eTheses Repository

Amplitude and phase sonar calibration and the use of target phase for enhanced acoustic target characterisation

Islas-Cital, Alan (2012)
Ph.D. thesis, University of Birmingham.

PDF (4Mb)


This thesis investigates the incorporation of target phase into sonar signal processing, for enhanced information in the context of acoustical oceanography. A sonar system phase calibration method, which includes both the amplitude and phase response is proposed. The technique is an extension of the widespread standard-target sonar calibration method, based on the use of metallic spheres as standard targets. Frequency domain data processing is used, with target phase measured as a phase angle difference between two frequency components. This approach minimizes the impact of range uncertainties in the calibration process. Calibration accuracy is examined by comparison to theoretical full-wave modal solutions. The system complex response is obtained for an operating frequency of 50 to 150 kHz, and sources of ambiguity are examined. The calibrated broadband sonar system is then used to study the complex scattering of objects important for the modelling of marine organism echoes, such as elastic spheres, fluid-filled shells, cylinders and prolate spheroids. Underlying echo formation mechanisms and their interaction are explored. Phase-sensitive sonar systems could be important for the acquisition of increased levels of information, crucial for the development of automated species identification. Studies of sonar system phase calibration and complex scattering from fundamental shapes are necessary in order to incorporate this type of fully-coherent processing into scientific acoustic instruments.

Type of Work:Ph.D. thesis.
Supervisor(s):Atkins, Phil
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Electronic and Electrical Engineering
Subjects:QL Zoology
T Technology (General)
TC Hydraulic engineering. Ocean engineering
TK Electrical engineering. Electronics Nuclear engineering
Institution:University of Birmingham
ID Code:3460
This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page