eTheses Repository

Path-integral analysis of passive, graded-index waveguides applicable to integrated optics

Constantinou, C.C. (1991)
Ph.D. thesis, University of Birmingham.

PDF (8Mb)


The Feynman path integral is used to describe paraxial, scalar wave propagation in weakly inhomogeneous media of the type encountered in passive integrated-optical communication devices. Most of the devices considered in this work are simple models for graded-index waveguide structures, such as tapered and coupled waveguides of a wide variety of geometries. Tapered and coupled graded-index waveguides are the building blocks of waveguide junctions and tapered couplers, and have been mainly studied in the past through numerical simulations. Closed form expressions for the propagator and the coupling efficiency of symmetrically tapered graded-index waveguide sections are presented in this thesis for the first time. The tapered waveguide geometries considered are the general power-law geometry, the linear, parabolic, inverse-square-law, and exponential tapers. Closed form expressions describing the propagation of a centred Gaussian beam in these tapers have also been derived. The approximate propagator of two parallel, coupled graded-index waveguides has also been derived in closed form. An expression for the beat length of this system of coupled waveguides has also been obtained for the cases of strong and intermediate strength coupling. The propagator of two coupled waveguides with a variable spacing was also obtained in terms of an unknown function specified by a second order differential equation with simple boundary conditions. The technique of path integration is finally used to study wave propagation in a number of dielectric media whose refractive index has a random component. A refractive index model of this type is relevant to dielectric waveguides formed using a process of diffusion, and is thus of interest in the study of integrated optical waveguides. We obtained closed form results for the average propagator and the density of propagation modes for Gaussian random media having either zero or infinite refractive-index-inhomogeneity correlation-length along the direction of wave propagation.

Type of Work:Ph.D. thesis.
Supervisor(s):Jones, Raymund C. and MacLean, T. S. M. (Thomas Stewart Mackenzie) (1926-)
School/Faculty:Faculties (to 1997) > Faculty of Engineering
Department:School of Electronic and Electrical Engineering
Subjects:TK Electrical engineering. Electronics Nuclear engineering
Institution:University of Birmingham
Library Catalogue:Check for printed version of this thesis
ID Code:581
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page