 

 

4.3.1 Deferasirox as an anti-neoplstic agent in colorectal adenocarcinoma in-vitro 

 

4.3.1.1 Overview 

 

The colorectal adenocarcinoma cell lines RKO, SW480 and HT29 were seeded into 96 well plates and 

cultured in media with or without Deferasirox at varying doses (0-320 µM) for 24, 48 and 72 hours. 

Cells were counted and seeded (4x104/ml following optimisation) such that an approximate 

confluence of 70% was achieved in the control group (0μM Deferasirox) at time of assay.  

 

After the defined time points, MTT assays were performed in order to determine cellular viability (as 

previously outlined) relative to the control group. 

 

4.3.1.2 Results 

 

Deferasirox decreased colonic cell line viability in a time and dose dependent manner (Figure 4.1). 

 

At 24 hours the drug resulted in a significant reduction in cell viability across all 3 lines tested at a 

dose of 320 µM (mean viability 54.5% vs. control), with the drug surpassing the IC50 mark in the 

HT29 cell line. Lower doses of the drug (10 µM in the RKO and 40 µM in the HT29) also generated 

statistical reductions in cell viability after 24 hours.  
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Figure 4.1 Deferasirox administration reduces colonic adenocarcinoma cell line viability in-vitro in 

a time and dose dependent manner 

MTT cell viability assay demonstrating the effect of increasing concentrations of Deferasirox on the 

colorectal adenocarcinoma cell lines RKO (A), SW480 (B) and HT29 (C). Data points represent mean 

fold change compared to standard media control (normalised to 1). Error bars denote ±SEM. P 

values for individual fold changes (relative to control) displayed in (D) (shaded boxes denote p<0.05 

vs. control). 
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At 48 hours the drug had further decreased cell viability across all 3 cell lines. The IC50 was 

surpassed by 160 µM in both the RKO and HT29 cell lines (where even 5 µM registered a significant 

reduction) and by 320 µM in the SW480 (where 20 µM was the lowest concentration to register a 

significant reduction in cellular viability). The average reduction in cell viability seen was 41.8% at 40 

µM Deferasirox and 46.3% at 80 µM across the 3 lines. 

 

By 72 hours Deferasirox had reduced cell viability across all 3 lines by an average of 57.8% at 40 µM 

increasing to 85.5% at the highest concentration tested of 320 µM. 

 

4.3.2 The effect of Deferasirox upon colorectal cellular iron metabolism and phenotype in-vitro 

 

4.3.2.1 Overview 

 

The effect of Deferasirox upon colorectal cellular iron loading was assessed by both ferrozine assay 

and through radio-labelled iron uptake studies. The ability of Deferasirox to remove iron from cells 

that had already been iron loaded was determined by ferrozine assay, Western blotting and a ferritin 

ELISA. The protocols for all of these procedures are described in chapter 2. 

 

To delineate the effect of treatment with Deferasirox upon the cell cycle FACS was utilised. This 

analysis of cell phenotype was augmented by BrdU (proliferation) and MTT (viability) assays. In 

addition, the effect of pre-incubation of Deferasirox with iron (100 µM FeSO4) upon cellular viability 

was assessed through the performance of an additional MTT assay over 48 hours of treatment. 

Finally, the ability of Deferasirox to suppress iron induced hyperproliferation of colorectal 

adenocarcinoma cells was assessed by performing a BrdU analysis on HT29 cells prior loaded with 25 

µM FeSO4 for 24 hours. HT29 cells were utilised in this section as RKO cells have previously been 

shown not to increase their proliferation rate in response to iron loading. 102, 132 All of the 
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aforementioned experimental procedures were carried out as previously outlined in the methods 

section. 

 

4.3.2.2 Results 

 

Deferasirox significantly inhibited the uptake of iron by colonic cells by both ferrozine assay and 

radio-labelled iron (Figure 4.2). RKO cellular iron uptake was significantly impaired when Deferasirox 

was co-incubated alongside FeSO4 for 1 hour (49.6% reduction vs. FeSO4 alone, p<0.05). A similar 

result was obtained in the radio-labelled Caco-2 trans-well system (20.4% reduction vs. FeSO4 alone, 

p<0.05). 
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A 

 

B 

Figure 4.2 Deferasirox inhibits colonic cellular iron uptake in-vitro 

Ferrozine assay demonstrating the ability of Deferasirox (40 µM) to suppress RKO cellular iron 

uptake when administered alongside 100 µM FeSO4 for 1 hour (A). The drug also significantly 

suppressed the uptake of radio-labelled FeSO4 (100 µM) in a trans-well model of colonic 

adenocarcinoma utilising Caco-2 cells (B). Error bars denote ±SEM, * p<0.05 vs. control. 
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The administration of Deferasirox (40 µM) to RKO cells that had been pre-loaded with 100 µM FeSO4 

resulted in a significantly reduced intracellular iron content (28.2% reduction vs. FeSO4, p<0.05, 

Figure 4.3A), thus demonstrating Deferasirox’s ability to strip iron from within colonic cells. This was 

further exemplified by a reduction in subsequent ferritin protein expression by both Western blot 

(62.1% reduction vs. FeSO4, p<0.05, Figure 4.3B) and ferritin ELISA (98.2% reduction vs. FeSO4, Figure 

4.3C). Interestingly, in the ferritin ELISA Deferasirox decreased ferritin expression in the iron loaded 

cells to an even lower level than the control group.    
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C 

Figure 4.3 Deferasirox administration significantly decreases intracellular iron levels and subsequent ferritin 

expression 

Ferrozine assay demonstrating the ability of Deferasirox (40 µM) to decrease RKO intracellular iron levels when 

administered to cells pre-loaded with 100 µM FeSO4 (A). This is supported by decreased ferritin levels, as shown 

by western blot (B, lanes 1-3 100 µM FeSO4, lanes 4-6 100 µM FeSO4 then Deferasirox 40 µM) and ferritin ELISA 

(C).  Semi-quantitative analysis of blots was performed through normalisation to β-actin and subsequent 

expression as a fold change relative to control (normalised to 1). Error bars denote ±SEM, * p<0.05 vs. control. 
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A significant increase in the proportion of cells in G1 phase of the cell cycle was seen following the 

administration of Deferasirox (40 µM) to RKO cells for 48 hours (83.4 vs. 57.1%, p<0.05 vs. control, 

Figure 4.4A). As expected, this was also reflected by a significant reduction in cellular proliferation as 

demonstrated by BrdU assay (69.1% reduction vs. control, p<0.05, Figure 4.4B). Finally, a significant 

reduction in RKO cellular viability (MTT) of 46.1% (p<0.05 vs. control) was also seen following the 

administration of Deferasirox for 48 hours (Figure 4.4C). 

 

Deferasirox efficacy in RKO cells was maintained across all concentrations tested despite pre-

incubation of the chelator with iron (Figure 4.5). At doses of 40, 80 and 360 µM, however, there was 

a statistical reduction in efficacy compared to when the drug was administered in the absence of 

iron (19.5, 12.5 and 22.2% reduction in comparative efficacy respectively, p<0.05). 
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Figure 4.4 Deferasirox administration results in decreased proliferation through cell cycle arrest 

and ultimately leads to a decrease in colonic cellular viability 

Cell cycle analysis through FACS (with propidium iodide) demonstrating the accumulation of RKO 

cells treated with Deferasirox (40 µM for 48 hours) in G1 phase of cell cycle (A). The same dosing 

regimen also resulted in a significant decrease in cellular proliferation (BrdU assay, (B)). Cellular 

viability (MTT assay, (C)) was also significantly reduced at the corresponding dose. Values plotted 

represent mean fold change relative to matched control (normalised to 1), error bars denote ±SEM, 

* p<0.05 vs. matched control. 
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Figure 4.5 The effect of Deferasirox upon colonic adenocarcinoma cell line viability persists despite 

pre-incubation with iron 

Cell viability assay (MTT) demonstrating that Deferasirox remains efficacious against RKO cells when 

administered following a period of prior incubation with 100 µM iron. Both regimens were 

statistically significant against control at all concentrations of Deferasirox >10 µM. Data points 

represent mean fold change vs. control, error bars denote ±SEM, * p<0.05 vs. equivalent dose of 

Deferasirox with iron. 
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The colonic cell line HT29 readily increased its intracellular iron content when cultured in the 

presence of media containing iron (Figure 4.6A). This ability to load iron was associated with a 

significant increase in cellular proliferation (14.3-28.9%, p<0.05 vs. control) as measured by BrdU 

assay (Figure 4.6B). Deferasirox administration for 48 hours at 40µM post iron administration, 

however, significantly ablated the iron induced increase in proliferation seen (reducing the 

proliferation of the iron loaded cells by 50.5% overall, p<0.05, Figure 4.6C) and crucially, reduced 

their proliferation to well below baseline (fold change 0.57 vs. control, p<0.05). 
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A              B            C 

Figure 4.6 Deferasirox can suppress the iron induced increase in proliferation seen in colonic adenocarcinoma cells in-vitro 

Ferrozine assay (A) demonstrating that the intracellular iron levels of HT29 colonic cells increase significantly when they are exposed to media containing FeSO4. This is 

turn leads to an increase in cellular proliferation (by BrdU assay, (B)) above that seen with standard media alone. Deferasirox (40 µm for 48 hours) is capable of 

suppressing this enhancement in proliferation and indeed even reduces it significantly below the baseline level seen with standard media alone (C). Data points 

represent mean fold change relative to standard media control (normalised to 1), error bars denote ±SEM, * p<0.05 vs. control, # p <0.05 vs. iron, $ p<0.05 vs. 

Deferasirox alone.  
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4.3.3 The ability of Deferasirox to overcome chemotherapy resistance in colorectal 

adenocarcinoma in-vitro 

 

4.3.3.1 Overview 

 

The colorectal adenocarcinoma cell line SW480 and its metastatic clone SW620 were seeded into 96 

well plates (100 µl per well at 4x104 cells/ml) and cultured with increasing doses of the 

chemotherapeutic agent 5-Fu (2-128 µM) for 48 hours. In addition, the same cell lines were treated 

with Deferasirox at 20 or 40 µM over the same time period.  

 

In addition, a 5-Fu resistant clone of the HT29 cell line was created by co-culturing them alongside 

progressively increasing doses of the drug over six months. Following this, the cells were seeded into 

96 well plates and incubated with media containing 5-Fu alone (32 µM), Deferasirox (20 µM) or 

Deferasirox + 5-Fu for 72 hours. In addition, the parental HT29 cell line along with RKO and SW480 

cells were also treated with 5-Fu for the same time period as a positive control for 5-Fu efficacy. MTT 

assays were again performed at the end of the treatment period to quantify effect on cellular 

viability. 

 

4.3.3.2 Results  

 

SW480 cells were significantly more sensitive to the effects of treatment with 5-Fu than their 

metastatic counterpart SW620 (Figure 4.7A and B). Indeed, the SW620 cells were completely 5-Fu 

resistant up to and including a concentration of 64 µM. Furthermore, lower concentrations of 5-Fu 

(2-8 µM) actually statistically increased SW620 viability by up to 24.9% (p<0.05 vs. control). In 

contrast, 8 µM 5-Fu was sufficient to decrease SW480 viability by almost 25%.  At every 

concentration of 5-Fu tested, the SW620 line was statistically more resistant than the SW480 cell 
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line (p<0.05, Figure 4.7B). Deferasirox therapy (20 and 40 µM) resulted in a statistically significant 

reduction in cellular viability in both the SW480 and SW620 cell lines (Figure 4.7C), with no 

difference seen in efficacy between the 2 lines. 

 

As expected, the HT29 5-Fu resistant ‘clone’ demonstrated no significant decrease in viability 

following exposure to 5-Fu at a concentration of 32 µM (Figure 4.7D). In contrast, the parental HT29, 

SW480 and RKO lines suffered decreased viability in the region of 60-70% (Figure 4.7D). Deferasirox 

monotherapy was again capable of significantly reducing viability (19.8% reduction vs. control, 

p<0.05) in the ‘clone’ line which was significantly enhanced further (to 29.9%) following combination 

with the previously ineffective 5-Fu dose of 32 µM (p<0.05 vs. control, 5-Fu alone and Deferasirox 

alone, Figure 4.7D). 
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Figure 4.7 Deferasirox can overcome colonic 5-Fu resistance in-vitro 

Cell viability assay demonstrating the varying response to 5-Fu seen in the colonic cell lines SW480 

and SW620 (A). The SW620 cell line is 5-Fu resistant up to a concentration of 128 µM and actually 

increases its viability at lower doses (2-8 µM) compared to control (B). Despite this, Deferasirox 

induces a significant reduction in cellular viability when administered (C) with no difference in 

efficacy seen between the 2 cell lines at the doses tested. Deferasirox (20 µM) is also capable if 

inducing a significant reduction in cellular viability when administered to a ‘clone’ of HT29 cells that 

are 5-Fu resistant (up to 32 µM, (D)). In this model, the combination of Deferasirox (20 µM) with the 

previously ineffective 5-Fu dose of 32 µM generated a significant reduction in cellular viability 

greater than that seen compared to both control and Deferasirox alone. Data points represent mean 

fold change relative to standard media control (normalised to 1), error bars denote ±SEM, * p<0.05 

vs. matched control, # p<0.05 vs. 32 µM 5-Fu alone, $ p<0.05 vs. Deferasirox alone. 
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4.3.4 The efficacy of Deferasirox in colorectal adenoma cell lines  

 

4.3.4.1 Overview 

 

In order to compare the efficacy of Deferasirox in colorectal adenoma and adenocarcinoma cell lines 

the colorectal adenoma cell lines AAC1 and RGC2 and the adenocarcinoma cell lines RKO and SW480 

were treated with either standard media (control) or media containing Deferasirox (40 µM). 

Following 48 hours of treatment cellular proliferation was assessed by BrdU assay (as previously 

outlined). 

 

4.3.4.2 Results 

 

Deferasirox therapy had a profound effect on cellular proliferation across all 4 of the lines tested, 

reducing cellular proliferation to 60.3, 57.8, 30.9 and 25.6% of control in the AAC1, RGC2, RKO and 

SW480 cells respectively (p<0.05 vs. control for each, Figure 4.8). Of note, Deferasirox was 

statistically more effective in both the RKO and SW480 adenocarcinoma lines. 
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Figure 4.8 Deferasirox appears to be more efficacious in more advanced colonic adenocarcinoma 

cell lines 

Cellular proliferation assay (BrdU) demonstrating the difference in efficacy seen when Deferasirox 

(40 µM for 48 hours) was administered to 2 colonic adenoma (AAC1 and RGC2) and 2 colonic 

adenocarcinoma (RKO and SW480) cell lines. Data points represent mean fold change relative to 

matched standard media control, error bars denote ±SEM, * p<0.05. vs. matched control for each 

cell line, # p<0.05 vs. AAC1 and RGC2.  
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4.3.5 The effect of pertinent genetic mutations and hypoxia upon Deferasirox efficacy in-vitro 

 

4.3.5.1 Overview 

 

Following the demonstration in section 4.3.4 that Deferasirox appeared to be more efficacious in 

advanced adenocarcinoma lines than it was in pre-cursor adenomas, the effect of genetic mutations 

key to the development of colorectal adenocarcinoma (Apc and p53) upon Deferasirox efficacy were 

investigated. In addition, the effect of incubation with the drug in a hypoxic environment was also 

investigated as this is known to play a key role in cancer therapy resistance. 240 

 

To delineate the effect of APC status upon Deferasirox efficacy the HT29 APC wild type inducible cell 

line was utilised. This cell line expresses wild type APC following incubation with zinc chloride (100 

µM) for 24 hours. 63 APC expression was inferred through a Western blot of β-catenin expression 

(after 48 hours of treatment with zinc chloride) and a BrdU cell proliferation assay. 

 

The effect of p53 mutation on Deferasirox efficacy was delineated by use of the isogenic cell lines 

HCT116 p53 wild type (WT) and HCT116 p53-/-. 196 Following confirmation of p53 status via Western 

blotting, both p53 WT and -/- cells were seeded into 96 well plates and subjected to increasing 

concentrations of Deferasirox (0-160 µM) for 48 hours. Both cell lines were also exposed to 

increasing concentrations of 5-Fu (0-128 µM) as a positive control for the effect of p53 status on 

treatment efficacy. MTT cell viability assays were then performed. 

 

Finally, the effect of hypoxia on Deferasirox efficacy was ascertained by exposing HCT116 p53WT 

cells to a 1% O2 chamber for 18-24 hours prior to treatment with the drug (0-80 µM). Induction of 

hypoxia was confirmed through Western blotting for HIF-1α expression. Again, a control group 
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treated exactly the same except for exposure to hypoxia was included. An SRB proliferation assay 

was then performed on both groups (as previously outlined in chapter 2.2.19). 

 

4.3.5.2 Results 

 

Exposure of HT29 cells to 100µM zinc chloride for 48 hours resulted in a decrease in β-catenin 

protein expression and a concomitant reduction in cellular proliferation as per BrdU (Figure 4.9A). 

When Deferasirox was administered to the HT29 APC WT and MT lines, an increase in efficacy was 

evident in the cells still harbouring an APC mutation compared to those now expressing APC. This 

increase ranged from 16.2-35.6% (depending on the dose) and was statistically significant at all 

doses used except 160 µM (Figure 4.9B). 

 

HCT116 p53WT and HCT116 p53-/- are isogenic and differ only in p53 status (Figure 4.10A). P53 

status significantly effected HCT116 response to treatment with 5-Fu (Figure 4.10B), with the p53-/- 

cells demonstrating a marked reduction in response to the drug (14.2-52.4% reduction in efficacy, 

p<0.05 vs. p53WT for all doses, Figure 4.10B). Deferasirox therapy, however, did not appear to be 

influenced by p53 status (Figure 4.10C), with no statistical difference seen in efficacy between any of 

the doses tested. 

 

HIF-1α expression (and thus hypoxia) was markedly induced following exposure of HCT116 cells to 

1% O2 for 18-24 hours (Figure 4.11A). Although a trend for a reduction in cellular proliferation with 

Deferasirox under hypoxic conditions was seen across all concentrations tested, Deferasirox therapy 

did not achieve a statistically significant reduction compared to control at any of the doses tested 

(Figure 4.11B). In contrast, statistically significant suppression of cellular proliferation was achieved 

across all concentrations when the drug was used under normoxic conditions (Figure 4.11B).  



151 
 

 

 

A 

 

 

B 

 



152 
 

Figure 4.9 Deferasirox appears to be more efficacious in the background of an APC mutation 

Western blot (A) demonstrating reduction in β-catenin expression when HT29 cells are exposed to 

100 µM zinc chloride for 24-48 hours. This reduction in β-catenin is taken as inference of restoration 

of APC expression and thus, as would be expected, a significant reduction in cellular proliferation 

(BrdU, (A)) is also seen. Subsequent cell viability assay (MTT, (B)) demonstrating the increased 

efficacy of Deferasirox in the presence of increased β-catenin (and thus an APC mutation). P values 

for % increase in efficacy with an APC mutation at equivalent doses of Deferasirox are displayed in 

the table in (B). Data points represent mean fold change relative to standard media control 

(normalised to 1), error bars denote ±SEM, * p<0.05 vs. standard media control.    
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Figure 4.10 Deferasirox efficacy is not influenced by p53 status in-vitro 

Western blot (A) confirming the p53 status of the isogenic cell lines HCT116 p53WT and HCT116 p53-

/-. The HCT116 p53-/- cells have a significantly reduced response to 5-Fu across all concentrations 

tested (cell viability assay, (B)). This is not the cases with Deferasirox, however, which displayed no 

statistical differences in magnitude of cell viability reduction (C) dependent on p53 expression across 

the range of concentrations tested. Data points represent mean fold change relative to matched 

standard media control (normalised to 1), error bars denote ±SEM, * p<0.05 vs. matched control. 
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Figure 4.11 Deferasirox did not induce a significant reduction in cellular proliferation under 

hypoxic conditions 

Western blot demonstrating increased HIF 1α expression following exposure of HCT116 p53WT cells 

to 1% p02 for 24 hours (A, lane N = normoxia, lane H = hypoxia). SRB assay demonstrating the 

inability of Deferasirox to induce a statistically significant reduction in the same colonic cells once 

hypoxia had been induced (B). Data points represent mean fold change relative to standard media 

control (normalised to 1), error bars denote ±SEM, * p<0.05 vs. equivalent dose of Deferasirox in 

normoxia, grey boxes within table denote p<0.05 vs. matched control. 
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4.3.6 The effect of Deferasirox administration upon murine intestinal phenotype 

 

4.3.6.1 Overview 

 

To further delineate the efficacy of Deferasirox as a potential therapy for colorectal 

adenocarcinoma, the drug was administered orally to Villin-CreER+ Apcfl/fl transgenic mice. Tamoxifen 

administration intraperitoneally on day 1 (80 mg/kg) deletes both copies of the APC gene 

throughout the intestine and a hyper-proliferative phenotype rapidly develops over the ensuing 

days.  

 

Deferasirox was administered orally as a single dose on day 5 and the mice were then taken 6 hours 

post treatment. The intestine was immediately harvested and processed for H&E, Caspase-3 and 

Phospho-Histone H3 staining as outlined in the methods section. Slides were then scored as 

previously described. 

 

Deferasirox was administered at a dose of either 20 or 200 mg/kg as a single 200 µl oral gavage using 

30% 1,2-propanediol/70% sterile 0.9% sodium chloride solution as a vehicle. In addition, the drug 

was also administered at a dose of 100 mg/kg in a modified vehicle of 30mM sodium carbonate / 3 

mM TRIS (again 200 µl single gavage). The latter vehicle was utilised in an attempt to see if improved 

drug solubility improved subsequent efficacy. 

 

4.3.6.2 Results 

 

At a dose of 20 mg/kg Deferasirox administration did not significantly alter either mitosis or 

apoptosis (Figure 4.12 A + B). When utilised at the higher dose of 200 mg/kg, however, a statistically 
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significant suppression in mitosis (52.4% reduction vs. control, p<0.05, Figure 4.13) and an induction 

of apoptosis (65.2% increase vs. control, p<0.05) was seen (Figure 4.14).  

 

The administration of Deferasirox at a dose of 100 mg/kg (in the Na2CO3/TRIS vehicle) to APC wild 

type mice significantly suppressed mitosis (Figure 4.15) but had no effect upon apoptosis. A 

statistically significant increase in apoptosis was seen (64.3% increase vs. control, p<0.05, Figure 

4.16), however, when Deferasirox was utilised at a dose of 100 mg/kg in the Villin-CreER+ Apcfl/fl 

mice. 
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Figure 4.12 Deferasirox did not significantly alter intestinal proliferation when given at a dose of 

20 mg/kg to Villin-CreER+ Apcfl/fl mice 

Representative H&E images (A) of intestinal crypts (i and ii = Vehicle, iii and iv = Deferasirox) 6 hours 

post exposure to Deferasirox at a dose of 20 mg/kg orally. Circles indicate mitotic figures, arrows 

indicate apoptotic bodies. Mitotic and apoptotic indexes (B) indicative of proportion of cells per 

intestinal crypt in mitosis or apoptosis. Data points plotted indicate mean index score, error bars 

denote ±SEM.  Higher powered images taken at 40x, lower at 10x. 
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Figure 4.13 Deferasirox significantly suppresses mitosis within intestinal crypts when given at a 

dose of 200 mg/kg to Villin-CreER+ Apcfl/fl mice 

Representative H&E images (A) of intestinal crypts (i and ii = Vehicle, iii and iv = Deferasirox) 6 hours 

post exposure to Deferasirox at a dose of 200 mg/kg orally. Circles indicate mitotic figures, arrows 

indicate apoptotic bodies. Mitotic and apoptotic indexes (B) indicative of proportion of cells per 

intestinal crypt in mitosis or apoptosis. Data points plotted indicate mean index score, error bars 

denote ±SEM, * p<0.05 vs. vehicle.  Higher powered images taken at 40x, lower at 20x. 

 

 

 

 

 

 

 

 

 

 

 

 

 



163 
 

Phospho-Histone H3 Expression 

 

A  

 

B 

 

 

 

 



164 
 

Cleaved Caspase-3 

 

C 

 

D 

 

 

 

 



165 
 

Figure 4.14 Deferasirox significantly stimulates apoptosis within intestinal crypts when given at a 

dose of 200 mg/kg to Villin-CreER+ Apcfl/fl mice 

Staining of intestinal crypts for the mitosis marker Phospho-Histone H3 (A + B) and the apoptosis 

marker Caspase-3 (C and D) on tissue obtained 6 hours post exposure to Deferasirox at a dose of 200 

mg/kg PO. Representative images (A and C) demonstrating positively stained cells within crypts (red 

circles delineate examples of positive staining). Error bars denote ±SEM, * p<0.05 vs. vehicle. Images 

taken at 20x. 
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Figure 4.15 Deferasirox significantly suppresses mitosis within intestinal crypts when given at a 

dose of 100 mg/kg to WT APC mice 

Representative H&E images (A) of intestinal crypts (i and ii = Vehicle, iii and iv = Deferasirox) 6 hours 

post exposure to Deferasirox at a dose of 100 mg/kg orally. Circles indicate mitotic figures, arrows 

indicate apoptotic bodies. Mitotic and apoptotic indexes (B) indicative of proportion of cells per 

intestinal crypt in mitosis or apoptosis. 

 

Staining of intestinal crypts for the mitosis marker Phospho-Histone H3 (C + D) and the apoptosis 

marker Caspase-3 (E and F) on tissue obtained 6 hours post exposure to Deferasirox at a dose of 100 

mg/kg PO. Representative images (C and E) demonstrating positively stained cells within crypts (red 

circles here exemplify positive staining).  

 

Data points plotted indicate mean index score, error bars denote ±SEM, * p<0.05 vs. vehicle.  Higher 

powered images taken at 40x, lower at 20x. 
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Figure 4.16 Deferasirox significantly stimulates apoptosis within intestinal crypts when given at a 

dose of 100 mg/kg to Villin-CreER+ Apcfl/fl mice 

Representative H&E images (A) of intestinal crypts (i and ii = Vehicle, iii and iv = Deferasirox) 6 hours 

post exposure to Deferasirox at a dose of 100 mg/kg PO. Circles indicate mitotic figures, arrows 

indicate apoptotic bodies. Mitotic and apoptotic indexes (B) indicative of proportion of cells per 

intestinal crypt in mitosis or apoptosis. 

 

Staining of intestinal crypts for the mitosis marker Phospho-Histone H3 (C + D) and the apoptosis 

marker Caspase-3 (E and F) on tissue obtained 6 hours post exposure to Deferasirox at a dose of 

100mg/kg PO. Representative images (C and E) demonstrating positively stained cells within crypts 

(red circles exemplify positive stained cells).  

 

Data points plotted indicate mean index score, error bars denote ±SEM, * p<0.05 vs. vehicle.  Higher 

powered images taken at 40x, lower at 20x. 

 

 

 

 

 

 

 

 

 

 

 

 



174 
 

4.3.7. The effect of Deferasirox upon murine survival 

 

4.3.7.1 Overview 

 

In order to ascertain whether or not the effects of Deferasirox upon murine intestinal phenotype 

translate into increased survival, the Lgr5-CreER+ APCfl/fl and Lgr5-CreER+ APCfl/fl Ptenfl/fl transgenic 

mice models were utilised. 

 

Mice were induced with Tamoxifen (as outlined in the methods section) and commenced treatment 

with Deferasirox at either 200 mg/kg (30% 1,2-propanediol/70% sterile 0.9% sodium chloride 

solution as a vehicle) or 100 mg/kg (30 mM sodium carbonate / 3 mM TRIS vehicle)  or vehicle alone 

(as a control) as a 200 µl oral gavage 3 times per week. Mouse health was monitored daily 

throughout treatment and mice were taken immediately upon showing any signs of deteriorating 

health.  

 

4.3.7.2 Results 

 

Deferasirox failed to increase murine survival in the Lgr5-CreER+ APCfl/fl murine model in either of the 

dosing regimens tested (Figure 4.17 and 4.18). 

 

Interestingly, in the more aggressive Lgr5-CreER+ APCfl/fl Ptenfl/fl model Deferasirox showed a trend 

towards increased survival compared to vehicle (52.3 days vs. 39.8 days)), although this was not 

statistically significant (p=0.512 vs. vehicle, Figure 4.19). 
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Figure 4.17 Deferasirox did not significantly extend survival when given to Lgr5-CreER+ APCfl/fl mice 

at a dose of 200 mg/kg 

Survival plot for Lgr5-CreER+ APCfl/fl mice treated with either vehicle or Deferasirox (200 mg/kg) by 

oral gavage 3 times per week. P value quoted is for log-rank test of survival between the 2 groups.  
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Figure 4.18 Deferasirox did not significantly extend survival when given to Lgr5-CreER+ APCfl/fl mice 

at a dose of 100 mg/kg 

Survival plot for Lgr5-CreER+ APCfl/fl mice treated with either vehicle or Deferasirox (100 mg/kg) by 

oral gavage 3 times per week. P value quoted is for log-rank test of survival between the 2 groups.  
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Figure 4.19 Deferasirox did not significantly extend survival when given to Lgr5-CreER+ APCfl/fl 

Ptenfl/fl mice at a dose of 100 mg/kg 

Survival plot for Lgr5-CreER+ APCfl/fl Ptenfl/fl mice treated with either vehicle or Deferasirox (100 

mg/kg) by oral gavage 3 times per week. P value quoted is for log-rank test of survival between the 2 

groups.  
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4.4 Discussion  

 

Locally advanced and or systemic colorectal cancer is treated with (neo)adjuvant therapy, often with 

variable response and therefore, as with oesophageal cancer, the development of new agents with 

increased efficacy is highly desirable. 235 

 

Cancer cells have an increased requirement for iron and there is now a significant body of evidence 

linking iron to the propagation of colorectal tumourigenesis. 82, 102 As such, iron chelators represent a 

promising group of anti-neoplastic agents worthy of further investigation in this setting. 80, 92, 112, 113 It 

has already been demonstrated in chapter 3 that the orally administered iron chelating agent 

Deferasirox displays significant anti-neoplastic properties both in-vitro and in-vivo in oesophageal 

adenocarcinoma. The main aim of this chapter was therefore to ascertain whether or not these 

effects were also observed in the colon and rectum as this has not been investigated before. 

 

As in the oesophagus, Deferasirox administration significantly suppressed colorectal 

adenocarcinoma cell line viability in-vitro in a time and dose dependent manner.  

 

The drug significantly inhibited cellular iron uptake (by up to 49.6% compared to control, p<0.05) 

and was also capable of reducing intracellular iron content in cells pre-loaded with iron (as 

demonstrated by reductions in both total intracellular iron by ferrozine and the iron storage protein 

ferritin). This ultimately resulted in an accumulation of cells in the G1 phase of the cell cycle, a 

consequent reduction in cellular proliferation and a subsequent decrease in cell viability. Previous 

studies of Deferasirox have also demonstrated the induction of cell cycle arrest, although 

interestingly in S phase rather than G1. 167 The iron chelator Desferrioxamine is also known to induce 

cell cycle arrest and in particular has been shown to be capable of arresting cells independently in 

both mid-G1 and S phase. 241 
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As stated previously, malignant cells have a higher requirement for iron than their normal 

counterparts, something that is unsurprising given the element’s crucial role in DNA synthesis, ATP 

generation and cell cycle progression; all activities that by definition are increased in cancer. 112, 113 

Cellular iron deprivation is known to cause arrest of the cell cycle at the G1/S checkpoint and 

subsequent accumulation of cells in the G1 phase (as demonstrated in the current study by a 45.9% 

increase in cells in G1 phase following treatment with Deferasirox for 48 hours, p<0.05 vs. control). 

224, 225 Iron deficiency inhibits activity of the R2 subunit of the enzyme ribonucleotide reductase 

(which catalyzes the conversion of ribonucleotides into deoxyribonucleotides during DNA synthesis) 

and decreases expression of cyclins A, B and D (all of which are vital for cell cycle progression). 225 

 

Deferasirox displayed significantly increased efficacy in the colorectal adenocarcinoma cell lines RKO 

and SW480 compared to the adenoma lines AAC1 and RGC2. This is in part is likely to be explained 

by the increased metabolic rate of the adenocarcinoma lines and thus an increased requirement for 

iron, rendering them more sensitive to the effects of cellular iron deprivation through chelation. 

