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Abstract 
The human papillomavirus (HPV) E2 protein regulates the virus life cycle by 

modulating viral transcription and replication. To execute these functions, E2 binds 

to consensus sequences within the long control region (LCR). The possibility of 

novel E2 binding sites outside the LCR is the primary focus of this study. Moreover, 

the cellular protein CCCTC binding factor (CTCF), is known to regulate viral gene 

expression, therefore viral genome was screened for the presence of CTCF binding 

sites to see if they overlap the E2 binding sites. A comparison of CTCF expression 

within patient tonsil sections comprising normal (non-cancerous), HPV positive and 

HPV negative cancers may provide valuable information on the viral life cycle as well 

as disease progression.   

Chromatin Immunoprecipitation assays using primary human tonsil keratinocytes 

containing episomal HPV16 genomes revealed novel E2 binding sites within the viral 

genome. Peak binding at base pairs 4400, 4500, 5600 and 6000 was detected, 

however consensus E2 binding sites do not exist in this region. CTCF was observed 

to bind to the same regions as HPV16 E2. Further investigation revealed a physical 

association between E2 and CTCF suggesting that CTCF could recruit E2 to the late 

region of the HPV genome.  In patient tumour samples high levels of CTCF 

expression were observed throughout the epithelium; In contrast, the pattern of 

CTCF expression in the normal tonsil epithelium showed high expression in the 

lower layers that was dramatically reduced in the differentiated layers. Interestingly 

increased CTCF expression was observed in all areas of HPV positive tonsil sections 

in comparison to HPV negative sections. This difference in CTCF expression may be 

associated with HPV infection and important for the viral life cycle.   

 
 



 

3 

Acknowledgements 
I would like to thank Dr Jo Parish for offering this wonderful project. Her constant 

support during my project as well as during the write up has been astronomical. I 

would like to thank her for having confidence in my ability. I would also like to thank 

Dr Katherine Feeney, Dr Karen Campos-León, Leanne Harris, Abida Siddiqa and  

Ieisha Pentland for their constant support during my time in the lab as well as the 

write up period. I would also like to thank Dr Sally Roberts for the primary human 

tonsil keratinocytes. I would like to thank members of the InHANSE team especially 

Dr Davy Rapozo and Dr Sandra Ventorin von Zeildler for introducing me to the 

immunohistochemistry technique.  I would also like to thank Dr Malgorzata Wiench 

and Harmeet Gill for helping with the ChIP-Seq library preparation.       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

4 

Contents  
ABSTRACT' 2!

ACKNOWLEDGEMENTS' 3!

CONTENTS' 4!

ABBREVIATIONS' 6!

INTRODUCTION' 8!

Overview of papillomaviruses 8 

Epidemiology 10 

Prophylactic action against papillomavirus 12 

Vaccination against HPV 12 

HPV genome 13 

HPV life cycle 14 

Viral oncoproteins E6 and E7 16 

Early protein E5 17 

Viral protein E2 17 

Structure of E2 17 

Function of E2 19 

Viral protein E1 19 

Viral protein E4 20 

Late proteins L1 and L2 20 

Control of HPV gene expression by the host cell protein CTCF 21 

Structure of CTCF 22 

HYPOTHESES'AND'AIMS' 26!



 

5 

MATERIALS'AND'METHODS' 28!

Chromatin Immunoprecipitation (ChIP) 28 

Chromatin preparation 28 

Enzymatic Shearing of Chromatin 28 

Chromatin shearing by sonication 29 

Immunoprecipitation of Chromatin 29 

Chromatin elution 30 

Real-time PCR 31 

Library preparation for ChIP-SEQ 32 

Cell culture 32 

Cell lysis 33 

Co-Immunoprecipitation 33 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western 
blotting 34 

Detection of the membrane 35 

Immunohistochemistry 35!

RESULTS' 38!

Assessment of E2 association with the HPV 16 genome by ChIP 38 

End repaired ChIP DNA 44 

Co-Immunoprecipitation of C33a cells transfected with HPV 16 E2 45 

Expression of CTCF in tissue sections 47 

DISCUSSION' 52!

CONCLUSIONS' 58!

APPENDIX' 60!

REFERENCES' 62!
 



 

6 

Abbreviations 

• Adenocarcinoma (AC) 

• Adenosine triphosphate (ATP)         

• Antibody (ab) 

• Base pair (bp) 

• Binding sites (bs) 

• Bovine papillomavirus (BPV) 

• CCCTC binding factor (CTCF) 

• Codons: Adenine, Uracil, Guanine (AUG)  

• Cyclin depended kinases (CDK) 

• Deoxyribonucleic acid (DNA) 

• Early (E) 

• Early polyadenylation (pAE) 

• Epidermal growth factor receptor (EGFR) 

• GlaxoSmithKline (GSK) 

• Human papillomavirus (HPV) 

• Late (L) 

• Late polyadenylation (pAL) 

• Long control region (LCR) 

• Messenger RNA (mRNA)             

• Mitogen-activated protein (MAP) 

• Open reading frames (ORF) 

• Origin of replication (Ori)   

• Papillomavirus (PV) 

• Polyadenylation (pA) 

• Polypeptide protein tag (FLAG) 

• Retinoblastoma protein (pRb) 

• Squamous cell carcinoma (SCC) 
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• Zona occluden 1 (ZO-1) 
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Introduction  
Overview of papillomaviruses  

Small non-enveloped DNA tumor viruses such as papillomaviruses (PVs) infect a 

variety of vertebrate species 1. PVs are ~55 nm in diameter 2 and possess strict 

tissue tropism as well as host specificity, therefore human papillomaviruses (HPVs) 

solely infect squamous epithelium in the human anatomy 3. More than 150 types of 

HPVs have been sequenced so far and, on the basis of DNA sequence analysis, 

they are categorised into α, β, γ, µ and ν PVs 4,5 (Fig 1). The vast majority of the adult 

population are exposed to HPVs, which can infect an array of epithelial surfaces 

ranging from oropharyngeal to anogenital regions 6 (Fig 2) 7. The subclasses of PVs 

mentioned above possess different characteristics and pathological association 8. β 

and γ PVs genera only seems to cause asymptomatic infections within immuno-

competent individuals 9. All mucosal HPV types belong to the α PV genus 10 and this 

subclass of HPV are well studied since they have been shown to be the etiological 

agents of cervical cancer 10. Upon entry, the virus can cause cutaneous or mucosal 

skin infection, which may resolve spontaneously or develop into either benign or 

malignant tumors 10. On the basis of their tumourigenicity, α PVs can be divided into 

low-risk types such as HPV 6 and 11 and high-risk types such as HPV 16 and 18, 

low-risk HPV types are known to be the causative agent of benign warts and they 

are also capable of causing cutaneous lesions, however they are not known to 

cause neoplasia 11. Conversely high-risk HPV are associated with cervical cancer 
1,12,13.  
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Figure 1 illustrates the phylogenetic tree of HPV. HPVs can be divided into five evolutionary groups with various epithelial tropisms and 
disease association. αPVs are comprised of low-risk mucosal types (orange shaded segment) known to cause benign warts and high-risk 

mucosal types associated cervical neoplasia and cancer (pink shaded segment). Cutaneous HPVs are not known to be associated with 
cancer, α type (grey segment), β type (green segment) and γ type (blue segment). Image taken from 4. 

 

µ!"papillomavirus cutaneous: 
Benign cutaneous lesions 
usually at  palmer and planter 
epithelial sites . Not 
associated with cancer 

ν−papillomavirus 
cutaneous: Benign 
cutaneous lesions. DNA  
occasionally detected in 
skin cancer 

γ−papillomavirus: benign 
cutaneous lesion. Some 
types detected at oral sites. 
DNA only very rarely found 
in skin cancer   

β−papillomavirus cutaneous 
lesions: group includes high-risk 
and low-risk cutaneous types. 
Typically associated with  
unapparent infections in the 
immunocompetent host, but can 
proliferate in immunosuppressed 
hosts and in epidermodysplasia 
verruciformis patients. Persistent 
infection is thought to predispose 
to the development of skin cancer, 
especially in immunosuppressed 
individuals     

α−papillomavirus mucosal & 
cutaneous: Group includes 
high-risk mucosal types that 
are associated with cervical 
cancer, low-risk mucosal types 
that are associated with benign 
lesions, and low-risk cutaneous 
types that typically cause skin 
warts some types can be found 
in both mucosal and cutaneous 
lesions, although a preference 
is usually apparent. Low-risk 
HPV DNA is only rarely found 
in cancers. High-risk HPV 
DNA is found in almost all 
cases of cervical cancer.    
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Epidemiology 

Cancer is one of the major causes of mortality and there are certain viral infections 

that are capable of predisposing infected individuals towards this pathological 

condition. Understanding how infectious agents are able to initiate and develop 

aberrant cellular proliferation opens up the potential to prevent or treat cancer with 

greater efficiency. Cervical carcinoma is the second most leading cause of cancer-

related death amongst women worldwide. HPVs are accountable for 1.6% of all the 

cancer cases within UK 14. High-risk HPV types 16 and 18 have been identified as 

the predisposing factors in 70% of the cases of cervical cancer 15. It takes several 

years for a primary viral infection to develop into cervical cancer. Upon infection with 

HPV, the disease follows a progression route from low-grade to high-grade cervical 

lesions prior to carcinogenic transformation 15. Although cervical cancer is the most 

common cancer caused by HPV infection, head and neck and anogenital cancer 

cases are also known to be caused by HPV infection (Fig 2).  

