eTheses Repository

Ultrasonic assisted creep feed grinding and dressing of advanced aerospace alloys

Bhaduri, Debajyoti (2014)
Ph.D. thesis, University of Birmingham.

PDF (13Mb)Accepted Version

Restricted to Repository staff only until 10 July 2025.


The research involves the investigation of hybrid ultrasonic assisted creep feed grinding (UACFG) of advanced aeroengine alloys, in particular Inconel 718, CMSX-4 and gamma titanium aluminide (γ-TiAl). For tests with ultrasonic vibration, workpieces were actuated at a constant frequency (~20kHz) via a specially designed block sonotrode attached to a 1kW piezoelectric transducer-generator system. The trials on nickel based superalloys were carried out using open structured alumina wheels whereas γ-TiAl specimens were machined with conventional silicon carbide and single layer diamond superabrasive wheels. Statistically designed experiments involving variation in wheel speed, table speed, depth of cut, grinding condition and vibration amplitude were employed in mainstream testing. Reductions in grinding force components were typically observed albeit at the cost of higher wheel wear and surface roughness of the ground slots when ultrasonic assisted grinding of nickel alloys. Conversely, UACFG of γ-TiAl exhibited lower grinding wheel wear and workpiece surface roughness. Surfaces ground with the assistance of vibration generally revealed greater side flow/ploughing and overlapping grit marks in comparison to standard creep feed ground specimens. Three dimensional topographic measurement of grinding wheel surface replicas indicated that ultrasonic vibration led to an increase in the number of active cutting points on the wheel.

Type of Work:Ph.D. thesis.
Supervisor(s):Soo, Sein Leung and Aspinwall, David K.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Mechanical Engineering
Subjects:TJ Mechanical engineering and machinery
Institution:University of Birmingham
ID Code:5415
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page