Previous studies have demonstrated that, although adenomas load iron to a much greater extent 

than normal colonic mucosa, adenoma iron content is not as great as that of adenocarcinomas. 82, 242 

Current chemotherapeutic regimens in colorectal cancer are accompanied by a plethora of well 

documented side effects resulting from the various drug’s non-targeted mechanisms of action. 243  

As such, the demonstration that Deferasirox may be more effective against cancer cells than their 

‘less malignant’ counterparts raises the potential that the drug may be selectively targeted to 

neoplastic cells, thus offering improved efficacy and a reduction in off-target side effects. Previous 

studies using Deferasirox have also demonstrated that much higher concentrations of the drug were 

required to induce cytotoxicity in primary hepatocyte cultures compared to hepatoma cells (25 µM 

vs. >200 µM) again suggesting that malignant lines may be more sensitive to Deferasirox exposure 

than benign tissues. 167 Similar observations have also been made with alternative iron chelators 

(DFO, Deferiprone and O‐Trensox). 143, 167, 168 
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Deferasirox also appears to be more efficacious in the background of an APC mutation, giving further 

support to the idea that iron chelation therapy may offer targeted treatment of cancer cells. Across 

the concentrations tested, Deferasirox was up to 35.6% more efficacious (at the equivalent dose) in 

HT29 cells with an APC mutation compared to their APC wild type counterparts. In part, this may 

again be explained by the fact the HT29 APC mutant cells had a significantly increased rate of 

proliferation (55.2% increase vs. APC wild type, p<0.05) and hence a higher requirement for iron 

than HT29 APC wild type cells. There is also, however, an additional explanation for the increase in 

Deferasirox efficacy seen. Mutation of the tumour suppressor APC permits activation of the Wnt 

signalling pathway through translocation of accumulated cytosolic β-catenin to the nucleus with 

subsequent activation of Wnt targets including the proto-oncogene c-Myc. Increased intracellular 

iron has previously been shown to amplify Wnt signalling in the background of an APC mutation. 132 

This in turn results in increased c-Myc, which further increases cellular proliferation (and subsequent 

requirement for iron) and has also been shown to increase expression of the pertinent cellular iron 

import proteins TfR1 and DMT1, thus permitting the cell to increase iron acquisition and further 

exacerbate Wnt signalling (an almost self-perpetuating cycle). Deferasirox therefore may serve to 

break this cycle through both the induction of intracellular iron deprivation and inhibition of Wnt 

signalling. Support for this can be found in a previous study identifying Deferasirox as a potent 

inhibitor of Wnt signalling in SW480 colorectal adenocarcinoma cells. 186  The same study also 

reported an increase in the expression of genes activated by iron depletion (including HIF-1α) and 

noted an abrogation of these effects when the iron chelator was subsequently incubated alongside 

FeSO4, indicating that the inhibition in Wnt signalling seen was achieved entirely through the 

chelation of iron. 186  

 

The findings of this latter study, however, despite offering support for the findings made within this 

thesis, do not agree with all of the results demonstrated here. Firstly, Deferasirox efficacy in 

reducing colorectal cell line viability was not completely abrogated through pre-incubation alongside 
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FeSO4 in our study. Secondly, treatment of cells pre-loaded with iron resulted in intracellular ferritin 

levels that were not only significantly lower than the untreated iron-loaded cells (as may be 

expected) but that were also significantly lower than the untreated, non iron-loaded control cells. 

Finally, Deferasirox not only significantly suppressed the induction of proliferation seen in HT29 cells 

following incubation with iron but actually reduced it to well below baseline control proliferation 

rates. All of this indicates that Deferasirox may actually be more efficacious at binding iron (and thus 

suppressing proliferation) in the setting of increased intracellular iron levels (as in colorectal 

adenocarcinoma). 82     

 

The tumour suppressor p53 plays a crucial role in mediating cell cycle arrest and functions as a cell-

death checkpoint following activation by multiple cellular stresses including DNA damage, oxidative 

stress and osmotic shock. 244 The protein activates a number of downstream targets, including the 

cyclin-dependent kinase inhibitor p21 CIP1/WAF1, thus initiating cycle arrest at G1/S and ultimately 

apoptosis if DNA damage cannot be repaired. 244 The gene encoding the p53 protein (TP53) is 

mutated in around 35-55% of cases of colorectal cancer and is known to influence response to 

chemotherapy, including 5-Fu. 245, 246 Similar findings were demonstrated in this study, where 

treatment of the colonic cell line HCT116 p53-/- with 5-Fu resulted in a significantly less efficacious 

response (in terms of effect on cellular viability) than when the drug was given to HCT116 p53WT 

cells. Deferasirox efficacy, however, was not significantly altered by cellular p53 status at any of the 

doses tested. This may be explained by the observation that Deferasirox is primarily exerting its 

effects through cellular iron deprivation, which is completely independent of p53 activity. In 

addition, however, previous studies have also demonstrated the ability of Deferasirox to up-regulate 

p21 CIP1/WAF1 expression and also expression of the metastasis suppressor NDRG1, which in turn has 

been shown to further increase p21 CIP1/WAF1 expression in a p53 independent manner. 169, 247 Thus, it 

would seem that p53 expression is not required for Deferasirox to exert its effects upon the cell 
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cycle. This is in contrast to previous studies using the iron chelator Desferrioxamine, which has 

shown decreased efficacy in the context of a p53 deletion in the same cell line. 248 

 

Deferasirox can overcome chemotherapy resistance (this time to 5-Fu) in colorectal adenocarcinoma 

cell lines. The adenocarcinoma cell line SW620 (a metastatic clone of the SW480 line) displayed 

marked resistance to 5-Fu (unlike the SW480 line) but was equally sensitive to Deferasirox. Likewise, 

a 5-Fu resistant ‘clone’ of HT29 cells also demonstrated sensitivity to Deferasirox and yielded an 

additional reduction in cellular viability when Deferasirox was combined with 5-Fu. Again, these 

findings may merely indicate that Deferasirox is acting through a different mechanism of action to 5-

Fu (i.e. iron chelation) thus circumventing the therapy resistance, however, the demonstration of an 

additive effect by combining 5-Fu and Deferasirox in the HT29 ‘clone’ cell line again raises the 

possibility that the drug may serve as a chemosensitiser. The mechanism through which this may 

occur has not been investigated further within this study, however, the NFκB signalling pathway has 

been shown to be activated in colorectal cancer and therefore its inhibition with Deferasirox may 

offer a putative mechanism for subsequent chemosensitisation.249   

 

The ability of Deferasirox to overcome 5-Fu resistance is somewhat tempered by its reduced efficacy 

in the context of hypoxia. Hypoxia is a common feature of many solid tumours, including colorectal, 

and its presence triggers a number of adaptive responses which can promote tumour progression 

and also resistance to therapy. 250 One explanation for the decrease in efficacy seen is that the 

exposure of cells to a hypoxic environment results in an initial reduction in cellular proliferation, 

which is likely to lower their requirement for iron and thus decrease sensitivity to the effects of iron 

chelation. An alternative explanation is that iron chelation is known to induce expression of HIF-1α, 

the central protein in the co-ordination of the cellular response to hypoxia, through inhibition of 

prolyl hydroxylase domain proteins (which require iron for their activity). 251  Elevated levels of HIF-

1α are known to activate hypoxia-responsive genes (such as vascular endothelial growth factor, 
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platelet derived growth factor and nitric oxide synthase) and the initiation of anaerobic glycolysis, 

which in turn lead to the stimulation of proliferation, metabolism, angiogenesis, invasion, metastasis 

and therapy resistance. 250 Thus, iron chelation with Deferasirox may serve to exacerbate and 

enhance the cellular response to hypoxia. In addition, HIF-1α is known to induce cellular iron uptake 

through increasing the expression of IRP2 and subsequently TfR1 and DMT1. 99 It is also known to up-

regulate expression of haem oxygenase 1 (which degrades haem into bilverdin, carbon monoxide 

and iron) which further increases intracellular iron availability. 99 As such, it may be that under 

hypoxic conditions increased intracellular iron levels mean a significantly higher dose of chelator is 

required to generate significant effects (thus overcoming the potential for chelator saturation). 

 

The demonstration of an in-vivo effect of Deferasirox administration upon Villin-CreER+ Apcfl/fl 

murine intestinal phenotype (albeit at a significantly higher dose than that used in the previous 

oesophageal xenograft experiments) is immensely promising. Deferasirox administration 

significantly increased expression of the apoptotic marker cleaved caspase-3 by 65.2 and 64.3% at 

doses of 200 mg/kg and 100 mg/kg (in the propylene glycol and sodium carbonate based vehicles 

respectively, p<0.05 vs. control) and also reduced mitosis when used at a dose of 200 mg/kg (52.4% 

reduction vs. control, p<0.05). This result is in agreement with a previous study from our group 

demonstrating the administration of an iron deficient diet to a similar strain of mice as used here 

significantly increased rates of intestinal apoptosis (2-3x increase vs. control, p=0.015), whilst a diet 

high in iron significantly stimulated mitosis (4-5x increase vs. control, p=0.015). 102 As with the in-

vitro experiments, it is likely that crypt cellular iron deprivation through chelation results in cell cycle 

arrest and induction of cellular apoptosis. Deferasirox may also be serving as an inhibitor of the Wnt 

pathway which is known to be active in these mice (through loss of APC) and exacerbated by iron. 102 

This was not investigated in this study but could be through immunohistochemical staining of slides 

with antibodies against Wnt targets (β-catenin, c-Myc etc.) 
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Unfortunately, in this study, the increase in intestinal apoptosis seen with Deferasirox administration 

did not translate into an increase in overall survival when the drug was administered to another 

spontaneous model of intestinal tumourigenesis, the Lgr5-CreER+ APCfl/fl  mouse. Again, following 

induction, these mice lose APC within the intestinal stem cells and develop a hyperproliferative 

phenotype resulting in adenoma formation. 102 A trend for increased survival with Deferasirox was 

seen, however, when the drug was given to Lgr5-CreER+ APCfl/fl Ptenfl/fl mice. Mice given Deferasirox 

survived for an average of 54.0 days compared to 42.0 days in mice given control vehicle, this was 

not, however, statistically significant (p=0.621).  

 

The lack of statistical improvement in survival with Deferasirox may be explained by the fact that 

both of the models utilised result in rapid adenoma formation throughout the whole murine 

intestine and thus may be too aggressive for Deferasirox to exert an effect. One could repeat the 

experiment using the APCMin/+ murine model where mice develop adenomas at a slower rate, thus 

allowing smaller differences to be elicited. 102 Another explanation could be that Deferasirox is more 

efficacious in established tumours that are more phenotypically advanced and possess multiple 

genetic mutations (not merely just in APC) and as such these models may not be completely 

appropriate for the testing of the drug. The earlier finding that Deferasirox is more efficacious in 

adenocarcinoma than adenoma cell lines in-vitro would support this latter observation. The final 

potential explanation for the lack of improvement in survival with Deferasirox therapy is that the 

drug may exert its effects through a systemic route rather than a luminal one and this may limit its 

efficacy in the setting of colorectal cancer in-vivo. In their previous study, Radulescu and colleagues 

concluded that it was the luminal pool of iron that was responsible for the propagation of 

tumourigenesis and not the systemic pool. 102 This may not be true in all cases, however, as an 

increase in luminal iron is unlikely to explain the increased incidence of colorectal adenocarcinoma 

seen in patients with Haemochromatosis. 118, 119, 120  Deferasirox clearly exerts a significant 

proportion of its anti-neoplastic effects through the systemic circulation (as demonstrated by its 
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marked suppression of OAC subcutaneous xenograft growth in chapter 3), however, although 

predominantly absorbed in the duodenum (thus not reaching the colon), it is excreted within the bile 

and, as such, has been shown to retain some of its chelating capacity when it reaches the colon. 252 

Therefore, it may actually have the added benefit of being able to chelate iron at both the systemic 

and luminal levels. 

 

In conclusion, it can be said that the oral iron chelating agent Deferasirox displays marked and 

significant anti-neoplastic effects against colorectal adenocarcinoma in-vitro. The drug effectively 

inhibits cellular iron uptake and facilitates the removal of iron from within cancer cells precipitating 

cell cycle arrest and a subsequent reduction in cellular viability. The drug appears to be more 

efficacious in adenocarcinoma cells than in adenomas and also in the background of an APC 

mutation. As in oesophageal cancer, Deferasirox can overcome chemotherapy resistance in-vitro and 

its efficacy is not dependent on p53 status. Promisingly, the drug appears to increase rates of 

intestinal apoptosis and suppress mitosis when administered to APC deficient mice although this has 

not been shown to translate into an increase in overall survival in the present study. Future 

experiments should aim to identify markers predictive of response to Deferasirox and also aim to 

demonstrate an improvement in mouse survival, with a corresponding reduction in tumour burden 

and abrogation of Wnt targets within the murine intestine. Conclusive demonstration of 

Deferasirox’s safety and tolerability when administered in-vivo at the higher doses used in this 

chapter is also required. 
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Chapter 5. The role of IRP2 in colorectal adenocarcinoma: A potential biomarker for Deferasirox 

efficacy? 

 

5.1 Introduction 

 

Tumour iron accumulation has previously been demonstrated along progression through the 

colorectal adenoma to carcinoma sequence. 82 Furthermore, this is accompanied by increased 

expression of the key cellular iron import proteins TfR1 and DMT1 with concomitant internalisation 

of the basolateral iron exporter ferroportin. 82 Expression of the systemic iron regulatory hormone 

hepcidin (which facilitates the internalisation and degradation of ferroportin) has also been shown. 

237 The role of the iron regulatory proteins, the chief regulators of intracellular iron metabolism, 

within this process of tumour iron accumulation, however, has not been determined. 

 

There are 2 intracellular iron regulatory proteins (IRP1 and IRP2), the function of which is to co-

ordinate an adaptive response to iron levels within individual cells. 99 As such, IRPs increase iron 

uptake when intracellular levels are low and decrease iron import when intracellular levels are high. 

99 This process is achieved through IRP-mediated translational regulation of the proteins associated 

with cellular iron import and storage. 99 In times of cellular iron depletion, IRPs bind to iron 

responsive elements (IREs) in the 5’ untranslated region (UTR) of ferritin and ferroportin mRNA, thus 

blocking their translation and inhibiting iron storage and efflux. 80, 92, 99  Simultaneously, the IRPs also 

bind to IREs in the 3’ UTR of TfR1 (and to some extent DMT1) mRNA, stabilising its expression and 

increasing iron import. 80, 92, 99  Conversely, when iron levels are adequate or in excess, IRP1 loses its 

IRE-binding activity (instead acquiring enzymatic activity as a cytosolic acinotase) and IRP2 is 

degraded, thus permitting the translation of ferritin and ferroportin mRNA and the degradation of 

TfR1. 80, 92, 99 In addition to low cellular iron levels, IRP2 has also been shown to be stimulated by 
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hypoxia and the proto-oncogene c-Myc, whilst also being stabilised by nitric oxide and oxidative 

stress. 253, 254, 255, 256 

 

Studies directly investigating the relationship between IRPs and cancer are scarce. In lung cancer, 

over-expression of IRP1 has been shown to suppress the growth of cell line xenografts, whilst IRP2 

was shown to have a stimulatory effect. 254, 257  Micro-array gene expression profiles from breast 

cancer patients have shown tumour IRP2 over-expression to correlate with high-grade disease whilst 

the knock down of IRP2 suppresses xenograft growth in mice. 258 In colorectal cancer only 1 previous 

study has investigated IRP expression, noting a decrease in IRP1 (and TfR1) mRNA expression in 

cancerous tissue but no difference in IRP2 expression. 259 IRP2 expression was noted to be higher in 

T3 tumours relative to T1 and T2, however.  

 

As colorectal adenocarcinomas have an excess of intracellular iron, IRP2 (and subsequently TfR1 and 

DMT1) should be suppressed in tumours relative to normal mucosa, thus preventing the further 

accumulation of iron. As discussed earlier, this is not the case and thus this feedback mechanism 

must be perturbed within the process of tumourigenesis. Over or aberrant expression of IRP2 may 

therefore serve as the driver of excess iron accumulation and subsequent tumour growth. 
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5.2 Chapter Aims 

 

Colorectal adenocarcinomas load iron rendering them sensitive to the effects of iron deprivation 

through chelation. Whether or not this increase in iron import is through an IRP2 mediated response 

is not yet known. If it is, then tumour IRP2 expression could serve as a surrogate marker for iron 

dependency and thus serve as a predictor of chelation efficacy. Furthermore, the relationship 

between genetic mutations pertinent to colorectal adenocarcinoma and IRP2 expression has never 

been determined. As such, the aims for this chapter are: 

 

1. To determine the expression of IRP2 (at both the mRNA and protein level) in human 

colorectal adenocarcinoma tissue and compare this with normal mucosa. 

2. To determine how the expression of IRP2 correlates with the expression of the main iron 

import protein TfR1 in human colorectal adenocarcinoma tissue. 

3. To determine the effect of IRP2 perturbation on TfR1 and ferritin expression in-vitro 

4. To determine the effect of IRP2 perturbation on cell phenotype in-vitro. 

5. To determine the relationship between genetic mutations pertinent to colorectal 

adenocarcinoma and IRP2 expression. 

  

 

 

 

 

 

 

 

 



189 
 

5.3 Results 

 

5.3.1 The expression of IRP2 in colorectal adenocarcinoma  

 

5.3.1.1 Overview 

 

RNA was extracted from the frozen tissue of 41 patients undergoing surgical resection for 

histologically proven colorectal adenocarcinoma. In addition, paraffin sections were available from a 

separate cohort of 32 patients with colorectal adenocarcinoma undergoing resection. These samples 

were processed separately for immunohistochemical analysis of IRP2 protein expression.   

 

5.3.1.2 Results 

 

IRP2 was significantly over-expressed at both the mRNA and protein levels in colorectal 

adenocarcinoma compared to normal mucosa. 

 

In terms of mRNA, IRP2 expression was significantly higher in adenocarcinoma than in normal 

mucosa (median fold change 8.80, mean fold change 200.19, p<0.05 vs. normal mucosa, Figure 5.1). 

When sub-group analysis was performed, IRP2 up-regulation appeared to be a colonic (rather than 

rectal) phenomenon (Figure 5.2) and was greatest in proximal (caecum/ascending colon) and locally 

advanced (T3 and T4) lesions (Figure 5.3).       

 

At the protein level, IRP2 was ubiquitously but weakly expressed in normal colorectal crypts (Figure 

5.4 a-d) with lymphocytes staining strongly throughout. Semi-quantitive scoring of slides 

demonstrated that colorectal adenocarcinoma sections (Figure 5.4 e-p) showed greater intensity of 

staining and a larger percentage of cells with positive nuclear staining compared to normal tissue 
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(tumour median score 5 versus normal mucosa median score 3, p=0.004). Expression was 

particularly high in tumours of a mucinous phenotype (Figure 5.4 k and l) relative to all other 

tumours (median score 7.5, p=0.049) and normal tissue (p=0.0027). Normal small bowel tissue 

showed high intensity staining in the bases of crypts (Figure 5.4 q and r) where proliferation is 

known to be greatest. 
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Figure 5.1 IRP2 mRNA expression is significantly up-regulated in colorectal adenocarcinoma tissue 

relative to matched normal mucosa 

qRT-PCR analysis of 41 matched colorectal adenocarcinoma and associated normal mucosa 

demonstrating significant up-regulation in IRP2 mRNA expression in adenocarcinoma samples 

relative to control (mean fold change 200.19, p<0.05 vs. normal mucosa).  
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Figure 5.2 IRP2 mRNA is significantly up-regulated in the colon but not in the rectum 

qRT-PCR (A) demonstrating that IRP2 mRNA is significantly up-regulated compared to matched 

normal mucosa in the colon (n=24) but not in the rectum (n=9). Proximal (n=13) colonic tumours 

displayed a significant up-regulation in IRP2 mRNA expression (B) on sub-group analysis.  Data points 

represent mean fold change in IRP2 mRNA relative to matched normal mucosa, error bars denote 

±SEM, * p<0.05 vs. normal mucosa, p=0.054 all colon vs. rectum. 
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Figure 5.3 IRP2 mRNA is significantly up-regulated in T3 and T4 adenocarcinomas 

qRT-PCR demonstrating that IRP2 mRNA is significantly up-regulated compared to matched normal 

mucosa in T3 (n=20) and T4 (n=10) colorectal adenocarcinomas but not T2 (n=9). Data points 

represent mean fold change in IRP2 mRNA relative to matched normal mucosa, error bars denote 

±SEM, * p<0.05 vs. normal mucosa. 
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Figure 5.4 IRP2 protein expression is significantly increased in colorectal adenocarcinoma  

Immunohistochemistry on paraffin embedded tissue sections taken from colorectal adenocarcinoma 

(e-p), adjacent normal mucosa (a-d) and small bowel specimens (q and r) stained for expression of 

IRP2. Low power images taken at magnification x20 or x40, high power images taken at x100. 
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5.3.2 Correlation of IRP2 expression with that of TfR1  

 

5.3.2.1 Overview 

 

The cDNA generated from the 41 samples of matched adenocarcinoma and normal mucosa in 5.3.1 

was utilised to quantify TfR1 mRNA expression by qRT-PCR. This was then also correlated on a 

sample by sample basis with the IRP2 mRNA expression data using the Spearman’s Rank Correlation. 

 

5.3.2.2 Results 

 

TfR1 mRNA expression was significantly up-regulated in samples of colorectal adenocarcinoma 

compared to matched normal mucosa (median fold change 12.54, mean fold change 314.11 vs. 

control, p<0.05, Figure 5.5A). Expression of TfR1 was positively and significantly correlated with that 

of IRP2 (Figure 5.5B). 
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Figure 5.5 TfR1 mRNA expression is significantly up-regulated and correlates positively with IRP2 

mRNA expression in colorectal adenocarcinoma tissue relative to matched normal mucosa 

qRT-PCR analysis (A) of 41 matched colorectal adenocarcinoma and associated normal mucosa 

demonstrating significant up-regulation in TfR1 mRNA expression in adenocarcinoma samples 

relative to control (mean fold change 314.11, p<0.05 vs. normal mucosa). This significant up-

regulation in TfR1 expression correlates with IRP2 mRNA expression (B) with a Spearman’s Rank 

Correlation score of 0.908 (p<0.001). 
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5.3.3 The effect of IRP2 perturbation on the expression of TfR1 and ferritin in-vitro  

 

5.3.3.1 Overview 

 

IRP2 expression was perturbed in RKO colorectal adenocarcinoma cells using an siRNA knockdown 

system (see methods chapter for full explanation). qRT-PCR was utilised to confirm successful 

knockdown of IRP2 at the mRNA level before the subsequent performance of Western blotting to 

determine the effect on protein expression. In addition, the effect of IRP2 knockdown on TfR1 and 

ferritin mRNA and protein expression was also delineated again through qRT-PCR and Western 

blotting respectively. A ferritin ELISA was also utilised to further quantify ferritin protein expression. 

 

5.3.3.2 Results 

 

Significant knockdown in IRP2 expression at the mRNA level was demonstrated after 24 hours 

incubation with siRNA (46.0% reduction vs. control (Silencer® Select Negative Control siRNA #1), 

Figure 5.6A). This was accompanied by a significant reduction in the expression of TfR1 (33.7% 

reduction vs. control, Figure 5.6B).  

 

At the protein level, Western blotting demonstrated that IRP2 expression was significantly reduced 

by 49.5% following siRNA knockdown (Figure 5.7A) and this was accompanied again by a significant 

reduction in TfR1 expression (60.8% vs. control, Figure 5.7B). Ferritin expression was increased 18.4 

fold (Figure 5.8A) on Western blotting, although this did not reach the threshold for statistical 

significance on semi-quantitative analysis (p=0.150). A significant increase in ferritin protein 

expression was seen, however, when a ferritin ELISA was performed on samples treated with IRP2 

siRNA (Figure 5.8B). 
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Figure 5.6 Reduction of IRP2 mRNA expression through siRNA is associated with decreased TfR1 

mRNA expression in colorectal adenocarcinoma cells in-vitro 

qRT-PCR (A) demonstrating significant knockdown of IRP2 in RKO colorectal adenocarcinoma cell 

lines after 24 hours using siRNA. This was associated with a significant reduction in TfR1 mRNA 

expression (B). Data points represent mean fold change in mRNA expression relative to control 

siRNA, error bars denote ±SEM, * p<0.05 vs. control siRNA. 
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Figure 5.7 Reduction in IRP2 mRNA expression through siRNA knockdown is associated with 

decreased IRP2 and TfR1 protein expression in-vitro 

Representative Western blot (A) demonstrating significant reduction in IRP2 protein expression in 

RKO cells following treatment with siRNA (where C=control siRNA, K=knockdown=IRP2 siRNA). This 

was accompanied by a significant reduction in TfR1 protein expression, as demonstrated by 

representative Western blot (B). Semi-quantitative analysis of blots was performed through 

normalisation to β-Actin and subsequent expression as a fold change relative to control siRNA 

(normalised to 1). Data points represent mean fold change in protein expression relative to control 

siRNA, error bars denote ±SEM, * p<0.05 vs. control siRNA. 
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Figure 5.8 Reduction in IRP2 mRNA expression through siRNA knockdown is associated with 

increased ferritin protein expression in-vitro 

Representative Western blot (A) demonstrating an increase in RKO ferritin protein expression 

following treatment with IRP2 siRNA (where C=control siRNA, K=knockdown=IRP2 siRNA). This was 

confirmed through a ferritin ELISA (B). Semi-quantitative analysis of blots was performed through 

normalisation to β-Actin and subsequent expression as a fold change relative to control siRNA 

(normalised to 1). Data points  in (A) represent mean fold change in protein expression relative to 

control siRNA, error bars denote ±SEM, * p<0.05 vs. control siRNA. Data points in (B) represent mean 

ng ferritin per µg of cellular protein, error bars denote ±SEM, * p<0.05 vs. control siRNA. 
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5.3.4 The effect of IRP2 perturbation on colorectal adenocarcinoma phenotype in-vitro  

 

5.3.4.1 Overview 

 

Following the demonstration that successful knockdown of IRP2 with siRNA at the mRNA level was 

associated with a reduction in IRP2 and TfR1 protein expression and a paradoxical increase in ferritin 

protein expression (in keeping with the classical IRP2 response), the effect of IRP2 perturbation on 

RKO cellular phenotype was assessed.  

 

RKO cells were exposed to the siRNA knockdown regimen for 24 hours as in the previous experiment 

before being treated with DMEM containing 100 µM FeSO4 (and 500 µM Na Ascorbate) for 1 hour. 

After this time cellular iron loading was assessed by way of ferrozine assay. 

 

In addition, the effect of IRP2 knockdown on colorectal cell cycle progression was evaluated using 

FACS. Cells were again treated with the knockdown regimen for 24 hours prior to being harvested. In 

addition, a 2nd group was included where cells were exposed to 100 µM FeSO4 (and 500 µM Na 

Ascorbate) for 1 hour immediately prior to being harvested for FACS. All IRP2 knockdown, ferrozine 

and FACS protocols were performed as outlined in sections 2.2.9 and 2.2.12. 
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5.3.4.2 Results 

 

RKO cells that had been subjected to the IRP2 knockdown regimen had a significantly lower iron 

loading capacity than their control counterparts (47.2% reduction in iron loading vs. control, p<0.05, 

Figure 5.9).  

 

IRP2 knockdown also resulted in an increased proportion of cells within G1 of the cell cycle (53.2 vs. 

46.9%, p<0.05, Figure 5.10) and a corresponding reduction in the proportion in G2/M (21.3 vs. 

25.0%, p<0.05). This was reversed by the addition of 100 µM iron. 
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Figure 5.9 Reduction in IRP2 mRNA expression through siRNA knockdown is associated with a 

reduction in colonic adenocarcinoma cellular iron loading in-vitro  

Ferrozine assay demonstrating decreased intracellular iron uptake in RKO cells treated with IRP2 

siRNA for 24 hours relative to control siRNA. Both groups were exposed to media containing 100 µM 

FeSO4 for 1 hour prior to the assay being performed. Data points represent mean intracellular iron 

content (nM Fe / µg cellular protein), error bars denote ±SEM, * p<0.05 vs. control. 

 

 

 



205 
 

 

A 

 

B 



206 
 

 

C 

Figure 5.10 Reduction in IRP2 mRNA expression through siRNA knockdown is associated with cell 

cycle perturbation in colorectal adenocarcinoma cells in-vitro  

Cells cycle analysis through FACS with propidium iodide (A and B) of RKO cells treated with IRP2 

siRNA for 24 hours. Successful knockdown of IRP2 at the mRNA level was associated with a 

significant increase in the proportion of cells in G1 and a corresponding reduction in G2/M compared 

to control siRNA (C). This phenotype was reversed by the exposure of cells to 100 µM FeSO4. Data 

points in (C) represent mean % of cells in corresponding phase of cell cycle, error bars denote ±SEM, 

* p<0.05 vs. control siRNA. 
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5.3.5 The relationship between genetic mutations pertinent to colorectal adenocarcinoma and 

IRP2 expression 

 

5.3.5.1 Overview 

 

A relationship between the dysregulation of iron metabolism and mutation of the tumour 

suppressor APC has previously been demonstrated in colorectal cancer. 102, 132 The association of APC 

with IRP2, however, has not been specifically assessed, nor has its association with other pertinent 

genetic mutations (p53, K-ras, B-raf, PIK3CA etc.).   

 

The Cancer Genome Atlas (TCGA), an online open-access repository containing tumour genetic 

mutation and protein expression data sets (cbioportal.org), was explored to identify correlations 

between gene mutation status and IRP2 protein expression levels. Mutation status was obtained for 

APC, K-ras, B-raf, c-Myc, PIK3CA and p53 genes while mRNA expression data, presented as z scores, 

was gathered for IRP2. Any positive trends found were then subjected to univariate and multivariate 

analysis.  

 

5.3.5.2 Results 

 

The only significant association demonstrated following exploration of the TCGA and subsequent 

statistical analysis was that between mutation in B-raf and IRP2 over-expression. A significant 

positive association between IRP2 mRNA expression and B-raf mutation status in 19 CRC samples 

(odds ratio 1.668 on multivariate analysis, p=0.032) was seen (Figure 5.11).   
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Figure 5.11 B-raf mutations are associated with increased IRP2 mRNA expression in colorectal 

adenocarcinoma 

The Cancer Genome Atlas was interrogated to reveal a significant positive association between IRP2 

mRNA expression and B-raf mutation status in 19 CRC samples (odds ratio 1.668 on multivariate 

analysis, p=0.032). 
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5.3.6 The influence of B-raf mutation status and MAPK pathway activity on IRP2 expression in 

colorectal adenocarcinoma in-vitro 

 

5.3.6.1 Overview 

 

To further investigate the apparent association between mutations in B-raf and IRP2 protein 

expression demonstrated in 5.3.5 a doxycycline inducible B-raf V600E construct was created and 

stably transfected into the HCT116 colorectal adenocarcinoma cell line (as outlined in the methods 

chapter). Once established, the cell line was utilised to assess the effect of both B-raf V600E 

induction and subsequent amplification of the MAPK signalling pathway upon IRP2 protein 

expression. Western blotting was performed following Doxycycline induction of the B-raf V600E 

vector using antibodies directed against B-raf, IRP2 and p-ERK (a marker of MAPK activitiy). In 

addition, the dual MEK inhibitor Trametinib and the B-raf inhibitor Sorafenib were utilised to assess 

the effect of B-raf and or MAPK inhibition on IRP2 expression. Antibodies against TfR1 and ferritin 

were also utilised to quantify effects on downstream targets of IRP2. 

 

5.3.6.2 Results 

 

Treatment of the HCT116 B-raf V600E transfected cell line with 1µg/ml of Doxycycline resulted in a 

profound and statistical increase in B-raf expression by Western blotting (12.6 fold induction, p<0.05 

vs. control, Figure 5.12). This did not, however, alter IRP2 protein expression. Of note, levels of p-

ERK were also not statistically changed, indicating activity of the MAPK signalling pathway had not 

been significantly up-regulated by the increased B-raf expression. 
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An empty vector construct (HCT116 EV) was also cloned and transfected into HCT116 cells as a 

negative control. Western blotting was next performed at baseline (in un-stimulated conditions) to 

assess p-ERK and IRP2 activity in both the EV and V600E cell lines (Figure 5.13). Interestingly, p-ERK 

activity was 4.5 fold elevated in the V600E cell line compared to the EV and IRP2 levels also exhibited 

an almost 2 fold increase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



211 
 

 

 

Figure 5.12 B-raf mutations alone are not associated with increased IRP2 protein expression in-

vitro 

Western blot demonstrating significant increase in B-raf protein expression following incubation of 

HCT116 V600E cells with either standard media (lanes 1-3) or 1 µg/ml of Doxycycline (lanes 4-6). No 

significant difference was seen, however, in either p-ERK or IRP2 protein expression. Semi-

quantitative analysis of blots was performed through normalisation to β-Actin and subsequent 

expression as a fold change relative to control (normalised to 1). Data points represent mean fold 

change in protein expression relative to control, error bars denote ±SEM, * p<0.05 vs. control. 
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Figure 5.13 B-raf mutations are likely to increase cellular IRP2 protein expression through elevated 

p-ERK in-vitro 

Western blot demonstrating baseline p-ERK activity in HCT116 cells transfected with a BRAF V600E 

inducible vector (lanes 4-6) and those transfected with an empty vector control (lanes 1-3). IRP2 

protein expression was significantly increased in the V600E cell line.  Semi-quantitative analysis of 

blots was performed through normalisation to β-Actin and subsequent expression as a fold change 

relative to control (normalised to 1). Data points represent mean fold change in protein expression 

relative to control, error bars denote ±SEM, * p<0.05 vs. control. 
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The effect of inhibition of the MAPK signalling pathway on IRP2 expression was next assessed using 

the dual MEK inhibitor Trametinib on 3 different colorectal cell lines. SW480 and HCT116 cells 

possess wild type B-raf and a mutant K-ras, whilst the RKO cell line has a mutant B-raf and a wild 

type K-ras.  

 

Administration of Trametinib resulted in a marked and significant reduction in p-ERK protein 

expression in all 3 cell lines (66.7, 58.7 and 94.6% reduction in SW480, HCT116 and RKO cells 

respectively, p<0.05 vs. control, Figure 5.14 A-C). IRP2 protein expression was also significantly 

reduced in the SW480 and HCT116 lines (46.9 and 63.7% respectively, p<0.05) but not in the RKOs. 

