eTheses Repository

Understanding GDL properties and performance in polymer electrolyte fuel cells

El-Kharouf, Ahmad (2014)
Ph.D. thesis, University of Birmingham.

PDF (10Mb)Accepted Version


The Gas Diffusion Layer (GDL) has the important role of transporting the reactants into, and products out of the cell. This study aims to provide insights for understanding the relationship between GDL properties and the performance of PEFCs.

Ex-situ characterisation techniques were employed to study the mechanical, physical and electrical properties of the GDL. The relationship between the various properties of GDL was investigated and discussed in this work. The study shows that characteristics such as GDL thickness, bulk density, PTFE and MPL content, porosity, hydrophobicity, permeability and electrical conductivity are closely connected.

The effect of compression on the cathode GDL performance in PEFC membrane electrode assembly (MEA) is discussed using Polarisation (IV) curve and electrochemical Impedance Spectroscopy (EIS). Compression affects the electrical and mass transport properties of the GDL and therefore needs to be optimised. The results show that there is an optimum compression point, at which; a minimum contact resistance and optimum water transport are achieved. The optimum compression level is dependent on the GDL properties. The optimum compression ratio varies for the different GDLs according to the difference in the material properties. At optimum compression, the performance of the different GDL materials was compared to understand the effect of the GDL properties on the performance. GDL characteristics such as structure, thickness, bulk density, PTFE loading, and MPL presence have a direct effect on the MEA performance and need to be optimized for the different PEFC applications.

Type of Work:Ph.D. thesis.
Supervisor(s):Steinberger-Wilckens, Robert and Du, Shangfeng
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemical Engineering
Subjects:TK Electrical engineering. Electronics Nuclear engineering
TP Chemical technology
Institution:University of Birmingham
ID Code:5211
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page