Figure 2 represents the range of cancers associated with HPV. Image taken from 7 
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The mechanism through which infections with high-risk HPV types persist for many 

years is still unknown. Cervical carcinoma can be divided into adenocarcinoma (AC) 

and squamous cell carcinoma (SCC). Around 85% of cervical cancer is SCC and 

15% is AC 16. The prevalence of cervical cancer is higher in developing countries 

accounting for 15% out of all types of cancers 17. Increased rates of ACs are now 

being observed in developing countries. This could be due to the routine of 

screening programs that are capable of detecting AC 18. Current estimation predicts 

HPV prevalence amongst women without cervical alterations is 11.7% worldwide. 

High incidences of cervical cancer are observed in developing regions of the world 
17 for example in Kenya, Zimbabwe and Mozambique at 33.6% 19. In the Caribbean 

regions such as Trinidad and Tobago 35.4% and in Latin American regions 16.1% 

prevalence are observed 19. (Fig 3) 7 In contrast lower prevalence of HPV is 

observed in well-developed regions. For instance, western Europe, north America, 

UK and Asia show only 9%, 4.7%, 10% and 9.4% respectively 19.  

Figure 3 is a representation of HPV prevalence worldwide. Red coloured regions correspond 

to high HPV prevalence, yellow coloured region correspond to intermediate HPV prevalence 

and green coloured region correspond to low HPV prevalence 7 
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Prophylactic action against papillomavirus 

Cervical screening programmes have significantly reduced the incidence of invasive 

cervical cancer and the associated mortality rate 20. However, the impact of cervical 

screening programmes in developing countries is not proving to be as effective. 

This could be due to a number of reasons such as inadequate population coverage 

or substandard cytology techniques 18. Women that are over the age of 30 are at 

greatest risk of developing cervical cancer due to persistent HPV infections. 

Therefore, the introduction of a cervical screening program could prove to be 

advantageous and aid towards early detection of cervical dysplasia in developing 

countries. A high incidence of HPV infection is observed amongst women under the 

age of 30, however these women do not exhibit any symptoms for a long period of 

time 21. Since the screening program fails to detect the presence of HPV, a 

prophylactic vaccine for women under the age of 20 was developed and could 

prove to be effective in preventing malignant transformation 21. 

Vaccination against HPV   

Vaccines against HPV were the first generated anti-cancer vaccine 22. Currently 

there are two prophylactic vaccines available against certain variants of HPV.  

Cervarix (GlaxoSmithKline) is a bivalent vaccine capable of protecting against high-

risk HPV types 16 and 18 whereas a quadrivalent vaccine Gardasil (Merck) targets 

HPV types 6, 11,16 and 18 23,24. These vaccines initiate the host immune response!

mediated via antibodies against the viral protein L1 25. Administration of Cervarix has 

shown to provide antibody responses up to 6.4 years 26,27 on the other hand the 

quadrivalent vaccine has been shown to provide effective antibody responses for 5 

years 28. However, additional preventive measures such as a screening program, life 

style changes and physical examination should not be abandoned in vaccinated 

populations 22 as results from a phase 3 trial reveal the inadequacy of the vaccines 
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towards existing HPV infection and its progression towards pathological conditions 
29.   

HPV genome 

The viral genome is 8000 basepairs (bp) in size with eight open reading frames 

(ORF), divided into three distinct territories termed the long control region (LCR), the 

early region and the late region 30. The LCR is approximately 850 bp long, that has 

binding sites for viral proteins E2 and E1 and cellular transcription factors as well as 

the origin of replication (ori) (Fig 4) 2,12,13. The early region of the genome comprises 

of six ORF which encode the viral proteins E1, E2, E4, E5, E6 and E7 2,30. Proteins 

encoded from the early region are mainly involved in maintenance of the genome, 

cellular growth promotion and replication of viral DNA 22. The structural proteins L1 

and L2 are encoded by the late region of the viral genome and these proteins are 

the viral capsid proteins important in the assembly of infectious viral particles 31. 
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Figure 4 is an illustration of the HPV16 genome. The papillomavirus genome is a circular 

double-stranded molecule of 8,000 base pairs. There are three distinctive regions within the 
genome they are the LCR, the early (E) gene region, and the late (L) gene region. The genome 

encodes essential proteins for various stages of the viral life cycle. Early genes that are 
coloured in red represent oncoproteins and other early proteins are coloured in green. Late 

genes are coloured in orange. Early polyadenylation site (PAE) is located upstream of E5 
protein and late polyadenylation site (PAL) located upstream of L1. Image taken from 4 

 

HPV life cycle 

A typical PV infection starts in the basal epithelial layer 32 where the virus gains 

access through a small wound or abrasion 8,31 (Fig 5). It has been shown that PV 

bind to heparan sulphate proteoglycans (HSPG) on the basal epithelial layer and the 

infection phase commences 32. The viral genome is maintained as a low copy 

number episome within infected basal cells, which act as a reservoir of infection 4. 

Initially viral genomes are replicated with the aid of host DNA replicative machinery 

of the basal epithelial layer 33. Expression of low viral proteins in undifferentiated 

cells enables HPV to evade the host immune system and maintain its infectious state 
31. In the basal layer the episomal viral genome is maintained through the expression 

of E1, E2, E6 and E7 viral proteins. These proteins are crucial for the initiation of PV 
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life cycle 34,35 since, replication of viral DNA is facilitated by the E1 and E2 proteins. 

E6 and E7 regulate replication competence either through the degradation of tumor 

suppressor protein p53 by E6 or through the inactivation of retinoblastoma protein 

(pRb) by E7 35,36. Expression of E6 and E7 are down regulated by viral transcription 

factor E2 35,37. Basal differentiation causes the activation of late viral functions, which 

are mediated by E4, E5 and E1 38,39. Viral DNA replication and protein expression 

are amplified upon late promoter activation, this leads to an increase in viral copy 

number 40. 

Figure 5 illustrates the viral life cycle in cervical epithelium. The HPV life cycle initiates 
following infection of the epithelial cells in the basal layer. Cells with red nuclei represent 

virally infected basal epithelial cells that are dividing. Viral protein E4 expression is up 
regulated in cells residing in the middle layers, this protein is essential for the amplification 

of the genome. Green coloured cells are E4 positive with red nuclei. Genome amplification in 
the middle layers is aided by E6 and E7 that inhibit tumor suppressor proteins p53 and pRb, 

repsectively. In the upper layers virus particles are packaged and released from cornified 
epithelium 4 

 

Persistent infection drives cell proliferation in the basal and the parabasal cell layers 
41,42. Infected cells within the basal cell layer undergo mitosis where daughter cells 

are produced, then migrate towards the epithelial surface and begin to differentiate 4 

.In the upper epithelium expression of E6 and E7 enables the HPV infected cell to 

re-enter S-phase of the cell cycle, leading to an increase in copy number of the viral 
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genome 4. Down regulation of these oncoproteins causes the release of tumor 

suppressor protein pRb and p53 that was previously inhibited by E6 and E7. This 

enables host cells to progress through normal differentiation followed by the 

expression of late viral proteins L2 and L1. The viral structure is formed by 

capsomers containing the minor capsid protein L2 and major capsid protein L1. 

Viral genome becomes encapsulated in the nucleus which is followed by the release 

of complete virions 4,22.   

Viral oncoproteins E6 and E7  

The oncoproteins E6 and E7 are the main causative agents in the development of 

HPV induced cervical cancer 35,37. E6 consists of two zinc finger motifs and remains 

localised in the cytoplasm as well as the nucleus of the infected keratinocytes 43,44. 

Interference of E6 in cell cycle regulation through p53 ablation is well documented. 

The G1/S and G2/M phases of the cell cycle are regulated by p53 and this tumour 

suppressor protein becomes activated in response to cellular stress and DNA 

damage response 45,46. p53 degradation is initiated by E6 and the E6-associated 

protein (E6-AP) which target p53 for proteasome-dependent degradation by 

conjugation of ubiquitin 47-49. Degradation of p53 eliminates restraints on DNA 

synthesis enabling replication of viral DNA 49,50. In addition, E6 has the capacity of 

upregulate and sustain telomerase activity over numerous cell divisions 51,52 and it 

has recently been established that E6 degrades PDZ substrates and contributes to 

tight junction ablation via zona occludens 1 (ZO-1) relocalisation 53. PDZ motifs are 

associated with cell signalling, polarity and proliferation 54.  

E7 consists of three conserved regions and the conserved region 2 contains a 

LXCXE motif 55,56. This motif mediates the binding of E7 to the tumour suppressor 

protein pRb 57. pRb is hypophosphorylated thus enabling the inhibition of the 

transcription factor E2F during the G1 phase of the cell cycle 58,59. On the other hand, 

hyperphosphorylation of pRb by cyclin dependent kinases (CDK) induces the 
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dissociation of E2F from pRb and drives cell cycle progression 60. Association of E7 

to pRb causes its degradation, therefore, the inhibitory effect on E2F imposed by 

pRb is alleviated and early S-phase entry is promoted 35,61.  

Early protein E5  

E5 is a hydrophobic protein that localises to the endoplasmic reticulum, Golgi 

apparatus and plasma membrane 62,63. Within a cell culture system HPV E5 exhibits 

weak transformation ability 64. It has also been found that the functions of E6 and E7 

are reinforced by E5 and there is cumulative evidence on E5 increasing the half-life 

of epidermal growth factor receptor (EGFR) 65,66. The interaction between EGFR and 

HPV16 E5 results in an increased activation of MAP kinases 67,68. 

