
COMPUTING RELATIVELY LARGE
ALGEBRAIC STRUCTURES BY
AUTOMATED THEORY EXPLORATION

by

QURATUL-AIN MAHESAR

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
March 2014

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Automated reasoning technology provides means for inference in a formal

context via a multitude of disparate reasoning techniques. Combining

different techniques not only increases the effectiveness of single systems

but also provides a more powerful approach to solving hard problems.

Consequently combined reasoning systems have been successfully

employed to solve non-trivial mathematical problems in combinatorially

rich domains that are intractable by traditional mathematical means.

Nevertheless, the lack of domain specific knowledge often limits the

effectiveness of these systems. In this thesis we investigate how the

combination of diverse reasoning techniques can be employed to

pre-compute additional knowledge to enable mathematical discovery in

finite and potentially infinite domains that is otherwise not feasible.

In particular, we demonstrate how we can exploit bespoke symbolic

computations and automated theorem proving to automatically compute

and evolve the structural knowledge of small size finite structures in the

algebraic theory of quasigroups. This allows us to increase the solvability

horizon of model generation systems to find solution models for large size

finite algebraic structures previously unattainable.

We also present an approach to exploring infinite models using a mixture

of automated tools and user interaction to iteratively inspect the

structure of solutions and refine search. A practical implementation

combines a specialist term rewriting system with bespoke graph

algorithms and visualization tools and has been applied to solve the

generalized version of Kuratowski’s classical closure-complement problem

from point-set topology that had remained open for several years.

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my supervisor Dr. Volker Sorge for the

excellent knowledge, enthusiastic encouragement and constant support

over the years. His guidance and advise have had a profound influence

on the development of my research. I will always cherish the work I did

with him.

I would also like to acknowledge the efforts of my thesis group members

Professor Jonathan Rowe and Professor Achim Jung in continually

reviewing my research progress and giving productive feedback

throughout this work. I also acknowledge the ORS Awards Scheme and

School of Computer Science, University of Birmingham for supporting

me financially.

Thanks are also due to my examiners Professor Simon Colton and

Dr. Manfred Kerber, as well as chair Dr. Rami Bahsoon, for taking time

out of their busy schedule to examine my thesis. Finally, I would like to

express my deepest appreciation to my family, friends and departmental

colleagues for their moral support and encouragement.

This thesis is dedicated to my father Dr. Muhammad Usman Mahesar

who passed away during my Ph.D. and would have been extremely happy

and proud of my achievement.

CONTENTS

I Introduction, Related Work and Reasoning

Background 1

1 Introduction 3

1.1 Motivation . 3

1.2 Hypotheses . 5

1.3 Contributions . 6

1.4 Publications . 7

1.5 Overview and Structure 8

2 Related Work - Automated Reasoning in Mathematics 11

2.1 Existence Problems . 12

2.2 Combinatorial Completion Problems 15

2.3 Enumeration of Algebraic Structures 18

2.4 Qualitative Classification of Algebraic Structures 21

2.5 Concluding Remarks . 23

3 Logic and Automated Reasoning 25

3.1 Logical Systems . 26

3.1.1 Propositional Logic 26

3.1.2 First Order Logic 27

3.1.3 Equational Logic 30

3.2 Automated Reasoning 32

3.2.1 Automated Theorem Proving 32

3.2.2 Term Rewriting Systems 37

3.2.2.1 Knuth-Bendix Completion 41

3.2.3 Constraint Solvers 41

3.2.4 SAT Solvers . 46

3.2.5 Model Generators 48

3.3 Other Mathematical Tools Used 52

II Structural Domain Knowledge Exploration for

Large Size Example Generation 54

4 Background on Quasigroups 55

4.1 Quasigroup Definition and Operations 56

4.2 Quasigroup Properties 58

5 Quasigroup Model Generation Problems and Encodings 63

5.1 Quasigroup Constraint Satisfaction Problems 64

5.2 Quasigroup Satisfiability Problems (SAT) 67

5.3 Quasigroup Model Generation Problems 70

6 Enriching Quasigroup Problems With Pre-Computed

Knowledge 75

6.1 Quasigroup Element Filtering 76

6.2 Generating System Representation for Quasigroups . . . 79

6.2.1 Computing Generating Systems for Quasigroups . . 81

6.2.2 Expanding Generating Systems 85

6.2.2.1 Applying Quasigroup Element Filter to

Generating System Expansion 86

7 Experiments and Results 89

7.1 Experimental Set-up . 90

7.1.1 Quasigroup Element Filtering Procedure 92

7.1.2 Generating System Procedure 93

7.1.3 Combination of Both Procedures 95

7.1.4 Employing Implied Constraints 95

7.2 Discussion of Results . 96

III Approximating Solutions in Infinite Domains

101

8 Background on Point-Set Topology and Kuratowski

Closure-Complement Problem 103

8.1 Basic Concepts in Point-Set Topology 104

8.2 Kuratowski Closure-Complement Problem 109

9 generalization of Kuratowski Problem to Point Free

Topology 113

9.1 The Problem . 114

10 The Adopted Term Rewriting System 123

10.1 The Basic Rewriting System 123

10.2 The Advanced Rewriting System 128

10.3 More Variations of Kuratowski’s Problem 133

10.4 Summary . 134

11 Methodology, Implementation and Results 137

11.1 Methodology . 139

11.2 Implementation Details 142

11.3 Verification . 145

11.4 Results . 149

11.5 Concluding Remarks . 153

IV Conclusions 155

12 Contributions 157

12.1 Combining Systems to Solve Complex Mathematical

Problems . 158

12.2 Automated Theory Exploration for Computing Large Size

Examples in Finite Domain 159

12.3 Approximating Solutions in Infinite Domains 160

13 Future Work 161

13.1 Framework for Experimental Mathematics 161

13.2 Decomposition Techniques 162

13.3 Other Generalizations of Kuratowski Problem 163

Appendix A: Experimental Results for Quasigroups 165

List of References 174

LIST OF FIGURES

2.1 Decision tree for the classification problem of order 3

quasigroups [SCMM08] 23

3.1 Prover9 input file example 33

3.2 Prover9 proof example . 37

3.3 Essence specification for N -Queens problem 44

3.4 Minion input for N -Queens problem 45

3.5 Minion output for N -Queens problem 46

3.6 Example in DIMACS CNF format 48

3.7 Solution given by zChaff 48

3.8 Solution given by MiniSat 49

3.9 Mace4 Input Example 50

3.10 Mace4 Output Model . 51

5.1 Essence specification (Primal model) for a Qg-1 quasigroup

of size 4 . 67

5.2 Minion output model for a Qg-1 quasigroup of size 4 . . 68

5.3 MiniSat output model for a Qg-1 quasigroup of size 4 . . 70

5.4 zChaff output model for a Qg-1 quasigroup of size 4 71

5.5 Mace input file for a Qg-1 quasigroup of size 4 72

5.6 Mace output model for Qg-1 quasigroup of size 4 73

6.1 Flow diagram of the quasigroup element filtering approach 76

6.2 Quasigroup proof problem encoding 77

6.3 Proof found by Prover9 78

6.4 Flowchart of the filtering approach applied to generating

system evolution . 87

7.1 Model for the Combined Approach 91

8.1 Topology Example [Bro10] 105

9.1 Approximating graph of order 3 for the generalized problem. 118

10.1 Variations of Kuratowski’s problem. 133

11.1 Methodology . 139

11.2 System setup for experiments in the Kuratowski problem

domain. 143

11.3 Infinite subgraph for the generalized problem. 150

LIST OF TABLES

3.1 Selection of propositional logic inference rules 28

3.2 First-order logic inference rules for quantifiers 30

3.3 Equational logic inference rules 31

7.1 Summary table for quasigroup results. 100

9.1 Axioms for the generalized Kuratowski problem. 114

10.1 The non confluent, Noetherian term rewriting system to

compute w↓ and w↑. 126

10.2 Additional rewriting rules. 130

11.1 Axioms for the matrix representation of (P,≤, c, i,−). . . . 147

11.2 Approximating graph for all the variants that do not stabilize.152

11.3 Approximating graphs for all variants that stabilize. . . . 152

A.1 Quasigroups found for particular properties using different

systems. 166

A.2 Quasigroups found for properties (P) of sizes (S) with

algebraic pre-computations. 167

A.3 QG-1 quasigroups found using implied constraints. . . . 168

A.4 QG-2 quasigroups found using implied constraints. . . . 169

A.5 QG-3 quasigroups found using implied constraints. . . . 170

A.6 QG-4 quasigroups found using implied constraints. 171

A.7 QG-5 quasigroups found using implied constraints. . . . 172

A.8 QG-6 quasigroups found using implied constraints. . . . 173

A.9 QG-7 quasigroups found using implied constraints. . . . 173

Part I

Introduction, Related Work

and Reasoning Background

2

CHAPTER 1

INTRODUCTION

Chapter Overview: This chapter presents the scope of this

thesis. The chapter motivates the reader by introducing the role

played by automated reasoning systems to solve open problems

in mathematics. The major contributions made by this thesis

are summarized followed by the list of publications. Finally, an

overview of the structure and organization of this thesis is given.

1.1 Motivation

Automated reasoning systems can be very useful in solving complex

problems in mathematical domains in many cases where it is infeasible to

compute solutions manually. They can be used in a variety of ways to

accomplish particular goals. One of the primary goals of such systems is

to prove conjectures i.e. claims for which a proof is not yet known. The

existence of certain algebraic structures can also be proved by finding

solution models that satisfy the axiomatic definition of the algebraic

3

structures. The complement of this activity is disproving a conjectured

theorem by finding a model or counter example. The problems involving

the classification and enumeration of algebra can also be solved by using

these systems. However, there are certain limitations due to

combinatorial complexity, where the search space can be out of the scope

of the current automated reasoning systems; for example when

generating algebraic structures with non-trivial properties of larger sizes.

These limitations can be overcome by exploring mathematical techniques

that pre-compute additional knowledge to restrict the search space in

sufficiently diverse domains.

The process of using automated reasoning and other mathematical tools

for exploring mathematical theories as defined in [Buc06], consists of the

invention of notions, the invention and proof of propositions (lemmas,

theorems), the invention of problems, and the invention and verification

of methods (algorithms) that solve problems. Mathematical reasoning as

described in [Bun85], consists of simultaneous automation of various

reasoning processes e.g. learning, theorem proving, model search etc.

Each reasoning process requires an input and outputs knowledge. The

input knowledge of one technique is the output knowledge of another,

where the techniques form an intercommunicating network or a combined

reasoning system. The power of such a system in which various

techniques interact in well-crafted ways is greater compared to just the

sum of the power of the parts.

Within this thesis, we demonstrate the use of diverse automated

reasoning tools in solving complex problems in mathematics in particular

to prove the existence of certain algebraic structures. The main aim is to

compute knowledge by automated means that aids in the generation of

solutions in finite domains; and to use human inspection to discover

4

knowledge that helps to push the boundaries of mathematical discovery

in infinite domains. Our first approach automatically explores structural

domain knowledge of algebra via symbolic computations and automated

theorem proving to increase the solving horizon of various automated

reasoning systems to find solution models of large size finite structures.

Our second approach uses active involvement of the user in the system

combination, where the user can aid in the discovery of knowledge by

careful inspection of the structure of solutions which is given as feedback

to the system combination. This has allowed us to generate approximate

solutions to a class of problems in topological domains that are of infinite

nature. Furthermore, we have implemented a specialist term rewriting

system that makes use of regular expressions that are based on the

discovered knowledge by the human inspection of the solutions.

Moreover, we have performed experiments to evaluate the effectiveness of

our approaches in solving real mathematical problems.

1.2 Hypotheses

The aim of this thesis is to address the following hypotheses:

• The combination of diverse automated reasoning techniques and

other mathematical software tools can push the boundaries of

mathematical discovery by generating and structuring additional

knowledge.

• Discovery of solutions for large size examples in a finite discrete

domain can be aided by automated theory exploration via symbolic

computations and automated theorem proving that pre-compute

additional knowledge.

• Solutions in potentially infinite domains can be approximated by

5

exploiting the structural knowledge using diverse systems such as a

specialist term rewriting system and visualization tools where

active involvement of the user is a necessity.

1.3 Contributions

A summary of the contributions of this thesis is as follows;

1. We describe two novel approaches that exploit the structural

knowledge of finite algebra to assist model generation systems in

finding solution models for large size algebraic structures.

2. We perform a comparative experimental analysis of diverse

automated reasoning techniques to generate quasigroup structures

that have certain non-trivial properties.

3. We describe a novel rule based term rewriting system to find

approximate solutions to the infinite cases of the generalization of

the Kuratowski problem in point free topology. Our term rewriting

system exploits the regular expressions that were identified after

careful inspection of the intermediate graphs produced by our

system, that has helped us to close a problem that remained open

for several years.

4. We describe the formation of combined reasoning systems in

solving complex mathematical problems where each system

performs a distinct task and the combination of these systems

allows a powerful approach to computing the solutions.

Furthermore, we define a system combination where the user acts

as a component within the system to inspect the solutions for the

discovery of useful knowledge.

6

1.4 Publications

This thesis is based partly upon the following conference and workshop

publications.

• Quratul-ain Mahesar and Volker Sorge “Algebraic Theory

Exploration: A Comparison of Technologies”, Proceedings of the

14th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing 2012 [MS12a]

• Osama Al-Hassani, Quratul-ain Mahesar, Claudio Sacerdoti

Coen and Volker Sorge “A Term Rewriting System for

Kuratowski’s Closure-Complement Problem”, Proceedings of the

23rd International Conference on Rewriting Techniques and

Applications 2012 [AHMCS12b]

• Quratul-ain Mahesar and Volker Sorge “Generation of Large

Size Quasigroup Structures Using Algebraic Constraints”,

Proceedings of the 19th Workshop on Automated Reasoning:

Bridging the Gap between Theory and Practice, 2012 [MS12b]

• O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen and V. Sorge

“Solving Kuratowski Problems by Term Rewriting”, Proceedings of

the 19th Workshop on Automated Reasoning: Bridging the Gap

between Theory and Practice, 2012 [AHMCS12a]

• Quratul-ain Mahesar and Volker Sorge “Property Preserving

Generation of Large Size Quasigroup-structures”, Proceedings of

the 17th Workshop on Automated Reasoning: Bridging the Gap

between Theory and Practice, 2010 [MS10]

• Quratul-ain Mahesar and Volker Sorge “Classification of

7

Quasigroup-structures with respect to their Cryptographic

Properties”, Proceedings of the 16th Workshop on Automated

Reasoning: Bridging the Gap between Theory and Practice,

2009 [MS09]

1.5 Overview and Structure

This thesis is based on four parts which are described as follows:

Part I consists of chapters 1, 2 and 3 that provide the overview of the

background and related work relevant to the topic of this thesis.

• Chapter 1 gives an overview of the main objectives of the thesis,

motivates the reader for the importance of the work done, and

provides a summary of the contributions and a list of publications.

• Chapter 2 gives a discussion about the related work that has been

previously done using automated reasoning techniques in

mathematics.

• Chapter 3 consists of two sections. The first section provides a

description on the major logical systems such as propositional logic,

first order logic and equational logic. The second section describes

the various automated reasoning techniques we have used in our

research study, such as automated theorem proving, constraint

solving, satisfiability solving, model finding, and term rewriting.

Part II consists of chapters 4, 5, 6 and 7 that provide the relevant

background for quasigroups, quasigroup model generation problems and

their encodings, the approaches we have proposed and finally the

experiments and results.

• Chapter 4 provides the background on the domain of quasigroups

8

such as a formal definition for quasigroups along with their

operations and properties.

• Chapter 5 describes the three main quasigroup model generation

problems i.e. constraint satisfaction problems, satisfiability

problems and model generation problems. For each of these types

of problems, the formulation of encodings for the systems used are

given and the corresponding output solutions are shown.

• Chapter 6 describes the two proposed approaches for quasigroup

element pre-computations that use symbolic computations and

automated theorem proving.

• Chapter 7 describes the experimental set-up that combines

symbolic computations with automated reasoning systems to

compute quasigroups with interesting non-trivial properties. We

then present a discussion on the results obtained.

Part III consists of chapters 8, 9, 10 and 11 that provide background on

point-set topology, the Kuratowski closure-complement problem and its

generalization, and the term rewriting system that we have proposed and

implemented for solving the problem.

• Chapter 8 provides the basic notions of point-set topology and

describes the Kuratowski closure-complement problem.

• Chapter 9 discusses the generalization of the Kuratowski

closure-complement problem to point free topology using the

inference rules of intuitionistic logic and describes the nth

approximation to the problem.

• Chapter 10 describes the term rewriting system we have proposed

to solve the generalized Kuratowski problem and its variations.

9

• Chapter 11 describes the methodology, implementation details,

results and verification of results.

Part IV is the conclusion that consists of chapters 12 and 13 that

present the scientific contributions of the research and directions for

future work.

10

CHAPTER 2

RELATED WORK - AUTOMATED
REASONING IN MATHEMATICS

Chapter Overview: This chapter gives an overview of

how reasoning systems such as model generation, automated

theorem proving, constraint satisfaction, SAT solving techniques,

computer algebra techniques and machine learning have been

used previously to produce results in the field of mathematics. In

particular the focus is on: existence and combinatorial completion

problems, quantitative enumeration and qualitative classification

of finite algebras.

In this chapter, we first describe how different automated reasoning

systems have been used previously to solve some open existence problems

in finite algebra such as quasigroups, loops, groups and rings.

Furthermore, we present an analysis of different approaches that have

been proposed to solve the combinatorial problem of completion where

one needs to construct the full solution for the problem where there exist

11

partial element assignments beforehand. It is also useful to find out the

number of solution instances that exist for a certain class of algebra of a

particular size. We present the different techniques that have been used

for the quantitative enumeration of finite algebras such as monoids,

semigroups and ag-groups. Moreover, we also present the approaches

used for qualitative classification of algebra which not only describes the

number of equivalence classes but also specifies the discriminating

properties that tell us how the classes differ from each other.

The reader should refer to Chapter 4 for background on finite algebraic

structures in particular the quasigroup problems that we mention in the

text of this chapter. Chapter 3 should be referred to for the background

on different automated reasoning techniques.

2.1 Existence Problems

In mathematics, there are many open problems that are concerned with

the existence of an algebraic structure having a particular size exhibiting

particular properties. These existence problems have been successfully

solved previously by using different automated reasoning tools.

[FSB93, Mcc94, SFS95, ZS94, ZH94] show how advanced automated

reasoning techniques can be used to solve the existence of combinatorial

problems of quasigroups. In [FSB93, SFS95] Fujitsa uses MGTP, a

model-generation based first-order theorem prover and Slaney uses

FINDER, a program based on constraint solving to solve several open

problems in quasigroup theory producing new results such as:

• Two non-isomorphic Idempotent Qg-1 (Schröder) quasigroups of

order 12.

• Qg-2 (Stein’s third law) quasigroup of order 12.

12

• Qg-5 quasigroup for order 12 (idempotent) and for order 10

(without assumption of idempotence) and non-existence results for

order 14 and 15 for idempotent models.

[ZS94] uses propositional provers based on the Davis-Putnam

algorithm [DP60], and they present new results for quasigroup existence

problems that were previously not solved, some of which are given as

follows where x and y are elements of the quasigroup:

• Quasigroup with property ((x ∗ y) ∗ x) ∗ x = y for order 13 and 14;

and non-existence for order 15.

• Quasigroup with property (x ∗ y) ∗ (y ∗ x) = y for order 12.

• Quasigroup with property (x ∗ y) ∗ y = x ∗ (x ∗ y) for order 15.

Furthermore in [ZH94], Zhang and Hsiang show how propositional

reasoning can be used to solve open problems in quasigroups. They

employ the cyclic group construction technique previously used

by [BZ92, Hor74, HS74]. The main idea is to generate an incomplete

quasigroup using an Abelian group of order v − n from its first row and

from the last n elements of the first column. While the technique is

incomplete, it reduces the search space significantly which makes the job

of the SAT solver easier, compared to working from scratch.

[SZ95] shows how quasigroup identities can be studied by rewriting

techniques. Quasigroups satisfying some constraints that take the form

of equations are known as quasigroup identities. Their study identifies

two classes of problems for which rewrite techniques can help. The first

is concerned with finding the identities of certain types of quasigroups

which are conjugate-equivalent to some given identities, and the second

decides which identities imply one of the constraints conjugate-equivalent

13

to some given identities. For example, they show that the quasigroup

identity (x ∗ (x ∗ y)) ∗ y = x is a conjugate-implicant of the quasigroup

identity x ∗ (x ∗ y) = y ∗ x.

[CM01] introduces an approach for finding a single solution to

quasigroup constraint satisfaction problems (CSPs) that uses a

combination of different techniques, namely constraint solving, machine

learning and automated theorem proving. The core of the approach is to

automatically generate implied, symmetry breaking and specialization

constraints via machine learning and automated theorem proving. These

constraints are then used along with the constraints for the basic model

of the quasigroup to find solutions for larger instances using a constraint

solver. Constraint Solver Choco [Lab00] is used for finding small size

examples of quasigroups which are given to the HR [Col02a] theory

formation system that invents new concepts, finds conjectures and proves

them using the automated theorem prover Otter [McC03b] in order to

find implied constraints (implication theorems) and induced theorems

that are based on the theory around the examples supplied by Choco.

The resulting constraints are interpreted to reformulate the basic CSP

model to look for solutions to the specialised CSP. However, the

approach is semi-automated and requires expertise in constraint

modelling and pure mathematics to interpret the output from HR as

constraints and make translations to the input understandable by the

constraint solver. The method is further fully automated in [CCM06]

where a system is demonstrated for automatically reformulating CSP

solver models by combining the capabilities of machine learning and

automated theorem proving with CSP systems. Furthermore, the

procedure is applied to new finite algebras namely groups, Moufang

loops and rings. The system is given a basic CSP formulation and

14

outputs a set of reformulations, each of which includes additional

constraints. Here, one issue comes to mind regarding the time taken in

the reformulation of problems that is recovered by reducing the search

time for solutions to larger problem instances. The approach can benefit

further by translating the constraint satisfaction problem to model

generators and SAT solvers for performing comparisons. The results of

this approach make it evident that the combination of different

automated reasoning systems with machine learning is indeed more

powerful and beneficial than using one system on its own.

2.2 Combinatorial Completion Problems

Following [GS02b], an incomplete or partial Latin square is defined as a

partially filled table with n rows and n columns such that no symbol

occurs twice in a row or a column. The quasigroup or Latin square

completion problem (QCP) is the problem of determining whether the

remaining entries of the table can be filled in such a way that we obtain

a complete Latin square.

[GS02b] describes a structured graph colouring benchmark test suite

based on the completion of Latin squares and proposes three complete

methods for solving the benchmark, a CSP (constraint satisfaction

problem) approach, a hybrid LP (linear programming)/CSP strategy and

a SAT-based approach and concludes that none of the methods

dominates the other on the benchmark. The SAT-based approach, while

being effective on critically constrained instances, suffers from having

large problem encodings due to the limited expressiveness of the SAT

formulation. The CSP-based approach has compact problem encodings

and is effective on under-constrained instances. In particular, the alldiff

constraint helps in reducing the search space in under-constrained

15

instances but has a negative effect when the instances are critically

constrained. LP rounding technique that computes variable ranks to

assign and propagate variable values, boosts the CSP-based approach by

providing a powerful search heuristic.

[DdVC03a] uses a pure constraint programming approach for solving

quasigroup completion problems of significantly large sizes than was

previously thought possible by [GS02a]. They use a number of previously

known ideas such as redundant modelling proposed by [CLW96] where

two models primal and dual are connected by channelling constraints

that are introduced in [Wal01]. However, the novelty of their approach,

that is the key to their success, is the value ordering heuristic also known

as min-domain value selection heuristic. According to the heuristic the

variable with the minimum domain is given priority of selection for

assigning a value.

[SSW98] proposes a method to quasigroup completion problems by

maintaining general arc consistency on the n-ary all different constraints

using the algorithm of [Rég94]. They show that enforcing general arc

consistency on the n-ary constraints is strictly stronger than enforcing

arc consistency on the binary constraints [GS97], which is strictly

stronger than forward checking [MW98]. The aim of arc consistency

algorithms is to effectively remove as many inconsistent values from the

domain of variables before the search or at an early stage of the search.

A constraint is arc consistent (AC) if for any value of the variable in the

constraint there exists a value for the other variable in such a way that

the constraint is satisfied. CSP is arc consistent if all the constraints are

arc consistent. The constraint is generalized arc consistent (GAC) if for

any value of the variable in the constraint there exist values for the other

variables in the constraint such that the tuple satisfies the constraint.

16

Consider the following example of quasigroup completion problem where

Q is a quasigroup of size 3 with elements 0, 1, 2. The multiplication table

of quasigroup Q is presented below where the values given in each cell

represent the domain of each cell. The example gives an insight on the

efficiency of generalized arc consistency in comparison to arc consistency

on binary constraints. Both techniques are used for pruning the domain

of each cell of the multiplication table of the quasigroup Q in order to

reduce the search space for the quasigroup completion problem. The

resulting pruned multiplication tables after application of each technique

on the example quasigroup multiplication table are given respectively.

Q 0 1 2

0 {0} {0, 1, 2} {0, 1, 2}

1 {0, 1, 2} {0} {0, 1, 2}

2 {0, 1, 2} {0, 1, 2} {0, 1, 2}

Enforcing arc consistency on the binary constraints in the above example

results in:

Q 0 1 2

0 {0} {1, 2} {1, 2}

1 {1, 2} {0} {1, 2}

2 {1, 2} {1, 2} {0, 1, 2}

Enforcing general arc consistency on all different constraints filters out

two more values in the bottom right cell resulting in the following:

Q 0 1 2

0 {0} {1, 2} {1, 2}

1 {1, 2} {0} {1, 2}

2 {1, 2} {1, 2} {0}

Identifying and breaking symmetries is important in reducing the search

space in combinatorial problems where we are interested in finding all

17

solutions for a given problem or want to claim the non-existence of a

solution. It has also been shown experimentally in [RM05] that breaking

partial symmetries is also beneficial when there is a need for finding one

solution. Local symmetries [BS07] also known as conditional

symmetries [GKL+05] can be applied to a combinatorial problem

instance where there is a partial assignment. These local symmetries are

broken by using additional clauses to the original encoding of the

problem. [ML07] performs an experimental study using a SAT solver on

breaking local symmetries in quasigroup completion problems by

computing additional clauses that break the symmetry of the partial

element assignments of the problem. Although this helps in reducing the

number of solutions, the additional clauses for breaking symmetries

deteriorate the performance of the SAT solver, which is due to not only

the overhead of dealing with additional clauses but mainly because of the

heuristics used by the SAT solvers that do not benefit from these clauses.

2.3 Enumeration of Algebraic Structures

In terms of combinatorics, it is a well known problem to find out how

many solution instances exist for a certain class of algebras of a

particular size. [DK09, DSS11, DJKK12] show how computer algebra

can be used to break symmetries in constraint satisfaction search to find

solutions for the enumeration of algebras to a class of problems

presenting new results in algebraic combinatorics. They not only provide

enumeration results but also store each solution for the algebraic

structure to be analysed by algebraists. Their second aim is to generate

and store a canonical example from each equivalence class of solutions.

This involves breaking the symmetries that allow objects from the same

class to be interchanged.

18

[DK09] combines group-theoretic GAP [GAP08] calculations with the

speed and efficiency of the Minion [GJM06] constraint solver to obtain

the numbers of monoids up to size 10. They present new results up to

isomorphism and anti-isomorphism by showing that there are 858,977

monoids of size eight; 1,844,075,697 monoids of size nine and

52,991,253,973,742 monoids of size ten.

[DJKK12] describes the use of mathematical results combined with

distributed constraint satisfaction to obtain and show that the number of

non-equivalent semigroups of size 10 is 12,418,001,077,381,302,684 which

was a previously open problem in mathematics. They partition and

distribute the constraint satisfaction problem specification such that the

different partitions of the search space are solved independently where

the computing nodes do not require to communicate with each other.

They have made advances in both constraint satisfaction and abstract

algebra to compute semigroups of size 10, moreover the combination of

both the constraint satisfaction technology and mathematics played a

vital role in the computations.

Furthermore, [DSS11] presents the enumeration and partial

classification of AG-groupoids. Their approach builds on the work done

in [DK09, DJKK12] for generating monoids and semigroups respectively,

and they introduce a novel adaptation to deal with a different domain i.e.

AG-groupoids. Furthermore, they go beyond simple enumeration of the

structures by the constraint solver and obtain further division of the

domain into interesting subclasses of AG-groupoids. They use GAP for

two purposes: firstly to perform symmetry breaking during the constraint

solving process and secondly to perform the subsequent subclassification.

They also produce multiplication tables of the structures under

consideration which can be further used to produce more fine-grained

19

subclassification as demonstrated in the case of AG-groupoids via a two

step approach where they first separate the structures with respect to

associativity and commutativity properties and then as a second step

perform refinement using more specialised properties.

[SA08b, SA08a] present the generation and enumeration of loops with

the inverse property (IP). The enumeration of non-isomorphic IP loops

with order up to 13 and commutative IP loops of order 14 is performed

by using a finite domain constraint solver Finder [Sla94] to generate

representatives of all isomorphism classes. Finder works by expressing

each equation or a defining condition as the set of its ground instances

on the domain of N elements. It then compiles them into constraints and

conducts a backtracking search for solutions to the constraint satisfaction

problem using standard techniques such as forward checking and no-good

learning that are described in [Dec03].

[CP05] describe the Theorem Modifier (TM) system which is an

automated theorem modification system based on an implementation of

the methods prescribed in Lakatos’s philosophy of mathematics, and

relies on the interaction of HR [Col02a], Otter [McC03b] and

Mace [McC03a] programs. The effectiveness of TM system is

demonstrated in tests, where TM was able to modify 7 out of 9

non-theorems from the TPTP library [SS] into interesting, proved

alternatives. Furthermore, on an artificial set of 98 non-theorems, it

produced meaningful modifications 80% of the times.

