COHERENT MINIMISATION:
AGGRESSIVE OPTIMISATION FOR
SYMBOLIC FINITE STATE
TRANSUDCERS

by

ZAID AL-ZOBAIDI

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
January 30, 2014
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Abstract

Automata are a fundamental model of computation, with many applications in hardware and software. Automata minimisation is a process of reducing the number of control states. It is considered as one of the key computational resources that drive the cost of computation. Most of the conventional minimisation techniques are based on the notion of bisimulation to determine equivalent states which can be identified.

Although minimisation of automata has been an established topic of research, the optimisation of automata works in constrained environments is a novel idea which we will examine in this dissertation, along with a motivating, non-trivial application to efficient tamper-proof hardware compilation.

This thesis introduces a new notion of equivalence, coherent equivalence, between states of a transducer. It is weaker than the usual notions of bisimulation, so it leads to more states being identified as equivalent. The central idea is that if the behaviour of the environment is restricted, and thus it has a weaker power of distinguishing actions of an observed system, more states are rendered equivalent. This new equivalence relation can be utilised to aggressively optimise transducers by reducing the number of states, a technique which we call coherent minimisation. We note that the coherent minimisation always outperforms the conventional minimisation algorithms based on the bisimulation quotienting. The main result of this thesis is that the coherent minimisation is sound and compositional.
In order to support more realistic applications to hardware synthesis, we also introduce a refined model of transducers, which we call *symbolic finite states transducers*, that can model systems which involve very large or infinite data types. As a key motivating application we give an efficient model for tamper-proofing hardware circuits synthesised from game-like models.
Acknowledgements

First, I would like to extend my deepest gratitude to my supervisor, Dan Ghica, for valuable advice, support and guidance during my PhD study.

Next, I would like to thank my thesis group members: Uday Reddy, Peter Breuer, and Steven Quigley. They have made a significant contribution to this research and their comments and analysis are highly appreciated.

A great deal of thanks goes to my colleagues: Mohammed Wasouf, Ali Rodan, and Noureddin Sadawi. They made the daily grind of being a research student so much fun.

Finally, I give my special thanks to my family: my wife Benaz; my mother; my lovely daughter Naz; and my aunt for their love, support and encouragement.

To all of you, I dedicate this work.
Contents

1 Introduction .. 1
 1.1 Research Theme .. 1
 1.2 Motivation ... 3
 1.3 Thesis Outline and Contributions 5
 1.4 Publications ... 7

2 Background .. 9
 2.1 Synopsis .. 9
 2.2 Finite State Machines .. 9
 2.2.1 The Language Accepted by FSM 11
 2.2.2 Other Models of FSM .. 11
 2.2.3 Finite States Transducers 13
 2.2.4 Equivalence of FSMs and States Minimisation 14
 2.3 Hardware Description Languages and VHDL 19
 2.3.1 VHDL Background ... 19
 2.3.2 Behavioural Description of FSM in VHDL 20
 2.4 Game Semantics ... 26
 2.4.1 Arenas .. 31
 2.4.2 Legal Plays and Strategies 32
 2.5 Hardware Compilation .. 32
 2.6 Geometry of Synthesis Hardware Compiler 34
 2.6.1 The Language Verity ... 34
 2.6.2 Theoretical and Methodological Background of Verity-GoS 36
 2.6.3 Interpreting the Verity Constants 37
 2.7 Tampering and Tamper-Proof 45
 2.8 Summary .. 46

3 Concurrent Finite States Transducers (CFSTs) 47
 3.1 Synopsis .. 47
 3.2 Legal Interactions (Protocol) 50
 3.3 Two Ways of Composing CFSTs 52
 3.3.1 CFSTs Intersection ... 52
 3.3.2 CFSTs Composition .. 54
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mealy machine for a sequence detector</td>
</tr>
<tr>
<td>2.2</td>
<td>A DFSM defined over {a, b}*: every literal a is followed by the literal b</td>
</tr>
<tr>
<td>2.3</td>
<td>(M':) Minimised DFSM of Fig.2.2.</td>
</tr>
<tr>
<td>2.4</td>
<td>Structure of a Mealy machine with One Logic</td>
</tr>
<tr>
<td>2.5</td>
<td>Mealy machine for an odd number of 0 and an odd number of 1.</td>
</tr>
<tr>
<td>2.6</td>
<td>The play of ‘1’ in game semantics represented as a FST.</td>
</tr>
<tr>
<td>2.7</td>
<td>Verity ‘∆’ Constant as an FST.</td>
</tr>
<tr>
<td>3.1</td>
<td>Asynchronous game-semantics protocol represented as an FST.</td>
</tr>
<tr>
<td>3.2</td>
<td>Synchronous protocol ((P)) of (com_1 \otimes com_2 \rightarrow com_3) represented as an CFST.</td>
</tr>
<tr>
<td>3.3</td>
<td>CFST (T): Synchronous representation of the sequential composition constant.</td>
</tr>
<tr>
<td>3.4</td>
<td>Sketch of CFSTs interaction.</td>
</tr>
<tr>
<td>3.5</td>
<td>CFSTs interaction</td>
</tr>
<tr>
<td>3.6</td>
<td>CFST (T \otimes T'): composition of CFSTs presented in Fig. 3.5a and Fig. 3.5b.</td>
</tr>
<tr>
<td>4.1</td>
<td>Transducer (T).</td>
</tr>
<tr>
<td>4.2</td>
<td>Protocol (P).</td>
</tr>
<tr>
<td>4.3</td>
<td>CFSTs Minimisation.</td>
</tr>
<tr>
<td>4.4</td>
<td>Generated NCFST (output-nondeterminism) from quotienting two states.</td>
</tr>
<tr>
<td>4.5</td>
<td>Compatible-states relation is intransitive.</td>
</tr>
<tr>
<td>4.6</td>
<td>Generated NCFST (target-nondeterminism) from quotienting two states.</td>
</tr>
<tr>
<td>4.7</td>
<td>Coherently minimised DCFST of Fig. 4.3a.</td>
</tr>
<tr>
<td>5.1</td>
<td>DCFST of (m + n).</td>
</tr>
<tr>
<td>5.2</td>
<td>(T): Adding numbers in SFST.</td>
</tr>
<tr>
<td>5.3</td>
<td>Symbolic Protocol (P) for adding numbers.</td>
</tr>
<tr>
<td>5.4</td>
<td>(T\hat{\wedge}P): Symbolically intersecting Fig. 5.2 and Fig. 5.3.</td>
</tr>
<tr>
<td>5.5</td>
<td>(T' = T/(s_1, s_2)): Coherently minimised SFST of Fig. 5.2.</td>
</tr>
<tr>
<td>5.6</td>
<td>(T''\hat{\wedge}P): Symbolically intersecting Fig. 5.5 and Fig. 5.3.</td>
</tr>
<tr>
<td>5.7</td>
<td>(T''): Coherently Minimal SFST of Fig. 5.2.</td>
</tr>
<tr>
<td>5.8</td>
<td>(T''\hat{\wedge}P): Symbolically intersecting Fig. 5.6 and Fig. 5.3.</td>
</tr>
<tr>
<td>6.1</td>
<td>The diagonal circuit (\Delta).</td>
</tr>
<tr>
<td>6.2</td>
<td>The Iterator circuit.</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>6.3</td>
<td>Example of synthesised program using the FFI</td>
</tr>
<tr>
<td>6.4</td>
<td>Environment which breaks language abstraction</td>
</tr>
<tr>
<td>6.5</td>
<td>Architecture of a tamper-proof circuit</td>
</tr>
<tr>
<td>6.6</td>
<td>A game-semantic protocol, automaton representation</td>
</tr>
<tr>
<td>6.7</td>
<td>Synchronous representation of a protocol</td>
</tr>
<tr>
<td>6.8</td>
<td>Tamper-proof compiled circuit with monitor</td>
</tr>
<tr>
<td>7.1</td>
<td>Protocol of $\text{com}_1 \otimes \text{com}_2 \rightarrow \text{com}_3$ represented as a CFST.</td>
</tr>
<tr>
<td>7.2</td>
<td>Verity conditional 'if' constant represented as a CFST.</td>
</tr>
<tr>
<td>7.3</td>
<td>Protocol of $\text{var}_1 \rightarrow \text{exp}_2$ represented as a CFST.</td>
</tr>
<tr>
<td>7.4</td>
<td>Verity dereferencing constant represented as a CFST.</td>
</tr>
<tr>
<td>7.5</td>
<td>Optimised Verity diagonal constant by coherent minimisation and considering Def. 4.6.2.</td>
</tr>
<tr>
<td>7.6</td>
<td>Optimised Verity parallel composition constant by coherent minimisation.</td>
</tr>
<tr>
<td>7.7</td>
<td>The iterator constant and its protocol.</td>
</tr>
<tr>
<td>7.8</td>
<td>Optimised Verity iterator 'while' constant by coherent minimisation and considering Def. 4.4.4.</td>
</tr>
<tr>
<td>7.9</td>
<td>Another possible minimal Verity iterator 'while' constant.</td>
</tr>
<tr>
<td>7.10</td>
<td>Input and output ports for the binary addition constant in Verity</td>
</tr>
<tr>
<td>7.11</td>
<td>Symbolic Protocol of $\text{exp}_1 \otimes \text{exp}_2 \rightarrow \text{exp}_3$ represented as a SFST.</td>
</tr>
<tr>
<td>7.12</td>
<td>Verity binary addition constant represented as a SFST.</td>
</tr>
<tr>
<td>7.13</td>
<td>Optimised Verity binary addition constant by symbolic coherent minimisation.</td>
</tr>
<tr>
<td>C.1</td>
<td>Protocol of $\text{exp}_1 \otimes \text{exp}_2 \rightarrow \text{exp}_3$ represented as a CFST.</td>
</tr>
<tr>
<td>C.2</td>
<td>Verity binary addition constant represented as a CFST.</td>
</tr>
<tr>
<td>C.3</td>
<td>Optimised Verity binary addition operator constant by coherent minimisation.</td>
</tr>
<tr>
<td>C.4</td>
<td>Protocol of $\text{var} \otimes \text{exp}_1 \rightarrow \text{com}_2$ represented as a CFST.</td>
</tr>
<tr>
<td>C.5</td>
<td>Verity assignment constant represented as a CFST.</td>
</tr>
<tr>
<td>C.6</td>
<td>Optimised Verity assignment constant by coherent minimisation.</td>
</tr>
</tbody>
</table>
List of Tables

4.1 Compatibility and Coherent Equivalence Relations of Fig.4.3a. 91
7.1 Results of Minimisation for Verity Constants. 136
C.1 Coherent Minimisation for Verity Constants in Detail. 179
Listings

2.1 Hopcroft’s DFSM Minimisation Algorithm .. 16
2.2 States-assignment in VHDL ... 22
2.3 Transitions-Encoding of Fig. 2.5 in VHDL ... 23
2.4 Checking the Rising Edge of the Clock in VHDL 24
2.5 Reset-Checking in VHDL ... 25
2.6 VHDL Code of Fig. 2.5 ... 25
3.1 CFST-Encoding Algorithm ... 60
4.1 CFST Minimisation Algorithm ... 87
A.1 Syntax of “If” Statement in VHDL .. 173
A.2 Syntax of “Case” Statement in VHDL ... 173
B.1 VHDL Code of Fig. 3.5a ... 175
CHAPTER 1

Introduction

1.1 Research Theme

Automata (or state machines) are labelled transition systems consisting of a set of control states and a set of transitions. Control moves from one state (source state) to another (target state) in response to external events. The transitions define the behaviour of the control states by specifying a relation between source states, external events (input and output), and target states. If the set of control states of the automata is finite then they are called finite automata (or finite states machines (FSMs)).

Bisimulation, regarded as one of the key contributions of concurrency theory to Computer Science, is a way of matching processes that requires equivalence between all corresponding control states. In theory, bisimulation is a binary relation associating two control states that behave in the same way. Intuitively, two states are bisimilar if each state can not be distinguished from the other by an observer. The bisimulation equality (also called bisimilarity) is the most popular form of behavioural equality for processes \([46, 120]\). The compositionality property of bisimilarity has been utilised to optimise the state-space of processes represented by automata \([120]\).
FSM minimisation is about reducing the number of control states such that the optimised FSM is behaviourally equivalent to the original one. In general, the process of minimisation is twofold: identifying the bisimilar states and then quotienting them.

Of the many applications of FSMs, hardware synthesis is of clear practical importance. FSMs are convenient models of representation for sequential circuits at a logical level of abstraction. Minimising the number of states will optimise the size of the machine for subsequent steps in the synthesis. As a result, fewer hardware resources are required in the synthesised circuit [77, 130].

Game semantics is an approach to denotational semantics that provides correct and sound fully abstract models for several programming languages, some of which can be given automata-theoretic representations [57, 6]. In game semantics, types are interpreted as arenas (or games) between the term (system) being modelled and the environment in which the term being used. Arenas are sets of game moves which can be either question or answer and belong to either the term or the environment. Game semantics uses mathematical objects called strategies to represent terms [4, 8]. Strategies obey the rules of games and they describe the behaviour of the system—how the system should interact with its environment [63, 50]. Game play (or shortly play) is a sequence of moves. Each strategy is defined as a set of plays and can sometimes be represented by a set of its legal traces over the alphabet of moves, and hence by an automaton.

Hardware compilation is a process of translating programs written in high-level languages into hardware circuits. This technology is gaining popularity because it provides “software-like” environments and hence it can be used by many users [126, 26]. There are many hardware compilation approaches, most of them depend on the idea of extending one of the conventional programming languages with explicit constructs to provide means of concurrency and parallelism. Another promising approach, suggested and studied by Ghica, is called Geometry of Synthesis [49, 60, 61, 62]. The most appealing feature of
this technique is that its models, which can be represented as automata, are concrete representations of the denotational model of the language, therefore leading to correct-by-construction compilation. Geometry of Synthesis (GoS) exploits the existence of a natural correspondence between the fundamental notions of game semantics and those of digital circuits, and hence the automata-based models of GoS can be translated directly into hardware circuits.

1.2 Motivation

The games-based approach to hardware compilation exploits the natural connections between hardware and game semantics concepts. In addition to giving a correct-by-construction, semantics-directed hardware compilation method, the existence of well-defined access protocol to interfaces supports features such as libraries, separate compilation and even foreign function interfaces (FFI). These are all essential features of a mature compiler. The FFI especially, is instrumental in accessing the physical resources of an arbitrary system or pre-existing libraries of IP cores using the function call mechanism. However, interfacing with circuits produced outside the compiler exposes the synthesised code to low-level attacks (tamper attempts), because such circuits cannot be guaranteed to satisfy the input-output protocol which synthesised circuits must satisfy and assume in order to operate properly. Circuits generated naively from the game semantic models are tamper-resistant by construction because they cannot handle illegal environment actions. However, having tamper-resistance built-in compositionally is extremely inefficient.

In this thesis we examine the possibility of more optimisation opportunities in automata representing game-semantic models of programs. These type of automata are meant to operate in environments whose input-output behaviour is constrained by the rules of a game (protocol). Since not all actions are available to the environment, then this may lead to a notion of equivalence between states which is weaker than the con-
ventional notion of bisimulation, and hence more states are being identified as equivalent and consequently leading to more aggressive optimisations.

In conventional automata optimisation, two states are considered equivalent if they are not distinguishable by any environment; this concept is formalised by bisimulation. Bisimilar states can be identified, leading to optimised automata with fewer states. Minimising automata in restricted environments has not been considered in the literature, although Pierce and Sangiorgi have introduced related ideas for mobile processes under the name of “behavioural equivalence” [108, 109] which is based on the barbed bisimulation [97]. However, from the way it is formulated, it is difficult to observe the properties of control states from their corresponding processes.

Representing game semantics models by finite automata has been presented in the literature [54, 57]. Moving beyond finite automata has also been considered either directly [75] or via abstract interpretation [40, 41]. Both these approaches have been used in model checking of software, but they are not suitable for hardware synthesis. In order to compile systems which involve numerical values without the problem of having very large (or infinite) numbers of states, we will present a refined model of automata which uses symbolic representations of states as registers, in addition to the conventional concrete ones used for control. Several transitions from one source state to different destination states can be interpreted by one transition governed by a symbolic condition. This suggested model of automata is actually inspired by the work of Bakewell and Ghica [16], but the technical details are significantly different. These models were introduced for the purposes of model checking and hence there is no enough abstraction can be utilised by the relations of states simulation and equivalence.

To bring all these ideas together we propose, as a case study, an efficient way to synthesis tamper-proof hardware circuits from programs written in conventional languages using the GoS methodology and compiled to circuits via finite-state or symbolic automata.
1.3 Thesis Outline and Contributions

The thesis is organised as follows:

1 – Introduction.

2 – Background. Formally introduces the fundamental concepts we use in the rest of the work. It reviews FSMs and their models. This review pays particular attention to some concepts such as equivalence, composition and minimisation, which are relevant to our research. Chapter 2 also gives a brief introduction to hardware description languages (HDLs) followed by game semantics and hardware compilation, in particular Geometry of Synthesis hardware compiler (GoS). This chapter concludes with a brief overview on the problem of tampering in hardware circuits.

3 – Concurrent Finite States Transducers. Introduces a suitable model of finite state transducers (FSTs), which we call concurrent finite state transducers (CFSTs), with examples to show how CFSTs can be intersected and composed. Also in this chapter we discuss how programming language types can be seen as protocols. Finally, we present an algorithm for generating VHDL code from CFSTs.

4 – Coherent Minimisation. This is the key conceptual and theoretical contribution of the thesis, where we define a novel equivalence relation, *coherent equivalence*, which is weaker than the conventional equivalence relation and motivated by the existence of a restricted interaction between the system and its environment. The main result of the thesis is to show that coherent equivalence is sound. We give the (standard) minimisation algorithm based on this notion of equivalence. Since we are dealing with a compiler, the concept of the compositionality is very important as the coherent minimisation can be applied to any sub-component of a larger system without affecting its overall properties, including the coherence equivalence itself.
The second main result of this thesis is that the coherent equivalence not only sound but also compositional. Finally, we discuss the subtle connection between determinism and coherence minimisation in CFSTs, as it is particularly relevant to hardware synthesis.

5 – Symbolic Finite States Transducers. Discusses the limitations of CFSTs and proposes an improved model of infinite state transducers with finite control, which we call symbolic finite state transducers (SFSTs). We also adapt the notion of protocol to symbolic representation, and define intersection between the symbolic protocol and SFSTs. Subsequently, we present a modified definition of coherent equivalence relation (symbolic coherent equivalence) which identifies the equivalent states in SFSTs. Finally, we discuss by example how SFSTs can be coherently minimised by identifying coherent equivalent states. As in the case of CFSTs, we prove that the relation of symbolic coherence is sound and we note that the compositionality property of symbolic coherent minimisation is an immediate consequence of the compositionality of coherent minimisation of CFSTs.

6 – Case Study: Efficient Tamper-Proof Hardware Compilation. In this chapter we propose a model that can detect and resist low level attacks on hardware compilation by monitoring the interactions between the program and its environment. We demonstrate that tamper-proof hardware compilation can be achieved efficiently by restricting the synthesised circuit to interact with its environment through an interface enforcing a protocol, which detects any illegal interaction. This allows us to assume that indeed the behaviour of the environment is restricted and use coherent (symbolic) equivalence to reduce the number of states in the representation of the circuit.
7 – Coherent Minimisation for GoS. We examine the effectiveness of coherent minimisation by comparing the coherent minimisation results to those of bisimulation quotienting.

8 – Conclusions and Future Work. We conclude by summarising our results and proposing possible future directions which can be done to extend this research.

1.4 Publications

This thesis is partly based upon the following publication:

This paper has been presented by Zaid Al-Zobaidi in the *Fifth Interaction and Concurrency Experience (ICE) Workshop*.

Olle Fredriksson, Dan R. Ghica and Zaid Al-Zobaidi. Certified minimisation of automata under protocol. *in preparation*
CHAPTER 2

Background

2.1 Synopsis

In this chapter, we review finite state machines and introduce the common models of FSMs and other important concepts which are relevant to this thesis, in particular equivalence and minimisation. This chapter also presents the hardware description languages (HDLs) and explores how the functional behaviour of FSMs can be encoded using these languages. This is followed by a background on game semantics and hardware compilation. Finally, we conclude by reviewing the problem of circuits tampering.

2.2 Finite State Machines

Finite state machines (FSMs) are a common and very useful model of computation. Formally a FSM can be defined as a tuple $\langle S, \Sigma, s^0, \delta, F \rangle$, consisting of:

- A finite set of states, S.
- A finite set of input symbols, Σ.
- A designated initial state (start state), s^0 such that $s^0 \in S$.

- A transition function, δ, that takes a state (source state) and an input symbol and returns a state (target state), $\delta : S \times \Sigma \rightarrow S$.

- A finite set of final states (accept states), F, such that $F \subseteq S$.

FSM can be in only one state (internal configuration) at a time. Note that, in this thesis we indicate a component of FSM M by writing M as a subscript.

The previous definition is for a specific type of FSM which is called Deterministic (DFSM). A FSM M is said to be deterministic if for every state $s \in S$ and for every input symbol $a \in \Sigma$, there is only one target state can be accessed by reading a from s. By contrast, a FSM M is called Non Deterministic (NFSM) if the previous condition is not satisfied. The only difference between DFSM and NFSM is how the transitions are defined. In NFSM the transition relation (δ) is defined as a finite subset of $S \times \Sigma \times S$. The transition relation can be extended from taking one input symbol to a string (sequence of input symbols). We will call this relation the extended transition relation and it will be denoted by $\hat{\delta}$. It is defined inductively on strings as $\hat{\delta} \subseteq S \times \Sigma^* \times S$. Similarly, the transition function in DFSM can be extended to strings and defined as $\hat{\delta} : S \times \Sigma^* \rightarrow S$.

As in any directed graph, a FSM is said to be connected if there is a path from the initial state (start state) to all other states, $\forall q \in S, \exists w \in \Sigma^*$ s.t $(s, w, q) \in \hat{\delta}$. Unreachable states can be detected and removed to make the FSM initially connected.

Another important concept in DFSM is completeness. A DFSM is called complete if from every state and for every input symbol the transition function is defined, in other words the transition function is a total function. An incomplete DFSM can be transformed to a complete version by introducing a special state (called dummy state) and by assigning the target state of all missing transitions to the dummy state [82, 123].
2.2.1 The Language Accepted by FSM

The language that is accepted by any FSM can be defined as a set of all strings that result in a sequence of transitions that takes the FSM from the start state to one of the final states. Formally, the language of a DFSM M, written $\llbracket M \rrbracket$, can be defined as follows:

$$\llbracket M \rrbracket = \{ w \mid \hat{\delta}_M(s^0_M, w) \in F_M \}$$

Similarly, the language of NFSM M can be defined as follows:

$$\llbracket M \rrbracket = \{ w \mid (s^0_M, w, q) \in \hat{\delta}_M \text{ and } q \in F_M \}$$

2.2.2 Other Models of FSM

From our presented definition of FSM we can deduce that there are only two possibilities of output: accept or reject in correspondence to final states and non-final states, respectively. There are situations that require more than two kinds of output, and hence many models of FSMs have been suggested and presented in the literature [82, 123] to deal with the output alphabets of other domains. These models can be broadly classified into two types: FSM with output associated with states (Moore Machine) and FSM with output associated with transitions (Mealy Machine).\footnote{The name of Moore and Mealy machines are in honour of Edward Moore and George Mealy, who describe the behaviour of these machines for the first time in the 1950s.} Although the Mealy machine is a more popular formalism, it is well known that the Moore formalism is as expressive and there is a classic algorithm for converting between the two machines.

A Mealy machine M can be formally defined by the following tuple:

$$M = \langle S_M, \Sigma_M, \Gamma_M, s^0_M, \delta_M \rangle$$
The components of the machine are:

- A finite set of states, S_M.
- A finite set of input symbols, Σ_M.
- A finite set of output symbols, Γ_M.
- A designated initial state, s^0_M such that $s^0_M \in S_M$.
- A transition function, $\delta_M : S_M \times \Sigma_M \to S_M \times \Gamma_M$

To understand how Mealy machines work we need to realise how the transitions can be interpreted. Let us consider we have $\delta(q, i) = (q', o)$ as one of the transitions of a Mealy machine M then this means: if the machine M at state q reads the input i then it will produce the output o and move to the next state q'. This can be represented graphically as follows:

FSMs, including Mealy machines, can be represented by a transition diagram, which is a directed graph whose vertices correspond to the states of the machine while its edges stand for the transitions of the machine. These edges are labelled by the associated input and output.

Example 2.2.1 Let us consider the problem of a sequence detector and we want to design a Mealy machine that outputs ‘A’ when it detects the input sequence ‘101’, outputs ‘B’ when it detects ‘100’, and outputs ‘C’ in all other cases.

In this example we have $\Sigma = \{0, 1\}$ while the set of output symbols $\Gamma = \{A, B, C\}$. The machine can be represented as a state diagram as shown in Fig. 2.1.
Recalling the presented formal definition of the Mealy machine, it might be useful to define the output function explicitly in the tuple instead of being part of the transition function. The output function, λ can be defined as $S \times \Sigma \rightarrow \Gamma$. By removing the output from the transition function, we will have δ as $S \times \Sigma \rightarrow S$. However, the new formal definition of Mealy machines is functionally equivalent to the former one and also presented in several literature [82, 116]. Moore machine is another model which can be used to represent FSM with outputs that can be formally defined in a similar way to the second formal definition of Mealy machines apart from the output function. Since its outputs are associated with the states only, then the output function λ will be defined as $S \rightarrow \Gamma$, which means every state has a specific output.

2.2.3 Finite States Transducers

In Sec. 2.2.2 we presented the Mealy machine, whose outputs are determined by inputs and its current state. A Finite States Transducer (FST) is a non-deterministic Mealy machine that may exclude input and/or the output from the transitions [85, 76, 20]. Formally, a FST is defined by a 5-tuple as follows [85, 76]:

$$\langle S, \Sigma, \Gamma, s^0, \delta \rangle$$
All components of FSTs, apart from the transition relation δ, are similar to those defined previously for Mealy machines, while the transition relation δ can be defined as a finite subset of $S \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \times S$.

In the literature it has been shown that FSTs are closed under many operations, in particular composition [85]. Composition is one of the key operations that can be applied on transducers. Given two transducers T and T' defined over the same input and output alphabets, the composition of T and T' is a transducer $T \odot T'$ defined by the following tuple:

$$\langle S_T \times S_{T'}, \Sigma, \Gamma, (s^0_T, s^0_{T'}), \delta_{T \odot T'} \rangle$$

where $\delta_{T \odot T'}$ is defined as follows:

$$((s, s'), i, o', (q, q')) \in \delta_{T \odot T'} \text{ if and only if } (s, i, o, q) \in \delta_T \text{ and } (s', o, o', q') \in \delta_{T'}$$

2.2.4 Equivalence of FSMs and States Minimisation

There are different points of view which can be considered in the criteria of FSMs equivalence. Those variations are highly dependent on the type of FSMs. If two FSMs are FSMs with final states, then they are equivalent if and only if they accept the same set of strings (same language). On the other hand, if FSMs are transducers, Mealy, or Moore machines, then two FSMs are equivalent if and only if they produce two identical outputs as a response to the same input sequence [20]. Intuitively, equivalent states can be defined in terms of equivalence of FSMs. We can say two distinct states, s' and s'', in any FSM M are equivalent if FSMs $M^{s'}$ and $M^{s''}$ are equivalent, where $M^{s'}$ means a modified FSM M with start state s'. More precisely, for any arbitrary FSM $M = \langle S_M, \Sigma_M, s_M, \delta_M, F_M \rangle$ and any two states $s', s'' \in S_M$ we have the following:

$$[\langle S_M, \Sigma_M, s', \delta_M, F_M \rangle] = [\langle S_M, \Sigma_M, s'', \delta_M, F_M \rangle] \text{ if and only if } s' \equiv s''$$
Having two equivalent states it means that one of the states is redundant and can be eliminated. As a result, the number of the states is reduced. Writing an efficient algorithm for minimizing DFSM has a long history. The time complexity of most minimising algorithms is $O(n^2)$, where n is the number of states. Hopcroft’s algorithm has become one of the popular minimising algorithms because of its time complexity of $O(n \log n)$ [81, 110]. Hopcroft’s algorithm depends on the idea of finding equivalence classes. The states are partitioned into disjoint blocks such that every block contains only states that behave similarly in correspondence to the inputs. Initially, the minimisation process starts with only two blocks: one contains all the final states (F) and the second consists of all the remaining states ($S - F$). The refining process of the blocks lasts for several iterations until no new block can be introduced and hence the minimisation operation terminates. The number of states in the minimised DFSM is the final number of the blocks. In the resulting minimised DFSM all states that are in one block will be merged into one state.

Several DFSMs can be designed to accept the same language. We say that M is a minimal DFSM if and only if there is no other DFSM that accepts the same language of M and has fewer states than M. In fact, for every regular language there is only one minimal DFSM [82, 116]. Hopcroft’s algorithm has been introduced for the first time in [81] and has been studied and revisited several times in many publications [21, 90, 110]. Hopcroft’s algorithm [24] is outlined in Lst. 2.1. Note that, the splitting of the set H by the pair (Q, a) in line 7 occurs if and only if:

$$\delta(H, a) \cap Q \neq \emptyset \text{ and } \delta(H, a) \cap (S \setminus Q) \neq \emptyset$$

(2.1)

while by $\delta(H, a)$ we denote the set $\{p | p = \delta(q, a), q \in H\}$. Finally, the two subsets H' and H'' in line 8 are generated from H as follows:

$$H' = \{q \in H | \delta(q, a) \in Q\} \text{ and } H'' = H \setminus H'$$

(2.2)
Listing 2.1: Hopcroft’s DFSM Minimisation Algorithm

1: let ρ = \{\{F\}, \{S - F\}\}
2: let X = Minimum (F, S - F)
3: for all a ∈ Σ do
4: add(X, a) to the list l
5: while l ≠ ∅ do
6: extract (Q, a) from the list l
7: for each block H ∈ ρ that is split by (Q, a) do
8: generate H’, H’’ as new blocks resulting from
 splitting of H w.r.t (Q, a)
9: replace H in ρ with H’, H’’
10: let Y = Minimum (H’, H’’)
11: for all b ∈ Σ do
12: if (H, b) ∈ l then
13: replace (H, b) with (H’, b), (H’’, b)
14: else
15: add(Y, b) to the list l

In the following example we will show how Hopcroft’s algorithm can minimise a DFSM.

Example 2.2.2 Consider the DFSM M defined by the following tuple:

\(\langle\{s_0, s_1, s_2, s_3, s_4\}, \{a, b\}, s_0, δ, \{s_0, s_2\}\rangle\)

where δ is depicted in Fig. 2.2.

\[\text{Figure 2.2: A DFSM defined over } \{a, b\}^*: \text{ every literal } a \text{ is followed by the literal } b.\]
Obviously, the DFSM shown in Fig. 2.2 has $\Sigma = \{a, b\}$ and accepts all strings over Σ^* that have every literal 'a' followed by the literal 'b'. The application of Hopcroft’s algorithm to minimise this DFSM can be summarised in the following steps:

1. Initially $\rho = \{\{s_0, s_2\}, \{s_1, s_3, s_4\}\}$.

2. $X = \{s_0, s_2\}$

3. Add the pairs ($\{s_0, s_2\}, a$), ($\{s_0, s_2\}, b$) to the list l. We will assume that the list l is a stack.

4. Since $l \neq \varnothing$, continue with the following steps in the algorithm.

5. Extract ($\{s_0, s_2\}, b$) from the stack l, so we have $Q = \{s_0, s_2\}$ and $S \setminus Q = \{s_1, s_3, s_4\}$

6. (a) Examine the first block $\{s_0, s_2\}$, denoted by H_1, against the extracted pair (Q, b). It is clear that $\delta(H_1, b)$ is $\{s_2\}$ and hence $\{s_2\} \cap Q \neq \varnothing$. However, $\{s_2\} \cap (S \setminus Q) = \varnothing$, which means no splitting operation will occur in the block H_1, as specified in (2.1).

(b) Examine the other block $\{s_1, s_3, s_4\}$, denoted by H_2, against the extracted pair (Q, b). Obviously, $\delta(H_2, b)$ is $\{s_2, s_3\}$. Since $\{s_2, s_3\} \cap Q \neq \varnothing$ and $\{s_2, s_3\} \cap (S \setminus Q) \neq \varnothing$, then the condition of partitioning in (2.1) is satisfied and hence the block H_2 will be replaced by the two sub blocks $\{s_3, s_4\}$ and $\{s_1\}$, as specified in 2.2. Consequently, $\rho = \{\{s_0, s_2\}, \{s_3, s_4\}, \{s_1\}\}$. Because ($\{s_1, s_3, s_4\}, a) \notin l$ and since $\{s_1\}$ is the smallest block (only one state) we need to add the pair ($\{s_1\}, a$) to l. Likewise, the pair ($\{s_1\}, b$) will be added to l. After the last modifications, the list l contains the following pairs (in order):

$\{\{}(\{s_1\}, b), (\{s_1\}, a), (\{s_0, s_2\}, a)\}$.
7. Step 6 will be repeated with all pairs in list \(l \) until the list becomes empty. Thus the algorithm will terminate with:
\[
\rho = \{\{s_0, s_2\}, \{s_3, s_4\}, \{s_1\}\}.
\]

As outlined above in Step 7, minimising the DFSM \(M \) ends up with only three states, \((\{\{s_0, s_2\}, \{s_3, s_4\}, \{s_1\}\})\), instead of the original five states. In other words, \(s_0 \equiv s_2 \) and \(s_3 \equiv s_4 \), which can be interpreted as \(s_2 \) and \(s_4 \) are redundant states. We will denote the minimised DFSM by \(M' \), which can be defined by the following tuple:
\[
(\{\{s_0, s_2\}, \{s_3, s_4\}, \{s_1\}\}, \{a, b\}, \{s_0, s_2\}, \delta', \{\{s_0, s_2\}\})
\]
where \(\delta' \) is given by the state diagram shown in Fig. 2.3. By reviewing Fig. 2.3 and comparing it to Fig. 2.2 it is obvious that \([M] = [M']\).

