eTheses Repository

Classical diffusion of a particle in a one dimensional random potential

Woods, Gareth James (2009)
Ph.D. thesis, University of Birmingham.

Loading
PDF (709Kb)

Abstract

This thesis examines the topic of classical diffusion of a particle in the presence of disorder. The presence of disorder has the effect of subjecting the classical particle to an additional random potential and it is the form of this random potential that is of interest. We consider two forms of the random potential and calculate several disorder averaged quantities including the particles probability distribution which is described by the Fokker-Planck equation [1, 2] and the transport properties of the particle, including the mean-square displacement and the velocity and diffusion coefficients. The first part of the thesis deals with a random potential that is characterized by shortranged correlations and some constant term known as drift. This is a problem that was first formulated some thirty years ago by Sinai [3], who showed that for a particle with zero drift the mean-square displacement had the form (x\(^2\)(t)) ≈ ln\(^4\)(t). We employ a combination of Green’s functions, distribution functions and asymptotic matching to not only analytically re-produce this result, but also the expectation value of the probability distribution and all transport properties for an arbitrary value of drift, which is an original result. For the second half of the thesis we consider essentially the same problem again but with a random potential that has long-ranged logarithmic correlations. To solve the problem we use the renormalization and functional renormalization group techniques in an attempt to re-create known results in an effort to find a general method that can deal with such one-dimensional systems. We calculate the particles distribution function using a functional renormalization group approach, which we use to partially re-derive the phase transition in the first-passage time distribution.

Type of Work:Ph.D. thesis.
Supervisor(s):Lerner, Igor V. and Yerkevich, Igor
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Physics and Astronomy
Subjects:QC Physics
Institution:University of Birmingham
ID Code:509
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page