eTheses Repository

Development of heat resistant alloys for optimal creep performance

Nowak, Igor Mateusz (2015)
Eng.D. thesis, University of Birmingham.

This item has no file(s) to display.


Heat resisting centrifugally cast tubes of HP micro alloy (25/35 Cr/Ni, 0.4C), are extensively used in steam reforming, which is currently the dominate technology for hydrogen generation. High pressure of the reacting gases inside the tubes generates high hoop stress in the tube wall and together with the temperature exposure of 900-1050°C causes the tubes to creep along the circumferential direction. The alloy's ability to successfully withstand the severe operating condition is highly dependent on its high temperature creep-rupture behaviour.

In recent years a number of manufactures have introduced higher creep-rupture strength versions of the heat resisting HP micro alloy. As a consequence they are able to offer the centrifugally cast tubes in thinner walls. Therefore, there is a need to enhance the creep-rupture strength of the alloy produced by Doncasters Paralloy. The immediate objective of this research project is to establish the mechanisms that govern the creep process in this alloy system. Once these mechanisms are better understood further alloy development within the present alloy composition can be achieved. The advanced stages of the project specifically involve studying the influence of microstructure in relation to creep resistance as a function of compositional modifications.

Type of Work:Eng.D. thesis.
Supervisor(s):Evans, Hugh and Connolly, Brian J.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Metallurgy and Materials
Additional Information:

Embargo until: 31/12/2018

Subjects:TN Mining engineering. Metallurgy
Institution:University of Birmingham
ID Code:5916
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page