![Figure 2.3: M': Minimised DFSM of Fig.2.2.](image)

It is important to mention that the equivalence relation on control states is reflexive, symmetric and transitive but only for a complete DFSM. In an incomplete DFSM the property of transitivity will be void, and hence the relation is no longer called equivalence, but is rather called *compatibility*. The definition of this relation will not be revisited here.
but it is discussed in the literature [116, 119].

2.3 Hardware Description Languages and VHDL

Hardware Description Languages (HDLs) are languages that are mainly used to describe hardware systems for different purposes. The main difference between HDLs and conventional programming languages, such as C, is that HDLs are used to describe and implement hardware circuits while the conventional languages are used mainly to write code that will be executed on a computer. Furthermore, HDLs provide concurrent execution not just sequential [101].

HDLs can be used to describe any hardware system at different levels of abstractions, in particular behavioural description. Behavioural description specifies the outputs of the system in response to input changes and hence this type of abstraction is used to write the functional specifications of FSMs (Sec. 2.3.2). VHDL is one of the most popular HDLs, it is IEEE standard and is supported by most vendors and organisations associated with hardware technology [27]. Thus, VHDL programmers are fully focused on the functionality of circuits rather than the technology that will be used to implement the circuit [101]. VHDL is an acronym for VHSIC Hardware Description Language, where VHSIC is another acronym for Very High Speed Integrated Circuits.\(^1\)

2.3.1 VHDL Background

Hardware description in its simplest form consists of two main units: interface and architecture [10, 124]. In VHDL, the interface is included in the “Entity” part and includes all specifications like input/output ports and other external parameters such as timing information, while the architectural description is included in the “Architecture” unit. This unit describes the functionality of the system depending on the input/output signals and

\(^1\)VHSIC is a project launched by the United States Department of Defence and focused on IC technologies [33].
other parameters that have been specified in the interface part. VHDL supports *signals*, which correspond to wires in circuits. To differentiate between signal and variable assignments, VHDL uses the symbol “<=” for signal assignment while keeps the conventional symbol “:=” for variable assignment. External signals (ports) connect the system to its environment and they represent the interface.

A “Process” in VHDL is a construct consists of sequential statements. All processes that are in the same architectural description run concurrently. Processes in VHDL have monitored signals (called *sensitivity list*), which must be defined explicitly. Consequently, the process will be activated whenever the monitored signals change their states.

VHDL supports various data types such as “integer”, “std_logic”\(^1\) and provides two sequential statements for describing the conditional logic: “If” and “Case”, which are presented in Appendix A.

After we have briefly reviewed some VHDL constructs that can be used in hardware description, we will explore how the behavioural description of FSMs can be generated, \textit{i.e.} how FSMs will be encoded in VHDL.

2.3.2 Behavioural Description of FSM in VHDL

The hardware circuits can be broadly classified into two types: *combinational-logic circuits* and *sequential circuits*. The outputs of combinational-logic circuits are a function of the current value of inputs, while in sequential circuits the outputs depend on the value of inputs and the past behaviour of the system. There are two scenarios that control the operation of sequential circuits. The first one is that there is a clock and hence this type of circuits are called *synchronous sequential circuits*, while the second assumes that there is no clock and hence they are known as *asynchronous sequential circuits*. Synchronous sequential circuits are used in most practical applications \cite{27}. In most

\(^1\) It is part of the *std_logic_1164* package in the IEEE library and it is used to represent the two binary values ('0' and '1') and also other common logical values like *high impedance* ('Z') and *undefined* ('U').
literature [66, 70, 102, 111], the synchronous sequential circuits are also called FSMs. The reason for this analogy is that the functional behaviour of these circuits can be represented by a finite number of control states [27].

As discussed in Sec. 2.2.2, Moore and Mealy machines are two models for describing FSM with outputs. In Moore machines, each state specifies its associated output; on the other hand in the Mealy machine both the current values of inputs and the current state decide outputs. In this thesis we will discuss the behavioural description of the Mealy model only. Readers interested in the Moore model are encouraged to consult some of the references in the literature [135, 136, 111, 34].

There are many approaches for encoding Mealy machines in VHDL. The first approach is to have two separate processes; one for outputs and the other one for control states. Another approach, which is functionally equivalent to the previous one, is to have only one process for both logics [66, 136, 111, 92]. Since the choice of one process or two processes to encode FSMs is debatable [34, 92], then the decision is completely left to the judgement of the developer [135]. In this work we adopt the Mealy model with one logic as depicted in Fig. 2.4.

Writing the behavioural description of any FSM, e.g. a Mealy machine, consists of two important concepts: states-assignment and transitions-encoding. States-assignment is the process of assigning specific binary code to every state in the FSM. There are many
approaches for states-assignment, such as Binary (every state is assigned an increasing binary code), One-hot (all bits but one are zero) and Gray (two consecutive states have codes that differ in only one bit). Each method of states-assignment has advantages and disadvantages which are discussed and studied in the literature [66, 111, 34]. Indeed, VHDL allows hardware programmers to declare the control states as enumerated type and thus they will be encoded by the synthesis tool [135]. For example, if we have a FSM with four states, namely s_0, s_1, s_2, s_3, then in VHDL the states-assignment can be achieved by writing the following code:

```
Listing 2.2: States-assignment in VHDL.

TYPE state_type IS (s0, s1, s2, s3);
SIGNAL state: state_type;
```

Transitions-encoding is the second key concept in the behavioural description of FSMs and can be considered as a translation of the transition function. As an example, consider Fig. 2.5 and its corresponding VHDL code outlined in Lst. 2.3.

![Figure 2.5: Mealy machine for an odd number of 0 and an odd number of 1.](image-url)
Listing 2.3: Transitions-Encoding of Fig. 2.5 in VHDL.

-- transitions encoding in VHDL--

CASE state IS

 WHEN s_0 => -- current state is s_0
 IF Input = '0'
 THEN
 state <= s_1; -- next state is s_1
 Output <= '0'; -- generate output 0
 ELSE
 state <= s_2; -- next state is s_2
 Output <= '0'; -- generate output 0
 END IF;

 WHEN s_1 => -- current state is s_1
 IF Input = '0'
 THEN
 state <= s_0; -- next state is s_0
 Output <= '0'; -- generate output 0
 ELSE
 state <= s_3; -- next state is s_3
 Output <= '1'; -- generate output 1
 END IF;

 WHEN s_2 => -- current state is s_2
 IF Input = '0'
 THEN
 state <= s_3; -- next state is s_3
 Output <= '1'; -- generate output 1
 ELSE
 state <= s_0; -- next state is s_0
 Output <= '0'; -- generate output 0
 END IF;

END CASE;
WHEN \(s_3 \rightarrow \) -- current state is \(s_3 \)

IF Input = '0'

THEN

\[\text{state} \leq s_2; \quad \text{-- next state is } s_2 \]

\[\text{Output} \leq '0'; \quad \text{-- generate output 0} \]

ELSE

\[\text{state} \leq s_1; \quad \text{-- next state is } s_1 \]

\[\text{Output} \leq '0'; \quad \text{-- generate output 0} \]

END IF;

END CASE;

Note that, the comments in Lst. 2.3 and in any VHDL code are those lines which are started by "--". By comparing the previous VHDL code and the Mealy machine in Fig. 2.5, we notice that the transitions are encoded as groups specified by their source states. Also, it is clear that the first part of the conditional statement matches the value of the inputs in the transitions, while the second part assigns the value of the outputs and the target states. Subsequently, any transition encoded with "Else" statement is considered as a default case, and hence only outputs and target states are assigned. In this thesis, these transitions are called default transitions.

Since FSM are synchronous circuits, then we need a clock to control its transitions as depicted in Fig. 2.4. In VHDL this can be achieved by the following code:

Listing 2.4: Checking the Rising Edge of the Clock in VHDL.

```vhdl
IF CLK = '1' AND CLK'EVENT THEN . . .
```

The statement CLK = '1' means that the clock is in the high state value, and CLK’EVENT checks the existence of a change in the state of the clock. Consequently, both conditions ensure that the system is in the rising edge. Moreover, the start state in FSMs corre-
sponds to what is called *Reset* in hardware circuits (see Fig. 2.4). Recalling Fig. 2.5, the initialisation process (reset) can be encoded as follows:

Listing 2.5: Reset-Checking in VHDL.

```vhdl
IF RESET = '1' THEN state <= s_0
```

After we explained all concepts that are relevant to the behavioural description of FSMs, we outline, in Lst. 2.6, the full VHDL code for the mealy machine depicted in fig. 2.5.

Listing 2.6: VHDL Code of Fig. 2.5.

