eTheses Repository

Context-dependent processing of vestibular signals for balance and orientation

Osler, Callum Jon (2012)
Ph.D. thesis, University of Birmingham.

PDF (2715Kb)Accepted Version


The control of balance and orientation comprises various forms of sensory input, reflexive action and anticipatory mechanisms. An important sensory input is the vestibular system. When a destabilising or disorientating perturbation is sensed by the vestibular apparatus a corrective response is generated. This thesis investigated how the processing of vestibular signals is affected by postural and sensory context. Orientation reflexes evoked by a vestibular signal of head roll were shown to be continuously modulated and even reversed direction during self-generated head pitch movements (Chapter 2). Results also raised the possibility that the direction of a vestibular-evoked balance reflex is automatically rotated following adaptation of motor output (Chapter 3). In addition to modulating the response direction, the context was also found to affect the response amplitude. Passive cutaneous sensory input was shown to attenuate a vestibular-evoked balance reflex (Chapter 4). If, however, such changes in sensory context were anticipated, then response amplitude was unchanged (Chapter 5). Furthermore, the initial balance reflex was not affected by a fear of falling (Chapter 6). The present findings demonstrate that the processing of vestibular signals is indeed context-dependent. However, the modulation of vestibular-evoked reflexes is seemingly automatic, and is not affected by cognition or emotion.

Type of Work:Ph.D. thesis.
Supervisor(s):Reynolds, Raymond
School/Faculty:Colleges (2008 onwards) > College of Life & Environmental Sciences
Department:School of Sport and Exercise Sciences
Subjects:QM Human anatomy
QP Physiology
Institution:University of Birmingham
ID Code:3707
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page