eTheses Repository

Combustion and emissions performance of oxygenated fuels in a modern spark ignition engine

Daniel, Ritchie Lewis (2012)
Ph.D. thesis, University of Birmingham.

Loading
PDF (6Mb)Accepted Version

Abstract

The combustion and emissions performance of oxygenated fuels has been investigated in a modern direct-injection spark-ignition (DISI) engine. In particular, the new biofuel candidate, 2,5-dimethylfuran, otherwise known as DMF, has been assessed as a future automotive fuel against ethanol, the most commercially accepted spark-ignition (SI) biofuel.

When operating with DMF, the engine performance and emissions are less sensitive to changes in key control parameters than with gasoline. This allows a wider window for improving performance and/or reducing emissions. The relevance of modern injection strategies to increase performance or efficiency has also been assessed when using DMF. The use of split-injection at full load is shown to be less beneficial than with gasoline.

Novel fuel preparation techniques have been investigated by comparing externally supplied gasoline-biofuel blends (conventional method) to internally mixed, dual-injection blends. This new mode presents an avenue for optimising oxygenated fuels with a low heat of vaporization, such as DMF and n-butanol; low blends with gasoline (≤25% by volume) are more efficiently utilised than in external blends. Furthermore, the particulate matter (PM) emissions can be reduced with dual-injection because gasoline is supplied through PFI.

The unlegislated emissions when using DMF have been benchmarked against gasoline and compared to other oxygenated fuels. In particular, the emissions of the major carbonyls are lower when using DMF compared to gasoline and even less so than ethanol, which heavily emits acetaldehyde and formaldehyde. The dual-injection mode further reduces the total carbonyl emissions when using DMF and ethanol blends compared to direct-injection (DI).

Type of Work:Ph.D. thesis.
Supervisor(s):Xu, Hongming and Wyszyński, Mirosław
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:Engineering
Subjects:TP Chemical technology
TS Manufactures
Institution:University of Birmingham
ID Code:3675
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page