Viral protein E2       

E2 is DNA binding protein encoded by all PVs in the early and intermediate stages 

of the viral life cycle. E2 regulates HPV genome transcription and viral DNA 

replication 69. DNA binding protein E2 is sequence specific and capable of binding 

to 12 base pair motifs that are located in the LCR 70. The E2 protein is comprised of 

an N-terminal transactivation domain linked to a DNA binding/dimerization C-

terminal domain 71 via a flexible sequence known as hinge 72. The full length E2 

protein forms dimers that are capable of initiating replication and facilitate 

transcription 73,74.  

Structure of E2 

The N-terminal region or transactivation domain of E2 forms a characteristic 

“cashew shaped structure” 72 across all PVs. Structural analysis of HPV 16 E2 

reveals three long α−helices are arranged anti-parallel to each other within the 

transactivation domain, which are thought to form a protein interaction surface. On 

the other hand, anti-parallel β-sheets that form an unusual β-barrel structure 
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surrounded by four α−helices make up the C-terminal DNA binding and dimerization 

domain 75. The hinge region is thought to be relatively unstructured and serves as a 

flexible linker between the N- and the C-terminal domains of the protein (Fig 6) 76. 

 

Figure 6 illustrates HPV 16 E2 with transactivation domain with α-helices arranged anti-
parallel with each other 76and DNA binding domain with anti-parallel β-sheets are observed 

75 The two domains are connected via hinge structure  
 

The transactivation domain contains essential residues that orchestrate 

transcriptional regulation and these residues are located on the outer surface of the 

domain 73. In contrast, residues that are associated with replication are located on 

the inner surface of the domain, because they disrupt binding to E1 72. Unlike the 

transactivation domain sequence specificity does not perturb the DNA binding 

domain nevertheless it is known to stabilise interactions between DNA and protein 
77.  

DNA binding domain Transactivation domain  
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Function of E2  

E2 is a sequence specific DNA binding protein which recruits cellular factors to the 

viral genome which are capable of either activating or repressing transcriptional 

processes 78. E2 binds to DNA in a sequence specific manner.  There are four well 

characterised E2 binding sites within the LCR of the α PV genome 10. The binding of 

E2 to DNA is dependent on the consensus binding sequences they are 

ACCG(N)4CGGT or ACC(N)6GGT where N represents a spacer region often rich in T 

or A 1,69. Transcriptional activation or repression of viral gene expression is 

dependent on the E2 binding sites and recruitment of E2-associated cellular factors 
79,80. There is evidence of transcriptional repression via competitive binding of short 

forms of E2 to the E2 binding sites 72,81. The short forms of E2 are thought to dimerize 

with full length E2 to further enhance transcriptional repression 82. Viral DNA 

replication is initiated when E1 is loaded on to the replication origin via association 

with E2 83,84. Therefore, E2 plays a supporting role in the replication mechanism 

mediated via E1 83,85. Replication of viral DNA takes place in nuclear foci and the 

constructions of these foci are dependent upon E2 protein 86,87, although the exact 

make-up and nature of these foci is at present unclear. In order to facilitate viral 

genome maintenance, retention and partitioning E2 tethers viral genomes to the host 

chromosome by association with chromatin bound cellular proteins 88,89. However in 

comparison E2 proteins of the α PV species exhibits a weak binding to host 

chromosomes90.  

Viral protein E1 

One of the most conserved proteins encoded by all PV is the E1 protein, which is an 

adenosine triphosphate (ATP)-dependent DNA helicase 91. Conservation of the E1 

protein is indicative of its role as a replicative helicase, which delineates 

conscientious replication of the viral episome 92. E1 activity is essential for viral 
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genome replication, copy number increase and regulation of episomal levels 93. At 

the viral ori, E1 constructs into a double-hexamer that melts DNA at the origin prior 

to establishment of the replication fork 94,95.  

Viral protein E4 

E4 ORF encodes a protein that is variable in size between PV types 96. Expression of 

E4 protein arises from the spliced mRNA product E1^E4 that consist of the E1 

initiation codon and few sequences from the E1 ORF 97,100. E4 is encoded from the 

early region of the HPV genome however it is known to contribute predominantly to 

the late stages of the viral life cycle, for instance amplification of the genome and 

capsid protein expression 99-101, and expression is only detected in differentiated 

epithelium. E4 has been shown to contribute to keratin network disruption 102 and 

which potentially aids towards viral transmission 103.  

Late proteins L1 and L2 

L1 and L2 are viral capsid proteins transcribed from the late region of the viral 

genome. L1 and L2 are expressed towards the end of the viral life cycle 4,104. L2 is 

the minor capsid protein 105 and recent studies have established its role in HPV 

genome encapsidation 106. L2 plays an essential role during viral entry into host 

cells, for instance L2 disrupts subcellular trafficking, endosomal membranes and 

initiates conformational changes on the virions that are attached to the cell 107-109. L1 

is the major viral capsid protein 4 Capsid proteins are synthesised initially within the 

cytoplasm after which they migrate to the nucleus where viral chromatin is 

packaged L1 capsomeres are packaged in the cytoplasm110.  

Upon re-infection, the viral L1 protein interacts with HSPG that is expressed on the 

surface of basal cells of the epithelium. This interaction causes a change in 

conformation of the major capsid protein and leads to the exposure of minor capsid 

protein 111. The minor capsid protein is then subjected to furin cleavage, which 
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allows the virus to attach itself to an alternative surface receptor and infect the cell 
112.  

The functions of E2 in the control of viral gene expression and replication by its 

association with consensus binding sites within the LCR have been well 

documented. However, additional E2 binding sites outside of the viral LCR exist 72. 

The function of these binding sites and whether E2 associates with them in vivo has 

not been studied and requires further analysis.  

 

Control of HPV gene expression by the host cell protein CTCF 

Several cellular proteins have been shown to be recruited to the HPV genome to 

control early and late gene expression 3,113. CCCTC- binding factor (CTCF) is an 11 

zinc-finger protein that which has been shown to regulate HPV gene expression by 

recruitment to consensus binding sites within the HPV18 genome (Parish, 

unpublished). CTCF is normally located in the linker regions of human chromatin that 

are circumscribed by nucleosomes 114 and it was initially identified as transcriptional 

repressor for chicken c-myc and lysozyme genes 115,116. CTCF has also been shown 

to function as a transcriptional activator 117. When CTCF is positioned between a 

gene promoter and an enhancer it has the capability to harbour insulator activity. 

This halts communication between the promoter and the enhancer and therefore 

blocks transcriptional activation 118-120. CTCF is associated with a variety of molecular 

functions depending on the genetic locus involved, such as transcriptional activation 
121,122, transcriptional repression 123,124 and enhancer blocking activity 125,126. CTCF is 

involved in a variety of long range processes such as chromatin looping 127, 

chromatin insulation 114, chromosome segregation 128, and nuclear organisation 129,130.  

CTCF binding sites are highly conserved across different cell types 131. Interspecies 

CTCF binding profile within the liver was investigated, which unveiled 5000 highly 

conserved sites between species and tissues 132,133. 



 

22 

Structure of CTCF 

The complete structure of CTCF comprises of 3 major functional parts an N-terminal 

region, a DNA binding middle region and the C-terminal region 134,135. CTCF protein 

is subjected to post-translational modification such as poly-(ADP)-ribosylation 

(PARylation) at the C-terminus and phosphorylation at the N-terminus. CTCF is also 

SUMOylated 136 (Fig 7).  Phosphorylation at the N-terminal region switches CTCF 

function from transcriptional repressor to transcriptional activator 137,138. PARylation is 

crucial for CTCF to function as an insulator and the lack of this modification 

abolishes barrier activity 139. SUMO Small ubiquitin like protein is capable of 

modifying CTCF which enhances the CTCF repressor function at the c-myc P2 

promoter 134.  

CTCF binds to DNA via a poorly defined consensus binding motif. A single CTCF 

binding site consists of a primary and secondary motif. These binding motifs are 

recognised by CTCF via its 11 zinc fingers 132. Within certain locations the primary 

binding motif is capable of defining a CTCF binding site whereas, the secondary 

binding motif enhances CTCF binding 132. Bases that are adjacent to primary and 

secondary motifs are also thought to be important for CTCF binding 140.  
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Figure 7 represents CTCF structural features as well as substitution of amino-acid specific to 
tumours within zinc fingers. CTCF protein present in humans has a DNA-binding domain, 

which comprises of ten C
2
H

2
-class ZFs (ZFs 1–10) and one C

2
HC-class ZF (C-terminal 

ZF11)160  
 

The 11 zinc fingers of the CTCF DNA binding region do not all commit equally to the 

binding of DNA 140. Zinc fingers 4-7 target the core DNA binding motif and bind to 

80% of the CTCF binding sites, where as zinc fingers 8-11 and 1-2 stabilise CTCF 

broadly 123. CTCF is capable of affecting DNA methylation status through the 

formation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and poly(ADP-ribose) 

polymerase 1 (PARP1) complex. Activation of PARP1 via CTCF, inactivates DNMT1 

through poly(ADP-ribosyl)ation and therefore perputates methyl free CpGs in the 

DNA 124,125. It has also been shown that binding of CTCF is inhibited through 

methylation of CTCF binding sites 141,142 (Fig 8). 
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Figure 8 illustrates maintenance of CTCF and DNA binding with each other. Binding of CTCF 
binding is partially maintained via occupancy of the nucleosomes along with differential DNA 

methylation at specific CTCF binding sites. This suggests that the cells are able to remodel 
chromatin complexes by using ATP and consequently maintain certain CTCF binding sites 

along with the nucleosome occupancy at these sites. High levels of 5-methylcytosine are 
observed at CTCF binding sites this corresponds to a low CTCF occupancy. Methylation in 

this figure is depicted by filled red circles whereas open circles depicts unmethylated DNA 143 
 
 
 

CTCF has a major impact on the three dimensional structure of DNA which in turn 

has a major impact on gene regulation 136. Interaction of CTCF with 

nucleophosmin/B23 as well as the nuclear matrix, could be the factors contributing 

towards three dimensional DNA conformation 144,145.  Partitioning and positioning of 

DNA inside the nucleus is also thought to be mediated by CTCF (Fig 9). CTCF is a 

unique protein and influences cellular processes such as insulation, transcription, 

gene activation and tumour suppression. All of these roles mentioned could be 

crucial in the maintenance of the HPV genome and HPV gene expression. 