TfR1 expression was significantly reduced across all 3 cell lines tested. Both the SW480 and HCT116 

cell lines demonstrated a trend towards increased ferritin expression, although this did not reach 

statistical significance on semi-quantitative analysis. A profound induction in ferritin expression 

(over 30 fold) was seen, however, in the RKO cell line. 

 

Treatment of the RKO cell line with Sorafenib resulted in a significant reduction in p-ERK, IRP2 and 

TfR1 expression (Figure 5.15). Ferritin expression was not significantly altered on this occasion, 

however. 
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Figure 5.14 Treatment of colorectal adenocarcinoma cells with the MEK inhibitor Trametinib is 

associated with a reduction in IRP2 protein expression in-vitro 

Western blots demonstrating the effect of the MEK inhibitor Trametinib (10 nM for 48 hours, lanes 

4-6) upon protein expression in the SW480 (A), HCT116 (B) and RKO (C) colorectal adenocarcinoma 

cell lines compared to standard media control (lanes 1-3). P-ERK was measured as a marker of MEK 

inhibition, TfR1 and ferritin were blotted for as downstream markers of IRP2 activity. Semi-

quantitative analysis of blots was performed through normalisation to β-Actin and subsequent 

expression as a fold change relative to control (normalised to 1). Data points represent mean fold 

change in protein expression relative to control, error bars denote ±SEM, * p<0.05 vs. control. 
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Figure 5.15 Treatment of colorectal adenocarcinoma cells with the B-raf kinase inhibitor Sorafenib 

is associated with a reduction in IRP2 protein expression in-vitro 

Western blot demonstrating change in IRP2, TfR1 and ferritin expression in RKO cells following 

exposure to either standard media (lanes 1-3) or media containing 1 µM Sorafenib (lanes 4-6) for 48 

hours. Semi-quantitative analysis of blots was performed through normalisation to β-Actin and 

subsequent expression as a fold change relative to control (normalised to 1). Data points represent 

mean fold change in protein expression relative to control, error bars denote ±SEM, * p<0.05 vs. 

control. 
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5.4 Discussion 

 

Iron is intimately involved in the propagation of colorectal tumourigenesis. Adenocarcinomas 

accumulate iron, a process aided by the increased expression of key cellular iron import proteins 

(TfR1 and DMT1) and decreased iron export through the perturbation of the basolateral transporter 

ferroportin. 82 This increased intracellular iron serves as a ‘fuel source’ for DNA synthesis, ATP 

generation and cell cycle progression; which then in turn drive cellular proliferation. Iron has also 

been shown to amplify the Wnt signalling pathway, resulting in elevated levels of downstream 

targets including c-Myc, which further serves to aid cellular proliferation and survival. 102, 132 

 

Iron metabolism is co-ordinated at the cellular level by the iron regulatory proteins IRP1 and IRP2. 99 

IRPs facilitate the increased availability of intracellular iron in times of iron depletion through 

stabilising the translation of TfR1 (and to some extent DMT1) and inhibiting translation of ferritin. In 

times of iron repletion, the IRPs are inactive (IRP1 acting instead as a cytosolic acinotase whilst IRP2 

is degraded). 99   

 

The role of the IRPs within the up-regulation of iron metabolism seen in colorectal adenocarcinoma 

has not previously been conclusively determined and thus the findings discussed herein are novel. 

IRP2 over-expression has been linked to the propagation of both lung and breast cancer and hence 

the expression (and subsequent consequences) of it were selected to be determined in colorectal 

adenocarcinoma. 254, 258   

 

In this study, IRP2 was shown to be markedly and significantly over-expressed in samples of 

colorectal adenocarcinoma compared to matched normal mucosa at the mRNA level (mean fold 

change 200.19 vs. normal tissue, p=0.000). TfR1 mRNA levels were also markedly elevated in tumour 

samples (mean fold change 314.11 vs. normal tissue, p=0.000) and correlated positively with IRP2 
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mRNA expression. On sub-group analysis the up-regulation of IRP2 mRNA appeared to be a colonic 

rather than rectal phenomenon and was greatest in tumours that were proximally located (caecum 

or ascending colon) and locally advanced (T3 or T4).  

 

Similarly, immunohistochemical staining revealed IRP2 expression to be significantly increased at the 

protein level in adenocarcinomas compared to normal tissue. Interestingly, mucinous tumours were 

shown to stain strongest for IRP2.   

 

The finding of increased IRP2 expression in colorectal cancer is novel and contradicts the findings of 

a recent study by Hamara and colleagues which demonstrated no significant change in IRP2 mRNA 

levels between tumour and normal mucosa in 73 matched samples.259 Interestingly, the authors of 

the same study also demonstrated a statistical decrease in both IRP1 and TfR1 mRNA expression (the 

opposite to our findings). In agreement with our results, however, it was demonstrated that IRP2 

was up-regulated in T3 tumours (compared to T1 and T2). 259  Increased IRP2 expression has also 

previously been demonstrated to correlate with grade of disease in breast cancer. 258 

 

The positive correlation between IRP2 and TfR1 mRNA expression demonstrates that the 

functionality of the IRE-IRP interaction persists despite the over-expression of IRP2 in colorectal 

cancer. Hamara and colleagues also demonstrated the correlation of IRP2 with TfR1 expression, 

albeit limited to early stage disease. 259 

 

IRP2 expression results in stabilisation of TfR1 translation and inhibition of ferritin mRNA translation. 

This interaction permits an increase in the amount of iron that is free for use within the cell (the so 

called labile iron pool) through increased iron acquisition and a reduction in iron storage. As 

expected, perturbation of IRP2 in this study (through the use of siRNA) resulted in significantly 

decreased TfR1 expression (at both the mRNA and protein levels) and a marked increase in ferritin 
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expression (at the protein level). In turn, this resulted in a significant decrease in the ability of 

colorectal cells to load iron (47.2% reduction vs. control, p<0.05 by ferrozine assay) and a 

subsequent increase in the proportion of cells in G1 of the cell cycle. Again, similar findings have 

been noted previously in breast cancer (where knockdown of IRP2 inhibited cell proliferation and 

stimulated apoptosis) and points to the vital role IRP2 is likely to play in facilitating both the 

increased iron acquisition required for proliferation in cancerous tissue and the amplification of 

oncogenic signalling pathways (such as Wnt). 132, 258 It would therefore be useful in future studies to 

investigate the effect of IRP2 perturbation on Wnt signalling and intracellular free radical formation, 

both processes known to be stimulated by increased labile iron.  

 

Ideally, the use of a more stable knockdown system (e.g. shRNA) would also have facilitated further 

investigation of the effects of IRP2 perturbation on cell proliferation, migration, invasion and 

sensitivity to chemotherapeutic agents (including iron chelation with Deferasirox). Unfortunately, 

this system was not available during the course of this study and therefore investigations were 

limited to the effects of transient IRP2 knockdown within a 24 hour window. 

  

In an attempt to delineate whether the increase in tumour IRP2 expression is merely a response to 

the increased cellular requirement for iron present in malignant tissue or is somehow initiated by 

factors within the tumour itself, exploration of the Cancer Genome Atlas was next performed in 

order to assess the relationship between genetic mutations pertinent to colorectal cancer and IRP2. 

A potential relationship between B-raf mutation and IRP2 protein overexpression (odds ratio 1.7, 

p=0.032) was subsequently demonstrated.  

 

Oncogenic mutations in B-raf occur in approximately 13% of colorectal cancers. 245 B-raf mutations 

signal B-raf serine-threonine kinase activity thus activating the mitogen-activated protein kinase 

(MAPK) signalling cascade (EGFR→RAS→RAF→MEK→ERK1/2) which is involved in the subsequent 
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activation of a significant number of downstream targets involved in cellular proliferation, including 

c-Myc. 245, 260 Interestingly, c-Myc has previously been shown to up-regulate IRP2 expression (but not 

TfR1) and suppress ferritin expression in B cells. 261 Of note, in the same study, the subsequent 

restoration of intracellular ferritin levels (through a vector expressing H-ferritin) inhibited cell 

clonogenicity, indicating the importance of free iron to cell growth and proliferation. In a separate 

study using B-cell lymphoma cell lines, c-Myc was shown to increase the expression of TfR1, 

subsequently leading to an increase in cellular proliferation. 133 Increased c-Myc and ERK 1/2 

phosphorylation has also been demonstrated in lung tumour xenografts expressing increased levels 

of IRP2. 254 

 

B-raf mutant colorectal adenocarcinomas are associated with proximal location, increasing age, 

female gender, microsatellite instability, high grade and mucinous histology. 262 Anecdotally, in this 

study, IRP2 expression was greatest in proximal tumours, those that were locally advanced and in 

tumours of a mucinous appearance, all features found in B-raf mutant tumours. 

 

The successful generation of a cell line transfected with an inducible B-raf V600E construct 

permitted in-vitro assessment of the interaction between B-raf and IRP2. The B-raf V600E mutation 

is the most common B-raf mutation in cancer (accounting for around 90% of mutations) and derives 

from a DNA point mutation (1799 T→A). 262 Within the limits of this study, it was demonstrated that 

induction of B-raf V600E (by almost 13 fold) did not significantly alter IRP2 expression at the protein 

level. Of note, p-ERK levels were also unaltered; a phenomenon that may be partially explained by 

the presence of a constitutively active K-ras mutation within the same cell line thus raising the 

possibility that the MAPK signalling may have already been pre-saturated and was not amenable to 

further stimulation by B-raf, an undoubted limitation of this model. 263  An attempt was made to 

circumvent this problem by repeating the transfection in Colo320 cells (expressing wild type B-raf 
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and K-ras), however, this process was unsuccessful owing to profound puromycin resistance within 

the Colo320 line. Other appropriate cell lines were unavailable within the study time period.   

 

On further investigation, however, using the HCT116 V600E and HCT116 empty vector cell lines it 

was demonstrated that elevated p-ERK signalling at base line was associated with increased IRP2 

protein expression. 

 

Further confirmation of a link between MAPK signalling and IRP2 expression in colorectal cancer was 

sought through administration of the MEK 1/2 inhibitor Trametinib and the B-raf kinase inhibitor 

Sorafenib to a panel of colorectal cell lines. MEK inhibition was associated with decreased IRP2 and 

TfR1 expression in the SW480 and HCT116 cell lines (both with mutant K-ras). In the RKO line 

(displaying mutant B-raf), however, MEK inhibition suppressed TfR1 expression but did not 

significantly alter IRP2 levels. Interestingly, ferritin expression was markedly increased (30 fold). 

Treatment of the RKO cell line with the B-raf inhibitor Sorafenib, however, did significantly suppress 

both IRP2 and TfR1 protein expression. 

 

It is likely that the link between increased MAPK signalling and elevated IRP2 expression is through 

the proto-oncogene c-Myc. IRP2 has previously been shown to correlate with c-Myc expression in 

studies using lung and haematological cell lines. 254, 261 Interestingly, mutation of the tumour 

suppressor APC is also known to elevate levels of c-Myc. 102 Further work looking at the effect of c-

Myc perturbation (either through knockout or over expression) on the link between MAPK and IRP2 

would undoubtedly be useful in delineating this relationship further. Furthermore, the effect of 

stimulation of colorectal cells with MAPK ligands (e.g. epidermal growth factor or amphiregulin) and 

subsequent effect on iron metabolism could be assessed. Anecdotally, preliminary experiments 

within this study period have indicated a dose dependent increase in IRP2 mRNA expression 
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following stimulation of RKO cells with EGF (data not shown). Further work is needed, however, 

before any conclusions can be drawn from this. 

 

It has been demonstrated in this chapter that IRP2, an important regulator of intracellular iron 

acquisition, is markedly over expressed at both the mRNA and protein levels in colorectal cancer. 

Furthermore, this over expression results in increased potential for the acquisition of iron through 

elevated levels of the iron import protein TfR1. IRP2 expression appears to be greatest in colonic 

tumours (particularly those arising proximally, that are locally advanced and of a mucinous type). 

Knockdown of IRP2 results in the classical IRE-IRP response of decreased TfR1 and increased ferritin 

expression. In turn, this decreases the ability of the cell to acquire iron and results in perturbation of 

the cell cycle that is over turned through the subsequent administration of iron.  

 

Furthermore, IRP2 over expression appears to be linked to over activity of the MAPK signalling 

cascade, a pathway known to be constitutively active in a significant proportion of colorectal 

cancers. 260 Much research has been conducted into this signalling cascade and has led to the 

development of a number of monoclonal antibodies (e.g. Cetuximab) and small molecule tyrosine 

kinase inhibitors (e.g. Sorafenib) that already serve as adjuncts to existing chemotherapeutic 

regimens. 260 Unfortunately, acquired and primary resistance to therapy with these agents is a 

problem and therefore the demonstration of a link between MAPK signalling and IRP2 protein 

expression raises the possibility that iron chelation therapy with Deferasirox could serve as an 

additional therapy adjunct. 264 Furthermore, if MAPK activation (be it through K-ras or B-raf 

mutation) is a marker of IRP2 expression (which in turn is a surrogate marker for cellular iron 

requirement) then this offers the potential for selective therapy based on the genetic status of the 

tumour at the time of therapy initiation. 
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Further work is undoubtedly required in this area before affirmative conclusions can be drawn, 

however, the work undertaken in this chapter has led to a number of novel findings which offer 

direction for future research into iron chelation as a potential treatment for colorectal cancer. 
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Chapter 6.  Drug redeployment: A useful tool in gastrointestinal cancer? 

 

6.1 Introduction 

 

Owing to the known dysregulation of iron metabolism within neoplastic cells, there is significant 

interest in the potential of iron chelators to act as anti-cancer agents in their own right. 80, 92 

Furthermore, there is also evidence that iron chelators may be capable of both overcoming 

established chemotherapy resistance and of acting as chemosensitising agents. 139, 177  At present, 

however, much of this work has been carried out using experimental agents that (in part owing to 

significant side effects in pre-clinical models) are not currently licensed for use in humans. 139, 140, 141  

Thus, the demonstration here (in chapters 3 and 4) that a licensed chelator (Deferasirox) possesses 

potent anti-neoplastic and chemosensitising properties in gastrointestinal cancer is of great promise.  

 

At present, the use of Deferasirox in clinical practice is restricted to the treatment of conditions 

associated with chronic iron overload (such as β-thalassaemia) and it has never before been used as 

a direct treatment for any form of cancer. As such, the discovery in the current study that 

Deferasirox possesses potential efficacy as an anti-cancer therapy can also be said to represent a 

form of drug repurposing or redeployment. 

 

The development of novel anti-cancer therapies is an immensely expensive and time-consuming 

process. 265 On average, it takes 13 years of research and over $1.8 billion to bring a single drug from 

the laboratory bench to the patient’s bedside.266 In addition, studies have demonstrated that only 1 

in every 5-10,000 prospective anti-cancer agents receives formal clinical approval and only 5% of 

oncology drugs entering Phase I clinical trials are ever approved for use. 265, 267 Even if a drug 

proceeds to clinical trials, the final product is often extremely expensive (in part due to the costs 

incurred by the drug companies in reaching that point) and may be associated with a number of 
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significant side effects. Furthermore, they may ultimately make only marginal improvements in 

overall disease survival. 265 As such, the approval of new anti-cancer agents for routine clinical use 

can be an immensely emotive subject as health service providers are forced to weigh up cost benefit 

ratios prior to advocating widespread adoption. Examples of this in the UK include the introduction 

of the monoclonal antibody Trastuzumab (Herceptin) for the treatment of breast cancer and, more 

recently, its successor Trastuzumab emtansine (Kadcyla), which at present has been rejected for 

clinical use by the National Institute for Health and Care Excellence (NICE) on the grounds of cost. 268 

 

Thus, alternative routes for the discovery of new agents effective against cancer are required. One 

such avenue now being extensively employed is that of drug redeployment. The field of drug 

redeployment involves the systematic screening of existing licensed compounds for efficacy in 

diseases other than those for which they are traditionally used to treat (i.e. cancer). 200 This process 

is based on the knowledge that, owing to the common molecular origins of diverse diseases, 

approximately 90% of approved drugs may possess secondary indications and could be used for 

other purposes.269 The major advantage of this approach to cancer drug development is that prior 

knowledge of the pharmacological and toxicity profiles of existing drugs (gained through their 

current use) is likely to permit entry into phase II and III trials at a much faster rate. 265 Indeed, recent 

studies have estimated that, whilst only 10 and 50% of new agents make it to market having entered 

phase II and III trials respectively, the figure is closer to 25 and 65% for redeployed agents. 265, 270 As 

well as reducing the time it takes for new agents to come to market, drug redeployment also has the 

advantage that, as agents are often older and thus off patent, final market costs are likely to be 

significantly reduced. 

 

The process of drug repurposing typically takes one of two forms: ‘on-target repurposing’ attempts 

to utilise drugs which are known to act through a relevant mechanism of action but which currently 

have a different clinical indication, whilst ‘off-target repurposing’ or systematic serendipity involves 
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the random screening of drugs with no known association, in the hope of demonstrating efficacy and 

a subsequent novel mechanism of action. 271 

 

Redeployed drugs that have been successfully shown to possess marked anti-cancer effects include 

thalidomide (which has been shown to possess anti-angiogenic and NFκB inhibiting properties in a 

number of haematological malignancies), aspirin (through inhibition of platelet aggregation, 

cyclooxygenase enzymes, Wnt signalling and also NFκB amongst other mechanisms), statins (again 

through NFκB inhibition), metformin (through inhibition of the mTOR pathway) and finally 

methotrexate. 265 

 

Of note, systematic drug redeployment screens have also revealed agents that may be ineffective 

solely yet become highly efficacious in combination with other redeployed agents. An example of 

this includes the combination of the lipid-lowering drug Bezafibrate and the sex hormone 

Medroxyprogesterone acetatate in the treatment of acute myeloid leukaemia and Burkitt’s 

lymphoma. 272, 273  This raises the potential that combining agents with an iron chelator (such as 

Deferasirox) may also yield efficacious combinations. 

 

The use of drug redeployment approaches within gastrointestinal cancer, however, has thus far 

been limited. As stated previously, systemic therapy is utilised in the treatment of both oesophageal 

and colorectal cancer with variable tumour response. 41, 42, 235 Agents are typically used in 

combination in an attempt to exert effects on a number of pathways simultaneously and also in 

some instances to illicit synergy between compounds (e.g. Leucovorin and 5-Fu in colon cancer). 274 

As such, it seems logical to assess the usefulness of adopting a drug redeployment approach for the 

identification of new agents that may be effective either alone or in combination with Deferasirox 

against these diseases.  
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6.2 Chapter Aims 

 

Having already demonstrated a form of drug redeployment using the iron chelator Deferasirox (an 

on-target approach using the knowledge that cancer cells have a higher requirement for iron and 

that iron metabolism itself is dysregulated in gastrointestinal cancer), it was decided to next 

serendipitously screen a library of 99 licensed, off-patent reagents both alone and in combination 

with Deferasirox against a panel of gastrointestinal cell lineages to identify agents or combinations 

that may display anti-neoplastic properties in this area. As such, the aims for this chapter are: 

 

1. To identify any synergistic combinations between a panel of redeployed drugs and the iron 

chelating agent Deferasirox in oesophageal and colorectal carcinoma in-vitro. 

2. To identify agents with potential anti-neoplastic properties against colorectal 

adenocarcinoma in-vitro using a drug redeployment approach. 

3. To determine the effect of p53 status on the efficacy of redeployed agents in colorectal 

adenocarcinoma in-vitro. 

4. To determine the effect of hypoxia on the efficacy of redeployed agents in colorectal 

adenocarcinoma in-vitro. 

5. To identify agents with potential anti-neoplastic properties against oesophageal carcinoma 

in-vitro. 

6. To validate any promising agents in-vivo using a murine xenograft model of oesophageal 

adenocarcinoma. 
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6.3 Results 

 

6.3.1 The determination of any synergy between the redeployed drugs and the iron chelating 

agent Deferasirox in colorectal adenocarcinoma in-vitro 

 

6.3.1.1 Overview 

 

Deferasirox has previously shown potential synergy (particularly at sub-therapeutic doses) in studies 

in this thesis when given with common chemotherapeutic agents in both oesophageal (Figure 3.3C) 

and colorectal (Figure 4.7D) carcinoma. As such, the potential for Deferasirox to form synergistic 

combinations was investigated using a selection of redeployed drugs (Table 2.2) in colorectal 

adenocarcinoma.200  

 

The whole drug redeployment library was initially screened against the HCT116 p53WT cell line, with 

or without the presence of Deferasirox at the sub-therapeutic concentration of 1 µM.  MTT assays 

were performed to determine effect on cell viability. Deferasirox was utilised at a sub-therapeutic 

concentration as it had previously proved to be so potent in isolation at higher doses that any 

potential synergy could be masked in these experiments. 
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6.3.1.2 Results 

 

Following provisional screening of the redeployed library with or without the presence of 

Deferasirox (1 µM) against the HCT116 p53WT cell line (which did not identify any statistically 

significant synergistic relationships, data not shown here) promising agents were re-tested against a 

broader panel of colorectal lines (Figure 6.1). Of note, Valproic acid demonstrated synergy with 

Deferasirox across all of the lines tested. Furthermore, an additional reduction in cellular viability 

was also seen in 2 of the cell lines tested when Niclosamide was cultured alongside Deferasirox. 
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Figure 6.1 The redeployed drugs Niclosamide and Valproic acid are efficacious against colorectal adenocarcinoma cell lines in-vitro and demonstrate synergy when 

combined with a low dose of the iron chelator Deferasirox 

Cell viability assay (MTT) demonstrating the efficacy of the redeployed agents Niclosamide and Valproic acid against the colorectal adenocarcinoma cell lines RKO, SW480 

and HCT116. In addition, it appears the respective efficacy of each drug can be improved further by co-incubation with Deferasirox (1 µM). Data points represent mean fold 

change relative to control (normalised to 1), error bars denote ±SEM, * p<0.05 vs. control, # p<0.05 vs. equivalent drug without Deferasirox.  
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6.3.2 The efficacy of redeployed drugs against colorectal adenocarcinoma in-vitro 

 

6.3.2.1 Overview 

 

The library of redeployed drugs was screened alone for efficacy against a panel of colorectal 

adenocarcinoma cell lines in-vitro (RKO, SW480 and HT29). In addition, agents were also screened 

against the colorectal cell line SW620 (which is a metastatic clone arising from the same patient as 

the SW480 cell line) to see if there were any differences in efficacy between primary and metastatic 

lines. 

 

6.3.2.2 Results 

 

A number of agents demonstrated a significant effect on colorectal cell line viability (Figure 6.2 A-C). 

Of note, the anti-gout agent Colchicine and the anti-helminthic Mebendazole demonstrated marked 

effects across all 3 lines tested. 

 

Both Colchicine and Mebendazole were equally effective in the SW620 cells as they were in the 

SW480 (Figure 6.3). This was not the case with the existing chemotherapeutic agent 5-Fu, which did 

not exert a significant suppression of cellular viability compared to control and was also significantly 

less effective than in the SW480 line. 
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Figure 6.2 The effect of redeployed drugs on colorectal adenocarcinoma cell line viability in-vitro 

 

A. RKO 

Drug Fold Change (vs. Control) P Value Chloroquine 0.717 0.014

Control 1.000 Valproic acid 0.718 0.140

Mebendazole 0.213 0.001 Zinc acetate 0.719 0.204

Methotrexate 0.232 0.002 Propantheline 0.722 0.030

Colchicine 0.236 0.001 Alverine citrate 0.723 0.046

5-Fluorouracil 0.372 0.003 Fluoxetine 0.726 0.138

Nicotine 0.391 0.048 Norethisterone 0.726 0.114

Desferrioxamine 0.439 0.075 Acitretin 0.732 0.148

Trimethoprim 0.449 0.050 Thalidomide 0.732 0.125

Danazol 0.461 0.130 Artemisinin 0.733 0.160

Calciferol/ergocalciferol 0.476 0.085 Carbamazepine 0.742 0.037

Omeprazole 0.494 0.141 Chlorpheniramine 0.743 0.249

Mifepristone 0.521 0.051 Pravastatin 0.744 0.170

Naloxone 0.552 0.214 Thiamine 0.747 0.002

Domperidone 0.556 0.166 Vitamin K1 0.752 0.338

Bezafibrate 0.573 0.092 Ascorbic acid 0.755 0.277

Testosterone 0.587 0.087 Clobetasol propionate 0.755 0.052

Paroxetine 0.587 0.086 Metformin 0.756 0.058

Dantrolene sodium 0.592 0.166 Alpha tocopheryl acetate 0.757 0.075

Medroxyprogesterone acetate 0.599 0.094 Ritodrine 0.766 0.079

Acipimox 0.609 0.097 Flecainide 0.782 0.376

Nortryptyline 0.612 0.112 Paracetamol 0.784 0.060

Chlorambucil 0.616 0.046 Nicotinamide 0.787 0.135

Prochlorperazine 0.617 0.015 Praziquantel 0.787 0.473

Imatinib 0.620 0.100 Finasteride 0.788 0.153

Diltiazem 0.622 0.062 Rifampicin 0.789 0.179

Fluconazole 0.633 0.095 Methanol 0.799 0.262

Niclosamide 0.633 0.066 Ampicillin 0.801 0.259

Water 0.635 0.100 Acyclovir 0.816 0.453

Clofibric acid 0.638 0.242 Neostigmine 0.821 0.286

Itraconazole 0.640 0.027 Amantidine 0.824 0.014

Amphotericin b 0.648 0.108 Ranitidine 0.824 0.042

Mefenamic acid 0.654 0.000 DMSO 0.828 0.097

Fenofibrate 0.663 0.106 Allopurinol 0.829 0.289

Selegiline 0.674 0.039 Propanolol 0.833 0.296

Vitamin B12 0.675 0.159 Metronidazole 0.834 0.488

DMEM (2) 0.676 0.086 Doxycycline 0.840 0.125

Simvastatin 0.680 0.190 Ibuprofen 0.843 0.061

Erythromycin 0.686 0.037 Imipramine 0.849 0.086

DMEM (1) 0.690 0.175 Cyclophosphamide 0.852 0.566

Levothyroxine 0.690 0.108 Prednisolone 0.857 0.113

Methyldopa 0.698 0.030 Theophylline 0.873 0.375

Ethanol 0.703 0.279 Flutamide 0.875 0.515

Clomipramine 0.704 0.128 Bromocriptine 0.880 0.536

Penicillin V 0.705 0.047 Folic acid 0.886 0.274

Diclofenac 0.710 0.055 Nicotinic acid 0.887 0.137

Flupentixol 0.712 0.140 Dexamethasone 0.908 0.198

Mesalazine 0.713 0.124 Bendroflumethiazide 0.937 0.818

Pilocarpine 0.714 0.276 Retinol 0.967 0.804

Cefaclor 0.717 0.108 Propylthiouracil 0.973 0.846

Metoclopromide 0.717 0.220 Aspirin 1.032 0.827
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B. SW480 

Drug Fold Change (vs. Control) P Value Rifampicin 0.786 0.251

Control 1.000 Erythromycin 0.788 0.225

Colchicine 0.104 0.000 Zinc acetate 0.789 0.025

Mebendazole 0.119 0.000 DMEM (1) 0.789 0.067

Desferrioxamine 0.372 0.033 Methanol 0.789 0.105

Nicotine 0.438 0.109 Nicotinamide 0.790 0.047

Methotrexate 0.472 0.010 Praziquantel 0.793 0.073

Niclosamide 0.472 0.060 Flutamide 0.803 0.091

Calciferol/ergocalciferol 0.508 0.026 Neostigmine 0.806 0.050

Omeprazole 0.517 0.092 Ampicillin 0.809 0.023

Acipimox 0.528 0.065 Chlorpheniramine 0.814 0.187

Naloxone 0.530 0.160 Diclofenac 0.815 0.072

Danazol 0.537 0.174 Thiamine 0.820 0.258

Trimethoprim 0.552 0.014 Thalidomide 0.821 0.102

5-Fluorouracil 0.557 0.012 Propantheline 0.823 0.077

Mifepristone 0.577 0.153 Metoclopromide 0.834 0.198

Ethanol 0.578 0.164 Prednisolone 0.836 0.175

Flupentixol 0.588 0.018 Prochlorperazine 0.839 0.033

Mefenamic acid 0.622 0.093 Vitamin K1 0.846 0.006

Clomipramine 0.636 0.011 DMSO 0.847 0.163

Testosterone 0.640 0.015 Fluoxetine 0.851 0.228

Dantrolene sodium 0.647 0.033 Chloroquine 0.852 0.289

Bezafibrate 0.662 0.006 Acitretin 0.852 0.214

Amphotericin b 0.663 0.038 Vitamin B12 0.857 0.420

Clofibric acid 0.673 0.027 Folic acid 0.860 0.093

Nortryptyline 0.676 0.166 Mesalazine 0.861 0.588

Medroxyprogesterone acetate 0.694 0.050 Ranitidine 0.864 0.004

Norethisterone 0.703 0.008 Amantidine 0.867 0.032

Methyldopa 0.703 0.157 Penicillin V 0.870 0.467

Domperidone 0.707 0.160 Cefaclor 0.875 0.502

Paroxetine 0.708 0.014 Paracetamol 0.876 0.610

Itraconazole 0.724 0.051 Aspirin 0.877 0.419

Metformin 0.724 0.064 Metronidazole 0.878 0.212

Diltiazem 0.726 0.136 Bendroflumethiazide 0.879 0.315

Imatinib 0.726 0.067 Ibuprofen 0.880 0.304

Selegiline 0.727 0.018 Simvastatin 0.888 0.508

Valproic acid 0.727 0.189 Bromocriptine 0.888 0.122

Water 0.729 0.024 Dexamethasone 0.889 0.215

Fluconazole 0.734 0.142 Propanolol 0.890 0.271

Chlorambucil 0.739 0.147 Pilocarpine 0.891 0.373

Alpha tocopheryl acetate 0.742 0.065 Theophylline 0.892 0.046

Levothyroxine 0.748 0.014 Clobetasol propionate 0.892 0.522

Fenofibrate 0.753 0.024 Ascorbic acid 0.900 0.343

Alverine citrate 0.755 0.189 Acyclovir 0.922 0.172

Pravastatin 0.756 0.057 Propylthiouracil 0.928 0.227

Cyclophosphamide 0.757 0.002 Imipramine 0.928 0.615

Carbamazepine 0.758 0.090 Nicotinic acid 0.938 0.225

Artemisinin 0.760 0.009 Allopurinol 0.940 0.101

DMEM (2) 0.767 0.021 Doxycycline 0.959 0.768

Finasteride 0.785 0.095 Flecainide 1.030 0.896

Ritodrine 0.785 0.013 Retinol 1.065 0.292
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C. HT29 

 

 

 

 

Drug Fold Change (vs. Control) P Value Paroxetine 0.969 0.906

Control 1.000 Chlorambucil 0.971 0.900

Desferrioxamine 0.156 0.014 Bromocriptine 0.980 0.924

Mebendazole 0.164 0.000 Selegiline 0.984 0.914

Colchicine 0.164 0.001 Ranitidine 0.987 0.917

Danazol 0.235 0.060 Diltiazem 0.993 0.968

Nicotine 0.255 0.075 Clomipramine 0.997 0.990

Omeprazole 0.262 0.026 Ascorbic acid 0.998 0.980

Dantrolene sodium 0.321 0.042 Imipramine 1.004 0.898

Ethanol 0.342 0.108 Doxycycline 1.006 0.976

Prochlorperazine 0.407 0.049 Methyldopa 1.009 0.971

Alverine citrate 0.414 0.059 Vitamin K1 1.010 0.933

Imatinib 0.433 0.046 Propantheline 1.014 0.942

Domperidone 0.443 0.108 Levothyroxine 1.017 0.940

Methotrexate 0.469 0.007 Vitamin B12 1.018 0.944

Naloxone 0.487 0.158 Norethisterone 1.023 0.938

Amphotericin b 0.506 0.228 DMEM (2) 1.024 0.895

Zinc acetate 0.510 0.033 Bezafibrate 1.026 0.930

Mifepristone 0.511 0.286 Clobetasol propionate 1.026 0.915

Nortryptyline 0.525 0.140 Chlorpheniramine 1.037 0.872

Acipimox 0.560 0.162 Nicotinamide 1.041 0.773

Calciferol/ergocalciferol 0.603 0.161 Finasteride 1.045 0.829

Clofibric acid 0.643 0.176 Medroxyprogesterone acetate 1.046 0.877

5-Fluorouracil 0.666 0.100 Alpha tocopheryl acetate 1.049 0.820

Thalidomide 0.700 0.066 Mefenamic acid 1.055 0.882

Methanol 0.721 0.051 Metronidazole 1.057 0.810

Fluoxetine 0.756 0.091 Thiamine 1.064 0.591

Testosterone 0.762 0.378 Rifampicin 1.070 0.779

Acyclovir 0.762 0.067 Folic acid 1.074 0.583

Itraconazole 0.766 0.326 Carbamazepine 1.080 0.588

Pravastatin 0.775 0.410 Paracetamol 1.086 0.793

Flupentixol 0.783 0.209 Ibuprofen 1.087 0.795

Cefaclor 0.800 0.074 Neostigmine 1.088 0.693

Water 0.823 0.520 Acitretin 1.092 0.709

Simvastatin 0.827 0.176 Mesalazine 1.094 0.737

Metoclopromide 0.834 0.251 Fluconazole 1.095 0.682

Penicillin V 0.874 0.052 Ritodrine 1.098 0.678

Trimethoprim 0.882 0.727 Aspirin 1.103 0.730

Fenofibrate 0.884 0.440 DMSO 1.107 0.594

Metformin 0.899 0.755 Prednisolone 1.109 0.636

Niclosamide 0.902 0.704 Propanolol 1.111 0.381

Diclofenac 0.905 0.360 Dexamethasone 1.113 0.608

Chloroquine 0.913 0.702 Amantidine 1.113 0.623

Allopurinol 0.922 0.666 Retinol 1.117 0.594

Ampicillin 0.929 0.628 DMEM (1) 1.120 0.652

Flutamide 0.943 0.818 Flecainide 1.124 0.543

Artemisinin 0.948 0.730 Theophylline 1.127 0.524

Valproic acid 0.955 0.775 Pilocarpine 1.140 0.598

Erythromycin 0.955 0.705 Propylthiouracil 1.158 0.595

Praziquantel 0.961 0.846 Nicotinic acid 1.161 0.535

Cyclophosphamide 0.968 0.769 Bendroflumethiazide 1.219 0.521
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Figure 6.2 The effect of redeployed drugs on colorectal adenocarcinoma cell line viability in-vitro 

Cell viability assay (MTT) demonstrating the effects of the same panel of redeployed drugs on the 

colorectal adenocarcinoma cell lines RKO (A), SW480 (B) and HT29 (C) after 72 hours incubation. 