20

2.4 Qualitative Classification of Algebraic

Structures

The qualitative classification of finite algebraic structures not only

describes the number of equivalence classes but also specifies the

discriminating properties that tell us how the classes differ from each

other. This is particularly useful in allowing one to use properties of

relatively small structures to help in the classification of larger structures.

[CMSM04] presents a semi-automated as well as a fully automated

bootstrapping approach to building and verifying classification theorems

that classify algebras of a particular type and size into isomorphism

classes. The Mace [McC03a] model generator is used to generate

representatives of each isomorphism class for the algebra of a particular

size, which is then followed by using HR [Col02b] and C4.5 [Qui93]

machine learning systems to induce a set of classifying properties.

Furthermore, the classification is verified by constructing appropriate

verification problems that are simplified using GAP [GAP08] and then

proved with the Spass [WBH+99] theorem prover. Moreover, the

approach is fully automated using a bootstrapping procedure to build a

decision tree that decides the isomorphism class of a given algebra. Each

step of the decision tree is verified by first using GAP to simplify the

verification problems and then Spass for proving them. Both semi and

fully automated approaches successfully generate a number of

classification theorems for groups, monoids, quasigroups and loops up to

size 6. The approaches present a novel method of using the combination

of multiple reasoning systems to tackle difficult classification problems

and provide a general method that can be applied to any algebraic

domain and equivalence relation.

21

[SMMC08] extends the study of [CMSM04] to the production of

classification theorems up to isotopism. Isotopism is an important

generalization of isomorphism and is studied in the domain of algebraic

loop theory. Finding isotopy invariants is a more complex task and the

machine learning approach did not suffice for this application. Three

novel techniques for generating isotopy invariants were developed that

use the notion of universal identities via an interplay of model generation

and theorem proving, and constructions based on sub-blocks that use

computer algebra techniques. The proof problems concerning a

conjunction of the invariants forming an isotopy class were simplified

with computer algebra techniques and the final proof was found using a

satisfiability solver. The bootstrapping algorithm was employed to

generate new results within an isotopic classification theorem for loops of

size 6 providing a full set of classifying properties, and a summary of

similar result for loops of size 7 is also presented. While the verifications

of some of the classification theorems pose little difficulty for automated

theorem provers, it was found that the verifications of the other

classification theorems were beyond the capabilities of state of the art

provers. Therefore, since the problems are in a finite domain, Boolean

satisfiability was employed. [MS05] presents the application of

satisfiability solvers to generate fully verified classification theorems in

finite algebra exploring diverse methods to efficiently encode the

problems both for Boolean SAT solvers as well as for solvers with

built-in equational theory. This lead to an improvement of the overall

bootstrapping algorithm.

Finally, [SCMM08] presents the bootstrapping approach that

incorporates a set of diverse reasoning techniques, including first order

resolution theorem proving, model generation, satisfiability solving and

22

computer algebra methods, and is successfully applied to produce a

number of novel classification theorems for loops and quasigroups with

respect to isomorphism and isotopism, in particular for quasigroups up

to size 5 and loops up to size 7. Figure 2.1 shows the decision tree for

the classification problem of order 3 quasigroups alongwith the five

isomorphism class represents. The leaf nodes 2, 4, 7, 8 and 9 of the tree

are the isomorphism classes with the respective represents Q2, Q4, Q7, Q8

and Q9. The discriminating properties are labelled on the edges of the

tree. The conjunction of these discriminating properties given on the

path from the leaf to the root uniquely determine the isomorphism class

represented by the leaf node. The full classification theorem corresponds

to a disjunction of conjunctions of the discriminating properties.

Figure 2.1: Decision tree for the classification problem of order 3
quasigroups [SCMM08]

2.5 Concluding Remarks

In this chapter we have presented a survey of how automated reasoning

systems have been used to solve mathematical problems concerning finite

23

algebras. It is evident that the combination of different reasoning

systems is very beneficial and helps to solve problems that a single

system is unable to solve on its own. A point worth noting is that the

capability of these reasoning systems can be enhanced by exploring

mathematical domain knowledge. We demonstrate this in Chapter 7, by

presenting a description of a model that combines various reasoning

systems to automatically explore algebraic theory to enable the

generation of large size solution models. It integrates a mix of bespoke

algorithms we have implemented and off the shelf reasoning tools.

Furthermore, in Chapter 11 we present a novel approach of combining

systems where automated system components and user interaction are

integrated to mutually support each other in developing solutions to the

problems. Efficient encoding for the reasoning systems is necessary and

there is a need for modelling systems that can generate the inputs for

these systems so that a user does not require expertise to use them.

Moreover, translations are also necessary so that if one system is unable

to solve a problem, the other systems can be used. In Chapter 7, we

present a comparative analysis of different model generation systems that

are based on diverse reasoning techniques to compute large size models

of quasigroups with non-trivial properties.

24

CHAPTER 3

LOGIC AND AUTOMATED REASONING

Chapter Overview: In this research work, different reasoning

systems have been used which employ logical formalisms for the

inputs and outputs i.e. the communication between these systems

is in logic. This chapter first describes the logical systems which

include propositional logic, first order logic and equational logic.

Furthermore, the various automated reasoning techniques that

are used in this research work are described, in particular the

input formulations and solution models with statistics are shown

for the systems that were used in this work.

This chapter provides background information on logical systems and

automated reasoning techniques. We begin this chapter with a brief

introduction to logical systems and explain some of the terminology

which appears later. We define what we mean by automated reasoning.

It is a large area of artificial intelligence, encompassing many disciplines

which are suited to solving particular types of problems and we talk

25

about some relevant techniques that were used in the research. We limit

our discussion of the details of how systems operate to only those

systems which were used extensively in this work.

3.1 Logical Systems

As defined in [Fit90b], logic is a formal system in which the formulae are

interpreted to either false or true. Every logic has the following

components:

• Syntax: This specifies the symbols in the language and how they

can be combined to form sentences.

• Semantics: This specifies what facts in the world a sentence refers

to. A fact is a claim that may be true or false.

• Inference Procedures: Mechanical methods for computing or

deriving new sentences which follow from existing sentences.

3.1.1 Propositional Logic

Propositional logic is a simple language that is useful for showing key

ideas and definitions. The basic terms that form the main parts of

propositional logic are defined as follows:

• A set of propositional symbols such as P and Q and their

semantics are defined by the user.

• A sentence (also called a formula or well-formed formula or wff) is

defined as:

1. A symbol.

2. If S is a sentence, then ∼ S is a sentence, where “ ∼ ” is the

“not” logical operator.

26

3. If S and T are sentences, then (S ∨ T), (S ∧ T), (S → T), and

(S ⇔ T) are sentences, where the four logical connectives

correspond to “or,” “and,” “implies,” and “if and only if,”

respectively.

4. A finite number of applications of 1− 3 .

• Given the truth values of all of the constituent symbols in a

sentence, that sentence can be “evaluated” to determine its truth

value (True or False). This is called an interpretation of the

sentence.

• A model is an interpretation (i.e., an assignment of truth values to

symbols) of a set of sentences such that each sentence is True.

• A valid sentence (also known as a tautology) is a sentence that is

True under all interpretations.

• An inconsistent sentence (also called unsatisfiable or a

contradiction) is a sentence that is False under all interpretations.

• Sentence P entails sentence Q, written P |= Q, means that

whenever P is True, so is Q. In other words, all models of P are

also models of Q.

The inference rules of propositional logic allow us to derive new

logical formulae from formulae that are taken to be true. Some

inference rules are shown in Table 3.1.

3.1.2 First Order Logic

Following [Fit90b] the basic terminology used in first-order logic (also

known as predicate logic) is defined as follows:

27

Inference Rule Given Result
Modus Ponens A,A⇒ B B
And Introduction A,B A ∧B
And Elimination A ∧B A
Double Negation ∼∼ A A
Unit Resolution A ∨B,∼ B A
Resolution A ∨B,∼ B ∨ C A ∨ C

Table 3.1: Selection of propositional logic inference rules

The following primitives are defined by the user:

• Constant symbols (i.e., the “individuals” in the world) e.g., Mary,

3.

• Function symbols (mapping individuals to individuals) e.g.,

father-of(Mary) = John, color-of(Sky) = Blue.

• Predicate symbols (mapping individuals to truth values) e.g.,

greater(5,3), green(Grass), color(Grass, Green).

The following symbols are supplied by first-order logic:

• Variable symbols. e.g., x, y.

• Connectives. They are the same as used in propositional logic : not

(∼), and (∧), or (∨), implies (→), if and only if (⇔).

• Quantifiers: Universal (∀) and Existential (∃)

– Universal quantification corresponds to conjunction (“and”)

in that ∀ x P (x) is equivalent to the conjunction

P (x1)∧P (x2)∧P (x3)∧ ...∧P (xn) which means that P holds

for all values of x in the domain associated with that variable.

E.g., ∀ x dog(x)→ mammal(x).

– Existential quantification corresponds to disjunction (“or”) in

that ∃ x P (x) is equivalent to the disjunction

28

P (x1)∨P (x2)∨P (x3)∨ ...∨P (xn) which means that P holds

for some value of x in the domain associated with that

variable. E.g., ∃ x mammal(x) ∧ lays-eggs(x).

– Universal quantifiers are usually used with “implies” to form

“if-then rules.” E.g., ∀ x (phdstudent(x)→ smart(x)) means

“All phd students are smart”.

– Existential quantifiers are usually used with “and” to specify

a list of properties or facts about an individual. E.g.,

∃ x (phdstudent(x) ∧ smart(x)) means “there is a phd

student who is smart”.

– Switching the order of universal quantifiers does not change

the meaning: ∀ x ∀ y P (x, y) is logically equivalent to

∀ y ∀ x P (x, y). Similarly, you can switch the order of

existential quantifiers.

– Switching the order of universals and existentials does change

meaning:

∗ Everyone likes someone: ∀ x ∃ y likes(x, y).

∗ Someone is liked by everyone: ∃ y ∀ x likes(x, y) .

Sentences are built up from terms and atoms:

• A term (denoting a real-world individual) is a constant symbol, a

variable symbol, or an n-place function symbol applied to n terms.

For example, x and f(x1, ..., xn) are terms, where each xi is a term.

• An atom (which has value true or false) is either an n-place

predicate symbol applied to n terms. Formulae are atoms, or if P

and Q are formulae, then ∼ P , P ∨Q, P ∧Q, P → Q,P ⇔ Q are

formulae. If P is a formula and x is a variable, then ∀ x P and

∃ x P are formulae.

29

Inference Rule Given Result
Forall introduction P (c) true for all possible c ∀ x P (x)
Forall elimination ∀ x P (x) P (c)
Exists introduction P (c) ∃ x P (x)
Exists elimination ∃ x P (x) P (c) for some arbitrary c

Table 3.2: First-order logic inference rules for quantifiers

• A sentence is a well-formed formula (wff) containing no “free”

variables. i.e., all variables are “bound” by universal or existential

quantifiers. E.g., ∀ x P (x, y) has x bound as a universally

quantified variable, but y is free, hence this is not a sentence.

A statement in first order logic can be represented as clauses. A clause is

a disjunction of literals e.g. A1 ∨ A2 ∨ ... ∨ An. A literal is a predicate or

its negation. Furthermore, Conjunctive Normal Form describes a

propositional formula which is a conjunction of clauses. For example the

following statement is in conjunctive normal form: (A ∨ ∼ B) ∧ (B ∨ C).

The inference rules for first order logic are similar to those of

propositional logic. Apart from them, there are some additional inference

rules affecting quantifiers which are shown in Table 3.2.

3.1.3 Equational Logic

Equational logic as defined in [Pig75] is a fragment of first-order

predicate logic with equality in which universally quantified equations

are the only formulas. In other words, equational logic consists of a set of

function symbols of fixed arity, variables and constant symbols. Formulas

are in the form of equations where all variables are universally quantified.

Equational logic plays an important role in defining some classes of

algebras. Most algebraic structures that are of interest to algebraists can

be axiomatically defined by identities written in equational logic. As an

30

Inference Rule PREMISE
CONLUSION

[1] Reflexivity
t=t

[2] Symmetry t=t′

t′=t

[3] Transitivity t=t′,t′=t′′

t=t′′

[4] Instantiation t=t′

tp=t′p
for every substitution p

[5] Substitution
t1=t′1,...,tk=t′k

f(t1,...,tk)=f(t′1,...,t
′
k)

for all n-ary function symbols f of arity k

Table 3.3: Equational logic inference rules

example, the class of semigroups can be defined by the associative

identity x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Equational logic provides a deductive proof system that enables the

generation of more equations from a set of original equations E.

Equations are written in the infix form ‘=’ or sometimes expressed as a

pair of terms 〈t, t′〉 where the terms are equal. By applying a set of

inference rules on the original equations E we can generate new

equations that are known as theorems of the logic. The inference rules

for equational logic are given in Table 3.3. The first three rules 1, 2, 3

capture the properties of an equivalence relation (reflexivity, symmetry,

and transitivity). Rule 4 states that equational logic is closed under

substitutions as defined in Table 3.3, i.e., if we take an equation from E

and apply the same substitution on both sides the new equation is also a

consequence of E. Finally, rule 5 means that equational logic is also

closed under all n-ary function symbols f , i.e., if t1 = t′1, ..., tk = t′k are

provable from E then f(t1, ..., tk) = f(t′1, ..., t
′
k) is also provable from E.

31

3.2 Automated Reasoning

Automated reasoning refers to reasoning done by a computer using logic.

A system that performs automated reasoning uses some form of logical

representation and can provide some new information given some

background information based on logical reasoning. Logical reasoning

depicts the methods of using logical formalizations in order to derive

conclusions from the preconditions according to the inference rules given

in the formalization.

Some fields of automated reasoning which we use in our research work

are described as follows.

3.2.1 Automated Theorem Proving

Automated Theorem Proving (ATP), see for instance [Sut], deals with

the development of computer programs that show that some statement

(conjecture) is a logical consequence of a set of statements (axioms and

hypotheses). The input information is a set of axioms together with the

theorem to be proved specified in a particular formal logic, and the

output is a formal proof that the theorem follows from the axioms via

the inference rules of the formal logic.

ATP has many applications and it can be used in a variety of domains

such as mathematics, program analysis and system verification. The

language in which the conjecture, hypotheses and axioms are written is a

formal logic. This means that a precise, clear and accurate formal

statement of the problem is given to the ATP system and there is no

form of ambiguity, in contrast to natural languages such as English. The

proofs produced by ATP describe how and why the conjectures follow

from the axioms and hypotheses. The proofs are in a form that can then

32

be understood by an expert or a computer program.

There are many powerful ATP systems available to use. Examples of

first-order ATP systems include Otter [McC03b], Prover9 [McC],

E [Sch02], SPASS [WBH+99], Vampire [RV01] and

Waldmeister [BHF96].

We have used Prover9 in our research experiments. Prover9 is a successor

of the Otter prover. Prover9 accepts input in the form of first-order and

equational logic. Figure 3.1 shows an example input file for Prover9

using quantifiers.

formulas(assumptions).
all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))).
end_of_list.
formulas(goals).
all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).
end_of_list.

Figure 3.1: Prover9 input file example

The primary mode of inference used by Prover9 is resolution.

Gallier [Gal85] describes the idea of resolution as: “The essence of the

method is to prove the validity of a proposition by establishing that the

negation of this proposition is unsatisfiable”, which means to prove P ,

the method attempts to disprove ‘not P ’ (¬P). Resolution provides a

complete proof procedure for detecting inconsistency of formulae that are

expressed in first order logic. Resolution procedure uses a single rule of

inference: the Resolution Rule (RR), which is a generalization of the

same rule used in propositional logic defined in Section 3.1.1 in Table 3.1.

To prove that a sentence p can be derived from a set of sentences KB,

resolution procedure uses the following steps:

(i) Convert ¬p and the sentences in KB to conjunctive normal form.

33

(ii) Repeat the following steps until either a contradiction is found, no

progress can be made or a pre-determined amount of effort has

been expended

• Find two clauses that contain a literal in one clause and the

negation of the literal in the other clause, for example of the

form u ∨ v1 ∨ v2... ∨ vk and ¬u ∨ w1 ∨ w2... ∨ wl

• Combine the two clauses using the resolution rule of inference,

adding the resolvent(s) to the set of sentences KB. For

example resolving u ∨ v1 ∨ v2... ∨ vk and ¬u ∨ w1 ∨ w2... ∨ wl

gives the resolvent clause: v1 ∨ v2... ∨ vk ∨ w1 ∨ w2... ∨ wl.

• If one of the resolvents is the empty clause, then a

contradiction has been found. Return “p has been proven”.

Conjunctive normal form (CNF) is also called the clausal form. Every

sentence in CNF is a conjunction of disjunctions of literals. To convert a

first order logic sentence to CNF following steps should be followed:

(i) Remove implications

• Replace P → Q by ¬P ∨Q

• Replace P ↔ Q by (¬P ∨Q) ∧ (P ∨ ¬Q)

(ii) Move negation inwards

• ¬∀ x P becomes ∃ x ¬P

• ¬∃ x P becomes ∀ x ¬P

• ¬¬P becomes P

• ¬(P ∧Q) is replaced by ¬P ∨ ¬Q

• ¬(P ∨Q) is replaced by ¬P ∧ ¬Q

34

(iii) Standardize variables

• each quantifier gets unique variables, for example

∃ x P (x) ∧ ∃ x Q(x) becomes ∃ x P (x) ∧ ∃ y Q(y)

(iv) Move quantifiers to the left

• ∀ x P ∨ ∃ y Q becomes ∀ x ∃ y (P ∨ Q)

(v) Eliminate ∃ by Skolemization

• ∃ x P (x) becomes P (A)

• ∀ x ∀ y ∃ z P (x, y, z) becomes ∀ x ∀ y P (x, y, F (x, y))

• ∀ x ∃ y Pred(x, y) becomes ∀ x Pred(x, Succ(x))

(vi) Drop universal quantifiers

(vii) Distribute And over Or

• (P ∧Q) ∨R becomes (P ∨R) ∧ (Q ∨R)

In propositional logic, it is easy to determine that two literals contradict

each other by simply looking for p and ¬p. However, in first order logic

this matching process is more complicated because arguments of

predicates must be considered. For example, man(John) and

¬man(John) is a contradiction, while man(John) and ¬man(Tom) is

not. To detect contradictions in first order logic, a matching procedure is

required that compares two literals and discovers whether there exists a

set of substitutions theta that makes them identical. This procedure is

called unification which works by taking two atomic sentences (literals),

such as Knows(John, x) and Knows(John, Paul), and return a

substitution theta that makes them look the same, such as {x/Paul}.

Algorithm 1 defines the unify procedure that takes two literals p, q and

35

empty substitution list theta as input and returns “failure” if the two

input literals do not match and a substitution list, theta, if they do

match.

Algorithm 1 Unification

procedure unify(p, q, theta)
Scan p and q left-to-right and find the first corresponding terms where
p and q “disagree” ; where p and q not equal
if there is no disagreement then

return theta
end if
Let r and s be the terms in p and q, respectively, where disagreement
first occurs
if variable(r) then

theta = union(theta, {r/s})
unify(subst(theta, p), subst(theta, q), theta)

else if variable(s) then
theta = union(theta, {s/r})
unify(subst(theta, p), subst(theta, q), theta)

else
return “failure”

end if
end

The aim of Prover9 is to detect inconsistency by deriving a contradiction,

and for that it makes use of repeated resolution inferences. Prover9 uses

the following procedure:

i Preprocess the input file to convert it into the form appropriate for

inferencing.

ii Negate the formula given as a goal.

iii Translate all formulae into clausal form.

iv Compute inferences and by default write these in standard output.

v If an inconsistency is detected then stop and print out a proof

consisting of the sequence of resolution rules that generated the

inconsistency. Print out various statistics associated with the proof.

36

The proof generated by Prover9 for the example input file given in

Figure 3.1 is shown in Figure 3.2

============================== PROOF =================================

% Proof 1 at 0.00 (+ 0.00) seconds.
% Length of proof is 14.
% Level of proof is 4.
% Maximum clause weight is 6.
% Given clauses 6.

1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause).
[assumption].
2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal).
[goal].
3 subset(x,y) | member(f1(x,y),x). [clausify(1)].
4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)].
5 subset(x,y) | -member(f1(x,y),y). [clausify(1)].
6 subset(c1,c2). [deny(2)].
7 subset(c2,c3). [deny(2)].
8 -subset(c1,c3). [deny(2)].
11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)].
12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)].
13 member(f1(c1,c3),c1). [resolve(8,a,3,a)].
14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)].
15 member(f1(c1,c3),c2). [resolve(13,a,11,a)].
18 $F. [ur(12,b,14,a),unit_del(a,15)].

============================== end of proof ==========================

Figure 3.2: Prover9 proof example

3.2.2 Term Rewriting Systems

Term rewriting is based on equational logic employing the repeated

application of directed equations also known as rewrite rules or

substitution rules, unlike equational logic where the equations have no

direction. This makes term rewriting well suited for symbolic

computations, program analysis and program transformation.

Following [Klo87, HO80, Ter03], a term rewriting system is defined as

follows:

Definition 3.2.1 A Term Rewriting System (TRS) is defined as a pair

(Σ, R), where Σ denotes the alphabet or signature and R is a set of

reduction rules (directed equations) also known as rewrite rules. The

alphabet Σ consists of:

• V , a countably infinite set of variables x, y, z,

37

• F , a non-empty set of function symbols or operator symbols f, g, ...

applied to zero or more arguments that define the ‘arity’ of the

function symbols. A 0-ary function symbol is called a constant.

Definition 3.2.2 The set of terms T (Σ) over the alphabet Σ is

inductively defined as follows:

• x ∈ T (Σ) where x ∈ V .

• f(M1, ...,Mn) ∈ T (Σ) where f ∈ F is an n-ary function symbol

and M1, ...Mn ∈ T (Σ) (n ≥ 0).

If no variables occur in a term, then it is called a ground term and T0(Σ)

denotes the set of ground terms. Terms in which every variable occurs

only once are called linear. s is a subterm of term t if s is a term that

occurs somewhere in t.

Definition 3.2.3 A substitution Θ is a mapping from T (Σ) to T (Σ)

such that:

• Θ(f(M1, ...,Mn)) ≡ f(Θ(M1), ...,Θ(Mn))) where

f(M1, ...,Mn) ∈ T (Σ) and n ≥ 0.

So, Θ is determined by its restriction to the variables.

Definition 3.2.4 A reduction rule (or rewrite rule) is a pair (t, s) of

terms ∈ T (Σ), written as r : tB s where r is the name given to the

reduction rule, having two conditions:

1. The left hand side (LHS) t is not a variable.

2. The variables in the right hand side (RHS) s are already contained

in t.

38

A reduction rule r : tB s determines a set of rewrites Θ(t)Br Θ(s) for all

substitutions Θ.

The following are a few examples based on term rewriting.

Example 3.2.1 Consider the following rewrite rules:

• r1 : A(x, S(y)) B S(A(x, y))

• r2 : A(x, 0) B x

Now, A(0, S(A(S(0), 0))) can be simplified using the above rewrite rules

as follows:

• A(0, S(A(S(0), 0)))

B S(A(0, A(S(0), 0)))

B S(A(0, S(0)))

B S(S(A(0, 0)))

B S(S(0))

Example 3.2.2 Consider the following rewrite rule:

• f(g(x)) B g(f(x))

Now, f(f(g(f(g(x))))) can be simplified using the above rewrite rule as

follows:

• f(f(g(f(g(x)))))

B f(f(g(g(f(x)))))

B f(g(f(g(f(x)))))

B g(f(f(g(f(x)))))

39

B g(f(g(f(f(x)))))

B g(g(f(f(f(x)))))

As demonstrated in the above examples and described in [HKK91],

rewriting a term consists of replacing a subterm, which matches a left

hand side of a rewrite rule, by the right hand side, where variables have

acquired the value determined by matching. Iterating this process using

a rewrite system R is called reducing or rewriting. If two terms can be

rewritten to the same one, a special equational proof is obtained, called a

rewrite proof. A term which cannot be rewritten is said to be in normal

form. As given in [Gog98], a TRS is said to be terminating or

Noetherian, if each term has a normal form i.e. there are no infinite

sequences of rewrites using it.

There are many tools that employ term rewriting. CoLoR [BK11] is a

Coq [HKPM04] library of mathematical definitions and theorems on the

termination of rewrite relations. Coq [HKPM04] is a proof assistant

based on a higher-order logic allowing powerful definitions of functions.

RRL (Rewrite Rule Laboratory) [KZ95] is a rewrite-rule based theorem

prover for equational and inductive reasoning. Stratego [BKVV08] is a

modular language for the specification of fully automatic program

transformation systems based on the paradigm of rewriting strategies.

Watson [HAF01] is an interactive equational theorem prover, where

theorems are expressed as rewrite rules. It has a programming language

where programs are systems of recursively chained rewrite rules, proved

and stored in the same way as theorems. We take inspirations from these

systems but as described in Chapter 10, we build our own term rewriting

system.

40

3.2.2.1 Knuth-Bendix Completion

The Knuth-Bendix completion algorithm attempts to transform a finite

set of equations (over terms) into a finitely terminating, confluent term

rewriting system. This term rewriting system serves as a decision

procedure for validating the word problem i.e. whether two given terms

represent the same element? The word problem is undecidable so the

algorithm is not guaranteed to terminate. If the algorithm succeeds it

has effectively solved the world problem.

Initially, the completion algorithm attempts to orient input equations

according to the reduction order (if s < t, then t→ s becomes a rule,

where s and t are terms) Then, it completes this initial set of rules with

derived ones. The algorithm iteratively detects critical pairs, obtains

their normal forms, and adds a new rule for every pair of the normal

forms in accordance with the reduction order.

The completion algorithm may:

1. Terminate with success and yield a finitely terminating, confluent

set of rules,

2. Terminate with failure, or

3. Loop without terminating.

3.2.3 Constraint Solvers

Constraint solving is used for solving a constraint satisfaction problem

(CSP) where the solution is modelled by a set of constraints on a set of

decision variables. A constraint solver then assigns values to each of the

variables so that all the constraints are satisfied. In addition to that, a

user can specify a function which can be used by the solver to favour a

particular solution from a set of many possible solutions. Constraint

41

solving can be used for tackling a wide variety of combinatorial problems

in fields such as scheduling, industrial design, and combinatorial

mathematics.

In the case of finite algebras, a constraint solver can be used to find

examples of an algebra by encoding the operator table as variables and

posting constraints to represent axioms. For example, quasigroups can

be found by considering a table of n2 variables with possible values of 0

to n− 1 and constraining the variables of each row and column to be all

different.

Examples of constraint solvers include Minion [GJM06], Choco [Lab00],

Mistral [Heb08] and Abscon [MLB01]. They all differ in terms of the

implementation and the syntax for declaring constraints.

We have used the Minion constraint solver in our experiments for

generating large size examples of algebraic structures such as

quasigroups. Minion [GJM06] is a general-purpose constraint solver,

with an expressive input language based on the common constraint

modelling device of matrix models. Therefore, it is well suited for our

domain of experimentation i.e. quasigroups. The constraint satisfaction

problem formulations employ one or more matrices of decision variables,

with constraints typically imposed on the rows, columns and planes of

the matrices. The input language of Minion has four variable types.

1. 0/1 variables: which are used very commonly for logical

expressions, and for the characteristic functions of sets.

2. Bounds variables: where only the upper and lower bounds of the

domain are assigned values.

3. Sparse Bounds variables: where the domain is composed of discrete

values, e.g. {1, 5, 36, 92}, but only the upper and lower bounds of

42

the domain are updated during search.

4. Discrete variables: where the domain ranges from the lower to

upper bounds specified, but the deletion of any domain element in

this range is permitted.

The input language of Minion supports the definition of one, two, and

three-dimensional matrices of decision variables. Furthermore, it

provides direct access to matrix rows and columns since most matrix

models impose constraints on them. The following are a few example

constraints which are allowed:

(i) alldiff: forces the input vector of variables to take distinct values.

(ii) gacalldiff: similar to alldiff and additionally enforces generalized

arc consistency [SSW98].

(iii) eq: constrains two variables to take equal values.

(iv) abs(x, y): makes sure that x = |y|, i.e. x is the absolute value of y.

(v) weightedsumgeq(constantV ec, varV ec, total): ensures that

constantV ec · varV ec ≥ total, where constantV ec · varV ec is the

scalar dot product of constantV ec and varV ec.

(vi) weightedsumleq(constantV ec, varV ec, total): ensures that

constantV ec · varV ec ≤ total, where constantV ec · varV ec is the

scalar dot product of constantV ec and varV ec.

(vii) element(vec, i, e): specifies that, in any solution, vec[i] = e and i is

in the range [0 . . . |vec| − 1].

(viii) watchelement(vec, i, e): similar to element(vec, i, e) and

additionally enforces generalized arc consistency [SSW98].

43

Let us consider the combinatorial problem of N -Queens to demonstrate

how Minion works. The N -Queens problem is stated as the problem of

putting n chess queens on an n× n chessboard such that none of them is

able to capture any other using the standard chess queen moves. The

column model is used, where there is one variable of domain 1, . . . , n for

each row having n = 4. We use the essence modelling language [FGJ+07]

to model the problem and use the translation system tailor [Ren] that

takes the essence specification and generates the problem in the Minion

input format. Figure 3.3 shows the N -Queens problem specification

modelled in essence.

given n: int
find queens: matrix indexed by [int(1..n)] of int(1..n)
such that
forall i : int(1..n). forall j : int(i+1..n).
|queens[i] - queens[j]| != |i - j|,
alldiff(queens),
letting n be 4

Figure 3.3: Essence specification for N -Queens problem

The input for Minion for the N -Queens problem model is shown in

Figure 3.4. 4 variables are used, each representing a column of the chess

board. These 4 variables are stored in a matrix called queens with

domain {1, ..., 4} representing a 4× 4 chessboard. Two auxiliary

variables are used for each of the 6 diagonal constraints, one with domain

{−3, ..., 3} and the other with domain {0, ..., 3}. The variable order

branches on each of the variables of the queen matrix in turn, then on

the two auxiliary variables, to print only the matrix of variables.

