eTheses Repository

Stabilising alloys in non-equilibrium crystal structures by epitaxial growth

Decoster, Thibault (2013)
Ph.D. thesis, University of Birmingham.

PDF (24Mb)


Thin film and surface science is an active field with important technological applications as illustrated by the transistor and by the recording head. This thesis relates thin film and surface science experiments applied to quasicrystalline materials, ferromagnetic alloys and electron tomography. These systems have strong potentials for technological applications.
Epitaxial deposition is a powerful tool to create structures which are non-stable in the bulk state. For a better understanding of the quasicrystals' physical properties, one wants to grow quasicrystalline thin films of reduced chemical complexity. Single elements don't form quasicrystalline thin films beyond a monolayer. This thesis reports the successful growth of binary AlNi quasicrystal thin films in the multilayer regime. This thesis reports also detailed analysis of annealing and phase transition related structures on different surface orientations of d-AlNiCo.
The equilibrium structure of MnSb is of the NiAs type but other structures with theoretical 100% polarisation can be stabilised by epitaxy. The surface magnetism of the MnSb thin film with equilibrium bulk structure grown on GaAs(111) has been imaged by spin-polarised low-energy electron microscopy revealing the spin direction mapping of magnetic domains at the surface of MnSb.
Atomic resolution is routinely obtained with the current generation of transmission electron microscopes. For three-dimensional atomic resolution, the problem is to obtain suitable samples. In this thesis, we report the development of instruments and a methodology to fabricate atomically flat terraces with nanometre dimension at the tip of etched tungsten wires and the MBE growth of Au clusters on these terraces.

Type of Work:Ph.D. thesis.
Supervisor(s):Theis, Wolfgang and Guo, Quanmin
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Physics and Astronomy
Subjects:QC Physics
Institution:University of Birmingham
ID Code:3849
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page