Data presented as mean fold change relative to control (normalised to 1), p value quoted represents 

drug vs. control. 
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Figure 6.3 Colchicine and Mebendazole are efficacious against metastatic colorectal 

adenocarcinoma cell lines in-vitro whereas 5-Fluorouracil is not 

Cell viability assay (MTT) demonstrating the effects of Colchicine, Mebendazole and 5-fluorouracil on 

the colorectal adenocarcinoma cell line SW480 and its metastatic clone SW620 after 72 hours 

incubation. Data presented as mean fold change relative to control (normalised to 1), error bars 

denote ±SEM, * p<0.05 vs. control, # p<0.05 vs. equivalent drug in SW480 cell line. 
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6.3.3 The effect of p53 status and hypoxia upon redeployed drug efficacy in colorectal 

adenocarcinoma in-vitro 

 

6.3.3.1 Overview 

 

The redeployed library of drugs was next screened against the HCT116 p53WT cell line and its 

isogenic counterpart HCT116 p53-/-. As previously demonstrated, these lines differ only in p53 

status (Figure 4.10). The library was also administered to HCT116 p53WT cells in hypoxia to identify 

potentially efficacious agents that were then re-screened against a broader panel of colorectal cell 

lines (RKO, SW480, HCT116 p53WT and HCT116 p53-/-) to confirm efficacy. 

 

Hypoxia was induced by the use of a 1% O2 chamber and confirmed through Western blotting for 

HIF-1α expression (Figure 6.4A). Effect on cellular phenotype was assessed in normoxia by use of the 

MTT cell viability assay and in hypoxia using the SRB assay. 

  

6.3.3.2 Results 

 

Mebendazole and Colchicine were again both markedly efficacious in the HCT116 p53WT cell line, 

reducing cellular viability by 68.5 and 50.7% respectively (p<0.05 vs. control). In addition, 

Niclosamide also significantly decreased viability by 74.9% (p<0.05 vs. control).  No drugs, however, 

within the redeployed library demonstrated a significant difference in efficacy based upon p53 

status alone. 

 

Screening of the entire redeployed library against the HCT116 p53WT cell line in the presence of 

hypoxia did not demonstrate any targets that were statistically efficacious in their own right (data 

not shown here). Promisingly, however, a number of agents demonstrated a non-significant trend 
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towards efficacy and therefore experiments were repeated with these in a broader panel of 

colorectal cell lines to confirm the results (Figure 6.4).  Both Niclosamide and Valproic acid were 

subsequently found to significantly impede cellular proliferation across all 4 lines tested by 81.3 and 

23.1% respectively (p<0.05 vs. control). 
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Figure 6.4 The redeployed drugs Niclosamide and Valproic acid are efficacious against colorectal 

adenocarcinoma cell lines in the presence of hypoxia 

Western blot (A) demonstrating the increase in HIF-1α seen when a panel of colorectal cell lines 

(RKO lanes 1-2, SW480 lanes 3-4, HCT116 p53 WT lanes 5-6 and HCT116 p53 -/- lanes 7-8) are 

exposed to 1% O2 for 24 hours. Lanes 1, 3, 5 and 7 represent normoxia, lanes 2, 4, 6 and 8 denote 

hypoxia. The drugs Niclosamide and Valproic acid were both efficacious against the same panel of 

cell lines despite this induction of hypoxia (SRB assay, B). The reagents were also efficacious in 

normoxia (C). Data points represent mean fold change compared to control, error bars denote 

±SEM, * p<0.05 vs. control. 
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6.3.4 The efficacy of redeployed drugs against oesophageal carcinoma in-vitro 

 

6.3.4.1 Overview 

 

In order to assess whether or not agents within the same redeployed drug library were efficacious in 

oesophageal carcinoma the OAC cell lines OE19 and OE33 and the SCC line OE21 were next screened 

against the library. Cell growth was monitored over 72 hours prior to the performance of an MTT 

assay to assess drug effect on cell viability. The experiment was then repeated using the most 

efficacious agents to permit determination of cellular proliferation using the BrdU assay. 

 

6.3.4.2 Results 

 

A number of agents within the redeployed drug library demonstrated a significant reduction in 

oesophageal cell line viability within the 72 hour time period (Figure 6.5 A-C). 

 

Of note, the iron chelating agent Desferrioxamine significantly reduced cellular viability by 69.6, 77.7 

and 75.9% in the OE19, OE33 and OE21 lines respectively (Figure 6.6A). Other agents shown to have 

a profound effect on cellular viability included Prochlorperazine (mean reduction across all 3 lines 

76.7% vs. control), methotrexate (75.7% reduction), Mebendazole (73.7% reduction), mifepristone 

(65.4% reduction) and Colchicine (62.1% vs. control). 

 

Subsequent validation of these agents using the BrdU assay demonstrated that Prochlorperazine, 

Mebendazole and Colchicine all significantly reduced cellular proliferation in the OE19 and OE33 

OAC lines. The same agents also reduced proliferation in the OE21 SCC line (Figure 6.6B). The iron 

chelator Desferrioxamine also reduced proliferation across all 3 lines tested, but owing to variability 

within experimental repeats, did not reach the required threshold for statistical significance.  
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Figure 6.5 The effect of redeployed drugs on oesophageal adenocarcinoma and squamous cell 

carcinoma cell line viability in-vitro 

 

 

A. OE19   

 

 

Drug Fold Change (vs. Control) P Value Fluoxetine 0.757 0.042

Control 1.000 Allopurinol 0.757 0.244

Mebendazole 0.285 0.002 Simvastatin 0.757 0.440

Prochlorperazine 0.288 0.026 Pravastatin 0.759 0.266

Methotrexate 0.301 0.007 Penicillin V 0.765 0.138

Desferrioxamine 0.304 0.000 Acyclovir 0.775 0.033

Colchicine 0.430 0.012 Vitamin B12 0.776 0.255

Naloxone 0.434 0.004 Clobetasol 0.778 0.123

Omeprazole 0.489 0.103 Erythromycin 0.779 0.123

Danazol 0.537 0.009 Carbamazepine 0.782 0.060

Mifepristone 0.540 0.010 Valproic acid 0.784 0.264

Domperidone 0.555 0.028 Mesalazine 0.785 0.225

Nicotine 0.574 0.045 Nicotinic acid 0.790 0.221

Clofibric acid 0.586 0.041 Thalidomide 0.794 0.135

Fenofibrate 0.587 0.016 Retinol 0.795 0.323

Itraconazole 0.603 0.069 Paracetamol 0.799 0.214

Paroxetine 0.611 0.094 Chlorpheniramine 0.802 0.428

Flecainide 0.613 0.103 Alpha tocopheryl acetate 0.809 0.208

Pilocarpine 0.614 0.020 Clomipramine 0.814 0.121

Ampicillin 0.636 0.040 Vitamin K1 0.815 0.034

Levothyroxine 0.637 0.095 Testosterone 0.815 0.075

Water 0.644 0.077 Nicotinamide 0.817 0.269

Niclosamide 0.653 0.104 Chloroquine 0.821 0.155

Diltiazem 0.663 0.049 Diclofenac 0.824 0.214

Trimethoprim 0.663 0.101 Cefaclor 0.825 0.364

Bezafibrate 0.664 0.089 Propanolol 0.827 0.022

Dantrolene 0.667 0.154 DMEM (1) 0.834 0.438

Amphotericin b 0.667 0.048 Ritodrine 0.835 0.372

Ethanol 0.669 0.075 DMEM (2) 0.839 0.349

Chlorambucil 0.671 0.105 Neostigmine 0.840 0.142

Methanol 0.681 0.061 Theophylline 0.841 0.277

Fluconazole 0.684 0.057 Ranitidine 0.857 0.079

Alverine citrate 0.685 0.097 Propylthiouracil 0.860 0.133

Acipimox 0.695 0.115 Doxycycline 0.866 0.181

Flupentixol 0.698 0.047 Norethisterone 0.867 0.415

Cisplatin 0.702 0.001 Bendroflumethiazide 0.872 0.327

Flutamide 0.703 0.098 Dexamethasone 0.876 0.321

Metformin 0.704 0.060 Imatinib 0.883 0.510

Selegiline 0.715 0.105 Zinc acetate 0.885 0.512

Nortryptyline 0.720 0.228 Imipramine 0.888 0.193

Metoclopromide 0.722 0.085 Ibuprofen 0.895 0.521

Ergocalciferol 0.728 0.166 Acitretin 0.896 0.617

Cyclophosphamide 0.728 0.112 Thiamine 0.897 0.044

Mefenamic acid 0.729 0.106 Metronidazole 0.904 0.458

Finasteride 0.736 0.111 Aspirin 0.912 0.457

Propantheline bromide 0.738 0.096 Bromocriptine 0.926 0.685

Methyldopa 0.741 0.136 DMSO 0.931 0.422

Ascorbic acid 0.743 0.021 Prednisolone 0.945 0.485

Medroxyprogesterone acetate 0.749 0.208 Folic acid 0.960 0.658

Artemisinin 0.757 0.219 Rifampicin 0.986 0.927

Praziquantel 0.757 0.141 Amantidine 0.998 0.970
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B. OE33     

  

 

 

Drug Fold Change (vs. Control) P Value Norethisterone 0.806 0.059

Control 1.000 Finasteride 0.807 0.095

Desferrioxamine 0.223 0.002 Imipramine 0.807 0.091

Prochlorperazine 0.226 0.008 Ascorbic acid 0.811 0.079

Methotrexate 0.251 0.002 Levothyroxine 0.818 0.010

Mebendazole 0.277 0.001 Thalidomide 0.820 0.001

Mifepristone 0.293 0.007 Diltiazem 0.824 0.147

Colchicine 0.411 0.001 Diclofenac 0.827 0.391

Nicotine 0.526 0.139 Doxycycline 0.827 0.424

Danazol 0.553 0.196 Flecainide 0.828 0.230

Omeprazole 0.554 0.008 Cefaclor 0.835 0.280

Niclosamide 0.568 0.069 Chloroquine 0.845 0.216

Domperidone 0.583 0.104 Cyclophosphamide 0.845 0.072

Clofibric acid 0.607 0.125 Methyldopa 0.846 0.360

Fluoxetine 0.609 0.109 Mesalazine 0.857 0.305

Water 0.620 0.219 Selegiline 0.859 0.134

Pilocarpine 0.626 0.020 Theophylline 0.859 0.047

Naloxone 0.633 0.216 Penicillin V 0.863 0.196

Ergocalciferol 0.673 0.237 Bezafibrate 0.865 0.292

Ampicillin 0.676 0.259 Zinc acetate 0.866 0.226

Cisplatin 0.684 0.002 Clomipramine 0.869 0.562

Nortryptyline 0.698 0.006 Ritodrine 0.878 0.600

Metformin 0.698 0.017 Aspirin 0.882 0.449

Itraconazole 0.701 0.221 Pravastatin 0.882 0.341

Vitamin K1 0.710 0.168 Praziquantel 0.883 0.624

Amphotericin b 0.718 0.462 Nicotinamide 0.888 0.143

Simvastatin 0.721 0.066 Methanol 0.891 0.294

Valproic acid 0.725 0.235 Dexamethasone 0.893 0.504

Fenofibrate 0.726 0.293 Imatinib 0.899 0.126

Acyclovir 0.728 0.219 Propanolol 0.902 0.182

Artemisinin 0.730 0.022 Ethanol 0.914 0.744

Flutamide 0.733 0.107 DMEM (1) 0.917 0.715

Vitamin B12 0.734 0.169 Chlorpheniramine 0.922 0.665

Alverine citrate 0.738 0.089 Flupentixol 0.923 0.756

Clobetasol 0.740 0.076 Carbamazepine 0.924 0.379

Erythromycin 0.742 0.082 Alpha tocopheryl acetate 0.936 0.560

Metoclopromide 0.752 0.242 Paracetamol 0.937 0.698

Medroxyprogesterone acetate 0.756 0.312 DMSO 0.947 0.767

Propantheline bromide 0.756 0.016 Propylthiouracil 0.952 0.712

Dantrolene 0.761 0.092 Metronidazole 0.955 0.854

Chlorambucil 0.761 0.193 Folic acid 0.955 0.287

Mefenamic acid 0.762 0.055 Prednisolone 0.964 0.789

Acitretin 0.771 0.323 Acipimox 0.969 0.875

Trimethoprim 0.780 0.419 Retinol 0.972 0.807

Fluconazole 0.784 0.189 Rifampicin 0.983 0.923

Allopurinol 0.787 0.326 Bendroflumethiazide 0.991 0.961

Ibuprofen 0.788 0.055 Thiamine 1.002 0.975

DMEM (2) 0.791 0.230 Amantidine 1.011 0.846

Paroxetine 0.792 0.219 Nicotinic acid 1.033 0.879

Testosterone 0.792 0.409 Ranitidine 1.045 0.826

Neostigmine 0.796 0.132 Bromocriptine 1.069 0.512
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C. OE21     

 

 

Drug Fold Change (vs. Control) P Value Simvastatin 0.777 0.249

Control 1.000 Ampicillin 0.779 0.144

Methotrexate 0.178 0.001 Norethisterone 0.799 0.045

Prochlorperazine 0.185 0.007 Bezafibrate 0.800 0.422

Mifepristone 0.206 0.009 Nortryptyline 0.802 0.269

Mebendazole 0.228 0.000 Chlorpheniramine 0.805 0.404

Desferrioxamine 0.241 0.002 Bendroflumethiazide 0.810 0.208

Colchicine 0.296 0.001 Acitretin 0.810 0.205

Naloxone 0.330 0.046 Pravastatin 0.815 0.092

Nicotine 0.417 0.073 Flutamide 0.815 0.069

Amphotericin b 0.490 0.115 Praziquantel 0.817 0.077

Danazol 0.533 0.133 Vitamin B12 0.821 0.391

Niclosamide 0.541 0.083 Propantheline bromide 0.822 0.320

Omeprazole 0.550 0.069 Nicotinamide 0.823 0.297

Cisplatin 0.608 0.047 Levothyroxine 0.824 0.223

Itraconazole 0.627 0.028 Selegiline 0.828 0.269

Metoclopromide 0.635 0.012 Finasteride 0.830 0.325

Imatinib 0.638 0.108 Artemisinin 0.844 0.287

Dantrolene 0.641 0.046 Metronidazole 0.848 0.174

Alverine citrate 0.647 0.064 Paracetamol 0.849 0.311

Domperidone 0.647 0.067 Aspirin 0.853 0.130

Zinc acetate 0.651 0.118 Theophylline 0.856 0.209

Water 0.669 0.178 Clobetasol 0.860 0.317

Fluconazole 0.674 0.016 Ritodrine 0.860 0.305

Valproic acid 0.679 0.072 DMSO 0.862 0.109

Ascorbic acid 0.684 0.049 Bromocriptine 0.865 0.038

Paroxetine 0.688 0.333 Dexamethasone 0.866 0.224

Acyclovir 0.689 0.109 Allopurinol 0.871 0.287

Clofibric acid 0.693 0.164 Cefaclor 0.877 0.433

Chlorambucil 0.697 0.034 Chloroquine 0.877 0.423

Methyldopa 0.703 0.046 Clomipramine 0.882 0.523

Fenofibrate 0.703 0.087 Propylthiouracil 0.884 0.425

Testosterone 0.704 0.100 Nicotinic acid 0.896 0.463

Propanolol 0.704 0.147 Mesalazine 0.901 0.564

Vitamin K1 0.719 0.117 Ibuprofen 0.905 0.553

Ethanol 0.725 0.171 DMEM (2) 0.907 0.514

Medroxyprogesterone acetate 0.728 0.224 Metformin 0.918 0.737

Trimethoprim 0.730 0.255 Alpha tocopheryl acetate 0.923 0.667

Ergocalciferol 0.732 0.319 Flupentixol 0.940 0.842

Flecainide 0.734 0.112 Penicillin V 0.943 0.643

Mefenamic acid 0.735 0.213 Thiamine 0.944 0.741

Methanol 0.736 0.150 DMEM (1) 0.946 0.564

Cyclophosphamide 0.737 0.136 Diclofenac 0.951 0.658

Fluoxetine 0.739 0.251 Thalidomide 0.961 0.849

Ranitidine 0.742 0.070 Prednisolone 0.967 0.824

Pilocarpine 0.750 0.182 Rifampicin 0.976 0.705

Erythromycin 0.753 0.123 Doxycycline 0.981 0.892

Diltiazem 0.754 0.097 Amantidine 0.982 0.899

Carbamazepine 0.760 0.113 Retinol 0.982 0.816

Neostigmine 0.764 0.185 Imipramine 1.010 0.938

Acipimox 0.768 0.306 Folic acid 1.024 0.899
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Figure 6.5 The effect of redeployed drugs on oesophageal adenocarcinoma and squamous cell 

carcinoma cell line viability in-vitro 

Cell viability assay (MTT) demonstrating the effects of the redeployed drugs on oesophageal 

adenocarcinoma (OE19, A and OE33, B) and squamous cell carcinoma (OE21, C) cell lines after 72 

hours incubation. Data presented as mean fold change relative to control (normalised to 1), p value 

quoted represents drug vs. control. 
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Figure 6.6 The effect of redeployed drugs on oesophageal adenocarcinoma and squamous cell 

carcinoma cell line proliferation in-vitro 

The effect of the top 7 redeployed agents on oesophageal adenocarcinoma (OE19 and OE33) and 

squamous cell carcinoma (OE21) was assessed by cell viability (MTT, A) and cell proliferation (BrdU, 

B) assays. Cells were incubated alongside the reagents for 72 hours. Data points represent mean fold 

change compared to control, error bars denote ±SEM, * p<0.05 vs. control. 
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6.3.5 The efficacy of redeployed agents in oesophageal adenocarcinoma in-vivo 

 

6.3.5.1 Overview 

 

Following the demonstration that the redeployed agents Prochlorperazine, Mebendazole and 

Colchicine significantly suppressed both cellular viability and cellular proliferation in-vitro, an OE19 

OAC murine xenograft model (the same as was previously used in chapter 3) was generated to 

investiagate the efficacy of these compounds in-vivo. 

 

NOD-SCID mice were divided into groups and given one of 4 treatment regimens as an oral gavage 

on alternate days for 3 weeks: 

 

1. Sterile distilled water (100 µl) 

2. Mebendazole (40 mg/kg as a suspension in a total volume of 100 µl) 

3. Prochlorperazine (1 mg/kg as a suspension in a total volume of 100 µl) 

4. Colchicine (1 mg/kg as a suspension in a total volume of 100 µl) 

 

Doses were decided upon using a combination of previously published literature (in the case of 

Mebendazole) and manufacturer’s pre-clinical drug safety data. 275 276  

 

Drug efficacy was assessed by comparing final xenograft volume (mm3) with the control group 

(water). The modified ellipsoid formula, volume = (maximal length x maximal width2) / 2, was utilised 

to calculate tumour volume (mm3). 277    
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6.3.5.2 Results 

 

Both Mebendazole and Colchicine significantly suppressed final xenograft size (56.7 and 72.1% 

reduction in final volume vs. control respectively, p<0.05, Figure 6.7).  
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Figure 6.7 Mebendazole and Colchicine suppress oesophageal adenocarcinoma xenograft growth in-vivo 

NOD-SCID mice with established OE19 OAC cell line xenografts were given 3 weeks of oral water (control), 

Mebendazole, Prochlorperazine or Colchicine on alternate days. Data presented as median xenograft volume (mm3) 

post treatment. 95% confidence range for median displayed as bars around median, * p<0.05 vs. control. 
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6.3.6 The determination of any synergy between the redeployed drugs and the iron chelating 

agent Deferasirox in oesophageal carcinoma in-vitro 

 

6.3.6.1 Overview 

 

The OE19 OAC cell line was next screened against varying concentrations of Mebendazole, 

Colchicine and Prochlorperazine with or without the presence of Deferasirox (at the sub-therapeutic 

concentration of 1 µM) for 72 hours. Cell viability assays were then performed as previously 

outlined. Mebendazole, Colchicine and Prochlorperazine were selected at they had shown the most 

promise in the earlier oesophageal screen. Deferasirox was again utilised at a sub-therapeutic 

concentration of 1 µM. MTT assays were performed to determine effect on cell viability. 

 

6.3.7.2 Results 

 

The combination of low dose Mebendazole (0.43 µM, approximately 25% of the standard dose used 

in the previous experiments) with low dose Deferasirox (1 µM) generated a marked additional 

reduction of 60.4% compared to the redeployed drug alone at that concentration. This was 

statistically significant (p<0.05) against control, Mebendazole alone and Deferasirox alone at the 

same concentrations (Figure 6.8A). In contrast, no additional benefits were seen by combining 

Deferasirox with either Prochlorperazine or Colchicine (Figure 6.8 B and C).  
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A        B            C 

Figure 6.8 Mebendazole and Deferasirox demonstrate evidence of synergy in-vitro when utilised at concentrations below the peak serum levels obtained with their 

respective conventional dosing regimens 

Cell viability assay (MTT) demonstrating dose response profile of Mebendazole (A), Prochlorperazine (B) and Colchicine (C) with or without the presence of the iron chelator 

Deferasirox (1 µM). Data points represent mean fold change compared to control (normalised to 1), error bars denote ±SEM, * p<0.05 vs. equivalent concentration of drug + 

Deferasirox 1 µM. 
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6.4 Discussion 

 

The overall aim of this chapter was to ascertain whether or not the systematic screening of a library 

of redeployed drugs could identify novel agents with potential efficacy against oesophageal and 

colorectal cancer (either in synergy with the iron chelator Deferasirox or alone). 

 

In terms of synergy between Deferasirox and redeployed agents, this study has demonstrated that 

the combination of Valproic acid with a sub-therapeutic dose of the iron chelator Deferasirox (1 µM) 

resulted in a significant additional reduction in cellular viability across a panel of colorectal cell lines 

(mean additional reduction 6.5-22.0% vs. Valproic acid alone). This finding is of interest and agrees 

with the findings of a recent study demonstrating synergy between the histone deacetylase (HDAC) 

inhibitor Trichostatin A and the iron chelators DFO and Phenanthroline in breast cancer cell lines. 278 

The authors of this study speculated that the synergy seen was likely to be a consequence of iron 

chelator inhibition of the endoplasmic reticulum chaperone protein glucose-regulated protein 78 

(which was increased by the HDAC inhibitor and appears to inhibit its anti-neoplastic effects).  

 

A number of reagents demonstrated efficacy against oesophageal adenocarcinoma and squamous 

cell carcinoma cell lines in-vitro. Of note, the traditional iron chelator Desferrioxamine (an 

alternative to Deferasirox) significantly reduced cell viability across all 3 lines tested by an average of 

74.4%.  

 

The agents Colchicine (currently used to treat acute attacks of gout), Mebendazole (an anti-

helminthic used to treat parasitic infections) and Prochlorperazine (a phenothiazine prescribed as an 

anti-emetic and anti-psychotic) induced a profound reduction in both cellular viability and 

proliferation in OAC and SCC in-vitro.  Furthermore, when administered to mice harbouring 
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established OE19 OAC xenografts both Mebendazole and Colchicine demonstrated suppression of 

tumour growth compared to control.  

 

Screening of the same redeployed library against the colorectal cell lines in-vitro also demonstrated 

that Colchicine, Mebendazole and Prochlorperazine were efficacious, reducing cellular viability by an 

average of 83.2, 83.5 and 37.9% respectively. In support of previous findings, Desferrioxamine was 

again also efficacious, inducing an average reduction in cellular viability of 67.8% across the 3 lines 

tested.  

 

Colchicine was originally discovered as an extract from plants of the Colhicum autumnale (autumn 

crocus) genus. The anti-cancer properties of Colchicine demonstrated here are likely to stem from its 

known action against microtubules. 279 Along with actin microfilaments and intermediate filaments, 

microtubules comprise the cytoskeleton and play a significant role in the process of mitosis. 279 

During the majority of the cell cycle, microtubules form an intracellular lattice-like structure, 

however, when cells enter mitosis, this microtubule network is reorganised into the mitotic spindle. 

279 The processes of depolymerizing the interphase microtubule structure and forming the mitotic 

spindle, as well as finding, attaching and separating chromosomes, require highly coordinated 

microtubule dynamics. 279, 280 Therefore, agents that interfere with microtubule dynamics inhibit the 

ability of cells to successfully complete mitosis thus limiting proliferation. 279 

 

Microtubules are comprised of α and β-tubulin heterodimers that polymerise head-to-tail to form 

protofilaments. 279 Colchicine is known to bind to tubulin at a location adjacent to a GTP-binding site 

on the α-tubulin heterodimer leading to microtubule de-polymerisation through the inhibition of 

lateral contacts between protofilaments. 279, 281, 282 Thus, the drug is a potent inhibitor of mitosis, 

which by definition means it is effective at inhibiting the proliferation of rapidly dividing cancer cells. 

Widespread adoption of Colchicine as an anti-neoplastic agent to date, however, has been largely 
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limited due to its significant toxicity (it should be noted that Colchicine was well tolerated by the 

mice at the dose used in this study, however). 279 As such, much work has been carried out into the 

development, synthesis and pre-clinical evaluation of less toxic Colchicine analogues. 279, 283, 284  

 

Mebendazole is a broad spectrum anti-helminthic drug from the benzimadazole class (which also 

includes albendazole and flubendazole amongst others). 285 At present, it is commonly prescribed to 

treat a range of parasitical worm infections, including threadworm, tapeworms, roundworms and 

other nematode and trematode infections in humans and domestic animals. 285 It is available in an 

off-patent generic form and can be administered as both an acute (days) or longer-term (several 

months) prescription. 285 As with Colchicine, the anti-neoplastic effects seen with Mebendazole are 

likely to be exerted through the inhibition of microtubule polymerisation and the subsequent arrest 

of mitosis. 286 Indeed, both Mebendazole and the other benzimadazole drugs are known to bind to 

the Colchicine binding domain on the α-tubulin heterodimer. 287 Unlike Colchicine, however, the 

drug has a good safety and tolerability profile. 285  

 

A number of pre-clinical studies have demonstrated the anti-neoplastic action of Mebendazole. 285 

Of note, the drug has been shown to suppress the growth of lung, adrenal, melanoma and 

glioblastoma xenografts. 275, 276, 288, 289 Mebendazole has also demonstrated efficacy in leukaemic, 

breast, and osteosarcoma cell lines.  285, 290, 291 Furthermore, in a recent study Nygren and colleagues 

screened  a panel of 1600 existing drugs for activity against two colon cancer cell lines (HCT116 and 

RKO) and found 64 candidate drugs, including a cluster of benzimidazoles. 290 Further analysis 

performed with Mebendazole (across a broader panel of colonic lines including HCT116, RKO, HT29, 

HT-8 and SW626) demonstrated that all displayed an IC50 of <5 μM (as in this study) and that the 

drug was largely inactive against non-malignant cell lines. 290  Of note, Mebendazole has never been 

studied before in the context of oesophageal cancer. 
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The inhibition of tubulin polymerisation by Mebendazole has been shown to result in G2/M cell cycle 

arrest and the subsequent induction of apoptosis. 275 In melanoma lines, apoptosis has been shown 

to be activated through Bcl-2 phosphorylation and a reduction in the expression of X-linked inhibitor 

of apoptosis (XIAP).  288, 292 Mebendazole has also been shown to function in a p53 independent 

manner. 292 

 

It has been postulated in previous studies that Mebendazole offers the potential to act as a 

synergistic agent with both existing chemotherapeutic drugs and other redeployed agents under 

investigation in a number of cancers. 285 Thus, it is of interest (and certainly worthy of further 

investigation) that a potentially synergistic relationship was demonstrated in the current study 

between low dose Mebendazole and a low (sub-therapeutic) dose of the iron chelator Deferasirox. 

 

No clinical trials of Mebendazole as an anti-neoplastic agent have been completed to date (although 

there are 2 currently underway for the treatment of glioma). 285 There are however, case reports 

demonstrating evidence of disease regression following Mebendazole therapy in both adrenal and 

metastatic colorectal cancer. 293, 294  

 

The phenothiazine prolchlorperazine demonstrated significant in-vitro effects in this study against 

both oesophageal and colorectal lines. Prochlorperazine was originally used as an anti-psychotic and 

is also commonly used as an anti-emetic (particularly during chemotherapy). Phenothiazines (as a 

broad class) have been studied previously as potential anti-cancer agents, although there are no 

studies using Prochlorperazine specifically nor in the context of oesophageal or colorectal cancer. 295  

Ancedotally, a decreased risk of cancer has been noted previously amongst patients with 

Schizophrenia treated long-term with phenothiazines. 296Phenothiazines have been shown to induce 

G1 cell cycle arrest with the subsequent induction of apoptosis. 297 Furthermore, in ovarian 

carcinoma xenografts, the phenothiazine derivative thioriadazine inhibited neo-vascularisation 
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resulting in a significant suppression of tumour growth. 298 The authors demonstrated that this was 

likely to be through inhibition of the PI3K signalling cascade (via suppression of Akt, PDK1 and mTOR 

phosphorylation) secondary to inhibition of VEGFR-2 phosphorylation.  Phenothiazines have also 

been shown to inhibit c-Myc, Wnt, MAPK signalling and lysosomal function, whilst demonstrating 

increased efficacy in cell lines displaying B-raf mutations.  298 299 300 301 Of note, studies have also 

demonstrated the ability of phenothiazines to reverse drug resistance and act as chemosensitisers, 

likely through the inhibition of P-glycoprotein. 295, 302, 303  

 

Whilst the redeployed agents Niclosamide and Valproic acid demonstrated significant efficacy when 

utilised in this study in the context of normoxia, they were also significantly effective in hypoxia 

(unlike Deferasirox). Niclosamide, like Mebendazole, is also used primarily as an anti-helminthic drug 

and belongs to the teniacide family of compounds. Its mechanism of action is through the inhibition 

of oxidative phosphorylation within mitochondria (via uncoupling of the electron transport chain 

from oxidative phosphorylation by increasing the proton permeability of the mitochondrial 

membrane thereby decreasing the proton electrochemical potential). 200 It is known to also inhibit 

anaerobic metabolism. 304 Niclosamide has demonstrated anti-neoplastic effects in a number of 

different cancer cell lines (including colorectal), and, in addition to its effects on cellular oxidative 

phosphorylation, has been postulated to perturb function of Wnt, NFκB, mTOR, Notch and Stat3 

signalling.  304, 305 Its efficacy in hypoxia therefore, is likely to be explained through both the direct 

effect on anaerobic metabolism and the inhibition of Stat3, a known stimulator of the cellular 

response to hypoxia. 306  

 

Valproic acid is used at present for the treatment of epilepsy. It is a HDAC inhibitor and has shown 

promise as an anti-neoplastic agent in a number of pre-clinical cancer models. 307 Of note, the drug 

has been shown to cause cellular accumulation in G1 of the cell cycle as well as decreased cellular 

motility and metastasis. 307 It has also been shown to inhibit the proto-oncogene n-Myc, suppress 
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NFκB signalling and impede angiogenesis. 307 HDACs are involved in chromatin modification, which 

plays a crucial role in the regulation of gene transcription. The addition of charge-neutralizing acetyl 

groups to lysine residues disrupts DNA-histone interaction, resulting in a more open DNA 

conformation and a transcriptionally active state. 307 It is hypothesized that, by this mechanism, 

HDAC inhibitors can achieve de-repression of silenced tumor suppressor genes. 

 

Furthermore, HDAC inhibitors have previously been shown to block the expression of HIF-1α (the 

master regulator of the cellular response to hypoxia). 308 Of note, therefore, in this study it was 

demonstrated that Valproic acid was effective against colorectal cell lines under hypoxic conditions, 

decreasing cellular proliferation by an average of 15.2-28.6% vs. control (p<0.05).  

