eTheses Repository

Precision interferometry in a new shape: higher-order Laguerre-Gauss modes for gravitational wave detection

Fulda, Paul (2012)
Ph.D. thesis, University of Birmingham.

Loading
PDF (8Mb)

Abstract

The sensitivity of the next generation of interferometric gravitational wave detectors will be limited in part by thermal noises of the optics. It has been proposed that using higher-order Laguerre-Gauss (LG) beams in the interferometers can reduce this noise. This thesis documents progress made in assessing the compatibility of higher-order LG beam technology with the existing precision interferometry framework used in the gravitational wave detector community. A numerical investigation was made into techniques for generating higher-order LG modes with a phase modulating surface. The optimal conditions for mode conversion were determined using fast Fourier transform (FFT) simulations, and predictions were made for the mode purity achievable with this method. Table-top experiments performed at Birmingham demonstrated the generation of higher-order LG modes using a spatial light modulator, and showed for the first time the feedback control of an optical cavity on resonance for higher-order LG modes. An increase in the purity of LG\(_{33}\) modes from 51% to over 99% upon transmission through the cavity was shown. Investigations were carried out at the Glasgow 10m prototype detector into the performance of the LG\(_{33}\) mode in a suspended 10m cavity, providing useful insights into the compatibility of LG modes with larger scale interferometers.

Type of Work:Ph.D. thesis.
Supervisor(s):Freise, Andreas
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:Astrophysics and Space Research Group, School of Physics and Astronomy
Subjects:QB Astronomy
QC Physics
T Technology (General)
Institution:University of Birmingham
ID Code:3703
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page