Additionally, there is evidence that CTCF and cohesin interact which has been 
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shown to be essential for CTCF function 146. E2 and cohesin have been shown to 

interact with one another within HPV (Parish unpublished).  

 

 
 

Figure 9 illustrates the positioning and partitioning of DNA mediated by CTCF.  Individual 
interphase chromosomes are formed from Double stranded DNA that occupies a certain area 

of the nuclear volume, this leads towards the formation of chromosome territories. Within 
the transcriptionally active centre of the nucleus CTCF constructs a non-random 

interchromosomal connections of certain loci. CTCF is known to bind at the borders of 
transcriptionally silent lamina associated domains (LADs) 147 
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Hypotheses and Aims 
Hypotheses 

• Alternative E2 binding sites exist in HPV genomes outside of the viral long 

control region (LCR) that are important in the regulation of viral gene 

expression  

• Novel E2 binding sites co-localise with CTCF binding sites in the HPV 

genome and binding of E2 to these novel binding sites enhances CTCF-

dependent regulation of viral gene expression 

• Evaluation of HPV16 E2 and CTCF binding within the host genome could 

provide valuable information on viral genome maintenance and HPV life 

cycle. 

• Differentiation dependent CTCF expression is important in the control of early 

and late gene expression in the virus life cycle. Alterations in the pattern of 

CTCF expression contributes to cancer-associated deregulation of viral gene 

expression.  

 

Aims 

• Identification of novel HPV 16 E2 binding sites via CHIP assay. 

• Identification of CTCF biding sites co-localisation with HPV16 E2 binding 

sites.  

• Determining the host binding sites for CTCF and HPV 16 E2, in order to 

deduce their role in viral genome maintenance and life cycle. 
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Analysis of differentiation dependent expression of CTCF in normal, HPV negative 
and HPV positive keratinocytes. 
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Materials and methods 
Chromatin Immunoprecipitation (ChIP) 

Active Motif ChIP-IT Express Enzymatic Kit catalogue number 5009 and 53035 was 

used to carry out the chromatin Immunoprecipitation experiment.  

Chromatin preparation 

Primary human tonsil keratinocytes with episomal HPV16 DNA was kindly provided 

by Dr Sally Roberts. Dr Jo Parish cultured the tonsil keratinocytes in 15 cm tissue 

culture dishes to 70-80% confluency. The tonsil keratinocytes were then fixed in 1% 

formaldehyde solution diluted in growth medium for 3 minutes at RT with gentle 

rocking. The cells were then washed in ice cold phosphate buffer saline (PBS) for 5 

seconds. The formaldehyde was then quenched with using Glycine Stop-Fix solution 

and incubated for 5 minutes at RT. The cells were then washed with ice cold PBS 

and harvested by scraping with a rubber policeman in 1ml ice cold PBS. The cells 

were centrifuged at 600 x g or 10 minutes at 4°C. The supernatant discarded and the 

cell pellets stored at- 80°C.  

Enzymatic Shearing of Chromatin      

The pellet was resuspended in ice cold lysis buffer, supplemented with protease 

inhibitor cocktail (PIC) and phenylmethylsulfonyl fluoride (PMSF), and incubated on 

ice for 30 minutes. The resuspended cell pellet was transferred to the dounce 

homogeniser (Kimble-Kontes part number 885302-002 with tight fitting B pestle) and 

dounced on ice forty times. A sample was taken from the dounce homogeniser and 

the cells were observed under light microscope to ensure efficient disruption of the 

plasma membrane. The nuclei were pelleted at 2600 x g for 10 minutes at 4°C. The 

supernatant was discarded and the pellet resuspended in digestion buffer 
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supplemented with PIC and PMSF and incubated at 37°C for two minutes. The 

enzyme shearing cocktail was diluted with 50% glycerol to give a 1:100 dilution and 

2.5 ml of the diluted enzyme cocktail was added to each sample. Samples were 

incubated at 37°C for 10 minutes and digestion was then halted with 0.5M EDTA 

and the samples incubated on ice for 10 minutes. Subsequently the chromatin was 

centrifuged at 20000 x g at 4°C for 10 minutes, and the supernatant containing the 

sheared chromatin was collected A sample of the sheared chromatin was run on an 

agarose gel.  

Chromatin shearing by sonication 

Chromatin pellet was resuspended thoroughly in 600 µl SDS lysis buffer (1% SDS, 

50mM Tris-HCl, pH 8.1 and 10mM EDTA) along with protease inhibitors, the reaction 

was incubated on ice for 30 minutes.  Cell lysates were loaded in polystyrene conical 

tubes and sonicated in the Bioruptor (sonication bath) for 7 cycles of 30 seconds on 

and 30 seconds off. Sonicated chromatin was centrifuged at 18000 x g at 4°C for 10 

minutes. Sonicated cell supernatant was diluted with ChIP dilution buffer (0.01% SDS, 

1.1% Triton X-100, 1.2mM EDTA, 16.7mM Tris-HCl pH 8.1, 167mM NaCl and protease 

inhibitor) to reduce the final concentration of SDS to less than 0.1%. A sample of the 

sonicated chromatin was run on an agarose gel to check shearing efficiency.   

Immunoprecipitation of Chromatin   

The immunoprecipitation was constructed in a siliconised microcentrifuge tube. 25 µl 

protein G magnetic beads (Active Motif) was added along with 10 µl ChIP buffer 1 and 

~7 µg of sheared chromatin, protease inhibitor cocktail, respective antibody and RNase 

free H2O was added to make up a total reaction of 100 µl. This reaction mixture was left 
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rotate on an end-to-end rotator overnight at 4°C. The following morning the reaction 

mixture was briefly centrifuged and placed on the magnetic stand to pellet the beads at 

the side of the tube and the supernatant was discarded. The beads were subsequently 

washed once in 500 µl in ChIP buffer 1 and three times in ChIP buffer 2.  

 

 

Chromatin elution 

The washed beads were resuspended in 50 µl elution buffer AM2 and incubated for 15 

minutes at room temperature on an end-to-end rotator. The beads were centrifuged 

briefly and 50 µl reverse cross-linking buffer added, the beads were then immediately 

placed on the magnetic stand and the supernatant containing the chromatin was 

removed and stored in a fresh Eppendorf tube. 5M NaCl and ChIP buffer 1 were added 

to 10% input DNA to a total volume of 100 µl and these samples along with the 

chromatin immunoprecipitation reactions were incubated at 95 °C for 15 minutes to 

reverse the crosslinks. Proteinase K solution was then added and incubated at 37°C for 

one hour. The action of Proteinase K was halted by Proteinase K stop solution. CHIP 

Antibody 
Name 

Antibody 
type 

Isotype Manufacturer Catalogue 
number 

Species Volume 
µl 

HPV16 
E2 

Polyclonal - Parish Lab - Sheep 3 

TVG 261 Monoclonal IgG1 ABCAM 17185 Mouse 3 

CTCF Polyclonal IgG Active Motif 61311/61312 Rabbit 3 

Table 1 outlines the primary antibodies used for ChIP  
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DNA was cleaned using the Sigma-Aldrich PCR clean up kit catalogue number 

NA1020.  

 

 

 

 

 

 
 
 

 

 

 

Real-time PCR 

Real-time PCR reactions were set up in a 96 well plate. A master mix was prepared 

in a PCR hood. PCR primers were diluted to a final concentration of 10 pmol.µl-1 of 

which 0.125 ml of forward and 0.125 ml reverse primer were added to each reaction 

along with 8.75 ml of H2O and 10 ml of Senimix SYBR No-ROX 2X (Bioline). The final 

concentration of the primers was 0.42 pmol.µl-1  Input DNA was serially diluted and 

utilised to generate a standard curve. The ChIP DNA samples were plated in 

duplicates and amplified for 40 cycles. The thermal profile of the qPCR was set up 

an annealing temperature of 50°C for 45 seconds and an extension temperature of 

Figure 10 illustrates the workflow of CHIP technique 
(www.activemotif.com) 
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72°C for 45 seconds. The primers used for qPCR reactions are listed in the 

appendix table 4. Real-time PCR was run using Stratagene MX3005P.      

