eTheses Repository

Development of multi-component iron-based amorphous alloy

Squire, Peter James (2009)
Ph.D. thesis, University of Birmingham.

Loading
PDF (8Mb)

Abstract

This present study is concerned with developing a new alloy system which is capable of forming a metallic glass on rapid solidification of the melt, rather than modifying a known glass forming composition, and assessing its glass forming ability. Iron (Fe) was chosen as the solvent element because it is significantly cheaper than the base elements found in some other metallic glasses and does not require the addition of large quantities of expensive alloying elements to enable vitrification. A ternary system using carbon (C) and boron (B) was studied initially as these metalloids are known to aid glass formation in other systems. Manganese and molybdenum were selected as secondary alloying additions in order to determine if they would have an effect on the Fe-C-B alloy with the best glass forming ability. A combination of optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffractometry and secondary ion mass spectroscopy was used to investigate the microstructure of as-cast and rapidly solidified alloys. Differential scanning calorimetry (DSC) was used to investigate the thermal behaviour of the alloys. The ability of the iron-based alloys to form a glass on rapid solidification from the melt could not be predicted by observation of the as-cast microstructure or through computational methods. It was found that vitrification of the ternary system was only possible for compositions which were close to a eutectic point and that stabilisation of the supercooled liquid was caused by competition for nucleation between austenite and metastable phases, rather than between primary equilibrium solidification products. Of the ternary compositions where an amorphous phase was produced it was concluded that Fe\(_{80.9}\)C\(_5\)B\(_{14.1}\) had the best glass forming ability (GFA). It was determined that the addition of manganese and/or molybdenum to the base composition generally had the effect of improving the GFA through the increased complexity of the system making it more difficult for recrystallisation to occur. Of the multi-component alloys it was concluded that Fe\(_{60.9}\)Mn\(_{10}\)Mo\(_{10}\)C\(_5\)B\(_{14.1}\) had the best GFA as it had the highest values for each of the parameters used to describe GFA. It is believed that this is due to competition between the austenite and alpha stabilisers (manganese and molybdenum respectively) causing enhanced stability of the supercooled liquid.

Type of Work:Ph.D. thesis.
Supervisor(s):Chang, I. T. H.
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:Department of Metallurgy and Materials
Additional Information:

A higher quality copy (with higher resolution images) is available on request

Subjects:TN Mining engineering. Metallurgy
Institution:University of Birmingham
ID Code:462
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page