eTheses Repository

Milling/routing of carbon fibre reinforced plastic (CFRP) composites

El-Hofy, Mohamed Hassan (2014)
Ph.D. thesis, University of Birmingham.

Loading
PDF (17Mb)Accepted Version

Abstract

The research relates to a study on the routing/slotting of CFRP composites of the type used in aerospace applications. Following a literature review, 3 phases of experimental work were undertaken to evaluate the effects of key process variables on the machinability of CFRP. The influence of varying operating parameters, tool material and cutting environment were initially investigated in Phase 1 work. The results showed that use of PCD was critical and highlighted the importance of chilled air in maintaining adequate tool life and acceptable workpiece integrity. Delivery of chilled air through a single-nozzle arrangement generally led to an increase in forces and delamination with the twin-nozzle configuration showing superior workpiece surface roughness. Phase 2 work detailed the effect of workpiece lay-up configuration on cutting forces, temperature and surface integrity following slotting and routing. Plies in the 45 direction generally exhibited the highest level of surface damage following machining. Experiments in Phase 3 showed that relatively small helix angles (± 3) had a negligible effect on tool life, forces and temperature. In addition, cutters with a single relief angle were found to have lower stability in operation compared to tools with a secondary clearance angle, with detrimental effects on surface roughness.

Type of Work:Ph.D. thesis.
Supervisor(s):Soo, Sein Leung and Aspinwall, David K.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Mechanical Engineering
Subjects:TJ Mechanical engineering and machinery
Institution:University of Birmingham
ID Code:5529
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page