eTheses Repository

Magnetic adsorbents displaying switchable ion-exchange behaviour

Willett, Thomas Clifford (2009)
Ph.D. thesis, University of Birmingham.

PDF (6Mb)


Magnetic bioseparations based on non-porous adsorbents offer a low-fouling alternative to the porous materials required by conventional adsorbent separation techniques. Interest in magnetic bioseparations has been limited by the high cost of suitable magnetic absorbents. In this study a variety of techniques - including Ce(IV) initiation, surface ATRP and sulfonyl activation – were used to graft ion-exchanging polyelectrolyte surfaces on low cost non-porous polyvinyl alcohol-magnetite supports. Grafting of poly(2-vinyl pyridine) and poly(methacrylic acid) was fully characterised using solid and liquid state FTIR. Dense polyelectrolyte layers were seen, with Ce(IV) grafted layers accounting for up to 49% of grafted support mass. Values for ATRP and tresyl activations were 41% and 25% of support mass respectively. These included layers which correspond to the brush regime (2R\(_f\)/D > 8), as determined by Flory Radius calculations. The above matrices were subsequently analysed with bind and elute studies using a model mixture of acidic and basic proteins. Switchable ion-exchange behaviour was demonstrated, with anion binding capacity >25 mg/g support at pH 5 and cation binding >25 mg/g seen for Ce(IV) grafted supports. Improved elution by pH was also seen, with up to 73% of bound lysozyme removed during a single elution at pH 5.

Type of Work:Ph.D. thesis.
Supervisor(s):Thomas, Owen and Theodossiou, Eirini
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemical Engineering
Subjects:TP Chemical technology
Institution:University of Birmingham
ID Code:507
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page