eTheses Repository

Experimental and computational evaluation of activated carbons for carbon dioxide capture from high pressure gas mixtures

Caldwell, Simon James (2015)
Ph.D. thesis, University of Birmingham.

Loading
PDF (4Mb)Redacted Version

Abstract

This PhD project aimed to study the separation of carbon dioxide from high pressure gas mixtures as it is directly applicable to pre-combustion carbon dioxide capture. Adsorption isotherms were produced and best fit by the Langmuir-Freundlich and dual-site Langmuir (DSL) isotherms. Breakthrough experiments investigated the separation under dynamic conditions. These showed that adsorption capacities need to be studied on a volumetric basis. The multicomponent DSL isotherm model was the most suitable for predicting breakthrough capacities.

An axial dispersed plug flow model was validated against the experimental data with a reasonable accuracy. Cyclic experiments were validated, which were found to be restricted by the surrounding pipework and instruments. A parameter sensitivity analysis indicated the particle diameter, bed voidage and particle voidage had the greatest effect on the breakthrough curve.

Pressure swing adsorption systems were also simulated. Simple cycles and counter-current operation were proven to not produce high quality heavy or light product. A novel purge recycle step was introduced and improved the carbon dioxide purity. A carbon dioxide purity of 93.8% was achieved by using a rinse step after pressure equalisation steps, but required a compressor and resulted in a significant reduction in carbon dioxide capture rate.

Type of Work:Ph.D. thesis.
Supervisor(s):Wood, Joseph and Al-Duri, Bushra
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemical Engineering
Subjects:TP Chemical technology
Institution:University of Birmingham
ID Code:5821
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page