The alldiff constraint is used on the queens variables. This ensures that

two queens cannot be put in the same row. The rest of the constraints

stop two queens from being placed on a diagonal. These diagonal

constraints are all of the form |queens[i]− queens[j]| 6= |i− j| which is

44

MINION 3
VARIABLES
DISCRETE queens[4] {1..4}
auxiliary variables
DISCRETE aux0 {-3..3}
DISCRETE aux1 {0..3}
DISCRETE aux2 {-3..3}
DISCRETE aux3 {0..3}
DISCRETE aux4 {-3..3}
DISCRETE aux5 {0..3}
DISCRETE aux6 {-3..3}
DISCRETE aux7 {0..3}
DISCRETE aux8 {-3..3}
DISCRETE aux9 {0..3}
DISCRETE aux10 {-3..3}
DISCRETE aux11 {0..3}
SEARCH
PRINT [queens]
VARORDER [queens,
aux0,aux1,aux2,aux3,aux4,aux5,aux6,aux7,
aux8,aux9,aux10,aux11]
CONSTRAINTS
weightedsumgeq([1,-1],[queens[2],queens[3]], aux0)
weightedsumleq([1,-1],[queens[2],queens[3]], aux0)
abs(aux1,aux0)
weightedsumgeq([1,-1],[queens[1],queens[3]], aux2)
weightedsumleq([1,-1],[queens[1],queens[3]], aux2)
abs(aux3,aux2)
weightedsumgeq([1,-1],[queens[1],queens[2]], aux4)
weightedsumleq([1,-1],[queens[1],queens[2]], aux4)
abs(aux5,aux4)
diseq(2, aux3)
weightedsumgeq([1,-1],[queens[0],queens[3]], aux6)
weightedsumleq([1,-1],[queens[0],queens[3]], aux6)
abs(aux7,aux6)
weightedsumgeq([1,-1],[queens[0],queens[2]], aux8)
weightedsumleq([1,-1],[queens[0],queens[2]], aux8)
abs(aux9,aux8)
weightedsumgeq([1,-1],[queens[0],queens[1]], aux10)
weightedsumleq([1,-1],[queens[0],queens[1]], aux10)
abs(aux11,aux10)
diseq(3, aux7)
diseq(2, aux9)
diseq(1, aux1)
diseq(1, aux5)
diseq(1, aux11)
alldiff([queens])
EOF

Figure 3.4: Minion input for N -Queens problem

45

decomposed into queens[i]− queens[j] = auxa, |auxa| = auxb and

auxb 6= constant. As minion has no weighted sum equals constraint,

therefore two constraints are used that when used together offer the

same functionality, namely a weighted sum less than or equals to

(weightedsumleq) and weighted sum greater than or equals to

(weightedsumgeq). The full constraint queens[i]− queens[j] = auxa is

represented as queens[i]− queens[j] ≤ auxa and

queens[i]− queens[j] ≥ auxa.

The output of Minion for the N -Queens problem where n = 4 is given in

Figure 3.5.

Minion Version 0.10
Command line: ./minion -timelimit 200 -sollimit 1 input.minion
Parsing Time: 0.000000
Setup Time: 0.004000
First Node Time: -0.000000
Initial Propagate: -0.000000
First node time: -0.000000
Sol: 2 4 1 3

Solution Number: 1
Time:-0.000000
Nodes: 5

Solve Time: 0.204013
Total Time: 0.208013
Total System Time: 0.020001
Total Wall Time: 0.233183
Maximum Memory (kB): 37012
Total Nodes: 5
Problem solvable?: yes
Solutions Found: 1

Figure 3.5: Minion output for N -Queens problem

3.2.4 SAT Solvers

Boolean Satisfiability solving (SAT) refers to the assignment of variables

in a propositional formula so that the formula evaluates to true. The

following is an example of a SAT problem with the idea being to find

assignments of true or false to each of the variables A,B,C and D such

46

that the whole equation is satisfied.

(A ∨B) ∧ (C ∨D) ∧ (∼ A∨ ∼ C) ∧ (∼ D ∨B) ∧ (∼ B ∨ C)

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [DLL62] is

the most common method used by SAT solvers which is based upon the

earlier Davis-Putnam algorithm [DP60]. It works by considering partial

assignments of values to literals in the clauses, propagating the impact of

that assignment and back-tracking whenever a contradiction is detected.

SAT is used in various applications including theorem proving, bounded

model checking, circuit testing, logic synthesis, artificial intelligence

planning and software verification. A comparison of SAT techniques for

solving satisfiability problems is given in [SML96]. Some highly efficient

implementations of SAT solvers include RSAT [PD07],

PICOSAT [Bie08], MiniSat [ES03] and zChaff [FMM].

We have experimented with MiniSat [ES03] and zChaff [FMM] in our

research work. Both these SAT solvers accept the DIMACS CNF format

as input. DIMACS CNF is the standard input format used by most of

the state of the art SAT solvers. This format defines a Boolean

expression, written in conjunctive normal form (CNF), that may be used

as an example of the satisfiability problem.

Let us consider the following example of a boolean expression in CNF:

(x1 | ∼ x5 | x4) & (∼ x1 | x5 | x3 | x4) & (∼ x3 | ∼ x4).

The above example can be written in DIMACS CNF format as shown in

Figure 3.6.

Every line beginning with “c” is a comment. The first non-comment line

introduces the SAT problem in CNF format with 5 variables and 3

47

c Example file.
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0

Figure 3.6: Example in DIMACS CNF format

clauses. Each non-comment line that follows defines a clause that is a list

of variables separated by space. A positive value represents the

corresponding variable and a negative value represents the negation of

that variable. Each line ends in a space and the number 0. The SAT

solver finds the set of boolean variable assignments that make all the

clauses true. Figure 3.7 and Figure 3.8 present the solutions found by

the zChaff and MinSat SAT solvers for the example given in Figure 3.6.

c 3 Clauses are true, Verify Solution successful.
Instance Satisfiable
-1 2 -3 4 -5
Random Seed Used 0
Max Decision Level 3
Num. of Decisions 4
(Stack + Vsids + Shrinking Decisions) 0 + 3 + 0
Original Num Variables 5
Original Num Clauses 3
Original Num Literals 9
Added Conflict Clauses 0
Num of Shrinkings 0
Deleted Conflict Clauses 0
Deleted Clauses 0
Added Conflict Literals 0
Deleted (Total) Literals 0
Number of Implication 5
Total Run Time 0
RESULT: SAT

Figure 3.7: Solution given by zChaff

3.2.5 Model Generators

Model generators find assignments to the elements of algebraic formulae

(i.e. predicates, variables and functions) in first-order logic such that the

48

============================[Problem Statistics]=============================
| |
| Number of variables: 5 |
| Number of clauses: 3 |
| Parse time: 0.00 s |
| |
============================[Search Statistics]==============================
| Conflicts | ORIGINAL | LEARNT | Progress |
| | Vars Clauses Literals | Limit Clauses Lit/Cl | |
===
===
restarts : 1
conflicts : 0 (-nan /sec)
decisions : 6 (0.00 % random) (inf /sec)
propagations : 5 (inf /sec)
conflict literals : 0 (-nan % deleted)
Memory used : 8.00 MB
CPU time : 0 s

SATISFIABLE: -1 -2 -3 -4 -5 0

Figure 3.8: Solution given by MiniSat

whole set of formulae is satisfied. Model generators were developed for

the purpose of finding a concrete example which categorically disproves

the theorem in the case when a proof for the theorem cannot be found by

a theorem prover. There are some similarities between a model generator

and constraint solver, for instance model generators find assignments to

variables where the assignments are often constrained by some notion of

the domain in which the formulae are set, for example its size and

element types. However, there are also some differences such as their

input syntax, which is normally sets of logical formulae rather than

explicit variable definitions and constraints. Model generators are also

related to SAT solvers as finding the satisfiability of a set of propositional

formulae, as done by SAT solvers. SAT solvers can be applied to a

sub-set of model generation problems. Several examples of model

generators exist such as Mace4 [McC03a], Sem [ZZ01] and Finder [Sla94].

We have used Mace4 in our research work. Mace4 is a model generator

that searches for finite models. It comes in a package along with the

49

Prover9 automated theorem prover. Mace4 can also serve as a

complement of Prover9, to find counterexamples. The syntax of the input

file for Mace4 is the same as Prover9 and the preprocessing is also done

in the same manner. Figure 3.9 shows an example input file that contains

the axioms for a non-commutative group using quantified variables.

formulas(assumptions).

% Axiom for associativity.
(x * y) * z = x * (y * z).

% Axiom for a left identity element and left inverse.
exists e ((all x (e * x = x)) &
(all x exists y (y * x = e))).

% Axiom for non-commuting elements.
exists a exists b (a * b != b * a).

end_of_list.

Figure 3.9: Mace4 Input Example

Mace4 uses the following steps to compute finite models:

1. The domain size is fixed to n where the members of the domain are

{0, . . . , n− 1}.

2. Tables for the function and predicate symbols are set up.

3. All ground instances of the input clauses over the domain are

generated.

4. A recursive backtracking procedure fills in the cells of the tables

and uses the ground clauses to propagate the effects of the

assignments.

5. When contradictions are encountered, backtracking occurs, the

propagations and assignments are undone, and other assignments

are attempted.

50

6. If all the tables become full, with no contradictions, a model is

found.

7. If Mace4 is iterating through domain sizes, this procedure applies,

separately, to each domain size.

Figure 3.10 presents the model found for a non-commutative group of

size 6.

============================== DOMAIN SIZE 6 =========================

============================== MODEL =================================

interpretation(6, [number=1, seconds=0], [

 function(c1, [0]),

 function(c2, [1]),

 function(c3, [2]),

 function(f1(_), [0, 1, 2, 4, 3, 5]),

 function(*(_,_), [
 0, 1, 2, 3, 4, 5,
 1, 0, 3, 2, 5, 4,
 2, 4, 0, 5, 1, 3,
 3, 5, 1, 4, 0, 2,
 4, 2, 5, 0, 3, 1,
 5, 3, 4, 1, 2, 0])

]).

============================== end of model ==========================

============================== STATISTICS ============================

For domain size 6.

Current CPU time: 0.00 seconds (total CPU time: 0.00 seconds).
Ground clauses: seen=229, kept=229.
Selections=14, assignments=44, propagations=95, current_models=1.
Rewrite_terms=1596, rewrite_bools=347, indexes=379.
Rules_from_neg_clauses=9, cross_offs=141.

============================== end of statistics =====================

User_CPU=0.00, System_CPU=0.01, Wall_clock=0.

Exiting with 1 model.

Figure 3.10: Mace4 Output Model

51

3.3 Other Mathematical Tools Used

We have used Octave [Eat08] to perform computations on matrices for

performing the verification of finite solutions in Chapter 11. Octave is an

open-source interactive software system for numerical computations and

graphics. It is particularly designed for matrix computations and its

mostly syntax compatible with MATLAB.

A matrix is a rectangular array of numbers, the size of which is usually

defined as m× n, meaning that it has m rows and n columns. An

example of a 2× 3 matrix is given as follows:

A =

4 8 3

1 6 2


The matrix A can be created in Octave by using the command:

octave:1 > A = [4 8 3; 1 6 2]

There are functions to create frequently used m× n matrices. If m = n,

only one argument is necessary.

• eye(m,n) produces a matrix with ones on the main diagonal and

zeros elsewhere. When m = n, the identity matrix is generated.

• zeros(m,n) generates the zero matrix of dimension m× n .

• ones(m,n) generates an m× n matrix where all entries are 1 .

• rand(m,n) generates a random matrix whose entries are uniformly

distributed in the interval (0, 1).

The basic matrix arithmetic operations on matrix A are defined as

follows:

• +, −, and ∗ denote matrix addition, subtraction, and

multiplication.

52

• A′ transposes and conjugates A.

• A.′ transposes A.

Element-wise operations on a matrix are defined as follows:

• .∗ denotes element-wise multiplication.

• ./ denotes element-wise division.

• .ˆ denotes element-wise power operators.

53

Part II

Structural Domain

Knowledge Exploration for

Large Size Example

Generation

CHAPTER 4

BACKGROUND ON QUASIGROUPS

Chapter Overview: This chapter provides the necessary

background on quasigroups, which are defined along with

their operations. Furthermore, some interesting properties of

quasigroups, including the common properties as well as non-

trivial two-variable properties and implied constraints are defined.

Finally, a brief description of quasigroup equivalence classes is

given.

Quasigroups are non-associative algebraic structures whose operation has

to satisfy only a single axiom, the Latin square property. There exists a

very large number of different finite quasigroups even for small orders.

This makes them ideal candidates for applications where the generation

of a large number of simple structures is necessary, such as in

cryptography. However, the lack of structure makes them difficult to

handle algebraically, in particular to enumerate or to classify. We have

developed methods to automatically generate relatively large size

55

quasigroups by bootstrapping structural properties of smaller size

quasigroups by computing useful additional knowledge. By “relative” we

mean compared to those produced in previous approaches. The

techniques for discovering the additional knowledge have allowed us to

push the boundaries of current automated reasoning systems for model

generation in computing large size examples of quasigroups with

interesting properties. More details of these techniques are presented in

Chapter 6.

In this chapter, we provide the necessary background on quasigroups.

We present a formal definition of quasigroups and the three essential

binary operations i.e. multiplication, right division / and left division \.

We also provide examples of quasigroups in terms of the multiplication

tables for all three operations. We define some interesting properties of

quasigroups that are taken from the literature have been used in our

research. The non-trivial two-variable properties that we present are not

defined with uniform names in the literature, therefore we represent

them with names that might be different from the ones given in the

literature. Finally, we define some quasigroup equivalence relations.

4.1 Quasigroup Definition and Operations

We define the notion of a quasigroup following [Pfl90, MGA97, Smi06].

Definition 4.1.1 Let Q be a non-empty set along with a multiplication

operation ‘∗’. Then (Q, ∗) is a quasigroup if it has the following

properties:

(1) For all a, b ∈ Q, a ∗ b ∈ Q (that is, Q is closed under ∗)

(2) For all a, b ∈ Q, there exist unique x, y ∈ Q s.t., x ∗ a = b and

a ∗ y = b (i.e., (Q, ∗) has unique solubility of equations)

56

In our research, we are exclusively interested in finite quasigroups and we

generally define a quasigroup (Q, ∗) of size n over a set of elements

Q = {0, 1, . . . , n− 1}. Also if there is no ambiguity, we denote the binary

operation ∗ in a quasigroup Q by juxtaposition, e.g. x ∗ y can be written

as xy.

The unique solubility of equations in Definition 4.1.1 ensures that each

element of Q occurs exactly once in each row and each column of the

multiplication table of (Q, ∗). Each row and each column is a

permutation of the elements of Q. If |Q| = n, then the Cayley table for

(Q, ∗) forms an n by n Latin Square consisting of n elements each of

which appears exactly once in each row and each column. Conditions (1)

and (2) essentially postulate the existence of unique left and right

divisors for each element in Q. Thus, (Q, ∗, /, \) can be defined as a

quasigroup having three binary operations of multiplication, right

division / and left division \ such that for every a, b, c ∈ Q,

a ∗ b = c⇔ c/b = a⇔ a\c = b with the following identities being

satisfied:

1. y\(y ∗ x) = x

2. x = (x ∗ y)/y

3. y ∗ (y\x) = x

4. x = (x/y) ∗ y

x/y is read as “x divided by y” or “x over y” and x\y is read as “x

dividing y” or “x into y”.

The following is an example of a Quasigroup (Q, ∗, \, /) of size 4 given in

terms of multiplication tables for all three operations:

57

* 1 2 3 4
1 2 3 1 4
2 4 1 3 2
3 3 4 2 1
4 1 2 4 3

\ 1 2 3 4
1 3 1 2 4
2 2 4 3 1
3 4 3 1 2
4 1 2 4 3

/ 1 2 3 4
1 4 2 1 3
2 1 4 3 2
3 3 1 2 4
4 2 3 4 1

4.2 Quasigroup Properties

We are interested in the goal directed construction of quasigroups with

certain properties. There are a large number of interesting properties one

can define on quasigroups and that can be found in the literature

(e.g., [NV] and [BL07]). We have focused in our experiments on a

number of non-trivial properties given in [BL07].

We first define the common properties and then the non-trivial

two-variable properties. The binary operation ∗ in quasigroup Q is

denoted by juxtaposition in the following sections.

Idempotent, unipotent and commutative quasigroups are defined as

follows:

Definition 4.2.1 Let Q be a quasigroup and x, y ∈ Q, then Q is:

(i) Idempotent if x2 = x for every x ∈ Q.

(ii) Unipotent if x2 = y2 for every x, y ∈ Q.

(iii) Commutative if xy = yx for every x, y ∈ Q.

We now define the non-trivial two-variable properties for quasigroups

that are generalizations of the common properties defined above. These

properties were suggested by Frank Bennett and are defined in [BZ92].

Definition 4.2.2 Let Q be a quasigroup and x, y ∈ Q, then we define

the following properties for Q with their descriptive names given in

brackets:

58

Qg-1 : xy ∗ yx = x for all x, y ∈ Q; (Schröder quasigroup)

Qg-2 : yx ∗ xy = x for all x, y ∈ Q; (Stein’s third law)

Qg-3 : (xy ∗ y)y = x for all x, y ∈ Q; (C3-quasigroup)

Qg-4 : x ∗ xy = yx for all x, y ∈ Q; (Stein’s first law)

Qg-5 : (yx ∗ y)y = x for all x, y ∈ Q;

Qg-6 : yx ∗ y = x ∗ yx for all x, y ∈ Q; (Stein’s second law)

Qg-7 : xy ∗ y = x ∗ xy for all x, y ∈ Q; (Schröder’s first law)

Let Q be a quasigroup and x, y ∈ Q, then we define the following

additional properties for Q that the quasigroups with the two-variable

properties defined above possess. These properties were computed

in [CM01, CCM06], as constraints implied from axioms, but we use them

as additional constraints.

Definition 4.2.3 Let Q be a quasigroup and x, y ∈ Q, then we define

the following properties for Q:

C1 : ∀ x ∃ y (y ∗ y = x) (all different diagonal)

C2 : ∀ x, y (x 6= y)→ (x ∗ y 6= y ∗ x) (anti-Abelian)

C3 : ∀ x, y (x ∗ x = y)→ (y ∗ y = x) (diagonal symmetry)

C4 : ∀ x, y (x ∗ y = y)→ (y ∗ x = x) (symmetry of left identities)

C5 : ∀ x, y (x ∗ x = x) (idempotent)

C6 : ∀ x, y (x ∗ y = x)↔ (y ∗ x = x)

59

We now describe the quasigroup equivalence relations that were first

introduced in Chapter 2, where the related work that involves the

classification of quasigroups into isomorphic and isotopic classes was

presented. Following [CDS91], the isotopic and isomorphic equivalence

relations can be defined as follows:

Definition 4.2.4 Let (L, ◦) and (M, ∗) be two quasigroups. An ordered

triple (α, β, γ) of one-to-one mappings α, β, γ of the set L onto the set

M is called an isotopism of (L, ◦) upon (M, ∗), if (αx) ∗ (βy) = γ(x ◦ y)

for all x, y ∈ L, where αx is the result of applying α to x. If such an

isotopism exists, then quasigroups (L, ◦) and (M, ∗) are said to be

isotopic. The equivalence classes of quasigroups under the isotopy

relation are called isotopy classes.

Example 4.2.1 We can transform the multiplication table of one

quasigroup into another quasigroup by performing any or all three of the

following operations:

• Permute the rows.

• Permute the columns.

• Permute the symbols (rename the symbols without changing their

relative positions).

Two quasigroups are isotopic if we can change one to another by using

only the above operations. The following two quasigroups Q1 and Q2 are

isotopic:

Q1 1 2 3 4
1 1 2 3 4
2 3 4 1 2
3 4 3 2 1
4 2 1 4 3

Q2 1 2 3 4
1 1 2 3 4
2 4 3 2 1
3 2 1 4 3
4 3 4 1 2

60

This is because, if the second row of the quasigroup Q1 is moved into the

position of the last row, and third and fourth rows are moved up by one

position, then the two quasigroups Q1 and Q2 become identical.

Definition 4.2.5 Two quasigroups are said to be isomorphic if the

mappings α, β, γ are equal. An isomorphism from (L, ◦) to (M, ∗) is a

bijective function f : L −→M if, for all a, b ∈ L, we have:

f(a) ∗ f(b) = f(a ◦ b). The equivalence classes of quasigroups under the

isomorphic relation are called isomorphism classes.

61

62

CHAPTER 5

QUASIGROUP MODEL GENERATION
PROBLEMS AND ENCODINGS

Chapter Overview: This chapter describes the three main

quasigroup model generation problems, which are: quasigroup

constraint satisfaction problems, quasigroup satisfiability

problems and quasigroup model generation problems. More

specifically, we define how these problems are encoded and present

the solution models given by the systems.

In this chapter, we describe the diverse encoding techniques used for

defining quasigroups for different model generation systems. These

encoding techniques have been taken from the literature. In Section 5.1,

we present a definition of a quasigroup constraint satisfaction problem

(CSP) and describe the three models that can be used for encoding a

quasigroup CSP. In Section 5.2, we describe the minimal and extended

encoding used for quasigroup satisfiability problem. Finally, in

Section 5.3, we present an encoding that uses axioms for defining a

63

quasigroup in first-order equational logic which can be used to express

quasigroup model generation problems.

5.1 Quasigroup Constraint Satisfaction

Problems

A constraint satisfaction problem (CSP) is modelled by a set of

constraints on a set of decision variables. A constraint solver then

assigns values to each of the variables so that all the constraints are

satisfied. The basic definition of a quasigroup constraint satisfaction

problem is given as follows:

Definition 5.1.1 A constraint satisfaction problem (CSP) for a

quasigroup is a triple (V,D,C), consisting of

• a finite set V of variables which represent the Cayley table (i.e.

multiplication table) entries of the quasigroup,

• a finite set D, called the domain, representing the elements of the

quasigroup,

• a finite set of constraints C representing the quasigroup axioms,

that assign values from D to variables in V

Quasigroups of size n can be found by considering a table of n2 variables

of the form xi,j where i, j ∈ {0, 1, . . . n− 1} with possible values in the

domain D = {0, 1, . . . , n− 1} and constraining the variables of each row

and column to be all different by using the constraints such as xi,j 6= xk,j

and xi,j 6= xi,k where i, j, k ∈ {0, 1, . . . n− 1}, and i 6= k, j 6= k.

As given in [Wal01], each row and column of a quasigroup multiplication

table is a permutation problem, i.e. a constraint satisfaction problem

with the same number of variables as values, where a solution is a

64

permutation of the values. The quasigroup CSP is a multiple

permutation problem with 2n intersecting permutation constraints i.e. n

row permutation constraints and n column permutation constraints. In

order to represent those permutations, the quasigroup CSP can be

encoded using three models which are given in [DdVC03b, DdVC03a]

and are described as follows:

Primal Model: uses primal variables that are defined as the set:

X = {xij | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1},

where the variable xij represents the cell in the ith row and jth

column of the multiplication table of the quasigroup, and n is the

size of the quasigroup. The domain of the variables can be defined

as D = {k | 0 ≤ k ≤ n− 1 }, where each k represents an element

of the quasigroup. The domain of possible values are the elements

of the quasigroup. The primal constraints can be divided into:

(i) n2 row constraints of the form xij 6= xil where xij, xil ∈ X and

j 6= l, which means that two cells in the same row must not

have the same element.

(ii) n2 column constraints of the form xij 6= xlj where xij, xlj ∈ X

and i 6= l, which means that two cells in the same column

must not have the same element.

The above constraints can be implemented by using 2n alldiff

constraints [Rég94], one for each row and column, thereby reducing

the number of constraints.

Row Dual Model: uses the row dual variables that are defined as the

65

set:

R = {rik | 0 ≤ i ≤ n− 1, 0 ≤ k ≤ n− 1},

where the variable rik represents the kth element that can be placed

in the ith row of the multiplication table of the quasigroup. The

domain of each variable is the set D = {j | 0 ≤ j ≤ n− 1 },

where j represents the columns or the positions in row i where

element k can be placed. The row dual constraints are given as

follows:

(i) n2 constraints of the form rik 6= ril , where rik, ril ∈ R and

l 6= k, which means that two elements in the same row must

not be assigned to the same column.

(ii) n2 constraints of the form rik 6= rjk where rik, rjk ∈ R and

i 6= j, which means that the same element in different rows

must not be assigned to the same column.

The above constraints are implemented by having

alldiff(ri0, ..., ri(n−1)) for every row i, and alldiff(r0k, ..., r(n−1)k) for

every element k.

Column Dual Model: uses the column dual variables that are defined

as the set:

C = {cjk | 0 ≤ j ≤ n− 1, 0 ≤ k ≤ n− 1},

where cjk is the kth element that can be placed in the jth column of

the multiplication table of the quasigroup. All variables have

domain D = {i | 0 ≤ k ≤ n− 1}, where i represents the rows or

the positions in column j where element k can be placed. The

column dual constraints are given as follows:

66

(i) n2 constraints of the form cjk 6= cjl where cjk, cjl ∈ C and

k 6= l, which means that two elements in the same column

must not be assigned to the same row.

(ii) n2 constraints of the form cjk 6= clk where cjk, clk ∈ C and

j 6= l, which means that the same element in different

columns must not be assigned to the same row.

We have used the essence modelling language [FGJ+07] to specify the

quasigroup CSP in primal model. An example essence specification for

QG-1 quasigroups of size 4 is given in Figure 5.1.

letting nDomain be domain int(0..3)
find quasiGroup : matrix indexed by [nDomain, nDomain] of nDomain
such that
$ All rows have to be different
forall row : nDomain .
allDifferent(quasiGroup[row,..]),
$ All columns have to be different
forall col : nDomain .
allDifferent(quasiGroup[..,col]),
$ (j*i)*(i*j) = i
forall i : nDomain .
forall j : nDomain .
quasiGroup[quasiGroup[i,j],quasiGroup[j,i]] = i

Figure 5.1: Essence specification (Primal model) for a Qg-1 quasigroup
of size 4

The solution model for a QG-1 quasigroup of size 4 found by Minion is

shown in Figure 5.2.

5.2 Quasigroup Satisfiability Problems

(SAT)

The quasigroup satisfiability problem (SAT) consists of a logical

propositional formula with n variables x1, x2, ..., xn, which can be

assigned truth values true of false. A literal l is either a variable xi (i.e.,

a positive literal) or its complement ¬xi (i.e., a negative literal). A

67

Minion Version 0.10
Command line: ./minion -timelimit 7200 -sollimit 1 one4-input.minion
Parsing Time: 0.001999
Setup Time: 0.005999
First Node Time: 0.000000
Initial Propagate: 0.000000
First node time: 0.000000
Sol: 0 2 3 1
Sol: 3 1 0 2
Sol: 1 3 2 0
Sol: 2 0 1 3

Solution Number: 1
Time:0.000000
Nodes: 7

Solve Time: 0.211968
Total Time: 0.219966
Total System Time: 0.038994
Total Wall Time: 0.458027
Maximum Memory (kB): 0
Total Nodes: 7
Problem solvable?: yes
Solutions Found: 1

Figure 5.2: Minion output model for a Qg-1 quasigroup of size 4

clause is a disjunction of literals and a formula is a conjunction of clauses.

For the formula to be satisfiable, one needs to find a variable assignment

that makes the formula true, which can then be translated into the

quasigroup model. Equations of the form xi = xj and xi = xj ∗ xk and

their negations can be translated into literals directly, however, nested

equations have to be transformed into sequences of equations first.

There are two main SAT encodings that have been previously studied for

quasigroups [GS02b, KRA+01], which are defined as follows:

(i) Minimal Encoding: This is the most basic SAT encoding which

includes clauses that represent the following constraints (variable

qxyz represents that the zth element of the quasigroup is assigned to

the cell at xth row and yth column in the multiplication table of the

quasigroup Q, where x, y, z ∈ Q):

68

• Each cell has to have an element assigned to it:

∧n−1

x=0

∧n−1

y=0

∨n−1

z=0
qxyz

• An element cannot be repeated in the same row:

∧n−1

y=0

∧n−1

z=0

∧n−2

x=0

∧n−1

i=x+1
(¬qxyz ∨ ¬qxiz)

• An element cannot be repeated in the same column:

∧n−1

x=0

∧n−1

z=0

∧n−2

y=0

∧n−1

i=y+1
(¬qxyz ∨ ¬qiyz)

(ii) Extended Encoding: This extends the minimal encoding by adding

the following constraints :

• Each element must appear at least once in each row:

∧n−1

x=0

∧n−1

z=0

∨n−1

y=0
qxyz

• Each element must appear at least once in each column:

∧n−1

y=0

∧n−1

z=0

∨n−1

x=0
qxyz

• No two elements can be assigned to the same cell:

∧n−1

x=0

∧n−1

y=0

∧n−2

z=0

∧n−1

i=z+1
(¬qxyz ∨ ¬qxyi)

We use Stickel’s quasigroup generator [Sti] that generates quasigroup

SAT problem extended encoding in the DIMACS CNF format which is a

standard way to represent conjunctive normal form Boolean formulae.

69

The solution models found by MiniSat and zChaff SAT solvers for Qg-1

quasigroup of size 4 are shown in Figure 5.3 and Figure 5.4.