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
ENTITY FSM IS
PORT ( CLK, RESET, Input : IN std_logic;
       Output : OUT std_logic);
END fsm;
ARCHITECTURE behavioural OF FSM IS
TYPE state_type IS (s_0, s_1, s_2, s_3);
SIGNAL state: state_type;
BEGIN
PROCESS (CLK,RESET)
BEGIN
IF RESET = '1'
 THEN
   state <= s_0
ELSIF CLK = '1' AND CLK'EVENT
 THEN
   Lst. 2.3 --Transitions-encoding to be included here
```

25
2.4 Game Semantics

Game semantics models computation as a game played between two players: a Propo-
nent (P) which represents the system (term) and an Opponent (O) which stands for the
environment (the context in which the term is used) [4, 8]. It is characterised by having
an understandable operational content and adopting compositional methods and hence
it is being used in defining fully abstract models for several programming languages [7].
Game semantics uses mathematical objects, called strategies, which are played on arenas.
Arenas are represented by a set of game moves. Each move can be a question or an
answer and belongs to one player (PropONENT or Opponent). Consequently, moves can be
classified into four types:

- Opponent question.

- Proponent answer.

- Proponent question.

- Opponent answer.

Strategies correspond to terms and are represented by finite sets of traces (called
plays). Each play is defined as a sequence of moves. Strategies obey the rules of games
and they describe the behaviour of the system, i.e. how the system should interact with
its environment [63, 50]. The rules of games depend on the language being modelled.
For example, PCF games follow the rules of “polite conversation” [58]. The environment
always makes the first move and also the environment and the system must take turns.
Furthermore, no question can be asked unless it is enabled by a relevant question and answers should be generated in order, i.e., a new answer move should be relevant to the most pending question.

Arenas in game semantics correspond to types. The arena of natural numbers (\(\mathbb{N} \)) has the following shape:

\[
\begin{array}{c}
q \\
1 & 2 & 3 & \ldots
\end{array}
\]

For example, modelling the natural number '1' in game semantics can be realised as an interaction that starts by a question (\(q \)) from the environment (\(O \)) “what is the number?” and the system (\(P \)) replies with '1'. The play of '1' can be written as follows, where the interactions should be read downwards:

\[
\begin{array}{c}
\mathbb{N} \\
O & q \\
P & 1
\end{array}
\]

The previous play of '1' can also be represented by a FST as depicted in Fig. 2.6.

![Figure 2.6: The play of '1' in game semantics represented as a FST.](image)

As shown in Fig. 2.6, the question move \(q \) has input polarity while the answer move '1' has output polarity.

Function and product arenas can be formed from the arenas of base types. In game semantics the interaction between the function and its environment is based on the idea that the environment provides the input and consumes the output while the function consumes the input and generates the output. Therefore a function arena of the shape
A ⇒ B requires the O/P roles of the moves relevant to A to be reversed. Consequently, the game N ⇒ N requires two copies of N; one for input and one for output. The following table shows a particular play of the strategy modelling the predecessor function.

<table>
<thead>
<tr>
<th>N ⇒ N</th>
</tr>
</thead>
<tbody>
<tr>
<td>O q</td>
</tr>
<tr>
<td>P q</td>
</tr>
<tr>
<td>O 3</td>
</tr>
<tr>
<td>P 2</td>
</tr>
</tbody>
</table>

The interactions involved in the previous strategy can be summarised as follows:

- the environment starts a move by asking “what is the output?”.
- the predecessor function responds “what is the input?”.
- the environment provides the input n.
- the function produces the output n − 1.

The previous arena N ⇒ N can also be used to module non-strict functions, which returns output without asking for their inputs [8]. Next, is a strategy for non-strict function that always returns 4.

<table>
<thead>
<tr>
<th>N ⇒ N</th>
</tr>
</thead>
<tbody>
<tr>
<td>O q</td>
</tr>
<tr>
<td>P 4</td>
</tr>
</tbody>
</table>

Another construct that can be applied on types to form new types is the product. The type A × B consists of two elements, one of type A and another of type B. A strategy for A × B, which corresponds to arenas A, B operating side by side, can be described by two different plays. These two plays are distinguished by where the Opponent decides to play
the first move, in A or B. For example, consider the pair (6,2), which has the following two plays.

<table>
<thead>
<tr>
<th></th>
<th>N × N</th>
<th></th>
<th>N × N</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>q</td>
<td>O</td>
<td>q</td>
</tr>
<tr>
<td>P</td>
<td>6</td>
<td>P</td>
<td>6</td>
</tr>
<tr>
<td>O</td>
<td>q</td>
<td>O</td>
<td>q</td>
</tr>
<tr>
<td>P</td>
<td>2</td>
<td>P</td>
<td>2</td>
</tr>
</tbody>
</table>

Although the product arena $A \times B$ consists of two types, investigating only one side of the product is also a legal play. Expressions in game semantics can be modelled using function and product arenas. For example, the subtraction operation on arena $\mathbb{N} \times \mathbb{N} \Rightarrow \mathbb{N}$ has the following play.

<table>
<thead>
<tr>
<th></th>
<th>$\mathbb{N} \times \mathbb{N} \Rightarrow \mathbb{N}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>q</td>
</tr>
<tr>
<td>P</td>
<td>q</td>
</tr>
<tr>
<td>O</td>
<td>i</td>
</tr>
<tr>
<td>P</td>
<td>q</td>
</tr>
<tr>
<td>O</td>
<td>j</td>
</tr>
<tr>
<td>P</td>
<td>$i - j$</td>
</tr>
</tbody>
</table>

Composition is one of the most important operations in game semantics. As large programs can be constructed by combining small programs, new strategies can be modelled by composing existing strategies. Given two strategies σ, σ' on arenas $A \Rightarrow B$ and $B \Rightarrow C$ respectively, the composite strategy $\sigma; \sigma'$ on arena $A \Rightarrow C$ can be computed by firstly synchronising all moves of the two strategies on B arenas and then hiding them. Therefore, how composition is applied in game semantics can be summarised as “parallel composition + hiding” [8]. The following figure shows the composition of two strategies: the subtraction operation and the pair (6,2).
Note that, the moves in the two copies of the arena $\mathbb{N} \times \mathbb{N}$ have complementary O/P polarities. By hiding all these arenas and their associated moves (the middle box) we get the following play:

$\begin{array}{c|c|c|c}
\mathbb{N} \times \mathbb{N} & \mathbb{N} \times \mathbb{N} & \Rightarrow & \mathbb{N} \\
\hline
O & q & \\
P & 6 & \\
O & 6 & \\
P & q & \\
O & 2 & \\
P & 2 & \\
O & 4 & \\
P & & \\
\end{array}$

The previous play is exactly what we expected for the subtraction operation (6-2).

In what follows we provide formal definitions for some important concepts in game semantics. For further information, readers are encouraged to review one of the many papers in the literature [4, 8, 50].
2.4.1 Arenas

An arena A is defined by a triple $(M_A, \lambda_A, \vdash_A)$, where:

- M_A is a set of moves.

- $\lambda_A : M_A \rightarrow \{O, P\} \times \{q, a\}$ is a labelling function to indicate for each $m \in M_A$ whether a move is played by Opponent (O) or Proponent (P) and whether it is a question (q) or an answer (a). Consequently, the function λ_A^{OP} is defined by projecting λ_A to $\{O, P\}$. The definition of λ_A^{qa} is analogous.

- \vdash_A is a binary relation on M_A, called enabling function which must hold the following three conditions:

 - if $\epsilon \vdash_A n$ then $\lambda_A(n) = (O, q)$, where n is called initial move;

 - if $m \vdash_A n$ then $\lambda_A^{OP}(m) \neq \lambda_A^{OP}(n)$;

 - if $m \vdash_A n$ then $\lambda_A^{qa}(m) = q$.

Note that, $m \vdash_A n$ means m enables n. In other words, all moves apart from initial moves can not be played unless their enablers have already occurred.

Consequently, product $(A \times B)$ and function $(A \Rightarrow B)$ arenas can be defined as follows:

- $A \times B$

 $$M_{A \times B} = M_A \uplus M_B$$

 $$\lambda_{A \times B} = [\lambda_A, \lambda_B]$$

 $$\vdash_{A \times B} = \vdash_A \uplus \vdash_B$$

- $A \Rightarrow B$

 $$M_{A \Rightarrow B} = M_A \uplus M_B$$
\[
\lambda_{A\Rightarrow B} = \left[\left(\lambda^{OP}_A, \lambda^{qa}_A\right), \lambda_B\right]
\]

\[
\vdash_{A\Rightarrow B} = \vdash_A \cup \vdash_B
\]

Where \(\lambda^{OP}_A = P\) if and only if \(\lambda^{OP}_A = O\).

2.4.2 Legal Plays and Strategies

The play or legal play of a game is represented by sequences of moves subject to some restrictions. Before we give a formal definition for the play we need to introduce the notion of a justified sequence, thereafter and by applying the condition of alternation \((O\) and \(P\) moves need to be interchanged in any sequence) we will obtain the definitions of play and strategy.

A justified sequence \(s\) in arena \(A\) is a finite string over the set of moves \(M_A\) accompanied by a pointer from each (non-initial) move \(m' \in s\) to the earlier move \(m \in s\) such that \(m \vdash_{A} m'\). Thus, we can say that \(m\) justifies \(m'\). A legal play of arena \(A\), denoted by \(L_A\), is a justified sequence \(s\) such that \(O\) and \(P\) moves are alternate in \(s\), and the first move in \(s\) is an Opponent question. Finally, A strategy \(\sigma\) on arena \(A\) (usually written \(\sigma : A\)) is defined as a set of even-length legal plays of \(L_A\) such that the following two conditions hold:

- if \(sab \in \sigma\) then \(s \in \sigma\);
- if \(sab, sab' \in \sigma\) then \(b = b'\).

2.5 Hardware Compilation

Hardware compilation (HC) is a process of translating programs written in high-level languages, for example C, into hardware circuits. This idea is not a new one and was considered by researchers and academics for many years as uneconomical and impractical [134]. However, the development of semiconductor technology and the advent of Field
Programmable Gate Arrays (FPGAs) was the catalyst of renewing interest in HC, as people started to accept delicate performance in order to reduce costs. The technology of hardware compilation is acquiring popularity, because compilation techniques provide “software-like” environments and hence it can be employed by many users [126, 26].

The techniques of hardware compilation can be broadly classified into two types. The first type tries to hide the hardware details from software designers by extending conventional languages (like C) with explicit constructs to provide concurrency and optimisation. The second type includes compiler tools that try to generate VHDL from unmodified C. Handel-C is an example of the first approach. It executes a program in a sequential manner unless we specify a parallel scope using “Par” keyword [29]. The syntax of Handel-C is easier to understand than HDLs, but it assumes that the programmers have good hardware skills relevant to parallelism and concurrency [138, 139]. Several research hardware compilers inspired by the second approach were developed such as SPARK, DWARV, and ROCCC [132]. SPARK is a hardware compiler developed at the University of California. It can be supplied by ANSI-C as source code and generates RTL-VHDL as an output [72]. SPARK performs some pre-synthesis transformations (like loop enrolling and dead code elimination) and generates a FSM model as intermediate representation [71]. ROCCC (Riverside Optimizing Configurable Computing Compiler) is another C to VHDL code generator that implements optimisation technique on kernel loops (most executed loops). The basic idea behind ROCCC is that it exploits the probability of data reuse in window operator, which are frequently used in multimedia applications like filters [70]. However, ROCCC is a highly oriented application, and hence it imposes several restrictions on the intake [100, 69]. DWARV (Delftworkbech Automated Reconfigurable VHDL Generator) is a C to VHDL hardware compiler which supports several applications (unlike SPARK and ROCCC). It exploits the parallelism of operations in algorithms. Its input is unmodified C code (without any extended syntax) and generates VHDL code to be executed on
prototype processors called MOLEN [132, 138].

2.6 Geometry of Synthesis Hardware Compiler

The Geometry of Synthesis (GoS)\(^1\) compiler [49, 60, 61, 62] produces (VHDL) descriptions of digital circuits from a conventional functional-imperative programming language. The circuits produced by the compiler are a concrete representation of the game-semantics models of the language.

2.6.1 The Language Verity

The source language of GoS is called Verity, and it is an Algol-like language in Reynolds’s sense [115]. It represents a combination of the affine simply-typed (call-by-name) lambda calculus with the simple imperative language of while loops. Additionally, Verity has primitives for parallel execution of commands.

The combination of call-by-name and local store, although made popular in Algol 60, fell out of favour as languages with global store (and more generally, global effects) and call-by-reference (C), call-by-value (ML) and call-by-need (Haskell) became prevalent for reasons of convenience and efficiency.

However, in the case of hardware compilation the perceived disadvantages of Algol yield unexpected benefits:

Local store. The notion of global store does not fit the way memory is used in a circuit.

In a circuit, stateful elements are scattered throughout the design, wherever needed. There is no need to bring them all together in a single global memory because this would be inefficient in multiple ways. Managing access to this global memory would require complex control elements which would be costly in energy, footprint and latency. It would also constitute a bottleneck for concurrency. Note that the lack

\(^1\)http://veritygos.org
of language support for global store does not mean that Verity cannot deal with programs which access off-chip RAM. It only means that such access needs to be programmed explicitly and used via library calls. This is an advantage because RAM controllers can exploit the precise memory hierarchy of the device in a way that generic language support cannot.

Call by name. Verity is a functional programming language, and it is well known that managing closures is one of the great potential sources of inefficiency in compilers. Dealing with memory management for closures in functional hardware synthesis raises additional difficulties because all usage of memory in a circuit must be bounded at synthesis time. This makes it impossible to support higher order functions [99]. However, call-by-name closures require less storage, because of constant re-evaluation of the thunks. This provides an elegant, albeit somewhat fortuitous, solution to the problem of memory management for closures.

The syntax of the language is standard for an Algol-like language. Here we only provide two examples, to give a flavour of the language. First, a naive and highly inefficient implementation of a Fibonacci number calculator:

\[
\text{let } fbn = (\text{fix } f. \ x. \ \begin{cases}
 0 & \text{if } x < 1 \\
 1 & \text{if } x < 2 \\
 f(x-1) + f(x-2) & \text{else}
\end{cases} \text{ in } fbn(5)
\]

Second, an efficient implementation using memorisation:

\[
\text{new mem(128) in} \\
\text{new } i := 0 \text{ in} \\
\text{while } !i < 128 \text{ do } \{ \text{mem(!i)} := 0; i := !i + 1 \}; \\
\text{let } fbv = \ l. (\text{fix } fib. \ a. \ n.
\]

35
new n1 in new n2 in new n3 in new n4 in
n1 := n;
if !n1 < 2 then 1
else if !a(!n1) > 0 then !a(!n1)
else (n2 := fib(a)(!n1 - 2);
 n3 := fib(a)(!n1 - 1);
 n4 := !n2 + !n3;
 a(!n1) := !n4;
 !n4))(mem)(l) in fbv(5)

The examples above should serve to convince that Verity is a conventional programming language with no hardware-specific primitives or constructs, although the type system has several subtle restrictions to ensure that the game-semantic models are finite-state.

2.6.2 Theoretical and Methodological Background of Verity-GoS

Compared to other higher-level academic or industrial synthesis tools the emphasis of GoS is on correct and efficient support for the functional infrastructure of the language. Some restrictions are unavoidable because of the finite-state nature of the digital circuits, and the aim of GoS is to impose no additional restrictions. It is a key methodological principle of the GoS project that mature support for functions is essential in the pursuit of a useful and usable compiler. The theory behind Verity-GoS and the methodological considerations are discussed at some length in [51].

Verity has three primitive (ground) types: commands (com), memory cells (var), and expressions (exp).

\[
\sigma ::= \text{com} \mid \text{var} \mid \text{exp}
\]
Furthermore, the language contains function types (→) and products (⊗) as follows:

\[\theta ::= \sigma | \theta \otimes \theta' | \theta \leadsto \theta \]

Finally, the imperative part of Verity is described by the following constants:

- \(n : \text{exp} \) natural number constants
- \(\text{skip} : \text{com} \) no operation
- \(:= : \text{var} \otimes \text{exp}_1 \leadsto \text{com}_2 \) assignment
- \(! : \text{var}_1 \leadsto \text{com}_2 \) dereferencing
- \(; : \text{com}_1 \otimes \text{com}_2 \leadsto \text{com}_3 \) sequential composition
- \(\otimes : \text{exp}_1 \otimes \text{exp}_2 \leadsto \text{exp}_3 \) binary arithmetic and logical operations
- \(\text{if} : \text{exp} \otimes \text{com}_1 \otimes \text{com}_2 \leadsto \text{com}_3 \) branching
- \(\text{while} : \text{exp} \otimes \text{com}_1 \leadsto \text{com}_2 \) iteration
- \(\text{newvar} : (\text{var} \leadsto \text{com}_1) \leadsto \text{com}_2 \) local variable
- \(\Delta : \text{com} \leadsto \text{com}_1 \otimes \text{com}_2 \) diagonal
- \(\parallel : \text{com}_1 \leadsto \text{com}_2 \leadsto \text{com}_3 \) parallel composition

2.6.3 Interpreting the Verity Constants

In this section we present how the semantics of Verity constants can be represented by FSTs. These models are asynchronous and as the name suggests there is only one input or output event allowed per transition. Compiling into synchronous platforms, like FPGAs, might introduce several delays (additional flip-flops) which have a negative impact on the efficiency of the generated circuit [60]. Alternatively, Ghica and Menaa proposed and studied a new approach to generate efficient circuits with low-latency, by combining as many transitions as possible into a single one while avoiding deadlocks and race conditions. More details on how to construct synchronous game models from asynchronous ones can be found in [56]. In this thesis, we use the synchronous models presented in [56] for optimisation and hardware synthesis purposes. However, in this section we only depict
the asynchronous models for all Verity constants, while the corresponding synchronous models are presented in Ch. 7. Note that, we use here the input/output notation with transitions in order to enable the reader to identify the input/output polarity of all moves.

Before we proceed with the interpretation of the Verity constants, let us first outline the legal moves (with their corresponding polarities) of the three base types of Verity (com, exp, var),

- \(M_{\text{com}} = \{ r^i, d^o \} \)
- \(M_{\text{exp}} = \{ q^i, n^o \} \)
- \(M_{\text{var}} = \{ q^i, n^o, w^i_n, ok^o \} \)

Note that, the symbol \(i \) (respectively \(o \)) attached to the above presented moves corresponds to the input (output) polarity. For example \(w^i_n \) stands for an input event of writing the value of \(n \), while \(ok^o \) is an output event denotes the completion of the writing operation. Consequently, \(q^i \) denotes an input event that enquires for the data value, while \(n^o \) stands for an output event that returns the data value. Likewise, \(r^i \) (respectively \(d^o \)) denotes an input (output) event for starting (completion) the command execution.

Natural number

The semantics of the natural number \(n \) constant is given by the following figure:

![Natural number diagram](image)

Intuitively, running the natural number constant is done by two consecutive transitions, the first one is an input request \(q \) to evaluate the expression and moving the control to state '1', while the second returns the output \(n \) and moves the control back to the initial state '0':
Skip

skip has semantics depicted in the following figure:

The interaction starts from the start state ’0’ by an input request \(r \) and then from state ’1’ an acknowledgement of successful completion \(d \) will be generated as a final output.

Assignment ’:=’

The semantics of the assignment constant is depicted in the following figure:

Intuitively, the reading of the semantics of ’:=’ is this:

- The environment starts the interaction \(r_2 \) and moves the control from state ’0’ to state ’1’.
- The program responds with an acknowledgement \(q_1 \) as an output to state ’2’ and asks the environment to provide the value.
- The environment will respond with the value \(n_1 \) and moving the control to state ’3’.
- The program will send the second output request \(w_n \) to start the write operation.
- Once the writing operation completed, the environment will send an acknowledgement \(ok \).
- Finally, in state ’5’ the program will terminate the execution of the constant by providing the output \(d_2 \).
Dereferencing ’!’

The semantics of the dereferencing in Verity is presented in the following figure:

![Diagram](https://via.placeholder.com/150)

The interaction here starts by a request q_2 from the environment asking for the evaluation of the expression and the program responds by a request q_1 to provide the input value of the variable. Then, the environment will provide the input n_1 which will be followed by an output n_2 produced from the program to acknowledge the completion of the process.

Sequential composition ’;’

The sequential composition constant of Verity has semantics shown in the following figure:

![Diagram](https://via.placeholder.com/150)

The environment begins the interactions by sending a request r_3 to start the execution of the commands in sequence and the program in state '1' responds by asking the environment to start the running of the first command r_1. After receiving an acknowledgement d_1, the second command will start running r_2. Finally, when the environment acknowledges the completion of the second command d_2, the program in state '5' will terminate the execution and return the control back to state '0'.

40
Binary operator ’⊙’

The semantics of the binary operator is depicted in the following figure:

The interaction starts by a request q_3 from the environment asking for the evaluation of the whole expression and the program responds by a request q_1 to provide the input value of the first expression. The environment will respond with the input n_1, which will be followed by a request q_2 from the program to start the evaluation of the second expression. Consequently, the environment will provide the value m_2 of the second argument and the program in state ’5’ returns the final output k_3 which is equal to $n_1 ⊙ m_2$. Finally, the control moves back to state ’0’.

Branching ’if’

The branching constant ’if’ of Verity has semantics depicted in the following figure:
Note that, we denote by \(n \) in the transition from state '2' to state '4' any value rather than zero. Intuitively, if the value of the guard is zero then the first command \(r_1 \) will be executed, otherwise the second command \(r_2 \) will be executed and hence the environment will respond accordingly by acknowledging \(d_1 \) or \(d_2 \), respectively. Finally, the program terminates the execution \(d_3 \) and resets the control to state '0'.

Iterator 'while'

The iterator 'while' has semantics presented in the following figure:

![Diagram of the iterator 'while'](image)

The execution starts by a request \(r_2 \) submitted from the environment and the program responds by requesting the value of the expression \(q \). If the returned value is zero, then the program executes the command \(r_1 \) and moves to state '3'. It will keep executing the same command and alternately moves between states '3' and '5' until it gets a non-zero value as an evaluation for the expression \(q \) and thereby it terminates the execution \(d_2 \) and moves the control to state '0'.

Local variable 'newvar'

The local variable constant has semantics depicted in the following FST:
The environment begins the execution by submitting an input request \(r_2 \) and the program responds by output \(r_1 \). When the control is in state '2', the environment must respond by writing a data value \(w_n \) and then the program reports the completion of the writing operation \(\text{ok} \). In state '4', the environment either repeats the writing process (\(w_n \) and \(\text{ok} \)) or it starts a read operation \(q \) and moves to state '5' and thereby the program will return the last stored value \(n \). The read and the write operations will be repeated many times until the environment reports the completion of the first command \(d_1 \) and consequently the program will terminate the execution, \(d_2 \).

Diagonal '\(\Delta \)'

Diagonal constant in Verity has semantics depicted in Fig. 2.7. The environment starts...
the execution with a request \(r_1 \) (respectively \(r_2 \)). This will be followed by running the shared command \(r \). Finally, once the environment acknowledges the completion \(d \), the program will terminate the execution of the constant by providing \(d_1 \) (respectively \(d_2 \)) and move the control again to state '0'.

Parallel composition '∥'

The semantics of the parallel composition constant is presented as an FST in the following figure:

It is clear that the semantics of the parallel composition is not direct like other Verity constants. The environment starts the execution of the constant by sending a request \(r_3 \), which will be followed by running the first command \(r_1 \) (respectively the second command \(r_2 \)). Next, there will be a move from state '2' (respectively '3') with either acknowledging the completion \(d_1 \) (respectively, \(d_2 \)) or there will be another running request \(r_2 \) (respectively \(r_1 \)). Once the two commands report completion, the program terminates the execution \(d_3 \) and resets the control back to state '0'.

44
2.7 Tampering and Tamper-Proof

In computing the term tampering refers to any unauthorised modifications of software or program code. Adversaries take advantages of mistakes in programs called vulnerabilities to manipulate the computing device into providing unexpected behaviours in the hope of extracting information [45, 48]. Most of the tampering methods are considered as low level attacks in which the adversary tries to circumvent the abstraction of the programming languages with a view to produce inexpressible behaviours in the language itself [2]. The “buffer overflow” is an example of tampering the abstractions of the programming languages [14]. These kinds of attacks are classified as control-flow exploits, because the adversary tries to change the control flow of the program by enforcing it to execute an additional code constructed by the attacker. Other types of tampering rely on analysing memory errors, such as side channel and cache hit ratios [30, 68, 105, 13, 45].

One of the possible ways to have secure circuits is by forbidding the adversary from modifying any data stored into it. This technique is called tamper-proofing circuits [48]. Many tamper-proof models and systems have been suggested and studied. For example, Ishai in [84] presented a tamper-proof system that defends against any leak in information via transforming any circuit into an bigger circuit that does the same functionality of the original one but has the ability to remain safe against an attacker who can observe some information during the computation. Also constraining the control-flow can prevent attacks from violating the machine-code execution [2]. By contrast, Cappaert in [28] proposed and studied a new model that embeds the control-flow data into the program using a secret key. Another technique of tamper-proofness is to construct a circuit that detects the tampering and also, if necessary, “self-destroy” to prevent any secret information to be revealed [83].
2.8 Summary

This chapter explored concepts that underpin the topic of this thesis, including minimisation of automata, encoding of FSMs, game semantics, hardware compilation (in particular GoS), and tampering.
Concurrent Finite States Transducers (CFSTs)

3.1 Synopsis

Finite State Transducers (FSTs) have been introduced in Ch. 2 as a non-deterministic model of Mealy machines. According to the definition of FSTs, they can only handle a maximum of two concurrent events (one input event and one output event) per transition. However, in synchronous communication there is the possibility of more than two events occurring simultaneously.

In this chapter we present a new model of FSTs, which we call Concurrent Finite States Transducers (CFSTs). As the name suggests the transitions of this type of transducer can be defined over a set of concurrent input and output events (possibly empty).

A CFST consists of a set of control states, two sets of input and output ports and a set of transitions. Control states are connected to each other via transitions and each transition will specify the set of simultaneous events that occur on active input (or output) ports.

In the case of concrete FSTs the difference between them and CFSTs is merely one of convenience. CFSTs could be syntactically reduced to FSTs by replacing the original
alphabet with the alphabet of all subsets of symbols. This grows the size of the alphabet exponentially, but does not change the expressiveness of the formalism. However, when we introduce *symbolic* representations of transducers (Ch. 5) it will be no longer obvious how combinations of symbols could be handled, so the CFST formalism is actually interesting in its own right.

Let a *signature* \(A \) be a pair of disjoint finite-sets of labels \((I_A, O_A)\), the input and the output ports of a CFST, respectively. We call a (possibly empty) subset of \(A \) a *round*, and an occurrence of a label in a round an *event*. Let a *synchronous trace* (or shortly a *trace*) over signature \(A \) be a sequence of rounds and its length be equal to the number of members (sets) in the sequence. Let \(\epsilon \) be the *empty trace* (*empty sequence*) and let \(\emptyset \) be the empty round. Note that, we will use the symbol \(\mathcal{L}_A \) to denote all ports labels in signature \(A \), i.e. \(\mathcal{L}_A = I_A \cup O_A \).

Two constructors can be applied on signatures, which we call tensor \(\otimes \) and an *arrow* \(\rightarrow \), defined as follows:

\[
\begin{align*}
I_{A \otimes B} &= I_A \cup I_B \\
O_{A \otimes B} &= O_A \cup O_B \\
I_{A \rightarrow B} &= O_A \cup I_B \\
O_{A \rightarrow B} &= I_A \cup O_B
\end{align*}
\]

By \(A^\bullet \) we denote a *passivised* signature \(A \), where polarities of all ports are changed to output. In other words, \(I_{A^\bullet} = \emptyset \) and \(O_{A^\bullet} = I_A \cup O_A \).

There is an intuitive connection between some concepts in CFSTs and game semantics, e.g. signature vs. arena, label vs. move, event vs. move occurrence, trace vs. play.

We will use the notation \(t : A \) to denote a trace \(t \) over the set of port labels \(\mathcal{L}_A \), i.e.
\(t \in (P(L_A))^* \), and call \(\mathcal{T}(A) \) the set of all such traces. We denote by \(t \uparrow A \) the trace obtained by deleting from the rounds of \(t \) all events with labels not belonging to \(L_A \). Note that, any empty set generated due to the removing process will be kept as an empty round.

Definition 3.1.1 (Trace Projection) The projection of the trace \(t : A \rightarrow B \) to the signature \(A \), denoted by \(t \uparrow A \), is defined inductively on the length of \(t \):

- If \(t = \varepsilon \) then \(t \uparrow A = \varepsilon \)
- If \(t = t' \cdot V \), where \(V \subseteq L_{A
ightarrow B} \), then \(t \uparrow A = (t' \uparrow A) \cdot (V \cap L_A) \)

Example 3.1.1 Let \(A = \{(a_1), (a_2)\}, B = \{(b_1), (b_2)\} \) and \(t : A \rightarrow B = \{a_1, a_2, b_1\} \cdot \{b_2\} \), then \(t \uparrow A = \{a_1, a_2\} \cdot \emptyset \).

Our setup models a globally synchronous clocked system, so every round in the definition of the trace corresponds to the events happening in a particular clock cycle. In the previous example if we assume that the events \(a_1, a_2, b_1 \) happen in a clock cycle \(n \) then \(b_2 \) will be defined at a clock cycle \(n + 1 \).

Definition 3.1.2 (Concurrent Finite States Transducer (CFST)) A CFST \(T \) over a signature \(A \), written \(T : A \), is a triple \(\langle S_T, s^0_T, \delta_T \rangle \) where:

- \(S_T \) is a finite set of states,
- \(s^0_T \) is a designated initial state (start state) such that \(s^0_T \in S_T \),
- \(\delta_T \) is a transition relation such that \(\delta_T \subseteq S_T \times P(L_A) \times S_T \).

CFSTs can be interpreted as processes or as protocols, depending on context. A process will be thought to conform to a protocol if its behaviour is fully included in it.

Determinism is important in several applications, particularly hardware synthesis. Like the case of FSTs, in order to assess whether a CFST is deterministic (DCFST) or not
we must consider the way outputs and target states are handled in transitions. A CFST will be considered deterministic if and only if for every state and for every set of input events there must be only one possible set of output events to be generated and only one target state to be accessed.

Definition 3.1.3 (Deterministic State) Given a CFST $T: A$ a state $q \in S_T$ is said to be deterministic state if and only if:

$$\forall V \subseteq P(I_A), \forall U, U' \subseteq P(O_A), \forall r, r' \in S_T, \text{ if } (q, V \cup U, r) \in \delta_T \text{ and } (q, V \cup U', r') \in \delta_T, \text{ then } (U, r) = (U', r')$$

By pointwise application we can define deterministic CFST (DCFST).

Definition 3.1.4 (DCFST) A CFST $T: A$ is said to be Deterministic CFST (DCFST) iff every state, $s \in S_T$, is a deterministic state.

Conversely, if a state or a CFST is not deterministic then we call it a non-deterministic state or a NCFST, respectively.

3.2 Legal Interactions (Protocol)

As mentioned in Sec. 3.1, CFSTs can be used to represent both processes and protocols. They can also be used to represent game-semantic plays and encode the legality conditions on plays. Consider this very simple example written in Verity, which is nothing but the sequencing of two procedure identifiers:

$$c_1 : com, \ c_2 : com \vdash c_1; c_2 : com$$ (3.1)

The game-semantic interpretation of this program is given in arena $com_1 \otimes com_2 \rightarrow com_3$.

50
Recalling that the command type has two moves: run \((r)\) and done \((d)\), the game-semantic model for Verity stipulates that the FST in Fig. 3.1 describes all (and only) those interactions that can be programmed in Verity over this arena.

Intuitively, the legal interactions (between the environment and the program) specified by the protocol proceeds as follows:

1. The environment may start executing the program \((r_3)\).

2. The program may terminate immediately \((d_3)\) or may ask for either commands to start evaluation \((r_1 \text{ or } r_2)\).

3. If \(r_1 \text{ or } r_2\) started the execution, then the program will report the end of the evaluation \((d_1 \text{ or } d_2, \text{ respectively})\), and consequently direct the control back to Step 2.

We can think of this FST as a protocol, and it gives the legality conditions for plays in the asynchronous game-semantic model. For the purpose of hardware synthesis we use a low-latency synchronous representation derived using a technique called round-abstraction \([56]\), allowing multiple inputs and outputs on the same transition while avoiding deadlocks and race conditions. The synchronous representation of the protocol, denoted by \(P\) is depicted in Fig. 3.2. Note that this protocol includes, for example, transitions in which commands \(c_1\) or \(c_2\) terminate instantaneously, e.g. \((2, \{r_1, d_1\}, 2)\).

![Figure 3.1: Asynchronous game-semantics protocol represented as an FST.](image)
3.3 Two Ways of Composing CFSTs

In the previous sections we introduced the CFST as a new model of FST that allows a set of input/output events to occur on the same transition. Also we explored how the protocols can be represented using CFSTs. In this section we define two ways of composing CFSTs: intersection and composition.

3.3.1 CFSTs Intersection

The intuition behind applying the intersection on CFSTs is to check whether two processes represented by two CFSTs have common interactions (traces). This inspection can be achieved by constructing a new CFST that simulates the two CFSTs by identifying all transitions that occur in both CFSTs.
Definition 3.3.1 (CFSTs Intersection) The intersection of CFSTs $T, T' : A$ is the CFST $T \cap T' : A$, defined as follows:

- $S_{T \cap T'} : S_T \times S_{T'}$

- $s_{T \cap T'} : (s^0_T, s^0_{T'})$

- $\delta_{T \cap T'}$ is defined as follows:

$((q, q'), V, (s, s')) \in \delta_{T \cap T'}$ if and only if $(q, V, s) \in \delta_T$ and $(q', V, s') \in \delta_{T'}$.

Example 3.3.1 In Fig. 3.3 we show T, the CFST synchronous representation of the Verity program presented in (3.1). It easy to see by visual inspection that the graph representing diagrammatically its transition function is included in the graph of the protocol P describing the legality condition over the same signature, as shown in Fig. 3.2. This means that $T \cap P = T$, i.e. $T \subseteq P$, i.e. CFST T conforms to the protocol P. This is to be expected, since T denotes a legal Verity program.

Figure 3.3: CFST T: Synchronous representation of the sequential composition constant.
3.3.2 CFSTs Composition

Composition is a significant operation in game semantics. It describes how two processes can interact, by providing a way to build complicated processes from simpler ones. The composition operation is realised by “plugging in” together some of the inputs and the outputs of two CFSTs. Formally, this is accomplished by synchronising behaviours along the connected ports, followed by hiding them. This informal definition matches the common definition of strategy composition from the game semantics literatures [8, 58]. Below we introduce the formal definitions of the synchronisation (interaction), the hiding (projection) operation and finally the composition operation, which depends on the former two definitions.

Definition 3.3.2 (CFSTs Interaction) The interaction of CFSTs $T : A \to B$ and $T' : B \to C$ is the CFST $T \parallel T' : A \to B \otimes C$ defined as follows:

- $S_{T \parallel T'} : S_T \times S_{T'}$
- $s_{T \parallel T'} : (s^0_T, s^0_{T'})$
- $\delta_{T \parallel T'}$ is defined as follows:

 $((q, q'), \langle V, (s, s') \rangle) \in \delta_{T \parallel T'}$ if and only if $(q, V \uparrow A \to B, s) \in \delta_T$ and $(q', V \uparrow B \to C, s') \in \delta_{T'}$.

Note that, all ports in the two signatures B of CFSTs T and T' in Def. 3.3.2, 3.3.4 have complementary input/output polarities. Fig. 3.4 outlines the interaction of CFSTs $T : A \to B$ and $T' : B \to C$ where every line corresponds to a set of ports. Ports under signature B, which connect both CFSTs, have input polarity in T and output polarity in T' or vice versa.
In Def. 3.1.1 we have presented how traces can be projected to a particular signature. The same idea can be applied to CFSTs by applying the projection operation on their transitions.

Definition 3.3.3 (CFST Projection) The projection of CFST $T : A \rightarrow B = (S_T, s^0_T, \delta_T)$ to a signature A is the CFST $T \upharpoonright A = (S_T, s^0_T, \delta_{T \upharpoonright A})$ where $\delta_{T \upharpoonright A}$ is defined as follows:

$$(q, V \upharpoonright A, q') \in \delta_{T \upharpoonright A} \text{ if and only if } (q, V, q') \in \delta_T.$$
Finally, the CFSTs composition can be formally defined as follows:

Definition 3.3.4 (CFSTs Composition) The composition of CFSTs \(T : A \rightarrow B \) and \(T' : B \rightarrow C \) is the CFST \(T \circ T' : A \rightarrow C = (T \parallel T') \upharpoonright (A \rightarrow C) \)

Example 3.3.2 Consider the interaction between two CFSTs \(T \) and \(T' \) presented in Fig. 3.5a and Fig. 3.5b, respectively.

In these two figures, all transitions stand for the moves of the command type \((com)\) in game semantics, where different subscripts are used to represent different commands. In game semantics the command type is interpreted by two moves: run \((r)\), which has an input polarity and done \((d)\), which has an output polarity. Consequently, the signature of CFST \(T \) is \(\{r, d_1, d_2\}, \{r_1, r_2, d\} \) while the signature of the CFST \(T' \) is \(\{r_2, d_x, d_y\}, \{r_x, r_y, d_2\} \). It is clearly that the two signatures of CFSTs \(T \) and \(T' \) share ports \(r_2 \) and \(d_2 \). The polarity of those two ports are output (respectively input) in CFST \(T \) and input (respectively output) in CFST \(T' \). By applying Def. 3.3.2 on CFSTs \(T \) and \(T' \) and by considering the shared ports \(r_2 \) and \(d_2 \) (signature \(B \)) we get \(T \parallel T' \) as presented in Fig. 3.5c.

The interaction of CFSTs is inspired by the interaction of strategies in game semantics. Two strategies have to synchronise their moves over their arenas. In CFSTs, the way that the interaction works is that for every pair of state \((s, s')\) belongs to \(S_T \times S_{T'} \) a new transition will be defined in \(\delta_{T \parallel T'} \) if and only if there is a transition in \(\delta_T \) with a source state \(s \) and a transition in \(\delta_{T'} \) with a source state \(s' \) such that those two transitions have the same set of \(B \) events. After the transitions of the CFST \(T \parallel T' \) are generated, all unreachable states will be removed. In fact, the CFST \(T \parallel T' \) in the previous example has 10 unreachable states and hence only six states appeared in Fig 3.5c.

Finally, to generate \(T \circ T' \) we need to hide all port labels that belong to the signature \(B \) (\(r_2 \) and \(d_2 \)) from the transitions of \(T \parallel T' \) as depicted in Fig. 3.6.
(a) CFST T.

(b) CFST T'.

(c) CFST $T \parallel T'$: interaction of CFSTs presented in Fig. 3.5a and Fig. 3.5b.

Figure 3.5: CFSTs interaction
3.4 Behavioural Description of CFSTs in VHDL

The encoding process of FSM has been briefly introduced in Sec. 2.3.2. This section explores how CFSTs can be encoded in VHDL and presents an algorithm (Lst. 3.1) for generating VHDL behavioural descriptions of CFSTs. This proposed algorithm uses approaches that are analogous to what has been suggested for encoding FSMs in the literature [136, 135, 111, 92, 34]. In fact, we consider the VHDL code outlined in Lst. 2.6 as a template for CFST-encoding, and tweak the interface; states-assignments; and transitions-encoding to fit the CFST that will be encoded.

Types and modes of ports are fundamental objects to think about in encoding any interface. Let us consider the CFST depicted in Fig. 3.5a, which is defined over the signature ($\{r, d_1, d_2\}, \{r_1, r_2, d\}$). We can observe that some input/output ports are omitted from the transitions, e.g. ports d_1, r_2, d_2 and d in the transition $(s_0, \{r, r_1\}, s_1)$. Inspired by digital circuits—in every clock cycle some ports are active and others are not (inactive).
we encode the input and output ports of this CFST with only two values '0' and '1' corresponding to inactive and active cases, respectively.

In any behavioural description of automata it is important that the encoded transitions of every state cover all input values. This approach is called *complete assignments*, and it enables the simulator or the synthesiser to decide on the next state (target state) and also generate the correct outputs. In a complete automata where the transition function is total, the transitions are encoded one by one as they are defined. Encoding incomplete automata means incomplete states-assignments which leads to synthesise unwanted latches to deal with these undefined transitions. Naively, this problem can be overcome by introducing additional state and consequently directing all undefined transitions to the new state. From our perspective, every process represented by a CFST conforms to a protocol, which monitors the interactions between the process and its environment. Indeed, the protocol is able to detect any illegal interactions (undefined transitions) represented by input and output events. This new approach of hardware synthesis is called *Tamper-proof compiler* and it is studied in Ch. 6. Accordingly, in the algorithm of CFST-encoding we encode only the transitions that are defined in the CFST and set the default cases to those transitions that have all input ports as inactive, e.g. transitions \((0, \emptyset, 0)\) and \((2, \{r_2\}, 3)\) in Fig. 3.5a.

Assigning values to output ports is another key operation in the transitions-encoding of CFSTs. In Lst. 2.3 the outputs are assigned explicitly in every transition. This encoding style can be used with CFSTs too. Alternatively, we suggested in our algorithm (Lst. 3.1) a new approach of using local variables. The local variables will be initialised to zero at the beginning of the process and every active output port will be encoded as '1' assigned to its corresponding local variable. At the end of the process, all variables will be assigned to their associated output ports to report the final outputs. The intuition behind introducing local variables in the encoding process is to generate a VHDL code that is