Library preparation for ChIP-SEQ 

The library was prepared using NEBNext ChIP-SEQ library preparation Prep Master 

Mix Set for Illumina (# E7350) as per manufacturer's instructions. Index primer 4, 6 

and 12 from the NEBNext Multiplex Oligos for Illumina was utilised to generate the 

library for ChIP- SEQ. (Appendix table no 5 index primer sequence)  

Cell culture  

C33a cells are an HPV negative human cervical cancer cell line. C33a cell lines 

were cultured in Dulbecco Modified Eagle Medium (DMEM) (Sigma-Aldrich) 

containing 10% foetal bovine serum (FBS) (Life Technologies). Cells were incubated 

at 37°C, 5% CO2. Cell culture was performed in a laminar flow tissue culture hood.  

C33a cell line transfection 

Transfection of cells was performed using X-tremeGENE Transfection Reagent 

(Roche). Ten centimeter dishes were seeded with 2 x 106 C33a cells in 10 ml of 

growth medium. Cells were transfected 24 hours later. 500 µl of serum free DMEM 

was added to 3 µg of HPV 16 E2 expressing plasmid pJ4Omega-16E2 which 

encodes full length HPV16 E2 under the control of a CMV promoter. This was mixed 

thoroughly and 6 µl of X-tremeGENE transfection reagent was added. The mixture 

was left for 15 minutes at room temperature before adding to the cells dropwise. The 

cells were incubated for 24 hours at 37°C, 5% CO2 before harvesting.  
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Cell lysis 

The 10 cm dishes were washed twice with PBS and scraped in 1 ml of ice cold PBS. 

The cells were collected and centrifuged at 1000 x g at 4°C for 10 minutes. The PBS 

was removed carefully and cells were lysed in 300 µl ice cold lysis buffer (50mM 

Tris-HCl pH 7.4, 100mM NaCl, 20mM NaF, 10mM KH2PO4 ,1% Triton x-100, 0.1mM 

DTT, 10% glycerol, 1% protease inhibitor cocktail). The samples were incubated on 

ice for 30 minutes and the cell suspension was then sonicated at 30% amplitude for 

10 seconds. The cell suspension was centrifuged again at 10600 x g at 4°C for 20 

minutes to remove the debris. The lysate was collected and a 10% input sample is 

taken for gel analysis which is mixed with 6X SDS gel loading dye and boiled for 10 

minutes at 95°C. 

Co-Immunoprecipitation  

Protein G conjugated sepharose beads (Sigma) were washed with binding buffer 

three times (Tris-HCl pH 7.4, 100mM KCl, 0.1 mM EDTA, 0.20% IGEPAL CA-630, 

0.10% BSA and 2.50% DTT). 200µl of binding buffer, 200µl of cell lysate, 10µl of 

protein G conjugated sepharose beads and 2 µl of respective antibody were mixed. 

Table 3 outlines the respective antibodies used. This reaction mixture was left to 

rotate on the wheel overnight at 4°C.   
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The samples were briefly centrifuged at 6000 x g and the supernatant discarded. 

The protein G beads were washed three times in 500µl of wash buffer (100mM Tris-

HCl pH 7.4, 100mM NaCl, 0.50% IGEPAL CA-630 and 2mM DTT). After the final 

washing step the beads were suspended in 2X SDS gel loading buffer and the 

samples boiled for 10 minutes at 95°C.  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

and Western blotting     

A 10% SDS polyacrylamide gel was poured and loaded with the 

immunoprecipitation reactions along with 10% inputs. The size marker used during 

this experiment was Pageruler plus protein ladder (Thermo scientific). SDS gels 

were run at 100 volts for the first 20 minutes and 120 volts for 50 minutes in 1 x 

running buffer. Proteins were transferred to a PVDF membrane (Roche Diagnostic) 

in 1X transfer buffer (125mM Tris-HCl pH 8.3, 1.25M glycine and 5% methanol). The 

transfer was carried out at 100V and 400mA for 1 hour and 10 minutes.  The 

transferred membrane was blocked overnight in 5% milk in Tris buffered saline 

(10mM Tris-HCl pH 7.6, 150mM NaCl), 0.05% tween 20 (TBS/T) to prevent non-

specific binding of the detecting antibodies, at 4°C with gently rocking. 5% milk was 

prepared using TBS/T. The membrane was incubated in primary antibody diluted in 

Antibody 
Name 

Antibody 
type 

Isotype Manufacturer Catalogue 
number 

Volume 
µl 

Species 

HPV16 
E2 

Polyclonal  Parish lab - 2 Sheep 

TVG 261 Monoclonal IgG1 ABCAM 17185 2 Mouse 

IgG  - IgG SANTA CRUZ sc-2025 2 Mouse 

CTCF Polyclonal IgG Active Motif 61311/61312 2 Rabbit 

Table 2 outlines the antibodies used to perform co-immunoprecipitation 
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5% milk buffer for one hour at room temperature by gently rocking. Table 4 lists the 

primary antibodies used.  

 

Table 3 outlines the primary antibodies used during western blot detection 

Detection of the membrane 

Subsequently the membranes were washed in 1X TBS/T for 5x five minutes and the 

membranes incubated with horseradish peroxidase (HRP) conjugated secondary 

antibody incubation diluted 1:10,000 in 5% milk buffer for one hour at room 

temperature. The membranes were then washed 5 times five minutes in 1X TBS/T.  

The membrane was then incubated with enhanced chemiluminescence western 

blotting substrate (Thermo scientific catalogue number 32106) for three minutes. 

The membrane was then immediately placed in a plastic sleeve and detected in the 

Fusion Fx7 (Vilber Lourmat) machine by using FusionCapt Advance software. The 

membrane was stripped for the purpose of reprobing by washing 4 x 10 minutes 

with 10% acetic acid and 5 x 5 minutes in TBS/T.  

Immunohistochemistry 

HPV positive and HPV negative tonsil tumour sections were selected. The slides 

were deparaffinised and rehydrated, this was performed to improve the staining 

quality. The slides were placed in Xylene for 4x five minute incubations. 

Subsequently the slides were incubated in 100% isopropanol for three minutes. This 

Antibody 
Name 

Antibody 
type 

Isotype Manufacturer Catalogue 
number 

Dilution Species 

HPV16 E2 Polyclonal  Parish lab - 1:500 Sheep 

TVG 261 Monoclonal IgG1 ABCAM 17185 1:1000 Mouse 

β-Actin Monoclonal IgG1 Sigma-
Aldrich 

A5441 1:5000 Mouse 

CTCF Polyclonal IgG Active Motif 61311/61312 1:1000 Rabbit 
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step was repeated three times. This was followed by incubation in 90% isopropanol 

for a further three minutes. The slides were rinsed in sterile deionised water and kept 

wet.     

Formalin fixed tissue requires an antigen retrieval step before immunohistochemistry 

staining can be proceeded. Heat-induced epitope retrieval is performed using EMS 

Retriever 2100 for 30 minutes. The retriever was filled with distilled water. The 

antigen retrieval solution was manufactured by DAKO (product number S1699) pH 

6.0 and the 10x antigen retrieval solution was diluted in deionised water to 1x. 

The slides were marked with a Novocastra NovoPen (hydrophobic pen) this 

marginalises the area to be stained. The slides were washed with 1X TBS wash 

buffer and immunohistochemistry staining was performed using a Novolink Polymer 

Detection System (Leica).  

The slides were subsequently subjected to peroxidase block for five minutes, this 

neutralises endogenous peroxidase. The slides were washed twice with 1X TBS 

before CTCF antibody incubation overnight at 4°C. The antibody was diluted in 1X 

TBS as detailed in the results section. 500 µl of antibody was used to cover the 

entire tissue section.  

After 24 hours, the slides were washed with 1X TBS three times before incubating 

with post primary solution for half an hour. This was followed with 1X TBS washing 

step before incubating with Novolink polymer for half an hour. The slides were 

washed again with 1X TBS before developing peroxidase activity with 3,3'-

diaminobenzidine (DAB) working solution. DAB working solution was prepared in a 

1:50 dilution factor and 500 µl of DAB working solution was used to cover the entire 

section for five minutes. The slides were washed with deionised water and counter 

stained with haematoxylin and rinsed with deionised water.  
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The slides were dehydrated in 90% isopropanol followed by 100% isopropanol and 

Xylene before being mounted
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Results 
 Assessment of E2 association with the HPV 16 genome by ChIP  

Human papillomavirus E2 is a sequence specific DNA binding protein which binds 

to specific consensus sequences (ACCG(N)4CGGT or ACC(N)6GGT) 73. In high-risk 

HPV genomes, there are four highly conserved E2 binding sites located in the viral 

locus control region 151. However there are alternative binding sites, which lie outside 

the viral locus control region and are crucial in the regulation of viral gene 

expression. In order to investigate this, both forward and reverse primers were 

designed, that cover the entire HPV 16 genome (see appendix table number 4). 

Primary human tonsil keratinocytes containing episomal HPV 16 genome was 

cultured and chromatin from the cultured cell lines was extracted. The extracted 

chromatin was either sheared via sonication or enzymatic cocktail (Fig 11). 
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Sheared chromatin was immunoprecipitated with FLAG antibody, sheep HPV 16 E2 

antibody, mouse HPV16 E2 antibody TVG 261 or rabbit CTCF antibody and co-

precipitation of the HPV16 genomes analysed using real-time PCR.  