============================[Problem Statistics]=============================
| |
| Number of variables: 64 |
| Number of clauses: 519 |
| Parse time: 0.00 s |
| |
============================[Search Statistics]==============================
| Conflicts | ORIGINAL | LEARNT | Progress |
| | Vars Clauses Literals | Limit Clauses Lit/Cl | |
===
===
restarts : 1
conflicts : 0 (0 /sec)
decisions : 3 (0.00 % random) (3003 /sec)
propagations : 64 (64064 /sec)
conflict literals : 0 (nan % deleted)
Memory used : 8.00 MB
CPU time : 0.000999 s

SATISFIABLE: -1 -2 -3 -4 -5 -6 7 8 -9 -10 -11 -12 -13 14 -15 -16 17 -18 -19
-20 21 -22 -23 -24 -25 26 -27 28 -29 -30 -31 -32 -33 -34 35 36 -37 -38 -39
-40 -41 42 -43 44 -45 -46 -47 -48 49 -50 -51 -52 53 -54 55 -56 -57 -58 -59
60 61 -62 -63 -64 0

Figure 5.3: MiniSat output model for a Qg-1 quasigroup of size 4

5.3 Quasigroup Model Generation

Problems

Model generators such as Mace4 [McC03a] can be used to find finite

quasigroup models by using a set of axioms that define a quasigroup in

first order equational theory by interpreting the primitives (i.e.,

predicates, variables and functions) over a finite domain Dn in order to

satisfy all the axioms, where n is the size of the quasigroup. If a concrete

model is found, it proves the existence of a quasigroup having a certain

property for a particular size. Consequently for proof problems, a

counter model categorically disproves the theorem. While the quasigroup

model generation problem can be given in a straight forward manner in

70

c 567 Clauses are true, Verify Solution successful.
Instance Satisfiable
-1 -2 -3 -4 -5 -6 7 8 -9 -10 -11 -12 -13 14 -15 -16 17 -18 -19 -20
21 -22 -23 -24 -25 26 -27 28 -29 -30 -31 -32 -33 -34 35 36 -37 -38
-39 -40 -41 42 -43 44 -45 -46 -47 -48 49 -50 -51 -52 53 -54 55 -56
-57 -58 -59 60 61 -62 -63 -64
Random Seed Used 0
Max Decision Level 4
Num. of Decisions 5
(Stack + Vsids + Shrinking Decisions) 0 + 4 + 0
Original Num Variables 64
Original Num Clauses 567
Original Num Literals 1443
Added Conflict Clauses 0
Num of Shrinkings 0
Deleted Conflict Clauses 0
Deleted Clauses 0
Added Conflict Literals 0
Deleted (Total) Literals 0
Number of Implication 64
Total Run Time 0
RESULT: SAT

Figure 5.4: zChaff output model for a Qg-1 quasigroup of size 4

terms of the formulas, the domain size is usually specified as an

additional parameter to Mace4. However, our initial experiments have

shown that the performance of Mace4 can be improved by constraining

the domain size explicitly by giving appropriate equality constraints,

Figure 5.5 presents the input file encoding for Mace4 to generate a Qg-1

quasigroup of size 4.

Figure 5.6 presents the output solution model found by Mace4 for a Qg-1

quasigroup of size 4.

71

assign(max_seconds,7200).
assign(domain_size, 4).
assign(max_models, 1).
set(print_models).
formulas(assumptions).
% quasigroup definition
x * (x \ y) = y.
x \ (x * y) = y.
(x / y) * y = x.
(x * y) / y = x.
% size4
all x (x=0 | x=1 | x=2 | x=3).
% quasigroup property
all x all y ((x * y) * (y * x) = x).
end_of_list.

Figure 5.5: Mace input file for a Qg-1 quasigroup of size 4

72

============================== DOMAIN SIZE 4 =========================

============================== MODEL =================================

interpretation(4, [number=1, seconds=0], [

 function(*(_,_), [
 0, 2, 3, 1,
 3, 1, 0, 2,
 1, 3, 2, 0,
 2, 0, 1, 3]),

 function(/(_,_), [
 0, 3, 1, 2,
 2, 1, 3, 0,
 3, 0, 2, 1,
 1, 2, 0, 3]),

 function(\(_,_), [
 0, 3, 1, 2,
 2, 1, 3, 0,
 3, 0, 2, 1,
 1, 2, 0, 3])

]).

============================== end of model ==========================

============================== STATISTICS ============================

For domain size 4.

Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds).
Ground clauses: seen=84, kept=80.
Selections=4, assignments=12, propagations=69, current_models=1.
Rewrite_terms=240, rewrite_bools=102, indexes=52.
Rules_from_neg_clauses=17, cross_offs=124.

============================== end of statistics =====================

User_CPU=0.01, System_CPU=0.00, Wall_clock=0.

Exiting with 1 model.

Process 21806 exit (max_models) Wed Jun 13 16:05:44 2012
The process finished Wed Jun 13 16:05:44 2012

Figure 5.6: Mace output model for Qg-1 quasigroup of size 4

73

74

CHAPTER 6

ENRICHING QUASIGROUP PROBLEMS
WITH PRE-COMPUTED KNOWLEDGE

Chapter Overview: This chapter describes our proposed

approaches that exploit the structural domain knowledge of

quasigroups. The first approach is based on randomization, where

symbolic computations and automated theorem proving is used to

exclude unsuitable instantiations. The second approach employs a

concept of generating systems particularly suitable for quasigroups

that can be easily computed for small size quasigroups and then

evolved to represent quasigroups of larger sizes. The evolution of

the generating systems is done by using symbolic computations

and automated theorem proving.

In this chapter, we describe the two novel approaches we have proposed

for the automated theory exploration of quasigroup structures to

compute additional knowledge that can help in the discovery of large size

solutions for quasigroups with interesting properties. We describe our

75

first approach in Section 6.1 where randomly computed elements pass

through two algebraic filters and are only kept if they pass the property

test. We then describe our second approach in Section 6.2, which uses a

concept of generating systems particularly suitable for quasigroups. We

provide a formal definition of generating systems, and describe their

computation and evolution.

6.1 Quasigroup Element Filtering

Our first approach to narrow down the search space of our quasigroup

problems is an intelligent quasigroup element computation method that

uses algebraic filter criteria on two levels when pre-setting elements. A

diagrammatic overview of this approach is shown in Figure 6.1.

Quasigroup Element Generator

Symbolic Verification

Automated Theorem Prover

Set of Elements
(Latin Square property not violated)

Set of elements
(Desired property not violated)

Figure 6.1: Flow diagram of the quasigroup element filtering approach

For a quasigroup Q we randomly generate triples that are added to a set

of the form S = {(r, c, e)|r, c, e ∈ Q}. Every time an element is added,

76

we use a symbolic verification function to check that all the elements in

the set are unique and that the Latin square property is not violated.

We continue this process until we obtain the set SF of filtered elements

that is of a particular pre-defined size. Generally, we specify the size of

SF as a multiple of the size n of the quasigroup Q.

In a second filter step, we then check for the entire set SF that its

elements do not violate the desired quasigroup property P — which can

in general be a combination of properties — using Prover9. Figure 6.2

shows an example input encoding of the proof problem given to Prover9.

assign(max_seconds,10).
formulas(sos).
% quasigroup definition
all a all b exists x exists y ((a * x = b) & (y * a = b)).
% restricting the domain size to 5
exists a0 exists a1 exists a2 exists a3 exists a4 all x
((a0 != a1 & a0 != a2 & a0 != a3 & a0 != a4 & a1 != a2 &
a1 != a3 & a1 != a4 & a2 != a3 & a2 != a4 & a3 != a4)
& (x = a0 | x = a1 | x = a2 | x = a3 | x = a4)).
% set of computed elements
exists a0 exists a3 exists a4 exists a2 exists a1
((a0 != a1 & a0 != a2 & a0 != a3 & a0 != a4 & a1 != a2 &
a1 != a3 & a1 != a4 & a2 != a3 & a2 != a4 & a3 != a4) &
(a0 * a3 = a4) & (a2 * a0 = a4) & (a0 * a4 = a1) & (a0 * a2 = a0)
& (a1 * a1 = a2)).
end_of_list.

formulas(goals).
% desired quasigroup property
-(all x all y ((x * y) * (y * x) = x)).
end_of_list.

Figure 6.2: Quasigroup proof problem encoding

The encoding for the proof problem is described as follows:

Assumptions: (i) Quasigroup axioms as given in (Def. 4.1.1).

(ii) Quasigroup size axioms; that is, there exists exactly n

elements that are all different.

(iii) The equations for the set of pre-set elements SF .

Goal: ¬P , the negation of the conjunction of properties of the

77

quasigroup.

If Prover9 finds a proof, an example of which is shown in Figure 6.3,

then this means that the set of pre-set elements SF violates the property

P and therefore we compute a new SF . Otherwise, if Prover9 is unable

to find the proof within a fixed time period, we assume that the set of

pre-set elements SF does not violate the property P .

============================== PROOF =================================

% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 8.
% Level of proof is 2.
% Maximum clause weight is 9.
% Given clauses 29.

3 (exists a0 exists a3 exists a4 exists a2 exists a1 (a0 != a1 &
a0 != a2 & a0 != a3 & a0 != a4 & a1 != a2 & a1 != a3 & a1 != a4 &
a2 != a3 & a2 != a4 & a3 != a4 & a0 * a3 = a4 & a2 * a0 = a4 &
a0 * a4 = a1 & a0 * a2 = a0 &
a1 * a1 = a2)) # label(non_clause). [assumption].
4 -(all x all y (x * y) * (y * x) = x) # label(non_clause)
label(goal). [goal].
18 c10 != c6. [clausify(3)].
34 c9 * c6 = c8. [clausify(3)].
35 c6 * c8 = c10. [clausify(3)].
36 c6 * c9 = c6. [clausify(3)].
38 (x * y) * (y * x) = x. [deny(4)].
85 $F. [para(34(a,1),38(a,1,2)),rewrite([36(3),35(3)]),unit_del(a,18)].

============================== end of proof ==========================

Figure 6.3: Proof found by Prover9

We only run Prover9 on a full set of elements (minus the partial

quasigroup) in order to more efficiently compute SF , as generating the

input file and calling Prover9 for every single new element slows down

the filtering process far more than having to occasionally recompute the

entire set, which in practice does not happen too often. The process is

more efficient if one uses bespoke algebraic functions to test the single

properties in P . However, this would mean we would have to write new

code every time a new property is tested. More details on the

experiments and results are given in Chapter 7.

78

6.2 Generating System Representation for

Quasigroups

Our second approach uses knowledge based refinement of our problem

domain. We define a concept of generating systems for quasigroups

which is very similar to the presentations for groups, i.e., it consists of

sets of generators and relations. However, contrary to the group

presentations in our generating systems each element of the generated

quasigroup has to be explicitly represented in terms of a relation in the

generators. As a consequence, when increasing the number of relations,

we increase the number of elements in the quasigroup that are generated,

which is counter-intuitive to the group theoretical notion.

The concept of generating system that we use was first defined

in [CMSM04], where it is used to determine a quasigroup structure of

size n using n complex equations rather than n2 simple equations of its

Cayley table. The concept is closely related to the one defined in [Eva51].

Definition 6.2.1 Let S = {a0, . . . , an−1} be a finite set together with a

binary operation ∗. We call the elements in S generators and define a

word inductively as:

• a0, . . . , an−1 are words.

• if u, v are words, then so is (u ∗ v).

Thus a word can be built from other words, which are called its

components. The only component of a generator is the generator itself.

The components of a word w = u ∗ v are the word itself and the

components of u and v. We say the generators of a word w is the union

of all generators contained in the components of w. We sometimes write

79

w = w(a1, ..., an) if a1, ..., an are the generators of w. Examples of words

consisting of a single generator can be seen in Example 6.2.2, and

furthermore examples of words with a combination of generators can be

seen in Example 6.2.3.

We now define the concept of generating systems for quasigroups as

follows:

Definition 6.2.2 Let Q be a finite quasigroup of size n with binary

operation ∗, and let q0, ..., qn−1 ∈ Q be the elements of Q. Let

{a0, ..., am−1} ⊆ Q where n,m ∈ N and 0 6 m− 1 6 n− 1. Then, we

define the generating system G for Q as follows:

G = 〈{a0, ..., am−1}|{q1 = w(a0, ..., am−1), ..., qn−1 = w(a0, ..., am−1)}〉

where:

(i) The set {a0, ..., am−1} ⊆ Q is called the generators.

(ii) {w(a0, ..., am−1), ..., w(a0, ..., am−1)} represents a set of words.

Every element q ∈ Q can be expressed as a word which is called a

relation or factorization.

The generating system for quasigroups is different from the one for

groups in that every single element is explicitly defined. Moreover,

generating systems or number of generators are not uniquely determined.

In fact, it is not always desirable to have a minimal number of generators,

as instead it can be useful to explicitly build in redundancy into

generating systems for instance in the case of idempotent quasigroups.

Example 6.2.1 Consider the following example of a Quasigroup (Q, ∗)

80

of size 4 given in terms of its multiplication table:

∗ 0 1 2 3

0 1 2 0 3

1 3 0 2 1

2 2 3 1 0

3 0 1 3 2

Amongst others the quasigroup Q from Example 6.2.1 can be

represented with the following generating systems (observe that we have

omitted trivial factorizations like 2 = 2):

G1 = 〈{2}|{0 = 2 ∗ (2 ∗ (2 ∗ 2)), 1 = 2 ∗ 2, 3 = 2 ∗ (2 ∗ 2)}〉

G2 = 〈{1}|{0 = 1 ∗ 1, 2 = (1 ∗ 1) ∗ 1, 3 = ((1 ∗ 1) ∗ 1) ∗ 1}〉

G3 = 〈{1, 2}|{0 = 2 ∗ (2 ∗ 1), 3 = 2 ∗ 1}〉

6.2.1 Computing Generating Systems for

Quasigroups

We now present a method to compute generating systems from the

Cayley table of a given quasigroup which is related to the method

in [CMSM04]. Our approach aims to construct generating systems

systematically by iteratively increasing the number of generators in a

computationally efficient manner. It uses a concept of traces that

corresponds to the set of all elements in a quasigroup reachable from

combinations of a single element alone.

Definition 6.2.3 Let Q be a quasigroup and let q ∈ Q. We define the

trace of q in Q as the set t(q) = {q0, . . . , qn−1} ∈ Q of all elements in Q

such that qi = w(q) for 0 ≤ i ≤ n− 1. Thus the qi are all elements in Q

that have q as a generator only.

81

Observe that due to quasigroups in general being non-associative we can

not simply express the generated elements in terms of powers of the

generator q, as one can for example for the sub-group generated by one

element. Consequently, when computing the traces, one has to consider

all possible combinations of the generators in w(q).

Example 6.2.2 Consider the following quasigroup (Q′, ∗) of size 4:

Q′ 0 1 2 3

0 0 3 1 2

1 1 2 0 3

2 3 1 2 0

3 2 0 3 1

The traces of elements are as follows:

t(0) = {0 = 0}

t(1) = {1 = 1, 2 = 1 ∗ 1, 0 = 1 ∗ (1 ∗ 1), 3 = (1 ∗ (1 ∗ 1)) ∗ 1}

t(2) = {2 = 2}

t(3) = {3 = 3, 1 = 3 ∗ 3, 0 = 3 ∗ (3 ∗ 3), 2 = 3 ∗ (3 ∗ (3 ∗ 3))}

We can see that for example in trace t(3) it is important to actually

consider both possible combinations of 3 and 1 as for example 1 ∗ 3 = 3

would have not yielded another element.

We now define Algorithm 2 that uses traces to compute a generating

system. We abuse the notation slightly, by using t(q) to refer both to the

elements of a trace as well as the relations that generate these elements.

Let (Q, ∗) be a quasigroup and q, q0, . . . , qn−1 ∈ Q. Also,

82

Algorithm 2 Compute generating systems G for quasigroup Q

Require: Quasigroup (Q, ∗) of size n where q, q0, . . . , qn−1 ∈ Q
Require: G an empty list of generating systems

if t(q) = Q then
G1 = 〈{q}|t(q)〉
Add G1 to G

end if
if t(q0) ∪ . . . ∪ t(qn−1) = Q then
G2 = 〈{q0, . . . , qn−1}|t(q0) ∪ . . . ∪ t(qn−1)〉
Add G2 to G

end if
if t(q0)∪ . . .∪ t(qn−1) ⊂ Q and Q\ t(q0)∪ . . .∪ t(qn−1) = {p0, . . . , pm−1}
with pi = w(q0, . . . , qn−1), 0 ≤ i ≤ m− 1 then
G3 = 〈{q0, . . . , qn−1}|t(q0) ∪ . . . ∪ t(qn−1) ∪ {p0 =
w(q0, . . . , qn−1), . . . , pm = w(q0, . . . , qn−1)}〉
Add G3 to G

end if
return G

Q \ t(q0) ∪ . . . ∪ t(qn−1) denotes the elements of quasigroup Q that are

not equal to t(q0) ∪ . . . ∪ t(qn−1).

Observe that the three if conditions in Algorithm 2 are not mutually

exclusive. That is, even if the first condition already yields a generating

system, we can employ the other two conditions to construct generating

systems with a larger number of generators. Similarly, although the

second condition will always yield a generating system, this might

contain too many generators and too much redundancy (e.g., consider an

idempotent quasigroup; a generating system can comprise all of its

elements with exclusively trivial relations). Consequently, the third

condition generally gives a smaller set of generators and less trivial

relations.

Concretely we have implemented second and third conditions iteratively,

step-wise combining traces to obtain generating systems with the

smallest possible number of generators. The following example illustrates

this technique.

83

Example 6.2.3 Consider the following quasigroup (Q, ∗) with 6

elements:

∗ 0 1 2 3 4 5
0 1 0 4 5 2 3
1 0 1 5 4 3 2
2 4 5 3 2 0 1
3 5 4 2 3 1 0
4 3 2 0 1 5 4
5 2 3 1 0 4 5

When computing traces for all elements we get the following results:

t(0) = {0 = 0, 1 = 0 ∗ 0}; t(1) = {1 = 1};

t(2) = {2 = 2, 3 = 2 ∗ 2}; t(3) = {3 = 3};

t(4) = {4 = 4, 5 = 4 ∗ 4}; t(5) = {5 = 5}.

Clearly none of the traces alone yields all elements of the quasigroup and

therefore the first condition in Algorithm 2 is not applicable. Using the

second condition we can simply combine traces for elements 0, 2, 4

thereby obtaining the generating system:

G1 = 〈{0, 2, 4}|{1 = 0 ∗ 0, 3 = 2 ∗ 2, 5 = 4 ∗ 4}〉.

While this is sufficient, we can do better in terms of the number of

generators used, by using the third condition. Suppose we combine traces

t(0) and t(2), and compute possible combinations for generators 0, 2,

then we get the generating system:

G1 = 〈{0, 2}|{1 = 0 ∗ 0, 3 = 2 ∗ 2, 4 = 0 ∗ 2, 5 = 0 ∗ (2 ∗ 2)}〉.

84

6.2.2 Expanding Generating Systems

Generating systems can be computed in a number of ways as described

in the previous section. However, the prerequisite is generally to have the

Cayley table of the quasigroup available already. Since this would be

contrary to our goal of exploiting them for model generation we evolve

generating systems computed from small size quasigroups to generating

systems sufficient for larger size quasigroups. This can essentially be

achieved in two different ways:

(a) adding a new element as a generator, or

(b) expressing the new element as a relation in the existing generators.

Let (Q, ∗) be a quasigroup of size n, i.e., Q = {0, . . . , n− 1}, with

generating system G = 〈S|R〉. Then we can obtain a generating system

G′ by either one of the two steps:

(i) G = 〈S ∪ {n}|R ∪ {n = n}〉

(ii) G = 〈S|R ∪ {n = w(s1, . . . , sk)}〉, where s1, . . . , sk∈S.

Since step (i) does not add any structural knowledge we concentrate on

step (ii) to extend generating systems of a quasigroup of size n to one for

a size n+ 1 quasigroup. Here we have a choice of generators to use as

well as structure of the added relation, which can give us a list of

generating systems formed each using a different generator. In addition

we require that the newly created relations must be distinct and not

already present in the original generating system.

For example, the input generating system

G3 = 〈{1, 3}|{2 = 3 ∗ 1, 0 = 3 ∗ (3 ∗ 1)}〉 for a quasigroup of size 4 can be

expanded in a number of ways to represent a quasigroup of size 5,

85

resulting in different generating systems, a few of them are given as

follows:

G4 = 〈{1, 3}|{2 = 3∗1, 0 = 3∗(3∗1), 4 = 1∗(3∗(3∗1))}〉

G5 = 〈{1, 3}|{2 = 3∗1, 0 = 3∗(3∗1), 4 = 3∗(3∗(3∗1))}〉

G6 = 〈{1, 3}|{2 = 3∗1, 0 = 3∗(3∗1), 4 = (3∗1)∗(3∗1)}〉

6.2.2.1 Applying Quasigroup Element Filter to Generating

System Expansion

For expanding generating systems to represent quasigroups of larger sizes

we employ the quasigroup element filter described in Section 6.1 for

verifying the computed relations. Figure 6.4 shows how we employ this

filtering to verify the expanded generating systems. Every time a relation

is added, we use a symbolic verification function to check that all the

relations in the set are unique and that the Latin square property is not

violated. We continue this process until we obtain the set R of filtered

relations that is of a particular pre-defined size. Generally, we specify the

size of R as a multiple of the size n of the quasigroup Q. In the second

filter step we then check for the entire set R that its elements i.e. the

relations do not violate the desired quasigroup property P — which can

in general be a combination of properties — using an automated theorem

prover Prover9.

Let us look at an example of how the quasigroup element filtering is used

to expand the input generating system

G3 = 〈{1, 3}|{2 = 3 ∗ 1, 0 = 3 ∗ (3 ∗ 1)}〉 for a quasigroup of size 4 to

represent a quasigroup of size 5. Generating system relation generator is

given G3 as input and computes a new relation 4 = 1∗(3∗(3∗1)). The

newly computed relation is added to the set of relations of G3 giving us

86

Generating System
 Relation Generator

Symbolic Verification

Automated Theorem Prover

Set of Relations
(Latin Square property not violated)

Set of Relations
(Desired property not violated)

Figure 6.4: Flowchart of the filtering approach applied to generating
system evolution

87

R={2 = 3∗1, 0 = 3∗(3∗1), 4 = 1∗(3∗(3∗1))}. Symbolic verification

procedure is then used to verify that the set of relations R that represent

the quasigroup elements do not violate the Latin Square property, in

which case an Automated theorem prover is used to verify that R does

not violate the desired quasigroup property P . After successfully passing

both filtering applications R is selected as the new set of relations. This

gives us the generating system

G4 = 〈{1, 3}|{2 = 3∗1, 0 = 3∗(3∗1), 4 = 1∗(3∗(3∗1))}〉 that represents a

quasigroup of size 5.

88

CHAPTER 7

EXPERIMENTS AND RESULTS

Chapter Overview: In this chapter we present the

experimental set-up of our combined reasoning system for

computing large solution models of quasigroups with some

interesting properties. We use different model generation

systems and knowledge pre-computation techniques to perform

experiments for an effective evaluation of the systems and

knowledge based techniques.

In this chapter, we present the experimental set-up of our combined

reasoning system to compute large size solution models of quasigroups

with some interesting non-trivial two-variable properties that are defined

in Chapter 4. We provide a standard comparison of systems for

generating solution models and also use additional knowledge that is

generated using our pre-computation techniques defined in Chapter 6

and implied constraints that are defined in Chapter 4. We perform

experiments to demonstrate the benefits of using this additional

89

knowledge to push the boundaries of model generation systems to

compute large size solution models that they are unable to find without

this knowledge. We present an analysis of results by comparing the

techniques that were useful for particular properties of quasigroups.

7.1 Experimental Set-up

We now present a description of the system combination that serves as a

preprocessor to compute the additional constraints for the approaches

presented in Chapter 6. The primary systems we employ and the

particular settings we have used with respect to the problem encodings

are given as follows:

Constraint Solver: We use Minion [GJM06], together with the primal

model that we have described in Chapter 5 for specifying the

quasigroup CSP. We use the essence modelling language [FGJ+07]

to model the problem and tailor [Ren] to translate it into an

efficient problem encoding for Minion.

Finite Model Generator: We use Mace4 [McC03a] as model

generator. In addition to the equational encoding of the quasigroup

and its property, we explicitly specify the size of the quasigroup by

adding appropriate equalities as described in Chapter 5. This

choice has proved superior to parametrically specifying the domain

size in preliminary experiments.

SAT solver: We use MiniSat [ES03] and zChaff [FMM] SAT solvers

with the extended encoding that is described in Chapter 5. We

have extended Stickel’s quasigroup representation generator [Sti] to

be used with our approaches, that generates quasigroup SAT

problem encodings in the DIMACS CNF format which is a

90

Figure 7.1: Model for the Combined Approach

standard way to represent conjunctive normal form Boolean

formulae.

For pre-computing additional constraints according to the techniques

presented in Chapter 5, we combine a number of reasoning engines in a

preprocessing unit. It integrates a mix of bespoke algorithms we have

implemented and off the shelf tools. Fig. 7.1 presents a structural

diagram of the basic work flow we have assembled with the following

components:

Model generator Mace4 [McC03a] together with Isofilter is employed

91

to compute small size non-isomorphic quasigroups.

Symbolic Algebra Computations is an Ocaml procedure written by

us that implements the techniques of computing and evolving

generating systems that are described in Chapter 6.

Random Quasigroup Element Generator is an Ocaml procedure

written by us that computes random triples of numbers

representing elements of a quasigroup.

Quasigroup Element Filter is the validation function written by us

which is also implemented in Ocaml, that checks for a single

generated element that they do not violate the Latin square

property.

Automated theorem prover Prover9 [McC] is used for verifying that

a set of pre-assigned elements in the quasigroup Cayley table does

not violate any of the properties that a quasigroup should exhibit.

A constraint solver can also be used for the same purpose.

Model Generation Systems To finally generate the quasigroup

model we use various systems that are listed in the beginning of

this chapter.

These systems are used in slightly varying work flows to construct three

different algebraically restricted encodings that are defined as follows.

7.1.1 Quasigroup Element Filtering Procedure

This procedure corresponds to the quasigroup element filtering approach

discussed in Chapter 6. Let P be the desired property of our quasigroup

of size n to be generated. In addition, let k be the number of random

elements we want to preset. In general we let k be defined in terms of n

92

(i.e., n, n+
⌈
n
2

⌉
, 2n, 2n+

⌈
n
2

⌉
) to identify the maximum number of

pre-computed elements after which pre-computing makes the problem

unsatisfiable. The procedure is defined as follows:

1. Use our quasigroup element generator to compute random

quasigroup elements for the set S of triples.

2. Filter each element with the simple filter to verify that they do not

violate the Latin square property.

3. Once k elements are computed, verify with Prover9 that the set S

of elements does not violate property P . Prover9 is assigned 10

seconds to find the proof.

4. If no proof can be found, fix the final set SF of verified elements.

Otherwise generate and filter more elements.

Encoding 1 consists of:

• the Latin Square property which is given in Definition 4.1.1 in

Chapter 4,

• the specific quasigroup property P i.e., one of the two-variable

properties given in Definition 4.2.2 in Chapter 4,

• a skeleton Cayley table given by SF (set of pre-computed elements).

7.1.2 Generating System Procedure

This procedure corresponds to the generating system approach discussed

in Chapter 6. In our experiments, we have concentrated on evolving

generating systems by adding novel relations only. Assume that we want

to construct a quasigroup of size n that exhibits a particular property P .

Then the procedure works as follows:

93

1. Generate up to 10 (some have only 1 or 2) non-isomorphic

quasigroups of size 5 with property P using Mace4. Note, if Mace4

is unable to find quasigroups of size 5 then we take quasigroups of

size 4.

2. Compute the generating systems G for the small size quasigroups

using the symbolic algebra computations.

3. Stepwise evolve each generating system to a generating system G′

that represents a quasigroup of size n. At each step use the

quasigroup element filter to verify that the elements generated by

the evolved generating system do not violate the Latin square

property and indeed represent a new unique element.

4. Once generating system G′ has size n, verify with Prover9 that it

does not violate property P . Prover9 is assigned 10 seconds to find

the proof.

5. If no proof can be found, G′ is the final generating system.

Otherwise loop through the other evolved generating systems.

Encoding 2 consists of:

• the Latin Square property which is given in Definition 4.1.1 in

Chapter 4,

• the specific quasigroup property P i.e., one of the two-variable

properties given in Definition 4.2.2 in Chapter 4,

• a skeleton Cayley table that can be computed using G′, by using

the relations that represent the pre-computed elements.

94

7.1.3 Combination of Both Procedures

Finally we define a procedure as a mix of goal directed computation with

generating systems and random generation of elements by combining

both procedures. The procedure is defined as follows:

1. Use the generating system approach to get the evolved generating

systems. This yields a set S of n quasigroup elements.

2. Compute a set S ′ of k elements using the quasigroup element

filtering approach, verifying that none of the elements in S ′

coincides with elements in S.

3. As k is usually defined in terms of n, the union S ∪ S ′ has now

n+
⌈
n
2

⌉
, 2n, 2n+

⌈
n
2

⌉
, . . . elements.

Encoding 3 consists of:

• the Latin Square property which is given in Definition 4.1.1 in

Chapter 4,

• the specific quasigroup property P i.e., one of the two-variable

properties given in Definition 4.2.2 in Chapter 4,

• a skeleton Cayley table given by S ∪ S ′ (set of pre-computed

elements).

7.1.4 Employing Implied Constraints

In addition to our element pre-computation approaches, we have also

performed experiments using implied constraints that are defined in

Chapter 4. We have extended the work done by [CM01, CCM06] where

the final model generation is done by Choco [Lab00] constraint solver

and quasigroups having only two properties Q-1 and Q-2 with different

95

implied constraints were generated. We have extended the quasigroup

problem encodings to include the additional axioms or constraints:

C1, C2, C3, C4, C5 with the properties Qg-1, Qg-2, Qg-3, Qg-4, Qg-5,

Qg-6, Qg-7, and also C6 with Q-5. Moreover, we have used three

different types of automated reasoning systems i.e. constraint solver

(Minion), model generator (Mace4) and SAT solvers (MiniSat and

zChaff) for the final model generation.

7.2 Discussion of Results

We have run our experimental set-up to generate quasigroups with

properties: Qg-1, Qg-2, Qg-3, Qg-4, Qg-5, Qg-6 and Qg-7 that are

defined in Chapter 4. In our experiments, the systems were restricted to

construct a single solution for size 3 to at most 25 each (there are

possible restrictions on the lowest size as discussed below) and to a time

limit of 2 hours for the generation of each quasigroup. Furthermore, the

experiments with pre-computation techniques are repeated multiple times

(at most 10 times) for each quasigroup property of a particular size.