more optimised compared to the explicit assignments of output ports. For instance, let us revisit Fig. 3.5a. To assign explicitly the outputs in the transitions of this CFST, we need 27 signal assignments (9 transitions \(\times\) 3 output ports) compared to only 6 signal assignments required in our proposed approach as outlined in the VHDL code which is listed in Appendix B. This VHDL code is the behavioural description of Fig. 3.5a using our new algorithm (Lst. 3.1).

Listing 3.1: CFST-Encoding Algorithm.

Input : CFST \(T = (S_T, s^0_T, \delta_T)\), the signature \((I_A, O_A)\)

Output: VHDL code (behavioral description) of \(T\)

Step 1: Print the Header

--steps 2,3 define the entity "CFST" and declare its
--input/output ports

Step 2: Declare the "CLK", "RESET" in addition to all input

ports of \(T (I_A)\) as "IN std_logic"

Step 3: Declare all output ports of \(T (O_A)\) as "OUT std_logic"

--steps 4-23 generate the architectural unit of
--the behavioural description

Step 4: Encode the set of states \(S_T\) as in Lst. 2.2

Step 5: Declare the process with "CLK" and "RESET"

as the sensitivity list

Step 6: Declare a set of local variables as "std_logic"

--each variable corresponds to one output port in \(O_A\)

--steps 7-25 to generate the main process

Step 7: Initialise all local variables to '0'

Step 8: Test the "RESET" condition as in Lst. 2.5
Step 9: Check the rising edge of the clock ("CLK") as in Lst. 2.4
--steps 10-23 encode the transitions (δ_T)
--the template of transitions-encoding is listed in Lst. 2.3
Step 10: For every state $s' \in S_T$ do steps 11-22
Step 11: Let Tr, be the set of transitions with source state s'
Step 12: Let t, be the default transition in Tr
Step 13: Update Tr, $Tr = Tr \setminus t$
Step 14: For every transition (s', V, s'') in Tr do steps 15-20
Step 15: Let $V' = V \cap O_A$, be the set of active output ports.
Step 16: Let $U' = V \cap I_A$, be the set of active input ports
Step 17: Let $U = I_A \setminus U'$, the set of input ports that will be tested against '0'
Step 18: Encode the condition of the transition by considering the sets U and U'
--first transition in tr will be encoded by "IF" condition
--all remaining transition will be encoded by "ELSIF"
Step 19: Assign '1' to all variables that correspond to V'
Step 20: Encode the target state: $state \leftarrow s''$
--steps 21,22 encode the default transition (t)
--the transition t will be encoded by "ELSE" statement
Step 21: Assign '1' to the variables that correspond to active output ports in the default transition t
Step 22: Encode the target state of the default transition t
Step 23: Assign the values of all variables to their corresponding output ports
3.5 Chapter Summary

In this chapter we presented a new model of FSTs, which we called concurrent finite states transducer (CFST). CFST is defined over a signature, which is parallel to arena in game semantics. The transitions of CFSTs deal with sets of input/output events, where all events that occur in the same set are assumed to happen within the same clock cycle. Then, we introduced the notion of the protocol (legal plays). Also, we described two ways for composing CFSTs: intersection and composition. Finally, we suggested an algorithm for generating VHDL code from CFSTs.
CHAPTER 4

Coherent Minimisation

4.1 Synopsis

In Ch. 3 we introduced a new model of transducers (CFST) and also studied the operations that can be applied on this model. In this chapter we introduce the main contribution of our research: the coherent equivalence relation; formulate (the standard) minimisation algorithm based on this notion of equivalence; prove the soundness and compositionality of the coherent equivalence relation. Moreover, we show that all the operations that can be implemented on CFSTs are sound. Next, in Sec. 4.6 a modified coherent equivalence relation has been suggested to overcome the problem of output-nondeterminism. Finally, we presented a standard algorithm that relies on the coherent equivalence relation to minimise CFSTs.

4.2 CFST Language

The transition relation of CFSTs, introduced in Ch. 3, can be lifted from rounds to traces in the usual way (as in FSM). We will call this relation the extended transition relation and it will be denoted by $\hat{\delta}$.

63
For any CFST $T : A$, the extended transition relation will be defined as follows:

$$\hat{\delta}_T \subseteq S_T \times \mathcal{T}(A) \times S_T$$

Intuitively, if we have a tuple $(q, t, r) \epsilon \hat{\delta}$ it means that the CFST goes into state r when it reads the trace t starting from the state q. Formally, for a CFST T, the extended transition relation $\hat{\delta}$ is defined as the smallest set such that:

- $(q, \epsilon, q) \epsilon \hat{\delta}_T$.
- For any $V \subseteq \mathcal{L}_A$ and for any trace $t \in \mathcal{T}(A)$,

$$(m, t \cdot V, q) \epsilon \hat{\delta}_T \text{ iff } \exists n \epsilon S_T \text{ s.t. } (m, t, n) \epsilon \hat{\delta}_T \text{ and } (n, V, q) \epsilon \delta_T$$

The first rule says that with an empty trace the CFST can not change the state, while the second rule says that the state we reach after reading the trace $t \cdot V$ starting from state m is the same state we reach by reading V from state n after reading the trace t from state m.

Definition 4.2.1 (CFST Language) The language of a CFST $T : A$, written $[[T]] : A$, is a set of traces:

$$[[T]] = \{ t \epsilon \mathcal{T}(A) \mid \exists m \epsilon S_T \text{ s.t. } (s^0_T, t, m) \epsilon \hat{\delta}_T \}$$

Definition 4.2.2 (Traces-Set Interaction) The interaction of two sets of traces $\theta \subseteq \mathcal{T}(A \rightarrow B)$ and $\theta' \subseteq \mathcal{T}(B \rightarrow C)$ is $\theta \parallel \theta' = \{ t \epsilon \mathcal{T}(A \rightarrow B \star \otimes C) \mid t \uparrow (A \rightarrow B) \epsilon \theta \text{ and } t \uparrow (B \rightarrow C) \epsilon \theta' \}$.

The definition of trace projection, which has been introduced in Sec. 3.1.1, can be lifted to sets by point-wise application as in the following definition.
Definition 4.2.3 (Traces-Set Projection) The projection of a set of traces \(\theta \subseteq \mathcal{T}(A) \) to signature \(A' \) such that \(\mathcal{L}_{A'} \subseteq \mathcal{L}_A \), is \(\theta \upharpoonright A' = \{ t \upharpoonright A' \in \mathcal{T}(A') \mid t \in \mathcal{T}(A) \} \).

Composition of sets of traces is defined as interaction followed by hiding (projection), which is the standard definition in trace-based models of processes.

Definition 4.2.4 (Traces-Set Composition) The composition of two sets of traces \(\theta \subseteq \mathcal{T}(A \rightarrow B) \) and \(\theta' \subseteq \mathcal{T}(B \rightarrow C) \) is \(\theta \odot \theta' = \{ t \upharpoonright (A \rightarrow C) \mid t \in \theta \parallel \theta' \} \).

4.3 Conventional-Equivalence of CFSTs

Two CFSTs are considered to be equivalent if they accept the same language.

Definition 4.3.1 (Conventional Equivalence) Two CFSTs \(T, T' \) over the same signature are said to be equivalent if and only if they have the same set of traces:

\[T \equiv T' \iff [T] = [T'] \]

This is the conventional notion of CFST equivalence, and it is preserved by all common operations on CFSTs, such as intersection, interaction, etc. Next, we show that the intersection, interaction, and composition operations are sound.

Lemma 4.3.1 Given the CFSTs \(T, T', T \cap T' : A \) and a trace \(t \in \mathcal{T}(A) \). The CFST \(T \cap T' \) reads the trace \(t \) starting from the start state \((s^0_T, s^0_{T'}) \) and reaches a pair of states \((q, q') \in S_T \times S_{T'} \) if and only if the CFST \(T \) and the CFST \(T' \) reaches states \(q \) and \(q' \), respectively after they read the trace \(t \):

\[(((s^0_T, s^0_{T'}), t, (q, q'))) \in \hat{\delta}_{T \cap T'} \text{ if and only if } (s^0_T, t, q) \in \hat{\delta}_T \text{ and } (s^0_{T'}, t, q') \in \hat{\delta}_{T'} \]

Proof. LTR direction. In this proof we want to show that if \((((s^0_T, s^0_{T'}), t, (q, q'))) \in \hat{\delta}_{T \cap T'} \), then \((s^0_T, t, q) \in \hat{\delta}_T \) and \((s^0_{T'}, t, q') \in \hat{\delta}_{T'} \).
We prove this by induction on the length of the trace \(t \).

Base-case. Let \(t \) be an empty trace (\(\epsilon \)). Since \(\epsilon \) belongs to the languages of all CFSTs, then the lemma holds for this case.

Inductive-case. Assume that for any trace \(t \in T(A) \) the following:

\[
\text{if } ((s^0_T, s^0_{T'}, t, (q, q'))) \in \hat{\delta}_{T \cap T'}, \text{ then } (s^0_T, t, q) \in \hat{\delta}_T \text{ and } (s^0_{T'}, t, q') \in \hat{\delta}_{T'} \tag{4.1}
\]

This is the induction hypothesis and we are going to show that for any set of ports \(V \subseteq L_A \):

\[
\text{if } ((s^0_T, s^0_{T'}, t \cdot V, (r, r'))) \in \hat{\delta}_{T \cap T'}, \text{ then } (s^0_T, t \cdot V, r) \in \hat{\delta}_T \text{ and } (s^0_{T'}, t \cdot V, r') \in \hat{\delta}_{T'}.
\]

Let

\[
((s^0_T, s^0_{T'}, t \cdot V, (r, r'))) \in \hat{\delta}_{T \cap T'} \tag{4.2}
\]

We need to show that \((s^0_T, t \cdot V, r) \in \hat{\delta}_T\) and \((s^0_{T'}, t \cdot V, r') \in \hat{\delta}_{T'}\). By expanding the second rule of the extended transition relation, \(4.2\) is equivalent to:

\[
\exists (q, q') \in S_{T \cap T'} \text{ s.t. } ((s^0_T, s^0_{T'}, t, (q, q'))) \in \hat{\delta}_{T \cap T'} \tag{4.3a}
\]

\[
((q, q'), V, (r, r')) \in \delta_{T \cap T'} \tag{4.3b}
\]

Since \(4.3a\) is the LHS of the induction hypothesis in \(4.1\) then we can deduce the following:

\[
(s^0_T, t, q) \in \hat{\delta}_T \tag{4.4a}
\]

\[
(s^0_{T'}, t, q') \in \hat{\delta}_{T'} \tag{4.4b}
\]
Following Def. 3.3.1,(4.3b) is equivalent to:

\[(q, V, r) \in \delta_T \] (4.5a)

\[(q', V, r') \in \delta_{T'} \] (4.5b)

Using the second rule of the extended transition relation and by expanding (4.4a) and (4.5a) we get:

\[(s_0^T, t \cdot V, r) \in \hat{\delta}_T. \]

Similarly, we deduce:

\[(s_0^{T'}, t \cdot V, r') \in \hat{\delta}_{T'}. \]

RTL direction. In this proof we want to show that if \((s_0^T, t, q) \in \hat{\delta}_T \) and \((s_0^{T'}, t, q') \in \hat{\delta}_{T'} \), then \(((s_0^T, s_0^{T'}), t, (q, q')) \in \hat{\delta}_{T \cap T'} \). We prove this by induction on the length of the trace \(t\).

Base-case. Let \(t\) be an empty trace (\(\epsilon\)). Since \(\epsilon\) belongs to the languages of all CFSTs, then the lemma holds for this case.

Inductive-case. Assume that for any trace \(t \in \mathcal{T}(A)\) the following:

\[\text{if } (s_0^T, t, q) \in \hat{\delta}_T \text{ and } (s_0^{T'}, t, q') \in \hat{\delta}_{T'}, \text{ then } ((s_0^T, s_0^{T'}), t, (q, q')) \in \hat{\delta}_{T \cap T'} \] (4.6)

This is the induction hypothesis and we are going to show that for any set of ports \(V \subseteq \mathcal{L}_A\):

\[\text{if } (s_0^T, t \cdot V, r) \in \hat{\delta}_T \text{ and } (s_0^{T'}, t \cdot V, r') \in \hat{\delta}_{T'}, \text{ then } ((s_0^T, s_0^{T'}), t \cdot V, (r, r')) \in \hat{\delta}_{T \cap T'}. \]
Let

\[(s^0_T, t \cdot V, r) \in \hat{\delta}_T \quad (4.7a)\]

\[(s^0_{T'}, t \cdot V, r') \in \hat{\delta}_{T'} \quad (4.7b)\]

Now, we have to show that \(((s^0_T, s^0_{T'}), t \cdot V, (r, r')) \in \hat{\delta}_{T \cap T'}\).

Following the second rule of the extended transition relation, (4.7a) is equivalent to:

\[\exists q \in S_T \text{ s.t. } (s^0_T, t, q) \in \hat{\delta}_T \quad (4.8a)\]

\[(q, V, r) \in \delta_T \quad (4.8b)\]

Similarly, we get:

\[\exists q' \in S_{T'} \text{ s.t. } (s^0_{T'}, t, q') \in \hat{\delta}_{T'} \quad (4.9a)\]

\[(q', V, r') \in \delta_{T'} \quad (4.9b)\]

Since (4.8a) and (4.9a) are the LHS of the induction hypothesis in (4.6), then we get the following:

\[(((s^0_T, s^0_{T'}), t, (q, q')), V, (r, r')) \in \hat{\delta}_{T \cap T'} \quad (4.10)\]

Using Def. 3.3.1 and by expanding (4.8b) and (4.9b) we deduce,

\[(((q, q'), V, (r, r')), V, (r, r')) \in \delta_{T \cap T'} \quad (4.11)\]

By the second rule of the extended transition relation and by expanding (4.10) and (4.11) we get:

\[(((s^0_T, s^0_{T'}), t \cdot V, (r, r')), V, (r, r')) \in \hat{\delta}_{T \cap T'} \]

\[\square\]
Lemma 4.3.2 Given CFSTs $T : A \rightarrow B$ and $T' : B \rightarrow C$ and a trace $t : A \rightarrow B^{*} \otimes C$, then we have:

\[((s_{0}^{T}, s_{0}^{T'}), t, (q, q')) \in \hat{\delta}_{T//T'} \text{ iff } (s_{0}^{T}, t \uparrow (A \rightarrow B), q) \in \hat{\delta}_{T} \text{ and } (s_{0}^{T'}, t \uparrow (B \rightarrow C), q') \in \hat{\delta}_{T'} \]

(4.12a)

\[((s_{0}^{T}, s_{0}^{T'}), t \uparrow (A \rightarrow C), (q, q')) \in \hat{\delta}_{T\otimes T'} \text{ iff } ((s_{0}^{T}, s_{0}^{T'}), t, (q, q')) \in \hat{\delta}_{T\parallel T'} \]

(4.12b)

Proof. 4.12a and 4.12b can be proved just like Lem. 4.3.1. □

Lemma 4.3.3 (Intersection-Soundness) The language of the CFST which is generated from intersecting two CFSTs is equal to the intersection of the languages of the two CFSTs. Given CFSTs $T, T' : A$, then

\[[T] \cap [T'] = [T \cap T'] \]

Proof. LTR direction. Let t be a trace in $[T] \cap [T']$. It follows that $t \in [T], [T']$. We need to show that $t \in [T \cap T']$. This proof follows directly from the RTL direction of Lem. 4.3.1.

RTL direction. Let t be a trace in $[T \cap T']$. We need to show that $t \in [T] \cap [T']$, which is equivalent to $t \in [T], [T']$. This proof follows directly from the LTR direction of Lem. 4.3.1. □

Lemma 4.3.4 (Interaction-Soundness) The language of the CFST which is generated from interacting two CFSTs is equal to the interaction between the languages of the two CFSTs. Given CFSTs $T : A \rightarrow B$ and $T' : B \rightarrow C$, then

\[[T \parallel T'] = [T] \parallel [T'] \]

69
Proof. We prove this lemma by double inclusion as follows:

1. \([T \parallel T'] \subseteq [T] \parallel [T']\).

2. \([T] \parallel [T'] \subseteq [T \parallel T']\).

1. Let

\[t \in [T \parallel T'] \quad (4.13) \]

Next, we want to show that:

\[t \in [T] \parallel [T'] \]

By expanding (4.13) using Def. 4.2.1 we get \(\exists (q, q') \in S_T \times S_{T'}\) s.t. \(((s^{0}_T, s^{0}_{T'}), t, (q, q')) \in \hat{\delta}_{T \parallel T'}\), which by Lem. 4.3.2 immediately implies the following:

\[(s^{0}_T, t \uparrow (A \rightarrow B), q) \in \delta_T\] and \((s^{0}_{T'}, t \uparrow (B \rightarrow C), q') \in \delta_{T'}\) \quad (4.14)

Using Def. 4.2.1 and by expanding (4.14), it follows directly that \(t \uparrow (A \rightarrow B) \in [T]\) and \(t \uparrow (B \rightarrow C) \in [T']\). Using Def. 4.2.2 it yields that \(t \in [T] \parallel [T']\).

2. Let

\[t \in [T] \parallel [T'] \quad (4.15) \]

Next, we want to show that:

\[t \in [T \parallel T'] \]

By expanding (4.15) using Def. 4.2.2 we get:

\[t \uparrow (A \rightarrow B) \in [T]\] and \(t \uparrow (B \rightarrow C) \in [T']\) \quad (4.16)
Using Def. 4.2.1 it follows directly that:

\[(s^0_T, t \uparrow (A \rightarrow B), q) \in \delta_T \text{ and } (s^0_{T'}, t \uparrow (B \rightarrow C), q') \in \delta_{T'},\]

(4.17)

From (4.17) and by Lem. 4.3.2 we deduce that:

\[((s^0_T, s^0_{T'}), t, (q, q')) \in \hat{\delta}_{T \parallel T'}.\]

By Def. 4.2.1 this immediately implies that \(t \in \llbracket T \parallel T' \rrbracket.\) □

Lemma 4.3.5 (Composition-Soundness) The language of the CFST which is generated from composing two CFSTs is equal to the composition between the languages of the two CFSTs. Given CFSTs \(T: A \rightarrow B\) and \(T': B \rightarrow C\), then

\[\llbracket T \circ T' \rrbracket = \llbracket T \rrbracket \circ \llbracket T' \rrbracket\]

Proof. We prove this lemma by double inclusion as follows:

1. \(\llbracket T \circ T' \rrbracket \subseteq \llbracket T \rrbracket \circ \llbracket T' \rrbracket.\)

2. \(\llbracket T \rrbracket \circ \llbracket T' \rrbracket \subseteq \llbracket T \circ T' \rrbracket.\)

1. Let

\[t \in \llbracket T \circ T' \rrbracket\]

(4.18)

Next, we want to show that:

\[t \in \llbracket T \rrbracket \circ \llbracket T' \rrbracket\]

By expanding (4.18) using Def. 4.2.1 we get \(\exists(q, q') \in S_T \times S_{T'}\) s.t \(((s^0_T, s^0_{T'}), t, (q, q')) \in \hat{\delta}_{T \circ T'}\). By (4.12b) from Lem. 4.3.2 this immediately implies the following:

\[\llbracket T \rrbracket \circ \llbracket T' \rrbracket \subseteq \llbracket T \circ T' \rrbracket\]

(4.19)
Using (4.12a) from Lem. 4.3.2 and by expanding (4.19) we get:

\[(s_0^T, t' \uparrow (A \rightarrow B), q) \in \hat{\delta}_T \text{ and } (s_0^T, t' \uparrow (B \rightarrow C), q') \in \hat{\delta}_T',\]

which by Def. 4.2.1 immediately implies:

\[t' \uparrow (A \rightarrow B) \in \llbracket T \rrbracket \text{ and } t' \uparrow (B \rightarrow C) \in \llbracket T' \rrbracket\] (4.20)

By expanding (4.20) using Def. 4.2.2 we get \(t' \in \llbracket T \rrbracket || \llbracket T' \rrbracket\), which can be expanded using Def. 4.2.4 to \(t' \uparrow (A \rightarrow C) \in \llbracket T \rrbracket \odot \llbracket T' \rrbracket\). Since we have \(t = t' \uparrow (A \rightarrow C)\) in (4.19), then we conclude that \(t \in \llbracket T \rrbracket \odot \llbracket T' \rrbracket\).

2. Let

\[t \in \llbracket T \rrbracket \odot \llbracket T' \rrbracket\] (4.21)

Next, we want to show that:

\[t \in \llbracket T \odot T' \rrbracket\]

By expanding (4.21) using Def. 4.2.4 we get:

\[t' \in \llbracket T \rrbracket || \llbracket T' \rrbracket \text{ s.t } t' \uparrow (A \rightarrow C) = t\] (4.22)

Expanding (4.22) using Def. 4.2.2, yields that \(t' \uparrow (A \rightarrow B) \in \llbracket T \rrbracket \) and \(t' \uparrow (B \rightarrow C) \in \llbracket T' \rrbracket\). Using Def. 4.2.1 it follows directly that:

\[\exists q \in S_T \text{ s.t } (s_0^T, t' \uparrow (A \rightarrow B), q) \in \hat{\delta}_T \text{ and } \exists q' \in S_T' \text{ s.t } (s_0^T, t' \uparrow (B \rightarrow C), q') \in \hat{\delta}_T'\] (4.23)

From (4.23) and by (4.12a) we deduce that:

\[((s_0^T, s_0^T), t', (q, q')) \in \hat{\delta}_{T \| T'}\]
which by (4.12b) implies that \(((s^0_T, s^0_{T'}), t' \uparrow (A \rightarrow C), (q, q')) \in \hat{\delta}_{T \circ T'}\). Since we have \(t = t' \uparrow (A \rightarrow C)\) in (4.22), then we get \(((s^0_T, s^0_{T'}), t, (q, q')) \in \hat{\delta}_{T \circ T'}\), which by Def. 4.2.1 immediately implies that \(t \in [T \circ T']\). □

4.4 Coherent Equivalence of CFSTs

In conventional FSM optimisation two states are considered equivalent if they are not distinguishable by any environment; this concept is formalised by bisimulation. Bisimilar states can be identified, leading to optimised automata with a fewer number of states. But in some cases, for example when representing game-semantic models of programs, CFSTs are meant to operate in environments whose behaviour is constrained by the rules of a game. This can lead to a notion of equivalence between states which is weaker than the conventional notion of bisimulation, since not all actions are available to the environment.

We define a laxer notion of equivalence motivated by a restricted set of interactions between the CFST and its environment. Let us define this restricted set of interactions represented by a CFST, denoted by \(P\), and we call it a protocol (discussed in Sec. 3.2).

Definition 4.4.1 (CFST Coherent Equivalence) We say that CFSTs \(T, T' : A\) are coherently equivalent under the protocol \(P : A\), written \(T \equiv^P T'\), if and only if \(T \cap P \equiv T' \cap P\).

The reachability concept has been explained in Ch. 2. A trace \(t\) is said to be a witness trace of state \(q\) in a CFST \(T : A\) if and only if the CFST \(T\) reaches the state \(q\) when it reads the trace \(t\) starting from the start state \(s^0_T\). By lifting this definition to all possible traces we can define the set of witness traces.

Definition 4.4.2 (Witness Traces) The set of witness traces of a state \(q\) in a CFST \(T : A\), denoted by \(\omega_T(q)\), is defined as follows:

\[
\omega_T(q) \overset{\text{def}}{=} \{ t \in [T] \mid (s^0_T, t, q) \in \hat{\delta}_T \}
\]
Consequently, if \(t \in \omega_T(q) \), then we say that the state \(q \) is \textit{reachable} by the trace \(t \), written \(\frac{t}{\tau} q \).

The main definition in this section identifies when two states are coherent, \textit{i.e.} equivalent under a restricted set of observations.

Definition 4.4.3 (Coherent State Simulation) Given a CFST \(T : A \), a protocol \(P : A \) and a relation \(R \subseteq S_T \times S_T \), we say that \(R \) is a coherent simulation, iff \(\forall (s_1, s_2) \in R, \forall V \subseteq \mathcal{L}_A, \forall r_1 \in S_T, \text{ if } (s_1, V, r_1) \in \delta_T \) and \((\omega_T(s_2) \cdot V) \cap \llbracket P \rrbracket \neq \emptyset \) then \(\exists r_2 \in S_T \) s.t \((s_2, V, r_2) \in \delta_T \) and \((r_1, r_2) \in R \).

For any two states \(s_1, s_2 \in S_T \) if \((s_1, s_2) \in R \), for some protocol \(P \), then we write \(s_1 \bowtie_T P T s_2 \).

Definition 4.4.4 (Coherent State Equivalence) Given a CFST \(T : A \), a protocol \(P : A \) and states \(s_1, s_2 \in S_T \) we say they are coherently equivalent, written \(s_1 \bowtie_T P T s_2 \), if and only if \(s_1 \bowtie_T s_2 \) and \(s_2 \bowtie_T s_1 \).

From the previous definition, it is obvious that two states \(s_1, s_2 \) in the CFST \(T : A \) are only considered not coherently equivalent under a protocol \(P : A \) if and only if either \(s_1 \not\bowtie_T P T s_2 \) or \(s_2 \not\bowtie_T P T s_1 \), which means either state \(s_2 \) is not coherently simulating state \(s_2 \) or vice versa. Both cases can be interpreted similarly by Def. 4.4.3 and hence we will only consider the first one here. According to Def. 4.4.3 the case of \(s_1 \not\bowtie_T P T s_2 \) only will occur if and only of \(\exists V \subseteq \mathcal{L}_A, \exists s'_1 \in S_T \) such that \((s_1, V, s'_1) \in \delta_T \), and \(\omega(s_2) \cdot V \cap \llbracket P \rrbracket \neq \emptyset \), and one of the following cases is satisfied:

1. there is no valid transition with label \(V \) from state \(s_2 \).

2. there exists \(s'_2 \in S_T \) s.t \((s_2, V, s'_2) \in \delta_T \) and \(s'_1 \not\bowtie_T P T s'_2 \).

In case 1, state \(s_2 \) is not simulating \(s_1 \), because state \(s_1 \) has a transition that is not valid from state \(s_2 \) while the concatenation of one of the witness traces \((\omega(s_2)) \) of state \(s_2 \) and
V events is a valid trace in the protocol P, i.e. $\omega(s_2) \cdot V \cap [P] \neq \emptyset$. Comparing to the conventional simulation (no existence for the protocol), the case of having a transition from one state but not from the second state implies that the two states are not simulated while in the proposed coherent simulation these two states will be considered simulated in all scenarios unless $\omega(s_2) \cdot V \cap [P] \neq \emptyset$. Thus we can conclude that our coherent simulation definition is weaker than the conventional one. Likewise, in case 2 we have state s_1 is not simulating s_2, but the situation is different. State s_1 and state s_2 have the same transition but the target states of both transitions are not simulated, i.e. $s'_1 \not\xrightarrow{T} s'_2$. By the interpretation of the conventional simulation for this particular case those two states are also not simulated.

To give more intuitive explanation for the previous two definitions, let us consider the following simple, but not trivial, example.

Example 4.4.1 Consider a transducer $T : A$ and a protocol $P : A$ which are depicted in Fig. 4.1 and Fig. 4.2, respectively, where $\mathcal{L}_A = \{a, b, c, d\}$. Given the relation $R = \{(s_1, s_2), (s_2, s_1), (s_3, s_3)\}$, we want to show that R is a coherent simulation relation.

![Figure 4.1: Transducer T.](image)

Next, we will show that R is a coherent simulation relation according to Def. 4.4.3.
1. Consider \((s_1, s_2) \in R\). State \(s_1\) has the transition \((s_1, \{a\}, s_3) \in \delta_T\). Since we have \(\{c, d\} \in \omega_T(s_2)\) (see Fig. 4.1) and \(\{c, d\} \cdot \{a\}\) is a valid trace in \(P\) (see Fig. 4.2), i.e. \((\{c, d\} \cdot \{a\}) \cap \llbracket P \rrbracket \neq \emptyset\) and because we have \((s_2, \{a\}, s_3) \in \delta_T\) and \((s_3, s_3) \in R\), then we deduce that Def. 4.4.3 is satisfiable for the pair \((s_1, s_2)\).

2. Now, we want to show that Def. 4.4.3 is valid for the pair \((s_2, s_1)\). State \(s_2\) has the transition \((s_2, \{a\}, s_3) \in \delta_T\). From Fig. 4.1 we have \(\{a, d\} \in \omega_T(s_1)\) and \(\{a, d\} \cdot \{a\}\) is a valid trace in \(P\), i.e. \((\{a, d\} \cdot \{a\}) \cap \llbracket P \rrbracket \neq \emptyset\). On the other hand, we have \((s_1, \{a\}, s_3) \in \delta_T\) and \((s_3, s_3) \in R\).

3. Similarly, we can show that Def. 4.4.3 is satisfiable for the pair \((s_3, s_3)\).

Therefore, we can conclude from the previous example that \(R\) is, indeed, a coherent simulation relation. By recalling Def. 4.4.4 we can also deduce that \(s_1 \simeq^P_T s_2\), i.e. \(s_1\) and \(s_2\) are coherently equivalent under the protocol \(P\), because \((s_1, s_2), (s_2, s_1) \in R\). In fact, those two states are bisimilar in the conventional sense. The connection between coherent and conventional equivalence relations is investigated in Prop. 4.4.1 while in the worst case, when the protocol allows all the interactions, the coherent equivalence relation become the conventional notions of equivalence (as shown in Proposition 4.4.1). Now, let us consider another relation that show the importance of the protocol and the fact that only a subset of the interactions are available to the environment. Let \(R' = \{(s_0, s_1), (s_1, s_0)\}\) and we will show that \(R'\) is a coherent simulation relation using Def. 4.4.3.
1. Consider \((s_0, s_1) \in R'\). State \(s_0\) has two transitions \((s_0, \{a, d\}, s_1) \in \delta_T\) and \((s_0, \{c, d\}, s_2)\), while \(\omega_T(s_1) = \{a, d\} \cdot (\{a\} \cdot (\{b\} + (\{c, d\} \cdot \{a\})^*) \cdot \{a, d\})^*\) (see Fig. 4.1).

(a) Let us examine the transition \((s_0, \{a, d\}, s_1) \in \delta_T\). Since \((\omega_T(s_1) \cdot \{a, d\}) \cap \llbracket P \rrbracket = \emptyset\) (see Fig. 4.2) then this means that the hypothesis \((s_1, V, r_1) \in \delta_T\) and \((\omega_T(s_2) \cdot V) \cap \llbracket P \rrbracket \neq \emptyset\) of Def. 4.4.3 is false and hence this transition is satisfiable by this definition.

(b) Similarly we can show that Def. 4.4.3 is satisfiable for the transition \((s_0, \{c, d\}, s_2) \in \delta_T\).

2. Consider \((s_1, s_0) \in R'\). State \(s_1\) has the transition \((s_1, \{a\}, s_3) \in \delta_T\), while \(\omega_T(s_0) = \epsilon\) (see Fig. 4.1). This means that \(\omega_T(s_0) \cdot \{a\} \cap \llbracket P \rrbracket = \emptyset\) and hence we can deduce that the definition is valid for the pair \((s_1, s_0)\).

Since we have \((s_0, s_1), (s_1, s_0) \in R'\) then we can conclude that \(s_1 \not\sim^P_T s_2\) (according to Def. 4.4.4) and hence they can be combined into one state, i.e. these two states can be quotiented, as will be outlined in Def. 4.4.5), and as a result the number of states in the CFST \(T\) will be minimised. However, these two states \((s_0, s_1)\) can not be minimised using conventional minimisation algorithms based on the bisimulation quotienting, because those two states have different behaviours in corresponding to \(\{a, d\}\) and \(\{a\}\) events. In Def. 4.4.3 this difference in behaviour of the two states will not restrict (in most cases) the minimisation opportunities as long as the new traces that will be introduced from combining the two states are not valid traces in the protocol, because the original CFST and the resulting one from the minimisation process have to be coherent equivalence under the protocol, as defined in Def. 4.4.1. From this example we deduce that the coherent simulation and the coherent equivalence relations are weaker than standard conventional simulation and the bisimulation quotienting relations and hence more states will be observed coherent equivalent under the protocol.
Any FSM-based minimisation technique can be considered as a two-stages process: firstly, identifying equivalent states and secondly, combining the equivalent states into one state. In this thesis, we call the CFST obtained by identifying two states a quotiented CFST. Given a function \(f : A \rightarrow B \) we denote by \((f \mid x \mapsto y) : A \cup \{x\} \rightarrow B \cup \{y\}\) the function which maps \(x \) to \(y \) and otherwise behaves like \(f \). We denote by \(id_A : A \rightarrow A \) the identity function on \(A \), omitting the subscript if it is clear from the context.

Definition 4.4.5 (CFST Quotienting) Given CFST \(T = (S \cup \{s_1, s_2\}, s^0_T, \delta_T) \) we define its quotient \(T/\slash(s_1, s_2) \) as follows:

- \(s_{T/\slash(s_1, s_2)} = S \cup \{s\} \)
- \(s_{T/\slash(s_1, s_2)} = (id_S \mid s_1 \mapsto s \mid s_2 \mapsto s)(s^0_T) \)
- \((r_1, V, r_2) \in \delta_{T/\slash(s_1, s_2)} \) iff there are \(r'_i \in (id_S \mid s_1 \mapsto s \mid s_2 \mapsto s)^{-1}(r_i), \ i = 1, 2 \) such that \((r'_1, V, r'_2) \in \delta_T.\)

Lemma 4.4.1 For any CFSTs \(T, T/(s', s'') : A \), we have \(\llbracket T \rrbracket \subseteq \llbracket T/(s', s'') \rrbracket \).

Proof. The proof is immediate from Def. 4.4.5, as the quotiented CFST always introduces new traces while preserving the original ones. \(\square \)

The following theorem states that an environment constrained by a protocol cannot distinguish between the original and the quotiented CFST, which has a smaller number of states. Iteratively quotienting all pairs of coherently equivalent states produces a coherently minimised CFST. Note that, if the protocol \(P : A \) is the trivial protocol which accepts all interactions \((T(A))\), then coherent equivalence and quotienting become the conventional notions of equivalence and minimisation, respectively.

Theorem 4.4.1 (Soundness of \(\simeq \)) For any CFST \(T : A \), protocol \(P : A \), and states \(s', s'' \in S_T \), if \(s' \simeq^P_T s'' \) then \(T \equiv^P_T (s', s'') \).
Proof. Let

\[s' \simeq_T^{P} s'' \] \hspace{1cm} (4.24)

We want to show that \(T \cap P \equiv T/(s', s'') \cap P \), which by Def. 4.4.1, 4.3.1 and Lem. 4.3.3 is equivalent to the following:

\[[T] \cap [P] = \[T/(s', s'')\] \cap [P] \] \hspace{1cm} (4.25)

Next, we prove (4.25) by double inclusion as follows:

1. \([T] \cap [P] \subseteq \[T/(s', s'')\] \cap [P].

2. \([T/(s', s'')] \cap [P] \subseteq [T] \cap [P].

1. Lem. 4.4.1 proves this direction.

2. Let \(t \) be a trace in \([T/(s', s'')] \cap [P]\). We need to show that \(t \in [T] \cap [P] \). We prove this by induction on the length of the trace \(t \).

Base-case. Let \(t \) be an empty trace (\(\epsilon \)). Since \(\epsilon \) belongs to the languages of all CFSTs, then the theorem holds for this case.

Inductive-case. Assume that for any trace \(t \in \mathcal{T}(A) \) the following:

\[\text{if } t \in [T/(s', s'')] \cap [P], \text{ then } t \in [T] \cap [P] \] \hspace{1cm} (4.26)

This is the induction hypothesis and we will show that for any set of port labels \(V \subseteq \mathcal{L}_A \):

\[\text{if } (t \cdot V) \in [T/(s', s'')] \cap [P], \text{ then } (t \cdot V) \in [T] \cap [P] \] \hspace{1cm} (4.27)

Let

\[(t \cdot V) \in [T/(s', s'')] \cap [P] \] \hspace{1cm} (4.27)

Next, we show that \((t \cdot V) \in [T] \cap [P] \). From \((t \cdot V) \in [T/(s', s'')] \) in (4.27) and by
expanding Def. 4.2.1 we deduce that

$$\exists q \in S_{T/(s',s'')} \text{ s.t. } (s_{T/(s',s'')}^0, t \cdot V, q) \in \hat{\delta}_{T/(s',s'')}$$ \hspace{1cm} (4.28)

By expanding (4.28) using the second rule of the extended transition relation and by recalling that $S_{T/(s',s'')} = S \cup \{s\}$ we get the following two cases:

1. $\exists r \in S_{T/(s',s'')} \setminus \{s\} \text{ s.t. } (s_{T/(s',s'')}^0, t, r) \in \hat{\delta}_{T/(s',s'')} \text{ and } (r, V, q) \in \delta_{T/(s',s'')}.$

2. $(s_{T/(s',s'')}^0, t, s) \in \hat{\delta}_{T/(s',s'')} \text{ and } (s, V, q) \in \delta_{T/(s',s'')}.$

From the previous two cases and by Def. 4.2.1 we deduce that $t \in \llbracket T/(s',s'') \rrbracket$, which by induction hypothesis implies that:

$$t \in \llbracket T \rrbracket$$ \hspace{1cm} (4.29)

Expanding cases 1, and 2a in $T/(s',s'')$ using Def. 4.4.5 yields the following cases in T,

1. $(s_T^0, t, r) \in \hat{\delta}_T \text{ and } (r, V, q) \in \delta_T.$

2. (a) $(s_T^0, t, s') \in \hat{\delta}_T \text{ and } (s', V, q) \in \delta_T.$

(b) $(s_T^0, t, s'') \in \hat{\delta}_T \text{ and } (s'', V, q) \in \delta_T.$

(c) $(s_T^0, t, s') \in \hat{\delta}_T \text{ and } (s'', V, q) \in \delta_T.$

(d) $(s_T^0, t, s'') \in \hat{\delta}_T \text{ and } (s', V, q) \in \delta_T.$

In the above cases we ignored the fact that the start state of T could be s' while the trace t is defined from state s'' (or vice versa), because this means $t \notin \llbracket T \rrbracket$, which contradicts with (4.29). Also we did not consider that the state q might be one of the quotiented states as this affects only the target state of the round V and therefore the round V is still valid.

By expanding cases 1, 2a, and 2b using the second rule of the extended transition relation
and Def. 4.2.1 we conclude that \((t \cdot V) \in [T]\) in all these cases. Next, we want to show that \((t \cdot V) \in [T]\) for the remaining two cases (2c, 2d).

First, we examine case 2c. Since we assumed that \(s' \sim^P_T s''\) in (4.24), then by Def. 4.4.4 this implies that \(s'' \sim^P s'\) and \(s' \sim^P s''\), which means the following:

\[
\exists R \subseteq S_T \times S_T \text{ s.t. } (s'', s'), (s', s'') \in R \text{ and } R \text{ is a coherent simulation relation} \quad (4.30)
\]

By expanding \((s^0_T, t, s') \in \delta_T\) in the considered case using Def. 4.4.2 we deduce that \(t \in \omega_T(s')\). Since we showed in (4.27) that \((t \cdot V) \in [P]\), then this immediately implies:

\[
(\omega_T(s') \cdot V) \cap [P] \neq \emptyset \quad (4.31)
\]

Putting together \((s'', s') \in R\), in (4.30), and (4.31) and by expanding Def. 4.4.3 on case 2c we conclude that \(\exists q' \in S_T \text{ s.t. } (s', V, q') \in \delta_T \text{ and } (q, q') \in R\). Since we have \((s^0_T, t, s') \in \delta_T\) in case 2c, then by the second rule of extended transition relation and expanding Def. 4.2.1 immediately implies that \((t \cdot V) \in [T]\).

Similarly, in case 2d and by considering \((s', s'') \in R\), in (4.31), we can show that \(t \in \omega_T(s'')\) and consequently proving that the trace \((t \cdot V)\) is in \([T]\).

Since in all cases we showed that \((t \cdot V) \in [T]\), then the theorem holds. \(\square\)

Proposition 4.4.1 For any CFSTs \(T, T' : \mathcal{A}\) and a protocol \(P : \mathcal{A}\) s.t \([P] = \mathcal{T}(\mathcal{A})\), if \(T \equiv^P T'\), then \(T \equiv T'\).

Proof. Let

\[
T \equiv^P T'
\]

Using Def. 4.4.1 to expand (4.32) we get \(T \cap P \equiv T' \cap P\) which by Def. 4.3.1 and Lem. 4.3.3
is equivalent to the following:

\[[T] \cap [P] = [T'] \cap [P] \] \hspace{1cm} (4.33)

By Def. 4.3.1, to prove \(T \equiv T' \) we need to show that:

\[[T] = [T'] \]

This is trivial because \([T], [T'] \subseteq [P]\) and \([T] \cap [P] = [T'] \cap [P]\). \(\Box\)

Conversely, if \(P : A \) is the empty protocol, \textit{i.e.} \([P] = \{\epsilon\}\) then \(P \) will not able to distinguish between any two CFSTs. Subsequently, all CFSTs are coherently equivalent under the empty protocol.

\textbf{Proposition 4.4.2} For any CFSTs \(T, T' : A \), if \(P \) is the empty protocol then \(T \equiv^P T' \).

\textit{Proof.} By Def. 4.4.1, Def. 4.3.1 and Lem. 4.3.3, to prove \(T \equiv^P T' \) we need to show the following:

\[[T] \cap [P] = [T'] \cap [P] \]

Since \([P] = \{\epsilon\}\) and hence \(\epsilon \) belongs to the language of all CFSTs, then we deduce that:

\[[T] \cap [P] = \{\epsilon\} \text{ and } [T'] \cap [P] = \{\epsilon\} \] \(\Box\)

It is also important to highlight here that for any CFST \(T \), the set of states \(S_T \) is “pairwise” coherently equivalent under the empty protocol and subsequently the quotiented CFST will have only one state.

\textbf{Proposition 4.4.3} For any CFST \(T : A \), if \(P \) is the empty protocol then for any \((s', s'') \in S_T \times S_T\), \(s' \not\approx^P_T s'' \).
Proof. Since $\llbracket P \rrbracket = \{ \epsilon \}$, then for any $V \subseteq L_A$ we have,

$$\omega_T(s') \cdot V \cap \llbracket P \rrbracket = \emptyset \text{ and } \omega_T(s'') \cdot V \cap \llbracket P \rrbracket = \emptyset$$

Therefore, by Def. 4.4.3 we conclude that $s' \sim^P_T s''$ and $s'' \sim^P_T s'$, which by expanding Def. 4.4.4 directly implies that $s' \simeq^P_T s''$. \qed

Because we are working in a compiler, the issue of compositionality is very important. The interaction between the program and the environment is dictated by the type signature of the program, therefore different programs will observe different protocols. The following result shows that coherent minimisation is not only sound, but also compositional, i.e. it can be applied to any sub-component of a larger system without affecting its overall properties, including coherence equivalence itself.

Theorem 4.4.2 (Compositionality) For any CFSTs $T, T' : A \to B, T'', T''' : B \to C$ and protocols $P : A \to B, P' : B \to C$ if $T \equiv^P T'$ and $T'' \equiv^{P'} T'''$ then $T \circ T'' \equiv^{P \circ P'} T' \circ T'''$.

Proof. Let $T \equiv^P T'$ and $T'' \equiv^{P'} T'''$. Using Def. 4.4.1 we get:

$$T \cap P \equiv T' \cap P \text{ and } T'' \cap P \equiv T''' \cap P'.$$

By Def. 4.3.1 and Lem. 4.3.4 it follows directly that:

$$\llbracket T \rrbracket \cap \llbracket P \rrbracket = \llbracket T' \rrbracket \cap \llbracket P \rrbracket \quad (4.34)$$

and

$$\llbracket T'' \rrbracket \cap \llbracket P' \rrbracket = \llbracket T''' \rrbracket \cap \llbracket P' \rrbracket \quad (4.35)$$

Now, we want to show that $T \circ T'' \equiv^{P \circ P'} T' \circ T'''$. By Def. 4.4.1 this can be proved by showing that:

$$(T \circ T'') \cap (P \circ P') \equiv (T' \circ T''') \cap (P \circ P')$$
By Def. 4.3.1 and Lem. 4.3.4 this can be expanded to the following:

\[
[T \circ T'' \cap [P \circ P'] = [T' \circ T''' \cap [P \circ P']]
\]

which we are going to prove by double inclusion as follows:

1. \([T \circ T''] \cap [P \circ P'] \subseteq [T' \circ T''' \cap [P \circ P']].\)

2. \([T' \circ T''' \cap [P \circ P'] \subseteq [T \circ T'' \cap [P \circ P']].\)

1. Let

\[
t \in [T \circ T''] \cap [P \circ P']
\] \hspace{1cm} (4.36)

Next, we want to show that \(t \in [T' \circ T'''] \cap [P \circ P'].\) Expanding (4.36) using Lem. 4.3.5 we get:

\[
t \in [T] \circ [T'''] \text{ and } t \in [P] \circ [P']
\]

By expanding the trace \(t\) using Def. 4.2.4 it yields,

\[
t' \in [T] \parallel [T'''] \text{ and } t' \in [P] \parallel [P'] \text{ s.t } t' \uparrow (A \to C) = t\] \hspace{1cm} (4.37)

Using Def. 4.2.2 to expand the trace \(t'\) we get the following:

\[
t' \uparrow (A \to B) \in [T]\] \hspace{1cm} (4.38a)

\[
t' \uparrow (B \to C) \in [T''']\] \hspace{1cm} (4.38b)

\[
t' \uparrow (A \to B) \in [P]\] \hspace{1cm} (4.38c)

\[
t' \uparrow (B \to C) \in [P']\] \hspace{1cm} (4.38d)
Putting together (4.38a), (4.38c) and (4.34) we deduce that:

\[t' \uparrow (A \rightarrow B) \in [T'] \]

(4.39)

Likewise, From (4.38b), (4.38d) and (4.35) we get:

\[t' \uparrow (B \rightarrow C) \in [T'''] \]

(4.40)

From (4.39) and (4.40) and by Def. 4.2.2, it follows that:

\[t' \in [T'] \parallel [T'''] \]

which by Def. 4.2.4 yields that \(t' \uparrow (A \rightarrow C) \in [T'] \odot [T'''] \). Since in (4.37) we have \(t' \uparrow (A \rightarrow C) = t \), then it immediately implies that \(t \in [T'] \odot [T'''] \). By Lem. 4.3.5 we deduce that:

\[t \in [T' \odot T'''] \]

(4.41)

From (4.41) and since we assumed in (4.36) that \(t \in [P \odot P'] \), then we conclude that \(t \in [T' \odot T'''] \cap [P \odot P'] \).

2. In this direction of the theorem we want to show that \([T' \odot T'''] \cap [P \odot P'] \subseteq [T \odot T'''] \cap [P \odot P']\). This proof is similar to the former one. \(\square \)

4.5 State Reductions for CFSTs

Minimising complete FSMs can be done in polynomial time, while the problem of minimising incomplete FSMs is NP-complete [106]. Optimising incomplete FSM is an important task in the optimisation of sequential circuits, because fewer variables will be required to encode states and hence reduces the logic and also better state assignment algorithms can be achieved [78, 67]. Minimisation of CFSTs involves two stages: identifying coherent
equivalent states and then quotienting them. As we explained in Sec. 2.2.4 that in any incomplete FSM the equivalence relation is intransitive. Therefore, with CFSTs we call the state equivalence relation a “coherent equivalence” relation. Since the minimisation process in CFSTs depends mainly on the coherent equivalence relation which is intransitive, then there is a possibility of obtaining more than one minimal CFSTs for a given CFST.

In what follows we list a CFST minimisation algorithm that takes CFST T and the coherent equivalence relation as an input and produces a minimised CFST, which is coherently equivalent to the original CFST. The main idea of this algorithm is to use the given coherent equivalence relation to decide which states will be quotiented away. The algorithm (Lst. 4.1) starts (Step. 1) by assuming that the original CFST is minimal and hence the set Z consists of disjoint sets with every set containing only one state from S_T. In the following steps (Steps 2-5) we check the coherent equivalence relation between a state in S_T and every state from one set (X) in Z. If the state is coherently equivalent with all states in X, then in step 6 a new set X' will be created from adding the new state to the set. In step 7, the new set (X') will be appended to Z if it is not already a member in Z. In step 8 and after all states in S_T have been checked against all the sets in Z, we select a minimum number of sets, say $X_1, X_2, \ldots, X_m \in Z$, such that $\bigcap_{i=1}^{m} X_i = \emptyset$ and also $\bigcup_{i=1}^{m} X_i = S_T$. Note that, every set in Z can be quotiented in one state in the minimised CFST, because all the states in this set are “pairwise” coherently equivalent. Finally, in step 9 we apply the quotienting process on all sets that are selected in the previous step. However, in Def.4.4.5 we defined how two states can be quotiented in a CFST. Quotienting more than two states can be done easily by modifying Def.4.4.5 to deal with more than one pair of states. Alternatively, the quotienting process can be done repeatedly on every pair of equivalent states.

86
Listing 4.1: CFST Minimisation Algorithm.

Input: CFST $T: A = \langle \{s_0, s_1, \ldots, s_n\}, s^0_T, \delta_T \rangle$, and the coherent equivalence relation (\equiv) between all states in S_T.

Output: Minimised CFST T'.

Step 1: Let $Z = \{\{s_0\}, \{s_1\}, \ldots, \{s_n\}\}$

Step 2: For every state $s_i \in S_T$, where $i \in [0, n]$ do steps 3-7

Step 3: For every set of states $X \in Z$ do steps 4-7

Step 4: For every state $q \in X$ do step 5

Step 5: If $s_i \not\equiv q$, then Go to step 3

Step 6: Let $X' = X \cup \{s_i\}$

Step 7: If $X' \not\in Z$, then append X' to Z

Step 8: Find minimum no. of disjoint sets in Z such that their union is equal to S_T

Step 9: Apply Def. 4.4.5 to obtain the minimised CFST T'

---Every set (found in step 8) will be quotiented into 1 state

To understand how the CFST minimisation algorithm works, consider the following example.

Example 4.5.1 Given the CFST T depicted in Fig. 4.3a and the protocol P presented in Fig. 4.3b. The running of the minimisation algorithm (Lst. 4.1) can be simulated as follows:

Input: Fig. 4.3a and $R = \{(s_0, s_3), (s_0, s_4), (s_1, s_2), (s_4, s_4), (s_2, s_4), (s_3, s_4)\}$

Step 1

$Z = \{\{s_0\}, \{s_1\}, \{s_2\}, \{s_3\}, \{s_4\}\}$.

Steps (2-7)

Round$_1$ (Check s_0): $Z = \{\{s_0\}, \{s_1\}, \{s_2\}, \{s_3\}, \{s_4\}, \{s_0, s_3\}, \{s_0, s_4\}\}$.

Round$_2$ (Check s_1): $Z = \{\{s_0\}, \{s_1\}, \{s_2\}, \{s_3\}, \{s_4\}, \{s_0, s_3\}, \{s_0, s_4\}, \{s_1, s_2\}, \{s_1, s_4\}\}$.

Round$_3$ (Check s_2): $Z = \{\{s_0\}, \{s_1\}, \{s_2\}, \{s_3\}, \{s_4\}, \{s_0, s_3\}, \{s_0, s_4\}, \{s_1, s_2\}, \{s_1, s_4\}, \ldots\}$.
Round\textsubscript{4} (Check s_3): $Z = \{[s_0], [s_1], [s_2], [s_3], [s_4], [s_0, s_3], [s_0, s_4], [s_1, s_2], [s_1, s_4], [s_2, s_4], [s_3, s_4]\}$.

Round\textsubscript{5} (Check s_4): $Z = \{[s_0], [s_1], [s_2], [s_3], [s_4], [s_0, s_3], [s_0, s_4], [s_1, s_2], [s_1, s_4], [s_2, s_4], [s_3, s_4], [s_0, s_3, s_4], [s_1, s_2, s_4]\}$.

Step 8
Output = $\{s_0, s_3\}, \{s_1, s_2, s_4\}$.

The minimised CFST that is coherently equivalent to Fig. 4.3a is depicted in Fig. 4.3c, where the two state s_0 and s_3 are quotiented into state s' and all the remaining states are quotiented into state s''.

Figure 4.3: CFSTs Minimisation.
4.6 Determinism