Before normalising the data obtained from real-time PCR the efficiency of the 

amplified DNA was checked against a standard curve, generated by a serially 

diluted sheared chromatin. Ten-fold serial dilution was prepared to generate the 

standard curve, which was run alongside the unknown ChIP DNA.  Unknown DNA 

was compared to the known standards which allowed the evaluation of the 

quantitative data, (Fig 12)  

Figure 11. Shearing of the chromatin either via sonication (A) or by enzymatic digestion (B). 
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This determines whether the primers used in the reactions are amplifying a specific 

region or is there non-specific amplification. If the primers are amplifying a specific 

region of DNA then this would be corresponded by a single peak and if the primers 

are amplifying non-specific regions then there would be more than one peaks (Fig 

13). No template control (NTC) reactions were run to detect any possible 

contamination of reagents or primer dimer formation. Detection of DNA amplification 

within the NTC samples lead to no further analysis of the data set and the real-time 

PCR was repeated with freshly diluted primers.  
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Figure 12 represents a standard curve generated by serially diluted sheared chromatin. 
Unknown ChIP DNA is represented by  ! and standards are represented by !. A RSq value 
of 0.992 was noted along with 99.6% efficiency. Initial quantity (copies) vs Ct(dR) was used 

to plot the standard curve 

Figure 13 represents a dissociation curve with products aligning as a single peak. Temperate 
(°C) verses fluorescence (-R1 CT) value was used to plot the graph 
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The experiment shown in (Fig 14) was performed with high passage of tonsil 

keratinocytes. Enzymatic shearing of the chromatin was utilised as mentioned 

earlier. Using FLAG, HPV 16 E2, TVG 261 and CTCF antibodies the sheared 

chromatin was immunoprecipitated and binding of E2 and CTCF was analysed by 

real-time PCR. Raw data obtained from real-time PCR analysis was normalised to 

FLAG. Figure 14 represents graphical analysis of the data obtained from the real-

time PCR. There are two distinct peaks are observed one of which is between 4000 

to 5000 bp and the other peak is around 6000 bp 

Binding of both CTCF and HPV 16 E2 are superimposed on one another. 

Nevertheless, in the late region of the genome, CTCF binding was higher compared 

to HPV 16 E2. Binding of commercially available HPV 16 E2 antibody TVG 261 was 

higher in the early region of the HPV genome, specifically in with the viral LCR. 

Binding in the late HPV genome was not observed experimentally.  

 



 

43 

Figure 14 Real-time PCR analysis of immunoprecipitated chromatin derived from primary 
human tonsil keratinocytes with episomal HPV 16 genomes. Chromatin was sheared by 

enzymatic digestion. Samples were immunoprecipitated with HPV 16 Sheep E2 antibody 
(Parish Lab), HPV16 E2 TVG 261 antibody and CTCF antibody. Primers covering the entire 

HPV 16 genome were utilised to assess binding of E2 and CTCF throughout the genome. 
Samples were analysed in duplicate and an average was calculated. Data for each 

immunoprecipitation was normalised to FLAG antibody (negative control). This experiment 
was repeated three times 

 

The sonication method was implemented in order to improve the efficiency of the 

chromatin preparation and shearing. Subsequent treatment of the chromatin 

remained the same for the rest of the experiment. Graphical analysis of the ChIP 

DNA revealed binding of HPV 16 E2 in the early region and at around 4400, 5600 

and 7200 bp with the polyclonal sheep E2 antibody (Fig 15). Two distinct peaks 

were observed one of which was at 4400 base pairs and the other one at 5600 base 

pairs and binding of CTCF and HPV 16 E2 is superimposed one another. With the 
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sonicated ChIP DNA additional HPV 16 E2 and CTCF binding site was identified 

within the LCR.      

 

 

 

 

 

 

 

 

 

 

 

Figure 15 represents the real-time PCR analysis of the chromatin derived from primary 
human tonsil keratinocytes with episomal HPV 16 genomes. Chromatin was sheared with 

enzymatic cocktail. Samples were immunoprecipitated with HPV 16 Sheep E2 antibody 
(Parish Lab), TVG 261 antibody and CTCF antibody. Primers covering the entire HPV16 

genome was utilised during the course of the experiment. Samples were loaded in duplicates 
and an average was calculated. Data set was normalised to FLAG antibody, this is a negative 

control antibody. 

 

End repaired ChIP DNA 

End repaired ChIP DNA was run on a bioanlyser in order to determine the fragment 

size of the library, as well as the concentration of the end repaired ChIP DNA 

required for ChIP-SEQ. Unfortunately the fragment size of my library was 

inconsistent in comparison to its original size. In addition the concentration of the 

end repaired ChIP DNA was very low, therefore the ChIP-SEQ analysis had to be 
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abandoned and there was insufficient time to repeat the ChIP analysis to improve 

the yield of the library.    

Co-Immunoprecipitation of C33a cells transfected with HPV 16 E2 

From the data analysis it is evident that both HPV 16 E2 and CTCF are co-localizing 

with one another on the HPV16 genome. However it is not clear from the real-time 

PCR analysis which protein is binding to the DNA first and co-localizing with the 

other. From previous work in the Parish laboratory, it is known that there is a cluster 

of CTCF binding sites within the late region of the HPV16 genome and consensus E2 

binding sites do not exist in this region. Therefore, it was hypothesised that CTCF 

recruits E2 to the HPV genome via a protein-protein interaction. In order to further 

establish this interaction a co-immunoprecipitation reaction was performed (Fig 16). 

C33a cells were untransfected or transfected with an E2 expressing plasmid and 

lysates were immunoprecipitated with E2-specific antibody (mouse TVG 261). CTCF 

expression is observed in both untransfected and transfected cell lysates since it is 

an endogenous protein. E2 expression was confirmed in the transfected cells (fig 16 

lane 2) through the presence of a band corresponding its molecular weight. While 

immunoprecipitation of untransfected lysates with E2 specific antibody did not result 

in co-precipitation of CTCF (fig 16 lane 3), immunoprecipitation of lysates which 

contained E2 protein resulted in a clear co-precipitation of CTCF protein, indicating 

that these proteins exist in a complex (fig 16 lane 4). As an additional control for this 

experiment, E2-expressing cell lysate was co-immunoprecipitated with non-specific 

mouse IgG. No visible bands are observed indicating that the co-

immunoprecipitation of CTCF with E2 is specific (fig 16 lane 5). E2 transfected 

lysates was co-immunoprecipitated with monoclonal TVG 261 antibody, a band 

corresponding the molecular weight of E2 was observed however no visible band 

were detected for CTCF despite repeated attempts (fig 16 lane 6).  
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The aim of this experiment was to determine whether E2 and CTCF proteins exist in 

a complex and determine whether CTCF could indeed recruit E2 to the HPV genome 

independent of E2 consensus binding sites. From this co-immunoprecipitation 

experiment it is evident that CTCF protein associates with E2 protein and that this 

could be the mechanism by which E2 is recruited to CTCF bound to the HPV16 

genome.  

Figure 16 Co-immunoprecipitation of CTCF with HPV16 E2. 10% input samples are on the 
left (lane 1 and 2) and the co-immunoprecipitated samples on the right (lane 3-7). The arrows 

indicate the stated protein.  Membrane A was incubated with CTCF antibody, membrane B 
was incubated with HPV 16 E2 sheep antibody and membrane C was incubated with β-actin 

as a loading control. In lane 3 UT cell lysate was IP with TVG 261 (mouse) and WB with 
HPV16 (sheep) E2, lane 4 E2 transfected cell lysate was IP with CTCF (Rabbit) and WB with 

HPV16 E2, lane 5 E2 transfected cell lysate was IP with non-specific IgG (mouse) and WB 
with HPV16 E2, lane 6 E2 transfected cell lysate was IP with TVG 261 and WB with HPV16 

E2 and lane 7 UT cell lysate was IP with CTCF antibody and WB with HPV16 E2 
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C33a cells were either untransfected or transfected with 5µg of FLAG tagged HPV 

16 E2 and lysates were immunoprecipitated with FLAG antibody (mouse). Bands 

corresponding the molecular weight of HPV 16 E2 were observed in the transfected 

cells (data not shown), however no distinct band for CTCF was observed. Due to 

time constraints the experiment could not be repeated to improve the quality of 

immunoprecipitation.   

Expression of CTCF in tissue sections  

So far I have been investigating where in the genome CTCF and HPV 16 E2 are 

binding using an in vitro model system, however expression of CTCF in vivo may 

provide valuable information on disease progression and development. In order to 

investigate the expression of CTCF in physiologically normal tonsil tissue (n= 10) 

and in HPV positive (n = 11) and HPV negative (n = 7) tonsil tumour sections were 

stained with a CTCF-specific antibody by immunohistochemistry. The methodology 

of the staining technique had to be rigorously optimised prior to analysis of CTCF 

expression in the various sections that were stained. Primary antibody was serially 

diluted for 1:200 to 1:3000 in a stepwise manner and two separate conditions were 

used for antigen retrieval; citric acid was used at pH 6.0 and at pH 9.0. Subsequent 

analysis of the sections stained with this range of conditions showed that antigen 

retrieval at pH 6.0 and antibody diluted to 1:2000 was optimal for CTCF staining.  

In the normal tonsil section, CTCF expression was detected in majority of the areas. 

However expression of CTCF in the germinal and follicular area were stronger 

compared with other areas of the normal tonsil section (Fig 17 A). Positive staining 

with CTCF was observed for the reticular crypt epithelium as well as the salivary 

glands. Staining was generally much stronger in the basal cells of the epithelium 

with loss of expression as the cells became differentiated in the upper layers of the 

epithelium (Fig 17 B). However, in some areas cells in the basal layer did not stain 
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for CTCF although cells in the super basal layer stained positive for CTCF, indicating 

that the loss of expression in the basal layers was due to an artefact of staining 

caused by incomplete coverage with the antibody. Adipocytes and the sub-mucosal 

areas of the tonsil were negative for CTCF expression (data not shown).  