The results for the direct system comparison without preset elements are

given in Table A.1 of Appendix A. The results are presented giving one

major row per property, further broken down into the different sizes

where quasigroups could be generated. The columns display the CPU

time in seconds for the quasigroups that were found, using the four

different systems that we have compared. Dashes as entries indicate that

a particular system was not able to find a quasigroup of that property

and size. If a row is missing for a particular size then none of the

systems could find a corresponding quasigroup.

The analysis of the results obtained by each system, show that MiniSat

generally outperformed all other systems on nearly all properties, but in

96

particular for properties Qg-4 and Qg-5. Only zChaff is slightly better

for property Qg-6 where it finds a model of size 17. While in general the

SAT solvers seem to be performing better than the other two systems,

there are some peculiar phenomena to observe: For Qg-5 zChaff finds

models for nearly all the same sizes as MiniSat, however, it appears to be

less reliable, not finding a model for size 13, while nevertheless finding

some of higher sizes. Minion finds a Qg-1 model of size 13 where none of

the other systems finds one, while missing the one of size 12.

Table A.2 in Appendix A gives the results for our element

pre-computation approaches with the three different encodings described

in Section 7.1. Here we have a major column for each encoding that are

further parametrized with respect to the number of pre-computed

elements, where n is the size of the quasigroups. For Encoding 1 we have

experimented with n and n+
⌈
n
2

⌉
pre-computed elements respectively

and for Encoding 3 we have experimented with n+
⌈
n
2

⌉
elements. For

both encodings with n+
⌈
n
2

⌉
precomputed elements we have only

experimented with sizes 10 to 25 and for Encoding 2 with sizes 6 to 25,

as the smaller sizes would have been meaningless. The former because

the precomputed elements nearly filled the entire table and for the latter

as we already used models of size 4 or 5, respectively, to evolve

generating systems. This is denoted by n/a in the table. Again, dashes

indicate that a system could not find a quasigroup and rows are omitted

where no system could find an instance. Furthermore, it should be noted

that for Encoding 3 neither SAT solver produced any results and

therefore these columns were omitted. Also, the element

pre-computation times for all three encodings are negligible.

A comparison of Table A.1 and Table A.2 in Appendix A, shows that our

techniques have increased the solvability horizon of Mace4, Minion,

97

MiniSat and zChaff for some properties, notably Qg-1, Qg-2, Qg-3 and

Qg-4. In particular, for the Qg-2 property Mace4, found a size 16

quasigroup with encoding 3 that all other systems were unable to find.

Similarly, a Qg-3 quasigroup of size 13 was found by Mace4 with all

three encodings, by MiniSat with encoding 2 and by zChaff with

encodings 1 and 2. A Qg-4 quasigroup of size 19 was found by zChaff

with encoding 2, that all other systems were unable to find. However,

there is no clear winning strategy for our encodings, in fact all have their

strengths and their weaknesses.

Since the pre-computation techniques are incomplete, it is probably not

surprising that for some quasigroup properties and sizes no solution

models were found. Moreover, for some properties there exist only 1 or 2

non-isomorphic quasigroups for small sizes, and that gives us less

structural information to work with and evolve further.

The results with implied constraints are also presented in Appendix A in

Tables A.3, A.4, A.5, A.6, A.7, A.8, A.9. The results are presented in a

different table for each property, having a row for different sizes where

quasigroups could be generated. The columns display the size of the

quasigroup, systems used and the different constraints used. Each cell

displays the CPU time in seconds for the quasigroups that were found,

using the four different systems that we have compared. Dashes as

entries indicate that a particular system was not able to find a

quasigroup of that property and size. If a row is missing for a particular

size then none of the systems could find a corresponding quasigroup.

A comparison of the results with implied constraints and

pre-computation techniques shows that implied constraints narrowed

down the search for Qg-4 quasigroups enabling the construction of an

example of size 19, as was previously found by the pre-computation

98

techniques. Qg-5 quasigroup of size 20 was found by MiniSat using

constraints C6 and Qg-6 of size 21 was found by Minion using constraint

C4 and C5 each, and by MiniSat using constraint C5 that we were unable

to find previously. Although implied constraints helped to find larger

sizes for Qg-5 and Qg-6 quasigroups, they did not help in computing

larger sizes for Qg-2 and Qg-3 quasigroups as was the case with

pre-computation techniques. A summary of results using all approaches

is presented in Table 7.1, where
√

denotes that a model was found and

× denotes that a model was not found for the quasigroup property of the

given size.

99

Property Size Standard Pre-Computations Implied Constraints

Qg-1

4
√ √ √

8
√ √ √

9
√ √ √

12
√ √ √

13
√ √ √

Qg-2

4
√

n/a
√

5
√ √ √

8
√ √ √

9
√ √ √

12
√ √ √

13
√ √ √

16 ×
√

×

Qg-3

3
√ √ √

4
√ √ √

7
√ √ √

9
√ √ √

10
√ √ √

12
√ √ √

13 ×
√

×

Qg-4

4
√ √ √

5
√ √ √

9
√ √ √

11
√ √ √

13
√

×
√

16
√

×
√

17
√

×
√

19 ×
√ √

20
√

×
√

21
√

×
√

Qg-5

3
√ √ √

4
√ √ √

5
√ √ √

7
√

×
√

8
√ √ √

9
√

×
√

11
√

×
√

12
√

×
√

13
√

×
√

15
√

×
√

16
√

×
√

17
√

× ×
20

√
×

√

Qg-6

5
√ √ √

9
√ √ √

13
√

×
√

17
√

× ×
21 × ×

√

Qg-7

4
√ √ √

7 ×
√

×
8

√ √ √

9
√

×
√

13
√

×
√

16
√ √ √

Table 7.1: Summary table for quasigroup results.

100

Part III

Approximating Solutions in

Infinite Domains

102

CHAPTER 8

BACKGROUND ON POINT-SET
TOPOLOGY AND KURATOWSKI

CLOSURE-COMPLEMENT PROBLEM

Chapter Overview: This chapter describes the basic notions

of point-set topology and introduces the Kuratowski’s closure-

complement problem. To provide the necessary background for

the following chapters we first define and give examples of

the basic concepts used in point-set topology such as: topology,

topological space, closed set, open set, closure, interior, exterior

and boundary. We then present the theorem for the Kuratowski

closure-complement problem along with a proof, which is followed

by the formal definition of the problem.

In the previous part we pushed the boundaries of model finding in finite

algebra by computing additional knowledge via automated theory

exploration using symbolic computations and automated theorem

proving. In this part, we aim to find approximate solutions to problems

103

that can be of infinite nature by computing and presenting results in a

fashion that allows the user to explore the knowledge to obtain valuable

insights into the structure of solutions and to guide computations via

providing feedback. The motivation for the development of this approach

is to solve the generalization of Kuratowski’s closure-complement

problem that is described in detail in Chapter 9.

In this chapter, we give the relevant background on the basic terms used

in point-set topology and introduce Kuratowski’s classical

closure-complement problem. The definitions, propositions, theorems,

proofs and examples presented in this chapter are taken from the

literature and have been appropriately referenced.

8.1 Basic Concepts in Point-Set Topology

Following [Kel75], [Mun00] and [Lip65, p. 66-70] we define the basic

concepts in point-set topology in the following section.

The term topology can be defined as follows:

Definition 8.1.1 (Topology) Let X be a non-empty set. A collection

T of subsets of X is called a topology if it satisfies the following three

conditions:

(i) ∅ ∈ T and X ∈ T .

(ii) The union of an arbitrary collection of sets in T is also in T , or

equivalently , if {Ui : i ∈ I} is a collection such that Ui ∈ T for

each i ∈ I, then (∪i∈IUi) ∈ T .

(iii) The intersection of a finite collection of sets in T is also in T , or

equivalently if {Ui : i ∈ I} is a collection such that Ui ∈ T for

each i ∈ I, then (∩i∈IUi) ∈ T .

104

The definition of topology can be further understood more clearly by the

following example.

Example 8.1.1 Let X = {x, y, z}. The collection

T = {∅, X, {x}, {y}, {x, y}, {y, z}} is a topology on X. It can be pictured

as shown in Figure 8.1 where the ovals represent the open sets.

x y z

Figure 8.1: Topology Example [Bro10]

We now define a topological space as follows.

Definition 8.1.2 (Topological space) Let X be a non-empty set, and

T a topology for X. The pair (X, T) is called a topological space.

An element x of a topological space X is usually referred as a point of X.

Whenever it makes no confusion, we denote a topological space (X, T)

by its underlying set X.

Open and closed sets in a topological space can be defined as follows.

Definition 8.1.3 (Open set) Let (X, T) be a topological space. A set

U ∈ T is called an open set.

Definition 8.1.4 (Closed set) Let X be a topological space. A set

A ⊂ X whose complement A′ is open is called a closed set.

Closed sets have the following properties:

105

(i) ∅ and X are closed sets.

(ii) The intersection of closed sets in X is closed.

(iii) Any finite union of closed sets in X is closed.

Example 8.1.2 The class T = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}

defines a topology on X = {a, b, c, d, e}. The closed subsets of X are

∅, X, {b, c, d, e}, {a, b, e}, {b, e}, {a}

that is, the complements of the open subsets of X. Note that there are

subsets of X such as, {b, c, d, e} which are both open and closed, and

there are subsets of X, such as {a, b}, which are neither open nor closed.

A′′ = A, for any subset A of a topological space X. Hence:

Proposition 8.1.1 In a topological space X, a subset A of X is open if

and only if its complement is closed.

The terms closure, interior, exterior and boundary in topological spaces

are defined below with some relevant examples.

Definition 8.1.5 (Closure in topological spaces) Let X be a

topological space, and A ⊂ X. The closure of A, denoted by Cl(A) or Ā,

is defined by Cl(A) =
⋂

i Gi, where A ⊂ Gi and Gi is a closed set of X.

Proposition 8.1.2 Let Ā be the closure of A, then the following hold:

(i) Ā is closed.

(ii) If F is a closed superset of A, then A ⊂ Ā ⊂ F .

(iii) A is closed if and only if A = Ā.

106

Example 8.1.3 Consider the topology T on X = {a, b, c, d, e} of

Example 8.1.2 where the closed subsets of X are

∅, X, {b, c, d, e}, {a, b, e}, {b, e}, {a}

Accordingly,

{b} = {b, e}, {a, c} = X, {b, d} = {b, c, d, e}

Definition 8.1.6 (Interior in topological spaces) Let X be a

topological space, and A ⊂ X. The interior of A, denoted by Int(A), is

the open set defined by Int(A) =
⋃

i Gi , where Gi ⊂ A and Gi is an

open set of X. Any point x ∈ Int(A) is called an interior point of A.

The interior of A can also be characterized as follows:

Proposition 8.1.3 The interior of a set A is the union of all open

subsets of A. Furthermore:

(i) Int(A) is open.

(ii) Int(A) is the largest open subset of A, i.e. if G is an open subset of

A then G ⊂ Int(A) ⊂ A.

(iii) A is open if and only if A = Int(A).

Definition 8.1.7 (Exterior in topological spaces) The exterior of

A, written as Ext(A), is the interior of the complement of A, that is,

Ext(A) = Int(A′)

Definition 8.1.8 (Boundary in topological spaces) Let X be a

topological space, and A ⊂ X. The boundary of A, denoted by Bd(A), is

107

the closed set defined by Bd(A) = Cl(A) ∩ Cl(A′). Any point

x ∈ Bd(A) is called a boundary point of A.

The following theorem depicts an important relationship between

interior, boundary and closure.

Theorem 8.1.1 Let A be any subset of a topological space X. Then the

closure of A is the union of the interior and boundary of A, i.e.

Ā = Int(A) ∪Bd(A)

Example 8.1.4 Consider the four intervals of real numbers

[a, b], (a, b), (a, b] and [a, b) whose endpoints are a and b. The interior of

each is the open interval (a, b) and the boundary of each is the set of

endpoints, i.e. {a, b}

Example 8.1.5 Consider the topology

T = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}

on X = {a, b, c, d, e}, and the subset A = {b, c, d} of X. The points c

and d are each interior points of A since

c, d ∈ {c, d} ⊂ A

where {c, d} is an open set. The point b ∈ A is not an interior point of

A; and since Int(A) is the largest open subset of A, therefore,

Int(A) = {c, d}. Only the point a ∈ X is exterior to A, i.e. interior to

the complement A′ = {a, e} of A, hence Int(A′) = {a}. Accordingly the

boundary of A consists of the points b and e, i.e. Bd(A) = {b, e} which

can be computed as follows:

Bd(A) = Cl(A) ∩ Cl(A′) = {b, c, d, e} ∩ {a, b, e} = {b, e}

108

8.2 Kuratowski Closure-Complement

Problem

In 1922 Kuratowski proposed the question on an arbitrary topological

space, of how many different combinations of the operators of

complement and closure exist? This problem was solved by Kuratowski,

and the solution consists of 14 combinations. Following [GJ08], the

Kuratowski closure-complement theorem and its proof is given as follows.

Theorem 8.2.1 (The Kuratowski Closure-Complement Theorem)

If (X, T) is a topological space and A ⊆ X then at most 14 sets can be

obtained from A by taking closures and complements.

Proof of the Theorem:

Let (X, T) be a topological space and consider the complement operator

a acting on the set of subsets of X defined by a(A) = X \ A and the

closure operator b defined by b(A) = Ā. Consider symbol i to denote the

interior of a set which is defined by i(A) = a(b(a(A))). Furthermore, the

complement operator a satisfies a2 = id, where id is the identity

operator, and the closure operator b is idempotent i.e. b2 = b. This

immediately shows that every operator in the operator monoid generated

by a and b is either the identity operator id or is equal to one of the form

abab...ba, baba...ba, abab...ab, or baba...ab. First we will show that the

operators bab and bababab are identical. This gives the upper bound of

14 since the only remaining operators are:

id, a, b, ab, ba, aba, bab, abab, baba, ababa, babab, ababab, bababa, abababa

Note that bab ≥ ababab since ababab(A) is the interior of bab(A). Since b

is idempotent, it then follows that bab = bbab ≥ bababab. On the other

109

hand, abab ≤ b, since abab(A) is the interior of b(A) and therefore,

babab ≤ bb = b. Also, since babab ≤ b is equivalent to ababab ≥ ab,

therefore bababab ≥ bab. Combining these two inequalities gives

bab = bababab as required.

To complete the proof it suffices to find a topological space with a subset

for which each of the 14 possible operators produces a different set.

To complete the proof we present an example to show that the set

A ⊆ R given by:

A = (0, 1) ∪ (1, 2) ∪ {3} ∪ ([4, 5] ∩Q)

attains the bound of 14 i.e. we can produce 14 distinct sets from A by

taking complements and closures. These sets are:

id(A) = A = (0, 1) ∪ (1, 2) ∪ {3} ∪ ([4, 5] ∩Q)

a(A) = (−∞, 0] ∪ {1} ∪ [2, 3) ∪ (3, 4) ∪ ([4, 5] ∩ I) ∪ (5,−∞)

b(A) = [0, 2] ∪ {3} ∪ [4, 5]

ab(A) = (−∞, 0) ∪ (2, 3) ∪ (3, 4) ∪ (5,−∞)

ba(A) = (−∞, 0] ∪ {1} ∪ [2,−∞)

aba(A) = (0, 1) ∪ (1, 2)

bab(A) = (−∞, 0] ∪ [2, 4] ∪ [5,−∞)

abab(A) = (0, 2) ∪ (4, 5)

baba(A) = [0, 2]

ababa(A) = (−∞, 0) ∪ (2,−∞)

110

babab(A) = [0, 2] ∪ [4, 5]

ababab(A) = (−∞, 0) ∪ (2, 4) ∪ (5,−∞)

bababa(A) = (−∞, 0] ∪ [2,−∞)

abababa(A) = (0, 2)

Following [GJ08], the solution for the Kuratowski closure-complement

problem i.e. how many different combinations of the operators of

complement and closure exist is defined as follows:

Definition 8.2.1 Let (X, T) be a topological space and A ⊆ X.

(i) k(A) (the k-number of A) denotes the number of distinct sets

obtainable from A by taking closures and complementation. A set

with k-number n will also be called an n-set.

(ii) k((X, T)) (the k-number of (X, T)) denotes max{k(A) : A ⊆ X}.

(iii) K((X, T)) (the K-number of (X, T)) denotes the number of

distinct Kuratowski closure and complement operators on (X,T).

The Kuratowski result firstly shows that the k-number of any set in a

topological space is at most 14 and secondly the K-number of any

topological space is at most 14. The proof of the Kuratowski

closure-complement theorem first showed that K((X, T)) ≤ 14 and then

that the k-number of the reals with the usual topology is actually 14.

Hence, we can say that K((X, T)) ≥ k((X, T)).

111

112

CHAPTER 9

GENERALIZATION OF KURATOWSKI
PROBLEM TO POINT FREE

TOPOLOGY

Chapter Overview: This chapter describes the generalization

of Kuratowski problem (i.e. how many different combinations

of the operators of complement and closure exist?) to point free

topology using the inference rules of intutionistic logic. We define

the inference rules, the operators used, the generalization of the

problem and finally the nth approximation to the problem.

Kuratowski’s classical closure-complement problem was proposed and

solved by him in 1922. The problem and the solution to the problem is

defined in Section 8.2 in Chapter 8. The problem has been generalized in

many different ways to consider other operators, such as union or

intersection as given in [GJ08], or slightly different settings, such as point

free topology (locale theory) as given in [WY00]. The solution to a

generalized version could be a significantly larger number of

113

x ≤ x
(reflexive)

x ≤ y y ≤ z

x ≤ z
(transitive)

x ≤ y y ≤ x

x = y
(antisymmetric)

x ≤ y

−y ≤ −x
(antimonotone)

x ≤ −− x
(saturates)

−−−x = −x
(quasi-idempotent)

i(x) ≤ x
(reduces)

x ≤ y

i(x) ≤ i(y)
(monotone-i)

i(x) = i(i(x))
(idempotent-i)

x ≤ c(x)
(saturates)

x ≤ y

c(x) ≤ c(y)
(monotone-c)

c(x) = c(c(x))
(idempotent-c)

c(−x) ≤ −i(x)
(compatible-1)

i(−x) ≤ −c(x)
(compatible-2)

Table 9.1: Axioms for the generalized Kuratowski problem.

combinations, or a proof that infinitely many combinations exist. In this

chapter, we first define the axioms or inference rules for the generalized

Kuratowski problem. Note that these rules are intutionistic, but this is

of no concern in the following. We then define the operators used in the

inference rules such as interior, closure and complement; as well as the

subset relation ≤. This is followed by the definition of the generalization

of the Kuratowski closure-complement problem. Furthermore, we define

the nth approximation to the problem, approximating graph of order n

and the theorems for finding finite and infinite solutions to the problem.

9.1 The Problem

The generalization of the point-free version of the Kuratowski problem is

introduced by Sambin in [Sam03]. The problem has been previously

studied in [Cor06] but remained open and only minimal progress towards

114

a solution was achieved. The generalization is obtained by introducing a

partial order relation ≤ — that captures the inclusion relation for subsets

— and relaxing the axioms for the operators as given in Table 9.1 in a rule

format, where i denotes the interior operator, c denotes the closure

operator and − denotes the complement operator. It must be noted that

the relaxed axiomatization, effectively turns i into a reduction operator,

c into a saturation operator, and − into a pseudo-complement as defined

in Table 9.1. It can be observed that the two compatibility requirements

are reminiscent of the classical equation i(x) = −c(−x) (dually

c(x) = −i(−x)). Indeed, if we define i(x) as −c(−x) and we also assume

−−x = x for all x, then both compatibility axioms can be derived.

An example model for the axioms can be obtained by combining the

definitions of interior, closure and complement with the rules of

intuitionistic logic. The interior, closure and complement operators and

subset relation ≤ are defined as follows.

Definition 9.1.1 (Interior) Given a topological space (P,O), the

interior of a set x is defined as

{α | ∃y ∈ O, α ∈ y ∧ ∀β ∈ y.β ∈ x}

Definition 9.1.2 (Closure) Given a topological space (P,O), the

closure of x that avoids any reference to negation is defined as

{α | ∀y ∈ O, α ∈ y ⇒ ∃β ∈ y.β ∈ x}

(the set of all accumulation points of x).

Definition 9.1.3 (Complement) Given a topological space (P,O), the

115

complement of x is defined as

{α ∈ P | ¬(α ∈ x)}

and it hides a negation.

Definition 9.1.4 (Subset relation ≤) Given a topological space

(P,O), the subset relation (≤) which satisfies the axioms in Table 9.1

hides implication: x ≤ y iff

∀α, α ∈ x⇒ α ∈ y

The inference rules or axioms presented in Table 9.1 are obtained from

the properties of negation and the quantifiers in intuitionistic logic. For

instance, from the intuitionistic principle A⇒ ¬¬A we obtain x ≤ −−x

and from the DeMorgan laws for quantifiers we obtain the two

compatibility relations: For example, ∀∃¬ ⇒ ¬∃∀ becomes

c(−x) ≤ −i(x).

We are interested in applying a number of different combinations of

operators to any subset of a topological space to generate distinct sets.

Consequently, we define the generalized Kuratowski problem in terms of

equivalent operator combinations.

Definition 9.1.5 (Generalized Kuratowski closure-complement problem)

Let (P,≤) be any partially ordered set and let {i, c,−} be the set of

operators on P axiomatized as in Table 9.1. Let S = {i, c,−}∗ be the set

of all words over the operators (i.e., all possible finite combinations). We

define the order relation ≤ on S for all w1, w2 ∈ S by: w1 ≤ w2 iff

w1(x) ≤ w2(x) for all x ∈ P . Finally, let ≡ over S be the symmetric

closure of ≤, if w1 ≤ w2 and w2 ≤ w1, then w1 ≡ w2. The generalized

116

Kuratowski closure-complement problem then consists in computing the

cardinality of S/≡, the set of equivalence classes of S modulo ≡.

Furthermore, we define the canonical representative of an equivalence

class [w]/≡ ∈ S/≡ as the minimum element of the set according to the

shortlex order. Two words are in the shortlex order relation when the

first is shorter or, in case they have the same length, when the first

comes first in lexicographical order. Moreover, we can naturally extend

the relation ≤ on S to equivalence classes.

The cardinality of S/≡ is not necessarily finite. Therefore, for practical

purposes it is necessary to define finite approximations to the solution.

Definition 9.1.6 (nth approximation) Let Sn = {i, c,−}≤n ⊂ S be

the set of all operator combinations up to order n. For w1, w2 ∈ Sn we

define ≤n as w1 ≤n w2 iff for all x ∈ P we can derive w1(x) ≤ w2(x) by

applying the axioms from Table 9.1 to elements w ∈ Sn only (i.e., we

restrict derivations to combinations of maximally n operators). Finally,

let ≡n be the symmetric closure of ≤n. Then the nth approximation of

the generalized Kuratowski closure-complement problem is defined as

computing the cardinality of Sn/≡n
.

As described below, the nth approximation of the problem can be

visually represented as a directed graph whose vertices are the

equivalence classes of Sn/≡n
and whose edges represent one step of the

≤n relation.

Definition 9.1.7 (Approximating graph of order n) Let

G = (V,A) be a directed graph, where we define the set of vertices

V = Sn and the set of arcs A by (v1, v2) ∈ A iff v1 ≤n v2 for v1, v2 ∈ V .

Now let V ′ be the set of all strongly connected components (connected by

117

Figure 9.1: Approximating graph of order 3 for the generalized problem.

a directed path) in G. We then define the approximating graph of order

n as G′ = (V ′, A′) where (v′1, v
′
2) ∈ A′ iff v′1 ≤n v

′
2 for v′1, v

′
2 ∈ V ′.

The approximating graph can be represented in transitively reduced

form, exploiting the transitivity of the ≤n relation. It can also be

observed that every vertex in the approximating graph contains all the

elements of the equivalence class it represents. Thus the graph itself

provides a solution to the nth approximation problem as the number of

vertices in the graph is the cardinality of Sn/≡n
. Consequently, our goal

is effectively to construct the graph by partitioning Sn into equivalence

classes, which amounts to an inference procedure that determines if

[w1]/≡ ≤n [w2]/≡ for [w1]/≡n , [w2]/≡n ∈ Sn/ ≡n.

Figure 9.1 shows the approximating graph of order 3 for the generalized

Kuratowski closure-complement problem. The vertices are subsets of S3,

118

where only three vertices represent equivalence classes with more than

one element. Note that ‘.’ corresponds to the empty word ε. Also, if

there is no symmetric closure between the vertices then they are not

connected by arcs, this is a single graph.

We note that the nth approximation is an approximation to the original

problem in two ways. First of all it only shows classes whose canonical

representative has length at most n. More importantly, however, it does

not grant that two distinct classes in the nth approximation will remain

distinct for every (n+m)th approximation. Thus the cardinality of the

graph may decrease or increase when moving to larger values of n.

Nevertheless, the approximation procedure is monotone in the following

sense:

• If two words belong to the same class in the nth approximation,

they will belong to the same class in any (n+m)th approximation.

• Advancing to the (n+1)th approximation can only collapse more

classes or create new ones made only of words of length n+1.

Graph isomorphism is defined as follows.

Definition 9.1.8 Let V (G) be the vertex set of a simple graph and

E(G) its edge set. Then a graph isomorphism from a simple graph G to

a simple graph H is a bijection f : V (G)→ V (H) such that uv ∈ E(G)

iff f(u)f(v) ∈ E(H).

The following theorem holds.

Theorem 9.1.1 If the solution of the generalized problem is finite, then

there exists an n such that every (n+m)th approximation is isomorphic

(as a directed acyclic graph) to the solution.

119

The theorem states that approximations stabilize, in the sense that larger

approximations only augment the cardinality of the equivalence classes,

but they do not collapse any existent distinct classes, nor do they add

new arcs to the approximating graph.

The theorem does not provide an effective way to decide if an

approximation is (isomorphic to) the solution. Consequently, we

postulate the following conjecture that provides a simple decision

procedure to recognize solutions.

Conjecture 9.1.2 In the solution of a generalized problem there exists

an m such that, if for a given n the nthand the (n+m)thapproximations

are isomorphic, then they are isomorphic to the solution.

We have not tried to prove the conjecture yet and the proof does not

seem to be simple. In particular, we do not know what is the m for the

set of axioms considered. Nevertheless, we employ an alternative to the

conjecture to recognize which approximations are solutions. Let us

assume that at a certain point the approximations seem to stabilize, i.e.,

the (n+1)th approximation is equal to the nth approximation. We build

a syntactic model of the solution as follows.

• We take the set P of all strings w made from {i, c,−} such that w

is a canonical representative of an equivalence class in the nth

approximation.

• We define an ≤ relation over P by taking the ≤n relation.

• The i, c and − operators are obtained as finite maps that associate

to each w ∈ P the canonical representative of i ◦ w (respective

c ◦ w and − ◦ w) in the nth approximation.

In order to verify if (P, i, c,−) is a model for the problem (i.e., if all the

axioms hold for (P, i, c,−)), we use the scientific data analysis tool

120

Octave [Eat08] to verify that all axioms hold. If they do, then the nth

approximation is isomorphic to the solution of the generalized problem

because the model shows that all classes are distinct and moreover the

number of classes is maximal because we have only equated combinations

that had to be equated because they proved to be equal. Otherwise, we

start computing larger approximations and eventually find an (n+m)th

approximation that is not isomorphic to the nth approximation that, a

posteriori, is not stable.

A priori, if the conjecture is false it may be that all syntactic models

built from approximations that are stable (i.e. (n+1)th isomorphic to

nth) turn out to be wrong. However, as we will see in Chapter 11, this

has not been the case for the different instances of the generalized

problem that we considered that are stable.

The following theorem, instead, is obvious:

Theorem 9.1.3 If the solution of the generalized problem is infinite,

then there exists an infinite increasing sequence of approximations with

larger and larger cardinalities.

Our experience shows that in this case a clear pattern emerges, which

after some time allows us to predict what new classes will be generated

passing from any nth approximation to the (n+1)th approximation.

This prediction can then be manually turned into a proof that these new

classes will never be collapsed in later approximations and therefore the

solution is infinite. Consequently, we focus on finding a solution to the

nth approximation of the problem.

121

122

CHAPTER 10

THE ADOPTED TERM REWRITING
SYSTEM

Chapter Overview: This chapter describes the adopted term

rewriting system to solve the generalized Kuratowski problem.

We first present the basic rewriting system, followed by the

advanced rewriting system. We also present some variations

of the Kuratowski problem that can be solved by our rewriting

system.

10.1 The Basic Rewriting System

We first present the basic rewriting system which uses the axioms given

in Table 9.1 and computes approximating graphs for the generalized

Kuratowski problem presented in Chapter 9. We use the standard

terminology that is used in references such as [BN98]. The system can

also be understood as an instance of a generalized equational reasoning

123

system that is defined in [Coe06], which corresponds more to the actual

form in which the system was developed.

A preliminary observation is the fact that in the axiomatization of the

problem we can replace the equality with a ≤ in all three idempotency

inference rules as the (anti)monotonicity of the respective operator yields

the equality automatically. For instance, idempotency of the i operator

can be replaced by the axiom i(x) ≤ i(i(x)) since, by monotonicity, we

already have i(i(x)) ≤ i(x). Therefore, the only rule that employs an

equality remains the antisymmetry rule for ≤.

The approximating graph of order n can now be computed in two steps:

1. First we compute the initial directed graph G from Definition 9.1.7

whose vertices are all the elements of Sn (words of length at most

n) and whose arcs represent all pairs such that (w1, w2) ∈≤n. The

anti-symmetric rule of the ≤ relation and, more generally,

equalities are not used in this step.

2. We then apply a standard connected component algorithm (from

the OCAML graph library) to this graph. Since a connected

component is made of all vertices that are mutually reachable, i.e.,

mutually less or equal, by antisymmetry of ≤ they are all equal.

The resulting graph is then the approximating graph of order n

that we are looking for.

The second step is completely standard and we can employ

implementations directly from the OCAML graph library. Therefore, we

only focus on describing the development of the first step.