As explained in Sec. 3.1 and according to Def. 3.1.4, determinism in CFSTs involves two aspects: the outputs and the target states. A non-deterministic state means that more than one transitions have the same input but different target states and/or outputs. Since hardware is deterministic in nature, then for all occasions only one transition can be simulated or synthesised. In fact, the active transition is the first one listed in the VHDL code and all other transitions will be ignored. Moreover, some synthesising tools, such as Xilinx-ISE, produce warning messages regarding the non-deterministic target states and/or outputs. Also, it is understood that synthesising non-deterministic FSM may lead to an implementation that does not satisfy the specifications and consequently needs a modification in the behaviour of the implementation to meet the required specifications [88, 89]. In theory, it is possible to convert a NFSM to a DFSM in exponential time (worst case), but the equivalent DFSM has greater or equal number of states than the original NFSM. Note that, we use terms “output-nondeterminism” and “target-nondeterminism” to denote each non-determinism case separately.

Identifying two states, say s_1, s_2, in a DCFST T as coherently equivalent using Def. 4.4.4 and optimising them by the quotienting process (Def. 4.4.5) does not guarantee that the CFST $T/(s_1, s_2)$ will be a DCFST. Let us first investigate the output-non-determinism problem. Fig. 4.4 depicts the transitions before and after the quotienting process. It is obvious that $T/(s_1, s_2)$ is a NCFST (output-nondeterministic), because the new introduced state s in $T/(s_1, s_2)$ has two transitions with the same set of input events V but different sets of output events U' and U''.

89
Figure 4.4: Generated NCFST (output-nondeterminism) from quotienting two states.

The following definition identifies a pair of states that can be quotiented without generating output-nondeterminism.

Definition 4.6.1 (Compatible States) Given a DCFST $T : A$, two states $s_1, s_2 \in S_T$ are said to be compatible, written $s_1 \simeq_T s_2$, if and only if

$$\forall V \subseteq \mathcal{P}(I_A), \forall U, U' \subseteq \mathcal{P}(O_A), (s_1, V \cup U, r_1) \in \delta_T \text{ and } (s_2, V \cup U', r_2) \in \delta_T, \text{ then } U = U'$$

Recalling Fig. 4.4a and according to Def. 4.6.1, states s_1, s_2 are not compatible. These two states will be called *incompatible states* and denoted by $s_1 \not\simeq s_2$. It is clear from the definition of the compatible states that the compatibility relation is reflexive and symmetric. However, we need to look back further on the definition and take a counterexample to decide if the relation is transitive or not. Consider the case of having three states (namely s_1, s_2, s_3) with their corresponding transitions as depicted in Fig. 4.5. It is obvious that $s_1 \simeq s_2$, $s_2 \simeq s_3$ but $s_1 \not\simeq s_3$, which means that the relation \simeq is intransitive.

Figure 4.5: Compatible-states relation is intransitive.
The following table outlines the compatibility and coherent equivalence relations between all states of Fig. 4.3a.

Table 4.1: Compatibility and Coherent Equivalence Relations of Fig.4.3a.

<table>
<thead>
<tr>
<th>Incompatible states</th>
<th>Coherent equivalent (\simeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_1 \neq s_3$</td>
<td>$s_0 \simeq s_3, s_0 \simeq s_4, s_1 \simeq s_2$</td>
</tr>
<tr>
<td></td>
<td>$s_1 \simeq s_4, s_2 \simeq s_4, s_3 \simeq s_4$</td>
</tr>
</tbody>
</table>

Following the introduction of Def. 4.6.1, we present a new definition for coherent state equivalence that considers the output-determinism concept.

Definition 4.6.2 (Coherent Deterministic States Equivalence) Given a DCFST $T : A$, protocol $P : A$ and two states $s_1, s_2 \in S_T$ we say they are coherently deterministic equivalent, written $s_1 \bowtie_P T s_2$, if and only if $s_1 \equiv_T s_2$ and $s_1 \bowtie_P T s_2$.

As we have proved that the coherent state equivalence (\simeq) is sound in Theorem 4.4.1, we will show that \bowtie is sound too.

Theorem 4.6.1 (Soundness of \bowtie) For any DCFST $T : A$, protocol $P : A$, and states $s', s'' \in S_T$, if $s' \bowtie_P T s''$ then $T \equiv^P T/(s', s'')$.

Proof. Let $s' \bowtie_P T s''$ and we want to show that $T \equiv^P T/(s', s'')$. Since by Def. 4.6.2 we have $s' \bowtie_P T s''$ is equivalent to $s' \equiv_T s''$ and $s' \bowtie_P T s''$ and because by Theorem 4.4.1 we proved that $s' \bowtie_P T s''$ implies $T \equiv^P T/(s', s'')$, then the theorem holds. \square

Target-nondeterminism is the second type of nondeterminism that may occur even though T is DCFST and $s_1 \bowtie T s_2$. Fig. 4.6 shows an example of target-nondeterminism generated after the quotienting operation. Before the quotienting s_1 and s_2 have two similar transitions (transitions with the same inputs and outputs) but they access different target states s_3 and s_4. After the quotienting process, $T/(s_1, s_2)$ has a state s where two similar transitions go to different target states.
(a) The transitions of two coherent equivalent states s_1, s_2 in T.

(b) The transitions of the new state s in $T/(s_1, s_2)$.

Figure 4.6: Generated NCFST (target-nondeterminism) from quotienting two states.

The minimisation algorithm in Lst.4.1 guarantees that the generated CFST (T') is minimised but it could be non-deterministic. The output-nondeterminism can be easily overcome in the algorithm by replacing the coherent equivalence relation in step 5 with the coherent deterministic-equivalence relation (\bowtie). On the other hand, target-nondeterminism is more complicated than output-nondeterminism and can only be detected after the quotienting process is completed (step 9). Thus if the quotiented CFST is non-deterministic we have to go back to step 8 and select other partitions from Z and apply the quotienting process again. By inspecting Fig. 4.3c we deduce that the quotiented CFST is non-deterministic (target-nondeterminism). The minimised DCFST, which is coherently equivalent to T, is depicted in Fig. 4.7. This DCFST can be constructed by using \bowtie instead of \simeq in step 5 (as discussed earlier in this paragraph) and selecting the partitions $\{s_0, s_3, s_4\}, \{s_1, s_2\}$ from Z, where every partition will be quotiented into one state.

Figure 4.7: Coherently minimised DCFST of Fig. 4.3a.
4.7 Discussion

In this chapter we suggested and studied the main contribution of the thesis, coherent minimisation. We defined the language of CFSTs in terms of trace semantics based on the extended transition relation. We then proceeded by introducing traces-set projection and composition operations, which have been defined by lifting the projection and composition definitions of traces (presented in Ch. 3) to sets. Also we discussed the main idea of the conventional equivalence of CFSTs—they are considered equivalent if they accept the same language. A part from the presentation of the conventional equivalence, we proved that intersection, interaction and composition of CFSTs are sound. The introduction of the conventional equivalence was followed by discussing and presenting the motivation behind the coherent equivalence of CFSTs—models represented by CFSTs are working in environments whose behaviour is forced by the rules of a game. We called the restricted set of interactions the protocol, which has been presented in Sec. 3.2. The novel coherent equivalence relation has been implemented on incomplete CFSTs and we proved in Theorem 4.4.1 that the CFST resulting from quotienting the equivalent states is coherently equivalent to the original one. We investigated the connection between coherent and conventional equivalence relations. We observed that in the worst case, when the protocol allows all the interactions, the coherent minimisation and its underlying equivalence relation become the conventional notions of minimisation and equivalence (Proposition 4.4.1). Conversely, if the protocol allows only silent (empty) traces, then all CFSTs are coherently equivalent under the empty protocol (Proposition 4.4.2) and thereby all states are “pairwise” equivalent, i.e. they can be combined in one state (Proposition 4.4.3). In the following section (Sec. 4.5), we listed an algorithm for the coherent minimisation, which adopts the coherent equivalence relation and the quotienting definitions to optimise the given CFST. Since we are dealing with hardware compilers, then the compositionality
property is very important. Indeed we demonstrated in the second theorem that different programs can observe different protocols by proving that the coherent equivalence relation is compositional (Theorem 4.4.2). Finally, in Sec. 4.6 we discussed the determinism concept in CFSTs and how we can guarantee that the optimised CFST is deterministic by studying and defining the compatibility relation (Def. 4.6.1). Subsequently, we suggested another promising coherent equivalence relation, we called it coherent deterministic states equivalence (Def. 4.6.2). It adopts the compatibility relation to assert that quotienting two coherently equivalent states will not yield an output-nondeterminism. We also proved that this modified equivalence relation is sound (Theorem 4.6.1).
Symbolic Finite State Transducers (SFSTs)

5.1 Synopsis

In Ch. 3, we introduced CFSTs and explained that in contrast to FSTs they have the ability to deal with sets of events concurrently. In this Chapter we will introduce an abstraction of this model, which we shall call Symbolic Finite State Transducers (SFSTs). Despite the name, these are still concurrent although we omit, for brevity, an explicit mention of this feature. All presented models of FSMs (including CFSTs) have a key limitation stemming from the fact that their set of states is finite: they cannot model systems which involve quantities expressed as numbers. They must interpret each integer value explicitly, and hence, they can be too computationally expensive to construct whenever they deal with arbitrary values even if they come from finite, but large, sets as is the case with numeric types used by computers. The sets of states and transitions resulting from a naive modelling of such systems are much too large to be practical.

To demonstrate our motivation of introducing SFST as a new transducer model let us consider a running example of adding two (finite) numbers $m, n \in \mathbb{N}_k$. Such an automaton would need $O(k)$ states and $O(k^2)$ transitions, which is impractical.
A DCFST that adds two numbers $m, n \in \mathbb{N}_2$ is presented in the following figure:

![Figure 5.1: DCFST of $m + n$.](image)

In the next section we introduce a new model of transducers, called *Symbolic Finite State Transducer* (SFST), which indeed overcomes the problems and limitations of CFSTs.

5.2 Symbolic Finite State Transducers (SFSTs)

In SFSTs several transitions from one source state to different target states can be aggregated into a single transition controlled by a symbolic boolean condition, a *predicate*. SFSTs use two components to represent states: a finite set of *control states* and a finite set of *registers* of fixed type to handle data. Registers have initial values and can be modified explicitly via symbolic expressions (*updates*). In this thesis we restrict input ports, output ports and registers to be of defined over the same data-set, denoted by D. We write 2 to denote a set of two distinct values, $\{0, 1\}$.

Definition 5.2.1 (Symbolic Signature) A *symbolic signature* $A = (m, n) \in \mathbb{N} \times \mathbb{N}$ is a pair of natural numbers signifying the number of input and output ports, respectively.
Definition 5.2.2 (SFST) A SFST T over a symbolic signature $A = (i, o) \in \mathbb{N} \times \mathbb{N}$ written $T : A$ is defined by the 7-tuple $\left\{ S, s^0, r, \overrightarrow{R}^0, G, U, O \right\}$, where:

- S is the finite set of control states;
- $s^0 \in S$ is the start state;
- $r \in \mathbb{N}$ is the number of registers;
- $\overrightarrow{R}^0 \in D^r$ is the vector of initial values of registers;
- $G : S \times S \times D^{r+i} \times 2^i \rightarrow \{ \text{false, true} \}$ is a function associating with each transition between control states a predicate on registers, inputs, and control vector;
- $U : S \times S \times D^{r+i} \times 2^i \rightarrow D^r$ is a function associating with each transition between control states a new value of the registers;
- $O : S \times S \times D^{r+i} \times 2^i \rightarrow D^o \times 2^o$ is a function associating with each transition between control states an output value.

Each transition involves two control states (source s and destination s'); a vector of expressions corresponds to the source registers $\overrightarrow{r} \in D^r$; a vector of inputs $\overrightarrow{T} \in D^i$; a predicate $g \in G$; and two update functions: the registers-update $u \in U$ and the outputs-assignment $o' \in O$. Concretely, any transition will be triggered if and only if its predicate is true and thereby the updates are applied. Accordingly, the registers will be updated, the outputs will be assigned and finally the control moves to the destination state. A part from the transitions there are additional bits (denoted in the above definition by 2^i and 2^o, respectively), which we call control vectors while every component in the control vectors is called a control bit. These control bits are '1' or '0' if their corresponding ports are active or inactive, respectively. If we have a SFST with two input ports then the input
vector will have the following shape:

\[(\{\text{data from } \text{port}_1, \text{data from } \text{port}_2\}, \{\text{control bit of } \text{port}_1, \text{control bit of } \text{port}_2\})\]

For example the input vector \((\{z, 0\}, \{1, 0\})\), for any \(z \in D\), tells that the SFST is reading \(z\) from the first port (its control bit is ‘1’) and ignoring any data that comes from the second port (its control bit is ‘0’). It is obvious that the input vector \((\{z, y\}, \{1, 0\})\) is equivalent to \((\{z, 0\}, \{1, 0\})\) as in both vectors the SFST reads from the same ports. However, in this thesis we use the former vector as standard notion, i.e. data of inactive ports is always ‘0’. Indeed, the idea of integrating the control bits with the data bits is parallel to the definition of the interface of circuits in GoS [62].

The ports of a SFST are interpreted as vectors of inputs and outputs over data-set \(D\). This can be represented in a unique way as sets of ports consisting of pairs: the first component represents the port, the second the value on the port. So any input and output event on the ports of a SFST \(T\) over symbolic signature \(A\) corresponds to \(i\) input events and \(o\) output events. This is made formal below. However, for convenience, we will use the pair of vectors (the first component is the input vector and the second is the output vector) representation whenever convenient as it is isomorphic.

Definition 5.2.3 (Interpretation of SFST) Each SFST \(T : A\) is interpreted as an (infinite) concurrent transducer over signature

\[\begin{align*}
\&\
\left(A\right) = \left(\bigcup_{1 \leq k \leq i, d \in D} (k, d), \bigcup_{1 \leq k \leq o, d \in D} (k, d)\right)
\end{align*}\]

defined as

\[\begin{align*}
\&\
\left(T\right) = (S_T \times D^r, (s_T^0, \overline{R}_T), \delta)
\end{align*}\]
where δ defined as follows:

$$\delta = \{(s, R, I_c, O_c), (s', R', I_c) \mid G(s, s', R, I, I_c) \text{ and } R' = U(s, s', R, I, I_c) \text{ and } O(s, s', R, O_c) = O(s', O_c) \}.$$

In Def. 5.2.3, we described a formal way to convert SFST to an equivalent (infinite) CFST by folding all possible values over the input/output ports in each transition of the original SFST to obtain the corresponding transitions of the equivalent CFST.

5.3 Coherent Minimisation in SFSTs

After we introduced in the previous section the definition of SFST and also the definition for obtaining infinite concurrent transducers from SFST, we want to present the coherent minimisation in SFST. As we discussed in Sec. 4.5, the coherent minimisation is twofold: identifying the coherent equivalence states and then quotienting them. The coherent equivalence relation (Def. 4.4.4) says that two symbolic states are coherently equivalent if and only if they are coherently simulate each other under a specified set of legal interactions (we called it a protocol).

For computational reasons and to avoid an infinite number of states and infinite number of vectors we restrict the notion of symbolic protocol (SP), denoted by P, to the order in which ports are activated, ignoring the values on the ports. So, as a symbolic protocol we could specify that an operation reads the input twice then produces output, but we can not specify that it is an adder. Furthermore, since SP does only show which ports are active/inactive in each transition, then there is no register, and no register update.

Definition 5.3.1 (Symbolic Protocol (SP)) A symbolic protocol P over a symbolic signature $A = (i, o) \in \mathbb{N} \times \mathbb{N}$, written $P : A$ is defined by the quadruple (S, s^0, G, O), where:

- S is the finite set of control states;
• \(s^0 \in S \) is the start state;

• \(G : S \times S \times 2^2 \rightarrow \{ \text{false}, \text{true} \} \) is the input-witness function;

• \(O : S \times S \times 2^2 \rightarrow 2^o \) is the output-witness function.

Definition 5.3.2 (Symbolic Intersection of SFST and SP) The symbolic intersection of SFST \(T : A \) and a symbolic protocol \(P : A \) is a protocol \(\hat{T} \cap P : A = \langle S_T \times S_P, (s^0_T, s^0_P), \delta_{T \cap P} \rangle \), where \(\delta_{T \cap P} \) defined as follows:

\[
\delta_{T \cap P} = \{((s_1, s_2), \overline{I_c}, \overline{O_c}, (s'_1, s'_2)) \mid (G_T(s_1, s'_1, \overline{R}, \overline{I_c}) \land G_P(s_2, s'_2, \overline{I_c})) \text{ and } O_T(s_1, s'_1, \overline{R}, \overline{I_c}) = (\overline{O}, \overline{O_c}) \text{ and } O_P(s_2, s'_2, \overline{I_c}) = \overline{O_c},
\]

where \(\overline{R} \in D^r, s_1, s'_1 \in S_T, s_2, s'_2 \in S_P, \overline{I} \in D^i, \overline{O} \in D^o, \overline{O_c} \in 2^o, \overline{I_c} \in 2^i \}

The intuition behind Def. 5.3.2 is to find out the common interactions between an SFST and an SP. These interactions will consider only the control vectors and discounting the values input/output data ports.

The symbolic protocol can also be interpreted as an (infinite) concurrent transducer as we did in Def. 5.2.3.

Definition 5.3.3 (Interpretation of SP) Each SP \(P : A \) is interpreted as an (infinite) concurrent protocol, denoted by \(^rP \), over signature

\[
^rA = \left(\bigcup_{1 \leq k, d \leq D} (k, d), \bigcup_{1 \leq k, d \leq D} (k, d) \right)
\]

defined as

\[
^rP = \langle S_P, s^0_P, \delta \rangle
\]
where δ defined as follows:

$$\delta = \{(s, ((\overline{I}, I_c), (\overline{O}, O_c)), s') | G(s, s', \overline{I_c}) \text{ and } \overline{O_c} = O(s, s', \overline{I_c}), \overline{I} \in D_i, s, s' \in S_P, \overline{I_c} \in 2^i, \overline{O} \in D_o, \overline{O_c} \in 2^o \}$$

It is obvious that a protocol only encodes behaviour at the level of control, accepting any input and producing (non-deterministically) any output.

Indeed, this possible translation between symbolic protocols and concurrent protocols and also between SFSTs and concurrent transducers means that all notions that have been defined on CFSTs (in Ch. 4), such as witness traces, reachability, the extended transition relation ($\hat{\delta}$), languages, and quotienting still hold on $'P'$ and $'T'$. The language of $'T'$ and $'P'$ will be defined as a set of traces, where every trace is a sequence of pairs: the first component is the input part (data and control), and the second one is the output part (data and control). For example, the language of an infinite concurrent transducer $'T'$ defined over signature $'A'$ will be the set $(D_i \times 2^i \times D_o \times 2^o)^*$, which will be denoted by $\hat{T}(A)$. Note that, for any trace $t \in \hat{T}(A)$ we will write $t_c \in (2^i \times 2^o)^*$ to denote only the input and output control bits of the trace t, i.e., t_c is only the implicit sequence of the control vectors of the trace t.

Lemma 5.3.1 For any SFST $T : A$, any symbolic protocol $P : A$, and any trace $t \in \hat{T}(A)$ if $t \in [\hat{T}' \cap \hat{P}]$, then $t_c \in [T \hat{\cap} P]$.

Proof. This proof follows directly from Def. 5.2.3, Def. 5.3.2 and Def. 5.3.3. \hfill \Box

After we introduced the definition of the symbolic protocol and how the symbolic intersection between the symbolic protocol and SFST can be obtained, we present the main definition of this chapter, *symbolic coherent simulation*, that checks if two states are coherently simulated under a symbolic protocol.
Definition 5.3.4 (Symbolic Coherent Simulation) Given an SFST $T : A$, a symbolic protocol $P : A$ and a relation $R \subseteq S_T \times S_T$, we say that R is a symbolic coherent simulation, iff for any $(s_1, s_2) \in R$, for any $\overline{T} \in D^i$, for any $\overline{R}_1 \in D^o$, for any $\overline{O} \in D^o$, for any $s'_1 \in S_T$, if $G_T(s_1, s'_1, \overline{R}_1, \overline{T}, \overline{O}_c)$ and $O_T(s_1, s'_1, \overline{R}_1, \overline{T}, \overline{O}_c) = (\overline{O}_c, \overline{O}_c)$ and $\exists q \in S_P$, $\exists (s_2, q) \in S_T \cap R \cap P$, $\exists q' \in S_P$ s.t $G_P(q, q', \overline{O}_c)$ and $\overline{O}_c = O_P(q, q', \overline{O}_c)$, then $\forall \overline{R}_2 \in D^o, \exists s'_2 \in S_T$ s.t $G_T(s_2, s'_2, \overline{R}_2, \overline{T}, \overline{O}_c)$ and $O_T(s_2, s'_2, \overline{R}_2, \overline{T}, \overline{O}_c) = (\overline{O}_c, \overline{O}_c)$ and $(s'_1, s'_2) \in R$.

For any two states $s_1, s_2 \in S_T$, if $(s_1, s_2) \in R$ for some symbolic protocol P, then we write $s_1 \preceq_P^T s_2$.

Definition 5.3.5 (Coherent Symbolic State Equivalence) Given SFST $T : A$, symbolic protocol $P : A$ and two states $s_1, s_2 \in S_T$, we say they are symbolically coherent equivalent, written $s_1 \preceq_P^T s_2$, if and only if $s_1 \preceq_P^T s_2$ and $s_2 \preceq_P^T s_1$.

Since any SFST can be translated to (infinite) concurrent transducer and because any symbolic protocol can be translated to concurrent protocol, then we will use the notion of transducers equivalence (Def. 4.4.1) to prove the soundness of symbolic states equivalence.

Theorem 5.3.1 (Soundness of \preceq_T) For any SFST $T : A$, a symbolic protocol $P : A$ and two states $s_1, s_2 \in S_T$ if $s_1 \preceq_P^T s_2$ then $T \preceq_P^T T / (s_1, s_2)$.

Proof. In what follows in this proof we will use the notation T' instead of $T / (s_1, s_2)$.

Let

\[s_1 \preceq_P^T s_2 \tag{5.1} \]

and we want to show that $T' \preceq_P^T T'$, which by Def. 4.4.1, Def. 4.3.1, and Lem. 4.3.3 is equivalent to $[T'] \cap [P'] = [T'] \cap [P']$, which we will prove by double inclusion as follows:

- $[T'] \cap [P'] \subseteq [T'] \cap [P']$.

102
• $[T'] \cap [P'] \subseteq [T'] \cap [P']$.

1. Proving $[T'] \cap [P'] \subseteq [T'] \cap [P']$. Let t be a trace in $[T'] \cap [P']$. We want to show that $t \in [T'] \cap [P']$. We prove this by induction on the length of the trace t.

Base-case. Let t be an empty trace (ϵ). Since ϵ belongs to the languages of all concurrent transducers, then the theorem holds for this case.

Inductive-case. Assume that for any trace $t \in \hat{T}(A)$ the following:

$$\text{if } t \in [T'] \cap [P'], \text{ then } t \in [T'] \cap [P'] \tag{5.2}$$

This is the induction hypothesis and we will show that for any $I_c \in 2^i$, for any $\overline{O}_c \in 2^o$, for any $I \in D^i$, and for any $\overline{O} \in D^o$:

$$\text{if } (t \cdot ((\overline{I},I_c),(\overline{O},\overline{O}_c))) \in [T'] \cap [P'], \text{ then } (t \cdot ((\overline{I},I_c),(\overline{O},\overline{O}_c))) \in [T'] \cap [P'] \tag{5.3}$$

Let

$$(t \cdot ((\overline{I},I_c),(\overline{O},\overline{O}_c))) \in [T'] \cap [P'] \tag{5.3}$$

Next, we show that $t \cdot ((\overline{I},I_c),(\overline{O},\overline{O}_c)) \in [T'] \cap [P']$. From $(t \cdot ((\overline{I},I_c),(\overline{O},\overline{O}_c))) \in [T'] \cap [P']$ in (5.3) and by expanding Def. 4.2.1 we deduce that,

$$\exists \overline{R} \in D', \exists (s'_1, \overline{R}), \in S \cdot T' \cdot \text{s.t. } ((s'_0, \overline{R}^i), (t \cdot ((\overline{I},I_c),(\overline{O},\overline{O}_c))), (s'_1, \overline{R})) \in \tilde{\delta} \cdot T' \tag{5.4}$$

Similarly from $(t \cdot ((\overline{I},I_c),(\overline{O},\overline{O}_c))) \in [P']$ in (5.3) we get

$$\exists q' \in S \cdot P', \text{s.t. } (s'_0, (t \cdot ((\overline{I},I_c),(\overline{O},\overline{O}_c))), q') \in \tilde{\delta} \cdot P'$$

which by the second rule of the extended transition relation immediately implies the
following:

\[\exists q'' \in S^{\prime}\!, \text{ s.t. } (s^0_p, t, q'') \in \hat{\delta}_P, \]
\[(q'', ((I, I_c), (O, O_c)), q') \in \delta_P. \]

From (5.5b) and using Def. 5.3.3 we deduce that:

\[G_p(q'', q', I_c) \] and \[O_p(q'', q', I_c) = O_p(q'', q', I_c) \]

(5.6)

Now, by expanding (5.4) using the second rule of the extended transition relation and by recalling that \(S_{T'} = (S_T \setminus \{s_1, s_2\}) \cup \{s\} \) we get the following two cases:

1.

\[\exists \overline{R} \in D^r, \exists q'_1 \in S_{T'} \setminus \{s\} \text{ s.t. } ((s^0_{T'}, \overline{R}), t, (q'_1, \overline{R})) \in \hat{\delta}_{T'}, \]
and

\[((q'_1, \overline{R}), ((I, I_c), (O, O_c)), (s'_1, \overline{R})) \in \delta_{T'}. \]

2.

\[\exists \overline{R} \in D^r \text{ s.t. } ((s^0_{T'}, \overline{R}), t, (s, \overline{R})) \in \hat{\delta}_{T'}, \text{ and } ((s, \overline{R}), ((I, I_c), (O, O_c)), (s'_1, \overline{R})) \in \delta_{T'}. \]

From the above two cases and by Def. 4.2.1 we deduce that \(t \in \lceil T' \rceil \), which by the induction hypothesis implies that:

\[t \in \lceil T' \rceil \]

(5.7)

Expanding cases 1, and 2 of \(T' \) using Def. 4.4.5 and by recalling that state \(s \) is corresponding to one of the quotiented states \(s_1, s_2 \in S_T \) we get the following cases in \(T' \):

1.

\[((s^0_T, \overline{R}), t, (q'_1, \overline{R})) \in \hat{\delta}_{T'}, \text{ and } ((q'_1, \overline{R}), ((I, I_c), (O, O_c)), (s'_1, \overline{R})) \in \delta_{T'}. \]
2. (a) \(((s_1^0, \overline{R}'), t, (s_1, \overline{R}'))\) \(\in \hat{\delta}_T\) and \(((s_1, \overline{R}'), (\overline{I}, \overline{I}_c), (\overline{O}, \overline{O}_c)), (s_1', \overline{R})\) \(\in \delta_T\) \\
(b) \(((s_1^0, \overline{R}'), t, (s_2, \overline{R}'))\) \(\in \hat{\delta}_T\) and \(((s_2, \overline{R}'), (\overline{I}, \overline{I}_c), (\overline{O}, \overline{O}_c)), (s_1, \overline{R})\) \(\in \delta_T\) \\
(c) \(((s_1^0, \overline{R}'), t, (s_1, \overline{R}'))\) \(\in \hat{\delta}_T\) and \(((s_2, \overline{R}'), (\overline{I}, \overline{I}_c), (\overline{O}, \overline{O}_c)), (s_1', \overline{R})\) \(\in \delta_T\) \\
(d) \(((s_1^0, \overline{R}'), t, (s_2, \overline{R}'))\) \(\in \hat{\delta}_T\) and \(((s_1, \overline{R}'), (\overline{I}, \overline{I}_c), (\overline{O}, \overline{O}_c)), (s_1', \overline{R})\) \(\in \delta_T\)

Note that, in all above cases we ignored the fact that the start state of \(T\) could be one of the quotiented states while the trace \(t\) is defined from the other quotiented state, because this means \(t \notin \llbracket T\rrbracket\), which contradicts with (5.7). Furthermore, we did not consider that the target state \(s'_1\) might be one of the quotiented states as this still means that the tuple \((\overline{I}, \overline{I}_c), (\overline{O}, \overline{O}_c))\) is valid. By expanding cases 1, 2a, and 2b using the second rule of the extended transition relation and Def. 4.3.1 we conclude that \(t \cdot V \in \llbracket T\rrbracket\) in all these cases. Next, we want to show that \(t \cdot V \in \llbracket T\rrbracket\) for the other two cases (2c, 2d).

First, we examine case 2c. By expanding \(((s_2, \overline{R}'), (\overline{I}, \overline{I}_c), (\overline{O}, \overline{O}_c)), (s_1', \overline{R})\) \(\in \delta_T\) using Def. (5.2.3) we get the following:

\[G_T(s_2, s'_1, \overline{R}', \overline{I}, \overline{I}_c) \text{ and } O_T(s_2, s'_1, \overline{R}', \overline{I}, \overline{I}_c) = (\overline{O}, \overline{O}_c)\]

(5.8)

From \(((s_1^0, \overline{R}'), t, (s_1, \overline{R}'))\) \(\in \hat{\delta}_T\) in the considered case (case 2c) and by Def. 4.4.2 we deduce,

\[\frac{t}{\delta_T} (s_1, \overline{R})\]

(5.9)

Similarly from (5.5a) we get,

\[\frac{t}{\delta_T} q''\]

(5.10)

Putting together (5.9), (5.10) and by Lem. 5.3.1 we deduce that,

\[(s_1, q'') \in S_{T\overline{R}_p} \text{ is reachable by the trace } t_c\]

(5.11)
From \(((s_2, \overline{R}),(\overline{T}, T_c), (O, \overline{O}_c)), (s'_1, \overline{R})) \in \delta_{T'}\) in the considered case (case 2c) and by expanding Def.5.2.3 we get,

\[G_T(s_2, s'_1, \overline{R}, \overline{T}, T_c) \text{ and } O_T(s_2, s'_1, \overline{R}, \overline{T}, T_c) = (\overline{O}, \overline{O}_c) \] (5.12)

Since we assumed that \(s_1 \preceq_P s_2\) in (5.1), then this implies that,

\[\exists \text{ coherent simulation relation } R \subseteq S_T \times S_T \text{ s.t } (s_2, s_1), (s_1, s_2) \in R \] (5.13)

Now, we consider \((s_2, s_1) \in R\) and expand Def. 5.3.4. Putting together (5.12), (5.11) and (5.6) then this implies that the hypothesis in Def.5.3.4 is true and hence we get,

\[\forall \overline{R}_2 \in D', \exists s''_1 \in S_T \text{ s.t } G_T(s_1, s''_1, \overline{R}_2, \overline{T}, T_c) \]

and

\[O_T(s_1, s''_1, \overline{R}_2, \overline{T}, T_c) = (\overline{O}, \overline{O}_c) \text{ and } (s'_1, s''_1) \in R \]

which by Def. 5.2.3 can be expanded to:

\[\forall \overline{R}_2 \in D', \exists s''_1, \exists \overline{R}_2 \in D' \text{ s.t } ((s_1, \overline{R}_2), ((\overline{T}, T_c), (\overline{O}, \overline{O}_c)), (s''_1, \overline{R}_2)) \in \delta_{T'} \] (5.14)

Putting together (5.14) and \(((s^0_T, \overline{R}^0), t, (s_1, \overline{R})) \in \hat{\delta}_{T'}\) in case 2c and let \(\overline{R}_2 = \overline{R}\), we get the following (by the second rule of the extended transition relation and Def. 4.2.1):

\[(t \cdot ((\overline{T}, T_c), (\overline{O}, \overline{O}_c))) \in \llbracket \overline{T}' \rrbracket \] (5.15)

From (5.15) and since we assumed that \((t \cdot ((\overline{T}, T_c), (\overline{O}, \overline{O}_c))) \in \llbracket \overline{P}' \rrbracket\) in (5.3), then this immediately implies the following:
\[(t \cdot ((\mathcal{T}, \mathcal{T}_c), (\mathcal{O}, \mathcal{O}_c))) \in ['T'] \cap ['P']\]

Similarly, in case 2d and by considering \((s_1, s_2) \in R\), (in (5.13)), we can show that
\[(t \cdot ((\mathcal{T}, \mathcal{T}_c), (\mathcal{O}, \mathcal{O}_c))) \in ['T'] \cap ['P'].\]

Since in all cases we proved that \((t \cdot ((\mathcal{T}, \mathcal{T}_c), (\mathcal{O}, \mathcal{O}_c))) \in ['T'] \cap ['P']\), then the theorem holds.

2. \(['T'] \cap ['P'] \subseteq ['T'] \cap ['P'].\) This proof follows directly from Lem. 4.4.1. \(\square\)

In the following example we will discuss the behaviour of SFSTs and show how the coherent simulation and the coherent equivalence relations are applied in SFSTs.

Example 5.3.1 Let SFST \(T : A = (S_T, s^0_T, r_T, \overline{r}_T, G_T, U_T, O_T)\), where

- \(A = (3, 1)\)
- \(S_T = \{s_0, s_1, s_2, s_3\}\)
- \(s^0_T = s_0\)
- \(r_T = 1\)
- \(\overline{r}_T = 0\)

\[G_T(s, s', \overline{r}, \mathcal{T}, \mathcal{T}_c) = \begin{cases}
\text{if } s = s_0 \land s' = s_1 \land \overline{r} = 0 \land \mathcal{T} = (x, 0, 0) \land \mathcal{T}_c = (1, 0, 0) \\
\bigvee \end{cases} \]

\[\text{if } s = s_0 \land s' = s_2 \land \overline{r} = 0 \land \mathcal{T} = (0, y, 0) \land \mathcal{T}_c = (0, 1, 0) \]

\[U_T(s, s', \overline{r}, \mathcal{T}, \mathcal{T}_c) = \begin{cases}
\text{if } s = s_0 \land s' = s_1 \land \overline{r} = 0 \land \mathcal{T} = (x, 0, 0) \land \mathcal{T}_c = (1, 0, 0) \\
x \text{ otherwise} \\
\bigvee \end{cases} \]

\[\text{if } s = s_0 \land s' = s_2 \land \overline{r} = 0 \land \mathcal{T} = (0, y, 0) \land \mathcal{T}_c = (0, 1, 0) \]

\[y \text{ otherwise} \]

107
\[O_{\mathcal{T}}(s, s', R, T, I_c) = \begin{cases} ((z + r_1), (0)) & \text{if } \begin{cases} s = s_1 \land s' = s_3 \land R = y \land T = (0, 0, z) \\ \land I_c = (0, 0, 1) \end{cases} \\ ((0), (0)) & \text{otherwise} \end{cases} \]

where \(r_1 \) is the register label.

Note that, in Fig. 5.2 we present only the transitions with true predicates and ignores all transitions with 'false' predicates, such as the transition from state \(s_1 \) to state \(s_2 \).

The behaviour of the presented SFST in Fig. 5.2 can be interpreted as follows:

1. The interaction starts from the start state \(s_0 \) with register \(r_1 \) initialised to zero.

2. If the first input port is active, then the machine reads \(x \); updates the register \(r_1 \) by storing \(x \); moves the control to the state \(s_1 \). Alternatively, when the second input port is active, then the machine reads the input \(y \); stores \(y \) in \(r_1 \); transfers the control to the state \(s_2 \).

3. Now the machine is in state \(s_1 \) or state \(s_2 \). It reads \(z \) from the third input port; activates the output data port by writing \(z + r_1 \); and moves the control to state \(s_3 \).
After we discussed the behaviour of the SFST T and how it can be represented, we want to present by example how the symbolic coherent simulation can be applied on T.

Now, consider a symbolic protocol $P : A = \langle S_P, s^0_P, G_P, O_P \rangle$, where

- $A = (3, 1)$
- $S_P = \{q_0, q_1, q_2\}$
- $s^0_P = q_0$
- $G_P(s, s', R, T_c) = \begin{cases} s = q_0 \land s' = q_1 \land T_c = (1, 0, 0) \\ \lor \\ s = q_0 \land s' = q_2 \land T_c = (0, 1, 0) \\ \lor \\ s = q_1 \land s' = q_2 \land T_c = (0, 0, 1) \\ \lor \\ s = q_2 \land s' = q_1 \land T_c = (0, 0, 1) \\ \end{cases}$
- $O_P(s, s', T_c) = \begin{cases} 1 & \text{if } \begin{cases} s = q_1 \land s' = q_2 \land T_c = (0, 0, 1) \\ \lor \\ s = q_2 \land s' = q_1 \land T_c = (0, 0, 1) \\ \end{cases} \\ 0 & \text{otherwise} \end{cases}$

This protocol is presented in the following figure:

Now, let $R \in S_T \times S_T = \{(s_1, s_2), (s_2, s_1), (s_3, s_3)\}$ and we want to show that the relation R is a symbolic coherent simulation (using Def. 5.3.4).

1. Considering (s_1, s_2): we have $T = (0, 0, z)$, $T_c = (0, 0, 1)$, $\overline{O} = z + r_1$, $\overline{T}_c = 1$, a reachable state $(s_2, q_2) \in S_{T \cap P}$ (Fig. 5.4), and $\overline{R} = x$. Since $G_T(s_1, s_3, \overline{R}, \overline{T}, \overline{T}_c) = true$ and $O_T(s_1, s_3, \overline{R}, \overline{T}, \overline{T}_c) = (\overline{O}, \overline{T}, \overline{T}_c)$; state $(s_2, q_2) \in S_{T \cap P}$ is reachable; $G_P(q_2, q_1, T_c) = true$; $O_P(q_2, q_1, T_c) = \overline{O}_c$, then the hypothesis is true but we need to check the conclusion. Since $G_T(s_2, s_3, y, \overline{T}, \overline{T}_c) = true$ and $O_T(s_2, s_3, y, \overline{T}, \overline{T}_c) = (\overline{O}, \overline{O}_c)$, and $(s_3, s_3) \in R$ then the pair (s_1, s_2) satisfies the definition (Def. 5.3.4).

2. Considering (s_2, s_1): we have $T = (0, 0, z)$, $T_c = (0, 0, 1)$, $\overline{O} = z + r_1$, $\overline{T}_c = 1$, a reachable state $(s_1, q_1) \in S_{T \cap P}$, and $\overline{R} = y$. Since $G_T(s_2, s_3, \overline{R}, \overline{T}, \overline{T}_c) = true$ and
Figure 5.3: Symbolic Protocol P for adding numbers.

Figure 5.4: $T \cap P$: Symbolically intersecting Fig. 5.2 and Fig. 5.3.

$O_T(s_2, s_3, \overline{R}, \overline{T}, \overline{T_c}) = (\overline{O}, \overline{O_c})$; state $(s_1, q_1) \in S_{T \cap P}$ is reachable; $G_P(q_1, q_2, \overline{T_c}) = true$; $O_P(q_1, q_2, \overline{T_c}) = \overline{O_c}$, then the hypothesis is true. Next, we check the conclusion of the definition is true or not. Since state s_1 has $G_T(s_1, s_3, x, \overline{T}, \overline{T_c}) = true$ and $O_T(s_2, s_3, x, \overline{T}, \overline{T_c}) = (\overline{O}, \overline{O_c})$, and $(s_3, s_3) \in R$ then the pair (s_2, s_1) satisfies the definition.

3. Considering (s_3, s_3): since state s_3 has no transition with true predicate, then the
pair \((s_3, s_3)\) holds the definition too.

Therefore, we can conclude that the relation \(R = \{(s_1, s_2), (s_2, s_1), (s_3, s_3)\}\) is indeed a symbolic coherent simulation. Since \((s_1, s_2), (s_2, s_1) \in R\). This immediately implies (by Def. 5.3.5) that \(s_1 \not\sim^P_T s_2\). In fact, these two states are bisimilar in the conventional sense. By quotienting the coherent equivalent states \(s_1\) and \(s_2\) we get \(T/(s_1, s_2)\). Note that, we will use the notation \(T'\) to denote the resulting SFST from the quotienting process, where \(s_4\) corresponds to the quotiented states \(s_1\) and \(s_2\). The new quotiented SFST \(T' : A\) is defined as follows:

\[
T' : A = \left\{ S_{T'}, s^0_T, r_{T'}, \overline{R}_{T'}, G_{T'}, U_{T'}, O_{T'} \right\}, \text{ where}
\]

- \(A = (3, 1)\)
- \(S_{T'} = \{s_0, s_4, s_3\}\)
- \(s^0_{T'} = s^0_R = s_0\)
- \(r_{T'} = r_T = 1\)
- \(\overline{R}_{T'} = \overline{R}_T = 0\)

\[
\begin{align*}
G_{T'}(s, s', \overline{R}, \overline{T}, \overline{T}_c) &= \begin{cases}
0 & \text{if } s = s_0 \land s' = s_3 \land \overline{R} = 0 \land \overline{T} = \langle 0, y, 0 \rangle \land \overline{T}_c = \langle 0, 1, 0 \rangle \\
1 & \text{otherwise}
\end{cases} \\
U_{T'}(s, s', \overline{R}, \overline{T}, \overline{T}_c) &= \begin{cases}
x & \text{if } s = s_0 \land s' = s_4 \land \overline{R} = 0 \land \overline{T} = \langle x, 0, 0 \rangle \land \overline{T}_c = \langle 1, 0, 0 \rangle \\
y & \text{if } s = s_0 \land s' = s_4 \land \overline{R} = 0 \land \overline{T} = \langle 0, y, 0 \rangle \land \overline{T}_c = \langle 0, 1, 0 \rangle \\
\text{otherwise}
\end{cases} \\
O_{T'}(s, s', \overline{R}, \overline{T}, \overline{T}_c) &= \begin{cases}
\{z + r_1\} & \text{if } \overline{T}_c = \langle 0, 0, 1 \rangle \\
\langle 0, 0, 1 \rangle & \text{otherwise}
\end{cases}
\]

111
The above SFST is summarised in the following figure:

![Figure 5.5: $T' = T/(s_1, s_2)$: Coherently minimised SFST of Fig. 5.2.](image1)

![Figure 5.6: $T' \cap P$: Symbolically intersecting Fig. 5.5 and Fig. 5.3.](image2)

Next, we want to show that states s_0 and s_3 are also symbolically coherent equivalent. Let $R = \{(s_0, s_3), (s_3, s_0)\}$ and we want to prove that R is a symbolic coherent simulation.

State s_0 has two transitions as follows:

1. In the first transition from state s_0 we have $I = \langle x, 0, 0 \rangle$, $I_c = \langle 1, 0, 0 \rangle$, $O = 0$, $O_c = 0$, $R = 0$, and two reachable states $(s_3, q_1), (s_3, q_2) \in S_{T' \cap P}$ (see Fig. 5.6). Since $G_T(s_0, s_4, \overline{R}, \overline{T}, \overline{T_c}) = true$ and $O_T(s_0, s_4, \overline{R}, \overline{T}, \overline{T_c}) = (\overline{O}, \overline{O_c})$; no transition from both states $q_1, q_2 \in S_P$ with control vectors $(\overline{T_c}, \overline{O_c})$, then this means that the definition holds and hence we need to check the second transition from state s_0.

2. In the second transition from state s_0 we have $I = \langle 0, y, 0 \rangle$, $I_c = \langle 0, 1, 0 \rangle$, $O = 0$, $O_c = 0$, and $\overline{R} = 0$, and two reachable states $(s_3, q_1), (s_3, q_2) \in S_{T' \cap P}$ (see Fig. 5.6). Since
\(G_T(s_0, s_4, \overline{R}, \overline{I}, \overline{I}_c) = \text{true} \) and \(O_T(s_1, s_3, \overline{R}, \overline{I}, \overline{I}_c) = (\overline{O}, \overline{O}_c) \), and also no transition from both states \(q_1, q_2 \in S_P \) with control vectors \((\overline{I}_c, \overline{O}_c)\), then this implies that the second transition satisfies the definition.

Since the definition holds with both transitions, then we can conclude that the pair \((s_0, s_3)\) satisfies Def. 5.3.4. Since no transition is defined from state \(s_3 \), then we can deduce that \((s_3, s_0)\) holds the definition too and this immediately implies that the relation \(\{(s_0, s_3), (s_3, s_0)\}\) is a symbolic coherent simulation relation. Indeed, this means that \(s_0 \not\leq_P s_3\), i.e. states \(s_0\) and \(s_3\) are symbolically coherent equivalent and thereby they can be quotiented away as presented in Fig. 5.7.

\[\scriptsize\begin{align*}
&\langle 0, 1, 0 \rangle; 0 \\
&\uparrow \quad \text{read}(y) \quad \downarrow \\
&\scriptstyle r_1 := y \\
&\langle 0, 1, 0 \rangle; 0 \\
&\downarrow \quad \text{read}(x) \\
&\uparrow \quad r_1 := x \\
&\langle 1, 0, 0 \rangle; 0 \\
&\langle 0, 0, 1 \rangle; 0 \\
&\uparrow \quad \text{read}(z) \\
&\downarrow \quad \text{write}(z + r_1) \\
\end{align*}\]

Figure 5.7: \(T'' \): Coherently Minimal SFST of Fig. 5.2.

As presented in Fig. 5.7 we have only two states, \(s_4\) and \(s_5\), where state \(s_4\) is the state resulting from quotienting states \(s_1\) and \(s_2\), while state \(s_5\) is obtained from quotienting states \(s_0\) and \(s_3\). If we define a new relation \(R = \{(s_5, s_4)\}\) we will find that the relation \(R\) is not a symbolic coherent simulation because Def. 5.3.4 will not hold. Therefore, we can not minimise Fig. 5.7 any more.
Figure 5.8: $T'' \cap P$: Symbolically intersecting Fig. 5.6 and Fig. 5.3.

Proposition 5.3.1 (SFSTs Compositionality) For any SFSTs $T, T' : A \rightarrow B, T'', T''' : B \rightarrow C$ and symbolic protocols $P : A \rightarrow B, P' : B \rightarrow C$

$$\operatorname{if} T'' \equiv P' \circ T' \text{ and } T''' \equiv P'' \circ T''', \text{ then } T'' \circ T''' \equiv P' \circ P'' \circ T' \circ T'''$$

Proof. This proof is immediate consequence of Theorem. 4.4.2. □

5.4 Chapter Summary

All previously presented FSM models are unsuitable in dealing with numbers due to the very large numbers of states required. Transducers interpret the entire state-space explicitly, and hence, it is too computationally expensive to construct them for arbitrary values. We suggested the SFSTs as a standard approach to overcome these limitations. In this chapter, we presented a definition that identifies two coherent simulated states under a symbolic protocol.

The key idea of the symbolic coherent minimisation is that in protocols we only look at control states while discounting the values. This makes it possible to compute the symbolic coherent simulation relation. Furthermore, we defined the symbolic coherent equivalence relation, which is the key concept for minimising SFSTs. Also, we showed that
the symbolic coherent minimisation is sound and compositional. Finally, we presented an example to show how the symbolic coherent minimisation can be applied on SFSTs.
Case Study: Efficient Tamper-Proof Hardware

Compilation

6.1 Synopsis

Automata representing game-semantic models of programs are meant to operate in environments whose input-output behaviour is constrained by the rules of a game. This can lead to a notion of equivalence between states which is weaker than the conventional equivalence, because not all actions are available to the environment. This new approach, which we called coherent equivalence, has been presented in Ch. 4 and we proved that it is sound and compositional. An environment which attempts to break the rules of the game is, effectively, mounting a low-level attack against a system. In this chapter we show how (and why) to enforce game rules in games-based hardware synthesis.

Computer security ‘exploits’ take advantages of mistakes in programs, called ‘vulnerabilities’, to cause unintended behaviour to occur on a computing device. Exploits are most commonly low-level attacks that violate the abstractions of the programming language to create behaviour inexpressible in the language itself. Such attacks are possible because
lower-level languages (‘machine code’) are less constrained behaviourally than higher-level languages, so a run-time system, when confronted with executable code, cannot tell whether that code is the result of a legitimately compiled program or whether it contains behaviours deemed ‘illegal’. Restricting the behaviour of machine code is the essence of ‘tamper-resistant’ compilation, and it can be achieved in various ways: sand-boxing the code to prevent unauthorised access to memory, randomising the memory layout so that code cannot ‘guess’ where certain data is stored even if it has physical access to it [121] or monitoring the control flow in a program to ensure that no arbitrary jumping occurs [2].

A compiler and runtime system that can detect and enforce machine code behaviour so that it satisfies all the abstraction of the higher-level programming language would be, effectively, a ‘fully abstract’ compilation and execution environment offering the maximum level of tamper resistance: ‘tamper-proof’ compilation [1]. In a general-purpose system this is perhaps impossible to achieve in a practical way. However, we will show how it is achievable in ‘higher-level synthesis’ (also known as ‘hardware compilation’), the automatic synthesis of special-purpose digital circuits from programs written in conventional programming languages, using game-semantic models.

6.2 Verity Constants as Circuits

At the most abstract level, digital circuits can be seen as topological diagrams of boxes and wires. The diagrams are topological (rather than geometrical) because in design we often wish to abstract from the size and length of the connectors, and from the precise placement of the components; such low-level matters are usually sorted out algorithmically by electronic design tools. One economical, elegant and mathematically canonical representation of diagrams is using combinators, which form a mathematical structure called a compact closed category [87]. What is particularly useful about such a category in our context is that it can also describe a canonical model for a higher-order program-
ming language with affine typing. This means that the higher-order structure of the language is reflected directly in the diagrammatic structure of the circuit, which further means that abstraction and application can be represented with zero overhead.