In the HPV positive tonsil sections, all tumour areas strongly stained positive for 

CTCF, with strong staining observed in the nuclei (Fig 17 D, E and F). In these 

sections, weak staining was also observed in the cytoplasm (Fig 17 G). Infiltrating 

lymphocytes were negative for CTCF expression. Certain areas within the HPV 16 

positive tonsil section appeared morphologically normal these areas stained 

negative for CTCF. In some sections high-grade dysplasia was observed with 

microinvasion. These areas stained strongly for CTCF (Fig 17 C).  

With HPV negative tonsil section, CTCF expression was observed at a lower intensity 

compared to HPV 16 positive sections. CTCF expression between normal and 

tumour regions was observed at the same intensity within the HPV negative sections 

(Fig 17 H). CTCF staining revealed cells forming tumour islands and there were cells 

that were exhibiting dysplastic characteristics in HPV negative sections. 
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Figure 17 Representative photomicrographs showing of immunohistochemical analysis of 
CTCF expression. (A) germinal centre of the normal tonsil exhibits a strong CTCF expression 
in comparison to other areas within the normal tonsil section. (B) surface epithelium of the 

normal tonsil showing strong CTCF expression in the undifferentiated basal cells and 
progressive loss of CTCF expression as the cells become more differentiated. (C) dysplastic 

epithelium in HPV negative section showing strong expression of CTCF throughout the 
epithelium. (D) and (F) HPV 16 positive sections illustrating invasive squamous cell 

carcinoma of the oropharynx showing strong CTCF expression in the epithelium and loss of 
differentiation. (E) HPV 16 positive section showing a loss of CTCF expression as the cells 
migrated from the basal layer up towards the epithelial layer in the pathologically normal 

regions of the section. (G) HPV positive invasive squamous cell carcinoma of the oropharynx 
in detail (X 60) showing strongly stained neoplastic cells with pleomorphic nuclei. (H) HPV 
negative invasive squamous cell carcinoma of the oropharynx with weaker staining of CTCF 

in comparison to HPV positive equivalents. (I) Negative control (no primary antibody). 
Magnification A-F, H and I at X20 and G at X60 !  symbol represents hyperchromatic nuclei 
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Discussion  
HPV 16 E2 maintains the viral life cycle by controlling viral gene replication and 

transcription149,150. HPV16 E2 is a sequence specific protein, which binds to its 

consensus sequence and initiates transcription and replication of the viral genome 1. 

In high-risk HPV genomes, there are four highly conserved E2 binding sites located 

in the viral locus control region148. However there are alternative binding sites, which 

lie outside the viral LCR and are crucial in the regulation of viral gene expression.  

The first part of my project was focused on in the identification of novel HPV 16 E2 

binding sites in vivo. Using a ChIP technique, binding of E2 was identified at around 

4500 bp and at 6000 bp corresponding to the late gene region of the HPV16 

genome and a region where there are no consensus binding sites for E2 (Fig 14). 

My own bioinformatic analysis has revealed that several non-consensus E2 binding 

sites are present in this area of the genome, but it is not known whether E2 can bind 

to these sequences. For example the sequence ACC(N)7GT is present at positions 

(35, 59, 499, 3786, 4591, 5117, 5872, 7019, 7451 and 7858) and  AC(N)7GGT is 

present at positions (45, 59, 4418, 5840, 5921, 6243, 6516, 7451 and 7860). It is 

possible that E2 binds to these non-consensus sites within the late gene region 

directly, or that E2 is recruited to alternative regions of the genome by other factors 

that bind to the DNA and recruit E2 via a protein-protein interaction.   

Interestingly, only the commercially available HPV 16 E2 antibody was successful in 

immunoprecipitating E2-bound DNA within the early region of the genome. However, 

binding in the late regions of the genome was not detected with this antibody. The 

commercially available HPV 16 E2 antibody is a monoclonal antibody that 

recognises and binds to a specific epitope in the N-terminal domain of HPV16 E2. In 

contrast, the polyclonal sheep antibody made in the Parish lab was capable of 

precipitating E2-bound DNA from the late region, with an apparent lower affinity for 
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E2 bound to the LCR. It is possible that the epitope for the monoclonal antibody is 

masked by the binding of an alternative molecule to E2, which inhibits binding of the 

antibody to its complementary antigen. The polyclonal antibody is presumably not 

affected by this as numerous epitopes for this antibody are likely to exist. In addition, 

the E2 binding sequences outside of the LCR may vary leading to a lower binding 

affinity that is disrupted by binding of the monoclonal antibody.     

The ChIP experiments were repeated using chromatin sheared via sonication 

method rather than enzymatic shearing in order to increase efficiency of the ChIP. In 

these experiments, the binding of HPV 16 E2 was detected in the LCR and at 

around 4400, 5600 and 7200 bp with the polyclonal sheep E2 antibody (Fig 15). 

Previously, binding in the early region was only detected with the commercially 

available E2 antibody and immunoprecipitation with the HPV 16 E2 antibody 

designed by the Parish lab was not detected in this region. However with the 

sonicated chromatin, two E2 binding sites were observed within the LCR, which 

were not observed in the previous ChIP experiment using enzymatically digested 

chromatin. Use of the sonication method to shear the chromatin could be 

contributing towards the detection of additional HPV16 E2 binding sites. With the 

sonication method, chromatin is sheared more efficiently in comparison to enzymatic 

shearing, which only digests between nucleosomes. Efficient shearing of the 

chromatin could enable more sensitive detection of binding above a threshold level.     

Put together, the ChIP analyses show that the majority of the E2 binding were 

observed outside the LCR, this outcome was unexpected since there are four known 

E2 binding sites within the LCR 148. It is possible that the E2 binding sites within the 

LCR are subjected to methylation in the HPV16 genome containing tonsil 

keratinocytes used for these experiments. The majority of E2 binding sites contain a 

minimum of one CpG dinucleotide 72 and methylation of the E2 binding site 

abrogates E2 binding and transcription regulation 151,152. It has been reported that 
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there are five CpG islands with in the HPV16 LCR 153 and that the E2 binding sites 

are heavily methylated in SCC, with an increase in methylation was detected within 

E2 BS1 and E2 BS2 154. Methylation of the E2 binding sites could correlate to an 

increased E6 and E7 expression. Methylation in the culture system would give the 

primary human tonsil keratinocyte cells a proliferative advantage as presumably 

they would express higher levels of E6 and E7. Since E6 and E7 are oncoproteins 

encoded from the viral genome 155, this would drive the cell towards becoming 

carcinogenic. Whether methylation of E2 sites in the LCR promotes binding to 

cryptic sites in the in the late region is an interesting question that should be 

addressed.  

Recent studies performed by Johansson et al revealed inhibition of the early 

polyadenylation signal (pAE), positioned at nucleotide 4215 by high levels of E2, 

which leads to transcription of the late viral genes 156. pA controls the expression of 

proteins by adding a poly (A) tail on the mRNA, which acts a signal to RNA 

polymerase II indicating termination of transcription157. One of the novel E2 binding 

sites detected in this project was around 4500 bp and therefore located just 

downstream of the pAE site. E2 was shown to bind to the region of DNA around the 

pAE between nucleotides 4100 and 4400 and the authors speculated that this could 

lead to the inactivation of pAE signal thus promoting the expression of late viral 

genome as shown by 156. Further analysis suggested the E2 was recruited the the 

pAE by the polyadenylation complex, but it is possible that recruitment is via 

association with CTCF which has also been shown to bind in vitro to this region of 

DNA, although the CTCF site identified are located slightly downstream of the pAE 

site (5119, 6127, 6515 and 6860 bp) (parish, unpublished). This could be tested by 

mutation of the CTCF binding site in this region and analysis of late gene expression 

in differentiating epithelium.  
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Interestingly binding of CTCF has been observed in the early region of the genome 

in cervical cancer and in foreskin keratinocytes. However, with the primary human 

tonsil keratinocytes CTCF binding was observed in the late region of the genome.       

In order to determine where in the host genome CTCF and HPV 16 E2 are binding, 

ChIP Seq reactions were constructed with the sonicated chromatin. However the 

final concentration of the ChIP Seq DNA library was insufficient therefore the next 

generation sequencing reaction was abandoned. Nonetheless this could be further 

optimised by starting with more concentrated sonicated chromatin, which would 

provide valuable information on viral genome maintenance mechanisms and 

pathological status.  

From the data analysis it is evident that both HPV 16 E2 and CTCF are binding to the 

same regions of the HPV16 genome (Fig 14). However it is difficult determine 

whether these proteins are binding independently to the same region of the HPV16 

genomes, or whether they form a complex that co-binds to the DNA. To further 

establish this interaction, the following co-immunoprecipitation (Co-IP) reaction was 

constructed. C33a cells were transfected with HPV 16 E2 and lysates were 

immunoprecipitated with CTCF antibody and co-precipitating E2 was detected. On 

the other hand immunoprecipitation with E2-specific antibody did not result in Co-IP 

of CTCF. This could be because the epitope that the E2 antibody recognises is 

masked when E2 is in complex with CTCF.  

