eTheses Repository

An efficient authentication framework for wireless sensor networks

Yasmin, Rehana (2012)
Ph.D. thesis, University of Birmingham.

Loading
PDF (5Mb)

Abstract

This study investigates the broadcast/multicast authentication problems in wireless sensor networks (WSNs), particularly sensor nodes broadcast authentication and outside user authentication, and proposes efficient and secure solutions for them. The low cost and immunity from cabling have become motivations for many applications of WSNs, for instance, the forest fire alarm, the intelligent traffic system etc. However, the sensitive nature of communication in these applications makes authentication a compulsory security requirement for them. The conventional security solutions are unfeasible for WSNs due to the unique features of sensor networks. Designing a new security mechanism for WSNs, on the other hand, is a challenging task due to the nature of WSNs. This research proposes a solution to the above mentioned authentication problems in the form of an authentication framework for wireless sensor networks. The proposed framework is comprised of two authentication protocols: one for sensor nodes broadcast authentication and the other for outside user authentication. The latter also facilitates a third type of authentication, i.e., base station to sensor nodes broadcast authentication. These protocols can be applied in WSNs independently tackling individual security problems to achieve different level of security. However, deployed as a unified framework, they ensure a high degree of security with efficiency, providing a single solution to all three authentication problems in WSNs. The performance evaluation results showed that the proposed framework is the most efficient solution when compared to the existing authentication schemes for WSNs, giving a reasonable trade-off between security and efficiency.

Type of Work:Ph.D. thesis.
Supervisor(s):Ritter, Eike and Wang, Guilin
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Computer Science
Subjects:QA75 Electronic computers. Computer science
TK Electrical engineering. Electronics Nuclear engineering
Institution:University of Birmingham
ID Code:3774
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page