From a practical point of view, the key consequence of the GoS approach is that compiling a Verity program produces a circuit with an interface determined by the type signature of the program. It is conventional to write the type of a program as a judgement $x_1 : T_1, \ldots, x_n : T_n \vdash P : T$, which says that program P is well-typed of type T and has free identifiers x_i of type T_i.

Each type corresponds to a circuit interface, defined as a list of ports, each defined by data bit-width and a polarity. Every port has a default one-bit control component. For example we write an interface with n-bit input and m-bit output as $I = (+n, -m)$. More complex interfaces can be defined from simpler ones using concatenation $I_1 \otimes I_2$ and polarity reversal $I^* = \map(\lambda x. -x) I$. If a port has only control and no data we write it as $+0$ or -0, depending of polarity. Note that obviously $+0 \neq -0$ in this notation!

An interface for type T is written as $[T]$, defined as follows:

\[
\begin{align*}
[\text{com}] &= (+0, -0) \quad [\text{exp}] = (+0, -n) \quad [\text{var}] = (+n, -0, +0, -n) \\
[T \times T] &= [T] \otimes [T'] \quad [T \to T'] = [T]^* \otimes [T'].
\end{align*}
\]

The interface for commands com has two control ports, an input for starting execution and an output for reporting termination. The interface for integer expressions exp has an input control for starting evaluation and data output for reporting the value. Assignable var has data input for a write request and control output for acknowledgement, and control input for a read request along with data output for the value. The tensor is a disjoint sum of the ports on the two interfaces while the arrow is like the tensor, but with a polarity-reversal of the ports occurring in the contra-variant position, as illustrated in the
example below.

Diagrammatically, a list will correspond to ports from left-to-right and from top-to-bottom. We indicate ports of zero width (only the control bit) by a thin line and ports of width n by an additional thicker line (the data part). For example a circuit of interface $[\text{com} \rightarrow \text{com}] = (-0, +0, +0, -0)$ can be described in any of these two ways:

The unit-width ports are used to transmit events, represented as the value of the port being held high for one clock cycle. The n-width ports correspond to data lines. We will work under the assumption that the event on the unit port is a control signal indicating the data on the data line is valid.

The significant restriction that makes support for functions so simple is that the type system is affine, which means that in function application the function and the argument cannot share free identifiers. This is an important restriction which has a major impact on the expressiveness of the language. For once, it is incompatible with imperative programming, in which variables naming memory locations must be reused in order to be read and written.

In order to overcome this restriction we carefully add variable sharing to the programming language, using a type system called Syntactic control of concurrency (SCC) \cite{59}, which is based on Reynolds’s Syntactic control of interference \cite{114, 104}. The idea is to allow sharing of variables in product formation, but not in function application. Imperative sequential operations are then given uncurried type, so they can reuse variables. For example, the term $x := !x + 1$ can be written, using a functionalised prefix notation as $\text{assign} (x, \text{add}(\text{deref}(x), 1))$. Assignment has type $\text{assign} : \text{var} * \text{int} \rightarrow \text{com}$ and thus can share variables between its two arguments. An extra benefit of this type
system is that by giving parallel command composition a curried type \(\text{par} : \text{com} \to \text{com} \to \text{com} \) it makes it impossible to have race conditions in the programming language, since the two arguments can never share identifiers. The program \(c \parallel c \) (also written as \(\text{par} c \ c \)) does not type-check.

Unlike functions, variable sharing does not arise automatically out of the algebraic structure of the diagrammatic model. It needs to be implemented. Categorical considerations are nevertheless helpful in providing a family of equational specifications, corresponding to the notion of Cartesian product, which establish that variable sharing is correctly implemented (because contraction in the syntax corresponds to Cartesian product in the semantics).

The conditions required for the correct implementation of product in GoS amount to an input-output protocol which all synthesised circuits must satisfy in order to compose properly. In the implementation, this protocol amounts to a simple bus protocol needed for the correct time-multiplexed sharing of sequentially used circuits. They are formally described in [49].

Diagrammatically, sharing is implemented by specialised circuits which correspond to the diagonal in the Cartesian category of circuits. For example, the term:

\[
x : \text{var} \vdash x := !x + 1 : \text{com}
\]

corresponds to the diagram sketched in Fig. 6.1, with the diagonal labelled \(\Delta \) used to share access to variable \(x \).

![Figure 6.1: The diagonal circuit \(\Delta \)](image)
To give an interactive, event based semantics to the imperative constants of Verity we use the game semantics of the language, which is formulated in this style. The interpretation of constants is standard in game semantics (presented in Sec. 2.6.3) and will be not detailed here. To give a flavour of the implementation we show in Fig. 6.2 the iterator constant (for convenience we have marked the top level ports, the ports of the loop guard and the ports of the body of the loop), where OR joins two signals, T is a multiplexer and D is a unitary delay. This circuit can be realised either asynchronously [60] or synchronously [56].

The input-output behaviour of the iterator constant is:

- receive an input signal from the top level;
- propagate the input signal to the guard;
- receive an input signal from the guard when it is ready;
- use the data line from the guard in multiplexer T to
 - propagate the signal back out to the top level if the guard is false;
 - propagate the signal out to the loop body if the guard is true;

Figure 6.2: The Iterator circuit
• use the termination acknowledgement from the body to trigger an evaluation of the guard again, which will cause the process to iterate.

To have an expressive and convenient programming language the restrictions of the SCI system are still undesirable. They can be however avoided, to a great extent, using program analysis and transformation as described in [61]. Finally, recursion can be implemented in the same framework, subject to several minor restrictions [62]. We do not describe these features in detail here as the complications they introduce are not directly relevant to tamper-proof compilation or coherent minimisation. The techniques described apply to these features as well.

The compilation process is compositional and it allows the synthesis of circuits corresponding to open terms. Compositionality in the compiler means that we have immediate support for separate compilation. This is essential for having compiler support for (pre-compiled) libraries but, most importantly, for supporting foreign function interfaces (FFI). Through the FFI we can interact with system-specific functionality which can be implemented outside of the programming language, using a conventional HDL. This is important as useful as low-level drivers for peripherals are written in HDL, but from the language we prefer to interact with them via function calls.

Separate compilation and foreign function interface play a great role in making a compiler useful. However, interfacing with circuits produced outside the compiler exposes the synthesised code to low-level attacks, because such circuits cannot be assumed to satisfy the input-output protocol which synthesised circuits both satisfy and assume in order to operate properly.
6.3 Protocols and Low-level Attacks

Tamper-proof compilation is relative to whatever notion of tampering we consider possible on pragmatic considerations, so a circuit is tamper resistant to the same extent as its physical substrate is. In other words, the high-level constraints needed for the proper operation of synthesised circuits cannot be violated without violating the underlying physical constraints of the circuit. Note that some FPGA devices, such as Altera’s Cyclone III LS, have physical anti-tamper layers which include special protection for the programming ports and redundancy checks.¹

Example of physical attacks on circuits involve over-heating or over-clocking the circuit so that it behaves erroneously on an electronic level. Also of a physical nature are observations against the temperature or energy consumption of the circuit as well as timing its responses. We provide no means of resistance against such attacks, but only against attackers which provide inputs and observe outputs at the ports only, within the normally accepted parameters of operation of the device.

Let us illustrate the problem of low-level attacks with a very simple example. Consider a program which interacts with the external environment using the following functions:

\[
\text{display1, display2:exp->com}
\]

to drive, for example two segmented LED displays:

\[
\text{new x := 0 in display1(!x);} \\
x:=!x+1; \text{display2(!x); !x}
\]

According to the semantics of Verity this program should first display the value 0 on device 1, then display value 1 on device 2, then return the value 1 to the top level. The high-level diagram of the concrete synthesised circuit is depicted in Fig. 6.3.

The circuit labelled $x:=!x+1$ is the incrementer in Fig. 6.1. The circuit cell is a register storing the value of the variable and $!$ is a de-referencer. The diagonal Δ shares access to x for the display functions, the incrementer and the final dereferencing. The dotted boxes are the implementations for the display functions, realised in HDL and visible from the programming language through the FFI. In order to simplify the drawing of the circuit the data lines are implicit where required; we only show the control lines.

Let us label the ports of the synthesised circuit top-to-bottom starting with 0 for the top-level port requesting execution and ending with 9 for the top-level port reporting the result. The correct interaction in which such a circuit is involved proceeds as follows:

1. receive a top-level input request on port 0 to start execution;

2. request external function display1 to execute using port 1;

3. using port 2 function display1 may inquire what the value of its argument is, zero or more times;

4. using port 3 the circuit will always provide value 0 as response, the state of cell;
5. eventually \texttt{display1} will terminate, reporting termination on port 4;

6. upon incrementing the register the circuit will use port 5 to request \texttt{display2} to execute;

7. using port 6 function \texttt{display2} may inquire what the value of its argument is, zero or more times;

8. using port 7 the circuit will always provide value 1 as response, the new state of \texttt{cell};

9. eventually \texttt{display2} will terminate, reporting termination on port 8;

10. the circuit will report final value 1 on port 9.

However, the environment, consisting of the top level and the two display functions can violate the input-output behavioural assumptions of synthesised code. Consider the environment in the following figure:

![Figure 6.4: Environment which breaks language abstraction](image)

The transaction in which the circuit is now involved is:

1. receive an top-level input request on port 0 to start execution;
2. request external function `display1` to execute using port 1;

3. `display2` (illegally) reports termination on port 8;

4. the circuit will report final value 0, the initial state of the register, on port 9.

The unused ports are marked as black squares for emphasis.

The low-level attack violates the input-output behaviour of synthesised circuits, the essential features characterising correctly compiled Verity programs, and it causes the program to produce the wrong value 0 instead of the expected value 1. It is easy to see that the environment can manipulate the inputs and output to the two display functions so that the register cell and the final result can have whatever value is desired by the attacker. Obviously, from a security point of view such tampering unacceptable as it can lead to a wide range of attacks against data integrity.

6.4 Enforcing Programming Language Abstractions

Low level attacks are possible when the system can perform actions that break the programming language abstractions. But can we prevent the system from performing such actions? In this particular case the answer is positive. Programming language abstractions are reflected into the structure of the synthesised circuits in two ways: statically, as the input and output ports of the circuit, or dynamically, as the input-output behaviour of the environment in which the circuit operates.

The static port structure cannot be violated, but the dynamic behaviour of the environment can violate the protocol-like semantics of the language. We can restrict the behaviour of the environment to legal traces by taking advantage of several facts [59]. First, we know what the fully abstract model of Verity is. A fully abstract model is a correct and complete characterisation of all the traces that can be generated by a synthesised Verity program. Second, the fully abstract model of Verity has a finite-state automaton
representation for any type signature. Finally, the low-latency representation of the model, which is used for hardware synthesis, also has a finite-state representation [56].

The three observations above mean that all the legal interactions between a circuit and its environment can be described by a finite state machine, therefore by a digital circuit. In order to achieve tamper-proofness a synthesised circuit must not interact with its environment directly, but the interaction must be mediated by a monitor which will detect any illegal interactions and take appropriate actions if such illegal interactions occur. This monitor (protocol) only looks at the control bits, as we discussed in the previous chapter. As illegal interactions indicate tampering attempts, the appropriate actions may be reset, halt, intentionally erratic behaviour or even destroying the circuit, depending on the level of protection and sensitivity desired. Schematically, the tamper proof circuit will look like as follows:

![Figure 6.5: Architecture of a tamper-proof circuit](image)

The precise specification of the legal interaction protocol and its low-latency synchronous specification used for hardware synthesis have been presented in Ch. 3. For illustration we will detail the example of the previous section. The program has signature \(\text{display1:exp} \rightarrow \text{com}, \text{display2:exp} \rightarrow \text{com} \vdash M: \text{exp} \), where \(M \) is the program. To wit, the program uses two non-locally defined functions, display1, display2 which are procedures taking integer expressions as arguments, and it has type expression. We write this signature as \((\text{exp}_1 \rightarrow \text{com}_2) \rightarrow (\text{exp}_3 \rightarrow \text{com}_4) \rightarrow \text{exp}_5\). The game-semantic model for
Verity stipulates that all legal traces in which the program can be involved have to have a form described by the Mealy machine in Fig. 6.6, which is dependent on the signature only:

![Figure 6.6: A game-semantic protocol, automaton representation](image)

Intuitively, the reading of the protocol is this:

1. The environment may start executing the program (q5)

2. The program may terminate immediately (d5) or may ask for either of display functions to be evaluate (r2 or r4)

3. If a function was called by the program, it is allowed to either return immediately (d2 or d4) or it can evaluate its argument (q1 or q3) any number of times.

4. The program must respond to a request to provide the argument of the function (n1 or n3).

The protocol above is asynchronous, and for the purpose of hardware synthesis we use a low-latency synchronous representation as in Fig. 6.7.
Figure 6.7: Synchronous representation of a protocol

Producing a circuit representation of these finite state machines is standard. Let us call this circuit M (monitor). The tamper-proof version of the circuit from the previous section is given in Fig. 6.8.

Figure 6.8: Tamper-proof compiled circuit with monitor

The input lines to M, drawn in a lighter colour, are the interactions with the environment, and the output lines from M trigger the reset lines of the component sub-circuits. Note that the monitor M can also be placed in series (rather than in parallel) with the
monitored circuit so that tampering signals never reach it. This is only marginally safer but comes at a cost of increased latency.

With the tamper-proof version of the circuit the attacks of the previous section trigger resets (or whatever other defensive anti-tampering behaviour is desired in the concrete implementation) and are rendered ineffective.

6.5 Discussion

The automata produced from game semantics are tamper proof because whenever the environment behaves in a way which is not consistent to the protocol, i.e. the rules of the game. The automata implementing the strategy denoting a program does not respond to any such illegal environment action. However, they are also inefficient because the 'tamper proofing' mechanism is built-in compositionally in each individual component, leading to a very high level of redundancy. In this case study, we assumed that the tamper-proof mechanism is elsewhere, so we can aggressively optimise without losing this property. These two different levels of tamper-proofing (TP) are depicted in the following figure.

On the right, we can see that the program is implemented by a collection of smaller automata which assume that the environment behaves correctly. The correct behaviour of the environment is enforced by an automaton TP operating at the interface which intercepts and blocks illegal environment actions. In tamper-proof compiler, the interaction
between the circuit (an automaton) and the environment is monitored and hence only
certain interactions are permitted. Higher-level synthesis via GoS augmented with the
protocol-monitoring mechanism of Sec. 6.3, can produce tamper-proof instances of arbi-
trary libraries with rich functional interfaces. This can offer a new approach to the prob-
lem of collaborative computation without data disclosure, i.e. secure computation [19].
Much research in this area is concerned with writing programs that do not inadvertently
leak information, e.g. privacy-preserving data mining [9], but system-level security guar-
antees in the form of absence of low-level attacks and exploits are essential to make this
practical. Because system-level security is difficult to guarantee on the desktop, secure
computation is generally thought of in the context of distributed and cloud computing,
where the physical separation of resources makes system-level security guarantees easier
to achieve.

On the desktop, on the other hand, secure computation requires the presence of a
trusted hardware module that can prevent sensitive data (keys, value registers, etc.) from
being tampered with, the typical example being the Trusted Platform Module (TPM)¹.
A TPM can also be used to authenticate arbitrary binary code and authorise its access
to sensitive data, so it is possible to set up a secure computation framework using it.
The most practical way of doing this is using virtualisation to set up a secure virtual
machine for the execution of trusted code, and interfacing it with the rest of the machine
as if it was a distinct physical computer. This works because modern processors support
virtualisation natively and protect the memory space of the virtual machine.

Hardware compilation is a way to produce fully customised secure hardware modules
that can interface with the rest of the system using a convenient higher-order inter-
face. Low-level attacks and exploits on the module are prevented first via the physical
tamper-proof mechanism of the FPGA fabric, and logically through a monitoring mecha-

¹See http://www.trustedcomputinggroup.org/
nism which prevents interactions that do not respect the programming language protocol. This allows properties established by reasoning at the programming languages level to be guaranteed in the implementation. Compared with TPM-based approaches, this approach has two potential advantages. First, is its simplicity. No special TPM is required and no native virtualisation support is needed in the untrusted device. Through higher-level synthesis we can produce special-purpose devices that provide only restricted functionality. Verifying the logical security properties of such devices is significantly easier than verifying the security properties of general-purpose software and hardware mechanisms such as TPMs and virtualisation frameworks. The second advantage is that of low overhead. TPM-based secure computation on the desktop involves a significant amount of overhead, as does the communication between the secure virtual machine and the rest of the system. On the other hand a FPGA can be set up to interface with a CPU on a physical level via the system bus; a variety of FPGA-based PCI cards are commercially available and can be used to implement this system. This is further work.
CHAPTER 7

Coherent Minimisation for GoS

7.1 Synopsis

In Ch. 2, we presented the hardware compiler and we introduced the GoS and its source language (Verity). In particular, in Sec. 2.6.3 we gave the interpretations of all Verity constants. In Ch. 4 we have suggested and studied the coherent minimisation and we proved its soundness and compositionality. This chapter presents the performance of the coherent minimisation by considering the Verity constants.

7.2 Coherent Minimisation for Verity Constants

In this section we analyse the usefulness of the coherent minimisation by comparing it with bisimulation quotienting—one of the most popular conventional minimisation techniques. Table 7.1 presents the number of states of the original CFSTs and compares them to their corresponding minimised CFSTs. In addition to the original number of states, three minimisation results are presented: the first one stands for the coherent minimisation by considering the relation of coherent deterministic states equivalence (Def. 4.6.2), the second corresponds to the relation of coherent state equivalence (Def. 4.4.4) and the last
one denotes the bisimulation quotienting. Table C.1 in Appendix C outlines more details about the coherent minimisation results.

Table 7.1: Results of Minimisation for Verity Constants.

<table>
<thead>
<tr>
<th></th>
<th>Pre-minimisation</th>
<th>Coherent deterministic minimisation by Def. 4.6.2</th>
<th>Coherent minimisation by Def. 4.4.4</th>
<th>Bisimulation quotienting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential composition</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Assignment</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Conditional 'if'</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Binary addition</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Iterator 'while'</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Dereferencing</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Diagonal</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Parallel composition</td>
<td>8</td>
<td>–</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

GoS comes in two versions: synchronous and asynchronous. In Sec. 2.6.2 we introduced the asynchronous models of Verity constants, while in Ch. 3 and Ch. 7 we gave some examples on the synchronous models and the protocols. In this section we apply the coherent minimisation on the synchronous models of the Verity constants. CFSTs for the synchronous models of the Verity constants and the protocols, which will be considered for coherently minimising these constants are presented here. Furthermore, we depict the generated CFSTs from the coherent minimisation for each Verity constant except those that are optimised to one state (as outlined in Table 7.1). Since sequential composition, assignment and binary addition Verity constants have the same minimisation results, then only the sequential composition is presented here while the CFSTs of the assignment and binary addition constants, their protocols and their minimised representations are

136
depicted in Appendix C. In all the depicted original CFSTs below and those presented in Appendix C we use different colours to specify the set of states that will be quotiented to one state and the same set of colours will be used for the optimised CFSTs. However, the only exception is in Fig. 7.8, where the green colour is introduced to clarify that all states coloured with blue and those coloured in yellow in Fig. 7.7b are quotiented into one state.

Coherent minimisation for the sequential composition constant

The protocol which has been considered for coherently minimising the sequential composition is depicted in the following figure:

![Protocol Diagram](image)

Figure 7.1: Protocol of $\text{com}_1 \otimes \text{com}_2 \Rightarrow \text{com}_3$ represented as a CFST.
The sequential composition constant is represented in the following figure:

As we can see in the following figure, the sequential composition constant has been optimised to two states by applying the coherent minimisation (Def. 4.6.2). However, this constant can be minimised to only one state but the resulting CFST will be non deterministic.

Coherent minimisation for the conditional 'if' constant

The protocol of $exp \otimes com_1 \otimes com_2 \rightarrow com_3$ is considered for minimising the conditional 'if' constant. The CFST representation of this protocol is presented in the following figure:
The following figure shows the output of applying the coherent minimisation on the conditional constant, which is presented in Fig. 7.2. By comparing these two figures we can notice that three states are quotiented away and hence only three states left in the optimised representation. Furthermore, we can optimise the conditional 'if' constant to only one state but the output will be NCFST.
Coherent minimisation for the dereferencing constant

The protocol that we considered for coherently minimising the dereferencing constant is depicted in the following CFST:

Figure 7.3: Protocol of \(\text{var}_1 \rightarrow \text{exp}_2 \) represented as a CFST.

The dereferencing constant of Verity language is presented in the Fig. 7.4. As we outlined in Table 7.1, this constant can be coherently minimised to one state.
Coherent minimisation for the diagonal constant

The following figure is the CFST of the protocol of $\text{com} \rightarrow \text{com}_1 \times \text{com}_2$, which we considered for coherently minimising the diagonal constant.
By comparing the original CFST of the diagonal constant (depicted in the above figure) with the optimised one in Fig. 7.5, we conclude that this constant has been optimised to two states. However, this constant can be minimised further to one state but in non-deterministic form.

Figure 7.5: Optimised Verity diagonal constant by coherent minimisation and considering Def. 4.6.2.

Coherent minimisation for the parallel composition constant

In the following figure we present the CFST of the protocol of $\text{com}_1 \rightarrow \text{com}_2 \rightarrow \text{com}_3$ which has been provided for coherently minimising the parallel composition constant.
The parallel composition constant is represented in the following figure:

![Diagram of parallel composition constant](attachment:image.png)
The following figure presents the minimised CFST of the parallel composition constant. From Fig. 7.6 we can observe that the parallel composition constant is optimised to four states compared to eight states in the previous figure.
Coherent minimisation for the iterator constant

The iterator Verity constant and the considered protocol is depicted in Fig. 7.7.

By considering the relation of deterministic coherent equivalence (Def. 4.6.2) and quotienting the equivalent states we can reduce the number of states of the iterator constant (Fig. 7.7b) from 5 states to 3 states as depicted in the following figure:

(a) Protocol of $\text{exp} \otimes \text{com}_1 \rightarrow \text{com}_2$ represented as a CFST.

(b) Verity iterator ‘while’ constant represented as a CFST.

Figure 7.7: The iterator constant and its protocol.
However, if we consider Def. 4.4.4 for identifying the coherent equivalent states, then we get optimised NCFST with only two states, as shown in the following figure:

![Diagram](https://via.placeholder.com/150)

Figure 7.8: Optimised Verity iterator ’while’ constant by coherent minimisation and considering Def. 4.4.4.

7.2.1 Minimal CFSTs are not Unique

In Sec. 2.2.4 we have discussed that minimal DFSM is unique. In CFSTs, the minimisation scenario is different. Because the coherent equivalence relation is intransitive and hence more than one minimal CFST (with same number of states) can be obtained by the coherent minimisation. For example, Fig. 7.9 shows an alternative possible minimal CFST for the iterator Verity constant. In fact, this figure is functionally equivalent to Fig. 7.8 under the same protocol (Fig. 7.7a). The only difference between these two figures is that
in Fig. 7.8 state s_2 is quotiented with the blue states in one state while in Fig. 7.9 state s_4 is combined with the set of blue states.

Figure 7.9: Another possible minimal Verity iterator 'while' constant.

7.3 Symbolic Coherent Minimisation of Verity Constants

In Sec. 5.3 we explained by example how the symbolic coherent minimisation can be applied on SFSTs. In the following three figures we demonstrate that symbolic coherent minimisation can optimise the constants of Verity language (represented in SFST model), e.g. the binary addition constant. As we discussed in Sec. 2.6.3, the binary addition constant in Verity involves six input and output events, which are: request for evaluating the result q_3, request for the first argument q_1, request for the second argument q_2, value of the first argument n, value of the second argument m, and the final result $n+m$. From the hardware point of view, each event is corresponding to one port in the interface. Fig. 7.10 shows the suggested interface for the addition constant. Note that, the symbols 'i1', 'i2', and 'i3' correspond to input ports while 'o1', 'o2', and 'o3' denote the three output ports in this particular order. In fact, these six ports consist of only control bits in the symbolic protocol while in the case of processes (represented by SFSTs) they involve data and control bits. As we explained in Ch. 5 every SFST is defined over a signature, denoted
by \(A \), and \(A \) is a pair that shows the number of input and output ports respectively. Consequently, the signature of the addition constant in SFST is \(A = (3, 3) \).

![Figure 7.10: Input and output ports for the binary addition constant in Verity](image)

As we can see in Fig. 7.13, we minimised the original SFST (Fig. 7.12) from four states to only one state by considering the symbolic protocol presented in Fig. 7.11; applying Def. 5.3.5; and finally quotienting the equivalent states.

![Figure 7.11: Symbolic Protocol of \(exp_1 \otimes exp_2 \rightarrow exp_3 \) represented as a SFST.](image)

148
Figure 7.12: Verity binary addition constant represented as a SFST.

Figure 7.13: Optimised Verity binary addition constant by symbolic coherent minimisation.
7.4 Discussion

In this chapter, we examined the application of the coherent minimisation on the Verity constants. Two coherent minimisation results have been outlined for each constant: the first one corresponds to the coherent equivalence relation and the second corresponds to the coherent deterministic state equivalence. These results have been compared with the bisimulation quotienting. We noticed from these results that most of the constants are optimised to NCFSTs with only one state, except the iterator and the parallel composition constants, which can be minimised to 2 and 4 states, respectively. We also found that the Verity constants can be minimised to DCFSTs with an average of 50% states-space reduction. Finally, we examined the application of coherent minimisation on the Verity constants represented as SFSTs.
Conclusion and Future Work

8.1 Conclusion

In this thesis, we introduced a new notion of equivalence between states of a transducer, dubbed coherent equivalence. It is weaker than the usual notions of bisimulation, so it leads to more states being identified as equivalent, leading to more aggressive optimisations. Its key idea is that the behaviour of the environment is restricted by a notion of protocol, also specified as a transducer: a restricted environment has a weaker power of discriminating actions of an observed system, thus rendering more states equivalent.

Based on it, as an immediate application, we also proposed an efficient way to synthesise tamper-proof hardware circuits from programs written in conventional programming languages using the GoS methodology. In this scenario the protocol is simply the rules of the semantic game.

We introduced a slightly modified transducer model, concurrent finite state transducer (CFST) and an associated symbolic representations which can be used to handle a transducer with very large (or infinite) states. In both cases we give a (finite) trace interpretation and we present two important operations (composition and intersection) which
can be used to construct a larger system from smaller components. These transducers are synthesisable into electronic circuits via VHDL.

Ch. 4 is the main theoretical contribution, introducing the coherent equivalence relation, which makes rigorous the intuition that only certain interactions are permitted, which in turn makes the environment less discriminating, and leads to more states in the system being equivalent. This new equivalence is interesting because it can be used to aggressively optimise transducers by reducing the number of states, a technique which we call coherent minimisation. Unsurprisingly, it outperforms conventional state reduction techniques based on bisimulation quotienting. In fact, in the worst scenario when the protocol permits all interactions this notion of equivalence reduces to conventional bisimulation so it can be seen as a generalisation of it. Conversely, in the other limiting example of the protocol with no interactions (empty protocol), all states of the transducer are equivalent and can be identified and hence the transducer will be minimised to one state.

The main result of the chapter is soundness: if two coherently equivalent states in a transducer are identified, no other transducer compliant with the protocol under which coherent equivalence is determined can tell the difference. Formally, the intersection between the original transducer and the observer is equal, under the protocol, with the intersection between the quotiented transducer and the same observer.

The second result is showing that coherent minimisation is not only sound, but also compositional, i.e. it is preserved by transducer composition. This important result allows the coherent minimisation to be applied to any sub-component of a larger system without affecting its general properties, including coherence equivalence itself.

With special consideration to hardware synthesis we point out that coherently minimising deterministic CFST will not guarantee that the output will be deterministic. A modified coherent equivalence relation, coherent deterministic states equivalence has been
suggested to overcome the problem of output-nondeterminism. Finally, we presented a standard algorithm that relies on the coherent equivalence relation to reduce the number of states in any CFST.

Next, we suggested a refined model of transducers, *symbolic finite states transducer* (SFST). SFSTs have the ability to model systems which involve quantities expressed as numbers. In SFSTs several transitions from one source state to different target states can be combined into a single transition controlled by a *predicate* (or *guard*). SFSTs use two components to represent states: a finite set of *control states* and a finite set of *registers*, which have initial values that can be modified explicitly via symbolic expressions (*updates*). All definitions from Ch. 4 lift in the standard way to SFSTs since their correctness is not contingent on the set of states being finite. We demonstrated that any SFST can be translated to infinite concurrent transducers by mapping the register values into a concrete state. The key difference between CFSTs and SFSTs is in their computational properties, which for the latter can be undecidable. For this reason we restrict the notion of symbolic protocol to the order in which ports are activated, ignoring the values on the ports. This restriction enables us to define the relation of symbolic coherent simulation and thereby the symbolic coherent equivalence relation. Consequently, we proved that symbolic coherent minimisation is sound and compositional by translating SFSTs to infinite concurrent transducers and using the notion of coherent equivalence of concurrent transducers.

A motivating application is discussed in Ch. 6: how circuits produced by a higher-level synthesis compiler with FFI support can be subjected to low-level attacks. Low level attacks occur when the system can implement actions that violate the programming-language abstractions. In particular, when the input-output behaviour of the environment, in which the circuit operates, can breach the protocol-like semantics of the language. We then elaborated on that constraining the behaviour of the environment to only legal
traces is possible by taking advantage of the fact that all the legal interactions between a circuit and its environment can be described by a finite state machine, and hence by a digital circuit. We concluded this chapter by demonstrating that efficient tamper-proofness is achievable by restricting the synthesised circuit to interact with its environment via a monitor which detects all illegal interactions, and makes a proper defensive approach, e.g. reset or halt, if any tampering attempt occurs.

Finally, in Ch. 7, we examined the usefulness of the coherent minimisation by applying the coherent minimisation on the Verity constants represented by CFSTs. We compared the optimisation results of coherent minimisation with the conventional bisimulation quotienting. We noticed that most of the Verity constants can be optimised to NCFSTs with one state. Iterator and parallel constants are the only exception, where the number of states of their CFSTs models have been reduced by 50%. Generating optimised DCFSTs from the Verity constants has been investigated too, with an average return of 50% states reduction. Then, we demonstrated that the coherent equivalence relation is intransitive and hence it might be a case of obtaining more than one minimal CFST. We ended this chapter by showing that the symbolic coherent minimisation can aggressively optimise SFST models of the Verity constants.

8.2 Future Work

This thesis has established a novel approach to aggressively minimise transducers operating in restricted environments. Also it has suggested a framework for efficient tamper-proof hardware compilation. Several aspects in our work would benefit from further study. However, there are also many research avenues that can be developed from this thesis. We highlight some of these in the following points.
Connections with Session Types

Session Types allow safe conversations (interactions) between processes-like types. These interactions have to conform to a protocol specified by the session types [79, 39, 38]. It is obvious that there are some appealing connections with session types. In particular, the use of session type to enforce run-time behaviour is very similar to the way we enforce lawful environment actions in order to prevent tampering. However, the technical details and especially the mathematical formulation of these ideas using process calculi rather than automata need to be studied. We leave them as open questions for future work.

Integrating coherent minimisation with GoS

GoS is a technique for hardware compilation to generate behavioural descriptions of digital circuits from conventional languages [49, 60, 61, 62]. GoS was the motivation for this research, and it will obviously benefit from coherent minimisation. In fact the proof of correctness of GoS stops at the automata-level and the VHDL implementation is done in an ad hoc fashion, because the automated derivation of the automata would be prohibitively expensive. The current implementations incorporate some rudiments of coherent minimisation, but the current theoretical framework would allow a top-to-bottom proof of correctness for the GoS compiler.

Applications of coherent minimisation

Coherent minimisation is, of course, not restricted to GoS, which is meant to serve as motivation and illustration, but to any automata operating in restricted environments. For example, APIs themselves can be enforced by a protocol, stipulating that functions belonging to the API must be called in a particular order. Finding other relevant application is to exploit this general framework could lead to unexpected optimisations for other systems.
Coherent minimisation algorithm

The coherent minimisation algorithm (Lst. 4.1), which is based on the coherent equivalence relation, will guarantee the resulting transducer has fewer states than the original one. However, there is no assurance that the quotiented transducer is truly minimal. For any transducer T and coherent equivalence relation $R \subseteq S_T \times S_T$, if we assumed that the output of running our coherent minimisation algorithm is m partitions, i.e. the resulting minimised transducer T' has m states, then T' is minimal if and only if with any other coherent equivalence relation $R' \subseteq S_T \times S_T$ the algorithm will not return partitions less than m. Further direction is to write an efficient algorithm to find the “optimal” coherent equivalence relation that guarantees a minimum number of states from our minimisation algorithm.

Certification

Fredriksson and Ghica verified (a version of) our soundness results for coherent minimisation and compositionality of CFSTs coherence. The differences (outlined in Appendix D), are formally and technically significant, but conceptually they are still well within the framework of the thesis. For the future we consider both extending the formal Agda proofs to non-deterministic and symbolic transducers, as in this thesis, as well as extending some of the certification towards the GoS front-end and the VHDL back-end.

Efficient tamper-proof compilation

Tamper-proofing is an approach for preventing low-level attacks on hardware circuits. We suggested in this thesis a model for efficiently tamper-proofing circuits produced by a higher-level synthesis compiler, which monitors (and then prevents) the interactions that do not respect the programming language protocol. However, this suggested model of tamper-proofing is not limited to this application, and should apply to other areas
outside the hardware synthesis, in particular seamless distributed computing [47]. This distribution system operates under a protocol that restricts the interaction between the connected nodes and also controls the data flow between its nodes. Because of these reasons, any interaction that tries to exploit vulnerabilities in its distributed network can be prevented by enforcing the rules of the protocol.

VHDL behavioural description of SFSTs

CFST is unsuitable in dealing with numerical data, due to the very large numbers of states required. SFSTs have been introduced in this thesis to overcome these problems. In this thesis we presented an algorithm for generating VHDL code from CFSTs. However, this algorithm can be modified to also encode SFSTs, by considering the guards as a part from the condition of the encoded transitions and introducing the registers as additional signals which will be updated (according to the update function) within every clock cycle. Furthermore, we need to encode the control bits which specify the status (active/inactive) of the input/output ports, as we explained in Ch. 5. This is quite important in order to fully certify the GoS chain of compilation.
Bibliography

168

LISTING A.1: Syntax of “If” Statement in VHDL.

IF condition\textsubscript{1} THEN
 statements;
ELSIF condition\textsubscript{2} THEN
 statements;
...
ELSE statements;
END IF;

LISTING A.2: Syntax of “Case” Statement in VHDL.

CASE control-expression IS
 WHEN test-expression\textsubscript{1} => statements;
 WHEN test-expression\textsubscript{2} => statements;
 ...
 WHEN OTHERS => statements;
END CASE;
Behavioural Description of CFST

Listing B.1: VHDL Code of Fig. 3.5a.

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;

ENTITY CFST IS
  PORT ( CLK, RESET, r, d1, d2 : IN std_logic;
         r1, r2, d : OUT std_logic);
END CFST;

ARCHITECTURE behavioural OF CFST IS
  TYPE state_type IS (s0, s1, s2, s3);
  SIGNAL state: state_type;
BEGIN
  PROCESS (CLK,RESET)
  BEGIN
    VARIABLE x_r1, z_r2, y_d: std_logic;
    BEGIN
      x_r1:=0; z_r2:=0; y_d:=0;