 

In summary, it has been demonstrated within this chapter that a drug redeployment based 

screening approach does indeed offer the potential to identify targets with potential efficacy against 

both oesophageal and colorectal carcinoma. 

 

Colchicine, Mebendazole and Prochlorperazine demonstrated significant in-vitro effects against the 

oesophageal and colorectal cancer lines tested and (in the cases of Colchicine and Mebendazole) 

also evidence of in-vivo efficacy in a xenograft model of OAC. Both Niclosamide and Valproic acid 

were effective against colorectal adenocarcinoma cell lines under hypoxic conditions, whilst 

Mebendazole and Valproic acid also demonstrated evidence of synergy when cultured with sub-

therapeutic concentrations of Deferasirox against OAC and colorectal adenocarcinoma cell lines 

respectively. 

 

A thorough search of the literature demonstrated that all of the agents identified as potential ‘hits’ 

had plausible primary mechanisms of action conducive to an anti-neoplastic effect and furthermore, 

appeared to have additional effects on pathways common within cancer. 
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Much further work is needed to build on the results highlighted within this chapter. In particular, 

delineation of the top target’s mechanisms of action (particularly in the context of OAC where much 

of these findings are novel) and their potential to synergise with lower doses of Deferasirox is 

certainly worthy of further investigation. In addition, the characterisation of their in-vivo effects 

would begin to pave the way towards future human trials in cancer therapy. 
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Chapter 7. Discussion 

 

7.1 Conclusions 

 

It is now clear that iron is implicated in the propagation of both oesophageal and colorectal 

carcinoma and therefore a strategy to deplete tumour cells of iron by chelation represents an 

attractive and logical therapeutic option. 24, 82, 92, 99, 102 After all, iron is essential for a plethora of 

cellular processes including DNA synthesis, ATP generation and cell cycle progression; all activities 

that are increased in cancer. 112 Furthermore, the increased requirement of malignant cells for iron 

offers the potential that iron chelation may offer a selective therapy, sparing normal cells (and the 

patient) from the deleterious side effects associated with existing chemotherapeutic regimens. 92, 112 

 

Within this thesis it has been demonstrated that the licensed and orally administered iron chelating 

agent Deferasirox possesses significant anti-neoplastic efficacy both in-vitro and in-vivo in the 

context of oesophageal carcinoma. The drug exerted its effects in a time and dose dependent 

manner and was well tolerated when given to mice at a relatively low dose. Furthermore, 

Deferasirox was also capable of inhibiting the growth of oesophageal cells that were resistant to 

conventional therapy with Cisplatin and, through inhibition of the NFκB signalling pathway, showed 

evidence for an anti-neoplastic and chemosensitising mode of action extending beyond that of just 

cellular iron deprivation by chelation alone. This is highly relevant, as tumours are often 

heterogeneous and can develop resistance to mono-modal therapy over time. 

 

In addition to the demonstration of Deferasirox’s efficacy in the oesophagus, the finding that the 

drug is equally efficacious against colorectal adenocarcinoma is highly novel. In addition to a higher 

basal requirement for iron (that is generic across almost all tumours), colorectal adenocarcinomas 

are known to acquire iron during their development. 82, 102, 242 Furthermore, iron has been shown to 
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drive tumour proliferation both in-vitro and in-vivo. 82, 102 Here, it was demonstrated for the first time 

that Deferasirox therapy inhibits the uptake and storage of cellular iron within colorectal 

adenocarcinoma cells leading to cell cycle arrest, significantly reduced rates of proliferation and 

ultimately a reduction in colorectal cellular viability. Of note, the drug appears to be more 

efficacious in adenocarcinoma cell lines than it was in those derived from adenomas and, as in the 

oesophagus, it was capable of suppressing the viability of cells that were otherwise resistant to the 

effects of existing chemotherapeutic reagents. In contrast to previous studies using the iron chelator 

DFO, Deferasirox efficacy was not dependent on cellular p53 status and appeared to actually be 

enhanced by the presence of an APC mutation. 248 In murine models of colorectal tumourigenesis 

following APC loss, Deferasirox administration was again well-tolerated and significantly up-

regulated rates of apoptosis. Unfortunately, this did not translate into an increase in murine survival 

within the current study, although further work is ongoing within the laboratory group to investigate 

this further. 

 

The finding that the IRP-IRE interaction is maintained but inappropriately active within colorectal 

adenocarcinoma is also highly novel. IRP2 over-expression now serves as an explanation for the 

increased iron accumulation seen with malignant colorectal tissue (an increase that is above what is 

merely required to maintain adequate levels of cellular growth). Furthermore, elevated expression 

of IRP2 facilitates not only an increase in total intracellular iron levels (through increased TfR1 

expression) but also an increase in the labile or free intracellular iron pool (by the concomitant 

suppression of ferritin translation). 99, 258 This iron is thus available to drive both cellular proliferation 

and oncogenic signalling pathways, such as Wnt.  102, 132 The demonstration of an association 

between over-activity of the MAPK signalling pathway and increased IRP2 protein expression 

(probably through activation of the proto-oncogene c-Myc) in colorectal adenocarcinoma cells is of 

interest and further adds to the existing body of evidence implicating iron in both the amplification 

of Wnt signalling and the suppression of functioning p53 levels. 102 132 248 The fact that IRP2 
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expression was greatest in locally advanced, proximal colonic lesions and may be associated with 

perturbation of the MAPK signalling cascade (e.g. mutations in constituents such as B-raf) offers the 

potential that it may serve (either directly or indirectly) as a biomarker for Deferasirox efficacy, 

offering the potential for personalised medicine and a reduction in needless side effects. 

 

Finally, it was demonstrated that drug redeployment offers a valid area worthy of further 

investigation for the identification of potential new agents that are effective against both 

oesophageal and colorectal carcinoma. A number of drugs demonstrated significant efficacy within 

the in-vitro and in-vivo models utilised, particularly Colchicine and Mebendazole. Of note, the anti-

helminthic drug Niclosamide and the HDAC inhibitor Valproic acid were also significantly effective 

under hypoxic conditions and, in the case of Valproic acid, demonstrated evidence of synergy when 

administered with sub-therapeutic doses of Deferasirox. This adds further weight to the argument 

that iron chelators may act as chemosensitising agents. 
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7.2 Further Work 

 

7.2.1 Laboratory Studies 

 

In terms of the oesophagus, further in-vitro exploration of the drug’s effects on other pathways 

(such as mTOR) would be beneficial. The conclusive demonstration that Deferasirox’s anti-neoplastic 

efficacy is not restricted to merely iron deprivation through chelation alone and is actually achieved 

through a multi-modal mechanism of action would be extremely interesting and highly relevant to 

any future potential for clinical translation. With this in mind, the analysis of existing stored OE19 

OAC xenograft specimens for markers of Deferasirox’s effect on the NFκB signalling pathway in-vivo 

would be particularly important as it would help to conclusively determine the interaction of the 

drug with it. 

 

In terms of the colon, again in-vitro assessment of Deferasirox’s ability to act through iron 

independent channels would be interesting (particularly on Wnt signalling and downstream targets 

of it such as c-Myc). Determining the effects of Deferasirox upon intra-cellular ROS levels would also 

be relevant. Of greatest importance, however, would be the further exploration and demonstration 

of the drug’s in-vivo efficacy. Although a murine xenograft type model could easily be utilised (as in 

the oesophagus) and is likely to demonstrate a positive result (in the opinion of the author), 

transgenic models of sporadic intestinal tumourigenesis now represent the gold standard for the 

investigation of colorectal cancer development and progression. 102 201 202 As such, future 

experiments should persist with this approach and re-evaluate the drug’s effect on survival in 

models such as the ApcMin/+ mouse. In addition, the drug’s effect on Wnt targets (such as c-Myc) 

could also be evaluated through immunohistochemical and qRT-PCR based approaches.  
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The construction of a stable IRP2 ‘knockdown’ cell line (using shRNA) would permit valuable further 

investigation into the effect of IRP perturbation on colorectal adenocarcinoma cell line phenotype 

(both in-vitro and in-vivo using xenograft models). It would also allow the effect of IRP2 expression 

on Deferasirox efficacy to be formally assessed (something that has not been attempted thus far). 

Furthermore, the successful transfection of the inducible B-raf V600E construct that was created 

during this thesis into a colorectal cell line that had a normal MAPK signalling cascade (i.e. wild type 

K-ras and B-raf) would permit further analysis of the interaction with IRP2. This could then be further 

augmented through the perturbation of c-Myc thus identifying whether it is a c-Myc dependent 

phenomenon.  

 

7.2.2 Clinical Studies 

 

In terms of the oesophagus, the next step would be to design and initiate a clinical trial of 

Deferasirox therapy. The demonstration that patients presenting with oesophageal adenocarcinoma 

(both resectable and advanced) are systemically iron replete is a crucial finding en-route to the 

design of any future trial of Deferasirox in this setting. Preliminary protocols are at present being 

designed for a Phase 1 safety and tolerability study of the drug in palliative patients. If this is 

successful then further more advanced trials could be planned. 

 

In both the oesophagus and the colon, other than the obvious requirement for the demonstration 

that Deferasirox is safe and well-tolerated amongst patients with cancer, the next crucial step would 

be the demonstration of an effect of the drug at the level of the tumour. This could be achieved 

through the obtaining of a pre and post-therapy biopsy (or the surgically resected specimen), almost 

as a window study. Markers of iron metabolism, apoptosis and Wnt targets could be assessed within 

the tumour. Ultimately, if the drug was given after staging but before surgical resection, a 

pathological response to therapy scoring system could also be applied. 309 
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In conclusion, iron metabolism and iron chelation therapy represents an important novel therapeutic 

avenue for the treatment of gastrointestinal cancer that is worthy of ongoing and further 

investigation to improve outcome in this clinically important disease. 
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8. Appendix 

8.1 Full papers published to date relating to this thesis 

 

A comparative study of the iron status of patients with oesophageal adenocarcinoma to determine 

suitability for a clinical trial of iron chelation therapy  

Ford SJ, Bedford M, Pang W, Wood A, Iqbal T, Tselepis C, Tucker O 

Annals of the Royal College of Surgeons of England 2014; 96(4): 275-8 

 

Iron chelators in the treatment of cancer: A new role for Deferasirox? 

Bedford MR, Ford SJ, Horniblow RD, Iqbal TH, Tselepis C 

Journal of Clinical Pharmacology 2013; 53(9): 885-91 

 

Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo  

Ford S, Obeidy P, Lovejoy D, Bedford M, Nichols L, Chadwick C, Tucker O, Lui G, Kalinowski D, 

Jansson P, Iqbal T, Alderson D, Richardson D, Tselepis C 

British Journal of Pharmacology 2013; 168(6): 1316-28 

 

8.2 Abstracts published to date relating to this thesis 

 

Iron chelation as a novel strategy for the treatment of colorectal adenocarcinoma 

Bedford MR, Evans S, Radulescu S, Stavrou V, Iqbal T, Ford SJ, Alderson D, Tselepis C  

British Journal of Surgery 2015; 102(S5): 41 

 

Iron metabolism in colorectal adenocarcinoma: A novel therapeutic target? 

Evans S, Bedford MR, Lal N, Beggs AD, Iqbal T, Tucker O, Tselepis C 

British Journal of Surgery 2015; 102(S5): 39  

 

Drug repurposing in oesophageal adenocarcinoma: New tricks for old dogs? 

Bedford MR, Gill J, Iqbal T, Ford SJ, Alderson D, Khanim F, Tselepis C 

British Journal of Surgery 2014; 101(S4): 18 
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Pre-treatment with the oral chelating agent ICL670A may enhance chemotherapy response in 

oesophageal adenocarcinoma 

Bedford MR, Ford SJ, Tucker O, Iqbal T, Alderson D, Tselepis C 

American Journal of Haematology 2013; 88(5): E182 

 

Iron chelators as chemotherapy adjuncts in oesophageal adenocarcinoma: In-vitro and in-vivo 

effects of Deferasirox  

Bedford MR, Ford SJ, Tucker O, Iqbal T, Alderson D, Tselepis C 

British Journal of Surgery 2013; 100(S2): 13-16. 

 

Iron chelation in the treatment of oesophageal adenocarcinoma – in-vivo action of Deferasirox on a 

xenograft model 

Ford SJ, Bedford MR, Tucker O, Iqbal T, Alderson D, Richardson DR, Tselepis C 

British Journal of Surgery 2013; 100(S2): 13-16. 

 

8.3 Presentations to learned societies to date relating to this thesis 

 

Iron chelation as a novel strategy for the treatment of colorectal adenocarcinoma 

Bedford MR, Evans S, Radulescu S, Stavrou V, Iqbal T, Ford SJ, Alderson D, Tselepis C  

Oral presentation at the Society of Academic and Research Surgery (SARS) annual meeting 

(Durham), January 2015 

 

Iron metabolism in colorectal adenocarcinoma: A novel therapeutic target? 

Evans S, Bedford MR, Lal N, Beggs AD, Iqbal T, Tucker O, Tselepis C 

Oral presentation at the Society of Academic and Research Surgery (SARS) annual meeting 

(Durham), January 2015 (shortlisted for Medical Student prize) 

 

Drug repurposing in oesophageal adenocarcinoma: New tricks for old dogs? 

Bedford MR, Gill J, Iqbal T, Ford SJ, Alderson D, Khanim F, Tselepis C 

Oral presentation at the Society of Academic and Research Surgery (SARS) annual meeting 

(Cambridge), January 2014 
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Pre-treatment with the oral chelating agent ICL670A may enhance chemotherapy response in 

oesophageal adenocarcinoma 

Bedford MR, Ford SJ, Tucker O, Iqbal T, Alderson D, Tselepis C  

Poster presentation at the 5th Congress of the International BioIron Society (IBIS) Biennial World 

Meeting (London), April 2013 

 

Iron chelators as chemotherapy adjuncts in oesophageal adenocarcinoma: In-vitro and in-vivo 

effects of Deferasirox  

Bedford MR, Ford SJ, Tucker O, Iqbal T, Alderson D, Tselepis  

Oral presentation at the Society of Academic and Research Surgery (SARS) annual meeting (London), 

January 2013 

 

Iron chelation in the treatment of oesophageal adenocarcinoma – in-vivo action of Deferasirox on a 

xenograft model 

Ford SJ, Bedford MR, Tucker O, Iqbal T, Alderson D, Richardson DR, Tselepis C 

Oral presentation at the Society of Academic and Research Surgery (SARS) annual meeting (London), 

January 2013 (shortlisted for Patey prize) 

 

Anti-neoplastic effect of iron chelators: In-vivo effects of Deferasirox (ICL670A) in a murine xenograft 

model of oesophageal adenocarcinoma 

Bedford MR, Ford SJ, Chadwick C, Tucker O, Iqbal T, Alderson D, Tselepis C 

Poster presentation at the British Association for Cancer Research / Royal Society of Medicine’s 

‘Development of cancer medicines: Preclinical in vivo models to interrogate cancer biology, 

biomarkers and therapeutic response’ meeting (London), November 2012 

 

Iron chelators as anti-neoplastic and chemosensitising agents in oesophageal adenocarcinoma: In-

vitro and in-vivo effects of Deferasirox 

Bedford MR, Ford SJ, Tucker O, Iqbal T, Alderson D, Tselepis C 

Oral presentation at the Midlands Gastroenterology Society Winter Meeting (Keele), November 

2012 

 

 

 



271 
 

9. References 

                                                           
1
 Tanaka T. Colorectal carcinogenesis: Review of human and experimental studies. J Carcinog 2009; 8: 5. 

 

2
 Cancer Research UK. Worldwide cancer statistics. Available at http://www.cancerresearchuk.org/cancer-

info/cancerstats/world/. First accessed 16 August 2013. 

 

3
 Cancer Research UK. Cancer incidence statistics. Available at http://www.cancerresearchuk.org/cancer-

info/cancerstats/incidence/. First accessed 16 August 2013. 

 

4
 Cancer Research UK. Cancer statistics report. Available at 

http://publications.cancerresearchuk.org/downloads/Product/CS_CS_MORTALITY.pdf. First accessed 16 

August 2013. 

 

5
 Snell RS. Clinical anatomy for medical students (6

th
 edition). Lippincott, Williams and Wilkins 2000; 5: 191-

282.  

 

6
 Ohio State University. Gastrointestinal cancer. Available at 

http://cancer.osu.edu/patientsandvisitors/cancerinfo/cancertypes/gi/Pages/index.aspx. First accessed 19 

August 2013. 

 

7
 Cancer Research UK. Oesophageal cancer statistics. Available at http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/oesophagus/incidence/. First accessed 19 August 2013. 

 
8
 Cancer Research UK. Cancer survival for common cancers. Available at 

http://www.cancerresearchuk.org/cancer-info/cancerstats/survival/common-cancers/#One-. First accessed 21 

August 2014. 

 
9
 Dixon MF. The alimentary system. In: Underwood JCE. General and systemic pathology (4

th
 edition). Churchill 

Livingstone 2004; 15: 359-99. 

 

10
 Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med 2003; 349: 2241-52. 

 

11
 Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics 2002. CA Cancer J Clin 2005; 55: 74-108. 

  

12
 Crepsi M, Bogomoletz VW, Munoz N, Peracchia A, Savary M. Cancer of the oesophagus. Gastroenterol Int 

1994; 7: 24-35. 

 

http://www.cancerresearchuk.org/cancer-info/cancerstats/world/
http://www.cancerresearchuk.org/cancer-info/cancerstats/world/
http://www.cancerresearchuk.org/cancer-info/cancerstats/incidence/
http://www.cancerresearchuk.org/cancer-info/cancerstats/incidence/
http://publications.cancerresearchuk.org/downloads/Product/CS_CS_MORTALITY.pdf
http://cancer.osu.edu/patientsandvisitors/cancerinfo/cancertypes/gi/Pages/index.aspx
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/oesophagus/incidence/
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/oesophagus/incidence/


272 
 

                                                                                                                                                                                     
13

 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics 2009. CA Cancer J Clin 2009; 59: 225-49. 

 

14
 Cancer Research UK. Oesophageal cancer statistics. Available at http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/oesophagus/incidence/. First accessed 19 August 2013. 

 

15
 Yang S, Wu S, Huang Y, Shao Y, Chen XY, Xian L, et al. Screening for oesophageal cancer (review). The 

Cochrane Collaboration 2012; 12. Available at www.thecochranelibrary.com. First accessed 15 August 2013. 

 

16
 Burkitt HG, Quick CRG. Essential surgery (3

rd
 edition). Churchill Livingstone 2002; 15: 227-37. 

 

17
 Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. The Lancet 2013; 381: 400-12. 

 

18
 Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastrooesophageal reflux as a risk factor for 

oesophageal adenocarcinoma. N Engl J Med 1999; 340: 825-31. 

 

19
 Kubo A, Corley DA. Body mass index and adenocarcinomas of the oesophagus or gastric cardia: a systematic 

review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 295: 1549-55. 

 

20
 Fisher BI, Pennathur A, Mutnick JL. Little AG. Obesity correlates with gastroesophageal reflux. Dig Dis Sci 

1999; 44: 2290-4. 

 

21
 Ronkainen J, Aro P, Storskrubb T, Johansson SE, Lind T, Bolling-Sternevald E, et al. Prevalence of Barrett’s 

esophagus in the general population: an endoscopic study. Gastroenterology 2005; 129: 1825-31. 

 

22
 Voutilainen M, Sippronen P, Mecklin JP, Juhola M, Farkkla M. Gastresophageal reflux disease: prevalence, 

clinical, endoscopic and histopathological findings in 1,128 consecutive patients referred for endoscopy due to 

dyspeptic and reflux symptoms. Digestion 2000; 61: 6-13. 

 

23
 Edelstein ZR, Farrow DC, Bronner MP, Rosen SN, Vaughan TL. Central adiposity and risk of Barrett’s 

esophagus. Gastroenterology 2007; 133: 403-11. 

 

24
 Boult J, Roberts K, Brookes MJ, Hughes S, Bury JP, Cross SS, et al. Overexpression of cellular iron import 

proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res 2008; 14: 

379-387. 

 

25
 Solaymani-Dodaran M, Logan RF, West J, Card T, Coupland C. Risk of oesophageal cancer in Barrett’s 

oesophagus and gastro-oesophageal reflux. Gut 2004; 53: 1070-4. 

http://www.cancerresearchuk.org/cancer-info/cancerstats/types/oesophagus/incidence/
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/oesophagus/incidence/
http://www.thecochranelibrary.com/
http://clincancerres.aacrjournals.org/search?author1=Jessica+Boult&sortspec=date&submit=Submit
http://clincancerres.aacrjournals.org/search?author1=Keith+Roberts&sortspec=date&submit=Submit
http://clincancerres.aacrjournals.org/search?author1=Matthew+J.+Brookes&sortspec=date&submit=Submit


273 
 

                                                                                                                                                                                     
26

 Hage M, Siersema PD, van Dekken H, Steyerberg EW, Dees J, Kuipers EJ. Oesophageal cancer incidence and 

mortality in patients with long-segment Barrett’s oesophagus after a mean follow-up of 12.7 years. Scand J 

Gastroenterol 2004; 39: 1175-9. 

 

27
 Pennathur A, Landreneau RJ, Luketich JD. Surgical aspects of the patient with high-grade dysplasia. Semin 

Thorac Cardiovasc Surg 2005; 17: 326-32. 

 

28
 Reid BJ, Weinstein WM, Lewin KJ, Haggitt RC, VanDeventer G, DenBesten L, et al. Endoscopic biopsy can 

detect high-grade dysplasia or early adenocarcinoma in Barrett’s esophagus without grossly neoplastic lesions. 

Gastroenterology 1988; 94: 81-90. 

 

29
 Schnell TG, Sontag SJ, Chejfec G, Aranha G, Metz A, O’Connell S, et al. Long-term nonsurgical management of 

Barrett’s esophagus with high-grade dysplasia. Gastroenterology 2001; 120: 1607-19. 

 

30
 Tselepis C, Morris CD, Wakelin D, Hardy R, Perry I, Luong QT, et al. Upregulation of the oncogene c-myc in 

Barrett’s adenocarcinoma: induction of c-myc by acidified bile acid in vitro. Gut 2003; 52: 174-80. 

 

31
 Watanabe M. Risk factors and molecular mechanisms of esophageal cancer: differences between the 

histologic subtypes. J Cancer Metastasis Treat 2015; 1: 1-7. 

 

32
 Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253: 49‑53. 

 

33
 Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 2004; 3: 1221‑4. 

 
34

 Weaver JM, Ross‑Innes CS, Shannon N, Lynch AG, Forshew T, Barbera M, et al. Ordering of mutations in 

preinvasive disease stages of esophageal carcinogenesis. Nat Genet 2014; 46: 837‑43. 

 

35
 Hechtman JF, Polydorides AD. HER2/neu gene amplification and protein overexpression in gastric and 

gastroesophageal junction adenocarcinoma: A review of histopathology, diagnostic testing, and clinical 

implications. Arch Pathol Lab Med 2012; 136: 691‑7. 

 

36
 Rice TW. Diagnosis and staging of esophageal cancer. In: Pearson FG, Patterson GA. Pearson’s thoracic and 

esophageal surgery (3
rd

 edition). Churchill Livingstone 2008; 454-63. 

 

37
 American Joint Committee on Cancer. AJCC cancer staging handbook (6

th
 edition). Lippincott-Raven 2002; 

91-103. 

 



274 
 

                                                                                                                                                                                     
38

 NCCN clinical practice guidelines in oncology. Oesophageal and oesophagogastric junction cancers. Available 

at http://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf. First accessed 1 September 2013. 

 
39

 Pennathur A, Luketich JD, Landreneau RJ, Ward J, Christian NA, Gibson MK, et al. Long-term results of a 

phase II trial of neoadjuvant chemotherapy followed by esophagectomy for locally advanced esophageal 

neoplasm. Ann Thorac Surg 2008; 85: 1930–6. 

 

40
 Medical Research Council Oesophageal Cancer Working Group. Surgical resection with or without 

preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet 2002; 359: 1727–33. 

 

41
 Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al and the MAGIC 

Trial Participants. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N 

Engl J Med 2006; 355: 11–20. 

 

42
 Le Prise E, Etienne PL, Meunier B, Maddern G, Ben Hassel M, Gedouin D, et al. A randomized study of 

chemotherapy, radiation therapy, and surgery versus surgery for localized squamous cell carcinoma of the 

esophagus. Cancer 1994; 73: 1779–84. 

 

43
 Bosset JF, Gignoux M, Triboulet JP, Tiret E, Mantion G, Elias D, et al. Chemoradiotherapy followed by surgery 

compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med 1997; 337: 161–7. 

 

44
 Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M. Randomized trial of 

preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin 

Oncol 2001; 19: 305–13. 

 

45
 Apinop C, Puttisak P, Preecha N. A prospective study of combined therapy in esophageal cancer. 

Hepatogastroenterology 1994; 41: 391–93. 

 

46
 Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP. A comparison of multimodal therapy 

and surgery for esophageal adenocarcinoma. N Engl J Med 1996; 335: 462–67. 

 

47
 Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, et al. Phase III trial of trimodality therapy 

with cisplatin, fl uorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: 

CALGB 9781. J Clin Oncol 2008; 26: 1086–92. 

 

48
 Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J, and the Australasian Gastro-Intestinal Trials 

Group. Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a 

meta-analysis. Lancet Oncol 2007; 8: 226–34. 

http://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Maddern%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8137201
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ben%20Hassel%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8137201
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gedouin%20D%5BAuthor%5D&cauthor=true&cauthor_uid=8137201
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tiret%20E%5BAuthor%5D&cauthor=true&cauthor_uid=9219702
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mantion%20G%5BAuthor%5D&cauthor=true&cauthor_uid=9219702
http://www.ncbi.nlm.nih.gov/pubmed/?term=Elias%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9219702
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hollis%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18309943
http://www.ncbi.nlm.nih.gov/pubmed/?term=Reed%20CE%5BAuthor%5D&cauthor=true&cauthor_uid=18309943
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goldberg%20R%5BAuthor%5D&cauthor=true&cauthor_uid=18309943


275 
 

                                                                                                                                                                                     
 

49
 Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, et al. Chemoradiotherapy 

after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. 

N Engl J Med 2001; 345: 725–30. 

 

50
 Polednak AP. Trends in survival for both histologic types of esophageal cancer in US surveillance, 

epidemiology and end results areas. Int J Cancer 2003; 105: 98–100. 

 

51
 Homs MY, v d Gaast A, Siersema PD, Steyerberg EW, Kuipers EJ. Chemotherapy for metastatic carcinoma of 

the esophagus and gastro-esophageal junction. Cochrane Database Syst Rev 2006; 4: CD004063. 

 

52
 Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, et al, and the UpperGastrointestinal Clinical 

Studies Group of the National Cancer Research Institute of the United Kingdom. Capecitabine and oxaliplatin 

for advanced esophagogastric cancer. N Engl J Med 2008; 358: 36–46. 

 

53
 Shah MA, Ramanathan RK, Ilson DH, Levnor A, D'Adamo D, O'Reilly E, et al. Multicenter phase II study of 

irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction 

adenocarcinoma. J Clin Oncol 2006; 24: 5201–06. 

 

54
 Waddell T, Chau I, Cunningham D, Gonzalez D, Okines AF, Okines C, et al.  Epirubicin, oxaliplatin, and 

capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric 

cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol. 2013; 14(6): 481-9.  

 
55

 Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with 

chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-

oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010; 376: 

687-97.  

 

56
 Okines AF, Cunningham D. Trastuzumab: a novel standard option for patients with HER-2-positive advanced 

gastric or gastro-oesophageal junction cancer. Therap Adv Gastroenterol. 2012; 5(5): 301-18. 

 

57
 Cancer Research UK. Bowel cancer survival statistics. Available at http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/bowel/survival/. First accessed 21 August 2014. 

 
58

 Cancer Research UK. Bowel cancer incidence statistics. Available at 

http://www.cancerresearchuk.org/cancer-info/cancerstats/types/bowel/incidence/#distribution. First 

accessed 9 September 2014. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Hundahl%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=11547741
http://www.ncbi.nlm.nih.gov/pubmed/?term=Estes%20NC%5BAuthor%5D&cauthor=true&cauthor_uid=11547741
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stemmermann%20GN%5BAuthor%5D&cauthor=true&cauthor_uid=11547741
http://www.ncbi.nlm.nih.gov/pubmed/?term=Iveson%20T%5BAuthor%5D&cauthor=true&cauthor_uid=18172173
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nicolson%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18172173
http://www.ncbi.nlm.nih.gov/pubmed/?term=Coxon%20F%5BAuthor%5D&cauthor=true&cauthor_uid=18172173
http://www.ncbi.nlm.nih.gov/pubmed/?term=Levnor%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17114652
http://www.ncbi.nlm.nih.gov/pubmed/?term=D'Adamo%20D%5BAuthor%5D&cauthor=true&cauthor_uid=17114652
http://www.ncbi.nlm.nih.gov/pubmed/?term=O'Reilly%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17114652
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gonzalez%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23594787
http://www.ncbi.nlm.nih.gov/pubmed/?term=Okines%20AF%5BAuthor%5D&cauthor=true&cauthor_uid=23594787
http://www.ncbi.nlm.nih.gov/pubmed/?term=Okines%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23594787
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20Cutsem%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20728210
http://www.ncbi.nlm.nih.gov/pubmed?term=Feyereislova%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20728210
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chung%20HC%5BAuthor%5D&cauthor=true&cauthor_uid=20728210
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shen%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20728210
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sawaki%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20728210
http://www.ncbi.nlm.nih.gov/pubmed/20728210
http://www.ncbi.nlm.nih.gov/pubmed?term=Okines%20AF%5BAuthor%5D&cauthor=true&cauthor_uid=22973416
http://www.ncbi.nlm.nih.gov/pubmed/22973416


276 
 

                                                                                                                                                                                     
59

 The National Cancer Institute. Genetics of colorectal cancer. Available at 

http://www.cancer.gov/cancertopics/pdq/genetics/colorectal/HealthProfessional/page1. First accessed 9 

September 2014. 

 
60

 Tárraga López PJ, Albero JS, Rodríguez-Montes JA. Primary and secondary prevention of colorectal cancer. 

Clin Med Insights Gastroenterol. 2014; 7: 33-46. 

 
61

 Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E,  et al. Red and processed meat and colorectal 

cancer incidence: meta-analysis of prospective studies. PLoS One. 2011; 6(6): e20456. 

 

62
 Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J Med 2009; 361(25): 2449-60. 

 
63

 Morin PJ, Vogelstein B, Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci U S A. 

1996; 93(15): 7950-4. 

 
64

 Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D.. Genetic prognostic and predictive 

markers in colorectal cancer. Nat Rev Cancer. 2009; 9(7): 489-99. 

 
65

 Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nature Reviews Cancer 

2013; 13: 11-25 

 
66

 Myant K, Sansom OJ. Wnt/Myc interactions in intestinal cancer: Partners in crime. Experimental Cell 

Research 2011; 317: 2725-31. 

 

67
 Narayan S, Roy D. Role of APC and DNA mismatch repair genes in the development of colorectal cancers. 

Mol Cancer 2003; 2: 41. 

 
68

 Baker SJ, Preisinger AC, Jessup JM, Paraskeva C, Markowitz S, Willson JK, et al. Gene mutations occur in 

combination with 17p allelic deletions as late events in colorectal tumourigenesis. Cancer Res 1990; 50: 7717-

22. 

 
69

 Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment 

of cancer. Oncogene 2007; 26: 3291-310. 

 

70
 Chin L. The genetics of malignant melanoma: lessons from mouse and man. Nature Reviews Cancer 2003; 3: 

559-570. 

 

71
 Kearns B, Whyte S, Chilcott J, Patnick J. Guaiac faecal occult blood test performance at initial and repeat 

screens in the English Bowel Cancer Screening Programme. Br J Cancer. 2014 Sep 2. doi: 10.1038/bjc.2014.469. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=T%C3%A1rraga%20L%C3%B3pez%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=25093007
http://www.ncbi.nlm.nih.gov/pubmed?term=Albero%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=25093007
http://www.ncbi.nlm.nih.gov/pubmed?term=Rodr%C3%ADguez-Montes%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=25093007
http://www.ncbi.nlm.nih.gov/pubmed/25093007
http://www.ncbi.nlm.nih.gov/pubmed?term=Chan%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=21674008
http://www.ncbi.nlm.nih.gov/pubmed?term=Lau%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21674008
http://www.ncbi.nlm.nih.gov/pubmed?term=Aune%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21674008
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vieira%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21674008
http://www.ncbi.nlm.nih.gov/pubmed/?term=Greenwood%20DC%5BAuthor%5D&cauthor=true&cauthor_uid=21674008
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kampman%20E%5BAuthor%5D&cauthor=true&cauthor_uid=21674008
http://www.ncbi.nlm.nih.gov/pubmed/21674008
http://www.ncbi.nlm.nih.gov/pubmed/8755583
http://www.ncbi.nlm.nih.gov/pubmed?term=Walther%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed?term=Johnstone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed?term=Swanton%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed/?term=Midgley%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tomlinson%20I%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kerr%20D%5BAuthor%5D&cauthor=true&cauthor_uid=19536109
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nature+Reviews+Cancer+9%2C+489-499
http://www.ncbi.nlm.nih.gov/pubmed/?term=Paraskeva%20C%5BAuthor%5D&cauthor=true&cauthor_uid=2253215
http://www.ncbi.nlm.nih.gov/pubmed/?term=Markowitz%20S%5BAuthor%5D&cauthor=true&cauthor_uid=2253215
http://www.ncbi.nlm.nih.gov/pubmed/?term=Willson%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=2253215
http://www.nature.com/nrc/journal/v3/n8/full/nrc1145.html
http://www.ncbi.nlm.nih.gov/pubmed/25180767
http://www.ncbi.nlm.nih.gov/pubmed/25180767


277 
 

                                                                                                                                                                                     
72

 The National Institute for Health and Clinical Excellence (NICE). Guideline CG131 Colorectal Cancer, 

November 2011. Available at http://guidance.nice.org.uk/CG131/Guidance/pdf/English. First accessed 21 

August 2014. 