In order to compute the first directed graph G = (V,A) it is sufficient to

find all pairs of vertices (w1, w2) ∈ A in the transitive reduction of the

graph of ≤n (recall that following Definition 9.1.7, w1, w2 are words of

124

length ≤ n in Sn), since the connected components algorithm does not

distinguish between a transitively reduced and a transitively closed

graph. In other words, we look for all pairs (w1, w2) ∈ A such that

w1 ≤n w2 and there is no w3 ∈ V such that w1 ≤n w3 and w3 ≤n w2.

By a close inspection of the rules that have a premise, it is easy to notice

that all applications of the transitive rules can be pushed towards the

root of the derivation tree. For instance, consider the monotone rule for i

and assume (by induction hypothesis) that the derivation of the premise

x ≤ y is obtained by means of a transitive rule whose premises are x ≤ z

and z ≤ y. It is therefore possible to conclude that i(x) ≤ i(z) and

i(z) ≤ i(y) and then, with one final application of transitivity, that

i(x) ≤ i(y). Since we are interested only in the transitively reduced

graph, we avoid the use of the transitive and reflexive properties of ≤.

The final preliminary observation is that, to compute all pairs (w1, w2) in

the transitively reduced graph G, it is sufficient for every word w ∈ Sn to

compute the two sets w↓ = {w′ | w′ ≤n w ∧ |w′| ≤ |w|} and

w↑ = {w′ | w ≤n w
′ ∧ |w′| ≤ |w|} where |.| is the length of the two

combinations. The final set is then given by:

⋃
w∈Sn

({(w,w′) | w′ ∈ w↑} ∪ {(w′, w) | w′ ∈ w↓})

In order to compute w↓ and w↑, we introduce the non confluent,

Noetherian term rewriting system presented in Table 10.1. The term

rewriting system manipulates both active configurations of the form

〈w1, w2, d〉 (where d ∈ {≤,≥}) and stuck terms w which cannot be

reduced further. The intended big step semantics i.e. the overall result of

the execution of the rewriting system is the following: an initial term

〈ε, w, d〉B∗ w′ iff wdw′ and |w′| ≤ |w|. In particular, w↓ can be

125

(saturates)
〈w1,−−w2,≥〉B w1w2

(antimonotone)
〈w1,−w2, d〉B 〈w1−, w2, d

−1〉

(quasi-idempotent)
〈w1,−−−w2,≥〉B w1−w2

(reduces)
〈w1, iw2,≤〉B w1w2

(monotone)
〈w1, iw2, d〉B 〈w1i, w2, d〉

(idempotent)
〈w1, iiw2,≥〉B w1iw2

(saturates)
〈w1, cw2,≥〉B w1w2

(monotone)
〈w1, cw2, d〉B 〈w1c, w2, d〉

(idempotent)
〈w1, ccw2,≤〉B w1cw2

(compatible-1)
〈w1, c−w2,≤〉B w1−iw2

(compatible-2)
〈w1, i−w2,≤〉B w1−cw2

Table 10.1: The non confluent, Noetherian term rewriting system to
compute w↓ and w↑.

computed as {w′ | 〈ε, w,≥〉B∗ w′} and w↑ as {w′ | 〈ε, w,≤〉B∗ w′}.

The small step semantics i.e. formal description of the individual steps of

the rewriting system is more technical and it involves generic

configurations 〈w1, w2, d〉. The idea is that an initial reduction trace

〈ε, w, d〉Bn 〈w1, w2, d
′〉 represents a partial derivation of wdw′ for some

yet unknown w′. In the two invariants {w′ | 〈ε, w,≥〉B∗ w′} and

{w′ | 〈ε, w,≤〉B∗ w′}, we have w = w1w2 and |w1| = n. The partial

derivation built in a top-down manner starts with exactly n

monotonicity/anti-monotonicity rules: if w1 = o1 . . . on where

oj ∈ {−, i, c} then the j-th inference rule in the partial derivation is the

monotonicity/anti-monotonicity rule for oj. Moreover, the hypothesis of

the partial derivation is w2d
′w′2 for some yet unknown w′2 such that

w′ = w1w
′
2. According to this interpretation, a reduction trace

〈ε, w, d〉B∗ 〈w1, w2, d
′〉B w′ corresponds to a derivation of wdw′ where

there is a w′2 such that w′ = w1w
′
2, the last inference rule in the

126

top-down construction is an axiom that proves w2d
′w′2 and |w′2| ≤ |w2|.

The proof that reduction traces of length n correspond to partial

derivation trees of height n having the property just described is by

induction on n. We only sketch here one case of the proof.

Each rule in Table 10.1 corresponds to the rule with the same name in

Table 9.1. It means that applying the reduction rule adds the

corresponding inference rule to the partial proof tree. The most

interesting rule is the rule antimonotone: In order to proceed in the

derivation we use one more application of antimonotonicity of

complement by pushing − on top of the stack w1 (stack is a tool for

systematically tracking locally defined data attached to the open sets of

a topological space that comprises of objects that are linked by arrows)

and looking for a new derivation for w2d
−1w′. To see that the rule is

correct, assume that 〈ε, w, d〉Bn 〈w1,−w2, d
′〉B 〈w1−, w2, d

′−1〉. By

induction hypothesis, there is a partial proof derivation of wdw′ built

top-down that starts with monotone/anti-monotone rules for the

operators in w1 and whose hypothesis is −w2d
′w′′ for some yet unknown

w′′ such that w′ = w1w
′′. By applying anti-monotonicity of − we obtain

a new partial proof derivation of wdw′ whose new hypothesis is

w2d
′−1w′′′ and such that w′ = w1w

′′ = w1−w′′′. The reduction rule is

therefore correct and by applying it we discover that w′′ = −w′′′ or,

equivalently, that the next rule in the combination w′ after w1 is −.

Strong normalization of the term rewriting system can simply be proved

by induction on the length of the second component of active

configurations, which always decreases by one in all (anti)monotonicity

rules. All remaining rules produce a stuck term.

By inspection of all the rules, it is easy to prove (by induction on the

second component of an active configuration) that if 〈ε, w, d〉B∗ w′ then

127

|w′| ≤ |w|. Moreover, if 〈ε, w, d〉B∗ w′ and |w′| = |w| then

〈ε, w′, d−1〉6 B∗w. This is important for efficiency reasons, since it means

that we are never generating the same arc twice (as w1dw2 and w2d
−1w1).

The system clearly has several critical pairs between (anti)monotonicity

rules and the remaining rules. Actually, it turns out that every critical

pair is not joinable i.e. cannot be made equivalent to another and the

system is thus non confluent i.e. diverges. Non-joinability is a feature of

our system; because our rewriting rules are never applied under a

context, from non-joinability it follows that we never compute the same

arc twice in different ways.

Computing all normal forms of a term can be done very efficiently (in

terms of actual, non asymptotic computational cost of the program): At

every step at most two rules can be applied, one produces a stuck term

and the other can be implemented as a tail recursive call. It is thus

possible to simplify the code of an implementation for a generic term

rewriting system.

10.2 The Advanced Rewriting System

Given a combination w ∈ Sn, the computation of w↓ and w↑ by means

of the term rewriting system presented in the previous section is very

efficient. Nevertheless, the number of combinations to be reduced is

exponential in n and the number of reducts for each w is also

exponential in n. The limiting factor for the computation of larger and

larger approximating graphs is thus the memory required to hold the

graph defined by w↓ and w↑, which is the initial directed graph G from

Definition 9.1.7 before the computation of connected components.

To be able to compute larger approximations, we exploit the following

result given in [Cor06]: There exist only 7 distinct equivalence classes of

128

combinations of closure and interior. While this result is well known in

the literature and we can obtain it with our technique for very small

values of n, we additionally observed that every class can be associated

with a regular expression that generates all elements of the class. Note

that this property does not hold any longer when we consider

combinations with complement. The seven regular expressions are:

ε, i+, c+, (ic)+, (ci)+, i(ci)+, c(ic)+

Taking as canonical representatives the shortest expressions in each class,

we have the set of representatives as {ε, i, c, ic, ci, ici, cic}. Let K be any

regular expression that generates the set. When we consider

combinations that also contain complements, and noting that

−−−x = −x, we obtain that all combinations can be partitioned into an

infinite number of sets of equivalent combinations whose representatives

are all generated by the following regular expression E:

(−|−−)?(K−−?)∗K?. The set that corresponds to a representative is

the set obtained by replacing any occurrence of − with an odd number

of occurrences of − and any occurrence of a term generated by K with

an element of its equivalence class. For instance −−−−−icicicic−−−−

is a member of the set whose representative is −ic−−. The sets that

correspond to different representatives are not distinct according to the

≡ relation. For instance c−i− and −i− are representatives of different

sets, but c−i− ≡ −i−. Nevertheless, if two elements belong to the same

set, than they are equivalent. Thus the ≡ equivalence relation is more

fine grained than the equivalence relation that is induced by partitioning

with respect to regular expressions. Therefore, nodes representing sets

that correspond to different representatives in the graph will collapse

129

(−−)
−−w B w

(cc)
ccw B w

(ii)
iiw B w

(cici)
ciciw B ciw

(icic)
icicw B icw

(compatible-1 + i-idempotent)
〈w1, c−iw2,≤〉B w1−iw2

(compatible-2 + c-idempotent)
〈w1, i−cw2,≥〉B w1i−w2

Table 10.2: Additional rewriting rules.

according to the ≡ relation.

The idea to speed up our previous algorithm is to avoid the generation of

the vertices (and relative arcs) that correspond to non-canonical

representatives of the equivalence classes discussed above. These vertices

will all belong to the connected component that will be collapsed to its

canonical representative. For instance, for n = 7, our previous algorithm

handles the vertices {−,−−−,−−−−−,−−−−−−−} as potentially

distinct.

To implement the idea, we change the already presented algorithms in

two ways as follows:

1. We change the definition of Sn with the following one. The changes

apply to Definitions 9.1.6 and 9.1.7 and everywhere else in

Section 10.1.

x ∈ Sn iff x is generated by the regular expression E and |x| ≤ n

2. We integrate the rewriting system with the rules of Table 10.2 after

dropping the rule quasi-idempotent and the two idempotent

rules from the previous rewriting system. The reason why we drop

these rules is that their left hand side will never match any active

configuration due to restricting the definition of Sn.

Considering the rules in Table 10.2, we observe that all rules of the first

line simplify a combination. When the rules are applied repeatedly they

130

put any combination into their K-normal form. The rules of the second

line are obtained by applying Knuth-Bendix completion. Note, however,

that our rewriting rules come from a non-symmetric relation (≤) and we

have to take care of this during the superposition phase of Knuth-Bendix

completion. The names of the new rules are a concatenation of the

names of the rules superimposed. The new rules are necessary to keep

completeness after having changed the definition of Sn. For instance,

because c−ii no longer belongs to S4, we are no longer considering

combinations like (c−ii)↑ 3 −i. The new rewriting rule generated by

Knuth-Bendix completion takes care of adding −i to (c−i)↑ by implicitly

performing a step of ii-expansion. Note that, in the original rewriting

system, monotonicity of i was only used to perform a step of

ii-contraction.

In Table 10.2, we only list two rules obtained from the Knuth-Bendix

completion because all the others are logically redundant: they enable

the derivation of w1 ∈ w2↓ when there exists a w3 such that w1 ∈ w3↓

and w3 ∈ w2↓. The redundant rules have been pruned by hand, but it is

surely possible to automate the procedure.

The new term rewriting system remains Noetherian: all the new rules

decrease the length of either the (no longer stuck) combinations or the

second component of the active configurations. Of the new rules, only

those in the first line need to be applied several times in order to obtain

the normal form of a term. However, it is easy to show that all critical

pairs are joinable. Newman’s lemma states that a terminating rewriting

system, that is, one in which there are no infinite reduction sequences, is

confluent if it is locally confluent. Therefore, by Newman’s lemma, the

normalization step implemented by the rules in the first line is confluent,

as expected. This completes the proof of Theorem 10.2.1.

131

Theorem 10.2.1 (Correctness and completeness) The algorithm

based on the advanced rewriting system just described correctly computes

the nth approximation of the problem for each n.

The advanced rewriting system is obtained by rewriting in one step all

combinations to their canonical representatives in the equivalence classes

identified by the regular expression considered. The same trick can be

used more aggressively when we build the nth approximation after the

(n− 1)th. Indeed, we can add to the nth term rewriting system one

rewriting rule per combination of length (n− 1) that in one step rewrites

the combination to its (n− 1)th canonical representative.

Since the number of these additional rules is exponential in n, we avoid

running the Knuth-Bendix completion, by using the new rules only to

normalize terms that are not active configurations. The consequence is

that we have to normalize exactly the same set of combinations and so

we do not save time during the graph generation phase with the rewriting

system. The size of the generated graph, however, will be much smaller,

since it will no longer contain nodes that are not in (n− 1)th normal

form. The benefit is thus a significant reduction of the computational

cost (both memory and time) for the computation of the connected

components when generating the approximating graph of order n.

The proof of correctness and completeness of the rewriting system

obtained with this final improvement is a simple corollary of

Theorem 10.2.1. The implementation of the improvement is very cheap:

the additional rewriting rules generated at the (n− 1)th step can only be

applied to terms that are stuck according to all other rules. Moreover,

they only generate stuck terms. Therefore we can implement this final

step as a simple look-up in a trie. A trie is a data structure that stores

the information about the contents of each node in the path from the

132

−− = ε
(axiom 1)

c− = −i
(axiom 2)

i− = −c
(axiom 3)

c−− = −−c
(axiom 4)

c = −i−
(axiom 5)

{}

{3} {4} {2}

{4,3} {4,2}

{5,[2,3,4]} = {2,3,[4,5]}

General Case

Classical Case

{1,[4]}

{1,2,[3,4,5]} = {1,3,[2,4,5]}= {1,5,[2,3,4]}

Localic Case

Variants

Figure 10.1: Variations of Kuratowski’s problem.

root to the node, rather than the node itself.

10.3 More Variations of Kuratowski’s

Problem

The rewriting system presented so far has been developed as a bespoke

approach to solve the generalized Kuratowski problem. However, it turns

out that with a parametric implementation, our procedure can be

applied to a variety of related problems lying between the classical and

general problem. These problems are generated by introducing axioms

which restrict the general problem, or generalize the classical one.

Figure 10.1 demonstrates variations of Kuratowski’s problem, where the

axioms on the left hand side gradually refine the generalized problem to

the classical problem according to the graph on the right. The nodes are

given as sets of included axioms, with the root as the empty set

representing the generalized case. Furthermore, axioms derivable from

already included ones are given in square brackets.

The variations are motivated by Sambin’s [Sam12] work who proposed

the generalized problem in the context of intuitionistic point-free

topology. Axioms 1–5 are likewise inspired by axioms commonly found in

133

topological problems. For example, axiom 1 postulates the complement

operator as idempotent, corresponding to its use in classical logic. Axiom

4, c−− = −−c, is another axiom that is frequently satisfied by concrete

basic topologies (see [Sam12]). Adding axiom 5 to the generalized

problem, further restricts the saturation operator c. The axiomatization

obtained is the one for locale theory, for which it is already known in the

literature [WY00] that a maximum of 21 combinations exists. Weaker

cases than the localic one can be obtained by effectively splitting axiom 5

into axioms 2 and 3, and considering those either separately or in

combination with axiom 4.

All the presented problems in the generalized problem domain can be

obtained using our approach, by simply adding the corresponding axioms

to our advanced term rewriting systems as pairs of reductions over active

configurations. The Knuth-Bendix completion must also be applied to

combine the new rules with the ones of the advanced term rewriting

system.

10.4 Summary

We have developed a bespoke Term Rewriting System (TRS)

implementing the axioms of the generalized Kuratowski problem defined

in Chapter 9. In this chapter, we first presented the basic rewriting

system that used the axioms given in Table 9.1. The TRS computes the

approximating graph of order n for the generalized Kuratowski problem

by first computing the initial directed graph G where the vertices

represent the elements of Sn (words of length at most n) and arcs

represent all pairs such that (w1, w2) ∈≤n. In the second step, a

standard connected component algorithm is applied to G. The resulting

graph is then the approximating graph of order n.

134

To be able to compute approximating graphs of larger order, we then

presented the advanced term rewriting system where we exploited the

result from the literature that there exist only 7 distinct equivalence

classes of combinations of closure and interior. In addition to that, we

observed that every class can be associated with a regular expression

that generates all the elements of the class. This allowed us to avoid the

generation of the vertices (and relative arcs) that correspond to

non-canonical representatives of the equivalence classes. Hence, allowing

us to further narrow down the computations and compute larger

approximating graphs.

135

136

CHAPTER 11

METHODOLOGY, IMPLEMENTATION
AND RESULTS

Chapter Overview: This chapter presents the methodology

we have used to solve the generalized Kuratowski problem,

implementation details and the results obtained. We first

describe the methodology that presents a novel approach of system

combination with the active involvement of the user. We then

describe the various components used in the implementation of

the rewriting engine, and also provide the experimental settings

used. This is followed by the discussion of results and their

verification. Finally, some concluding remarks are presented.

The main focus of research into combining mathematical reasoning

systems has mainly been on how to solve problems while limiting user

involvement. If users were involved, it was either as a last resort when a

proof or a computation was stuck, or for driving interactive proofs, for

example in proof assistants, where the user makes the main decisions on

137

how a problem is solved while the system only verifies the validity of

steps. In contrast, there has been little study into how automated system

components and user interaction can be integrated to mutually support

each other in developing problem solutions.

We present a novel system combination that aims at actively working

with the user, by computing and presenting results in a fashion that

allows the user to obtain valuable insights into the structure of solutions

and to guide computations via providing feedback. This human

inspection of intermediate results allows the user to explore the

knowledge that can help in finding results in infinite domains. The main

goal is to give a working mathematician experimental support for the

discovery of non-trivial theorems.

We exemplify the methodology with the domain of generalized

Kuratowski problems that has originally motivated its development.

While these problems are regular classification problems, the main

difference to those presented for example in [CMSM04, DSS11] is that

the number of classes that have to be considered is not necessarily finite.

However, they can be tackled in our framework by a suitable

reformulation into a graph rewriting problem and by combining a number

of different reasoning techniques. In particular, we have combined a

bespoke, parametrisable term rewriting system with off-the-shelf tools for

graph reduction and visualization. This resulted in a semi-automatic

procedure that enabled incremental graph generation and inspection

which enables user adaptation of the search for the solution.

Finite solutions can be automatically verified with the scientific data

analysis tool Octave [Eat08], while the existence of infinite ones need to

be proved manually, once a significant pattern in the solutions can be

discovered. As a result of our experiments, we were able to prove a

138

Figure 11.1: Methodology

number of novel classification theorems from the Kuratowski problem

domain.

11.1 Methodology

We now present our methodology that aims at integrating meaningful

user decisions into iterative automated mathematical problem solving.

The main emphasis is that the process should be neither purely

automatic nor driven by a user that is just describing a known solution,

as in an interactive proof assistant. Instead, we view both automatic

component and user as active partners in a symbiotic collaboration. As

139

one of the results of the methodological view, we obtain a requirement

specification for the formulation of problems that can be considered.

Fig. 11.1 presents the methodology abstractly in a use case notation.

The user defines the problem in terms of this methodology, and feeds the

definition to the partial solver, which in turn feeds the partial solution to

a presentation tool in order to transform the partial results into a format

that allows the user to inspect the state of the solution and, depending

on the outcome, to adjust the systems accordingly. Eventually, the user

gets satisfied and conjectures what a solution to the problem is. This

could be a partial solution that is thought to be a real solution or it

could be an extension of a partial solution suggested by user inspection.

The next step is to prove that the conjectured solution is valid. When

the conjectured solution is finite, the proof can be done automatically

by testing if the solution has the expected properties. Otherwise, if the

conjectured solution is infinite, the user normally has to do the proof by

hand. Obviously, if a verification or proof attempt fails, the interaction

loop can be resumed to look for the next potential solution.

Note that the components in Fig. 11.1 themselves can hide complex

processes. In particular, they can contain anything from single, bespoke

algorithms, over simple tools to filter or transform problems, to more

complex tools like theorem provers or computer algebra systems, as well

as entire system combinations themselves. Furthermore, there is in

principle no limitations to additional interactions between integrated

systems, for example, results of the presentation could automatically be

fed back into the partial solver.

Clearly, the core of the methodology is the Iterative Approximation

triangle, that serves as the main feedback loop, where user interactions

can be essential in steering the solution process. To facilitate a symbiotic

140

collaboration between the user and the partial solver, the presentation of

partial results plays a crucial role. It helps the user to comprehend the

problem and its properties, as well as interim results, to eventually either

guide the solver or the user towards a solution. For example, when

dealing with a classification problem, that has many thousands of

equivalence classes, and it is unknown whether the problem is finite,

presenting results as a graph is more useful to the user than having to go

through text. The additional possibility to focus on or hide parts of the

graph is also crucial to understand the graph structure.

Our methodological view has four distinct requirements on problem

formulation. It should be:

(1) Parameterisable: The chosen reasoning technique for the partial

solver must not only allow for changes in the initial problem

definition, but also for parametrization in between producing partial

solutions. These parametrizations can require :

(i) the inclusion of new definitions derived from partial results,

(ii) the restriction of the generation of partial solutions with

respect to a specific feature,

(iii) the production of partial solutions with varying methods, and

(iv) the generation of partial solutions for different sub-problems.

(2) Iterative: A problem can be decomposed into a sequence of partial

solutions. These should be meaningful, in the sense that each

iteration represents a coherent and complete step. This is essential

to enable user comprehension and thus interaction. Nevertheless,

partial solutions can be focused towards certain features of the

problem, only expanding further those features that are interesting

141

and could lead to a solution. This can be achieved by parametrising

the partial solver.

(3) Approximable: The iteration of partial solutions should always

lead towards a final solution of the problem; that is, it never

stagnates or even leads away from the solution. This requirement is

particularly helpful when a solution of a classification problem is

infinite.

(4) Presentable: The presentability of partial solutions is a central

feature of our methodology, and crucial for successful inclusion into

the problem solving process. In particular, dealing with large

amounts of data is a tedious task, which can hide the most

interesting features that can actually lead to the solution.

Consequently, care has to be taken to choose an adequate

presentation of partial results and ensure their computation.

11.2 Implementation Details

We have solved the generalized Kuratowski problems by integrating a

number of different systems following the methodology from Section 11.1.

Figure 11.2 presents the configuration of systems for the interactive loop

and the validation of solutions. Our approach uses a combination of a

bespoke, parametrisable term rewriting system with off-the-shelf tools for

graph reduction and visualization that are defined as follows:

• Term Rewriting System (TRS): has been written in pure OCaml

using a graph data structure at its core. The

connected-components algorithm exploits the ocamlgraph

library [CFS08] instantiated with an ad-hoc, optimized, hashing

function for equivalence classes of combinations. The TRS is fully

142

Octave

Graph

Transitive

Reduced

Feedback

Manual Proof

Infinite Solution? Finite Solution?

Parameterise

Directed Graph

Visualised Graph

Ghostview

Tred

Dot

System (Ocaml)
Term Rewriting

(User)

Figure 11.2: System setup for experiments in the Kuratowski problem
domain.

parametric not only on the list of reduction rules, but also with

respect to the words of S (i.e., the combination of operators) it

generates.

• tred: is a tool in the graphviz library [Gra] to transitively reduce

directed graphs. It is applied for graph optimization on the

approximation graphs produced by the TRS in each iteration. Its

results are not only important for the graph presentation but can

also be fed back into the TRS to reduce the size of the inference

problem.

• dot: is another tool in the graphviz library that draws suitably

presented graphs in PostScript. This enables the visualization of

the output of Tred.

143

• User: The visualization of the approximation graph can be

examined by the user, for example directly using a viewer like

Ghostview or, given the potential very large size of some of the

graphs, further processed to zoom in and examine interesting areas.

• Octave: is a scientific data analysis tool [Eat08], very similar to

Matlab but freely available. Octave is employed when the

approximating solutions seem to have stabilized, i.e. when the

(n+1)th approximation is equal to the nth approximation. A

detailed verification of the results with Octave is presented in

Section 11.3.

The rewrite engine is implemented from scratch, allowing us to take care

of the peculiarities of the rewriting system, e.g., by exploiting as much as

possible tail recursive calls. This approach allows us to generate graph

representations that are manually inspected and help in the generation of

elements in S in order to explore particular subgraphs, which, to the best

of our knowledge, is difficult to achieve in any existing system.

Furthermore, our implementation allows us to be careful with memory

consumption. Nevertheless, when supplying the rewrite engine with the

rules of the advanced rewriting system, the program runs out of memory

after about 12 minutes on one of the cores of a server equipped with a

2.4GHz Intel Xeon processor and 48GB of RAM producing an

approximating graph of order 16. That essentially means that it explores

all words generated by the regular expression given in Section 10.2 of

length at most 16, deriving all equations and inequalities that are

provable without using combinations of length ≥ 17. The initial graph

generated by the rewriting system contains 1, 771, 825 vertices,

corresponding to all the combinations of length up to ≡16, and 8, 687, 605

arcs, corresponding to steps of the ≤n relation. The approximating

144

graph obtained after the computation of the strongly connected

components contains 44, 138 vertices, corresponding to distinct

equivalence classes. We are not able to compute the number of arcs in

the transitively reduced graph as the tred tool does not terminate

within a 2 hour time-limit and memory limit for approximating graphs of

order greater than 12. Note that tred has been run in separate threads

of the computations of our rewrite system.

11.3 Verification

We use a model verification technique that employs Octave to verify the

results. Octave is a scientific data analysis tool [Eat08], very similar to

Matlab, but freely available. An automated theorem prover could also be

used, but we preferred writing our independent code.

We employ Octave when the approximating solutions seem to have

stabilized, i.e. when the (n+1)th approximation is equal to the nth

approximation. This indicates to us that a finite solution could have

been found, i.e. a conjecture of the fact that the (n+m)th

approximation is equal to the nth approximation for every m. Since we

cannot test the conjecture on every m, therefore, we employ a model

verification technique as an alternative that is described below.

Let us assume that at a certain point the approximations seem to

stabilize. We build a syntactic model of the solution by first taking the

set P of all strings w that is made from {i, c,−} such that w is a

canonical representative of an equivalence class in the nth approximation.

Then we define a ≤ relation over P by taking the ≤n relation. The i, c

and − operators are obtained as finite maps that associate to each

w ∈ P the canonical representative of i ◦ w (respective c ◦ w and − ◦ w)

in the nth approximation. We are now left with the problem of verifying

145

if (P,≤, i, c,−) is a model for the problem, i.e. if all the axioms hold for

(P,≤, i, c,−). If they do, the nth approximation is isomorphic to the

solution of the generalized problem. Otherwise, we start computing

larger approximations and, if the problem has an infinite solution, we

will eventually find an (n+m)th approximation that is not isomorphic to

the nth approximation that, a posteriori, was not stable.

This model verification technique has an important characteristic in that

it allows a partial independent verification of the solution. Indeed, the

parametrized partial solver at the base of our methodology is user fed

and likely to be a complex piece of software that employs optimizations

and heuristics. Complex optimizations are likely to introduce bugs and

the additional rules that are introduced by the user to speed up the

process and narrow down the problem domain are also prone to errors. A

failed independent verification, even if partial, could hint at errors in the

partial solver or its instantiation.

For the sake of independent verification, as well as for performance

concerns, minimization of the implementation effort and maximization of

confidence in the results, we decided to avoid implementing our own

verifier. Instead we have described (P,≤, i, c,−) as a set of matrices and

we have used Octave to verify that all axioms hold after rephrasing them

as properties on the matrices. We now describe the details of the

verification process. Let n be the cardinality of P and let {w1, . . . , wn}

be a canonical enumeration of P . The relation ≤ is represented as the

n× n boolean matrix ≤ such that ≤ (i, j) = 1 iff wi ≤ wj. Similarly,

every function f ∈ {c, i,−} is assumed as a relation (a subset of P × P)

and represented by the n× n boolean matrix f such that f(i, j) = 1 iff

f(wi) = wj.

Finally, the axioms given in Table 9.1 and Figure 10.1 are re-phrased in

146

(reflexive)
all(diag(leq) == 1)

(functional-m)
all(all(m ∗ ones(size(m)) == 1))

(transitive)
all(all(leq == (leq ∗ leq != 0)))

(anti-monotone)
all(all(leq′ <= m ∗ leq ∗m′))

(anti-symmetric)
all(all(leq .∗ leq′ == eye(size(leq))))

(saturates)
all(diag(leq ∗m′ ∗m′ == 1))

(quasi-idempotent)
all(all(m == m ∗m ∗m))

(functional-i)
all(all(i ∗ ones(size(i)) == 1))

(functional-c)
all(all(c ∗ ones(size(c)) == 1))

(reduces)
all(diag(i ∗ leq) == 1)

(saturates)
all(diag(leq ∗ c′) == 1)

(monotone-i)
all(all(leq <= i ∗ leq ∗ i′))

(monotone-c)
all(all(leq <= c ∗ leq ∗ c′))

(idempotent-c)
all(all(c == c ∗ c))

(idempotent-i)
all(all(i == i ∗ i))

(compatible-1)
all(diag(m ∗ c ∗ leq ∗m′ ∗ i′ == 1))

(compatible-2)
all(diag(m ∗ i ∗ leq ∗m′ ∗ c′ == 1))

(axiom-1)
all(diag(m ∗m ∗ leq == 1))

(axiom-2)
all(diag(i ∗m ∗ leq ∗ c′ ∗m′ == 1))

(axiom-3)
all(diag(c ∗m ∗ leq ∗ i′ ∗m′ == 1))

(axiom-4)
all(all(m ∗m ∗ c == c ∗m ∗m))

(axiom-5)
all(all(c == m ∗ i ∗m))

Table 11.1: Axioms for the matrix representation of (P,≤, c, i,−).

Table 11.1 to apply on the matrix representation. The axioms in

Table 11.1 are given in Octave syntax. To avoid clashes with Octave

operators, the matrices for (≤, c, i,−) are called respectively (leq, c, i,m).