```

175
IF RESET = '1'
 THEN
 state <= s_0
ELSIF CLK = '1' AND CLK'EVENT
 THEN
 CASE state IS
 WHEN s_0 => IF (r = '1' AND d_1 = '0' AND d_2 = '0')
 THEN
 state <= s_1;
 x_r1 := '1';
 ELSIF (r = '1' AND d_1 = '1' AND d_2 = '0')
 THEN
 state <= s_2;
 x_r1 := '1';
 ELSE state <= s_0;
 END IF;
 WHEN s_1 => IF (r = '0' AND d_1 = '1' AND d_2 = '0')
 THEN
 state <= s_2;
 ELSE
 state <= s_1;
 END IF;
 WHEN s_2 =>
 IF (r = '0' AND d_1 = '0' AND d_2 = '1')
 THEN
 z_r2 := '1';
 END CASE;
 END IF;
y_d := '1';
state <= s0;

ELSE
z_r2 := '1';
state <= s3;
END IF;

WHEN s3 => IF (r = '0' AND d1 = '0' AND d2 = '1')
THEN
y_d := '1';
state <= s0;
ELSE
state <= s3;
END IF;

END CASE;

END IF;

r1 <= x_r1; r2 <= z_r2; d <= y_d;

END PROCESS;

END behavioral;
Coherent Minimisation for Verity Constants

Table C.1: Coherent Minimisation for Verity Constants in Detail.

<table>
<thead>
<tr>
<th></th>
<th>Incompatible states</th>
<th>Coherent equivalent</th>
<th>Coherent deterministic state equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>(s_0 \neq s_2, s_1 \neq s_2)</td>
<td>(s_0 \approx s_1, s_0 \approx s_3)</td>
<td>all pairs</td>
</tr>
<tr>
<td>composition</td>
<td>(s_2 \neq s_3)</td>
<td>(s_1 \approx s_3)</td>
<td></td>
</tr>
<tr>
<td>Assignment</td>
<td>(s_0 \neq s_2, s_1 \neq s_2)</td>
<td>(s_0 \approx s_1, s_0 \approx s_3)</td>
<td>all pairs</td>
</tr>
<tr>
<td></td>
<td>(s_2 \neq s_3)</td>
<td>(s_1 \approx s_3)</td>
<td></td>
</tr>
<tr>
<td>Conditional</td>
<td>(s_0 \neq s_2, s_0 \neq s_3, s_1 \neq s_2)</td>
<td>(s_0 \approx s_1, s_0 \approx s_4)</td>
<td>all pairs</td>
</tr>
<tr>
<td>’if’</td>
<td>(s_1 \neq s_3, s_2 \neq s_3, s_2 \neq s_4)</td>
<td>(s_0 \approx s_5, s_1 \approx s_4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(s_2 \neq s_5, s_3 \neq s_4, s_3 \neq s_5)</td>
<td>(s_1 \approx s_5, s_4 \approx s_5)</td>
<td></td>
</tr>
<tr>
<td>Binary</td>
<td>(s_0 \neq s_2, s_1 \neq s_2)</td>
<td>(s_0 \approx s_1, s_0 \approx s_3)</td>
<td>all pairs</td>
</tr>
<tr>
<td>addition</td>
<td>(s_2 \neq s_3)</td>
<td>(s_1 \approx s_3)</td>
<td></td>
</tr>
<tr>
<td>Iterator</td>
<td>(s_0 \neq s_2, s_0 \neq s_4, s_1 \neq s_2)</td>
<td>(s_0 \approx s_1, s_0 \approx s_3)</td>
<td>all pairs</td>
</tr>
<tr>
<td>’while’</td>
<td>(s_1 \neq s_4, s_2 \neq s_3, s_2 \neq s_4)</td>
<td>(s_1 \approx s_3)</td>
<td>all pairs</td>
</tr>
<tr>
<td></td>
<td>(s_3 \neq s_4)</td>
<td>(s_1 \approx s_3)</td>
<td></td>
</tr>
<tr>
<td>Dereferencing</td>
<td>None</td>
<td>(s_0 \approx s_1)</td>
<td></td>
</tr>
<tr>
<td>Diagonal</td>
<td>(s_1 \neq s_2)</td>
<td>(s_0 \approx s_1, s_0 \approx s_2)</td>
<td>all pairs</td>
</tr>
<tr>
<td>Parallel</td>
<td></td>
<td>(s_0 \approx S, s_1 \approx { s_3, s_4, s_5 })</td>
<td>all pairs</td>
</tr>
<tr>
<td>composition</td>
<td></td>
<td>(s_2 \approx { s_3, s_4 })</td>
<td></td>
</tr>
<tr>
<td>(NCFST)</td>
<td></td>
<td>(s_3 \approx { s_5, s_6 })</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>({ s_4, s_5, s_6 } \approx s_7)</td>
<td></td>
</tr>
</tbody>
</table>

The above table shows the relations of compatibility, coherent state equivalence and the deterministic state coherent equivalence for Verity constants. These constants with
their corresponding protocols have been presented in Ch. 7 except the binary addition
and the assignment constants, which are presented in this appendix.

By comparing Fig. C.3 and Fig. C.2 we can observe that the binary operator constant
has been minimised to only two states, using the relation of coherent deterministic state
equivalence. Likewise, the assignment constant is optimised to two states as shown in
Fig. C.6.

![Diagram](image-url)

Figure C.1: Protocol of \(\text{exp}_1 \otimes \text{exp}_2 \rightarrow \text{exp}_3 \) represented as a CFST.
Figure C.2: Verity binary addition constant represented as a CFST.

Figure C.3: Optimised Verity binary addition operator constant by coherent minimisation.
Figure C.4: Protocol of $\text{var} \otimes \text{exp}_1 \rightarrow \text{com}_2$ represented as a CFST.

Figure C.5: Verity assignment constant represented as a CFST.
Figure C.6: Optimised Verity assignment constant by coherent minimisation.
Formal Proofs of Coherent Minimisation in Agda

Below is the contents of the module1 which proves two versions of the main results of the thesis: soundness of coherent minimization and compositionality of transducer coherence. Compared to the thesis, there are several differences:

- The results in the thesis are proved for non-deterministic transducers, whereas the results here are proved for partially defined deterministic transducers. These are formally simpler, hence the formal Agda proofs are simpler, but in terms of hardware synthesis they are still a very good fit.

- The formulation of the properties are in terms of bisimulation between transducers rather than equivalences between states of the same transducers. This formulation turns out to be easier to work with.

These differences are formally and technically significant, but conceptually they are still well within the framework of the thesis.

\texttt{module PDTrans where}

\texttt{open import Data.Empty}

1Agda code by Olle Fredriksson and Dan R. Ghica.
We define a transducer as a box with states \(X \) which gets inputs from \(A \) and produces outputs to \(B \). It can also not respond, i.e. it is partially defined. This is conveniently formulated as an endofunctor and its co-algebra:

\[
F : (A \ B : \text{Set}) \rightarrow \text{Set} \rightarrow \text{Set}
\]

\[
F\ A\ B\ X = A \rightarrow \text{Maybe} \ (X \times B)
\]

\[
F\text{-coalgebra} : (A \ B : \text{Set}) \rightarrow \text{Set} \rightarrow \text{Set}
\]

\[
F\text{-coalgebra} \ A\ B\ X = X \rightarrow F\ A\ B\ X
\]

The one-step transition relation is defined as:

\[
_{\text{steps-to}} : \{X\ Y : \text{Set}\} \rightarrow \text{Maybe} \ (X \times Y) \rightarrow X \times Y \rightarrow \text{Set}
\]

\[
mxy\ \text{steps-to}\ xy = mxy \equiv \text{just}\ xy
\]

\[
infix\ 3\ _{\text{steps-to}}_\]

The Core module defines the key concepts related to transducers.

module Core \{A B : \text{Set}\} where

A relation \(R \) is a simulation, i.e. transducer \(\alpha \) is \(R \)-simulated by \(\beta \), if
≤(_)_ : {X Y : Set} (: F-coalgebra A B X) (R : Rel X Y)
 (: F-coalgebra A B Y) → Set

≤(R) = ∀ x y a → R x y → ∀ x’ b → x a steps-to (x’ , b) →
 ∃ y’ → y a steps-to (y’ , b) × R x’ y’

Correctness is defined relative to the conventional notion of (finite) trace semantics.

data _at_ : {X : Set} (: F-coalgebra A B X) (x:X)
 → Set where
 : at x ∋ []
 next : (a : A) (b : B) (x’ : X) {abs : List (A × B)}
 → x a steps-to (x’ , b) → at x’ ∋ abs → at x
 ∃ ((a , b) :: abs)

Two useful ancillary concepts is of trace membership and trace inclusion of transducers:

∈ at_ : {X : Set} (t : List (A × B)) (: F-coalgebra A B X) (x:X)
 → Set t ∈ at x = at x ∋ t

at⊆_at_ : {X Y : Set} (: F-coalgebra A B X) (x : X)
 (: F-coalgebra A B Y) (y : Y)
 → Set
 at x ⊆ at y = ∀ {t} → t ∈ at x → t ∈ at y

Specific to our framework is the notion of inclusion under a given protocol (¶). Unlike
transducers, which are fully specified, protocols are only represented by their membership
predicate.

⊢_at_⊆_at_ : {X Y : Set} (¶ : List (A × B) → Set)
 (: F-coalgebra A B X) (x : X)
(: F-coalgebra A B Y) (y : Y) → Set
¶ ⊢ at x ∈ at y = ∨ t t’ → ¶ (t ++ t’) → t’ ∈ at x → t’ ∈ at y

If a trace t is in the trace-set of a transducer we can define a transitive closure of the
next-step function, which is well defined.