From this Co-IP experiment I postulate that CTCF is binding to DNA before 

associating with E2 protein. This could represent a novel mechanism by which HPV 

has evolved to recruit E2 to the late region in the absence of E2-specific binding 

sites. Alternatively CTCF may have a higher affinity for the E2 binding sites, since the 

binding of E2 varies from sequence to sequence and E2 binding is dependent on 

flexibility of the target DNA sequence 158.    
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However we have to keep in mind that the interactions I am observing here may not 

be direct protein-protein interactions. There is a possibility the observed interaction 

is mediated by a protein complex that recruits CTCF and E2 along with it. The 

interaction between CTCF and E2 could be mediated by the bridging with a specific 

DNA sequence. In order to address this question, I could utilise DNase I, which 

would cleave any DNA that could potentially be bridging a complex between CTCF 

and E2 or use ethidium bromide, which would intercalate with the DNA and disrupt 

DNA-protein interactions. Nevertheless, the interaction between CTCF and E2 

highlighted in this project is very exciting since it represents a novel mechanism of 

E2 association with the HPV genome and could further our understanding of the viral 

life cycle and subsequent implication with disease progression.  

CTCF expression in vivo may provide valuable information on disease progression 

and development. In order to investigate the expression of CTCF in physiologically 

normal tonsil tissue (n= 10) and in HPV positive (n = 11) and HPV negative (n = 7) 

tonsil tumours, sections were stained with a CTCF-specific antibody by 

immunohistochemistry. Staining conditions were optimised to best illustrate the 

expression of CTCF in normal tonsil tissue and in HPV positive and HPV negative 

tonsil tissue. Antibody was serially diluted until background staining was absent, a 

dilution of 1:2000 provided good specificity and sensitivity. There are two 

commercially available antigen retrieval solutions one of which is at pH 6 while the 

other is at pH 9. Both pH 6 and 9 were used during the antigen retrieval process 

however antigen retrieval at pH 6 provided better a staining with CTCF.    

Immunohistochemistry analysis revealed CTCF expression in majority of the areas of 

the normal tissue section. Nonetheless an increased expression of CTCF was 

observed in the germinal centre and follicular areas. In the HPV positive sections, all 

tumour areas stained strongly for CTCF, with strong staining observed in the nuclei 

(Fig 17 D and F) and weak staining was observed in the cytoplasm (Fig 17 G). 
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Regions of high-grade dysplasia as well as micro invasion also stained strongly for 

CTCF. Staining of cells in the basal layer was strong, indicating a high level of CTCF 

expression. A gradual decrease in CTCF staining was observed as the cells 

migrated from the basal layer to the super basal layer and up towards epithelial 

layer (Fig 17 E). One reason behind this could be the expression of late genes in the 

differentiated epithelium where CTCF expression is normally reduced. Therefore I 

postulate that a reduction in CTCF recruitment to the late region of the HPV genome 

is essential for the induction of late gene expression and viral infection persistence. 

Recent studies performed by Garrido et al also showed a decrease in CTCF 

expression in the epithelial layer 159. However, their results are not entirely 

convincing and the images presented in this project provide clear evidence that 

CTCF expression is switched off with epithelial cell differentiation. In addition intense 

CTCF staining was observed with the tumour area (Fig 17 E).    

In the HPV negative sections, expression of CTCF was generally lower in 

comparison to expression in the HPV positive sections. Interestingly, CTCF 

expression between normal and tumour regions was observed at the same intensity 

within the HPV negative sections. CTCF staining revealed cells forming tumour 

islands and there were cells that were exhibiting dysplastic characteristics in HPV 

negative sections.  

It is interesting to see a difference in CTCF expression between HPV related cancer 

and non-HPV related cancer. This could be an indication that CTCF plays a major 

role in HPV-related cancer by facilitating early gene expression and maintenance of 

the genome and that HPV infection results in a specific up-regulation of CTCF to 

support the virus life cycle. However more analysis is needed to further establish this 

effect of CTCF staining.  

 

 



 

58 

Conclusions   
The main goal of my investigation was to identify novel E2 binding sites outside the 

LCR and determine their role in the regulation of viral gene expression. Bioinformatic 

analysis revealed several non-consensus E2 binding sites downstream to the LCR, 

nevertheless binding of E2 to these sites are not well characterised. In order to 

identify novel E2 binding sites outside the LCR primary human tonsil keratinocytes 

containing HPV16 genome were used to perform ChIP. Which revealed E2 binding 

sites at around 4400, 4500, 5600 and at 6000 bp this corresponds to the late gene 

region of the HPV16 genome and in this region there are no consensus E2 binding 

sites. In my opinion this could be due the methylation of E2 binding site within the 

LCR and methylation of these sites prevents binding of E2 and subsequently 

abolishes its functions. Methylation could promote the expression of E6 and E7 viral 

oncoproteins and these proteins would drive the cell towards tumorigenesis. 

However the presence of methylation at these sites needs to be investigated, with 

the aid of pyrosequencing.  

One of the E2 binding sites identified was located upstream to the pAE site and it is 

shown that binding of E2 to this site leads to the expression of late viral genome 159. 

It is possible that E2 is recruited to the pAE site with the help of CTCF, which was 

observed to bind at this site. To further establish this CTCF binding site at the region 

could be mutated and the late genome expression could be analysed.  

From the ChIP analysis it was evident that E2 and CTCF are binding in the same 

region of the HPV16 genome. To further establish this, a Co-IP reaction was 

constructed and after analysing the data I believe that CTCF is binding to DNA 

before associating with E2 protein. Alternatively CTCF may have a higher affinity to 

the E2 binding site. To further evaluate this DNase I could be utilised to eliminate 
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any potential DNA bridging complex or use ethidium bromide to intercalate DNA 

and disrupt DNA-protein interactions.  

CTCF expression was investigated on normal, HPV positive and HPV negative tonsil 

section. In the normal section increased expression of CTCF was observed in the 

germinal centre and follicular area. In the HPV positive section strong nuclei 

straining and weak cytoplasmic staining was observed. As well as high grade 

dysplasia and microinvasion. CTCF expression was higher in the basal layer 

however expression of CTCF was switched off in the differentiated epithelial layer. 

HPV negative section stained at a lower intensity for CTCF in comparison to HPV 

positive section. Nonetheless more tissue section needs to be stained with an 

alternative antigen retrieval method such as PIER method. The PIER method uses 

enzymes such as Proteinase K, Trypsin, and Pepsin, these enzymes are able to 

cleave peptides which are masking the epitope. 
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Appendix 
Primer Pair Sequence Efficiency 

L2 Fw CAGGGTCGGGTACAGGCGGA 1.9347 

L2 Rv GGATCGGAAGGGCCCACAGGA  

L2 CTCTbs Fw AGGCGTACTGGCATTAGGTACAGT 1.7444 

L2 CTCTbs Rv AGGTAAGGCTGCATGTGAAGTGGT  

L2/L1 Fw TGGCTGCCTAGAGGCCACTGT 1.9 

L2/L1 Rv TGCGTGCAACATATTCATCCGTGC  

L1 CTCFbs Fw TGCAGCAAATGCAGGTGTGGAT 1.8647 

L1 CTCFbs Rv TGGGGATCCTTTGCCCCAGTGT  

L1 Fw ACAAGCAGGATTGAAGGCCAAACCA 1.9379 

L1 Rv AGAGGTAGATGAGGTGGTGGGTGT  

5'URR-Enh Fw TTTGTAGCGCCAGCGGCCATTT 1.8501 

5'URR-Enh Rv GCATGGCAAGCAGGAAACGTACAA  

Enh Fw CCAAATCCCTGTTTTCCTGA 1.6585 

Enh Rv CGTTGGCGCATAGTGATTTA  

Earlyprom Fw GCAAACCGTTTTGGGTTACA 1.5128 

Earlyprom rv ACTAACCGGTTTCGGTTCAA  

E6 111-223 Fw AGGACCCACAGGAGCGACCC 1.8695 

E6 111-223 Rv ACGTCGCAGTAACTGTTGCTTGCA  

E6 427-506 Fw GCCACTGTGTCCTGAAGAAAAGCA 1.9332 

E6 427-506 Rv GACCGGTCCACCGACCCCTT  

Lateprom Fw GACAGCTCAGAGGAGGAGGA 1.9004 

Lateprom Rv GCACAACCGAAGCGTAGAGT  

E1 1250-1368 Fw GCGAAGACAGCGGGTATGGCA 1.9154 

E1 1250-1368 rv GCAACCACCCCCACTTCCACC  

E1 2158-2316 Fw AGGGTAGATGATGGAGGTGATTGG 1.8461 

E1 2158-2316 Rv GATTTACCTGTGTTAGCTGCACCA  

E2 (CTCF) Fw GGAAACACATGCGCCTAGAATGTGC 1.8923 

E2 (CTCF) Rv TGATACAGCCAGTGTTGGCACC  

E4 Fw CACTCCGCCGCGACCCATAC 1.9326 

E4 Rv GGTGTGGCAGGGGTTTCCGG  

E5 Fw ACGTCCGCTGCTTTTGTCTGTGT 1.9129 
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Table 4 represents the primers used during qPCR, which cover the entire HPV16 genome. 
The primers were diluted to a final concentration of 10 pmolml-1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 represent the lists of NEBNext Index primers from which Index primer number 4, 6 
and 12 were used to construct the ChIP-SEQ  

 

 

 

 

 

E5 Rv ACCTAAACGCAGAGGCTGCTGT  
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