eTheses Repository

Nickel-based single crystal superalloys for industrial gas turbines

Sato, Atsushi (2012)
Ph.D. thesis, University of Birmingham.

PDF (15Mb)


The oxidation resistance of four prototype single crystal nickel-based superalloys for industrial gas turbine applications is studied. All contain greater quantities of Cr than in most existing single crystal superalloys; two are alloyed with Si, one with Re. To explain the results, the factors known to influence the rate of Al\(_2\)O\(_3\) scale formation are considered. Models are developed to predict whether any given alloy composition will form a continuous Al\(_2\)O\(_3\) scale. These are used to rationalise the dependence of Al\(_2\)O\(_3\) scale formation on alloy composition in these systems. The mechanical behaviour of a new single crystal nickel-based superalloy for industrial gas turbine applications is also studied under creep and out-of-phase thermomechanical fatigue (TMF) conditions. Neutron diffraction methods and thermodynamic modelling are used to quantify the variation of the gamma prime (\(\gamma\)’) strengthening phase around the \( \gamma\)’ solvus temperature; these aid the design of primary ageing heat treatments to develop either uniform or bimodal microstructures of the \( \gamma\)’ phase. During TMF, localised shear banding occurs with the \( \gamma\)’ phase penetrated by dislocations; however during creep the dislocation activity is restricted to the matrix phase. The factors controlling TMF resistance are rationalised.

Type of Work:Ph.D. thesis.
Supervisor(s):Reed , Roger C. and Green, Nick and Evans, Hugh
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:Department of Metallurgy and Materials
Subjects:T Technology (General)
TA Engineering (General). Civil engineering (General)
TN Mining engineering. Metallurgy
TS Manufactures
Institution:University of Birmingham
ID Code:3533
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page