_* : {X : Set} (: F-coalgebra A B X) (x : X) {t : List (A × B)}
→ t ∈ at x → X
_* x = x
_* x (next a b x’ h h’) = (*) x’ h’

The first main result is that our current definitions are sound, with simulation implying
trace inclusion. It is only a sanity result, not needed subsequently.

thm-sim-trace : {X Y : Set} (: F-coalgebra A B X)
(: F-coalgebra A B Y)
(x : X) (y : Y) (R : Rel X Y) →
R x y → ≤(R) → at x ∈ at y

thm-sim-trace x y R r s =
thm-sim-trace x y R r s (next a b x’ h ih)
= next a b y’ h’ (thm-sim-trace x’ y’ R r’ s ih)

where
s’ : ∃ y’ → y a steps-to (y’ , b) × R x’ y’
s’ = s x y a r x’ b h
y’ = proj₁ s’
r’ : R x’ y’
r’ = proj₂ (proj₂ s’)
h’ : y a steps-to (y’ , b)
\[h' = \text{proj}_1(\text{proj}_2 s') \]

open Core

The definition below, preceded by some ancillary one, is that of interaction of two transducers. It is the synchronisation of the shared ports in \(B \), but not followed by hiding.

\[
\text{maybeMap} : \{A : Set\} \to (A \to B) \to \text{Maybe} A \to \text{Maybe} B \\
\text{maybeMap } f = \text{maybe } (\text{just } \circ f) \text{ nothing} \\
\text{impos-maybe} : \{A : Set\} \to (a : A) \to (b : \text{Maybe} A) \to b \equiv \text{nothing} \to \text{just } a \equiv b \to \bot \\
\text{impos-maybe } a \text{ nothing } \text{refl } () \\
\]

\[
\triangleright : \{X Y A B C : \text{Set}\} \to (\text{F-coalgebra } A B X) \to (\text{F-coalgebra } B C Y) \to \text{F-coalgebra } A (B \times C) (X \times Y) \\
(\triangleright) (x, y) a = \text{maybe } ((x', b) \to \text{maybeMap } (\text{Prod.map } (\text{_}, \text{_} x') (\text{_}, \text{_} b)) (y b)) \to \text{nothing } (x a) \\
\]

Although obviously deterministic, we need to establish this formally for transducers using propositional equality.

\[
\text{determinism} : \{X A B : \text{Set}\} \\
(\text{_} : \text{F-coalgebra } A B X) (x : X)(a : A){x_1 \ x_2 : X}{b_1 \ b_2 : B} \to x \ a \ \text{steps-to } (x_1 \ , b_1) \to x \ a \ \text{steps-to } (x_2 \ , b_2) \\
\to x_1 \equiv x_2 \times b_1 \equiv b_2 \\
\text{determinism } x \ a \ \text{eq}_1 \ \text{eq}_2 \ \text{with } x \ a \\
\]

189
determinism \(x \cdot a \cdot \text{refl refl} \cdot \text{just} \cdot (x',b') = \text{refl}, \text{refl} \)
determinism \(x \cdot a \cdot () \cdot () \cdot \text{nothing} \)

This helps us compose and especially de-compose a transducer interaction in terms of
the (unique) action on which they synchronize. This ancillary lemma would fail for non-
deterministic transducers, where it would be significantly more involved.

\[
\text{lem0 : } \{X \ Y \ A \ B \ C : \text{Set} \} \ (\ : \text{F-coalgebra} \ A \ B \ X) \ (\ : \text{F-coalgebra} \ B \ C \ Y) \\
\rightarrow \forall \ x_1 \ y_1 \ a \rightarrow \forall \ \{x_2 \ y_2 \ b \ c\} \rightarrow \\
(\uparrow) \ (x_1, y_1) \ a \ \text{steps-to} \ ((x_2, y_2), (b, c)) \rightarrow \\
(x_1 \ a \ \text{steps-to} \ (x_2, b)) \times (y_1 \ b \ \text{steps-to} \ (y_2, c))
\]

\[
\text{lem0 } x_1 \ y_1 \ a \ h0 \ \text{with} \ x_1 \ a
\]

\[
\text{lem0 } x_1 \ y_1 \ a \ h0 \ | \ \text{just} \ (x', b') \ \text{with} \ y_1 \ b' \ | \ \text{inspect} \ (y_1) \ b'
\]

\[
\text{lem0 } x_1 \ y_1 \ a \ \text{refl} \ | \ \text{just} \ (x', b') \ | \ \text{just} \ (y_2', c') \ | \ [[r]]
\]

\[
= \text{refl}, r
\]

\[
\text{lem0 } x_1 \ y_1 \ a \ () \ | \ \text{just} \ (b', x') \ | \ \text{nothing} \ | \ [[r]]
\]

\[
\text{lem0 } x_1 \ y_1 \ a \ () \ | \ \text{nothing}
\]

\[
\text{lem1 : } \{X \ Y \ A \ B \ C : \text{Set} \} \\
(\ : \text{F-coalgebra} \ A \ B \ X) \ (\ : \text{F-coalgebra} \ B \ C \ Y) \\
\rightarrow \forall \ x_1 \ y_1 \ a \ b \rightarrow \forall \ \{x_2 \ y_2 \ c\} \rightarrow \\
(x_1 \ a \ \text{steps-to} \ (x_2, b)) \rightarrow y_1 \ b \ \text{steps-to} \ (y_2, c) \rightarrow \\
(\uparrow) \ (x_1, y_1) \ a \ \text{steps-to} \ ((x_2, y_2), (b, c))
\]

\[
\text{lem1 } x_1 \ y_1 \ a \ b \ h \ h' \ \text{with} \ x_1 \ a \ | \ y_1 \ b \ | \ \text{inspect} \ (y_1) \ b
\]

\[
\text{lem1 } x_1 \ y_1 \ a \ b \ \text{refl refl} \ \text{just} \ (x_2, .b) \ | \ \text{just} \ (y_2, c) \ | \ [[r']]
\]

\[
= \text{cong} \ (\text{maybe} \ _ \ \text{nothing}) \ r'
\]

\[
\text{lem1 } x_1 \ y_1 \ a \ b \ h \ () \ | \ \text{just} \ _ \ | \ \text{nothing} \ | \ _
\]

\[
\text{lem1 } x_1 \ y_1 \ a \ b \ () \ h' \ | \ \text{nothing} \ | \ _ \ | \ _
\]

190
An important result is that simulation is preserved by interaction. This is also a sanity-check which is not subsequently needed.

\[\text{thm-comp-sim} \quad \forall X Y X' Y' A B C : \text{Set} \quad \begin{align*}
(& : \text{F-coalgebra } A B X) \\
(& : \text{F-coalgebra } B C Y) \\
(& : \text{F-coalgebra } A B X') \\
(& : \text{F-coalgebra } B C Y') \\
(R : \text{Rel } X X') \\
(S : \text{Rel } Y Y') \quad \rightarrow \quad \\
\leq \langle R \rangle' \\
\leq \langle S \rangle' \\
\leq (R \times \text{REL } S) \\
(& \quad \Rightarrow)
\end{align*} \]

\[\text{thm-comp-sim} \quad \forall R S \quad \forall s_a s_p \quad (x_1 , y_1) \quad (x_1' , y_1') \quad a \quad R \times S \quad (x_2 , y_2) \quad (b , c) \quad h \\
= (x_2' , y_2') \quad , \quad (\text{lem1 } x_1 y_1 a b \quad (\text{proj1 prop4} \quad (\text{proj1 prop5}) \quad ,) \\
(\text{proj2 prop4} \quad , \quad \text{proj2 prop5})) \]

where

\[\begin{align*}
\text{r} & : R \quad x_1 \quad x_1' \\
\text{r} & = \text{proj1 } R \times S \\
\text{s} & : S \quad y_1 \quad y_1' \\
\text{s} & = \text{proj2 } R \times S \\
\text{s}_a' & : x_1 \quad a \quad \text{steps-to } (x_2 , b) \quad \rightarrow \exists \quad x_2' \\
\quad & \Rightarrow (\text{'} \quad x_1' \quad a \quad \text{steps-to } (x_2' , b)) \quad \times \quad (R \quad x_2 \quad x_2') \\
\text{s}_a' & = \text{s}_a \quad x_1 \quad x_1' \quad a \quad r \quad x_2 \quad b \\
\text{s}_p' & : y_1 \quad b \quad \text{steps-to } (y_2 , c) \quad \rightarrow \exists \quad y_2' \\
\quad & \Rightarrow (\text{'} \quad y_1' \quad b \quad \text{steps-to } (y_2' , c)) \quad \times \quad (S \quad y_2 \quad y_2') \\
\text{s}_p' & = \text{s}_p \quad y_1 \quad y_1' \quad b \quad s \quad y_2 \quad c \\
\text{prop0} & : x_1 \quad a \quad \text{steps-to } (x_2 , b) \quad \times \quad y_1 \quad b \quad \text{steps-to } (y_2 , c) \\
\text{prop0} & = \text{lem0} \quad x_1 \quad y_1 \quad a \quad h \\
\text{prop1} & : \exists \quad x_2' \quad \rightarrow (\text{'} \quad x_1' \quad a \quad \text{steps-to } (x_2' , b)) \quad \times \quad (R \quad x_2 \quad x_2')
\end{align*} \]
prop1 = s_{a'} (\text{proj}_1 \text{prop0})

prop2 : \exists \ y_2' \rightarrow (\ y_1'\ b\ \text{steps-to} (y_2', c)) \times (S\ y_2\ y_2')

prop2 = s_{p'} (\text{proj}_2 \text{prop0})

prop3 = \text{proj}_1 \text{prop1}

x_2' = \text{proj}_1 \text{prop1}

y_2' = \text{proj}_1 \text{prop2}

prop4 : (\ x_1'\ a\ \text{steps-to} (x_2', b)) \times (R\ x_2\ x_2')

prop4 = \text{proj}_2 \text{prop1}

prop5 : (\ y_1'\ b\ \text{steps-to} (y_2', c)) \times (S\ y_2\ y_2')

prop5 = \text{proj}_2 \text{prop2}

Protocols need to be prefix-closed, and it is useful to prove that trace interpretations of transducers are also prefix-closed ($pc(-)$). It follows that the empty trace ϵ is always a trace of any transducer.

\text{tmpc-lemma} : \{A\ B\ X : \text{Set}\}

\(\text{traces-pc} : \{A\ B\ X : \text{Set}\} \ (t : \text{List} (A \times B)) \ (x : \text{F-coalgebra A B X}) \rightarrow\)

\(\forall \ t'\ t'' \rightarrow t \equiv t' ++ t'' \rightarrow\)

\(t \in \text{at x} \rightarrow t' \in \text{at x}\)

where

\(\text{IH} : \text{at x' } \ni t'\)

\(\text{IH} = \text{tmpc-lemma} \ (t' ++ t'') \ x' \ t' \ t'' \ \text{refl mem}\)
(x : X) → pc (t → t ∈ at x)

\(\text{traces-pc} \ t \ x \cdot (t₂ ++ a :: [])\ \ t₂ \ \text{a refl mem} = \text{tmpc-lemma} \ (t₂ \ ::\ a)\)

\(\ x\ t₂\ [a\]\ \text{refl mem}\)

\(\text{traces-empty} : \{\ A\ B\ X : \text{Set}\} \ ((R : \text{F-coalgebra}\ A\ B\ X)) \ (x₀ : X)\)

\(→ [\] \in \ at\ x₀\)

\(\text{traces-empty}\ x₀ =\)

This is the key definition of the thesis, expressed in term of partially-defined transducers, the existence of a coherent simulation between two transducers. The definition is parametrised by the protocol \(\|\). It says that for any legal trace \(w\), any legal extension of that trace will preserve the simulation \(R\).

\(-,-\vdash_{\|} >_{_}\) : \{\ A\ B\ X\ Y : \text{Set}\}\)

\((\| : \text{List} \ (A \times B) \rightarrow \text{Set}) -- \text{protocol}\)

\((R : \text{Rel} X Y) -- \text{relation}\)

\((\ : \text{F-coalgebra}\ A\ B\ X)\)

\((\ : \text{F-coalgebra}\ A\ B\ Y) \rightarrow \text{Set}\)

\(\|, R \vdash_{_} > =\)

\(\forall \ x\ y\ a\ b\ x'\ w \rightarrow R\ x\ y \rightarrow \|\ w \rightarrow\)

\(\ x\ a\ \text{steps-to}\ (x', b) \rightarrow \| (w :: (a, b)) \rightarrow \exists\ y' \rightarrow\)

\(\ y\ a\ \text{steps-to}\ (y', b) \times R\ x'\ y'\)

Our first new result is that if transducers \(α, α'\) and \(β, β'\) have coherent simulations, respectively, under protocols \(\|₁\) and \(\|₂\) then their compositions have a coherent simulation, by the product relation, under the composite protocol. The composite protocol is defined by synchronisation on the shared component \(B\):
thm-comp-coh-sim : {X Y X' Y' A B C : Set}

(: F-coalgebra A B X) (: F-coalgebra B C Y)

(' : F-coalgebra A B X') (' : F-coalgebra B C Y')

(R : Rel X X') (S : Rel Y Y')

(¶1 : List (A × B) → Set) (¶2 : List (B × C) → Set)

(pc¶11 : pc ¶1)(pc¶12 : pc ¶2) →

¶1 , R ⊢ ▷ ' → ¶2 , S ⊢ ▷ ' →

(¶1 ▷ ¶2) , (R ×-REL S) ⊢ (▷) ▷ (' ▷ ')

thm-comp-coh-sim ' ' R S ¶1 ¶2 pc¶1 pc¶2 ▷' ▷' (x1 , y1)

(x1' , y1') a (b , c) (x2 , y2) w rs ¶11¶2w ▷' xa

¶11¶2w[a,b]

= (x2' , y2') , (fact4 ,(proj2 (proj2 sims) , proj2 (proj2 sims)))

where

r : R x1 x1'

r = proj1 rs

s : S y1 y1'

s = proj2 rs

prop0 : (x1 a steps-to (x2 , b)) × (y1 b steps-to (y2 , c))

prop0 = lem0 x1 y1 a ▷'xa

x1a = proj1 prop0

y1b = proj2 prop0

w|ab = Data.List.map (proj1 o assoc) w

w|bc = Data.List.map proj2 w

fact0 : Data.List.map (proj1 o assoc) (w ++ [a , b , c])

≡ w|ab ++ [a , b]

fact0 = map-distr-app (proj1 o assoc) w [a , b , c]

194
Another soundness result, used as a sanity check which is not really needed subsequently is the fact that simulation between two transducers is preserved by the transitive closure of their transition relation.

lem-sound : {A B X Y : Set}
 (¶ : List (A × B) → Set) → (pc¶ : pc ¶) →
 (R : Rel X Y) (x₀ : X) (y₀ : Y) (r : R x₀ y₀)
 → x₂' = proj₁ sims
 'x₁'a : ' x₁'a steps-to (x₂' , b)
 'x₁'a = proj₁ (proj₂ sims)
 y₂' = proj₁ sims
 'y₁'b : ' y₁'b steps-to (y₂' , c)
 'y₁'b = proj₁ (proj₂ sims)
 fact4 : (' ▶ ') (x₁' , y₁') a steps-to ((x₂' , y₂') , (b , c))
 fact4 = lem1 ' x₁'y₁'a b 'x₁'a 'y₁'b
(w w' : List (A × B)) (¶ww' : ¶ (w ++ w'))
(: F-coalgebra A B X)
(: F-coalgebra A B Y)
(w'∈ : w' ∈ at x₀)
(w'∈ : w' ∈ at y₀) →
¶ , R ⊢ ▷ →
R (((*) x₀ w'∈) (((*) y₀ w'∈)
lem-sound ¶ pc¶ R x₀ y₀ r w [] ¶ww' ▷ = r
lem-sound ¶ pc¶ R x₀ y₀ r w (.(a , b) :: w') ¶wa,b::w'
(next a b x' eq' w'∈) (next .a .b y' eq w'∈) ▷ = IH
where
\[w : ¶ w\]
\[w = pc* ¶ pc¶ w ((a , b) :: w') ¶wa,b::w'\]
\[w[a,b]w' : ¶ ((w :: (a , b)) ++ w')\]
\[w[a,b]w' = subst ¶ (sym (append-assoc w [a , b] w')) ¶wa,b::w'\]
\[w::a,b : ¶ (w :: (a , b))\]
\[w::a,b = pc* ¶ pc¶ (w :: (a , b)) w' ¶w[a,b]w'\]
coh-xy' : ∃ (y'' → (y₀ a steps-to (y'' , b)) (_ → R x' y''))
coh-xy' = ▷ x₀ y₀ a b x' w r ¶w eq' ¶w::a,b
y'' = proj₁ coh-xy'
coh' : R x' y''
coh' = proj₂ (proj₂ coh-xy')
coh'' : y₀ a steps-to (y'' , b)
coh'' = proj₁ (proj₂ coh-xy')
p3 : y'' ≡ y'
p3 = sym (proj₁ (determinism y₀ a eq coh''))
p1 : R x' y'

p1 = subst (R x') p3 coh'

IH : R ((*) x' w'∈) ((*) y' w'∈)
IH = lem-sound ¶ pc¶ R x' y' p1
 (w ::r (a , b)) w' ¶w[a,b]w' w' ∈ w' ε

Finally, our main soundness result is that coherent simulation implies trace inclusion, under the same protocol ¶.

thm-sound : {A B X Y : Set}
 (¶ : List (A × B) → Set)(pc¶ : pc ¶) →
 (R : Rel X Y) (x₀ : X) (y₀ : Y) (r : R x₀ y₀)
 (: F-coalgebra A B X)
 (: F-coalgebra A B Y) →
 ¶ , R ⊢ ▷→
 ¶ ⊢ at x₀ ⊑ at y₀

thm-sound ¶ pc¶ R x₀ y₀ r ¶,R⊢ ▷→ w [] ¶wt t∈ =

thm-sound ¶ pc¶ R x₀ y₀ r ¶,R⊢ ▷→ w ((.a , .b) :: abs) ¶wt
 (next a b x' e'' t∈) with x₀ a | inspect (x₀) a | y₀ a |
 inspect (y₀) a

thm-sound ¶ pc¶ R x₀ y₀ r ¶,R⊢ ▷→ w ((.a , .b) :: abs) ¶wt
 (next a b x' e'' t∈) | just (x'' , b''') | [[e]] | just (y' , b'''') | [[y'''']] = next a b y' y' IH
where

p0 : (w ++ (a , b) :: []) ++ abs ≡ w ++ (a , b) :: abs
\[p_0 = \text{append-assoc } w ((a, b) :: []) \text{ abs} \]

\[\downarrow w : \downarrow w \]

\[\downarrow w = \text{pc}^* \downarrow \text{pc} \downarrow w ((a, b) :: \text{abs}) \downarrow wt \]

\[\downarrow w[a, b] : \downarrow (w \text{ ::}\ (a, b)) \]

\[\downarrow w[a, b] = \text{pc}^* \downarrow \text{pc} \downarrow (w \text{ ::}\ (a, b)) \text{ abs (subst } \downarrow (\text{sym } p_0) \downarrow wt) \]

\[\text{fact} : \exists (y'' \rightarrow (y_0 \text{ a steps-to } (y'', b)) (_ \rightarrow R x' y')) \]

\[\text{fact} = \downarrow, R \vdash x_0 y_0 a b x' w r \downarrow w (\text{trans } e'') \downarrow w[a, b] \]

\[y'' = \text{proj}_1 \text{ fact} \]

\[y'' : y_0 \text{ a steps-to } (y'', b) \]

\[y'' = \text{proj}_1 (\text{proj}_2 \text{ fact}) \]

\[y'' \equiv y' : y'' \equiv y' \]

\[y'' \equiv y' = \text{proj}_1 (\text{determinism } y_0 a y'' y''') \]

\[y' : y_0 \text{ a steps-to } (y', b) \]

\[y' = \text{subst } (y' \rightarrow y_0 \text{ a steps-to } (y', b)) y'' \equiv y' y''' \]

\[R x'y' : R x' y' \]

\[Rx'y' = \text{subst } (R x') y'' \equiv y' (\text{proj}_2 (\text{proj}_2 \text{ fact})) \]

\[\text{IH} : \text{ at } y' \exists \text{ abs} \]

\[\text{IH} = \text{thm-sound } \downarrow, \text{pc} \downarrow R x' y' Rx'y' \downarrow, R \vdash (w \text{ ::}\ (a, b)) \text{ abs} \]

\[(\text{subst } \downarrow (\text{sym } p_0) \downarrow wt) t \epsilon \]

\[\text{thm-sound } \downarrow, \text{pc} \downarrow R x_0 y_0 r \downarrow, R \vdash w ((.a, .b) :: \text{abs}) \downarrow wt \]

\[(\text{next } a b x' e'' t \epsilon) \mid \text{just } (x'', b'') \mid [[e]] \]

\[| \text{nothing} | [[\text{nothing }]] = \perp\text{-elim contradiction} \]

where

\[\downarrow w : \downarrow w \]

\[\downarrow w = \text{pc}^* \downarrow \text{pc} \downarrow w ((a, b) :: \text{abs}) \downarrow wt \]
\[w[a,b] : (w :: (a, b))\]
\[w[a,b] = pc* pc (w :: (a, b)) abs (subst (sym (append-assoc w ((a, b) :: [])) abs)) wt\]

fact: \(\exists (y' \rightarrow (y_0 a \text{ steps-to} (y', b)) (_ \rightarrow R x' y'))\)

fact = \(\sqcap, R \sqsupset x_0 y_0 a b x' w r \sqcap (\text{trans } e e'') \sqcap w[a,b]\)

\(y' = \text{proj}_1 \text{ fact}\)

just: \(y_0 a \text{ steps-to} (y', b)\)

just = \(\text{proj}_1 (\text{proj}_2 \text{ fact})\)

\(-\text{nothing} \equiv \text{just} : \forall \{A : \text{Set}\} \{a : A\} \rightarrow \text{nothing} = (\text{Maybe } A \ni \text{just } a) \rightarrow \bot\)

\(-\text{nothing} \equiv \text{just} ()\)

contradiction = \(-\text{nothing} \equiv \text{just} (\text{trans } (\text{sym } \text{nothing}) \text{ just})\)

thm-sound \(\sqcap \text{ pc} R x_0 y_0 \sqcap, R \sqsupset w ((.a, .b) :: \text{abs}) \sqcap wt\)

\((\text{next } a b h () t \in \text{nothing} | [[e]] | o' | [[e']]\)

The following module contains properties of prefix-closed sets of traces required by the main module.

module ListProperties where

open import Relation.Binary hiding (Rel)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Data.Empty
open import Data.List
open import Data.List.Properties
open import Data.Nat
open import Data.Product as Prod hiding (map)
open import Function
import Level

pc : {A : Set} → (List A → Set) → Set
pc m = ∀ l l' a → l ≡ l' ⇒ a → m l → m l'

sc : {A : Set} → (List A → Set) → Set
sc m = ∀ l l' a → l ≡ a ∴ l' → m l → m l'

rev : {A : Set} → List A → List A
rev [] = []
rev (x :: l) = rev l :: x

append-neut-r : {A : Set} → (l : List A) → l ++ [] ≡ l
append-neut-r [] = refl
append-neut-r (x :: xs) = cong (_::_ x) (append-neut-r xs)

append-assoc : {A : Set} → (x y z : List A) → ((x ++ y) ++ z)
≡ (x ++ (y ++ z))
append-assoc [] y z = refl
append-assoc (x :: xs) y z = cong (_::_ x) (append-assoc xs y z)

rev-append-distr : {A : Set} → (l l' : List A) → rev (l ++ l')
≡ (rev l') ++ (rev l)
rev-append-distr [] l' = sym (append-neut-r (rev l'))
rev-append-distr (x :: l) l' = p2
where

IH : rev (l ++ l') ≡ (rev l') ++ (rev l)
IH = rev-append-distr l l'
p0 : rev (l ++ l') ++ x :: [] ≡ ((rev l') ++ (rev l)) ++ x :: []
p0 = cong (w → w ++ x :: []) IH
p1 : ((rev l') ++ (rev l)) ++ x :: [] ≡ (rev l') ++ (rev l) ++ x :: []
p1 = append-assoc (rev l') (rev l) (x :: [])
p2 : rev (l ++ l') ++ x :: [] ≡ (rev l') ++ (rev l) ++ x :: []
p2 = trans p0 p1

rev-invo : {A : Set} → (l : List A) → rev (rev l) ≡ l
rev-invo [] = refl
rev-invo (x :: l) = trans p0 p1

where

IH : rev (rev l) ≡ l
IH = rev-invo l
p0 : rev (rev l ++ x :: []) ≡ x :: (rev (rev l))
p0 = rev-append-distr (rev l) (x :: [])
p1 : x :: (rev (rev l)) ≡ x :: l
p1 = cong (w → x :: w) IH

map-all : {A B : Set} → (List A → Set) → (A → B) → (List B → Set)
map-all L f l = ∃ l' → L l' → l ≡ map f l'

rev-all : {A : Set} → (List A → Set) → (List A → Set)
rev-all L l = L (rev l)
201
prop-pc-rev : \{A : Set\} \rightarrow (L : List A \rightarrow Set) \rightarrow pc L \rightarrow sc (rev-all L)

prop-pc-rev L pcL .(a :: l') l' a refl h = pcL (rev l' ++ a :: [])

(rev l') a refl h

sc* : \{A : Set\} \rightarrow (m : List A \rightarrow Set) \rightarrow (sc m) \rightarrow (t t' : List A) \rightarrow
 m (t ++ t') \rightarrow m t'

sc* m h [] t' h' = h'

sc* m h (x :: t) t' h' = IH
 where
 IH : m t'
 IH = sc* m h t t' (h (x :: t ++ t')) (t ++ t') x refl h'

sc-lemma : \{A : Set\} \rightarrow (m : List A \rightarrow Set) \rightarrow (sc m) \rightarrow (t : List A) \rightarrow
 m t \rightarrow (m [])

sc-lemma m scm t h = sc* m scm t [] (subst m (sym (append-neut-r t)) h)

pc-lemma : \{A : Set\} \rightarrow (m : List A \rightarrow Set) \rightarrow (pc m) \rightarrow (t : List A) \rightarrow
 m t \rightarrow (m [])

pc-lemma m pcm t mt = sc-lemma (rev-all m) scm' (rev t) p1
 where
 scm' : sc (rev-all m)
 scm' = prop-pc-rev m pcm
 p2 : t \equiv rev (rev t)
 p2 = sym (rev-invo t)
 p1 : m (rev (rev t))

202
\[p1 = \text{subst } m \ p2 \ mt \]

\[\text{pc}^* : \{A : \text{Set}\} \rightarrow (m : \text{List } A \rightarrow \text{Set}) \rightarrow (\text{pc } m) \rightarrow (t \ t' : \text{List } A) \rightarrow m \ (t ++ t') \rightarrow m \ t \]

\[\text{pc}^* \ m \ \text{pcm} \ t \ t' \ mt' = \text{subst } m \ (\text{rev-invo } t) \ p1 \]

where

\[\text{-- can this be done in a less boring way?} \]

\[m' = \text{rev-all } m \]

\[\text{scm'} : \text{sc } m' \]

\[\text{scm'} = \text{prop-pc-rev } m \ \text{pcm} \]

\[p0 : \forall \ t_0 \ t_1 \rightarrow m' \ (t_0 ++ t_1) \rightarrow m' \ t_1 \]

\[p0 \ t_0 \ t_1 \ h = \text{sc}^* \ m' \ \text{scm'} \ t_0 \ t_1 \ h \]

\[p2 : \text{rev } (\text{rev } t' ++ \text{rev } t) \equiv (\text{rev } (\text{rev } t)) ++ (\text{rev } (\text{rev } t')) \]

\[p2 = \text{rev-append-distr } (\text{rev } t') \ (\text{rev } t) \]

\[p4 : t \equiv \text{rev } (\text{rev } t) \]

\[p4 = \text{sym } (\text{rev-invo } t) \]

\[p4' : t' \equiv \text{rev } (\text{rev } t') \]

\[p4' = \text{sym } (\text{rev-invo } t') \]

\[p3 : (\text{rev } (\text{rev } t)) ++ (\text{rev } (\text{rev } t')) \equiv t ++ t' \]

\[p3 = \text{sym } (\text{cong}_2 _++_ \ p4 \ p4') \]

\[p5 : t ++ t' \equiv \text{rev } (\text{rev } t' ++ \text{rev } t) \]

\[p5 = \text{sym } (\text{trans } p2 \ p3) \]

\[p6 : m \ (\text{rev } t' ++ \text{rev } t)) \]

\[p6 = \text{subst } m \ p5 \ mt' \]

\[p1 : m \ (\text{rev } (\text{rev } t)) \]

\[p1 = p0 \ (\text{rev } t') \ (\text{rev } t) \ p6 \]
-- quotient a set of sequences by a prefix

__ : {A : Set} → (m : List A → Set) (w : List A) (l : List A) → Set
(m \ w) l' = \ l → l ≡ w ++ l' → m l

quotient-pc : {A : Set} → (m : List A → Set) (w : List A)
→ (pc m) → pc (m \ w)
quotient-pc m w pcm .(l' ++ a :: []) l' a refl h .(w ++ l') refl = pc*
m pcm (w ++ l') [a] (subst m p2 (h (w ++ l' ++ a :: []) refl))

where
p2 : w ++ l' ++ [a] ≡ (w ++ l') ++ [a]
p2 = sym (append-assoc w l' (a :: []))
p1 : w ++ l' ++ [a] ≡ w ++ l' ++ [a]
p1 = refl
p0 : m (w ++ l' ++ a :: [])
p0 = h (w ++ l' ++ [a]) p1

Rel : Set → Set → Set
Rel X Y = REL X Y Level.zero

-- pointwise product of relations

x-REL : {X X' Y Y' : Set} → Rel X Y → Rel X' Y' → Rel (X × X')
(Y × Y') (R ×-REL S) (x , x') (y , y') = R x y × S x' y'

assoc : {A B C : Set} → A × B × C → (A × B) × C
assoc (a , (b , c)) = (a , b) , c
-- interaction of two alphabets

\[_\otimes_ : \{A \ B \ C : \text{Set}\} \to (\text{List} \ (A \times B) \to \text{Set}) \to (\text{List} \ (B \times C) \to \text{Set}) \to (\text{List} \ (A \times B \times C) \to \text{Set}) \]

\[_\otimes_ \ \{A\} \ \{B\} \ \{C\} \ P \ Q \ w = (P \ (\text{map} \ \text{proj}_1 \ (\text{map} \ \text{assoc} \ w))) \]
\[\times (Q \ (\text{map} \ \text{proj}_2 \ w)) \]

assoc-map : \{A \ B \ C : \text{Set}\} \ (f : A \to B) \ (g : B \to C) \ (l : \text{List} \ A) \to
\[\text{map} \ g \ (\text{map} \ f \ l) \equiv \text{map} \ (g \circ f) \ l \]

assoc-map f g [] = refl

assoc-map f g (x :: xs) = cong (_ :: _ (g (f x))) (assoc-map f g xs)

map-distr-app : \{A \ B : \text{Set}\} \ (f : A \to B) \ (l \ l' : \text{List} \ A) \to
\[\text{map} \ f \ (l ++ l') \equiv \text{map} \ f \ l ++ \text{map} \ f \ l' \]

map-distr-app f [] ys = refl

map-distr-app f (x :: xs) ys = cong (_ :: _ (f x)) (map-distr-app f xs ys)

int-proj : \{A \ B \ C : \text{Set}\} \ (P : \text{List} \ (A \times B) \to \text{Set}) \ (Q : \text{List} \ (B \times C) \to \text{Set}) \ (w : \text{List} \ (A \times B \times C)) \to
\[((P \otimes Q) \ w) \to (P \ (\text{map} \ \text{proj}_1 \circ \text{assoc} \ w)) \times (Q \ (\text{map} \ \text{proj}_2 \ w)) \]

int-proj P Q w PQw rewrite assoc-map assoc proj_1 w = PQw

-- inverse map on nil and unit list

nilmap : \{A \ B : \text{Set}\} \ (noas : \text{List} \ A) \ (f : A \to B) \to (\text{map} \ f \ noas \equiv []) \to noas \equiv []
nilmap [] _ eq = refl
nilmap (_ :: _) _ ()

unitmap : {A B : Set} (b : B) ([a] : List A) (f : A → B) →
 [b] ≡ map f [a] → ∃ a → [a] ≡ [a] × f a ≡ b
unitmap b [] f ()
unitmap b (a :: as) f eq = a , fact'' , sym (proj₁ fact)

where
fact : b ≡ f a × [] ≡ map f as
fact = ::-injective eq

fact' : as ≡ []
fact' = nilmap as f (sym (proj₂ fact))

fact'' : a :: as ≡ a :: []
fact'' = cong (as → a :: as) fact'

-- prefix closure preserved by composition
int-pref-comp : {A B C : Set} → (P : List (A × B) → Set) →
 (Q : List (B × C) → Set) →
 pc P → pc Q → pc (P ▸ Q)
int-pref-comp P Q pcP pcQ .(l' ++ (a , b , c) :: []) l' (a , b , c)
refl (h₁ , h₂) = goal1 , goal2
where
projab = abc → (proj₁ abc , proj₁ (proj₂ abc)) ,
 proj₂ (proj₂ abc)

206
\[l_1 = \text{map proj}_1 \left(\text{map projab } l' \right) \]
\[l_1' = \text{map proj}_1 \circ \text{projab} \left(l' \right) \]
\[l_1 \equiv l_1' : l_1 \equiv l_1' \]
\[l_1 \equiv l_1' = \text{assoc-map projab proj}_1 \left(l' \right) \]
\[l_1ab = l_1'ab : \text{l_1 ++ \left[a, b \right]} \equiv l_1' ++ \left[a, b \right] \]
\[l_1ab = l_1'ab = \text{cong } l \to l ++ \left[a, b \right] l_1 \equiv l_1' \]

\[l_2 = \text{map proj}_1 \left(\text{map projab } \left(l' ++ \left(a, b, c \right) :: [] \right) \right) \]
\[l_2' = \text{map proj}_1 \circ \text{projab} \left(l' ++ \left[a, b, c \right] \right) \]
\[l_2 \equiv l_2' : l_2 \equiv l_2' \]
\[l_2 \equiv l_2' = \text{assoc-map projab proj}_1 \left(l' ++ \left[a, b, c \right] \right) \]

\[\text{eqab} : l_2' \equiv l_1' ++ \left[a, b \right] \]
\[\text{eqab} = \text{map-distr-app proj}_1 \circ \text{projab} \left(l' \left[a, b, c \right] \right) \]
\[\text{goal1} : \text{P } l_1 \]
\[\text{goal1} = \text{pcP } l_2 \ l_1 \left(a, b \right) \left(\text{trans } l_2 \equiv l_2' \left(\text{trans } \text{eqab} \left(\text{sym } l_1ab = l_1'ab \right) \right) \right) \ h_1 \]

\[m = \text{map proj}_2 \left(l' \right) \]
\[m' = \text{map proj}_2 \left(l' ++ \left(a, b, c \right) :: [] \right) \]
\[\text{eqbc} : m' \equiv m ++ \left[b, c \right] \]
\[\text{eqbc} = \text{map-distr-app proj}_2 \left(l' \left[a, b, c \right] \right) \]

\[\text{goal2} : \text{Q } \left(\text{map proj}_2 \left(l' \right) \right) \]
\[\text{goal2} = \text{pcQ } m' \ m \left(b, c \right) \text{ eqbc } h_2 \]