The other Octave commands used are:

• A′ for the transpose of the matrix A;

• ∗ for matrix multiplication;

• .∗ for element-by-element matrix multiplication;

• ==, <= and != for element-by-element equality, inequality and

147

dis-equality tests;

• diag(A) to return the diagonal of the matrix A;

• eye(n) to return an identity n× n matrix;

• size(A) to return the size n of the n× n matrix;

• all(A) where A is a boolean matrix to return a row vector of ones

and zeros with each element indicating whether all the elements of

the corresponding column of the matrix are ones;

• all(v) where v is a row vector to check if all element are ones.

The only new axioms with respect to Table 9.1 and Figure 10.1 are the

functional-f axioms that for each f ∈ {c, i,−} check that the f

relation is actually a function. The reader should convince himself that

all other matrix expressions yield 1 (where 0=(false) and 1=(true)) iff

the corresponding old axiom holds.

As an example, we show here how to prove that compatible-1 for

matrices is equivalent to the original formulation. Suppose that

all(diag(m ∗ c ∗ leq ∗m′ ∗ i′ == 1)) yields 1. Then for all j it must be

(m ∗ c ∗ leq ∗m′ ∗ i′)(j, j) = 1. If F and G are boolean matrices that

encode functions as relations, matrix multiplication F ∗G encodes the

composed relation G ◦ F . Indeed (F ∗G)(j, l) = ΣhF (j, h) ∗G(h, l)

where F (j, h) = 1 iff F (j) = h and G(h, l) = 1 iff G(h) = G(F (j)) = l.

Moreover, matrix transposition encodes the inverse function. Thus m ∗ c

encodes c ◦m and m′ ∗ i′ encodes (m ◦ i)−1. Thus

(m ∗ c ∗ leq ∗m′ ∗ i′)(j, j) = 1 iff there exists two necessarily unique h and

l such that (m ∗ c)(i, h) = 1 and leq(h, l) = 1 and (m′ ∗ i′)(l, j) = 1 i.e. iff

there exists two necessarily unique h and l such that c(m(j)) = h and

h ≤ l and m(i(j)) = l, i.e. iff c(m(j)) ≤ m(i(j)).

148

Obviously, if the classification is infinite, we have to show that the

approximating graphs grow infinitely large. It is actually sufficient to

spot in the growing approximations an infinite, regular enough growing

sub-graph and show that it grows infinitely. In a sense, this is the most

challenging part of the problem. We will discuss how we achieved this

using graph inspection in the next section.

11.4 Results

The chaotic nature of the resulting graph does not help very much in

finding any simple description of either the set of equivalence classes or

the elements of most of the equivalence classes. Nevertheless, the manual

inspection of the generated graph has allowed us to spot sufficient

regularity to solve the problem by showing that the number of

equivalence classes is infinite. In fact, all the equivalence classes whose

representatives are generated by the following regular expression are

distinct: c?(−−c)∗(−−)?. Moreover, each one is less than or equal to

every other class generated by a longer representative (e.g.

−−c ≤ −−c−−) and they are all bounded by −i−, which is also

distinct from them and is the minimum i.e. least element of the lattice.

Figure 11.3 contains a clipping of the approximating graph of order 12

for the generalized problem visualized with the dot tool. The clip

contains the approximation of the infinite subgraph with elements of the

c?(−−c)∗(−−)?, together with some surrounding nodes. The outgoing

arc at the bottom leads to the bottom element of the graph, −i−, that is

not visible. It is obvious to see that the entire subgraph

(i) has only one outgoing arc to the bottom element,

(ii) contains fewer elements than all elements in the remainder of the

149

Figure 11.3: Infinite subgraph for the generalized problem.

graph, and

(iii) grows downwards with increasing word length.

We now give the proof of the formal argument that leads to the above

result using our rewriting formalism.

Proof:

Firstly, to demonstrate that the equivalence classes generated by the

regular expression r = c?(−−c)∗(−−)? indeed constitute an increasing

sequence w.r.t. ≤, we let 〈w1, w2,≥〉 be any configuration such that

w2 6= ε and w1 and w1w2 are generated by r.

Induction Hypothesis: If 〈w1, w2,≥〉B∗ w then w is generated by r

and is shorter. The argument is by induction over the length |w2|:

1. Suppose w2 starts with c or with −−. Then either one of the

saturates rules is applicable, resulting in a shorter expression.

150

2. Suppose w2 starts with c and monotone is applicable. Thus w2 is

shorter and we can apply the induction hypothesis.

3. Suppose w2 starts with − and antimonotone is applicable. The

new configuration is 〈w1−,−w′2,≤〉. The only applicable rule is

now antimonotone again and we can conclude using the induction

hypothesis.

Similarly, for the base case we can show that −i− is indeed the bottom

element i.e. least element: Let 〈w1, w2,≥〉 be any configuration such that

w2 6= ε and w1 and w1w2 are generated by r. If 〈w1, w2,≤〉B∗ w then w

is in the same class as −i−. Again by induction over |w2| we can show:

1. Suppose w2 starts with c−− with compatible-1 we get

w1−i−w2 = −i−.

2. Suppose w2 starts with c, then monotone is applicable and we can

apply the induction hypothesis.

3. Suppose w2 starts with − then antimonotone is applicable. The

new configuration is 〈w1−,−w′2,≤〉. The only applicable rule is

now again antimonotone and we can conclude using the induction

hypothesis.

We have applied our implementation to other problems in the domain

that are introduced in Chapter 10. This has enabled us to verify the

results known from the literature of 14 and 21 combinations in the

classic and localic case, respectively. For the remaining problems we have

obtained a mixed picture of both finite and infinite cases.

Table 11.2 lists the approximating graphs from order 14 to 16 for the

infinite cases in terms of vertices and arcs as well as infinite subgraphs

151

Axiom set
Order 14 Order 15 Order 16 Infinite

Classes Arcs Classes Arcs Classes Arcs subgraph
∅ 10439 ? 16869 ? 27315 ? (−− c)∗
{2} 135 269 142 285 149 299 (−− ci)∗
{3} 135 269 142 285 149 299 (−− ic)∗
{4} 278 640 283 649 288 660 (−− ici)∗

Table 11.2: Approximating graph for all the variants that do not stabilize.

identified. Again, no arc count could be computed for the general case

due to non-termination of tred.

Up to this point, we have proved formally only the infinite subgraph of

the general case. Whilst adding axiom 2 or 3 or 4 only, the

approximating graphs also continue to grow, the infinite subgraph that

we spotted in the general case collapses to a finite one as the equation

c−− = −−c forces all combinations generated by the regular expression

c?(−−c)∗(−−)? into less than four classes. Consequently, the argument

we have used to show that the general case is infinite no longer holds.

Thus the formal proof for these cases is still outstanding.

For the remaining problem variants, the approximating graphs stabilize.

The exact figures for the graphs are given in Table 11.3. Axiom sets

{1, 2, 3} and {2, 3} are the classical and localic cases from the literature

and we can observe that in our system their approximating graphs

stabilize after only a few iterations. Similarly, for the axiom combinations

{2, 4} and {3, 4}, the set of equivalence classes stabilizes quickly at 35

classes after 8 iterations. Finally, when adding axiom 1 alone we get a

Axiom set Classes Arcs Stabilising Iteration
{1} 126 268 13
{1, 2, 3} 14 16 4
{2, 3} 21 31 5
{2, 4} 35 57 8
{3, 4} 35 57 8

Table 11.3: Approximating graphs for all variants that stabilize.

152

stable approximation after 13 iterations with 126 classes. The

correctness of these cases, is verified using the Octave tool to check the

axioms on the syntactic model generated from the stabilized solutions.

11.5 Concluding Remarks

We have presented a methodology that provides a framework for

symbiotic collaboration between a user and a problem solver. We have

motivated the need for an adequate problem formulation that enables

iterative inspections of partial solutions for the user to steer the overall

process. This methodology is particularly effective if solutions are infinite

or computationally intractable to solve automatically. Indeed it has

helped us to solve a number of open problems in the generalized

Kuratowski problem domain, using a specialist term rewriting system

together with a number of off-the-shelf tools.

The approach is capable of showing several million lemmas about

relations between combinations of operators, which has allowed us to

iteratively approximate the solution to the problem. The resulting graph

exhibited enough regularity to enable us to show that the solution space

of the problem is infinite, thereby successfully closing the problem. A

posteriori, the proof that the number of combinations is infinite was

relatively easy and the infinite set of distinct combinations is generated

by a simple regular expression. Nevertheless, the problem has remained

open for more than nine years, and the clutter in the rest of the graph

made it difficult to spot the infinite subgraph.

From a mathematical point of view, the result is quite interesting. It

shows that the generalization to a saturation operator partially

independent from the reduction operator greatly adds to the expressive

power of the system. This is one of the main intuitions at the base of the

153

Basic Picture of Sambin [Sam12], a complete re-formulation of point-wise

and point-free topology that is deeply rooted in intuitionistic and

predicative logic.

154

Part IV

Conclusions

156

CHAPTER 12

CONTRIBUTIONS

We have presented our approaches to solve complex mathematical

problems having finite and infinite solutions by exploring the domain

knowledge by combining various systems for solution generation. Our

first approach combines symbolic computations and automated theorem

proving to automatically explore the structural information of small size

finite algebraic structures. This automated exploration helps in

discovering knowledge that when as given as input pushes the boundaries

of model generation systems to compute large size examples of finite

algebraic structures. Our second approach of system combination

actively involves the user to perform inspection of the graphical results

to gain valuable insights into the structure of the solutions and provide

useful feedback to guide the computation and produce results in infinite

domains.

In this thesis, we have addressed the hypotheses presented in Chapter 1

as follows:

• We have used the combination of diverse automated reasoning

techniques and other mathematical software tools to push the

boundaries of mathematical discovery by generating and

structuring additional knowledge in sufficiently diverse domains.

157

We have demonstrated this by the formation of a combined

reasoning system that is more powerful compared to using a

stand-alone system.

• We have used automated theory exploration in the finite discrete

domain of quasigroups via symbolic computations and automated

theorem proving to pre-compute additional knowledge that has

enabled us to generate solutions for large size examples of

quasigroups with interesting properties that were previously not

possible to generate.

• We have exploited the structural knowledge by using diverse

systems such as a specialist term rewriting system and

visualization tools where active involvement of the user is a

necessity to approximate infinite solutions for the generalization of

Kuratowski closure-complement problems to point free topology

that had remained open for several years.

The remainder of this chapter reviews, in more detail, the contributions

of this thesis.

12.1 Combining Systems to Solve Complex

Mathematical Problems

In our work, we have combined disparate reasoning techniques and other

mathematical software tools for solving complex mathematical problems.

In Chapter 7, we have seen a description of a model that combines

various systems for pre-computing additional constraints according to

our techniques presented in Chapter 6. It integrates a mix of bespoke

algorithms we have implemented and off the shelf tools. Furthermore, in

Chapter 11 we have seen a novel approach of combining systems where

158

automated system components and user interaction are integrated to

mutually support each other in developing solutions to the problems.

The user is actively involved in the inspection of the structure of

solutions to discover knowledge and provide useful feedback into the

system combination. In Chapter 11, we have seen the diagrammatic

experimental set up of the system combination and present the various

components used such as the specialist term rewriting system, graph

algorithms, visualization tools and verification tool.

12.2 Automated Theory Exploration for

Computing Large Size Examples in

Finite Domain

One of the aims of our research was to explore the structural domain

knowledge of small size algebraic structures to aid in the computation of

large size structures in finite algebras. For this exploration, we have

primarily focused on quasigroups. Chapter 4 gives a detailed background

on quasigroups. Chapter 6 defines our two novel techniques for

pre-computing elements where we evolve a set of elements using two

filters, firstly by symbolic verification and secondly by automated

theorem proving. Furthermore, in Chapter 6, we also defined some

implied constraints which were computed in [CM01, CCM06]. We

extended their work by encoding the quasigroup model generation

problem with the additional constraints for a number of quasigroup

properties and perform the final model generation using different

automated reasoning tools.

In chapter 7, we have performed a comparative analysis of three main

types of automated reasoning tools for the final model generation of large

159

size quasigroups structures, i.e. a constraint solver, a satisfiability solver

and a model generator.

12.3 Approximating Solutions in Infinite

Domains

We have studied the generalized version of Kuratowski’s classical

closure-complement problem from a point-set topology perspective. We

have defined the problem in detail in Chapter 9. The problem had

remained open for several years. To solve the problem, we have used a

computational procedure that combines a term rewriting system with

bespoke graph algorithms which is described in detail in Chapter 10.

The resulting graph exhibited enough regularity to enable us to show

that the solution space of the problem is infinite, thereby successfully

closing the problem. From the mathematical point of view, the result is

quite interesting as it shows that the generalization to a saturation

operator partially independent from the reduction operator greatly adds

to the expressive power of the system.

We have demonstrated through our work that combination of different

reasoning systems where the user acts as a component within the system

is very useful in solving complex mathematical problems. This active

involvement of the user has helped us to discover new knowledge that

enabled us to narrow down the search and compute solutions of greater

magnitude. This novel approach of combining the user and reasoning

systems could be applied to solve other complex mathematical problems

where intermediate solution models can be computed and inspected by

the user.

160

CHAPTER 13

FUTURE WORK

The work in this thesis has allowed us to propose a number of future

directions which are discussed in this chapter.

13.1 Framework for Experimental

Mathematics

Several environments and formalisms have been proposed previously for

the combination and integration of mathematical software systems. Most

of these systems follow a traditional automated theorem proving

approach, in which a given conjecture is to be proved or refuted by the

cooperation of different reasoning engines. However, there is a lack of

support for experimental mathematics in which new conjectures can be

constructed by an interleaved process of model computation, model

inspection, property conjecture and verification using state-of-the-art

symbolic reasoning systems.

One interesting future direction would be to create an experimental

symbolic mathematics framework to create an environment that will

enable a user to:

(i) provide high-level specification of experiments by combining

161

systems,

(ii) run experiments and inspect (intermediate) results,

(iii) re-use set-ups and results as parts of other systems,

(iv) generate efficient stand-alone systems from a specification.

13.2 Decomposition Techniques

Techniques to compose larger structures from smaller ones exist in most

algebraic domains; for example in group theory, direct sums, semi-direct

products, wreath products, etc. can be used to construct larger groups

from smaller ones and it can be shown that these constructions either

preserve or induce certain properties in the larger group. While some

composition techniques, like direct sums, also exist for quasigroup and

loop theory, their impact on modularising classifications is very limited

due to exponential increase of numbers of structures for larger sizes.

One interesting future direction will be to develop novel theory formation

techniques to use given examples of small algebraic structures to find

compositions for larger ones that preserve properties. For example,

computing all substructures for large size bilattice models [Fit90a] is a

computationally intensive task and novel algorithms that use composition

techniques to compute larger substructures from smaller ones can reduce

the search space by decreasing the amount of computations needed.

Some basic definitions that pertain to bilattices are given as follows:

Definition 13.2.1 A pre-bilattice is a structure B = (B,≤t,≤k), such

that B is a set containing at least two elements, and (B,≤t), (B,≤k) are

complete lattices.

A negation of B is a unary operation ¬ on B satisfying the following

properties: (1) ¬¬x = x (2) if x ≤t y then x ≥t y, (3) if x ≤k y then

162

¬x ≤k ¬y.

Definition 13.2.2 A bilattice is a structure B = (B,≤t,≤k,¬), such

that (B,≤t,≤k) is a pre-bilattice with a negation ¬.

As a result, one would not only gain additional computational methods

for composing substructures, but also theoretical insights into additional

ways of how to decompose large substructures into smaller ones.

Generation of such substructures can help in finding counter models for

certain construction theories for bilattices in order to prove that they are

not correct. These would on the one hand be valuable results in their

own right and on the other hand could also be exploited by automated

reasoning techniques for example to further simplify proofs.

13.3 Other Generalizations of Kuratowski

Problem

The generalized version of the Kuratowski’s classical closure-complement

problem from point-set topology is not the only possible generalization.

One possible future direction is to investigate other typical examples of

generalizations that can be obtained by considering other topological or

set theoretical operators like union or intersection. Variations on the

original problem and applications of the classification to the

characterization of properties of subsets of a topological space can be

found in [GJ08] that also contains a large bibliography on variants and

applications of the problem. [WY00] shows that in locale theory there

are exactly 21 different combinations. In our study, we have mapped out

a landscape of generalized problems that lie between the finite classical

and localic cases, where results were previously known, and the infinite

generalized case, which is a new result. Also, formal proofs for the

163

generalized case with additional axiom 2 or 3 or 4 only given in

Chapter 11 are still outstanding and further investigation is need for

these cases. The results from our work demonstrate that our approach

scales well to all the generalizations mentioned earlier. Indeed, the

system we have implemented is fully parametric on the list of reduction

rules of the advanced rewriting system. Furthermore, the computation of

the Knuth-Bendix like completion that we perform manually could be

easily automated.

164

APPENDIX A

EXPERIMENTAL RESULTS FOR
QUASIGROUPS

This appendix presents the results of the experiments we have performed

in the finite domain of quasigroups. The experiments were performed to

evaluate the different techniques we have used with model generator

(Mace4), constraint solver (Minion) and SAT solvers (MiniSat and

zChaff) with a time limit of 2 hours for the generation of each

quasigroup. The tables present the following information:

(i) A standard comparison of systems for generating quasigroups with

two-variable properties is presented in Table A.1.

(ii) A comparison of systems using our element pre-computation

approaches is presented in Table A.2.

(iii) A comparison of systems using implied constraints is presented in

Tables A.3, A.4, A.5, A.6, A.7, A.8, and A.9.

In all of the tables presented in this appendix, times are represented in

seconds.

165

Property Size mace4 minion minisat zchaff
time [s] time [s] time [s] time [s]

Qg-1

4 0.01 0.45 0.001 0.00
8 2.07 2.47 0.02 0.30
9 0.64 1.02 0.04 0.034
12 − − 265.55 4535.47
13 − 23.71 − −

Qg-2

4 0.01 0.24 0.00 0.00
5 0.01 0.24 0.002 0.00
8 0.13 134.53 0.01 0.02
9 0.01 1146.73 0.11 0.37
12 10.76 − 171.29 −
13 317.03 − 2229.24 −

Qg-3

3 0.01 0.24 0.00 0.00
4 0.01 0.25 0.00 0.00
7 1.73 0.28 0.00 0.03
9 0.99 0.28 0.00 0.00
10 − − 141.77 215.93
12 − 48.67 2886.82 −

Qg-4

4 0.01 0.55 0.00 0.00
5 0.01 0.24 0.00 0.00
9 0.02 0.25 0.02 0.017
11 6.53 0.67 0.08 0.19
13 0.01 0.38 2.39 13.01
16 0.08 814.76 28.91 103.77
17 0.07 20.51 7.43 132.36
20 − − 393.40 −
21 − − 248.81 −

Qg-5

3 0.01 0.24 0.00 0.00
4 0.01 0.25 0.00 0.00
5 0.01 0.26 0.00 0.00
7 0.70 0.35 0.00 0.00
8 92.22 1.83 0.00 0.07
9 0.31 0.26 0.00 0.00
11 − − 0.33 6.68
12 − − 0.34 12.03
13 − − 1347.78 −
15 − − 44.94 594.76
16 − − 2912.9 3.39
17 − − 6410.52 −

Qg-6

5 0.00 0.25 0.00 0.00
9 72.41 78.67 0.03 0.08
13 − − 0.13 1.44
17 − − − 5994.71

Qg-7

4 0.01 0.25 0.00 0.00
8 0.02 0.28 0.00 0.00
9 0.06 0.56 0.00 0.00
13 0.75 0.29 0.08 0.59
16 − − 10.05 171.63

Table A.1: Quasigroups found for particular properties using different
systems.

166

P
S

E
n

c
o
d

in
g

1
E

n
c
o
d

in
g

2
E

n
c
o
d

in
g

3
n

n
+
⌈ n 2

⌉
n
+
⌈ n 2

⌉
m

a
c
e
4

m
in

io
n

m
in

is
a
t

z
ch

a
ff

m
a
c
e
4

m
in

io
n

m
in

is
a
t

z
ch

a
ff

m
a
c
e
4

m
in

io
n

m
in

is
a
t

z
ch

a
ff

m
a
c
e
4

m
in

io
n

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

ti
m
e
[s
]

Q
g
-1

4
0.
01

0
.2
4

0.
00
2

0
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

8
−

−
−

−
n
/
a

n
/
a

n
/
a

n
/
a

0.
0
2

5
3
.8
0

0
.0
17

0.
0
2
6

n
/
a

n
/
a

9
0.
03

0
.4
7

0.
01

0.
01
7

n
/
a

n
/
a

n
/
a

n
/
a

0.
4
9

3
3
.2
8

0
.0
1

0.
0
0
5

n
/
a

n
/
a

12
29
3
.0
2

−
−

−
−

−
−

−
−

−
−

−
1
0
4
1.
4
5
−

13
11
33
.5
4
−

86
5
.9
4

−
−

−
−

−
−

−
−

−
−

−

Q
g
-2

5
0.
01

0
.2
5

0.
00
1

0
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

8
0.
01

0
.2
9

0.
00
6

0.
00
1

n
/
a

n
/
a

n
/
a

n
/
a

0.
0
8

3
3
.2
8

−
0.
0
1
4

n
/
a

n
/
a

9
−

−
−

−
n
/
a

n
/
a

n
/
a

n
/
a

0.
2
4

2
5
.6
6

−
0.
3
2

n
/
a

n
/
a

12
38
7
.0
0

33
32

.4
7

38
.1
0

44
3
.2
9

3
5
8
.5
7

3
8
9
9.
2
9

7.
3
1

2
7
0
.4
3

7
3.
5
1

−
5
0
.8
3

1.
3
9

1
5
.6
4

−
13

36
9
.5
4

−
75
2
.0
7

32
37
.4
7

4
1
5
3
.0
2
−

1
2
8
1.
8

−
5
9
8
7.
1
3
−

2
2
2
.8
4

−
1
2
5
.8
8

−
16
−

−
−

−
−

−
−

−
−

−
−

−
3
4
0
8.
9
2
−

Q
g
-3

3
0.
01

−
0.
00
3

0
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

4
0.
01

0
.2
4

0.
00
4

0
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

7
0.
01

0
.2
5

0.
00
3

0.
00
2

n
/
a

n
/
a

n
/
a

n
/
a

0.
0
2

0.
2
6

−
0.
0
0
1

n
/
a

n
/
a

9
0.
10

0
.2
6

0.
00
9

0.
04
5

n
/
a

n
/
a

n
/
a

n
/
a

9
6.
3
9

4.
0
3

−
0.
0
0
2

n
/
a

n
/
a

10
1.
03

57
.6
9

1.
26

2.
55

0
.6
7

6.
5
4

1.
2
0

0
.5
7

7
1.
7
9

3
6
1
.9
2

−
1
4.
9
1

0.
2
2

0
.5
3

12
50
9
.2
4

65
47

.0
2

71
.3

35
5
.1
8

1
0
3
.6
5

1
6
3
0.
7
6

2
3
.7
3

−
2
8
6
.8
3

4
9
.3
2

6
3
.8
8

1
5
7
5.
0
8

2
0
.1
0

1
5
7
.6
4

13
20
64
.9
0
−

−
−

−
−

−
3
2
3
3
.3

1
1
9
9.
6
5
−

4
1
5
.4
1

1
3
9
6.
2

2
4
7
.5
1

−

Q
g
-4

4
0.
01

0
.2
6

0.
00
2

−
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

5
0.
00

0
.2
5

0
0.
00
1

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

9
−

−
−

−
n
/
a

n
/
a

n
/
a

n
/
a

0.
0
1

7.
1
3

0
.0
22

0.
0
0
5

n
/
a

n
/
a

11
−

−
−

−
−

−
−

−
0.
0
1

7.
1
3

−
0.
0
2

−
−

19
−

−
−

−
−

−
−

−
−

−
−

1
0
1
6.
3
6
−

−

Q
g
-5

3
0.
01

0
.2
5

0.
00
2

0
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

4
0.
01

0
.2
6

0
0

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

5
0.
01

0
.2
4

0.
00
1

0
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

8
−

−
−

−
n
/
a

n
/
a

n
/
a

n
/
a

0.
0
1

−
0
.0
05

0.
0
0
2

n
/
a

n
/
a

Q
g
-6

5
0.
01

0
.2
4

0.
00
2

0
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

9
−

−
−

−
n
/
a

n
/
a

n
/
a

n
/
a

0.
0
2

1.
0
3

−
−

n
/
a

n
/
a

Q
g
-7

4
−

0
.2
5

0.
00
2

0
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

7
−

−
−

−
n
/
a

n
/
a

n
/
a

n
/
a

0.
0
1

−
−

−
n
/
a

n
/
a

8
−

−
−

−
n
/
a

n
/
a

n
/
a

n
/
a

−
3.
5
6

−
0.
0
0
1

n
/
a

n
/
a

16
−

−
−

−
−

−
−

−
−

−
−

4
8.
1
6

−
−

T
ab

le
A

.2
:

Q
u
as

ig
ro

u
p
s

fo
u
n
d

fo
r

p
ro

p
er

ti
es

(P
)

of
si

ze
s

(S
)

w
it

h
al

ge
b
ra

ic
p
re

-c
om

p
u
ta

ti
on

s.

167

Qg-1

Size Systems C1 C2 C3 C4 C5

time [s] time [s] time [s] time [s] time [s]

4

mace4 0.00 0.01 0.00 0.01 0.00
minion 0.24 0.25 0.25 0.26 0.27
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 0.00 0.001 0.00

8

mace4 2.07 0.34 0.01 2.04 0.01
minion 1.49 1.49 1.49 1.49 0.41
minisat 0.01 0.00 0.01 0.00 0.00
zchaff 0.09 0.11 0.01 0.04 0.02

9

mace4 0.64 45.06 0.07 0.60 −
minion 0.63 0.63 0.64 0.63 −
minisat 0.01 0.02 0.01 0.03 −
zchaff 0.04 0.18 0.15 0.01 −

12

mace4 − − 4788.10 − 821.16
minion − − − − −
minisat − 899.92 1158.99 2552.18 239.92
zchaff − − − 6535.26 −

13

mace4 − − − − 55.85
minion 9.51 9.99 9.51 9.51 32.26
minisat − 3187.06 6279.92 5203.53 −
zchaff − − − − −

Table A.3: QG-1 quasigroups found using implied constraints.

168

Qg-2

Size Systems C1 C2 C3 C4 C5

time [s] time [s] time [s] time [s] time [s]

4

mace4 0.01 0.01 0.01 − −
minion 0.25 0.25 0.25 − −
minisat 0.00 0.00 0.00 − −
zchaff 0.00 0.00 0.00 − −

5

mace4 0.01 0.01 0.01 0.01 0.01
minion 0.24 0.24 0.25 0.26 0.25
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 0.00 0.00 0.00

8

mace4 0.13 0.13 0.01 − −
minion 47.05 65.79 42.85 − −
minisat 0.01 0.01 0.01 − −
zchaff 0.04 0.00 0.15 − −

9

mace4 0.01 0.01 0.08 30.67 0.01
minion 347.10 560.84 305.52 190.37 7.41
minisat 0.05 0.32 0.01 0.01 0.01
zchaff 0.07 2.37 0.82 0.02 0.09

12

mace4 10.76 10.99 158.31 − −
minion − − − − −
minisat 13.59 32.91 12.16 2739.27 2814.71
zchaff − − − − −

13

mace4 323.35 279.64 61.39 − −
minion − − − − −
minisat 1595.98 55.70 215.86 − 4264.09
zchaff − 2363.77 − − −

Table A.4: QG-2 quasigroups found using implied constraints.

169

Qg-3

Size Systems C1 C2 C3 C4 C5

time [s] time [s] time [s] time [s] time [s]

3
mace4 0.01 0.00 0.00 0.01 0.00
minion 0.16 0.22 0.22 0.23 −
minisat 0.00 0.00 0.00 0.00 −
zchaff 0.00 − − − −

4

mace4 0.01 0.00 0.00 0.01 0.00
minion 0.16 0.23 0.22 0.22 0.16
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 − − −

7

mace4 1.71 0.13 0.02 0.45 0.01
minion 0.18 0.23 0.86 0.24 0.20
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.03 0.00 − − −

9

mace4 61.85 0.12 0.24 22.31
minion 0.19 − 0.25 0.24 −
minisat 0.03 0.02 0.14 0.00 −
zchaff 1.02 0.00 − − −

10

mace4 − − 87.74 − 4.63
minion − − − − 4.24
minisat 31.38 33.67 134.83 79.10 2.18
zchaff 956.92 164.43 − − −

12

mace4 − − 2048.24 − −
minion 35.47 − − − −
minisat 1407.15 7086.15 3666.31 2949.97 428.07
zchaff − − − − −

Table A.5: QG-3 quasigroups found using implied constraints.

170

Qg-4

Size Systems C1 C2 C3 C4 C5

time [s] time [s] time [s] time [s] time [s]

4

mace4 0.00 0.00 0.01 0.01 0.00
minion 0.25 0.32 0.18 2.47 0.44
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 0.00 0.00 0.00

5

mace4 0.01 0.00 0.01 0.01 0.00
minion 0.28 0.28 0.25 0.30 0.54
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 0.00 0.00 0.00

9

mace4 0.02 0.01 0.01 0.02 0.01
minion 0.39 0.33 0.32 0.49 0.30
minisat 0.01 0.01 0.01 0.01 0.01
zchaff 0.01 0.00 0.00 0.02 0.00

11

mace4 6.41 0.83 0.01 0.83 0.01
minion 0.49 0.69 0.51 0.63 0.61
minisat 0.03 0.04 0.03 0.03 0.03
zchaff 0.10 0.13 0.05 0.03 0.01

13

mace4 0.01 0.01 1388.43 0.01 2633.77
minion 0.39 0.36 0.27 2.48 0.55
minisat 5.78 6.41 1.38 1.06 7.49
zchaff 25.86 116.25 123.13 85.33 59.85

16

mace4 0.06 0.08 − 0.05 40.33
minion 792.95 585.70 582.39 571.11 18.93
minisat 4.71 25.77 8.41 2.28 14.05
zchaff 1437.89 696.45 4251.49 2613.16 5422.00

17

mace4 0.06 0.07 − 0.04 1743.09
minion 12.96 14.48 17.79 6.76 0.45
minisat 5.34 63.51 3.74 14.87 0.33
zchaff − 1756.19 − − 4594.64

19

mace4 − − 31.92 − −
minion − − − − −
minisat 502.19 1317.75 3414.92 1184.78 10.72
zchaff − − − − −

20

mace4 − − 6801.47 − −
minion − − − − −
minisat 1944.21 − 1470.21 − −
zchaff − − − − 0.33

21

mace4 − − − − −
minion − − − − −
minisat 1.60 1.33 1.80 1.39 1.12
zchaff − − − − 0.42

Table A.6: QG-4 quasigroups found using implied constraints.