 
73

 The National Institute for Health and Care Excellence. Staging colorectal cancer.  Available at 

http://pathways.nice.org.uk/pathways/colorectal-cancer. First accessed 9 September 2014. 

 
74

 Tanis PJ, Buskens CJ, Bemelman WA. Laparoscopy for colorectal cancer. Best Pract Res Clin Gastroenterol. 

2014; 28(1): 29-39.  

 
75

 Sajid MS, Farag S, Leung P, Sains P, Miles WF, Baig MK. Systematic review and meta-analysis of published 

trials comparing the effectiveness of transanal endoscopic microsurgery and radical resection in the 

management of early rectal cancer. Colorectal Dis. 2014; 16(1): 2-14. 

 
76

 Rahbari NN, Elbers H, Askoxylakis V, Motschall E, Bork U, Büchler MW, et al. Neoadjuvant radiotherapy for 

rectal cancer: meta-analysis of randomized controlled trials. Ann Surg Oncol. 2013; 20: 4169–4182. 

 
77

 Foxtrot Collaborative Group. Feasibility of preoperative chemotherapy for locally advanced, operable colon 

cancer: the pilot phase of a randomised controlled trial. Lancet Oncol. 2012; 13(11): 1152-60.  

 
78

 Brezden-Masley C, Polenz C. Current practices and challenges of adjuvant chemotherapy in patients with 

colorectal cancer. Surg Oncol Clin N Am. 2014; 23(1): 49-58. 

 
79

  Ciombor KK, Berlin J. Targeting metastatic colorectal cancer – present and emerging treatment options. 

Pharmgenomics Pers Med. 2014; 7: 137–144. 

 
80

 Kalinowski DS, Richardson DR. The Evolution of Iron Chelators for the Treatment of Iron Overload Disease 

and Cancer. Pharmacological Reviews 2005; 57: 547-83. 

 

81
 Miret S, Simpson RJ, and McKie AT. Physiology and molecular biology of dietary iron absorption. Annu Rev 

Nutr 23: 283-301, 2003. 

 

82
 Brookes MJ, Hughes S, Turner FE, Reynolds G, Sharma N, Ismail T, et al. Modulation of iron transport 

proteins in human colorectal carcinogenesis. Gut 2006; 55(10): 1449-60. 

 

83
 McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, et al. An iron-regulated ferric reductase 

associated with the absorption of dietary iron. Science 2001; 291: 1755–9. 

 

84
 Gruenheid S, Cellier M. Vidal S, Gros P. Identification and characterization of a second mouse Nramp gene. 

Genomics 1995; 25: 514–25. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Tanis%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=24485253
http://www.ncbi.nlm.nih.gov/pubmed?term=Buskens%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=24485253
http://www.ncbi.nlm.nih.gov/pubmed?term=Bemelman%20WA%5BAuthor%5D&cauthor=true&cauthor_uid=24485253
http://www.ncbi.nlm.nih.gov/pubmed/24485253
http://www.ncbi.nlm.nih.gov/pubmed?term=Sajid%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=24330432
http://www.ncbi.nlm.nih.gov/pubmed?term=Farag%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24330432
http://www.ncbi.nlm.nih.gov/pubmed?term=Leung%20P%5BAuthor%5D&cauthor=true&cauthor_uid=24330432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sains%20P%5BAuthor%5D&cauthor=true&cauthor_uid=24330432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miles%20WF%5BAuthor%5D&cauthor=true&cauthor_uid=24330432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baig%20MK%5BAuthor%5D&cauthor=true&cauthor_uid=24330432
http://www.ncbi.nlm.nih.gov/pubmed/24330432
http://www.ncbi.nlm.nih.gov/pubmed/?term=Motschall%20E%5BAuthor%5D&cauthor=true&cauthor_uid=24002536
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bork%20U%5BAuthor%5D&cauthor=true&cauthor_uid=24002536
http://www.ncbi.nlm.nih.gov/pubmed/?term=B%C3%BCchler%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=24002536
http://www.ncbi.nlm.nih.gov/pubmed?term=Foxtrot%20Collaborative%20Group%5BAuthor%5D&cauthor=true&cauthor_uid=23017669
http://www.ncbi.nlm.nih.gov/pubmed/23017669
http://www.ncbi.nlm.nih.gov/pubmed/23017669
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed?term=Brezden-Masley%20C%5BAuthor%5D&cauthor=true&cauthor_uid=24267165
http://www.ncbi.nlm.nih.gov/pubmed?term=Polenz%20C%5BAuthor%5D&cauthor=true&cauthor_uid=24267165
http://www.ncbi.nlm.nih.gov/pubmed/24267165
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ciombor%20KK%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Reynolds%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16641131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sharma%20N%5BAuthor%5D&cauthor=true&cauthor_uid=16641131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ismail%20T%5BAuthor%5D&cauthor=true&cauthor_uid=16641131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rolfs%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11230685
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sager%20G%5BAuthor%5D&cauthor=true&cauthor_uid=11230685
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mudaly%20E%5BAuthor%5D&cauthor=true&cauthor_uid=11230685


278 
 

                                                                                                                                                                                     
 

85
 Gunshin H, Mackenzie B, Berger U, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of 

a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482–8. 

 

86
 Torti SV, Kwak EL, Miller SC, Miller LL, Ringold GM, Myambo KB, et al. The molecular cloning and 

characterization of murine ferritin heavy chain, a tumor necrosis factor-inducible gene. J Biol Chem 1988; 263: 

12638–44. 

 

87
 Frazer DM, Vulpe CD, McKie AT, Wilkins SJ, Trinder D, Cleghorn GJ, et al. Cloning and gastrointestinal 

expression of rat hephaestin: relationship to other iron transport proteins. Am J Physiol Gastrointest Liver 

Physiol 2001; 281: G931–9. 

 

88
 Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, et al. Hephaestin, a ceruloplasmin homologue 

implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 1999; 21: 195–9. 

 

89
 McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, et al. A novel duodenal iron-regulated 

transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000; 5: 299–309. 

 

90
 Aisen P. Transferrin receptor 1. Int J Biochem Cell Biol 2004; 36: 2137–43. 

 

91
 Rizvi S, Robert E Schoen RE. Supplementation with oral vs. intravenous iron for anaemia with IBD or 

gastrointestinal bleeding: Is oral Iron getting a bad rap? The American Journal of Gastroenterology 2011; 106: 

1872-1879. 

 
92

 Merlot AM, Kalinowski DS, Richardson DR. Novel chelators for cancer treatment: Where are we now? 

Antioxid Redox Signal. 2013; 18(8): 973-1006. 

 

93
 Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an 

intestinal heme transporter. Cell 2005; 122: 789-801. 

 

94
 Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, et al. Identification of an intestinal folate 

transporter and the molecular basis for hereditary folate malabsorption. Cell 127: 917-928, 2006. 

 

95
 Raffin SB, Woo CH, Roost KT, Price DC, Schmid R. Intestinal absorption of hemoglobin iron-heme cleavage by 

mucosal heme oxygenase. J Clin Invest 1974; 54: 1344-1352. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Gunshin%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=9242408
http://www.ncbi.nlm.nih.gov/pubmed/?term=Romero%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=9242408
http://www.ncbi.nlm.nih.gov/pubmed/?term=Boron%20WF%5BAuthor%5D&cauthor=true&cauthor_uid=9242408
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20LL%5BAuthor%5D&cauthor=true&cauthor_uid=3410854
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ringold%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=3410854
http://www.ncbi.nlm.nih.gov/pubmed/?term=Myambo%20KB%5BAuthor%5D&cauthor=true&cauthor_uid=3410854
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wilkins%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=11557513
http://www.ncbi.nlm.nih.gov/pubmed/?term=Trinder%20D%5BAuthor%5D&cauthor=true&cauthor_uid=11557513
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cleghorn%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=11557513
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cowley%20L%5BAuthor%5D&cauthor=true&cauthor_uid=9988272
http://www.ncbi.nlm.nih.gov/pubmed/?term=Askwith%20C%5BAuthor%5D&cauthor=true&cauthor_uid=9988272
http://www.ncbi.nlm.nih.gov/pubmed/?term=Libina%20N%5BAuthor%5D&cauthor=true&cauthor_uid=9988272
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brennan%20K%5BAuthor%5D&cauthor=true&cauthor_uid=10882071
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wehr%20K%5BAuthor%5D&cauthor=true&cauthor_uid=10882071
http://www.ncbi.nlm.nih.gov/pubmed/?term=Barrow%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10882071


279 
 

                                                                                                                                                                                     
96

 De Domenico I, McVey Ward D, Kaplan J. Regulation of iron acquisition and storage: consequences for iron-

linked disorders. Nat Rev Mol Cell Biol 9: 72-81, 2008. 

 

97
 Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits 

operated by iron, nitric oxide and oxidative stress. Proc Natl Acad Sci USA 1996; 93: 8175-82. 

 

98
 Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron 

metabolism. Cell 2004; 117: 285-97. 

 

99
 Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013; 13(5): 342-55. 

  

100
 Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J 

Biol Chem 2001; 276: 7806-7810. 

 

101
 Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron 

efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-93. 

 

102
 Radulescu S, Brookes MJ, Salgueiro P, Ridgway RA, McGhee E, Anderson K, et al. Luminal iron levels govern 

intestinal tumorigenesis after Apc loss in vivo. Cell Reports 2012; 2: 270-82. 

 

103
 Cavill I, Auerbach M, Bailie GR, Barrett-Lee P, Beguin Y, Kaltwasser P, et al. Iron and the anaemia of chronic 

disease: a review and strategic recommendations. Curr Med Res Opin 2006; 22: 731-7. 

 

104
 Kortman GA, Boleij A, Swinkels DW, Tjalsma H. Iron availability increases the pathogenic potential of 

Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS One 2012; 

7(1): e29968. 

 

105
 Flaten TP,  Aaseth  J, Andersen O, Kontoghiorghes G J. Iron mobilization using chelation and phlebotomy. J 

Trace Elem Med Biol 2012; 26(2-3): 127-30.  

 

106
 Olivieri NF, Brittenham GM. Iron-chelating therapy and the treatment of thalassemia. Blood 1997; 89: 739–

761. 

 

107
 Schrier SL, Centis F, Verneris M, Ma L, Angelucci E.  The role of oxidant injury in the pathophysiology of 

human thalassemias. Redox Rep 2003; 8:241–245. 

 

http://www.ncbi.nlm.nih.gov/pubmed/23594855
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ridgway%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=22884366
http://www.ncbi.nlm.nih.gov/pubmed/?term=McGhee%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22884366
http://www.ncbi.nlm.nih.gov/pubmed/?term=Anderson%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22884366
http://www.ncbi.nlm.nih.gov/pubmed/?term=Barrett-Lee%20P%5BAuthor%5D&cauthor=true&cauthor_uid=16684434
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beguin%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=16684434
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kaltwasser%20P%5BAuthor%5D&cauthor=true&cauthor_uid=16684434


280 
 

                                                                                                                                                                                     
108

 Corti MC, Gaziano M, Hennekens  C H.  Iron status and risk of cardiovascular disease. Ann Epidemiol 1997; 

7: 62-8. 

 

109
 Fernandez-Real JM, Ricart-Engel W, Arroyo E, Balançá R, Casamitjana-Abella R, Cabrero D, et al. Serum 

ferritin as a component of the insulin resistance syndrome. Diabetes Care 1998; 21: 62-8. 

 

110
 Bush AI. The metallobiology of Alzheimer's disease. Trends Neurosci 2003; 26: 207-14. 

 

111
 Huang, X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic 

metal. Mutat Res 2003; 533: 153-71. 

112
 Kwok JC, Richardson DR. The iron metabolism of neoplastic cells: alterations that facilitate proliferation? 

Crit Rev.Oncol.Hematol. 2002; 42: 65-78. 

 

113
 Andrews NC. Forging a field: the golden age of iron biology. Blood 2008; 9: 72-81.  

 

114
 Stevens RG, Graubard BI, Micozzi MS, Neriishi, Blumberg BS. Moderate elevation of body iron level and 

increased risk of cancer occurrence and death. Int. J. Cancer 1994; 56: 364–369. 

 

115
 Stevens RG, Jones DY, Micozzi MS, Taylor PR. Body iron stores and the risk of cancer. New Engl. J. Med. 

1998; 319: 1047–1052. 

 

116
 Nelson RL, Davis FG, Persky V, Becker E. Risk of neoplastic and other diseases among people with 

heterozygosity for hereditary hemochromatosis. Cancer 1995; 76: 875–879. 

 

117
 Shaheen NJ, Silverman LM, Keku T, Lawrence LB, Rohlfs EM, Martin CF, et al. Association between 

hemochromatosis (HFE) gene mutation carrier status and the risk of colon cancer. J. Natl. Cancer Inst. 2003; 

95: 154–159. 

 

118
 Bradbear RA, Bain C, Siskind V, Schofield FD, Webb S, Axelsen EM,  et al. Cohort study of internal 

malignancy in genetic hemochromatosis and other chronic nonalcoholic liver diseases. J. Natl Cancer Inst. 

1985; 75: 81–84. 

 

119
 Hsing AW, McLaughlin JK, Olsen JH, Mellemkjar L, Wacholder S, Fraumeni JF Jr.Cancer risk following primary 

hemochromatosis: a population-based cohort study in Denmark. Int. J. Cancer 1995; 60: 160–162. 

 

120
 Osborne NJ, Gurrin LC, Allen KJ, Constantine CC, Delatycki MB, McLaren CE, et al. HFE C282Y homozygotes 

are at increased risk of breast and colorectal cancer. Hepatology  2010; 51: 1311–1318. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Balan%C3%A7%C3%A1%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9580307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Casamitjana-Abella%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9580307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cabrero%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9580307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lawrence%20LB%5BAuthor%5D&cauthor=true&cauthor_uid=12529348
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rohlfs%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=12529348
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20CF%5BAuthor%5D&cauthor=true&cauthor_uid=12529348
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bain%20C%5BAuthor%5D&cauthor=true&cauthor_uid=2989605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Siskind%20V%5BAuthor%5D&cauthor=true&cauthor_uid=2989605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schofield%20FD%5BAuthor%5D&cauthor=true&cauthor_uid=2989605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Webb%20S%5BAuthor%5D&cauthor=true&cauthor_uid=2989605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Axelsen%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=2989605
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hsing%20AW%5BAuthor%5D&cauthor=true&cauthor_uid=7829208
http://www.ncbi.nlm.nih.gov/pubmed/?term=McLaughlin%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=7829208
http://www.ncbi.nlm.nih.gov/pubmed/?term=Olsen%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=7829208
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mellemkjar%20L%5BAuthor%5D&cauthor=true&cauthor_uid=7829208
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wacholder%20S%5BAuthor%5D&cauthor=true&cauthor_uid=7829208
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fraumeni%20JF%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=7829208
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gurrin%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=20099304
http://www.ncbi.nlm.nih.gov/pubmed/?term=Allen%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=20099304
http://www.ncbi.nlm.nih.gov/pubmed/?term=Constantine%20CC%5BAuthor%5D&cauthor=true&cauthor_uid=20099304
http://www.ncbi.nlm.nih.gov/pubmed/?term=Delatycki%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=20099304
http://www.ncbi.nlm.nih.gov/pubmed/?term=McLaren%20CE%5BAuthor%5D&cauthor=true&cauthor_uid=20099304


281 
 

                                                                                                                                                                                     
 

121
 Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA, Dalman RL, et al. Decreased cancer risk after iron 

reduction in patients with peripheral arterial disease: results from a randomized trial. J. Natl. Cancer Inst. 

2008; 100: 996–1002.  

 

122
 Edgren G, Reilly M, Hjalgrim H, Tran TN, Rostgaard K, Adami J, et al. Donation frequency, iron loss, and risk 

of cancer among blood donors. J. Natl. Cancer Inst. 2008; 100:  572–579. 

 

123
 Nelson RL. Iron and colorectal cancer risk: human studies. Nutr. Rev. 2001; 59: 140–148. 

 

124
 Ward MH, Cross AJ, Abnet CC, Sinha R, Markin RS, Weisenburger DD. Heme iron from meat and risk of 

adenocarcinoma of the esophagus and stomach. Eur J Cancer Prev. 2012; 21(2): 134-8.  

 

125
 Pinnix ZK, Miller LD, Wang W, D'Agostino R Jr, Kute T, Willingham MC, et al. Ferroportin and iron regulation 

in breast cancer progression and prognosis. Sci Transl Med. 2010; 2(43): 43ra56. 

 

126
 Han HS, Lee SY, Seong MK, Kim JH, Sung IK, Park HS, et al. Presence of iron in colorectal adenomas and 

adenocarcinomas. Gut Liver. 2008; 2(1): 19-22. 

 
127

 Siegers CP, Bumann D, Trepkau HD, Schadwinkel B, Baretton G. Influence of dietary iron overload on cell 

proliferation and intestinal tumorigenesis in mice. Cancer Lett 1992; 65: 245-9. 

 

128
 Kim JH, Hue JJ, Kang BS. Effects of selenium on colon carcinogenesis induced by azoxymethane and dextran 

sodium sulfate in mouse model with high-iron diet. Lab Anim Res 2011; 27: 9-18. 

 

129
 Chen X, Yang G, Ding WY, Bondoc F, Curtis SK, Yang CS. An esophagogastroduodenal anastomosis model for 

esophageal adenocarcinogenesis in rats and enhancement by iron overload. Carcinogenesis. 1999; 20: 1801-8. 

 

130
 Xue X, Taylor M, Anderson E, Hao C, Qu A, Greenson JK, et al. Hypoxia-inducible factor-2α activation 

promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 2012; 72(9): 2285-93. 

 
131

 Torti SV, Torti FM. Ironing out cancer. Cancer Res  2011: 71; 1511-1514. 

 

132
 Brookes MJ, Boult J, Roberts K, Cooper BT, Hotchin NA, Matthews G, et al. A role for iron in Wnt signalling. 

Oncogene 2008; 27(7): 966-75. 

 
133

 O'Donnell KA, Yu D, Zeller KI, Kim JW, Racke F, Thomas-Tikhonenko A, et al. Activation of transferrin 

receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol. 2006; 26(6): 2373-86. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Shamayeva%20G%5BAuthor%5D&cauthor=true&cauthor_uid=18612130
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baron%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=18612130
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dalman%20RL%5BAuthor%5D&cauthor=true&cauthor_uid=18612130
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tran%20TN%5BAuthor%5D&cauthor=true&cauthor_uid=18398098
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rostgaard%20K%5BAuthor%5D&cauthor=true&cauthor_uid=18398098
http://www.ncbi.nlm.nih.gov/pubmed/?term=Adami%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18398098
http://www.ncbi.nlm.nih.gov/pubmed/22044848
http://www.ncbi.nlm.nih.gov/pubmed/22044848
http://www.ncbi.nlm.nih.gov/pubmed?term=Pinnix%20ZK%5BAuthor%5D&cauthor=true&cauthor_uid=20686179
http://www.ncbi.nlm.nih.gov/pubmed?term=Miller%20LD%5BAuthor%5D&cauthor=true&cauthor_uid=20686179
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20W%5BAuthor%5D&cauthor=true&cauthor_uid=20686179
http://www.ncbi.nlm.nih.gov/pubmed/?term=D'Agostino%20R%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=20686179
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kute%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20686179
http://www.ncbi.nlm.nih.gov/pubmed/?term=Willingham%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=20686179
http://www.ncbi.nlm.nih.gov/pubmed/20686179
http://www.ncbi.nlm.nih.gov/pubmed?term=Han%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20SY%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed?term=Seong%20MK%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sung%20IK%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed/?term=Park%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed/20485606
http://www.ncbi.nlm.nih.gov/pubmed?term=Chen%20X%5BAuthor%5D&cauthor=true&cauthor_uid=10469627
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20G%5BAuthor%5D&cauthor=true&cauthor_uid=10469627
http://www.ncbi.nlm.nih.gov/pubmed?term=Ding%20WY%5BAuthor%5D&cauthor=true&cauthor_uid=10469627
http://www.ncbi.nlm.nih.gov/pubmed?term=Bondoc%20F%5BAuthor%5D&cauthor=true&cauthor_uid=10469627
http://www.ncbi.nlm.nih.gov/pubmed?term=Curtis%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=10469627
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20CS%5BAuthor%5D&cauthor=true&cauthor_uid=10469627
http://www.ncbi.nlm.nih.gov/pubmed?term=chen%20carcinogenesis%201999%20iron
http://www.ncbi.nlm.nih.gov/pubmed?term=Xue%20X%5BAuthor%5D&cauthor=true&cauthor_uid=22419665
http://www.ncbi.nlm.nih.gov/pubmed?term=Taylor%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22419665
http://www.ncbi.nlm.nih.gov/pubmed?term=Anderson%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22419665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hao%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22419665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Qu%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22419665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Greenson%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=22419665
http://www.ncbi.nlm.nih.gov/pubmed/22419665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cooper%20BT%5BAuthor%5D&cauthor=true&cauthor_uid=17700530
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hotchin%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=17700530
http://www.ncbi.nlm.nih.gov/pubmed/?term=Matthews%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17700530
http://www.ncbi.nlm.nih.gov/pubmed?term=O'Donnell%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=16508012
http://www.ncbi.nlm.nih.gov/pubmed?term=Yu%20D%5BAuthor%5D&cauthor=true&cauthor_uid=16508012
http://www.ncbi.nlm.nih.gov/pubmed?term=Zeller%20KI%5BAuthor%5D&cauthor=true&cauthor_uid=16508012
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=16508012
http://www.ncbi.nlm.nih.gov/pubmed/?term=Racke%20F%5BAuthor%5D&cauthor=true&cauthor_uid=16508012
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thomas-Tikhonenko%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16508012
http://www.ncbi.nlm.nih.gov/pubmed/16508012


282 
 

                                                                                                                                                                                     
 
134

 Cheng Z, Dai LL, Song YN, Kang Y, Si JM, Xia J, et al. Regulatory effect of iron regulatory protein-2 on iron 

metabolism in lung cancer. Genet Mol Res. 2014; 13(3):5514-22.  

 
135

 Wang W, Deng Z, Hatcher H. IRP2 regulates breast tumor growth. Cancer Res. 2014; 74(2): 497-507.  

 
136

 Maffettone C, Chen G, Drozdov I, Ouzounis C, Pantopoulos K..Tumorigenic properties of iron regulatory 

protein 2 (IRP2) mediated by its specific 73-amino acids insert. PLoS One. 2010; 5(4): e10163. 

 
137

 Shpyleva SI, Tryndyak VP, Kovalchuk O, Starlard-Davenport A, Chekhun VF, Beland FA, et al. Role of ferritin 

alterations in human breast cancer cells. Breast Cancer Res Treat. 2011; 126(1): 63-71. 

 
138

 Chekhun VF, Lukyanova NY, Burlaka CA, Bezdenezhnykh NA, Shpyleva SI, Tryndyak VP, et al. Iron 

metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and 

cisplatin. Int J Oncol. 2013; 43(5): 1481-6. 

 
139

 Whitnall M, Howard J, Ponka P, Richardson DR. A Class of iron chelators with a wide spectrum of potent 

antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci U S A 2006; 103: 

14901–14906. 

 

140
 Chen Z, Zhang D, Yue F, Zheng M, Kovacevic Z, Richardson DR.  The iron chelators Dp44mT and DFO inhibit 

TGF-β-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 

(NDRG1).J Biol Chem 2012; 17016-28. 

 

141
 Kalinowski DS, Yu Y, Sharpe PC, Islam M, Liao YT, Lovejoy DB, et al. Design, synthesis, and characterization 

of novel iron chelators: structure-activity relationships of the 2-benzoylpyridine thiosemicarbazone series and 

their 3-nitrobenzoyl analogues as potent antitumor agents. J Med Chem 2007; 50: 3716-29. 

 

142
 Yu Y, Suryo Rahmanto Y, Richardson DR. Bp44mT: an orally active iron chelator of the thiosemicarbazone 

class with potent anti-tumour efficacy.Br J Pharmacol 2012; 165: 148-66. 

 

143
 Becton DL, Bryles P. Deferoxamine inhibition of human neuroblastoma viability and proliferation. Cancer 

Res. 1988; 48: 7189-92. 

 

144
 Simonart T, Boelaert JR, Mosselmans R, Andrei G, Noel JC, De Clercq E, et al. Antiproliferative and apoptotic 

effects of iron chelators on human cervical carcinoma cells. Gynecol Oncol 2002; 85: 95-102. 

 

145
 Brard L, Granai CO, Swamy N. Iron chelators deferoxamine and diethylenetriamine pentaacetic acid induce 

apoptosis in ovarian carcinoma. Gynecol Oncol 2006; 100: 116-127. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Cheng%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=25117307
http://www.ncbi.nlm.nih.gov/pubmed?term=Dai%20LL%5BAuthor%5D&cauthor=true&cauthor_uid=25117307
http://www.ncbi.nlm.nih.gov/pubmed?term=Song%20YN%5BAuthor%5D&cauthor=true&cauthor_uid=25117307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=25117307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Si%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=25117307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xia%20J%5BAuthor%5D&cauthor=true&cauthor_uid=25117307
http://www.ncbi.nlm.nih.gov/pubmed/25117307
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20W%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed?term=Deng%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed?term=Hatcher%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed/?term=irp2+breast
http://www.ncbi.nlm.nih.gov/pubmed?term=Maffettone%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed?term=Chen%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed?term=Drozdov%20I%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ouzounis%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pantopoulos%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed/20405006
http://www.ncbi.nlm.nih.gov/pubmed?term=Shpyleva%20SI%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed?term=Tryndyak%20VP%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed?term=Kovalchuk%20O%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed/?term=Starlard-Davenport%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chekhun%20VF%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beland%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed/20390345
http://www.ncbi.nlm.nih.gov/pubmed?term=Chekhun%20VF%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed?term=Lukyanova%20NY%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed?term=Burlaka%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bezdenezhnykh%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shpyleva%20SI%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tryndyak%20VP%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed/23969999
http://www.ncbi.nlm.nih.gov/pubmed/?term=Islam%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17602603
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liao%20YT%5BAuthor%5D&cauthor=true&cauthor_uid=17602603
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lovejoy%20DB%5BAuthor%5D&cauthor=true&cauthor_uid=17602603
http://www.ncbi.nlm.nih.gov/pubmed?term=Bryles%20P%5BAuthor%5D&cauthor=true&cauthor_uid=3191493
http://www.ncbi.nlm.nih.gov/pubmed/3191493
http://www.ncbi.nlm.nih.gov/pubmed/3191493
http://www.ncbi.nlm.nih.gov/pubmed/?term=Andrei%20G%5BAuthor%5D&cauthor=true&cauthor_uid=11925126
http://www.ncbi.nlm.nih.gov/pubmed/?term=Noel%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=11925126
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Clercq%20E%5BAuthor%5D&cauthor=true&cauthor_uid=11925126


283 
 

                                                                                                                                                                                     
 

146
 Becton DL, Roberts B. Antileukemic effects of deferoxamine on human myeloid leukemia cell lines. Cancer 

Res 1989; 49: 4809-4812. 

 

147
 Yamasaki T, Terai S, Sakaida I. Deferoxamine for advanced hepatocellular carcinoma. N Engl J Med 2011; 

365: 576-578. 

 

148
 Blatt J, Taylor SR, Kontoghiorghes GJ. Comparison of activity of deferoxamine with that of oral iron 

chelators against human neuroblastoma cell lines. Cancer Res 1989; 49: 2925-7. 

 

149
 Chenoufi N,  Drenou B, Loreal O, Pigeon C, Brissot P, Lescoat G. Antiproliferative effect of deferiprone on 

the Hep G2 cell line. Biochem Pharmacol 1998; 56: 431-7. 

 

150
 Yasumoto E, Nakano K, Nakayachi T, Morshed SR, Hashimoto K, Kikuchi H,  et al. Cytotoxic activity of 

deferiprone, maltol and related hydroxyketones against human tumor cell lines. Anticancer Res 2004; 24: 755-

62. 

 

151
 Selig RA, White L, Gramacho C, Sterling-Levis K, Fraser IW, Naidoo D. Failure of iron chelators to reduce 

tumor growth in human neuroblastoma xenografts. Cancer Res 1998; 58: 473-8. 

 

152
 Simonart T, Boelaert JR, Andrei, G, Clercq ED, Snoeck R. Iron withdrawal strategies fail to prevent the 

growth of SiHa-induced tumors in mice. Gynecol Oncol 2003; 90: 91-5. 

 

153
 Veci A, Baiardi P, Felisi M, Cappellini MD, Carnelli V, De Sanctis V,  et al. The safety and effectiveness of 

deferiprone in a large-scale, 3-year study in Italian patients. Br J Haematol 2002; 118: 330-6. 

 

154
 Cappellini MD. Exjade(R) (deferasirox, ICL670) in the treatment of chronic iron overload associated with 

blood transfusion. Ther Clin Risk Manag 2007; 3: 291-9. 

 

155
 Galanello R, Piga A, Cappellini MD, Forni GL, Zappu A, Origa R, et al. Effect of food, type of food, and time of 

food intake on deferasirox bioavailability: recommendations for an optimal deferasirox administration 

regimen. J Clin Pharmacol 2008; 48: 428-35. 

 

156
 Nick H, Ackmann P, Lattmann R, Buehlmayer P, Hauffe S, Schupp J, et al. Development of tridentate iron 

chelators: from desferrithiocin to ICL670. Curr Med Chem 2003; 10: 1065-76. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Morshed%20SR%5BAuthor%5D&cauthor=true&cauthor_uid=15161023
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hashimoto%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15161023
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kikuchi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=15161023
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cappellini%20MD%5BAuthor%5D&cauthor=true&cauthor_uid=12100170
http://www.ncbi.nlm.nih.gov/pubmed/?term=Carnelli%20V%5BAuthor%5D&cauthor=true&cauthor_uid=12100170
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Sanctis%20V%5BAuthor%5D&cauthor=true&cauthor_uid=12100170
http://www.ncbi.nlm.nih.gov/pubmed/?term=Forni%20GL%5BAuthor%5D&cauthor=true&cauthor_uid=18281442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zappu%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18281442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Origa%20R%5BAuthor%5D&cauthor=true&cauthor_uid=18281442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Buehlmayer%20P%5BAuthor%5D&cauthor=true&cauthor_uid=12678677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hauffe%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12678677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schupp%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12678677


284 
 

                                                                                                                                                                                     
157

 Nick H, Wong A, Acklin P, Faller B, Jin Y, Lattmann R, et al. ICL670A: preclinical profile. Adv Exp Med Biol 

2002; 509: 185-203. 

 

158
 Galanello R, Piga A, Alberti P, Rouan MC, Bigler H, Séchaud R. et al. Safety, tolerability, and 

pharmacokinetics of ICL670, a new orally active iron-chelating agent in patients with transfusion-dependent 

iron overload due to beta-thalassemia. J Clin Pharmacol 2003; 43: 565-72. 

 

159
 Nisbet-Brown E, Olivieri NF, Giardina PJ, Grady RW, Neufeld EJ, Séchaud R, et al. Effectiveness and safety of 

ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-

escalation trial. Lancet 2003; 361: 1597-602. 

160
 Piga A, Galanello R, Forni G, Cappellini MD, Origa R, Zappu A, et al. Randomized phase II trial of deferasirox 

(Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to deferoxamine in thalassemia 

patients with transfusional iron overload. Haematologica 2006; 91: 873-80. 

 

161
 Cappellini MD, Cohen A, Piga A, Bejaoui M, Perrotta S, Agaoglu L, et al. A phase 3 study of deferasirox 

(ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood 2006; 107: 3455-62. 

 

162
 List AF, Baer MR, Steensma DP, Raza A, Esposito J, Martinez-Lopez N,  et al. Deferasirox Reduces Serum 

Ferritin and Labile Plasma Iron in RBC Transfusion-Dependent Patients With Myelodysplastic Syndrome. J Clin 

Oncol. 2012; 30(17): 2134-9. 

 

163
 Galanello R, Piga A, Forni G, Bertrand Y, Foschini ML, Bordone E,  et al. Phase II clinical evaluation of 

deferasirox, a once-daily oral chelating agent, in pediatric patients with beta-thalassemia major. 

Haematologica 2006; 91: 1343-51. 

 

164
 Gattermann N, Finelli C, Porta MD, Fenaux P, Ganser A, Guerci-Bresler A,  et al. Deferasirox in iron-

overloaded patients with transfusion-dependent myelodysplastic syndromes: Results from the large 1-year 

EPIC study. Leuk Res 2010; 34: 1143-50. 

 

165
 Gattermann N, Jarisch  A, Schlag R, Blumenstengel K, Goebeler M, Groschek M, et al. Deferasirox treatment 

of iron-overloaded chelation-naïve and prechelated patients with myelodysplastic syndromes in medical 

practice: results from the observational studies eXtend and eXjange. Eur J Haematol 2012; 88: 260-8. 

 

166
 Breccia M, Alimena G. Efficacy and safety of deferasirox in myelodysplastic syndromes. Ann Hematol 2013. 

Epub ahead of print. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Faller%20B%5BAuthor%5D&cauthor=true&cauthor_uid=12572995
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jin%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=12572995
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lattmann%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12572995
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rouan%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=12817519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bigler%20H%5BAuthor%5D&cauthor=true&cauthor_uid=12817519
http://www.ncbi.nlm.nih.gov/pubmed/?term=S%C3%A9chaud%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12817519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Grady%20RW%5BAuthor%5D&cauthor=true&cauthor_uid=12747879
http://www.ncbi.nlm.nih.gov/pubmed/?term=Neufeld%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=12747879
http://www.ncbi.nlm.nih.gov/pubmed/?term=S%C3%A9chaud%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12747879
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cappellini%20MD%5BAuthor%5D&cauthor=true&cauthor_uid=16818273
http://www.ncbi.nlm.nih.gov/pubmed/?term=Origa%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16818273
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zappu%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16818273
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bejaoui%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16352812
http://www.ncbi.nlm.nih.gov/pubmed/?term=Perrotta%20S%5BAuthor%5D&cauthor=true&cauthor_uid=16352812
http://www.ncbi.nlm.nih.gov/pubmed/?term=Agaoglu%20L%5BAuthor%5D&cauthor=true&cauthor_uid=16352812
http://www.ncbi.nlm.nih.gov/pubmed/?term=Raza%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22547607
http://www.ncbi.nlm.nih.gov/pubmed/?term=Esposito%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22547607
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martinez-Lopez%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22547607
http://www.ncbi.nlm.nih.gov/pubmed/22547607
http://www.ncbi.nlm.nih.gov/pubmed/22547607
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bertrand%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17018383
http://www.ncbi.nlm.nih.gov/pubmed/?term=Foschini%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=17018383
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bordone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17018383
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fenaux%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20451251
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ganser%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20451251
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guerci-Bresler%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20451251
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blumenstengel%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22023452
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goebeler%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22023452
http://www.ncbi.nlm.nih.gov/pubmed/?term=Groschek%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22023452


285 
 

                                                                                                                                                                                     
167

 Chantrel-Groussard K, Gaboriau F, Pasdeloup N, Havouis R, Nick H, Pierre JL, et al. The new orally active iron 

chelator ICL670A exhibits a higher antiproliferative effect in human hepatocyte cultures than O-trensox. Eur J 

Pharmacol 2006; 541: 129-37. 

 

168
 Kicic A, Chua AC, Baker E. Effect of iron chelators on proliferation and iron uptake in hepatoma cells. Cancer 

2001; 92: 3093-110. 

 

169
 Lui GY,  Obeidy P, Ford SJ, Tselepis C, Sharp DM, Jansson PJ, et al. The iron chelator, deferasirox, as a novel 

strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of 

action. Mol Pharmacol 2013; 83: 179-90. 

 

170
 Di Tucci AA, Murru B, Alberti D, Rabault B, Deplano S, Angelucci E. Correction of anemia in a transfusion-

dependent patient with primary myelofibrosis receiving iron chelation therapy with deferasirox (Exjade, 

ICL670). Eur J Haematol 2007; 78: 540-2. 

 

171
 Messa E, Cilloni D, Messa F, Arruga F, Roetto A, Saglio G.. Deferasirox treatment improved the hemoglobin 

level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary 

myelofibrosis. Acta Haematol 2008; 120: 70-4. 

 

172
 Okabe H, Suzuki T, Omori T, Mori M, Uehara E, Hatano K, et al. Hematopoietic recovery after administration 

of deferasirox for transfusional iron overload in a case of myelodysplastic syndrome. Rinsho Ketsueki. 2009; 

50(11): 1626-9. 

 

173
 Lescoat G, Chantrel-Groussard, K, Pasdeloup N, Nick H, Brissot P, Gaboriau F.. Antiproliferative and 

apoptotic effects in rat and human hepatoma cell cultures of the orally active iron chelator ICL670 compared 

to CP20: a possible relationship with polyamine metabolism. Cell Prolif 2007; 40: 755-67. 

 

174
 Wallace HM, Fraser AV, Hughes A.  A perspective of polyamine metabolism. Biochem. J. 2003; 376: 1–14. 

 

175
 Kim JL, Kang HN, Kang MH, Yoo YA, Kim JS, Choi CW.. The oral iron chelator deferasirox induces apoptosis in 

myeloid leukemia cells by targeting caspase. Acta Haematol. 2011; 126(4): 241-5.  

 

176
 Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, et al. Human ICE/CED-3 

protease nomenclature. Cell 1996; 87(2): 171. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Havouis%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16765341
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nick%20H%5BAuthor%5D&cauthor=true&cauthor_uid=16765341
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pierre%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=16765341
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tselepis%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23074173
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sharp%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=23074173
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jansson%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=23074173
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rabault%20B%5BAuthor%5D&cauthor=true&cauthor_uid=17391307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Deplano%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17391307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Angelucci%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17391307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Arruga%20F%5BAuthor%5D&cauthor=true&cauthor_uid=18827475
http://www.ncbi.nlm.nih.gov/pubmed/?term=Roetto%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18827475
http://www.ncbi.nlm.nih.gov/pubmed/?term=Saglio%20G%5BAuthor%5D&cauthor=true&cauthor_uid=18827475
http://www.ncbi.nlm.nih.gov/pubmed/20009438
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nick%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17877614
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brissot%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17877614
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gaboriau%20F%5BAuthor%5D&cauthor=true&cauthor_uid=17877614
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yoo%20YA%5BAuthor%5D&cauthor=true&cauthor_uid=21951998
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=21951998
http://www.ncbi.nlm.nih.gov/pubmed/?term=Choi%20CW%5BAuthor%5D&cauthor=true&cauthor_uid=21951998
http://www.ncbi.nlm.nih.gov/pubmed?term=kim%20acta%20haematol%202011%20caspase
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salvesen%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8861900
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thornberry%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=8861900
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wong%20WW%5BAuthor%5D&cauthor=true&cauthor_uid=8861900


286 
 

                                                                                                                                                                                     
177

 Messa E, Carturan S, Maffe C, Pautasso M, Bracco E, Roetto A, et al. Deferasirox is a powerful NF-kappaB 

inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by 

chelation and reactive oxygen species scavenging. Haematologica 2010; 95: 1308-16. 

 

178
 Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004; 6: 203-8. 

 

179
 Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS.. Role of NF-κB in the rescue of multiple 

myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood 1999; 93: 3044–3052. 

 

180
 Baron F, Turhan AG, Giron-Michel J, Azzarone B, Bentires-Alj M, Bours V, et al. Leukemic target 

susceptibility to natural killer cytotoxicity: Relationship with BCRABL expression. Blood 2002; 99: 2107–2113. 

 

181
 Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD. Constitutive activation of IκB kinase α and 

NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene 199; 18: 7389–7394. 

 

182
 Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ, Sledge GW. Constitutive activation of NF-κB during 

progression of breast cancer to hormone-independent growth. Mol. Cell. Biol. 1997; 17: 3629–3639. 

 

183
 Ohyashiki JH, Kobayashi C, Hamamura R, Okabe S, Tauchi T, Ohyashiki K.. The oral iron chelator deferasirox 

represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci 

2009; 100: 970-7. 

 

184
 Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene 2006; 25: 6436-46. 

 

185
 Schwarzer R, Tondera D, Arnold W, Giese K, Klippel A, Kaufmann J. et al. REDD1 integrates hypoxia-

mediated survival signalling downstream of phosphatidylinositol 3-kinase. Oncogene 2005; 24: 1138-49. 

 

186
 Song S, Christova T, Perusini S, Alizadeh S, Bao RY, Miller BW,  et al. Wnt inhibitor screen reveals iron 

dependence of β-catenin signaling in cancers. Cancer Res. 2011 Dec 15; 71(24):7628-39.  

 

187
 Guariglia R, Martorelli M, Villani O, Pietrantuono G, Mansueto G, D'Auria F, et al. Positive effects on 

hematopoiesis in patients with myelodysplastic syndrome receiving deferasirox as oral iron chelation therapy: 

A brief review. Leukemia Research 2011; 35: 566-570. 

 

188
 Fukushima T, Kawabata H, Nakamura T, Iwao H, Nakajima A, Miki M, et al. Iron chelation therapy with 

deferasirox induced complete remission in a patient with chemotherapy-resistant acute monocytic leukemia. 

Anticancer Res. 2011; 31(5): 1741-4. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pautasso%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20534700
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bracco%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20534700
http://www.ncbi.nlm.nih.gov/pubmed/?term=Roetto%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20534700
http://www.ncbi.nlm.nih.gov/pubmed/?term=Barlogie%20B%5BAuthor%5D&cauthor=true&cauthor_uid=10216101
http://www.ncbi.nlm.nih.gov/pubmed/?term=Epstein%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10216101
http://www.ncbi.nlm.nih.gov/pubmed/?term=Siegel%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=10216101
http://www.ncbi.nlm.nih.gov/pubmed/?term=Azzarone%20B%5BAuthor%5D&cauthor=true&cauthor_uid=11877286
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bentires-Alj%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11877286
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bours%20V%5BAuthor%5D&cauthor=true&cauthor_uid=11877286
http://www.ncbi.nlm.nih.gov/pubmed/?term=Okabe%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19298223
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tauchi%20T%5BAuthor%5D&cauthor=true&cauthor_uid=19298223
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ohyashiki%20K%5BAuthor%5D&cauthor=true&cauthor_uid=19298223
http://www.ncbi.nlm.nih.gov/pubmed/?term=Giese%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15592522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Klippel%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15592522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kaufmann%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15592522
http://www.ncbi.nlm.nih.gov/pubmed?term=Christova%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22009536
http://www.ncbi.nlm.nih.gov/pubmed?term=Perusini%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22009536
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alizadeh%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22009536
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bao%20RY%5BAuthor%5D&cauthor=true&cauthor_uid=22009536
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20BW%5BAuthor%5D&cauthor=true&cauthor_uid=22009536
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pietrantuono%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21185078
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mansueto%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21185078
http://www.ncbi.nlm.nih.gov/pubmed/?term=D'Auria%20F%5BAuthor%5D&cauthor=true&cauthor_uid=21185078
http://www.ncbi.nlm.nih.gov/pubmed/?term=Iwao%20H%5BAuthor%5D&cauthor=true&cauthor_uid=21617233
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nakajima%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21617233
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miki%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21617233


287 
 

                                                                                                                                                                                     
 

189
 Vreugdenhil G, Smeets M, Feelders RA. Iron chelators may enhance erythropoiesis by increasing iron 

delivery to haematopoietic tissue and erythropoietin response in iron-loading anaemia. Acta Haematol 1993; 

89. 

 

190
 Ghoti H, Fibach E, Merkel D, Perez-Avraham G, Grisariu S, Rachmilewitz EA. Changes in parameters of 

oxidative stress and free iron biomarkers during treatment with Deferasirox in iron-overloaded patients with 

Myelodysplastic syndromes. Haematologica 2010; 95: 1433-4. 

 

191
 Rockett JC, Larkin K, Darnton SJ, Morris AG, Matthews HR. Five newly established oesophageal carcinoma 

cell lines: phenotypic and immunological characterization. Br J Cancer. 1997; 75(2): 258-63. 

 
192

 Takashima N, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y, et al. Gene expression profiling of the 

response of esophageal carcinoma cells to cisplatin. Dis Esophagus. 2008; 21(3): 230-5. 

 

193
 American Tissue Culture Collection (ATCC). Colon cancer and normal cell lines. Available at 

http://www.atcc.org/~/media/PDFs/Cancer%20and%20Normal%20cell%20lines%20tables/Colon%20cancer%2

0and%20normal%20cell%20lines.ashx. First accessed 28 August 2013. 

 
194

 Hsi LC, Angerman-Stewart J, Eling TE. Introduction of full-length APC modulates cyclooxygenase-2 

expression in HT-29 human colorectal carcinoma cells at the translational level. Carcinogenesis. 1999; 20(11): 

2045-9. 

 

195
 Chung CS, Jiang Y, Cheng D, Birt DF. Impact of adenomatous polyposis coli (APC) tumor supressor gene in 

human colon cancer cell lines on cell cycle arrest by apigenin. Mol Carcinog. 2007; 46(9): 773-82. 

 

196
 Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, et al. Requirement for p53 and p21 to sustain 

G2 arrest after DNA damage. Science 1998; 282: 1497-1501. 

 

197
 Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a 

model system for intestinal epithelial permeability. Gastroenterology. 1989; 96(3): 736-49. 

 
198

 Watson SA, Morris TM, McWilliams DF, Harris J, Evans S, Smith A, et al. Potential role of endocrine gastrin in 

the colonic adenoma carcinoma sequence. British Journal of Cancer 2002; 87: 567–573. 

 
199

 Williams AC, Harper SJ, Paraskeva C. Neoplastic transformation of a human colonic epithelial cell line: in 

vitro evidence for the adenoma to carcinoma sequence. Cancer Res. 1990; 50(15): 4724-30. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Perez-Avraham%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20421274
http://www.ncbi.nlm.nih.gov/pubmed/?term=Grisariu%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20421274
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rachmilewitz%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=20421274
http://www.ncbi.nlm.nih.gov/pubmed?term=Rockett%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=9010035
http://www.ncbi.nlm.nih.gov/pubmed?term=Larkin%20K%5BAuthor%5D&cauthor=true&cauthor_uid=9010035
http://www.ncbi.nlm.nih.gov/pubmed?term=Darnton%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=9010035
http://www.ncbi.nlm.nih.gov/pubmed?term=Morris%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=9010035
http://www.ncbi.nlm.nih.gov/pubmed?term=Matthews%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=9010035
http://www.ncbi.nlm.nih.gov/pubmed/?term=9010035
http://www.ncbi.nlm.nih.gov/pubmed?term=Takashima%20N%5BAuthor%5D&cauthor=true&cauthor_uid=18430104
http://www.ncbi.nlm.nih.gov/pubmed?term=Ishiguro%20H%5BAuthor%5D&cauthor=true&cauthor_uid=18430104
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuwabara%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18430104
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kimura%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18430104
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mitui%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18430104
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mori%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18430104
http://www.ncbi.nlm.nih.gov/pubmed/18430104
http://www.atcc.org/~/media/PDFs/Cancer%20and%20Normal%20cell%20lines%20tables/Colon%20cancer%20and%20normal%20cell%20lines.ashx
http://www.atcc.org/~/media/PDFs/Cancer%20and%20Normal%20cell%20lines%20tables/Colon%20cancer%20and%20normal%20cell%20lines.ashx
http://www.ncbi.nlm.nih.gov/pubmed?term=Hsi%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=10545404
http://www.ncbi.nlm.nih.gov/pubmed?term=Angerman-Stewart%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10545404
http://www.ncbi.nlm.nih.gov/pubmed?term=Eling%20TE%5BAuthor%5D&cauthor=true&cauthor_uid=10545404
http://www.ncbi.nlm.nih.gov/pubmed/10545404
http://www.ncbi.nlm.nih.gov/pubmed?term=Chung%20CS%5BAuthor%5D&cauthor=true&cauthor_uid=17620292
http://www.ncbi.nlm.nih.gov/pubmed?term=Jiang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17620292
http://www.ncbi.nlm.nih.gov/pubmed?term=Cheng%20D%5BAuthor%5D&cauthor=true&cauthor_uid=17620292
http://www.ncbi.nlm.nih.gov/pubmed?term=Birt%20DF%5BAuthor%5D&cauthor=true&cauthor_uid=17620292
http://www.ncbi.nlm.nih.gov/pubmed/17620292
http://www.ncbi.nlm.nih.gov/pubmed/?term=Waldman%20T%5BAuthor%5D&cauthor=true&cauthor_uid=9822382
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20S%5BAuthor%5D&cauthor=true&cauthor_uid=9822382
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=9822382
http://www.ncbi.nlm.nih.gov/pubmed?term=Hidalgo%20IJ%5BAuthor%5D&cauthor=true&cauthor_uid=2914637
http://www.ncbi.nlm.nih.gov/pubmed?term=Raub%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=2914637
http://www.ncbi.nlm.nih.gov/pubmed?term=Borchardt%20RT%5BAuthor%5D&cauthor=true&cauthor_uid=2914637
http://www.ncbi.nlm.nih.gov/pubmed/2914637
http://www.ncbi.nlm.nih.gov/pubmed/?term=Harris%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12189558
http://www.ncbi.nlm.nih.gov/pubmed/?term=Evans%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12189558
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12189558
http://www.ncbi.nlm.nih.gov/pubmed?term=Williams%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=2369746
http://www.ncbi.nlm.nih.gov/pubmed?term=Harper%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=2369746
http://www.ncbi.nlm.nih.gov/pubmed?term=Paraskeva%20C%5BAuthor%5D&cauthor=true&cauthor_uid=2369746
http://www.ncbi.nlm.nih.gov/pubmed/2369746?dopt=Abstract&holding=npg


288 
 

                                                                                                                                                                                     
200

 Khanim FL, Merrick BA, Giles HV, Jankute M, Jackson JB, Giles LJ, et al. Redeployment-based drug screening 

identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain 

production. Blood Cancer J. 2011; 1(10): e39.  

 
201

 Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, et al. Loss of Apc in vivo immediately 

perturbs Wnt signaling, differentiation and migration. Genes Dev. 2004; 18: 1385–1390. 

 

202
 Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in 

small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003–1007. 

 

203
 Marsh V, Winton DJ, Williams GT, Dubois N, Trumpp A, Sansom OJ, et al. Epithelial Pten is dispensable for 

intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nat Genet. 

2008; 40(12): 1436-44.  

 
204

 Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols 2006;  

1: 1112-16. 

 

205
 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 

61(2): 69-90. 

 

206
 Devesa SS, Blot WJ, Fraumeni Jr JF. Changing patterns in the incidence of esophageal and gastric carcinoma 

in the United States. Cancer 1998; 83(10): 2049–53. 

 

207
 Medical Research Council Oesophageal Cancer Working Party. Surgical resection with or without 

preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet 2002; 359: 1727-

1733. 

 

208
 Koppert LB, Wijnhoven BP, van Dekken H, Tilanus HW, Dinjens WN.. The molecular biology of esophageal 

adenocarcinoma [review]. J Surg Oncol 2005; 92: 169-90. 

 

209
 Chen X, Ding YW, Yang G, Bondoc F, Lee MJ, Yang CS.. Oxidative damage in an esophageal adenocarcinoma 

model with rats. Carcinogenesis 2000; 21: 257-63. 

 

210
 Goldstein SR, Yang GY, Chen  X, Curtis SK, Yang CS.. Studies of iron deposits, inducible nitric oxide synthase 

and nitrotyrosine in a rat model for esophageal adenocarcinoma. Carcinogenesis 1998; 19: 1445-9. 

 

211
 Lee DH, Anderson KE, Folsom AR, Jacobs DR Jr. Heme iron, zinc and upper digestive tract cancer: the Iowa 

Women’s Health Study. Int J Cancer 2005; 117: 643-7. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jankute%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22829072
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jackson%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=22829072
http://www.ncbi.nlm.nih.gov/pubmed/?term=Giles%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=22829072
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ireland%20H%5BAuthor%5D&cauthor=true&cauthor_uid=15198980
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brinkmann%20H%5BAuthor%5D&cauthor=true&cauthor_uid=15198980
http://www.ncbi.nlm.nih.gov/pubmed/?term=Newton%20IP%5BAuthor%5D&cauthor=true&cauthor_uid=15198980
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kujala%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17934449
http://www.ncbi.nlm.nih.gov/pubmed/?term=van%20den%20Born%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17934449
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cozijnsen%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17934449
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dubois%20N%5BAuthor%5D&cauthor=true&cauthor_uid=19011632
http://www.ncbi.nlm.nih.gov/pubmed/?term=Trumpp%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19011632
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sansom%20OJ%5BAuthor%5D&cauthor=true&cauthor_uid=19011632
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tilanus%20HW%5BAuthor%5D&cauthor=true&cauthor_uid=16299787
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dinjens%20WN%5BAuthor%5D&cauthor=true&cauthor_uid=16299787
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bondoc%20F%5BAuthor%5D&cauthor=true&cauthor_uid=10657966
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=10657966
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20CS%5BAuthor%5D&cauthor=true&cauthor_uid=10657966
http://www.ncbi.nlm.nih.gov/pubmed/?term=Curtis%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=9744541
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20CS%5BAuthor%5D&cauthor=true&cauthor_uid=9744541
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jacobs%20DR%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=15929082


289 
 

                                                                                                                                                                                     
 

212
 Huang W, Han Y, Xu J, Zhu W, Li Z. Red and processed meat intake and risk of esophageal adenocarcinoma: 

a meta-analysis of observational studies. Cancer Causes Control 2013; 24(1): 193-201. 

 

213
 Di Maso M, Talamini R, Bosetti C, Montella M, Zucchetto A, Libra M, et al. Red meat and cancer risk in a 

network of case-control studies focusing on cooking practices. Ann Oncol 2013; 24(12): 3107-12. 

 
214

 Jakszyn P, Lujan-Barroso L, Agudo A, Bueno-de-Mesquita HB, Molina E, Sánchez MJ, et al. Meat and heme 

iron intake and esophageal adenocarcinoma in the European Prospective Investigation into Cancer and 

Nutrition study. Int J Cancer 2013; 133(11): 2744-50. 

215 Ford S, Obeidy P, Lovejoy D, Bedford M, Nichols L, Chadwick C,  et al. Deferasirox (ICL670A) effectively 

inhibits oesophageal cancer growth in vitro and in vivo. British Journal of Pharmacology 2013; 168(6): 1316-28. 

 
216

 Abdel-Latif MM, O’Riordan J, Windle HJ, Carton E, Ravi N, Kelleher D, et al. NF-kappaB activation in 

esophageal adenocarcinoma: relationship to Barrett’s metaplasia, survival, and response to neoadjuvant 

chemoradiotherapy. Ann Surg 2004; 239(4): 491-500. 

 
217

 Izzo JG, Correa AM, Wu TT, Malhotra U, Chao CK, Luthra R, et al. Pretherapy nuclear factor-kappaB status, 

chemoradiation resistance, and metastatic progression in oesophageal carcinoma. Mol Cancer Therapy 2006; 

5(11): 2844-50. 

 

218
 Li J, Minnich DJ, Camp ER, Brank A, Mackay SL, Hochwald SN.. Enhanced sensitivity to chemotherapy in 

esophageal cancer through inhibition of NF-kappaB. J Surg Res 2006; 132(1): 112-20. 

 

219
 Yang YH, Zhou H, Binmadi NO, Proia P, Basile JR. Plexin-B1 activates NF-κB and IL-8 to promote a pro-

angiogenic response in endothelial cells. PLoS One. 2011; 6(10): e25826. 

 
220

 Knight K, Wade S, Balducci L. Prevalence and outcomes of anemia in cancer: A systematic review of the 

literature. The American Journal of Medicine 2004; 116(7A): 11S-26S.  

 

221
 Zhao KL, Liu G, Jiang GL, Wang Y, Zhong LJ, Wang Y, et al. Association of haemoglobin level with morbidity 

and mortality of patients with locally advanced oesophageal carcinoma undergoing radiotherapy--a secondary 

analysis of three consecutive clinical phase III trials. Clin Oncol (R Coll Radiol). 2006; 18(8): 621-7. 

 
222

 Tanswell I, Steed H, Butterworth J, Townson G. Anaemia is of prognostic significance in patients with 

oesophageal adenocarcinoma. J R Coll Physicians Edinb 2011; 41:206–10. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Montella%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24121119
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zucchetto%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24121119
http://www.ncbi.nlm.nih.gov/pubmed/?term=Libra%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24121119
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bueno-de-Mesquita%20HB%5BAuthor%5D&cauthor=true&cauthor_uid=23728954
http://www.ncbi.nlm.nih.gov/pubmed/?term=Molina%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23728954
http://www.ncbi.nlm.nih.gov/pubmed/?term=S%C3%A1nchez%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=23728954
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bedford%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23126308
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nichols%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23126308
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chadwick%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23126308
http://www.ncbi.nlm.nih.gov/pubmed/?term=Carton%20E%5BAuthor%5D&cauthor=true&cauthor_uid=15024310
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ravi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=15024310
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kelleher%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15024310
http://www.ncbi.nlm.nih.gov/pubmed/?term=Malhotra%20U%5BAuthor%5D&cauthor=true&cauthor_uid=17121931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chao%20CK%5BAuthor%5D&cauthor=true&cauthor_uid=17121931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luthra%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17121931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brank%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16337965
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mackay%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=16337965
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hochwald%20SN%5BAuthor%5D&cauthor=true&cauthor_uid=16337965
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20YH%5BAuthor%5D&cauthor=true&cauthor_uid=22028792
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhou%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22028792
http://www.ncbi.nlm.nih.gov/pubmed?term=Binmadi%20NO%5BAuthor%5D&cauthor=true&cauthor_uid=22028792
http://www.ncbi.nlm.nih.gov/pubmed?term=Proia%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22028792
http://www.ncbi.nlm.nih.gov/pubmed?term=Basile%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=22028792
http://www.ncbi.nlm.nih.gov/pubmed/22028792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17051953
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhong%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=17051953
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17051953
http://www.ncbi.nlm.nih.gov/pubmed/17051953


290 
 

                                                                                                                                                                                     
223

 Suominen P, Punnonen K, Rajamaki A, Irjala K. Serum transferring receptor and transferring-receptor-

ferritin index identify healthy subjects with subclinical iron deficits. Blood 1998; 92(8): 2934-9. 

 
224

 Fu D, Richardson D. Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional 

regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood 2007; 

110(2): 752-761. 

 

225
 Le NT, Richardson DR. The role of iron in cell cycle progression and the proliferation of neoplastic cells. 

Biochim Biophys Acta 2002; 1603(1) 31-46. 

 
226

 Li B, Li YY, Tsao SW, Cheung AL. Targeting NF-kappaB signalling pathwat suppresses tumour growth, 

angiogenesis and metastasis of human espohageal cancer. Mol Cancer Ther 2009; 8(9): 2635-44. 

227
 Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006; 441(7092): 431-6. 

 
228

 Ruddell RG, Hoang-Le D, Barwood JM, Rutherford PS, Piva TJ, Watters DJ,  et al. Ferritin functions as a 

proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated 

signaling in rat hepatic stellate cells. Hepatology. 2009; 49(3):887-900. 

 
229

 Shpyleva SI, Tryndyak VP, Kovalchuk O, Starlard-Davenport A, Chekhun VF, Beland FA, et al. Role of ferritin 

alterations in human breast cancer cells. Breast Cancer Res Treat. 2011; 126(1): 63-71. 

 
230

 Chekhun VF, Lukyanova NY, Burlaka CA et al. Iron metabolism disturbances in the MCF-7 human breast 

cancer cells with acquired resistance to doxorubicin and cisplatin. Int J Oncol. 2013; 43(5): 1481-6. 

 
231

 Mueller S, Schittenhelm M, Honecker F, Malenke E, Lauber K, Wesselborg S, et al. Cell-cycle progression and 

response of germ cell tumours to cisplatin in vitro. Int J Oncol 2006; 29(2): 471-9. 

 

232
 Cancer Research UK. Cancer survival for common cancers. Available at 

http://www.cancerresearchuk.org/cancer-info/cancerstats/survival/common-cancers/#One-. First accessed 21 

August 2014. 

 

233
 Cancer Research UK. Bowel cancer survival statistics. Available at http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/bowel/survival/. First accessed 21 August 2014. 

 

234
 The National Institute for Health and Clinical Excellence (NICE). Guideline CG131 Colorectal Cancer, 

November 2011. Available at http://guidance.nice.org.uk/CG131/Guidance/pdf/English. First accessed 21 

August 2014. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Karin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16724054
http://www.ncbi.nlm.nih.gov/pubmed/?term=karin+nature+441
http://www.ncbi.nlm.nih.gov/pubmed?term=Ruddell%20RG%5BAuthor%5D&cauthor=true&cauthor_uid=19241483
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoang-Le%20D%5BAuthor%5D&cauthor=true&cauthor_uid=19241483
http://www.ncbi.nlm.nih.gov/pubmed?term=Barwood%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=19241483
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rutherford%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=19241483
http://www.ncbi.nlm.nih.gov/pubmed/?term=Piva%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=19241483
http://www.ncbi.nlm.nih.gov/pubmed/?term=Watters%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=19241483
http://www.ncbi.nlm.nih.gov/pubmed/19241483
http://www.ncbi.nlm.nih.gov/pubmed?term=Shpyleva%20SI%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed?term=Tryndyak%20VP%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed?term=Kovalchuk%20O%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed/?term=Starlard-Davenport%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chekhun%20VF%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beland%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=20390345
http://www.ncbi.nlm.nih.gov/pubmed/20390345
http://www.ncbi.nlm.nih.gov/pubmed?term=Chekhun%20VF%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed?term=Lukyanova%20NY%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed?term=Burlaka%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=23969999
http://www.ncbi.nlm.nih.gov/pubmed/23969999
http://www.ncbi.nlm.nih.gov/pubmed/?term=Malenke%20E%5BAuthor%5D&cauthor=true&cauthor_uid=16820891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lauber%20K%5BAuthor%5D&cauthor=true&cauthor_uid=16820891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wesselborg%20S%5BAuthor%5D&cauthor=true&cauthor_uid=16820891


291 
 

                                                                                                                                                                                     
235

 Kuremsky JG, Tepper JE, McLeod HL. Biomarkers for response to neoadjuvant chemoradiation for rectal 

cancer. Int J Radiat Oncol Biol Phys 2009; 74: 673–88. 

 

236
 Cho KR, Vogelstein B. Genetic alterations in the adenoma – carcinoma sequence. Cancer 1992; 70(6 Suppl): 

1727-31. 

 

237
 Ward D, Roberts K, Brookes MJ, Joy H, Martin A, Ismail T, et al. Increased hepcidin expression in colorectal 

carcinogenesis. World J Gastroenterol 2008; 14(9): 1339-45. 

 

238
 Okazaki F, Matsunaga N, Okazaki H, Utoguchi N, Suzuki R, Maruyama K, et al. Circadian rhythm of 

transferrin receptor 1 gene expression controlled by c-Myc in colon cancer-bearing mice. Cancer Res 2010; 

70(15): 6238-46. 

 

239
 Nelson RL, Yoo SJ, Tanure JC, Andrianopoulos G, Misumi A. The effect of iron on experimental colorectal 

carcinogenesis. Anticancer Res 1989; 9(6): 1477-82. 

 

240
 Wilson WR, Hay MP.Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011; 11(6):3 93-410.  

 

241
 Siriwardana G, Seligman PA. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: 

separating cell cycle events associated with each block. Physiol Rep. 2013;1(7): e00176. doi: 

10.1002/phy2.176. eCollection 2013. 

 
242

 Han HS, Lee SY, Seong MK, Kim JH, Sung IK, Park HS, et al. Presence of iron in colorectal adenomas and 

adenocarcinomas. Gut Liver. 2008; 2(1): 19-22. 

 
243

 Mohelnikova-Duchonova B, Melichar B, Soucek P.  FOLFOX/FOLFIRI pharmacogenetics: The call for a 

personalized approach in colorectal cancer therapy. World J Gastroenterol. 2014; 20(30): 10316-30. 

 
244

 Vasquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. 

Nat Rev Drug Discov 2008; 7: 979-87. 

 

245
 Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J Med 2009; 361(25): 2449-60. 

 

246
 Yang B, Eshleman JR, Berger NA, Markowitz SD. Clin Cancer Res. 1996; 2(10): 1649-57. Wild-type p53 

protein potentiates cytotoxicity of therapeutic agents in human colon cancer cells. 

 

247
 Kovacevic Z, Sivagurunathan S, Mangs H, Chikhani S, Zhang D, Richardson DR. The metastasis suppressor, N-

myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms. 