171

Qg-5

Size Systems C1 C2 C3 C4 C5 C6

time [s] time [s] time [s] time [s] time [s] time [s]

3

mace4 0.00 − 0.01 − − 0.01
minion 0.18 − 0.23 − − 0.25
minisat 0.00 − 0.00 − − 0.00
zchaff 0.00 − 0.00 − − 0.00

4

mace4 − − − − − 0.01
minion − − − − − 0.24
minisat − − − − − 0.00
zchaff − − − − − 0.00

5

mace4 0.00 0.00 0.00 0.01 0.00 0.01
minion 0.18 0.27 0.24 0.16 0.23 0.24
minisat 0.00 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 0.00 0.00 0.00 0.00

7

mace4 0.47 − 0.03 0.01 0.00 0.09
minion 0.35 − 0.30 0.16 0.25 0.31
minisat 0.00 − 0.00 0.00 0.00 0.00
zchaff 0.08 − 0.00 0.00 0.00 0.00

8

mace4 61.59 0.07 0.00 0.04 0.01 3.40
minion 1.10 0.57 0.82 0.19 0.29 1.03
minisat 0.01 0.00 0.00 0.00 0.00 0.02
zchaff 0.16 0.00 0.00 0.00 0.00 0.00

9

mace4 0.20 − 29.56 − − 0.25
minion 0.20 − 0.25 − − 0.26
minisat 0.04 − 0.00 − − 0.00
zchaff 0.00 − 0.04 − − 0.09

11

mace4 − − 20.58 667.29 2993.49 −
minion − 6173.77 − 1537.45 282.09 −
minisat 0.36 0.13 0.07 0.12 0.06 0.09
zchaff 0.45 0.04 1.63 0.22 0.04 0.06

12

mace4 − − − − − −
minion − − − − − −
minisat − − − − − 0.59
zchaff − − − − − 5.91

13

mace4 − − − − − −
minion − − − − − −
minisat 74.62 − − − − 18.27
zchaff 241.20 − − − − 1233.07

15

mace4 − − − − − −
minion − − − − − −
minisat 0.45 − 14.45 − − 1.94
zchaff 775.36 − 21.43 − − 1804.82

16

mace4 − − − − − −
minion − − − − − −
minisat − − − − − 8.24
zchaff − − − − − −

20

mace4 − − − − − −
minion − − − − − −
minisat − − − − − 706.39
zchaff − − − − − −

Table A.7: QG-5 quasigroups found using implied constraints.

172

Qg-6

Size Systems C1 C2 C3 C4 C5

time [s] time [s] time [s] time [s] time [s]

5

mace4 0.00 0.01 0.00 0.00 0.01
minion 0.17 0.16 0.23 0.17 0.24
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 0.00 0.00 0.00

9

mace4 47.62 7.33 9.27 15.02 0.17
minion 54.08 54.66 54.76 27.09 6.64
minisat 0.00 0.02 0.00 0.00 0.01
zchaff 0.11 0.02 0.03 0.04 0.03

13

mace4 − − − − −
minion − − − − −
minisat 7.02 1.65 0.52 1.15 1.07
zchaff 51.51 58.48 13.72 311.60 394.45

21

mace4 − − − − −
minion − − − 0.40 0.41
minisat − − − − 0.26
zchaff − − − − −

Table A.8: QG-6 quasigroups found using implied constraints.

Qg-7

Size Systems C1 C2 C3 C4 C5

time [s] time [s] time [s] time [s] time [s]

4

mace4 0.01 0.01 0.01 0.00 0.01
minion 0.15 0.26 0.24 0.56 0.25
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 0.00 0.00 0.00

8

mace4 0.01 0.05 0.01 0.01 0.01
minion 4.63 0.29 0.37 0.27 0.26
minisat 0.00 0.00 0.00 0.00 0.00
zchaff 0.00 0.00 0.00 0.00 0.00

9

mace4 0.07 1.07 2.05 0.05 0.01
minion 0.39 0.52 0.49 0.55 0.31
minisat 0.00 0.01 0.00 0.00 0.00
zchaff 0.01 0.00 0.00 0.00 0.00

13

mace4 0.49 − − 0.33 −
minion 0.24 0.33 0.32 0.23 0.28
minisat 0.09 2.66 0.38 0.032 0.38
zchaff 2.64 4.94 68.00 0.84 2.07

16

mace4 − − − − −
minion − − − − 1290.93
minisat 82.50 1383.55 79.68 − 240.70
zchaff 4039.93 − − − −

Table A.9: QG-7 quasigroups found using implied constraints.

173

LIST OF REFERENCES

[AHMCS12a] O. Al-Hassani, Q. Mahesar, C.S. Coen, and V. Sorge.
Solving Kuratowski problems by term rewriting. In
Proceedings of the 19th Workshop on Automated
Reasoning: Bridging the Gap between Theory and Practice,
2012. 1.4

[AHMCS12b] O. Al-Hassani, Q. Mahesar, C.S. Coen, and V. Sorge. A
term rewriting system for Kuratowski’s
closure-complement problem. In Proceedings of the 23rd
International Conference on Rewriting Techniques and
Applications, 2012. 1.4

[BHF96] A. Buch, Th. Hillenbrand, and R. Fettig. Waldmeister:
High performance equational theorem proving. In
Proceedings of the 4th International Symposium on Design
and Implementation of Symbolic Computation Systems,
pages 63–64, 1996. 3.2.1

[Bie08] A. Biere. Picosat essentials. Journal on Satisfiability,
Boolean Modeling and Computation, 4(2-4):75–97, 2008.
3.2.4

[BK11] F. Blanqui and A. Koprowski. CoLoR: a Coq library on
well-founded rewrite relations and its application to the
automated verification of termination certificates.
Mathematical Structures in Computer Science,
21(4):827–859, 2011. 3.2.2

[BKVV08] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/xt 0.17. a language and toolset for
program transformation. Sci. Comput. Program.,
72(1-2):52–70, June 2008. 3.2.2

174

[BL07] F. E. Bennett and C. C. Lindner. Quasigroups, in: The
CRC Handbook of Combinatorial Designs. CRC Press,
2007. 4.2

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, Cambridge, 1998. 10.1

[Bro10] J.L. Brown. Introductory topology, 2010.
http://www.ces.clemson.edu/~jimlb/Teaching/

2009-10/Math986/Topology.pdf. (document), 8.1

[BS07] B. Benhamou and M. R. Saidi. Eliminating local
symmetry in CSP. In Proceedings of the International
Symmetry Conference, 2007. 2.2

[Buc06] B. Buchberger. Mathematical theory exploration. In
Proceedings of the Eighth International Symposium on
Symbolic and Numeric Algorithms for Scientific
Computing, 2006. 1.1

[Bun85] A. Bundy. Discovery and reasoning in mathematics. In
Aravind K. Joshi, editor, IJCAI, pages 1221–1230.
Morgan Kaufmann, 1985. 1.1

[BZ92] F. E. Bennett and L. Zhu. Conjugate orthogonal latin
squares and related structures. In J. H. Dinitz & D. R.
Stinson (eds): Contemporary Design Theory: A Collection
of Surveys. John Willey & Sons, 1992. 2.1, 4.2

[CCM06] J. Charnley, S. Colton, and I. Miguel. Automatic
generation of implied constraints. In Proceedings of the
17th European Conference on Artificial Intelligence August
29 – September 1, 2006, Riva Del Garda, Italy, pages
73–77, Amsterdam, The Netherlands, The Netherlands,
2006. IOS Press. 2.1, 4.2, 7.1.4, 12.2

[CDS91] J. Cooper, D. Donovan, and J. Seberry. Latin squares and
critical sets of minimal size. Australas. J. Combin.,
4:113–120, 1991. Combinatorial mathematics and
combinatorial computing (Palmerston North, 1990). 4.2

175

http://www.ces.clemson.edu/~jimlb/Teaching/2009-10/Math986/Topology.pdf
http://www.ces.clemson.edu/~jimlb/Teaching/2009-10/Math986/Topology.pdf

[CFS08] S. Conchon, J. Filliâtre, and J. Signoles. Designing a
generic graph library using ML functors. In Proceedings of
the Ninth Symposium on Trends in Functional
Programming, volume 8, pages 124–140. Intellect, 2008.
11.2

[CLW96] B. M. W. Cheng, J. H. M. Lee, and J. C. K. Wu.
Speeding up constraint propagation by redundant
modeling. In Proceedings of the 2nd Int. Conf. on
Principles and Practice of Constraint Programming, pages
91–103. Springer Verlag, 1996. 2.2

[CM01] S. Colton and I. Miguel. Constraint generation via
automated theory formation. In CP, volume 2239 of
Lecture Notes in Computer Science, pages 575–579.
Springer, 2001. 2.1, 4.2, 7.1.4, 12.2

[CMSM04] S. Colton, A. Meier, V. Sorge, and R. L. McCasland.
Automatic generation of classification theorems for finite
algebras. In IJCAR, volume 3097 of Lecture Notes in
Computer Science, pages 400–414. Springer, 2004. 2.4, 6.2,
6.2.1, 11

[Coe06] C. S. Coen. A semi-reflexive tactic for (sub-)equational
reasoning. In Proceedings of the 2004 International
Conference on Types for Proofs and Programs, TYPES’04,
pages 98–114. Springer-Verlag, 2006. 10.1

[Col02a] S. Colton. Automated Theory Formation in Pure
Mathematics. Springer, 2002. 2.1, 2.3

[Col02b] S. Colton. The HR program for theorem generation. In
Proceedings of the Eighteenth Conference on Automated
Deduction, pages 285–289. Springer, 2002. 2.4

[Cor06] L. Corsi. Combinazioni di operatori di interno, chiusura e
loro complemento in LJ. Tesi di laurea in Matematica,
Università di Padova, 2006. 9.1, 10.2

[CP05] S Colton and A Pease. The TM system for repairing
non-theorems. In Selected papers from the IJCAR’04

176

disproving workshop, Electronic Notes in Theoretical
Computer Science, volume 125(3), pages 13–26. Elsevier,
2005. 2.3

[DdVC03a] I. Dotú, A. del Val, and M. Cebrián. Channeling
constraints and value ordering in the quasigroup
completion problem. In Proc. of IJCAI-2003, pages
1372–1373. Morgan Kaufmann, 2003. 2.2, 5.1

[DdVC03b] I. Dotú, A. del Val, and M. Cebrián. Redundant modeling
for the quasigroup completion problem. In Principles and
practice of Constraint Programming (CP03) Lecture Notes
in Computer Science, pages 288–302. Springer, 2003. 5.1

[Dec03] R. Dechter. Constraint Processing. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003. 2.3

[DJKK12] A. Distler, C. Jefferson, T. Kelsey, and L. Kotthoff. The
semigroups of order 10. In Principles and Practice of
Constraint Programming, Lecture Notes in Computer
Science, pages 883–899. Springer Berlin Heidelberg, 2012.
2.3

[DK09] A. Distler and T. Kelsey. The monoids of orders eight,
nine & ten. Annals of Mathematics and Artificial
Intelligence, 56(1):3–21, May 2009. 2.3

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem-proving. Commun. ACM,
5(7):394–397, 1962. 3.2.4

[DP60] M. Davis and H. Putnam. A computing procedure for
quantification theory. J. ACM, 7(3):201–215, 1960. 2.1,
3.2.4

[DSS11] A. Distler, M. Shah, and V. Sorge. Enumeration of
AG-groupoids. In Proceedings of the 18th Calculemus and
10th international conference on Intelligent computer
mathematics, MKM’11, pages 1–14, Berlin, Heidelberg,
2011. Springer-Verlag. 2.3, 11

177

[Eat08] J. W. Eaton. Gnu Octave Manual. Network Theory Ltd.,
3rd edition, 2008. 3.3, 9.1, 11, 11.2, 11.3

[ES03] N. Eén and N. Sörensson. An extensible SAT-solver. In
Enrico Giunchiglia and Armando Tacchella, editors, SAT,
volume 2919 of Lecture Notes in Computer Science, pages
502–518. Springer, 2003. 3.2.4, 7.1

[Eva51] T. Evans. On multiplicative systems defined by generators
and relations. Mathematical Proceedings of the Cambridge
Philosophical Society, 47:637–649, 10 1951. 6.2

[FGJ+07] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hernández,
and I. Miguel. The design of essence: a constraint
language for specifying combinatorial problems. In
Proceedings of IJCAI-07, pages 80–87, 2007. 3.2.3, 5.1, 7.1

[Fit90a] M. Fitting. Bilattices in logic programming. In Proc. of
the 20th Int. Symp. on Multiple-Valued Logic, pages 63–70.
IEEE Press, 1990. 13.2

[Fit90b] M. Fitting. First-order logic and automated theorem
proving. Springer-Verlag New York, Inc., 1990. 3.1, 3.1.2

[FMM] Z. Fu, Y. Marhajan, and S. Malik. zChaff SAT Solver.
http://www.princeton.edu/~chaff/zchaff.html.
3.2.4, 7.1

[FSB93] M. Fujita, J. Slaney, and F. Bennett. Automatic
generation of some results in finite algebra. In IJCAI’93:
Proceedings of the 13th international joint conference on
Artifical intelligence, pages 52–57, San Francisco, CA,
USA, 1993. Morgan Kaufmann Publishers Inc. 2.1

[Gal85] Jean H. Gallier. Logic for computer science: foundations
of automatic theorem proving. Harper & Row Publishers,
Inc., 1985. 3.2.1

[GAP08] The GAP Group. GAP – Groups, Algorithms, and
Programming, Version 4.4.12, 2008. 2.3, 2.4

178

http://www.princeton.edu/~chaff/zchaff.html

[GJ08] B. J. Gardner and M. Jackson. The Kuratowski
closure-complement theorem. New Zealand Journal of
Mathematics, 38:9–44, 2008. 8.2, 8.2, 9, 13.3

[GJM06] I. P. Gent, C. Jefferson, and I. Miguel. Minion: A fast,
scalable, constraint solver. In Proceeding of the 2006
conference on ECAI 2006, pages 98–102. IOS Press, 2006.
2.3, 3.2.3, 7.1

[GKL+05] I. P. Gent, T. Kelsey, S. A. Linton, I. McDonald,
I. Miguel, and B. M. Smith. Conditional symmetry
breaking. In Proceedings of the Principles and Practice of
Constraint Programming - CP 2005, LNCS 3709, pages
256–270. Springer, 2005. 2.2

[Gog98] J. A. Goguen. Stretching first order equational logic:
Proofs with partiality, subtypes and retracts. In
Proceedings of the Workshop on First Order Theorem
Proving, page pages, 1998. 3.2.2

[Gra] Graphviz - graph visualization software.
http://www.graphviz.org/. 11.2

[GS97] C. P. Gomes and B. Selman. Problem structure in the
presence of perturbations. In Proceedings of the 14th
National Conference on AI, pages 221–226. AAAI Press,
1997. 2.2

[GS02a] C. P. Gomes and D. B. Shmoys. The promise of LP to
boost CSP techniques for combinatorial problems, 2002.
2.2

[GS02b] C. P. Gomez and D. Shmoys. Completing quasigroups or
latin squares: a structured graph coloring problem. In
Proceedings of Computational Symposium on Graph
Coloring and Generalization, 2002. 2.2, 5.2

[HAF01] M. R. Holmes and J. Alves-Foss. The Watson theorem
prover. J. Autom. Reason., 26(4):357–408, May 2001. 3.2.2

179

http://www.graphviz.org/

[Heb08] E. Hebrard. Mistral, a constraint satisfaction library. In
Proceedings of the Third International CSP Solver
Competition, 2008. 3.2.3

[HKK91] M. Hermann, C. Kirchner, and H. Kirchner.
Implementations of term rewriting systems. The
Computer Journal, 34(1):20, 1991. 3.2.2

[HKPM04] G. Huet, G. Kahn, and Ch. Paulin-Mohring. The Coq
Proof Assistant - A tutorial - Version 8.0, April 2004.
3.2.2

[HO80] G. Huet and D. C. Oppen. Equations and rewrite rules: a
survey. Technical report, Stanford, CA, USA, 1980. 3.2.2

[Hor74] J.D Horton. Sub-latin squares and incomplete orthogonal
arrays. Journal of Combinatorial Theory, Series A,
16(1):23 – 33, 1974. 2.1

[HS74] A. Hedayat and E. Seiden. On the theory and application
of sum composition of latin squares and orthogonal latin
squares. 1974. 2.1

[Kel75] J. L. Kelley. General Topology. Graduate Texts in
Mathematics. Springer, 1975. 8.1

[Klo87] J. W. Klop. Term rewriting systems: a tutorial. Bulletin
of the European Association for Theoretical Computer
Science (EATCS), 32:143–182, 1987. 3.2.2

[KRA+01] H. Kautz, Y. Ruan, D. Achlioptas, C. Gomes, B. Selman,
and M. Stickel. Balance and filtering in structured
satisfiable problems. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence -
Volume 1, IJCAI’01, pages 351–358. Morgan Kaufmann
Publishers Inc., 2001. 5.2

[KZ95] D. Kapur and H. Zhang. An overview of rewrite rule
laboratory. J. of Computer and Mathematics with
Applications, 29:91–114, 1995. 3.2.2

180

[Lab00] F. Laburthe. Choco: implementing a CP kernel. In
Proceedings of TRICS: Techniques foR Implementing
Constraint programming Systems, page 7185, 2000. 2.1,
3.2.3, 7.1.4

[Lip65] S. Lipschutz. Schaum’s outline of theory and problems of
general topology. Schaum’s outline series. Schaum Pub.
Co., 1965. 8.1

[McC] W. McCune.
http://www.cs.unm.edu/~mccune/prover9/. 3.2.1, 7.1

[Mcc94] W. Mccune. A Davis-Putnam program and its application
to finite first-order model search: Quasigroup existence
problems. Technical report, Mathematics and Computer
Science Division Argonne National Laboratory, 1994. 2.1

[McC03a] W. McCune. Mace4 reference manual and guide. CoRR,
cs.SC/0310055, 2003. 2.3, 2.4, 3.2.5, 5.3, 7.1, 7.1

[McC03b] W. McCune. Otter 3.3 reference manual. CoRR,
cs.SC/0310056, 2003. 2.1, 2.3, 3.2.1

[MGA97] S. Markovski, D. Gligoroski, and S. Andova. Using
quasigroups for one-one secure encoding. In Proc. VIII
Conf. Logic and Computer Science LIRA 97, Novi Sad,
pages 157–162, 1997. 4.1

[ML07] R. Martins and I. Lynce. Breaking local symmetries in
quasigroup completion problems. Technical report,
IST/INESC-ID, Technical University of Lisbon, Portugal,
2007. 2.2

[MLB01] S. Merchez, C. Lecoutre, and F. Boussemart. Abscon: A
prototype to solve CSPs with abstraction. In CP ’01:
Proceedings of the 7th International Conference on
Principles and Practice of Constraint Programming, pages
730–744, London, UK, 2001. Springer-Verlag. 3.2.3

181

http://www.cs.unm.edu/~mccune/prover9/

[MS05] A. Meier and V. Sorge. Applying SAT Solving in the
Classification of Finite Algebras. JAR, 35(1–3):201–235,
2005. 2.4

[MS09] Q. Mahesar and V. Sorge. Classification of
quasigroup-structures with respect to their cryptographic
properties. In Proceedings of the 16th Workshop on
Automated Reasoning: Bridging the Gap between Theory
and Practice, 2009. 1.4

[MS10] Q. Mahesar and V. Sorge. Property preserving generation
of large size quasigroup-structures. In Proceedings of the
17th Workshop on Automated Reasoning: Bridging the
Gap between Theory and Practice, 2010. 1.4

[MS12a] Q. Mahesar and V. Sorge. Algebraic theory exploration:
A comparison of technologies. In Proceedings of the 14th
International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2012. 1.4

[MS12b] Q. Mahesar and V. Sorge. Generation of large size
quasigroup structures using algebraic constraints. In
Proceedings of the 19th Workshop on Automated
Reasoning: Bridging the Gap between Theory and Practice,
2012. 1.4

[Mun00] J. R. Munkres. Topology. Prentice Hall, Incorporated,
2000. 8.1

[MW98] P. Meseguer and T. Walsh. Interleaved and discrepancy
based search. In Proceedings of ECAI-98, pages 239–243.
Wiley, 1998. 2.2

[NV] G. P. Nagy and P. Vojtechovsky. http:
//www.math.du.edu/loops/doc/htm/CHAP007.htm. 4.2

[PD07] K. Pipatsrisawat and A. Darwiche. Rsat 2.0: Sat solver
description. Technical report, University of California, Los
Angeles, 2007. 3.2.4

182

http://www.math.du.edu/loops/doc/htm/CHAP007.htm
http://www.math.du.edu/loops/doc/htm/CHAP007.htm

[Pfl90] H. O. Pflugfelder. Quasigroups and Loops: Introduction,
volume 7 of Sigma Series in Pure Mathematics.
Heldermann Verlag, Berlin, Germany, 1990. 4.1

[Pig75] D. Pigozzi. Equational logic and equational theories of
algebras. Technical report, Purdue University, 1975. 3.1.3

[Qui93] R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, CA, 1993. 2.4

[Rég94] Jean-Charles Régin. A filtering algorithm for constraints
of difference in CSPs. In Proceedings of the twelfth
national conference on Artificial Intelligence (vol. 1),
AAAI ’94, pages 362–367, 1994. 2.2, 5.1

[Ren] A. Rendl. Tailor - tailoring constraint models to
constraint solvers.
http://www.cs.st-andrews.ac.uk/~andrea/tailor/.
3.2.3, 7.1

[RM05] A. Ramani and I. L. Markov. Automatically exploiting
symmetries in constraint programming. In Proceedings of
the 2004 Joint ERCIM/CoLOGNET International
Conference on Recent Advances in Constraints, CSCLP’04,
pages 98–112. Springer-Verlag, 2005. 2.2

[RV01] A. Riazanov and A. Voronkov. Vampire 1.1. In Rejeev
Goré, Alexander Leitsch, and Tobias Nipkow, editors,
Automated Reasoning — 1st International Joint
Conference, IJCAR 2001, volume 2083 of LNAI, pages
376–380, Siena, Italy, 2001. Springer Verlag. 3.2.1

[SA08a] J. Slaney and A. Ali. Counting loops with the inverse
property. Quasigroups and Related Systems, 16(1):13–16,
2008. 2.3

[SA08b] J. Slaney and A. Ali. Generating loops with the inverse
property. In Proceedings of the Workshop on Empirically
Successful Automated Reasoning for Mathematics
(ESARM) : CICM 2008, Conferences on Intelligent
Computer Mathematics, University of Birmingham, UK.,
2008. 2.3

183

http://www.cs.st-andrews.ac.uk/~andrea/tailor/

[Sam03] G. Sambin. Some points in formal topology. Theoretical
Computer Science, 305(1-3):347–408, 2003. 9.1

[Sam12] G. Sambin. The Basic Picture: a structural basis for
constructive topology. Oxford University Press, 2012. 10.3,
11.5

[Sch02] S. Schulz. E: A Brainiac theorem prover. Journal of AI
Communication, 15(2–3):111–126, 2002. 3.2.1

[SCMM08] V. Sorge, S. Colton, R. McCasland, and A. Meier.
Classification results in quasigroup and loop theory via a
combination of automated reasoning tools.
Commentationes Mathematicae Universitatis Carolinae,
49(2):319–339, 2008. (document), 2.4, 2.1

[SFS95] J. Slaney, M. Fujita, and M. Stickel. Automated reasoning
and exhaustive search: Quasigroup existence problems.
Computers & Mathematics with Applications, 29(2):115 –
132, 1995. 2.1

[Sla94] J. K. Slaney. Finder: Finite domain enumerator - system
description. In Proceedings of the 12th International
Conference on Automated Deduction, CADE-12, pages
798–801. Springer-Verlag, 1994. 2.3, 3.2.5

[Smi06] J. D. H. Smith. An Introduction to Quasigroups and Their
Representations (Studies in Advanced Mathematics).
Chapman and Hall/CRC, 1 edition, November 2006. 4.1

[SML96] Bart Selman, David Mitchell, and Hector Levesque.
Generating hard satisfiability problems. Artificial
Intelligence, 81:17–29, 1996. 3.2.4

[SMMC08] V. Sorge, A. Meier, R. Mccasland, and S. Colton.
Automatic construction and verification of isotopy
invariants. Journal of Automated Reasoning,
40(2-3):221–243, 2008. 2.4

[SS] G. Sutcliffe and C. Suttner.
http://www.cs.miami.edu/~tptp/. 2.3

184

http://www.cs.miami.edu/~tptp/

[SSW98] P. Shaw, K. Stergiou, and T. Walsh. Arc consistency and
quasigroup completion. In Proceedings of the ECAI-98
workshop on non-binary constraints, 1998. 2.2, ii, viii

[Sti] M. E. Stickel. Quasigroup generator.
http://www.ai.sri.com/~stickel/qga.lsp. 5.2, 7.1

[Sut] G. Sutcliffe. http:
//www.cs.miami.edu/~tptp/OverviewOfATP.html.
3.2.1

[SZ95] M. E. Stickel and H. Zhang. Studying quasigroup
identities by rewriting techniques: Problems and first
results. In Proceedings of the 6th International Conference
on Rewriting Techniques and Applications, RTA ’95, pages
450–456, London, UK, UK, 1995. Springer-Verlag. 2.1

[Ter03] Terese. Term Rewriting Systems by “Terese”, volume 5 of
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003. 3.2.2

[Wal01] T. Walsh. Permutation problems and channelling
constraints. In Robert Nieuwenhuis and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and
Reasoning, volume 2250 of Lecture Notes in Computer
Science, pages 377–391. Springer Berlin Heidelberg, 2001.
2.2, 5.1

[WBH+99] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen,
C. Theobald, and D. Topic. Spass version 2.0. In Proc.
CADE-18, pages 275–279. Springer, 1999. 2.4, 3.2.1

[WY00] H. Wei and Z. Yasoming. Interior and boundary in a
locale. Advances in Mathematics, 29(5):439–443, 2000. 9,
10.3, 13.3

[ZH94] H. Zhang and J. Hsiang. Solving open quasigroup
problems by propositional reasoning. In Proceedings of the
International Computer Symp, 1994. 2.1

185

http://www.ai.sri.com/~stickel/qga.lsp
http://www.cs.miami.edu/~tptp/OverviewOfATP.html
http://www.cs.miami.edu/~tptp/OverviewOfATP.html

[ZS94] H. Zhang and M.E. Stickel. Implementing the
Davis-Putnam Algorithm by Tries. Technical report. Iowa
State University, Department of Computer Science, 1994.
2.1

[ZZ01] Q. Zhang and Qi Zhang. SEM User’s Guide. Technical
report, Department of Computer Science, University of
Iowa, 2001. 3.2.5

186

	I Introduction, Related Work and Reasoning Background
	Introduction
	Motivation
	Hypotheses
	Contributions
	Publications
	Overview and Structure

	Related Work - Automated Reasoning in Mathematics
	Existence Problems
	Combinatorial Completion Problems
	Enumeration of Algebraic Structures
	Qualitative Classification of Algebraic Structures
	Concluding Remarks

	Logic and Automated Reasoning
	Logical Systems
	Propositional Logic
	First Order Logic
	Equational Logic

	Automated Reasoning
	Automated Theorem Proving
	Term Rewriting Systems
	Knuth-Bendix Completion

	Constraint Solvers
	SAT Solvers
	Model Generators

	Other Mathematical Tools Used

	II Structural Domain Knowledge Exploration for Large Size Example Generation
	Background on Quasigroups
	Quasigroup Definition and Operations
	Quasigroup Properties

	Quasigroup Model Generation Problems and Encodings
	Quasigroup Constraint Satisfaction Problems
	Quasigroup Satisfiability Problems (SAT)
	Quasigroup Model Generation Problems

	Enriching Quasigroup Problems With Pre-Computed Knowledge
	Quasigroup Element Filtering
	Generating System Representation for Quasigroups
	Computing Generating Systems for Quasigroups
	Expanding Generating Systems
	Applying Quasigroup Element Filter to Generating System Expansion

	Experiments and Results
	Experimental Set-up
	Quasigroup Element Filtering Procedure
	Generating System Procedure
	Combination of Both Procedures
	Employing Implied Constraints

	Discussion of Results

	III Approximating Solutions in Infinite Domains
	Background on Point-Set Topology and Kuratowski Closure-Complement Problem
	Basic Concepts in Point-Set Topology
	Kuratowski Closure-Complement Problem

	generalization of Kuratowski Problem to Point Free Topology
	The Problem

	The Adopted Term Rewriting System
	The Basic Rewriting System
	The Advanced Rewriting System
	More Variations of Kuratowski's Problem
	Summary

	Methodology, Implementation and Results
	Methodology
	Implementation Details
	Verification
	Results
	Concluding Remarks

	IV Conclusions
	Contributions
	Combining Systems to Solve Complex Mathematical Problems
	Automated Theory Exploration for Computing Large Size Examples in Finite Domain
	Approximating Solutions in Infinite Domains

	Future Work
	Framework for Experimental Mathematics
	Decomposition Techniques
	Other Generalizations of Kuratowski Problem

	Appendix A: Experimental Results for Quasigroups
	List of References