Carcinogenesis. 2011; 32(5): 732-40.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Joy%20H%5BAuthor%5D&cauthor=true&cauthor_uid=18322945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18322945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ismail%20T%5BAuthor%5D&cauthor=true&cauthor_uid=18322945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Utoguchi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20631077
http://www.ncbi.nlm.nih.gov/pubmed/?term=Suzuki%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20631077
http://www.ncbi.nlm.nih.gov/pubmed/?term=Maruyama%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20631077
http://www.ncbi.nlm.nih.gov/pubmed?term=Wilson%20WR%5BAuthor%5D&cauthor=true&cauthor_uid=21606941
http://www.ncbi.nlm.nih.gov/pubmed?term=Hay%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=21606941
http://www.ncbi.nlm.nih.gov/pubmed/21606941
http://www.ncbi.nlm.nih.gov/pubmed?term=Siriwardana%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24744856
http://www.ncbi.nlm.nih.gov/pubmed?term=Seligman%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=24744856
http://www.ncbi.nlm.nih.gov/pubmed/24744856
http://www.ncbi.nlm.nih.gov/pubmed?term=Han%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20SY%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed?term=Seong%20MK%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sung%20IK%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed/?term=Park%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=20485606
http://www.ncbi.nlm.nih.gov/pubmed/20485606
http://www.ncbi.nlm.nih.gov/pubmed?term=Mohelnikova-Duchonova%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25132748
http://www.ncbi.nlm.nih.gov/pubmed?term=Melichar%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25132748
http://www.ncbi.nlm.nih.gov/pubmed?term=Soucek%20P%5BAuthor%5D&cauthor=true&cauthor_uid=25132748
http://www.ncbi.nlm.nih.gov/pubmed/25132748
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20B%5BAuthor%5D&cauthor=true&cauthor_uid=9816112
http://www.ncbi.nlm.nih.gov/pubmed?term=Eshleman%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=9816112
http://www.ncbi.nlm.nih.gov/pubmed?term=Berger%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=9816112
http://www.ncbi.nlm.nih.gov/pubmed?term=Markowitz%20SD%5BAuthor%5D&cauthor=true&cauthor_uid=9816112
http://www.ncbi.nlm.nih.gov/pubmed/9816112
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chikhani%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21398495
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21398495
http://www.ncbi.nlm.nih.gov/pubmed/?term=Richardson%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=21398495
http://www.ncbi.nlm.nih.gov/pubmed/21398495
http://www.ncbi.nlm.nih.gov/pubmed/21398495


292 
 

                                                                                                                                                                                     
 

248
 Shen J, Sheng X, Chang Z, Wu Q, Wang S, Xuan Z,

 
et al. Iron metabolism regulates p53 signaling through 

direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep. 2014; 7(1): 

180-93.  

 
249

 Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. 

Protein Cell. 2013; 4(3): 176-85.  

 

250
 Luo D,

 
Wang Z,

  
Wu J,

  
Jiang Wu J. The role of hypoxia inducible factor-1 in hepatocellular carcinoma. Biomed 

Res Int. 2014; 2014: 409272. 

 
251

 Lihong F, Jia L, Zefeng Y, Xiaoqian D, Kunzheng W. The hypoxia-inducible factor pathway, prolyl hydroxylase 

domain protein inhibitors and their roles in bone repair and regeneration. BioMed Research International 

2014; Article ID 239356. doi:10.1155/2014/239356. First accessed 29 August 2014. 

 

252
 Bruin GJ, Faller T, Wiegand H, Schweitzer A, Nick H, Schneider J, et al. Pharmacokinetics, distribution, 

metabolism, and excretion of deferasirox and its iron complex in rats. Drug Metab Dispos. 2008; 36(12): 2523-

38.  

 

253
 Sanchez M, Galy B, Muckenthaler MU, Hentze MW. Iron-regulatory proteins limit hypoxia-inducible factor-

2alpha] expression in iron deficiency. Nat Struct Mol Biol 2007 print;14(5):420-426. 

 

254
 Maffettone C, Chen G, Drozdov I, Ouzounis C, Pantopoulos K.Tumorigenic properties of iron regulatory 

protein 2 (IRP2) mediated by its specific 73-amino acids insert. PLoS One. 2010; 5(4): e10163. 

 

255
 Oexle H, Gnaiger E, Weiss G. Iron-dependent changes in cellular energy metabolism: influence on citric acid 

cycle and oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1999 

11/10;1413(3):99-107. 

 

256
 Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 

2006 print; 2(8):406-414. 

 
257

 Chen G, Fillebeen C, Wang J, Pantopoulos K. Overexpression of iron regulatory protein 1 suppresses growth 

of tumor xenografts. Carcinogenesis. 2007; 28(4): 785-91.  

 
258

  Wang W, Deng Z, Hatcher H, Miller LD, Di X, Tesfay L,  et al. IRP2 regulates breast tumor growth. Cancer 

Res. 2014; 74(2): 497-507.  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Shen%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24685134
http://www.ncbi.nlm.nih.gov/pubmed?term=Sheng%20X%5BAuthor%5D&cauthor=true&cauthor_uid=24685134
http://www.ncbi.nlm.nih.gov/pubmed?term=Chang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=24685134
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=24685134
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24685134
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xuan%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=24685134
http://www.ncbi.nlm.nih.gov/pubmed/24685134
http://www.ncbi.nlm.nih.gov/pubmed?term=Fan%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23483479
http://www.ncbi.nlm.nih.gov/pubmed?term=Mao%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23483479
http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23483479
http://www.ncbi.nlm.nih.gov/pubmed/23483479
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luo%20D%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Z%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jiang%20C%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Bruin%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=18775980
http://www.ncbi.nlm.nih.gov/pubmed?term=Faller%20T%5BAuthor%5D&cauthor=true&cauthor_uid=18775980
http://www.ncbi.nlm.nih.gov/pubmed?term=Wiegand%20H%5BAuthor%5D&cauthor=true&cauthor_uid=18775980
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schweitzer%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18775980
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nick%20H%5BAuthor%5D&cauthor=true&cauthor_uid=18775980
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schneider%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18775980
http://www.ncbi.nlm.nih.gov/pubmed/18775980
http://www.ncbi.nlm.nih.gov/pubmed?term=Maffettone%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed?term=Chen%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed?term=Drozdov%20I%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed?term=Ouzounis%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed?term=Pantopoulos%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20405006
http://www.ncbi.nlm.nih.gov/pubmed/?term=maffettone+c+73
http://www.ncbi.nlm.nih.gov/pubmed?term=Chen%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17127713
http://www.ncbi.nlm.nih.gov/pubmed?term=Fillebeen%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17127713
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17127713
http://www.ncbi.nlm.nih.gov/pubmed?term=Pantopoulos%20K%5BAuthor%5D&cauthor=true&cauthor_uid=17127713
http://www.ncbi.nlm.nih.gov/pubmed/17127713
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20W%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed?term=Deng%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed?term=Hatcher%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20LD%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20X%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tesfay%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24285726
http://www.ncbi.nlm.nih.gov/pubmed/?term=breast+irp2
http://www.ncbi.nlm.nih.gov/pubmed/?term=breast+irp2


293 
 

                                                                                                                                                                                     
259

 Hamara K, Bielecka-Kowalska A, Przybylowska-Sygut K, Sygut A, Dziki A, Szemraj J. Alterations in expression 

profile of iron-related genes in colorectal cancer. Mol Biol Rep. 2013; 40(10): 5573-85. 

 
260

 Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment 

of cancer. Oncogene 2007; 26: 3291-310. 

 

261
 Wu K, Polack A, Dalla-Favera R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-

MYC. Science 199; 9; 283(5402): 676-679. 

 
262

 Thiel A, Ristimaki A. Toward a molecular classification of colorectal cancer: the role of BRAF. Frontiers in 

oncology 2013; 3(281): 1-7. 

 

263
 American Tissue Culture Collection (ATCC). Colon cancer and normal cell lines.  

Available at 

http://www.atcc.org/~/media/PDFs/Cancer%20and%20Normal%20cell%20lines%20tables/Colon%20cancer%2

0and%20normal%20cell%20lines.ashx. First accessed 28 August 2013. 

 
264

 Yokota T. Are KRAS/BRAF mutations potent prognostic markers and/or predictive biomarkers in colorectal 

cancers? Anticancer Agents Med Chem. 2012; 12(2): 163-71. 

 

265
 Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB. Cancer drug discovery by repurposing: teaching new 

tricks to old dogs. Trends in Pharmacological Sciences 2013; 34(9): 508-17. 

 

266
 Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR,  et al. How to improve R&D 

productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010; 9(3): 203-14. 

 
267

 Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, et al. Best practices in cancer nanotechnology: 

perspective from NCI nanotechnology alliance. Clin Cancer Res. 2012; 18(12): 3229-41. 

 
268

 The National Institute for Health and Care Excellence (NICE). Breast cancer (HER2 positive, unresectable) - 

trastuzumab emtansine (after trastuzumab & taxane) [ID603]. Available at 

https://www.nice.org.uk/Guidance/InDevelopment/GID-TAG350/Documents. First accessed 3 September 

2014. 

 

269
 Gelijns AC, Rosenberg N, Moskowitz AJ. Capturing the unexpected benefits of medical research. N Engl J 

Med. 1998; 339(10): 693-8 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hamara%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24078156
http://www.ncbi.nlm.nih.gov/pubmed?term=Bielecka-Kowalska%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24078156
http://www.ncbi.nlm.nih.gov/pubmed?term=Przybylowska-Sygut%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24078156
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sygut%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24078156
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dziki%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24078156
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szemraj%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24078156
http://www.ncbi.nlm.nih.gov/pubmed/?term=irp2+colorectal
http://www.atcc.org/~/media/PDFs/Cancer%20and%20Normal%20cell%20lines%20tables/Colon%20cancer%20and%20normal%20cell%20lines.ashx
http://www.atcc.org/~/media/PDFs/Cancer%20and%20Normal%20cell%20lines%20tables/Colon%20cancer%20and%20normal%20cell%20lines.ashx
http://www.ncbi.nlm.nih.gov/pubmed/?term=Persinger%20CC%5BAuthor%5D&cauthor=true&cauthor_uid=20168317
http://www.ncbi.nlm.nih.gov/pubmed/?term=Munos%20BH%5BAuthor%5D&cauthor=true&cauthor_uid=20168317
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lindborg%20SR%5BAuthor%5D&cauthor=true&cauthor_uid=20168317
http://www.ncbi.nlm.nih.gov/pubmed/20168317
http://www.ncbi.nlm.nih.gov/pubmed/20168317
http://www.ncbi.nlm.nih.gov/pubmed?term=Zamboni%20WC%5BAuthor%5D&cauthor=true&cauthor_uid=22669131
http://www.ncbi.nlm.nih.gov/pubmed?term=Torchilin%20V%5BAuthor%5D&cauthor=true&cauthor_uid=22669131
http://www.ncbi.nlm.nih.gov/pubmed?term=Patri%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=22669131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hrkach%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22669131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stern%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22669131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22669131
http://www.ncbi.nlm.nih.gov/pubmed/?term=zamboni+w+2012+best+practice
http://www.ncbi.nlm.nih.gov/pubmed/9725930


294 
 

                                                                                                                                                                                     
270

 Thayer AM. Drug repurposing. Chem Eng News 2012; 90: 15-25. Available at 

http://cen.acs.org/articles/90/i40/Drug-Repurposing.html?h=-1031248274. First accessed 3 September 2014. 

 

271 Li YY, Jones SJ. Drug repositioning for personalized medicine. Genome Med. 2012 Mar 30;4(3):27. 

doi: 10.1186/gm326. eCollection 2012. 

 
272

 Khanim FL, Hayden RE, Birtwistle J, Lodi A, Tiziani S, Davies NJ, et al. Combined bezafibrate and 

medroxyprogesterone acetate: Potential novel therapy for acute myeloid leukaemia. PLoS One. 2009; 4(12): 

e8147. 

 
273

  Molyneux E, Merrick B, Khanim FL, Banda K, Dunn JA, Iqbal G, et al. Bezafibrate and medroxyprogesterone 

acetate in resistant and relapsed endemic Burkitt lymphoma in Malawi; an open-label, single-arm, phase 2 

study (ISRCTN34303497). Br J Haematol. 2014; 164(6): 888-90. 

274
 Taieb J, Tabernero J, Mini E, Subtil F, Folprecht G, Van Laethem JL, et al. Oxaliplatin, fluorouracil, and 

leucovorin with or without cetuximab in patients with resected stage III colon cancer (PETACC-8): an open-

label, randomised phase 3 trial. Lancet Oncol. 2014; 15(8): 862-73.  

 
275

 Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA. Mebendazole elicits a potent antitumor effect on human 

cancer cell lines both in vitro and in vivo. Clin Cancer Res. 2002; 8(9): 2963-9. 

 
276 Martarelli D, Pompei P, Baldi C, Mazzoni G. Mebendazole inhibits growth of human adrenocortical 

carcinoma cell lines implanted in nude mice. Cancer Chemother Pharmacol. 2008; 61(5): 809-17. 

 
277

 Euhus DM, Hudd C, LaRegina MC, Johnson FE: Tumor measurement in the nude mouse.  J Surg Oncol 

1986; 31: 229-234. 

 

278
 Kilinc V, Bedir A, Okuyucu A, Salis O, Alacam H, Gulten S.. Do iron chelators increase the antiproliferative 

effect of trichostatin A through a glucose-regulated protein 78 mediated mechanism? Tumour Biol. 2014; 

35(6): 5945-51.  

 

279 Risinger AL, Giles FJ, Mooberry SL. Microtubule dynamics as a target in oncology. Cancer Treat 

Rev. 2009;35(3): 255-61. 

 
280

 Rusan NM, Fagerstrom CJ, Yvon AM, Wadsworth P. Cell cycle-dependent changes in microtubule dynamics 

in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell. 2001; 12(4): 971–80. 

 

281
 Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, et al. Insight into tubulin regulation from a 

complex with colchicine and a stathmin-like domain. Nature. 2004; 428(6979): 198–202. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20YY%5BAuthor%5D&cauthor=true&cauthor_uid=22494857
http://www.ncbi.nlm.nih.gov/pubmed?term=Jones%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=22494857
http://www.ncbi.nlm.nih.gov/pubmed/22494857?dopt=Abstract&holding=f1000,f1000m,isrctn
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lodi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19997560
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tiziani%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19997560
http://www.ncbi.nlm.nih.gov/pubmed/?term=Davies%20NJ%5BAuthor%5D&cauthor=true&cauthor_uid=19997560
http://www.ncbi.nlm.nih.gov/pubmed?term=Molyneux%20E%5BAuthor%5D&cauthor=true&cauthor_uid=24266453
http://www.ncbi.nlm.nih.gov/pubmed?term=Merrick%20B%5BAuthor%5D&cauthor=true&cauthor_uid=24266453
http://www.ncbi.nlm.nih.gov/pubmed?term=Khanim%20FL%5BAuthor%5D&cauthor=true&cauthor_uid=24266453
http://www.ncbi.nlm.nih.gov/pubmed/?term=Banda%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24266453
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dunn%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=24266453
http://www.ncbi.nlm.nih.gov/pubmed/?term=Iqbal%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24266453
http://www.ncbi.nlm.nih.gov/pubmed/24266453
http://www.ncbi.nlm.nih.gov/pubmed/?term=Subtil%20F%5BAuthor%5D&cauthor=true&cauthor_uid=24928083
http://www.ncbi.nlm.nih.gov/pubmed/?term=Folprecht%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24928083
http://www.ncbi.nlm.nih.gov/pubmed/?term=Van%20Laethem%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=24928083
http://www.ncbi.nlm.nih.gov/pubmed/24928083
http://www.ncbi.nlm.nih.gov/pubmed/24928083
http://www.ncbi.nlm.nih.gov/pubmed/24928083
http://www.ncbi.nlm.nih.gov/pubmed/12231542
http://www.ncbi.nlm.nih.gov/pubmed/12231542
http://www.ncbi.nlm.nih.gov/pubmed/17581752
http://www.ncbi.nlm.nih.gov/pubmed/17581752
http://www.ncbi.nlm.nih.gov/pubmed?term=Kilinc%20V%5BAuthor%5D&cauthor=true&cauthor_uid=24622883
http://www.ncbi.nlm.nih.gov/pubmed?term=Bedir%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24622883
http://www.ncbi.nlm.nih.gov/pubmed?term=Okuyucu%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24622883
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salis%20O%5BAuthor%5D&cauthor=true&cauthor_uid=24622883
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alacam%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24622883
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gulten%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24622883
http://www.ncbi.nlm.nih.gov/pubmed/24622883
http://www.ncbi.nlm.nih.gov/pubmed?term=Risinger%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=19117686
http://www.ncbi.nlm.nih.gov/pubmed?term=Giles%20FJ%5BAuthor%5D&cauthor=true&cauthor_uid=19117686
http://www.ncbi.nlm.nih.gov/pubmed?term=Mooberry%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=19117686
http://www.ncbi.nlm.nih.gov/pubmed/19117686
http://www.ncbi.nlm.nih.gov/pubmed/19117686
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jourdain%20I%5BAuthor%5D&cauthor=true&cauthor_uid=15014504
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lachkar%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15014504
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sobel%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15014504


295 
 

                                                                                                                                                                                     
282

 Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis 

for its interaction with tubulin. Med Res Rev. 2008; 28(1): 155–83. 

 

283 Sivakumar G. Colchicine semisynthetics: chemotherapeutics for cancer? Curr Med Chem. 2013; 

20(7): 892-8. 

 
284

 Cosentino L, Redondo-Horcajo M, Zhao Y, Santos AR, Chowdury KF, Vinader V,  et al. Synthesis and 

biological evaluation of colchicine B-ring analogues tethered with halogenated benzyl moieties. J Med Chem. 

2012; 55(24): 11062-6.  

 
285

 Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-

mebendazole as an anti-cancer agent. Ecancermedicalscience. 2014; 8: 443. 

286
 Laclette JP, Guerra G, Zetina C. Inhibition of tubulin polymerization by mebendazole Biochem Biophys Res 

Commun 1980; 92(2): 417–23. 

 

287
 Friedman PA and Platzer EG (1980) Interaction of anthelmintic benzimidazoles with Ascaris suum embryonic 

tubulin Biochim Biophys Acta 1980; 630(2): 271–8. 

 

288
 Doudican NA, Byron SA, Pollock PM, Orlow SJ. XIAP downregulation accompanies mebendazole growth 

inhibition in melanoma xenografts. Anticancer Drugs. 2013; 24(2): 181-8.  

 

289
 Bai RY, Staedtke V, Aprhys CM, Gallia GL, Riggins GJ. Antiparasitic mebendazole shows survival benefit in 2 

preclinical models of glioblastoma multiforme. Neuro Oncol. 2011; 13(9): 974-82.  

 

290
 Nygren P, Fryknäs M, Agerup B, Larsson R. Repositioning of the anthelmintic drug mebendazole for the 

treatment for colon cancer J Cancer Res Clin Oncol 2013; 139(12): 2133–40. 

 

291
 Coyne CP, Jones T, Bear R. Gemcitabine-(C4-amide)-[anti-HER2/neu] anti-neoplastic cytotoxicty in dual 

combination with mebendazole against chemotherapeutic-resistant mammary adenocarcinoma.  J Clin Exp 

Oncol 2013; 02(02).  

 
292

 Doudican N, Rodriguez A, Osman I, Orlow SJ. Mebendazole induces apoptosis via Bcl-2 inactivation in 

chemoresistant melanoma cells Mol Cancer Res 2008; 6(8): 1308–15. 

 
293

 Dobrosotskaya IY, Hammer GD, Schteingart DE, Maturen KE, Worden FP. (2011) Mebendazole monotherapy 

and long-term disease control in metastatic adrenocortical 

carcinoma Endocr Prac 2011; 17(3): e59–62. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Sivakumar%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23210778
http://www.ncbi.nlm.nih.gov/pubmed/23210778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Santos%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=23176628
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chowdury%20KF%5BAuthor%5D&cauthor=true&cauthor_uid=23176628
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vinader%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23176628
http://www.ncbi.nlm.nih.gov/pubmed/23176628
http://www.ncbi.nlm.nih.gov/pubmed/23176628
http://www.ncbi.nlm.nih.gov/pubmed?term=Pantziarka%20P%5BAuthor%5D&cauthor=true&cauthor_uid=25075217
http://www.ncbi.nlm.nih.gov/pubmed?term=Bouche%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25075217
http://www.ncbi.nlm.nih.gov/pubmed?term=Meheus%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25075217
http://www.ncbi.nlm.nih.gov/pubmed?term=Sukhatme%20V%5BAuthor%5D&cauthor=true&cauthor_uid=25075217
http://www.ncbi.nlm.nih.gov/pubmed?term=Sukhatme%20VP%5BAuthor%5D&cauthor=true&cauthor_uid=25075217
http://www.ncbi.nlm.nih.gov/pubmed/25075217
http://www.ncbi.nlm.nih.gov/pubmed?term=Doudican%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=23059386
http://www.ncbi.nlm.nih.gov/pubmed?term=Byron%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=23059386
http://www.ncbi.nlm.nih.gov/pubmed?term=Pollock%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=23059386
http://www.ncbi.nlm.nih.gov/pubmed?term=Orlow%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=23059386
http://www.ncbi.nlm.nih.gov/pubmed/?term=Anticancer+Drugs+24(2)+181%E2%80%938
http://www.ncbi.nlm.nih.gov/pubmed?term=Bai%20RY%5BAuthor%5D&cauthor=true&cauthor_uid=21764822
http://www.ncbi.nlm.nih.gov/pubmed?term=Staedtke%20V%5BAuthor%5D&cauthor=true&cauthor_uid=21764822
http://www.ncbi.nlm.nih.gov/pubmed?term=Aprhys%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=21764822
http://www.ncbi.nlm.nih.gov/pubmed?term=Gallia%20GL%5BAuthor%5D&cauthor=true&cauthor_uid=21764822
http://www.ncbi.nlm.nih.gov/pubmed?term=Riggins%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=21764822
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bai+R+et+al+(2011)+Antiparasitic+mebendazole+shows+survival+benefit+in+2+preclinical+models+of+glioblastoma+multiforme
http://www.ncbi.nlm.nih.gov/pubmed?term=Frykn%C3%A4s%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24135855
http://www.ncbi.nlm.nih.gov/pubmed?term=Agerup%20B%5BAuthor%5D&cauthor=true&cauthor_uid=24135855
http://www.ncbi.nlm.nih.gov/pubmed?term=Larsson%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24135855
http://www.ncbi.nlm.nih.gov/pubmed?term=Rodriguez%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18667591
http://www.ncbi.nlm.nih.gov/pubmed?term=Osman%20I%5BAuthor%5D&cauthor=true&cauthor_uid=18667591
http://www.ncbi.nlm.nih.gov/pubmed?term=Orlow%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=18667591
http://www.ncbi.nlm.nih.gov/pubmed?term=Hammer%20GD%5BAuthor%5D&cauthor=true&cauthor_uid=21454232
http://www.ncbi.nlm.nih.gov/pubmed?term=Schteingart%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=21454232
http://www.ncbi.nlm.nih.gov/pubmed?term=Maturen%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=21454232
http://www.ncbi.nlm.nih.gov/pubmed?term=Worden%20FP%5BAuthor%5D&cauthor=true&cauthor_uid=21454232


296 
 

                                                                                                                                                                                     
294

 Nygren P, Larsson R. Drug repositioning from bench to bedside: Tumour remission by the antihelmintic drug 

mebendazole in refractory metastatic colon cancer Acta Oncol 2013; 57(3): 427–8. 

 

295
 Jaszczyszyn A, Gąsiorowski K, Świątek P, Malinka W, Cieślik-Boczula K, Petrus J, et al. Chemical structure of 

phenothiazines and their biological activity. Pharmacol Rep. 2012; 64(1):16-23. 

 
296

 Fond G, Macgregor A, Attal J, Larue A, Brittner M, Ducasse D, et al. Antipsychotic drugs: pro-cancer or anti-

cancer? A systematic review. Med Hypotheses. 2012; 79(1): 38-42.  

 

297
 Byun HY, Lee JH, Kim BR, Kang S, Dong SM, Park MS, et al. Anti-angiogenic effects of thioridazine involving 

the FAK-mTOR pathway. Microvasc. Res. 2012; 84: 227–234. 

 

298
 Park MS, Dong SM, Kim BR, Seo SH, Kang S, Lee EJ, et al.Thioridazine inhibits angiogenesis and tumor 

growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts. Oncotarget. 2014; 5(13): 

4929-34. 

 

299
 Qi L, Ding Y. Potential antitumor mechanisms of phenothiazine drugs. Sci China Life Sci. 2013; 56(11): 1020-

7. 

 
300

 Zong D, Zielinska-Chomej K, Juntti T, Mörk B, Lewensohn R, Hååg P, et al. Harnessing the lysosome-

dependent antitumor activity of phenothiazines in human small cell lung cancer. Cell Death Dis. 2014; 5: 

e1111.  

 
301

 Ikediobi ON, Reimers M, Durinck S, Blower PE, Futreal AP, Stratton MR, et al. In vitro differential sensitivity 

of melanomas to phenothiazines is based on the presence of codon 600 BRAF mutation. Mol Cancer Ther. 

2008; 7(6): 1337-46. 

 

302
 Spengler G, Takács D, Horváth A, Riedl Z, Hajós G, Amaral L, et al. Multidrug resistance reversing activity of 

newly developed phenothiazines on P-glycoprotein (ABCB1)-related resistance of mouse T-lymphoma cells. 

Anticancer Res. 2014; 34(4): 1737-41. 

 

303
 Zong D, Hååg P, Yakymovych I, Lewensohn R, Viktorsson K. Chemosensitization by phenothiazines in human 

lung cancer cells: impaired resolution of γH2AX and increased oxidative stress elicit apoptosis associated with 

lysosomal expansion and intense vacuolation. Cell Death Dis. 2011; 2: e181. 

 
304

 Pan JX, Ding K, Wang CY. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by 

blocking multiple signaling pathways of cancer stem cells. Chin J Cancer. 2012; 31(4): 178-84.  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Jaszczyszyn%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22580516
http://www.ncbi.nlm.nih.gov/pubmed?term=G%C4%85siorowski%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22580516
http://www.ncbi.nlm.nih.gov/pubmed?term=%C5%9Awi%C4%85tek%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22580516
http://www.ncbi.nlm.nih.gov/pubmed/?term=Malinka%20W%5BAuthor%5D&cauthor=true&cauthor_uid=22580516
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cie%C5%9Blik-Boczula%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22580516
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petrus%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22580516
http://www.ncbi.nlm.nih.gov/pubmed/22580516
http://www.ncbi.nlm.nih.gov/pubmed?term=Fond%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22543071
http://www.ncbi.nlm.nih.gov/pubmed?term=Macgregor%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22543071
http://www.ncbi.nlm.nih.gov/pubmed?term=Attal%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22543071
http://www.ncbi.nlm.nih.gov/pubmed/?term=Larue%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22543071
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brittner%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22543071
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ducasse%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22543071
http://www.ncbi.nlm.nih.gov/pubmed/22543071
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23022044
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dong%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=23022044
http://www.ncbi.nlm.nih.gov/pubmed/?term=Park%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=23022044
http://www.ncbi.nlm.nih.gov/pubmed?term=Park%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=24952635
http://www.ncbi.nlm.nih.gov/pubmed?term=Dong%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=24952635
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=24952635
http://www.ncbi.nlm.nih.gov/pubmed/?term=Seo%20SH%5BAuthor%5D&cauthor=true&cauthor_uid=24952635
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24952635
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=24952635
http://www.ncbi.nlm.nih.gov/pubmed/24952635
http://www.ncbi.nlm.nih.gov/pubmed?term=Qi%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24132550
http://www.ncbi.nlm.nih.gov/pubmed?term=Ding%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=24132550
http://www.ncbi.nlm.nih.gov/pubmed/?term=phenothiazine+mapk
http://www.ncbi.nlm.nih.gov/pubmed?term=Zong%20D%5BAuthor%5D&cauthor=true&cauthor_uid=24625970
http://www.ncbi.nlm.nih.gov/pubmed?term=Zielinska-Chomej%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24625970
http://www.ncbi.nlm.nih.gov/pubmed?term=Juntti%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24625970
http://www.ncbi.nlm.nih.gov/pubmed/?term=M%C3%B6rk%20B%5BAuthor%5D&cauthor=true&cauthor_uid=24625970
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lewensohn%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24625970
http://www.ncbi.nlm.nih.gov/pubmed/?term=H%C3%A5%C3%A5g%20P%5BAuthor%5D&cauthor=true&cauthor_uid=24625970
http://www.ncbi.nlm.nih.gov/pubmed/24625970
http://www.ncbi.nlm.nih.gov/pubmed?term=Ikediobi%20ON%5BAuthor%5D&cauthor=true&cauthor_uid=18524847
http://www.ncbi.nlm.nih.gov/pubmed?term=Reimers%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18524847
http://www.ncbi.nlm.nih.gov/pubmed?term=Durinck%20S%5BAuthor%5D&cauthor=true&cauthor_uid=18524847
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blower%20PE%5BAuthor%5D&cauthor=true&cauthor_uid=18524847
http://www.ncbi.nlm.nih.gov/pubmed/?term=Futreal%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=18524847
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stratton%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=18524847
http://www.ncbi.nlm.nih.gov/pubmed/?term=melanomas+phenothiazines+braf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Riedl%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=24692704
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haj%C3%B3s%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24692704
http://www.ncbi.nlm.nih.gov/pubmed/?term=Amaral%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24692704
http://www.ncbi.nlm.nih.gov/pubmed/24692704
http://www.ncbi.nlm.nih.gov/pubmed/24692704
http://www.ncbi.nlm.nih.gov/pubmed?term=Zong%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21776019
http://www.ncbi.nlm.nih.gov/pubmed?term=H%C3%A5%C3%A5g%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21776019
http://www.ncbi.nlm.nih.gov/pubmed?term=Yakymovych%20I%5BAuthor%5D&cauthor=true&cauthor_uid=21776019
http://www.ncbi.nlm.nih.gov/pubmed?term=Lewensohn%20R%5BAuthor%5D&cauthor=true&cauthor_uid=21776019
http://www.ncbi.nlm.nih.gov/pubmed?term=Viktorsson%20K%5BAuthor%5D&cauthor=true&cauthor_uid=21776019
http://www.ncbi.nlm.nih.gov/pubmed/21776019
https://www.ncbi.nlm.nih.gov/pubmed?term=Pan%20JX%5BAuthor%5D&cauthor=true&cauthor_uid=22237038
https://www.ncbi.nlm.nih.gov/pubmed?term=Ding%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22237038
https://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20CY%5BAuthor%5D&cauthor=true&cauthor_uid=22237038
https://www.ncbi.nlm.nih.gov/pubmed/22237038


297 
 

                                                                                                                                                                                     
305

 Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Multi-targeted therapy of cancer by 

niclosamide: A new application for an old drug. Cancer Lett. 2014; 349(1): 8-14.  

 
306

 Kang SH, Yu MO, Park KJ, Chi SG, Park DH, Chung YG.. Activated STAT3 regulates hypoxia-induced 

angiogenesis and cell migration in human glioblastoma. Neurosurgery. 2010; 67(5): 1386-95. 

 
307

 Kuendgen A, Gattermann N. Valproic acid for the treatment of myeloid malignancies. Cancer. 2007; 110(5): 

943-54. 

 

308
 Hutt DM, Roth DM, Vignaud H, Cullin C, Bouchecareilh M. The histone deacetylase inhibitor, vorinostat, 

represses hypoxia inducible factor 1 alpha expression through translational inhibition. PLoS One. 2014; 9(8): 

e106224.  

 
309

 Mandard, A.-M., Dalibard, F., Mandard, J.-C, Marnay J, Henry-Amar M, Petiot JF, et al. Pathologic 

assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. 

Clinicopathologic correlations. Cancer 1994; 73: 2680–2686.  

https://www.ncbi.nlm.nih.gov/pubmed?term=Li%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=24732808
https://www.ncbi.nlm.nih.gov/pubmed?term=Li%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=24732808
https://www.ncbi.nlm.nih.gov/pubmed?term=Roberts%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=24732808
http://www.ncbi.nlm.nih.gov/pubmed/?term=Arend%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=24732808
http://www.ncbi.nlm.nih.gov/pubmed/?term=Samant%20RS%5BAuthor%5D&cauthor=true&cauthor_uid=24732808
http://www.ncbi.nlm.nih.gov/pubmed/?term=Buchsbaum%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=24732808
https://www.ncbi.nlm.nih.gov/pubmed/24732808
http://www.ncbi.nlm.nih.gov/pubmed?term=Kang%20SH%5BAuthor%5D&cauthor=true&cauthor_uid=20871442
http://www.ncbi.nlm.nih.gov/pubmed?term=Yu%20MO%5BAuthor%5D&cauthor=true&cauthor_uid=20871442
http://www.ncbi.nlm.nih.gov/pubmed?term=Park%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=20871442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chi%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=20871442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Park%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=20871442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chung%20YG%5BAuthor%5D&cauthor=true&cauthor_uid=20871442
http://www.ncbi.nlm.nih.gov/pubmed/20871442
http://www.ncbi.nlm.nih.gov/pubmed?term=Kuendgen%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17647267
http://www.ncbi.nlm.nih.gov/pubmed?term=Gattermann%20N%5BAuthor%5D&cauthor=true&cauthor_uid=17647267
http://www.ncbi.nlm.nih.gov/pubmed/17647267
http://www.ncbi.nlm.nih.gov/pubmed?term=Hutt%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=25166596
http://www.ncbi.nlm.nih.gov/pubmed?term=Roth%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=25166596
http://www.ncbi.nlm.nih.gov/pubmed?term=Vignaud%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25166596
http://www.ncbi.nlm.nih.gov/pubmed?term=Cullin%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25166596
http://www.ncbi.nlm.nih.gov/pubmed?term=Bouchecareilh%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25166596
http://www.ncbi.nlm.nih.gov/pubmed/25166596
http://www.ncbi.nlm.nih.gov/pubmed/?term=Marnay%20J%5BAuthor%5D&cauthor=true&cauthor_uid=8194005
http://www.ncbi.nlm.nih.gov/pubmed/?term=Henry-Amar%20M%5BAuthor%5D&cauthor=true&cauthor_uid=8194005
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petiot%20JF%5BAuthor%5D&cauthor=true&cauthor_uid=8194005

